WorldWideScience

Sample records for atmospheric gravity waves

  1. An introduction to atmospheric gravity waves

    CERN Document Server

    Nappo, Carmen J

    2012-01-01

    Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation.An accompanying website contains real data, computer codes for data analysis, and linear gravity wave models to further enhance the reader's understanding of the book's material. Companion web site features animations and streaming video Foreword by George Chimonas, a renowned expert on the interac...

  2. Acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean

    National Research Council Canada - National Science Library

    Godin, Oleg A; Zabotin, Nikolay A; Bullett, Terence W

    2015-01-01

    .... We show that, at frequencies below a certain transition frequency of about 3 mHz, infragravity waves continuously radiate their energy into the upper atmosphere in the form of acoustic-gravity waves...

  3. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  4. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  5. Atmospheric gravity waves in the Red Sea: a new hotspot

    KAUST Repository

    Magalhaes, J. M.

    2011-02-03

    The region of the Middle East around the Red Sea (between 32° E and 44° E longitude and 12° N and 28° N latitude) is a currently undocumented hotspot for atmospheric gravity waves (AGWs). Satellite imagery shows evidence that this region is prone to relatively high occurrence of AGWs compared to other areas in the world, and reveals the spatial characteristics of these waves. The favorable conditions for wave propagation in this region are illustrated with three typical cases of AGWs propagating in the lower troposphere over the sea. Using weakly nonlinear long wave theory and the observed characteristic wavelengths we obtain phase speeds which are consistent with those observed and typical for AGWs, with the Korteweg-de Vries theory performing slightly better than Benjamin-Davis-Acrivos-Ono theory as far as phase speeds are concerned. ERS-SAR and Envisat-ASAR satellite data analysis between 1993 and 2008 reveals signatures consistent with horizontally propagating large-scale internal waves. These signatures cover the entire Red Sea and are more frequently observed between April and September, although they also occur during the rest of the year. The region\\'s (seasonal) propagation conditions for AGWs, based upon average vertical atmospheric stratification profiles suggest that many of the signatures identified in the satellite images are atmospheric internal waves. © Author(s) 2011.

  6. Analytical Solution for Waves in Planets with Atmospheric Superrotation. I. Acoustic and Inertia-Gravity Waves

    Science.gov (United States)

    Peralta, J.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.; López-Valverde, M. A.

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  7. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  8. On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

    Directory of Open Access Journals (Sweden)

    I. P. Chunchuzov

    2009-11-01

    Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

  9. Lidar measurements of gravity waves in the middle atmosphere in southern hemisphere winter above New Zealand

    Science.gov (United States)

    Kaifler, Bernd; Kaifler, Natalie; Dörnbrack, Andreas; Ehard, Benedikt; Rapp, Markus

    2015-04-01

    The international Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign was carried out in New Zealand during austral winter 2014. Its aim was to extensively study gravity waves from their sources in the troposphere, along their propagation through the atmosphere to the regions of dissipation at high altitudes. New Zealand was chosen due to its proximity to the edge of the polar vortex and its orography where strong flows excite gravity waves, making it one of the world's gravity wave hotspots. During DEEPWAVE, a comprehensive set of instruments was operated to observe gravity waves. The DLR Rayleigh/Raman lidar was set up at NIWA station in Lauder on New Zealand's South Island in June 2014. The instrumented was operated whenever weather permitted. Temperature profiles are retrieved between 22 and 80 km with 10 min temporal and 1 km vertical resolution. In order to study variations in gravity wave propagation associated with the breakdown of the polar vortex, observations were continued beyond the DEEPWAVE campaign. In total 755 operation hours during 99 nights were accumulated between June and November 2014. We present statistics of gravity wave activity and wave parameters which we derived from this extensive dataset using filtering techniques and spectral analysis. In a first step, we characterize gravity wave activity using the gravity wave potential energy density. Then we study spectral properties of the waves using two-dimensional FFT of wave-induced temperature variances. We find that in the stratosphere, low-frequency waves with periods close to the inertial period are very common. Large-amplitude waves with periods of less than two hours occur at times mainly in the mesosphere. The distribution of observed phase speeds suggests that observed waves fall into three groups: one group with mean phase speeds of -3 km/h, one group with phase speeds close to zero, and a broad background. In addition to statistics, we show case studies of selected gravity

  10. Gravity wave propagation in the realistic atmosphere based on a three-dimensional transfer function model

    Directory of Open Access Journals (Sweden)

    L. Sun

    2007-10-01

    Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.

  11. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    Science.gov (United States)

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  12. Nonlinear interaction between acoustic gravity waves in a rotating atmosphere

    Directory of Open Access Journals (Sweden)

    P. Axelsson

    1996-01-01

    Full Text Available The influence of the Earth's rotation on the resonant interaction of atmospheric waves is investigated. The explicit expressions for the coupling coefficients are presented. They are derived by means of two different techniques; first, by a direct expansion derivation from a set of reduced equations, and second, by a Hamiltonian method.

  13. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available Recent investigations of atmospheric gravity waves (AGW and travelling ionospheric disturbances (TID in the Earth's thermosphere and ionosphere are reviewed. In the past decade, the generation of gravity waves at high latitudes and their subsequent propagation to low latitudes have been studied by several global model simulations and coordinated observation campaigns such as the Worldwide Atmospheric Gravity-wave Study (WAGS, the results are presented in the first part of the review. The second part describes the progress towards understanding the AGW/TID characteristics. It points to the AGW/TID relationship which has been recently revealed with the aid of model-data comparisons and by the application of new inversion techniques. We describe the morphology and climatology of gravity waves and their ionospheric manifestations, TIDs, from numerous new observations.

  14. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  15. Optimizing an Infrared Camera for Observing Atmospheric Gravity Waves from a CubeSat Platform

    OpenAIRE

    Rønning, Snorre Stavik

    2012-01-01

    The NTNU Test Satellite (NUTS) is a double CubeSat deigned by master students at NTNU. The goal of the project is to image atmospheric gravity waves in the OH airglow layer. This thesis explores the theory behind gravity waves and discuss the design of an infrared camera as a payload onboard. Different requirement based on scientific and mechanical limitations are presented. Based on this a suitable infrared camera is presented.

  16. Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Y. Deng

    2014-04-01

    Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.

  17. Seasonal variation and sources of atmospheric gravity waves in the Antarctic

    Directory of Open Access Journals (Sweden)

    Kaoru Sato

    2010-12-01

    Full Text Available In the last recent ten years, our knowledge of gravity waves in the Antarctic has been significantly improved through numerous studies using balloon and satellite observations and high-resolution model simulations. In this report, we introduce results from two studies which were performed as a part of the NIPR project "Integrated analysis of the material circulation in the Antarctic atmosphere-cryosphere-ocean" (2004-2009, i.e., Yoshiki et al. (2004 and Sato and Yoshiki (2008. These two studies focused on the seasonal variation and sources of the gravity waves in the Antarctic, because horizontal wavelengths and phase velocities depend largely on the wave sources. The former study used original high-resolution data from operational radiosonde observations at Syowa Station. In the lowermost stratosphere, gravity waves do not exhibit characteristic seasonal variation; instead, the wave energy is intensified when lower latitude air intrudes into the area near Syowa Station in the upper troposphere. This intrusion is associated with blocking events or developed synoptic-scale waves. In the lower and middle stratosphere, the gravity wave energy is maximized in spring and particularly intensified when the axis of the polar night jet approaches Syowa Station. The latter study is based on intensive radiosonde observation campaigns that were performed in 2002 at Syowa Station as an activity of JARE-43. Gravity wave propagation was statistically examined using two dimensional (i.e., vertical wavenumber versus frequency spectra in each season. It was shown that the gravity waves are radiated upward and downward from an unbalanced region of the polar night jet. This feature is consistent with the gravity-wave resolving GCM simulation.

  18. Observational indications of downward-propagating gravity waves in middle atmosphere lidar data

    Science.gov (United States)

    Kaifler, N.; Kaifler, B.; Ehard, B.; Gisinger, S.; Dörnbrack, A.; Rapp, M.; Kivi, R.; Kozlovsky, A.; Lester, M.; Liley, B.

    2017-09-01

    Two Rayleigh lidars were employed at a southern-hemisphere mid-latitude site in New Zealand (45°S) and a northern-hemisphere high-latitude site in Finland (67°N) in order to observe gravity waves between 30 and 85 km altitude under wintertime conditions. Two-dimensional wavelet analysis is used to analyze temperature perturbations caused by gravity waves and to determine their vertical wavelengths and phase progression. In both datasets, upward phase progression waves occur frequently between 30 and 85 km altitude. Six cases of large-amplitude wave packets are selected which exhibit upward phase progression in the stratosphere and/or mesosphere. We argue that these wave packets propagate downward and we discuss possible wave generation mechanisms. Spectral analysis reveals that superpositions of two or three wave packets are common. Furthermore, their characteristics often match those of upward-propagating waves which are observed at the same time or earlier. In the dataset means, the contribution of upward phase progression waves to the potential energy density Ep is largest in the lower stratosphere above Finland. There, Ep of upward and downward phase progression waves is comparable. At 85 km one third of the potential energy carried by propagating waves is attributed to upward phase progression waves. In some cases Ep of upward phase progression waves far exceeds Ep of downward phase progression waves. The downward-propagating waves might be generated in situ in the middle atmosphere or arise from reflection of upward-propagating waves.

  19. Studies on atmospheric gravity wave activity in the troposphere and lower stratosphere over a tropical station at Gadanki

    Directory of Open Access Journals (Sweden)

    I. V. Subba Reddy

    2005-11-01

    Full Text Available MST radars are powerful tools to study the mesosphere, stratosphere and troposphere and have made considerable contributions to the studies of the dynamics of the upper, middle and lower atmosphere. Atmospheric gravity waves play a significant role in controlling middle and upper atmospheric dynamics. To date, frontal systems, convection, wind shear and topography have been thought to be the sources of gravity waves in the troposphere. All these studies pointed out that it is very essential to understand the generation, propagation and climatology of gravity waves. In this regard, several campaigns using Indian MST Radar observations have been carried out to explore the gravity wave activity over Gadanki in the troposphere and the lower stratosphere. The signatures of the gravity waves in the wind fields have been studied in four seasons viz., summer, monsoon, post-monsoon and winter. The large wind fluctuations were more prominent above 10 km during the summer and monsoon seasons. The wave periods are ranging from 10 min-175 min. The power spectral densities of gravity waves are found to be maximum in the stratospheric region. The vertical wavelength and the propagation direction of gravity waves were determined using hodograph analysis. The results show both down ward and upward propagating waves with a maximum vertical wave length of 3.3 km. The gravity wave associated momentum fluxes show that long period gravity waves carry more momentum flux than the short period waves and this is presented.

  20. A monochromatic gravity wave observed by the Flatland Atmospheric Observatory

    Science.gov (United States)

    Vanzandt, T. E.; Chun, Hye-Yeong; Clark, W. L.; Einaudi, F.; Nastrom, G. D.; Riddle, A. C.; Warnock, J. M.

    1993-01-01

    On 21 December 1991 from approximately 1300 to approximately 1600 UTC a monochromatic wave train with an 8.2-min period was observed by the suite of instruments at the Flatland Atmospheric Observatory (FAO), located in very flat terrain near Champaign-Urbana, Illinois. A 915-MHz radar measured the vertical wind velocity w every 60 s from 0.55 km MSL (0.34 km AGL) to approximately 3 km with 250-m range gates, and a 50-MHz radar measured the oblique wind in four directions, as well as w, every 130 s from 2.75 to approximately 7.25 km with 750-m range gates. A meteorological ground station measured the surface pressure P, wind speed vector u and azimuth alpha, temperature, solar insolation, etc., every 30 s. P was also measured every 120 s by six digital barograph stations within 30 km of Flatland. Using the hodograph of surface vector u and alpha and the impedance relation, we estimated the azimuthal direction of propagation phi to be 45 deg +/- 15 deg clockwise from north, the intrinsic and apparent horizontal phase speeds C(sub i) and C(sub o), respectively, (which are about equal since the direction of propagation is about normal to the mean wind) to be 21 +/- 5 m/s, and the horizontal wavelength lambda to be 10.0 +/- 2.5 km. The peak-to-peak surface horizontal perturbation velocity varied from approximately 2 to 5 m/s from cycle to cycle.

  1. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    Science.gov (United States)

    2015-10-08

    airglow emission and the ionosphere. This would greatly enhance our ability to detect tsunamis in the ionosphere. RELATED PROJECTS Not at this time. ...Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input

  2. Study of atmospheric gravity waves and infrasonic sources using the USArray Transportable Array pressure data

    Science.gov (United States)

    Hedlin, Michael; de Groot-Hedlin, Catherine; Hoffmann, Lars; Alexander, M. Joan; Stephan, Claudia

    2016-04-01

    The upgrade of the USArray Transportable Array (TA) with microbarometers and infrasound microphones has created an opportunity for a broad range of new studies of atmospheric sources and the large- and small-scale atmospheric structure through which signals from these events propagate. These studies are akin to early studies of seismic events and the Earth's interior structure that were made possible by the first seismic networks. In one early study with the new dataset we use the method of de Groot-Hedlin and Hedlin (2015) to recast the TA as a massive collection of 3-element arrays to detect and locate large infrasonic events. Over 2,000 events have been detected in 2013. The events cluster in highly active regions on land and offshore. Stratospherically ducted signals from some of these events have been recorded more than 2,000 km from the source and clearly show dispersion due to propagation through atmospheric gravity waves. Modeling of these signals has been used to test statistical models of atmospheric gravity waves. The network is also useful for making direct observations of gravity waves. We are currently studying TA and satellite observations of gravity waves from singular events to better understand how the waves near ground level relate to those observed aloft. We are also studying the long-term statistics of these waves from the beginning of 2010 through 2014. Early work using data bandpass filtered from 1-6 hr shows that both the TA and satellite data reveal highly active source regions, such as near the Great Lakes. de Groot-Hedlin and Hedlin, 2015, A method for detecting and locating geophysical events using clusters of arrays, Geophysical Journal International, v203, p960-971, doi: 10.1093/gji/ggv345.

  3. The Propagation of Tsunami Generated Acoustic-Gravity Waves in the Atmosphere

    Science.gov (United States)

    Wu, Y.; Llewellyn Smith, S.; Rottman, J.; Broutman, D.; Minster, J. B. H.

    2014-12-01

    Tsunami-generated acoustic-gravity waves propagate in the atmosphere up to the ionosphere, where they have been observed to have an impact on the total electron content (TEC). We simulate the propagation of 2D&3D linearized acoustic-gravity waves in the atmosphere by Fourier transforming in the horizontal and solving the vertical structure with a tsunami-perturbed lower boundary and an upper radiation boundary conditions. Starting from the algorithm of Broutman (2013) and the atmospheric profile of the 2004 Sumatra Tsunami, we add compressibility to the atmosphere and extend the calculation to three dimensions. Compressibility is an important feature of the real atmosphere, and we investigate its effect on wave propagation. We obtain the vertical wavenumber as a function of buoyancy frequency, density scale height, sound speed, and background wind velocity. Results show that wind shear and compressibility have a significant impact on wave transmission and reflection. We also investigate the 3D problem to allow variations in the bottom boundary condition and in the background wind profiles. Results are quite similar to the 2D case.

  4. Theory and observations of horizontal and vertical structure of gravity wave perturbations in the middle atmosphere

    Science.gov (United States)

    Hostetler, Chris Alan

    Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations are derived by assuming that both saturated and unsaturated waves obey the polarization and dispersion relations and that the joint (m,w) spectrum is separable. The models show that the joint (k,l,m) and (k,l,w) spectra are not separable. The one-dimensional horizontal wave number spectra models are consistent with existing observations of horizontal wave number spectra in the lower stratosphere and upper mesosphere. The gravity wave models are used to analyze the effects of Doppler shifting caused by the mean wind field on the separability of gravity wave spectra. If the intrinsic joint (m,w) spectrum is separable, Doppler effects associated with even small mean winds will destroy separability of the observed joint (m,w(sub o)) spectrum, particularly at high vertical wave numbers. Vertical and horizontal wave number spectra of density perturbations in the upper stratosphere (25-40 km) and the upper mesosphere (approximately 80-105 km) measured during the ALOHA-90 campaign are presented. The spectra were inferred from approximately 45 h of airborne Na/Rayleigh lidar observations in the vicinity of Hawaii. Density variances, vertical shear variances, Richardson's numbers, characteristic vertical and horizontal wave numbers, and power law slopes of the vertical and horizontal wave number spectra are computed and discussed. The observed m-spectra contradict the predictions of the linear instability theory of Dewan and Good, and the scale-dependent diffusive filtering theory of Gardner, and appear to be compatible with the Doppler spreading theory of Hines, the scale-dependent diffusion theory of Weinstock, the scale-independent diffusive filtering theory of Gardner, and the similitude model of Dewan. In the stratosphere, the m-spectra exhibit significant energy at low wave numbers less than the values expected for m(sub *). The source of this energy is believed

  5. Atmospheric Gravity Waves and Turbulent Processes in the Mesopause Region Based on PMSE MAARSY Observations

    Science.gov (United States)

    Gudadze, N.; Chau, J. L.; Stober, G.; Latteck, R.

    2016-12-01

    Mesosphere-lower-thermosphere (MLT) polar dynamics are interesting and important subject for study in atmospheric physic. It is considered that mesopause region is where the main part of the Atmospheric gravity waves breaks and/or dissipates. However this region is difficult to observe. Continuous Observations of the polar summer mesosphere with the Middle Atmosphere Alomar Radar System (MAARSY) and its predecessor the ALOMAR-Wind-Radar (ALWIN) (before 2010), have been used to investigate dynamical structures of well-known phenomenon - Polar Mesosphere Summer Echoes (PMSE) which is an important tracer in the summer polar mesopause region. Signal to Noise Ratio (SNR) and Doppler radial velocity from the PMSE are used to investigate the wave-like motions with periods larger than 5 minutes. Such oscillations are studied in terms of atmospheric gravity waves (AGWs). Processes also connected with AGWs as PMSE layering, are studied in connection with the background conditions of the neutral atmosphere as well. Background winds are obtained from collocated meteor radar (MR). We used local enhancement method for the processing of altitude-time SNR images to detect layers in the PMSEs and characterised them. Our preliminary results indicate that PMSE strength and behaviour is correlated with the meridional wind. Furthermore we found that the spectral width (SW), which is a proxy of turbulence, is most of the time weakly dependent on SNR strength. However, there are some events where SW is highly dependent on SNR intensity indicating that they could be associated to turbulent-dominated events.

  6. Influence of the spatial distribution of gravity wave activity on the middle atmospheric dynamics

    Directory of Open Access Journals (Sweden)

    P. Šácha

    2016-12-01

    Full Text Available Analysing GPS radio occultation density profiles, we have recently pointed out a localised area of enhanced gravity wave (GW activity and breaking in the lower stratosphere of the east Asian–northwestern Pacific (EA/NP region. With a mechanistic model of the middle and upper atmosphere, experiments are performed to study the possible effect of such a localised GW breaking region on large-scale circulation and transport and, more generally, a possible influence of the spatial distribution of gravity wave activity on middle atmospheric dynamics.The results indicate the important role of the spatial distribution of GW activity for polar vortex stability, formation of planetary waves and for the strength and structure of zonal-mean residual circulation. Furthermore, a possible effect of a zonally asymmetric GW breaking in the longitudinal variability of the Brewer–Dobson circulation is analysed. Finally, consequences of our results for a variety of research topics (e.g. sudden stratospheric warming, atmospheric blocking, teleconnection patterns and a compensation mechanism between resolved and unresolved drag are discussed.

  7. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    Science.gov (United States)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  8. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force.

    It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  9. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  10. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    Science.gov (United States)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  11. Gravity Wave-induced High-altitude CO2 Ice Clouds in Mars' Atmosphere

    Science.gov (United States)

    Yigit, E.; Medvedev, A. S.; Hartogh, P.

    2015-12-01

    First general circulation model simulations that quantify and reproduce patches of cold air required for CO2 condensation and ice cloud formation in Mars' atmosphere are presented. Results suggest that these ice clouds are generated by lower atmospheric small-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral GW parameterization of Yiğit et al. (2008). Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good qualitative agreement with observations of high-altitude CO2 ice clouds. Our study confirms the key role of subgrid-scale GWs in facilitating high-altitude CO2 cloud formation and predicts clouds at altitudes higher than have been observed to date.

  12. Studying internal gravity waves generated by atmospheric fronts over the Moscow region

    Science.gov (United States)

    Kulichkov, S. N.; Tsybulskaya, N. D.; Chunchuzov, I. P.; Gordin, V. A.; Bykov, Ph. L.; Chulichkov, A. I.; Perepelkin, V. G.; Bush, G. A.; Golikova, E. V.

    2017-07-01

    Internal gravity wave (IGW) data obtained during the passage of atmospheric fronts over the Moscow region in June-July 2015 is analyzed. IGWs were recorded using a group of four microbarographs (developed at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences) located at distances of 7 to 54 km between them. Regularities of variations in IGW parameters (spatial coherence, characteristic scales, propagation direction, horizontal propagation velocity, and amplitudes) before, during, and after the passage of an atmospheric front over the observation network, when the observation network finds itself inside the cyclone and outside the front, are studied. The results may be useful in studying the relationships between IGW effects in different physical fields at different atmospheric heights. It is shown that, within periods exceeding 30 min, IGWs are coherent between observation points horizontally spaced at distances of about 60 km (coherence coefficient is 0.6-0.9). It is also shown that there is coherence between wave fluctuations in atmospheric pressure and fluctuations in horizontal wind velocity within the height range 60-200 m. A joint analysis of both atmospheric pressure and horizontal wind fluctuations has revealed the presence of characteristic dominant periods, within which cross coherences between fluctuations in atmospheric pressure and wind velocity have local maxima. These periods are within approximate ranges of 20-29, 37-47, 62-72, and 100-110 min. The corresponding (to these dominant periods) phase propagation velocities of IGWs lie within an interval of 15-25 m/s, and the horizontal wavelengths vary from 52 to 99 km within periods of 35 to 110 min, respectively.

  13. Dynamical effects of small-scale gravity waves of lower atmospheric origin on the equinoctial thermosphere

    Science.gov (United States)

    Yigit, E.; Medvedev, A. S.; Aylward, A. D.; Ridley, A. J.; Harris, M. J.; Moldwin, M.; Hartogh, P.

    2011-12-01

    Small-scale internal gravity waves (GWs) propagating directly from the lower to upper atmosphere play a significant dynamical role for the general circulation of the thermosphere at solstice (Yigit et al., 2009). Using the extended spectral nonlinear gravity wave parameterization of Yigit et al. (2008) implemented into a 3-D coupled general circulation model, this work investigates the effects of a broad spectrum of small-scale GWs of lower atmospheric origin on the equinoctial thermosphere for the first time. GWs propagate to F region altitudes in both hemispheres, producing appreciable drag on the mean zonal wind. A modification of the two-cell equinoctial mean circulation by GWs is simulated. The mean zonal GW drag is comparable to the ion drag up to the middle thermosphere. While the mean dynamical effects of GWs is the deceleration of the mean flow, the instantaneous GW body force can have both signs. In the Southern Hemisphere high-latitude, GWs produce very large torque, the mechanism of which is investigated in detail. GW anisotropy plays a crucial role in offsetting and modulating wave filtering, introducing increased favorable propagation conditions for westerly harmonics in the high-latitudes. This leads to a very large localized eastward GW drag reaching a maximum in the upper thermosphere as a consequence of enhanced molecular viscosity, thermal conduction, and ion drag. Overall, this study highlights that in studies of the thermosphere at equinox, GWs should be taken into account. 1. Yigit, E., A. D. Aylward, A.S. Medvedev (2008), J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135. 2. Yigit, E., A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris (2009), J. Geophys. Res., 114, D07101, doi:10.1029/2008JD011132.

  14. Internal Gravity Wave Activity Hotspot and Implications for the Middle Atmospheric Dynamics

    Science.gov (United States)

    Sacha, Petr; Pisoft, Petr; Lilienthal, Friederike; Jacobi, Christoph

    2015-11-01

    Internal gravity waves are widely recognized to contribute significantly to the energy and angular momentum transport. They play a significant role in affecting many of the middle atmospheric phenomena (like the QBO or Brewer-Dobson circulation). Using GPS RO density profiles, we have discovered a localized area of enhanced IGW activity and breaking in the lower stratosphere of Eastern Asia/North-western Pacific region.With a 3D primitive equation model of the middle atmosphere we studied the effects of such a localized breaking region on large-scale dynamics and transport. Possible forcing and propagation directions of planetary waves caused by such a localized IGW forcing were investigated and consequences for the polar vortex stability and stratosphere-troposphere exchange in the tropical region were discussed.Finally, applying 3D EP flux and 3D residual circulation diagnostics, we investigated the possible role of this area in the longitudinal variability of the Brewer- Dobson circulation with a hypothesis of its enhanced downwelling branch in this region. In the proces, model results were compared with the ozone and tracer distribution data from GOME, GOMOS, MIPAS and SCIAMACHY further confirming the importance of the Eastern Asia/North-western Pacific region for middle atmospheric dynamics.

  15. Atmospheric-like rotating annulus experiment: gravity wave emission from baroclinic jets

    Science.gov (United States)

    Rodda, Costanza; Borcia, Ion; Harlander, Uwe

    2017-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating- annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modelling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Joint laboratory experiment and numerical simulation have been conducted. The comparison between the data obtained from the experiment and the numerical simulations shows a very good

  16. Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts

    Science.gov (United States)

    Garcia, Raphael F.; Brissaud, Quentin; Rolland, Lucie; Martin, Roland; Komatitsch, Dimitri; Spiga, Aymeric; Lognonné, Philippe; Banerdt, Bruce

    2017-10-01

    The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission.

  17. Some characteristics of atmospheric gravity waves observed by radio-interferometry

    Directory of Open Access Journals (Sweden)

    Claude Mercier

    Full Text Available Observations of atmospheric acoustic-gravity waves (AGWs are considered through their effect on the horizontal gradient G of the slant total electron content (slant TEC, which can be directly obtained from two-dimensional radio-interferometric observations of cosmic radio-sources with the Nançay radioheligraph (2.2°E, 47.3°N. Azimuths of propagation can be deduced (modulo 180°. The total database amounts to about 800 h of observations at various elevations, local time and seasons. The main results are:

    a AGWs are partially directive, confirming our previous results.

    b The propagation azimuths considered globally are widely scattered with a preference towards the south.

    c They show a bimodal time distribution with preferential directions towards the SE during daytime and towards the SW during night-time (rather than a clockwise rotation as reported by previous authors.

    d The periods are scattered but are larger during night-time than during daytime by about 60%.

    e The effects observed with the solar radio-sources are significantly stronger than with other radio-sources (particularly at higher elevations, showing the role of the geometry in line of sight-integrated observations.

  18. Some characteristics of atmospheric gravity waves observed by radio-interferometry

    Directory of Open Access Journals (Sweden)

    C. Mercier

    1996-01-01

    Full Text Available Observations of atmospheric acoustic-gravity waves (AGWs are considered through their effect on the horizontal gradient G of the slant total electron content (slant TEC, which can be directly obtained from two-dimensional radio-interferometric observations of cosmic radio-sources with the Nançay radioheligraph (2.2°E, 47.3°N. Azimuths of propagation can be deduced (modulo 180°. The total database amounts to about 800 h of observations at various elevations, local time and seasons. The main results are: a AGWs are partially directive, confirming our previous results. b The propagation azimuths considered globally are widely scattered with a preference towards the south. c They show a bimodal time distribution with preferential directions towards the SE during daytime and towards the SW during night-time (rather than a clockwise rotation as reported by previous authors. d The periods are scattered but are larger during night-time than during daytime by about 60%. e The effects observed with the solar radio-sources are significantly stronger than with other radio-sources (particularly at higher elevations, showing the role of the geometry in line of sight-integrated observations.

  19. Gravity waves in the middle atmosphere during the MaCWAVE winter campaign: evidence of mountain wave critical level encounters

    Directory of Open Access Journals (Sweden)

    L. Wang

    2006-07-01

    Full Text Available Falling sphere and balloon wind and temperature data from the MaCWAVE winter campaign, which was conducted in northern Scandinavia during January 2003, are analyzed to investigate gravity wave characteristics in the stratosphere and mesosphere. There were two stratospheric warming events occurring during the campaign, one having a maximum temperature perturbation at ~45 km during 17–19 January, and the other having a maximum perturbation at ~30 km during 24–27 January. The former was a major event, whereas the latter was a minor one. Both warmings were accompanied by upper mesospheric coolings, and during the second warming, the upper mesospheric cooling propagated downward. Falling sphere data from the two salvos on 24–25 January and 28 January were analyzed for gravity wave characteristics. Gravity wave perturbations maximized at ~45–50 km, with a secondary maximum at ~60 km during Salvo 1; for Salvo 2, wave activity was most pronounced at ~60 km and above.

    Gravity wave horizontal propagation directions are estimated using the conventional hodographic analysis combined with the S-transform (a Gaussian wavelet analysis method. The results are compared with those from a Stokes analysis. They agree in general, though the former appears to provide better estimates for some cases, likely due to the capability of the S-transform to obtain robust estimates of wave amplitudes and phase differences between different fields.

    For Salvo 1 at ~60 km and above, gravity waves propagated towards the southeast, whereas for Salvo 2 at similar altitudes, waves propagated predominantly towards the northwest or west. These waves were found not to be topographic waves. Gravity wave motions at ~45–50 km in Salvo 1 were more complicated, but they generally had large amplitudes, short vertical scales, and their hodographs revealed a northwest-southeast orientation. In addition, the

  20. Gravity waves in the middle atmosphere during the MaCWAVE winter campaign: evidence of mountain wave critical level encounters

    Directory of Open Access Journals (Sweden)

    L. Wang

    2006-07-01

    Full Text Available Falling sphere and balloon wind and temperature data from the MaCWAVE winter campaign, which was conducted in northern Scandinavia during January 2003, are analyzed to investigate gravity wave characteristics in the stratosphere and mesosphere. There were two stratospheric warming events occurring during the campaign, one having a maximum temperature perturbation at ~45 km during 17–19 January, and the other having a maximum perturbation at ~30 km during 24–27 January. The former was a major event, whereas the latter was a minor one. Both warmings were accompanied by upper mesospheric coolings, and during the second warming, the upper mesospheric cooling propagated downward. Falling sphere data from the two salvos on 24–25 January and 28 January were analyzed for gravity wave characteristics. Gravity wave perturbations maximized at ~45–50 km, with a secondary maximum at ~60 km during Salvo 1; for Salvo 2, wave activity was most pronounced at ~60 km and above. Gravity wave horizontal propagation directions are estimated using the conventional hodographic analysis combined with the S-transform (a Gaussian wavelet analysis method. The results are compared with those from a Stokes analysis. They agree in general, though the former appears to provide better estimates for some cases, likely due to the capability of the S-transform to obtain robust estimates of wave amplitudes and phase differences between different fields. For Salvo 1 at ~60 km and above, gravity waves propagated towards the southeast, whereas for Salvo 2 at similar altitudes, waves propagated predominantly towards the northwest or west. These waves were found not to be topographic waves. Gravity wave motions at ~45–50 km in Salvo 1 were more complicated, but they generally had large amplitudes, short vertical scales, and their hodographs revealed a northwest-southeast orientation. In addition, the ratios between wave amplitudes and intrinsic phase speeds generally

  1. Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data

    Directory of Open Access Journals (Sweden)

    S. D. Zhang

    2010-05-01

    Full Text Available The latitudinal and seasonal variations of gravity wave (GW potential energy density (EP, kinetic energy density (EK, and total energy density (ET, i.e, the sum of potential and kinetic energy densities in the tropospheric (typically 2–10 km and lower stratospheric (typically 18–25 km segments have been derived from 10 years (1998–2007 of radiosonde observations over 92 United States stations in the Northern Hemisphere. The latitudinal variation of EP in the lower stratosphere is in good agreement with satellite observations. However, EK and ET in the lower stratosphere are different from satellite observations and the difference is believed to be linked with the latitudinal dependence of GW sources. Our analysis reveals that GW energy properties exhibit distinctive latitudinal and seasonal variations. The upward-propagating GW energy in the troposphere is larger than that in the lower stratosphere at low latitudes but the opposite holds true at high latitudes. The transition latitude, where the upward- propagating energies in the two altitude regions are the same, occurs at 35° N throughout the year. So striking differences between GW activity in the troposphere and lower stratosphere are not likely explained only by the background wind Doppler shifting due to strong tropospheric jets. Our analysis indicates that the region around tropopause, roughly from 10 km to 18 km, is an important source region, especially at latitudes below 35° N. Our studies strongly suggest that in order to fully understand the global GW activity in the lower atmosphere, the GW kinetic energy and its geographical and seasonal variations should be included, and more attention should be given to GWs in the troposphere and GW sources within the intermediate region, especially the upper troposphere.

  2. Research status and recommendations from the Alaska Workshop on Gravity Waves and Turbulence in the Middle Atmosphere, Fairbanks, Alaska, 18-22 July 1983

    Science.gov (United States)

    Fritts, D. C.; Geller, M. A.; Schoeberl, M. R.; Balsley, B. B.; Chanin, M. L.; Hirota, I.; Holton, J. R.; Kato, S.; Lindzen, R. S.; Vincent, R. A.

    1984-01-01

    The Alaska Workshop on Gravity Waves and Turbulence in the Middle Atmosphere had as its purpose the assessment of current theoretical understanding and observational capabilities in this field, as well as to suggest what additional studies would further knowledge of these processes and their effects on the large scale circulation of the middle atmosphere. While it is judged that current understanding is primitive, theoretical and modelling studies are held to be able to contribute important quantitative data on gravity wave excitation, propagation, and dissipation mechanisms and effects. The combination of several observational systems is considered capable of expanding the present knowledge of gravity wave and turbulence morphology, parameters, and processes.

  3. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions

    Directory of Open Access Journals (Sweden)

    K. M. Huang

    2012-02-01

    Full Text Available Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value.

  4. The Boussinesq-BO equation for algebraic gravity solitary waves in baroclinic atmosphere and the research of squall lines formation mechanism

    Science.gov (United States)

    Guo, Min; Chen, Xin; Chen, Yaodeng; Yang, Hongwei

    2017-12-01

    The gravity solitary waves are a kind of waves which are caused by the disturbance of static equilibrium. The nonlinearity concentration of the gravity solitary waves makes the energy assemble together and forms disastrous weather phenomena, such as squall lines. By the calculation condition and theoretical method limit, previous studies tried hard to reduce the variable numbers and discussed the gravity solitary waves in barotropic atmosphere, but the baroclinic problem of atmosphere is inevitable topic. In this paper, from the basic kinetic equations in baroclinic non-static equilibrium atmosphere, by using multi-scale analysis and perturbation method, a new model is derived to describe the algebraic gravity solitary waves, we call it Boussinesq-BO equation. Comparing with the former models, the Boussinesq-BO model can describe the propagation process of waves in two directions and is more suitable for the real atmosphere condition. With the help of the trial function method, an exact solution of Boussinesq-BO equation is obtained and the fission property of algebraic gravity solitary waves is discussed. Finally, we can find that the fission of algebraic gravity solitary waves is also a possible formation mechanism of squall lines.

  5. Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2009-11-01

    Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.

  6. Instability of coupled gravity-inertial-Rossby waves on a {beta}-plane in solar system atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, J.F. [KwaZulu-Natal Univ., Durban (South Africa). Astrophysics and Cosmology Research Unit, School of Mathematical Sciences; Alabama Univ., AL (United States). Dept. of Physics, CSPAR; King' s College, Cambridge (United Kingdom)

    2009-07-01

    This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a {beta}-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of {beta}-, the stratification characterized by the Vaeisaelae-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude {theta}{sub c} versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. ''Supersonic'' fast rotators are unstable in a narrow band of latitudes around the equator. For example {theta}{sub c}{proportional_to}12 for Jupiter. On the other hand slow ''subsonic'' rotators (e.g. Mercury, Venus and the Sun's Corona) are unstable at all latitudes except very close to the poles where the {beta}- effect vanishes. ''Transonic'' rotators, such as the Earth and Mars, exhibit instability within latitudes of 34 and 39 , respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26 about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics. (orig.)

  7. Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2009-11-01

    Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.

  8. Excerpts from the paper: Research Status and Recommendation from the Alaska Workshop on Gravity Waves and Turbulence in the Middle Atmosphere, part 1.3A

    Science.gov (United States)

    Fritts, D. C.; Geller, M. A.; Balsley, B. B.; Chanin, M. L.; Hirota, I.; Holton, J. R.; Kato, S.; Lindzen, R. S.; Schoeberl, M. R.; Vincent, R. A.

    1984-01-01

    Internal gravity waves are disturbances whose intrinsic frequencies k(c - u) are smaller than the Brunt-Vaisala frequency (N). Their importance arises because: they are the major components of the total flow and temperature variability fields of the mesosphere (i.e., shears and lapse rates) and hence constitute the likely sources of turbulence; and they are associated with fluxes of momentum that communicate stresses over large distances. For example, gravity waves exert a drag on the flow in the upper mesosphere. However, in order for gravity waves to exert a net drag on the atmosphere, they must be attenuated. There are two general types of processes that seek to attenuate gravity waves: dissipation and saturation. Dissipation is any process that is effective independent of the wave amplitude, while saturation occurs when certain wave amplitude conditions are met. Radiative damping is an example of dissipation, while convective overturning is an example of saturation. The two processes are not mutually exclusive.

  9. Modulation of Atmospheric Nonisothermality and Wind Shears on the Propagation of Seismic Tsunami-Excited Gravity Waves

    Directory of Open Access Journals (Sweden)

    John Z. G. Ma

    2016-01-01

    Full Text Available We study the modulation of atmospheric nonisothermality and wind shears on the propagation of seismic tsunami-excited gravity waves by virtue of the vertical wavenumber, m (with its imaginary and real parts, m i and m r , respectively, within a correlated characteristic range of tsunami wave periods in tens of minutes. A generalized dispersion relation of inertio-acoustic-gravity (IAG waves is obtained by relaxing constraints on Hines’ idealized locally-isothermal, shear-free and rotation-free model to accommodate a realistic atmosphere featured by altitude-dependent nonisothermality (up to 100 K/km and wind shears (up to 100 m/s per km. The obtained solutions recover all of the known wave modes below the 200-km altitude where dissipative terms are assumed negligible. Results include: (1 nonisothermality and wind shears divide the atmosphere into a sandwich-like structure of five layers within the 200-km altitude in view of the wave growth in amplitudes: Layer I (0–18 km, Layer II (18–87 km, Layer III (87–125 km, Layer IV (125–175 km and Layer V (175–200 km; (2 in Layers I, III and V, the magnitude of m i is smaller than Hines’ imaginary vertical wavenumber ( m i H , referring to an attenuated growth in the amplitudes of upward propagating waves; on the contrary, in Layers II and IV, the magnitude of m i is larger than that of m i H , providing a pumped growth from Hines’ model; (3 nonisothermality and wind shears enhance m r substantially at an ∼100-km altitude for a tsunami wave period T t s longer than 30 min. While Hines’ model provides that the maximal value of m r 2 is ∼0.05 (1/km 2 , this magnitude is doubled by the nonisothermal effect and quadrupled by the joint nonisothermal and wind shear effect. The modulations are weaker at altitudes outside 80–140-km heights; (4 nonisothermality and wind shears expand the definition of the observation-defined “damping factor”, β: relative to Hines’ classical wave

  10. Caustics of atmospheric waves

    Science.gov (United States)

    Godin, Oleg A.

    2015-04-01

    Much like light and sound, acoustic-gravity waves in inhomogeneous atmosphere often have a caustic or caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Increase of the wave magnitude in the vicinity of a caustic makes such vicinities of primary interest in a number of problems, where a signal needs to be separated from a background noise. The value of wave focusing near caustics should be carefully quantified in order to evaluate possible nonlinearities promoted by the focusing. Physical understanding of the wave field in the vicinity of a caustic is also important for understanding of the wave reflection from and transmission (tunneling) through the caustic. To our knowledge, in contrast to caustics of acoustic, electromagnetic, and seismic waves as well as gravity waves in incompressible fluids, asymptotics of acoustic-gravity waves in the vicinity of a caustic have never been studied systematically. In this paper, we fill this gap. Atmospheric waves are considered as linear acoustic-gravity waves in a neutral, horizontally stratified, moving ideal gas of variable composition. Air temperature and wind velocity are assumed to be gradually varying functions of height, and slowness of these variations determines the large parameter of the problem. The scale height of the atmosphere can be large or small compared to the vertical wavelength. It is found that the uniform asymptotics of the wave field in the presence of a simple caustic can be expressed in terms of the Airy function and its derivative. As for the acoustic waves, the argument of the Airy function is expressed in terms of the eikonal calculated in the ray, or WKB, approximation. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In the uniform asymptotics, the terms with the Airy function and its derivative are weighted by cosine

  11. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2015-09-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  12. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2014-01-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  13. Role of Wind Filtering and Unbalanced Flow Generation in Middle Atmosphere Gravity Wave Activity at Chatanika Alaska

    Directory of Open Access Journals (Sweden)

    Colin C. Triplett

    2017-01-01

    Full Text Available The meteorological control of gravity wave activity through filtering by winds and generation by spontaneous adjustment of unbalanced flows is investigated. This investigation is based on a new analysis of Rayleigh LiDAR measurements of gravity wave activity in the upper stratosphere-lower mesosphere (USLM,40–50kmon 152 nights at Poker Flat Research Range (PFRR, Chatanika, Alaska (65◦ N, 147◦ W, over 13 years between 1998 and 2014. The LiDAR measurements resolve inertia-gravity waves with observed periods between 1 h and 4 h and vertical wavelengths between 2 km and 10 km. The meteorological conditions are defined by reanalysis data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA. The gravity wave activity shows large night-to-night variability, but a clear annual cycle with a maximum in winter,and systematic interannual variability associated with stratospheric sudden warming events. The USLM gravity wave activity is correlated with the MERRA winds and is controlled by the winds in the lower stratosphere through filtering by critical layer filtering. The USLM gravity wave activity is also correlated with MERRA unbalanced flow as characterized by the residual of the nonlinear balance equation. This correlation with unbalanced flow only appears when the wind conditions are taken into account, indicating that wind filtering is the primary control of the gravity wave activity.

  14. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    ReVelle, D.O.

    1995-05-01

    During the period from about 1960 to the early 1980`s a number of large bolides (meteor-fireballs) entered the atmosphere which were sufficiently large to generate blast waves during their drag interaction with the air. For example, the remnant of the blast wave from a single kiloton class event was subsequently detected by up to six ground arrays of microbarographs which were operated by the U.S. Air Force during this pre-satellite period. Data have also been obtained from other sources during this period as well and are also discussed in this summary of the historical data. The Air Force data have been analyzed in terms of their observable properties in order to infer the influx rate of NEO`s (near-Earth objects) in the energy range from 0.2 to 1100 kt. The determined influx is in reasonable agreement with that determined by other methods currently available such as Rabinowitz (1992), Ceplecha, (1992; 1994b) and by Chapman and Morrison (1994) despite the fact that due to sampling deficiencies only a portion of the {open_quotes}true{close_quotes} flux of large bodies has been obtained by this method, i.e., only sources at relatively low elevations have been detected. Thus the weak, fragile cometary bodies which do not penetrate the atmosphere as deeply are less likely to have been sampled by this type of detection system. Future work using the proposed C.T.B.T. (Comprehensive Test Ban Treaty) global scale infrasonic network will be likely to improve upon this early estimate of the global influx of NEO`s considerably.

  15. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere

    Science.gov (United States)

    Medvedev, Ð. ń. V.; Ratovsky, K. G.; Tolstikov, M. V.; Oinats, A. V.; Alsatkin, S. S.; Zherebtsov, G. A.

    2017-07-01

    This paper studies the interaction of internal gravity waves (IGW) with neutral wind using the statistics of traveling ionospheric disturbances (TID) from the Radio Physical Complex of the Institute of Solar-Terrestrial Physics. The complex includes the Irkutsk Incoherent Scatter Radar (IISR), Irkutsk Ionosonde (DPS-4), and Ekaterinburg HF Radar (EKB). The aim of this study is to give a common explanation for the TID azimuth distributions obtained with the IISR-ionosonde and HF coherent radar and show that the measurements of 3-D TID characteristics put into the hands of researchers an important tool to study neutral wind in the thermosphere. The distinctive features of this study are the following: (1) using different TID statistics from independent tools and, correspondingly, independent methods for determining TID characteristics; (2) using the 3-D TID characteristics for testing the wind-filtering hypothesis, which allows us to separate the IGW-induced TIDs from TIDs of other nature and identify three TID types depending on their elevation angles; and (3) using the local time-azimuth distribution of the TID number for testing the wind-filtering hypothesis. This study allowed us to conclude that the observed IGW azimuth anisotropy can be mainly explained by the wind filtration mechanism with considering winds at 90-250 km heights. Using the 3-D IGW characteristics allows us to estimate neutral wind parameters. Proposed methods are applicable for any tool which can obtain TID 3-D characteristics. Using the proposed methods will enable us to organize a worldwide campaign to improve the existing neutral wind models.

  16. Atmosphere-Ionosphere Coupling via Atmospheric Waves

    Science.gov (United States)

    Koucka Knizova, Petra; Lastovicka, Jan

    2017-04-01

    The Earth atmosphere and ionosphere is complicated and highly variable system which displays oscillations on wide range scales. The most important factor influencing the ionosphere is certainly the solar and geomagnetic activity. However, the processes even in distant regions in the neutral atmosphere cannot be simply neglected. This contribution reviews aspects of ionospheric variability originating in the lower laying atmosphere. It focuses especially on the generation and propagation of the atmospheric waves from their source region up to the heights of the ionosphere. We will show the role of infrasound, gravity waves, tides and planetary waves in the atmosphere-ionosphere coupling. Particularly gravity waves are of high importance for the ionosphere. Recent theoretical and experimental results will briefly be reviewed.

  17. Acoustic-gravity modons in the atmosphere

    Directory of Open Access Journals (Sweden)

    L. Stenflo

    1995-09-01

    Full Text Available It is shown that the equations governing low-frequency acoustic-gravity waves in a stable stratified atmosphere can have localized dipole-vortex solutions (modons. They propagate in the horizontal direction with a speed that is larger than that of all possible linear internal waves.

  18. Acoustic-gravity modons in the atmosphere

    Directory of Open Access Journals (Sweden)

    L. Stenflo

    Full Text Available It is shown that the equations governing low-frequency acoustic-gravity waves in a stable stratified atmosphere can have localized dipole-vortex solutions (modons. They propagate in the horizontal direction with a speed that is larger than that of all possible linear internal waves.

  19. Atmospheric inertia-gravity waves retrieved from level-2 data of the satellite microwave limb sounder Aura/MLS

    Directory of Open Access Journals (Sweden)

    K. Hocke

    2016-09-01

    Full Text Available The temperature profiles of the satellite experiment Aura/MLS are horizontally spaced by 1.5° or 165 km along the satellite orbit. These level-2 data contain valuable information about horizontal fluctuations in temperature, which are mainly induced by inertia-gravity waves. Wave periods of 2–12 h, horizontal wavelengths of 200–1500 km, and vertical wavelengths of 6–30 km efficiently contribute to the standard deviation of the horizontal temperature fluctuations. The study retrieves and discusses the global distributions of inertia-gravity waves in the stratosphere and mesosphere during July 2015 and January 2016. We find many patterns that were previously present in data of TIMED/SABER, Aura/HIRDLS, and ECMWF analysis. However, it seems that Aura/MLS achieves a higher vertical resolution in the gravity wave maps since the maps are derived from the analysis of horizontal fluctuations along the orbit of the sounding volume. The zonal mean of the inertia-gravity wave distribution shows vertical modulations with scales of 10–20 km. Enhanced wave amplitudes occur in regions of increased zonal wind or in the vicinity of strong wind gradients. Further, we find a banana-like shape of enhanced inertia-gravity waves above the Andes in the winter mesosphere. We find areas of enhanced inertia-gravity wave activity above tropical deep convection zones at 100 hPa (z ∼ 13 km. Finally, we study the temporal evolution of inertia-gravity wave activity at 100 hPa in the African longitude sector from December 2015 to February 2016.

  20. Seasonal and nightly variations of gravity-wave energy density in the middle atmosphere measured by the Purple Crow Lidar

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2007-11-01

    Full Text Available The Purple Crow Lidar (PCL is a large power-aperture product monostatic Rayleigh-Raman-Sodium-resonance-fluorescence lidar, which has been in operation at the Delaware Observatory (42.9° N, 81.4° W, 237 m elevation near the campus of The University of Western Ontario since 1992. Kinetic-energy density has been calculated from the Rayleigh-scatter system measurements of density fluctuations at temporal-spatial scales relevant for gravity waves, e.g. soundings at 288 m height resolution and 9 min temporal resolution in the upper stratosphere and mesosphere. The seasonal averages from 10 years of measurements show in all seasons some loss of gravity-wave energy in the upper stratosphere. During the equinox periods and summer the measurements are consistent with gravity waves growing in height with little saturation, in agreement with the classic picture of the variations in the height at which gravity waves break given by Lindzen (1981. The mean values compare favourably to previous measurements when computed as nightly averages, but the high temporal-spatial resolution measurements show considerable day-to-day variability. The variability over a night is often extremely large, with typical RMS fluctuations of 50 to 100% at all heights and seasons common. These measurements imply that using a daily or nightly-averaged gravity-wave energy density in numerical models may be highly unrealistic.

  1. The influence of solar wind on extratropical cyclones – Part 2: A link mediated by auroral atmospheric gravity waves?

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2009-01-01

    Full Text Available Cases of mesoscale cloud bands in extratropical cyclones are observed a few hours after atmospheric gravity waves (AGWs are launched from the auroral ionosphere. It is suggested that the solar-wind-generated auroral AGWs contribute to processes that release instabilities and initiate slantwise convection thus leading to cloud bands and growth of extratropical cyclones. Also, if the AGWs are ducted to low latitudes, they could influence the development of tropical cyclones. The gravity-wave-induced vertical lift may modulate the slantwise convection by releasing the moist symmetric instability at near-threshold conditions in the warm frontal zone of extratropical cyclones. Latent heat release associated with the mesoscale slantwise convection has been linked to explosive cyclogenesis and severe weather. The circumstantial and statistical evidence of the solar wind influence on extratropical cyclones is further supported by a statistical analysis of high-level clouds (<440 mb extracted from the International Satellite Cloud Climatology Project (ISCCP D1 dataset. A statistically significant response of the high-level cloud area index (HCAI to fast solar wind from coronal holes is found in mid-to-high latitudes during autumn-winter and in low latitudes during spring-summer. In the extratropics, this response of the HCAI to solar wind forcing is consistent with the effect on tropospheric vorticity found by Wilcox et al. (1974 and verified by Prikryl et al. (2009. In the tropics, the observed HCAI response, namely a decrease in HCAI at the arrival of solar wind stream followed by an increase a few days later, is similar to that in the northern and southern mid-to-high latitudes. The amplitude of the response nearly doubles for stream interfaces associated with the interplanetary magnetic field BZ component shifting southward. When the IMF BZ after the stream interface shifts northward, the autumn-winter effect weakens or shifts to lower (mid latitudes

  2. A study of Traveling Ionospheric Disturbances and Atmospheric Gravity Waves using EISCAT Svalbard Radar IPY-data

    Directory of Open Access Journals (Sweden)

    A. Vlasov

    2011-11-01

    Full Text Available We present a statistical study of Traveling Ionospheric Disturbances (TIDs as observed by the EISCAT Svalbard Radar (ESR during the continuous IPY-run (March 2007–February 2008 with field-aligned measurements. We have developed a semi-automatic routine for searching and extracting Atmospheric Gravity Wave (AGW activity. The collected data shows that AGW-TID signatures are common in the high-latitude ionosphere especially in the field-aligned ion velocity data (244 cases of AGW-TID signatures in daily records, but they can be observed also in electron density (26 cases, electron temperature (12 cases and ion temperature (26 cases. During the IPY campaign (in solar minimum conditions AGW-TID events appear more frequently during summer months than during the winter months. It remains still as a topic for future studies whether the observed seasonal variation is natural or caused by seasonal variation in the performance of the observational method that we use (AGW-TID signature may be more pronounced in a dense ionosphere. In our AGW-TID dataset the distribution of the oscillation periods has two peaks, one around 0.5–0.7 h and the other around 1.1–1.3 h. The diurnal occurrence rate has a deep minimum in the region of magnetic midnight, which might be partly explained by irregular auroral activity obscuring the TID signatures from our detection routines. As both the period and horizontal phase speed estimates (as derived from the classical AGW dispersion relation show values typical both for large scale TIDs and mesoscale TIDs it is difficult to distinguish whether the generator for high-latitude AGW-TIDs resides typically in the troposphere or in the near-Earth space. The results of our statistical analysis give anyway some valuable reference information for the future efforts to learn more about the dominating TID source mechanisms in polar cap conditions, and to improve AGW simulations.

  3. Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5° N, 79.2° E

    Directory of Open Access Journals (Sweden)

    V. Sivakumar

    2006-05-01

    Full Text Available The low-latitude middle atmospheric gravity wave characteristics are presented using 310 nights of Rayleigh lidar observations made at Gadanki (13.5° N, 79.2° E over the period from March 1998 to December 2002. The gravity wave characteristics are presented in terms of vertical wave number and frequency spectra, along with the estimated potential energy for the four seasons, namely, spring, summer, autumn and winter. The computed wave number spectra for both the stratosphere and the mesosphere are found to differ significantly from a saturated model predicted spectrum. The spectra were found to be shallower at lower wave numbers and steeper at higher wave numbers with transition at ~8.85×10-4 cy/m. The computed frequency spectra seem to follow the model plot with a power law index of -5/3 above a frequency of ~2×10-4 Hz. The estimated potential energy per unit mass increases gradually up to ~60 km and then rather rapidly above this height to reach values of the order of 200J/kg at ~70 km.

  4. Surface gravity-wave lensing

    Science.gov (United States)

    Elandt, Ryan B.; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water.

  5. A study into the effects of gravity wave activity on the diurnal tide and airglow emissions in the equatorial mesosphere and lower thermosphere using the Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model

    Science.gov (United States)

    England, S. L.; Dobbin, A.; Harris, M. J.; Arnold, N. F.; Aylward, A. D.

    2006-02-01

    Momentum deposition by gravity wave breaking is known to affect the amplitude and phase of the diurnal tide. Modelling studies of this interaction have produced some conflicting results and as yet, the exact nature of this interaction is not fully understood. In this study, the effects of parameterised gravity wave momentum deposition on the diurnal tide and subsequently on green line airglow from atomic oxygen during equinox are investigated using the Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model. The effects of gravity wave drag calculated by two different parameterisations, Meyer [1999. Gravity wave interactions with the diurnal propagating tide. Journal of Geophysical Research 104, 4223 4239] and Medvedev and Klaassen [2000. Parameterisation of gravity wave momentum deposition based on non-linear wave interactions: basic formulation and sensitivity tests. Journal of Atmospheric and Terrestrial Physics 62, 1015 1033], are compared in the low latitude MLT region between 70 and 120 km, where the amplitude of the diurnal tide and green line volume emission rates maximise. Results indicate that momentum sources from both gravity wave parameterisations act to reduce the mid-latitude zonal jets and advance the phase of the diurnal tide, such that the peak amplitude at a given height occurs at an earlier time of day. Gravity wave momentum deposition as parameterised by Meyer [1999. Gravity wave interactions with the diurnal propagating tide. Journal of Geophysical Research 104, 4223 4239] results in a reduction of the amplitude of the diurnal tide in the MLT region, whereas the tidal amplitude is increased when the Medvedev and Klaassen [2000. Parameterisation of gravity wave momentum deposition based on non-linear wave interactions: basic formulation and sensitivity tests. Journal of Atmospheric and Terrestrial Physics 62, 1015 1033] parameterisation is used. Both parameterisations affect the local time variability of the simulated

  6. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions

    Science.gov (United States)

    Karpov, I. V.; Kshevetskii, S. P.

    2017-11-01

    The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.

  7. A case study of gravity waves in noctilucent clouds

    Directory of Open Access Journals (Sweden)

    P. Dalin

    2004-06-01

    Full Text Available We present a case study of a noctilucent cloud (NLC display appearing on 10-11 August 2000 over Northern Sweden. Clear wave structures were visible in the clouds and time-lapse photography was used to derive the parameters characterising the gravity waves which could account for the observed NLC modulation. Using two nearby atmospheric radars, the Esrange MST Radar data and Andoya MF radar, we have identified gravity waves propagating upward from the upper stratosphere to NLC altitudes. The wave parameters derived from the radar measurements support the suggestion that gravity waves are responsible for the observed complex wave dynamics in the NLC.

  8. On modeling internal gravity wave dynamics from infrasound propagation

    Science.gov (United States)

    Ribstein, Bruno; Millet, Christophe; Lott, Francois

    2017-04-01

    Low frequency acoustic waves (infrasounds) are generally used to remotely detect strong explosions, using their possibility of long-distance and coherent propagation. Numerical prediction of infrasounds is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although it is well-known that part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect both the temperature and the wind, yet the process by which the gravity wave field changes some infrasound arrivals remains not well understood. In the present work, we use a stochastic parameterization to model the subgrid scale gravity wave field from atmospheric states provided by ECMWF. Numerical evidence are presented showing that regardless of whether the superimposed gravity wave field possesses relatively small or large features the sensitivity of ground-based infrasound signals can be significantly different. A version of the gravity wave parameterization previously tuned by co-authors for climate modeling purpose is shown to not retrieve the duration of recorded acoustic signals. A new version of the wave-parameterization is here proposed which more accurately predict the small scale content of gravity wave fields, especially in the middle atmosphere. Compare to other semi-empirical approaches one value of this new parameterization is that the gravity wave drag obtained is in agreement with observations.

  9. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  10. Gravity wave reflection: Case study based on rocket data

    Science.gov (United States)

    Wüst, Sabine; Bittner, Michael

    2008-03-01

    Since gravity waves significantly influence the atmosphere by transporting energy and momentum, it is important to study their wave spectrum and their energy dissipation rates. Besides that, knowledge about gravity wave sources and the propagation of the generated waves is essential. Originating in the lower atmosphere, gravity waves can move upwards; when the background wind field is equal to their phase speed a so-called critical layer is reached. Their breakdown and deposition of energy and momentum is possible. Another mechanism which can take place at critical layers is gravity wave reflection. In this paper, gravity waves which were observed by foil chaff measurements during the DYANA (DYnamics Adapted Network for the Atmosphere) campaign in 1990 in Biscarrosse (44°N, 1°W)--as reported by Wüst and Bittner [2006. Non-linear wave-wave interaction: case studies based on rocket data and first application to satellite data. Journal of Atmospheric and Solar-Terrestrial Physics 68, 959-976]--are investigated to look for gravity wave reflection processes. Following nonlinear theory, energy dissipation rates according to Weinstock [1980. Energy dissipation rates of turbulence in the stable free atmosphere. Journal of the Atmospheric Sciences 38, 880-883] are calculated from foil chaff cloud and falling sphere data and compared with the critical layer heights. Enhanced energy dissipation rates are found at those altitudes where the waves' phase speed matches the zonal background wind speeds. Indication of gravity wave trapping is found between two altitudes of around 95 and 86 km.

  11. Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21°S, 55°E with lidar using wavelet techniques

    Directory of Open Access Journals (Sweden)

    F. Chane-Ming

    2000-04-01

    Full Text Available The capabilities of the continuous wavelet transform (CWT and the multiresolution analysis (MRA are presented in this work to measure vertical gravity wave characteristics. Wave properties are extracted from the first data set of Rayleigh lidar obtained between heights of 30 km and 60 km over La Reunion Island (21°S, 55°E during the Austral winter in 1994 under subtropical conditions. The altitude-wavelength representations deduced from these methods provide information on the time and spatial evolution of the wave parameters of the observed dominant modes in vertical profiles such as the vertical wavelengths, the vertical phase speeds, the amplitudes of temperature perturbations and the distribution of wave energy. The spectra derived from measurements show the presence of localized quasi-monochromatic structures with vertical wavelengths <10 km. Three methods based on the wavelet techniques show evidence of a downward phase progression. A first climatology of the dominant modes observed during the Austral winter period reveals a dominant night activity of 2 or 3 quasi-monochromatic structures with vertical wavelengths between 1-2 km from the stratopause, 3-4 km and 6-10 km observed between heights of 30 km and 60 km. In addition, it reveals a dominant activity of modes with a vertical phase speed of -0.3 m/s and observed periods peaking at 3-4 h and 9 h. The characteristics of averaged vertical wavelengths appear to be similar to those observed during winter in the southern equatorial region and in the Northern Hemisphere at mid-latitudes.Key words: Meteorology and atmospheric dynamics (climatology; middle atmosphere dynamics; waves and tides

  12. Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21°S, 55°E with lidar using wavelet techniques

    Directory of Open Access Journals (Sweden)

    F. Chane-Ming

    Full Text Available The capabilities of the continuous wavelet transform (CWT and the multiresolution analysis (MRA are presented in this work to measure vertical gravity wave characteristics. Wave properties are extracted from the first data set of Rayleigh lidar obtained between heights of 30 km and 60 km over La Reunion Island (21°S, 55°E during the Austral winter in 1994 under subtropical conditions. The altitude-wavelength representations deduced from these methods provide information on the time and spatial evolution of the wave parameters of the observed dominant modes in vertical profiles such as the vertical wavelengths, the vertical phase speeds, the amplitudes of temperature perturbations and the distribution of wave energy. The spectra derived from measurements show the presence of localized quasi-monochromatic structures with vertical wavelengths <10 km. Three methods based on the wavelet techniques show evidence of a downward phase progression. A first climatology of the dominant modes observed during the Austral winter period reveals a dominant night activity of 2 or 3 quasi-monochromatic structures with vertical wavelengths between 1-2 km from the stratopause, 3-4 km and 6-10 km observed between heights of 30 km and 60 km. In addition, it reveals a dominant activity of modes with a vertical phase speed of -0.3 m/s and observed periods peaking at 3-4 h and 9 h. The characteristics of averaged vertical wavelengths appear to be similar to those observed during winter in the southern equatorial region and in the Northern Hemisphere at mid-latitudes.

    Key words: Meteorology and atmospheric dynamics (climatology; middle atmosphere dynamics; waves and tides

  13. Acoustic gravity wave growth and damping in convecting plasma

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available The propagation of acoustic gravity waves through steadily convecting plasma in the thermosphere has been analysed theoretically. The growth and damping rates of internal gravity waves due to the feedback effects of wave-modulated Joule heating and Laplace forcing have been calculated. It is found that large convection flow velocities lead to the growth of large-scale internal gravity waves, whilst small- and medium-scale waves are heavily damped, under similar conditions. It has also been shown that wave growth is favoured for waves travelling against the plasma flow direction. The effects of critical coupling when wave phase speeds match the plasma flow speed have also been investigated. The results of these calculations are discussed in the context of the atmospheric energy budget and thermosphere-ionosphere coupling.

  14. Acoustic gravity wave growth and damping in convecting plasma

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    1994-01-01

    Full Text Available The propagation of acoustic gravity waves through steadily convecting plasma in the thermosphere has been analysed theoretically. The growth and damping rates of internal gravity waves due to the feedback effects of wave-modulated Joule heating and Laplace forcing have been calculated. It is found that large convection flow velocities lead to the growth of large-scale internal gravity waves, whilst small- and medium-scale waves are heavily damped, under similar conditions. It has also been shown that wave growth is favoured for waves travelling against the plasma flow direction. The effects of critical coupling when wave phase speeds match the plasma flow speed have also been investigated. The results of these calculations are discussed in the context of the atmospheric energy budget and thermosphere-ionosphere coupling.

  15. The gravity wave Doppler spread theory applied in a numerical spectral model of the middle atmosphere. 1. Model and global scale seasonal variations

    Science.gov (United States)

    Mayer, H. G.; Mengel, J. G.; Hines, C. O.; Chan, K. L.; Arnold, N. F.; Reddy, C. A.; Porter, H. S.

    1997-11-01

    Hines [1997a, b] has developed a Doppler spread parameterization (DSP) for the deposition of small-scale gravity wave (GW) momentum and energy in the middle atmosphere. We have incorporated this DSP into the two-dimensional (2-D) version of the numerical spectral model (NSM) of Chan et al [1994a, b] which is applied to the Earth's middle atmosphere. With a globally uniform flux of (quasi) isotropically propagating GW emanating from the troposphere, the NSM has been integrated for several model years to describe seasonal variations and equatorial oscillations. Here, after a review of the NSM and DSP, we discuss numerical results that describe the temperature and wind fields during solstice and equinox conditions, emphasizing the role played by the GW spectrum. That spectrum is filtered as it ascends through the stratosphere and provides, at the solstices, a highly anisotropic wave and momentum flux at mesospheric heights. Upon further filtering there, with attendant momentum deposition, the waves decelerate and then reverse the zonal circulation. In quasi-geostrophic balance latitudinally, this reversal is accompanied by a reversal of the latitudinal temperature gradient, one that leads to a temperature minimum in the summer polar mesopause region, as is observed. Corresponding results for equinox are obtained, and all are discussed. Our results differ only in detail from those of similar analyses that employ other GW parameterizations. They are presented here in part to exhibit the success of the DSP at this elementary level and in part to provide a point of departure against which future refinements may be judged. Our first extension of the modeling concerns the semiannual and quasi-biennial oscillations that are produced by the DSP in the NSM at equatorial latitudes with the same, constant and uniform, incident GW flux. Initial results are presented in the companion paper and are compared there with observations.

  16. Role of gravity waves in vertical coupling during sudden stratospheric warmings

    CERN Document Server

    Yiğit, Erdal

    2016-01-01

    Gravity waves are primarily generated in the lower atmosphere, and can reach thermospheric heights in the course of their propagation. This paper reviews the recent progress in understanding the role of gravity waves in vertical coupling during sudden stratospheric warmings. Modeling of gravity wave effects is briefly reviewed, and the recent developments in the field are presented. Then, the impact of these waves on the general circulation of the upper atmosphere is outlined. Finally, the role of gravity waves in vertical coupling between the lower and the upper atmosphere is discussed in the context of sudden stratospheric warmings.

  17. The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations

    Directory of Open Access Journals (Sweden)

    S.-D. Zhang

    2000-10-01

    Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  18. Characteristics of Tropospheric Gravity Waves using the Equatorial Atmosphere Radar at Koto Tabang (0.20°S, 100.32°E), Indonesia during CPEA -2 campaign

    Science.gov (United States)

    Kaur, M.; Dhaka, S. K.; Malik, V.; Datta, Savita M.; Baluja, K. L.; Jain, A.; Sharma, Y. S.; Singh, A. P.; Malik, S.; Shibagaki, Y.; Hashiguchi, H.; Shimomai, T.

    2012-06-01

    Temporal and spatial evolution of Atmospheric Gravity Waves(AGW) in the troposphere have been analyzed in vertical wind at Koto Tabang (0.20°S, 100.32°E) on 7 - 8 Dec 2005 during Coupling Processes in Equatorial Atmosphere (CPEA)-II campaign. AGWs with vertical wavelength of 2 - 3.5 km, horizontal wavelength of ~ 20-25 km and wave period of ~ 55 - 65 min were observed in the troposphere (3-10 km heights) during convection events. Observed variation in vertical wavelength with time during convection and after its termination suggests the characteristic features of convective sources and gravity waves, respectively in a convective environment.

  19. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    Science.gov (United States)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  20. Observation of TEC perturbation associated with medium-scale traveling ionospheric disturbance and possible seeding mechanism of atmospheric gravity wave at a Brazilian sector

    Science.gov (United States)

    Jonah, O. F.; Kherani, E. A.; De Paula, E. R.

    2016-03-01

    In the present study, we document daytime total electron content (TEC) disturbances associated with medium-scale traveling ionospheric disturbances (MSTIDs), on few chosen geomagnetically quiet days over Southern Hemisphere of Brazilian longitude sector. These disturbances are derived from TEC data obtained using Global Navigation Satellite System (GNSS) receiver networks. From the keograms and cross-correlation maps, the TEC disturbances are identified as the MSTIDs that are propagating equatorward-eastward, having most of their average wavelengths longer in latitude than in longitude direction. These are the important outcomes of the present study which suggest that the daytime MSTIDs over Southern Hemisphere are similar to their counterparts in the Northern Hemisphere. Another important outcome is that the occurrence characteristics of these MSTIDs and that of atmospheric gravity wave (AGW) activities in the thermosphere are found to be similar on day-to-day basis. This suggests a possible connection between them, confirming the widely accepted AGW forcing mechanism for the generation of these daytime MSTIDs. The source of this AGW is investigated using the Geostationary Operational Environmental Satellite system (GOES) and Constellation Observing System for Meteorology, Ionosphere, and Climate satellite data. Finally, we provided evidences that AGWs are generated by convection activities from the tropospheric region.

  1. VHF radar observations of gravity waves at a low latitude

    Directory of Open Access Journals (Sweden)

    G. Dutta

    1999-08-01

    Full Text Available Wind observations made at Gadanki (13.5°N by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2-6 h from the power spectral density (PSD spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides

  2. Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts

    Science.gov (United States)

    Kramer, R.; Wüst, S.; Schmidt, C.; Bittner, M.

    2015-06-01

    Based on a measuring campaign which was carried out at Mallorca (39.6°N, 2.7°E) as cooperation between Agència Estatal de Meteorologia (AEMET) and Deutsches Zentrum für Luft- und Raumfahrt, engl. 'German Aerospace Center' (DLR) in 2011/2012 (September-January), 143 radiosondes (day and night) providing vertical temperature and wind profiles were released. Additionally, nocturnal mesopause temperature measurements with a temporal resolution of about 1 min were conducted by the infrared (IR) - Ground-based Infrared P-branch Spectrometer (GRIPS) during the campaign period. Strongly enhanced gravity wave activity in the lower stratosphere is observed which can be attributed to a hurricane-like storm (so-called Medicane) and to passing by cold fronts. Statistical features of gravity wave parameters including energy densitiy and momentum fluxes are calculated. Gravity wave momentum fluxes turned out being up to five times larger during severe weather. Moreover, gravity wave horizontal propagation characteristics are derived applying hodograph and Stokes parameter analysis. Preferred directions are of southeast and northwest due to prevailing wind directions at Mallorca.

  3. Intensive radiosonde observations of gravity waves in the lower atmosphere over Yichang (111°18´ E, 30°42´ N, China

    Directory of Open Access Journals (Sweden)

    Ze Yu Chen

    2008-07-01

    Full Text Available The characteristics of dynamical and thermal structures and inertial gravity waves (GWs in the troposphere and lower stratosphere (TLS over Yichang (111°18´ E, 30°42´ N were statistically studied by using the data from intensive radiosonde observations in August 2006 (summer month and January 2007 (winter month on an eight-times-daily basis. The background atmosphere structures observed in different months exhibit evident seasonal differences, and the zonal wind in winter has a prominent tropospheric jet with a maximum wind speed of about 60 ms−1 occurring at the height of 11.5 km. The statistical results of the inertial GWs in our two-month observations are generally consistent with previous observations in the mid-latitudes. In the summer month, the mean intrinsic frequency and vertical wavelength of the inertial GWs in the troposphere are still larger than those in the lower stratosphere with the absence of intensive tropospheric jets, suggesting that the Doppler shifting due to the tropospheric jets cannot completely account for the differences between the GWs in the troposphere and lower stratosphere. Compared with the observations in the summer month, some interesting seasonal characteristics of the GWs are revealed by the observations in the winter month: 1 more and stronger tropospheric GWs are observed in the winter month; 2 less and weaker GWs are observed in the lower stratosphere in winter; 3 the ratio of the mean GW kinetic energy density to potential energy density is smaller than 1 in winter, which contrasts to that in summer. Most of the seasonal differences can be explained by the intensive tropospheric jets in winter. In both the summer and winter months, the fitted spectral slopes of the vertical wave number spectra for GWs are generally smaller than the canonical spectral slope of −3. Correlation analyses suggest that the tropospheric jet induced wind shear is the dominant source for GWs in both the troposphere and

  4. Tidal and gravity waves study from the airglow measurements at ...

    Indian Academy of Sciences (India)

    The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application ...

  5. Characteristics of Antarctic gravity waves in the lower atmosphere and their long-term variations at McMurdo and the South Pole

    Science.gov (United States)

    Yu, Z.; Chu, X.; McDonald, A.; Yamashita, C.; Gardner, C. S.

    2010-12-01

    Gravity wave perturbations in vertical profiles of temperature and wind are extracted from meteorological balloon radiosonde measurements during 1997-2009 at McMurdo station and 1993-2009 at the South Pole. Based on these perturbations, the seasonal, long-term and vertical variability of potential energy density(E_p), and kinetic energy density(E_k), are investigated. The climatologies of potential energies from two stations are similar, with comparable magnitude ranging from 0.5 J/kg to 6 J/kg and varying with season and altitude. However, comparing the seasonal average, the E_k at McMurdo is much smaller than that at the South Pole except in March. Preliminary results also suggest that the ratio of E_k/E_p may change with geographical locations. Background temperature and wind effects on propagation conditions (e.g. critical level filtering) and, variations in the gravity wave source spectrum, are all potential factors that play roles in the observed climatology. We will also study the seasonal and long-term variations of the slope of the vertical wavenumber spectrum, derived from temperature perturbations and wind perturbations, and the probability of wave propagation directions using the Stokes parameter methodology.

  6. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  7. Propagation of gravity waves through non-uniform stratification

    Science.gov (United States)

    Pütz, Christopher; Klein, Rupert

    2017-04-01

    We present a method to compute the transmission of gravity waves through a finite region of a non-uniformly stratified atmosphere. It is based on an approximate solution of the Taylor-Goldstein equation. With the method, we are able to compute a transmission coefficient for gravity waves, which is defined as the ratio of the vertical wave energy fluxes below and above the region of non-uniform stratification. It makes use of the fact that plane wave solutions exist in uniform stratification and models the atmosphere as a multi-layer fluid where each layer is uniformly stratified. The solutions are matched at the interfaces in a way that the continuity of pressure and vertical wind is ensured, so that we are finally able to relate incident and transmitted wave amplitudes. Further, the limit of increasing number of layers is investigated and we obtain a reformulation of the Taylor-Goldstein equation. This equation can not be solved analytically, but numerically, giving a solution in which it is possible to distinguish between the two branches of the gravity wave dispersion relation, namely upward and downward travelling waves. Hence, we are also able to compute a transmission coefficient from this procedure. Moreover, it can be shown that the multi-layer solution converges to the limit solution quadratically with increasing number of layers. The results we obtain for some test cases are in accordance with several existing results, but provide more general insights into the interaction of gravity waves propagating through non-uniform stratification. Also, the multi-layer method can be extended to give an approximate solution to the Taylor-Goldstein equation without using any numerical integration.

  8. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  9. Nonlinear interaction between acoustic gravity waves

    Directory of Open Access Journals (Sweden)

    P. Axelsson

    1996-03-01

    Full Text Available The resonant interaction between three acoustic gravity waves is considered. We improve on the results of previous authors and write the new coupling coefficients in a symmetric form. Particular attention is paid to the low-frequency limit.

  10. Nonlinear interaction between acoustic gravity waves

    Directory of Open Access Journals (Sweden)

    P. Axelsson

    Full Text Available The resonant interaction between three acoustic gravity waves is considered. We improve on the results of previous authors and write the new coupling coefficients in a symmetric form. Particular attention is paid to the low-frequency limit.

  11. Adomian decomposition method used to solve the gravity wave equations

    Science.gov (United States)

    Mungkasi, Sudi; Dheno, Maria Febronia Sedho

    2017-01-01

    The gravity wave equations are considered. We solve these equations using the Adomian decomposition method. We obtain that the approximate Adomian decomposition solution to the gravity wave equations is accurate (physically correct) for early stages of fluid flows.

  12. Modelling the effects of gravity waves in the GEM-Mars GCM

    Science.gov (United States)

    Neary, L.; Daerden, F.; Viscardy, S.

    2017-09-01

    Parameterizations for orographic and non-orographic gravity waves are included in the GEM-Mars general circulation model (GCM) for low-resolution simulations. The impacts of these parameterizations on the temperature and winds in the upper atmosphere are examined and sensitivity studies are discussed. Initial tests indicate that the largest effects of the gravity wave parameterizations on temperature occur during the solstice periods in the upper atmosphere of the winter polar regions, improving the agreement with observations.

  13. On the unstable mode merging of gravity-inertial waves with Rossby waves

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-08-01

    Full Text Available We recapitulate the results of the combined theory of gravity-inertial-Rossby waves in a rotating, stratified atmosphere. The system is shown to exhibit a "local" (JWKB instability whenever the phase speed of the low-frequency-long wavelength westward propagating Rossby wave exceeds the phase speed ("Kelvin" speed of the high frequency-short wavelength gravity-inertial wave. This condition ensures that mode merging, leading to instability, takes place in some intermediate band of frequencies and wave numbers. The contention that such an instability is "spurious" is not convincing. The energy source of the instability resides in the background enthalpy which can be released by the action of the gravitational buoyancy force, through the combined wave modes.

  14. Gravity's kiss the detection of gravitational waves

    CERN Document Server

    Collins, Harry

    2017-01-01

    Scientists have been trying to confirm the existence of gravitational waves for fifty years. Then, in September 2015, came a "very interesting event" (as the cautious subject line in a physicist's email read) that proved to be the first detection of gravitational waves. In Gravity's Kiss, Harry Collins -- who has been watching the science of gravitational wave detection for forty-three of those fifty years and has written three previous books about it -- offers a final, fascinating account, written in real time, of the unfolding of one of the most remarkable scientific discoveries ever made. Predicted by Einstein in his theory of general relativity, gravitational waves carry energy from the collision or explosion of stars. Dying binary stars, for example, rotate faster and faster around each other until they merge, emitting a burst of gravitational waves. It is only with the development of extraordinarily sensitive, highly sophisticated detectors that physicists can now confirm Einstein's prediction. This is...

  15. Dynamics of Atmospheric Waves In a Hazy Atmosphere: Implications for Titan and Pluto

    Science.gov (United States)

    Matcheva, Katia

    2017-10-01

    We present a dynamical model of atmospheric gravity waves propagating in a stable atmosphere in the presence of small-size particulates. We consider a two-way interaction: (i) the effect of atmospheric mass-loading on the propagation of the waves and (ii) the dynamical forcing of the haze particle motion in the presence of variable atmospheric winds. The model illustrates the effect on the vertical distribution of haze particles due to wave-induces vertical winds and wind gradients. The results are presented in the context of Titan’s atmosphere and Cassini observations.

  16. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Science.gov (United States)

    Stober, G.; Sommer, S.; Rapp, M.; Latteck, R.

    2013-10-01

    The Middle Atmosphere Alomar Radar System (MAARSY) on the island of Andøya in Northern Norway (69.3° N, 16.0° E) observes polar mesospheric summer echoes (PMSE). These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  17. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-10-01

    Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island of Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  18. Activity of convective tropical gravity-waves above the south west indian ocean

    Science.gov (United States)

    Evan, S.; Chane-Ming, F.; Keckhut, P.

    Tropical gravity waves play an important role in the dynamics of the middle atmosphere Such small-scale waves can transport energy and momentum vertically as well as horizontally from the troposphere to the middle and upper atmosphere affecting the global circulation Recent studies have focused on the characterization of gravity-waves from local and global observation to improve numerical modelling in terms of parameterisation and comparison for more realistic outputs Many studies have used high-resolution radiosoundings but first climatologies concern continental regions such as Australia and the US Allen and Vincent 1995 Wang and Geller 2003 In the tropics and over ocean and especially in the South-West Indian Ocean measurements are scarce and little is known about the activity of the gravity-waves except using satellite data for large-scale gravity waves above the lower stratosphere In this study a climatology and spatial distribution of the gravity-wave activity for the South West Indian Ocean is produced The dataset includes measurements of daily soundings in the South-West Indian Ocean located between 4oS-30oS and 30oE-56oE Waves parameters energy spatial and temporal scales of waves direction of horizontal wave propagation are analyzed from January 1998 to November 2005 in the troposphere and lower stratosphere A daily activity and wave sources tropical cyclones QBO convection are also investigated

  19. Scalar wave scattering from Schwarzschild black holes in modified gravity

    CERN Document Server

    Sibandze, Dan B; Maharaj, Sunil D; Nzioki, Anne Marie; Dunsby, Peter K S

    2016-01-01

    We consider the scattering of gravitational waves off a Schwarzschild Black Hole in $f(R)$ gravity. We find that, while the reflection and transmission coefficients for tensor waves are the same as in General Relativity, a larger fraction of scalar waves are reflected compared to what one obtains for tensors. This may provide a novel observational signature for fourth order gravity.

  20. The role of linear wave interaction in facilitating the upward propagation of ducted small-scale gravity waves.

    Science.gov (United States)

    Heale, C. J.; Snively, J. B.

    2014-12-01

    Short-period (~5-15 minute), small-scale (10s of km) gravity waves propagating through the middle atmosphere will encounter and interact with other atmospheric waves and flows, which can vary horizontally, vertically, and temporally across a wide range of scales. Simulations of gravity wave impacts over global scales generally consider vertical propagation and atmospheric variations, and neglect small scale wave reflection and interactions between waves of different scales and the time dependent background atmosphere [e.g., Fritts and Alexander, Rev. Geo., 41, 1, 2003, and references cited therein]. Short period gravity waves , which are often subject to reflection, nevertheless carry significant momentum through the atmosphere [Hines, 1997, J. Atmos. Sol. Terr. Phys., 59].
Prior studies have investigated gravity wave propagation through horizontally sheared winds [e.g., Basovich and Tsimring, J. Fluid. Mech., 142, 1984], or in altitude and time varying backgrounds [e.g., Broutman and Young, J. Fluid. Mech., 166, 1986]. Senf and Achatz [JGR, 116, D24, 2011, and references cited therein] have also considered propagation through vertically, horizontally, and temporally varying background winds, finding significant reduction of dissipation by critical levels. We here use a combination of 2D numerical simulations and ray-tracing to study the effects of medium scale background wave wind fields on the upward propagation of small-scale, short-period waves. In particular, we consider cases where the short-period waves would be classically reflected or ducted in static realistic background temperature and wind structures. Results suggest an important role for medium-scale temporal and spatial atmospheric variability in reducing the strength of reflections and facilitating the upward propagation of small-scale waves.

  1. Conversion of internal gravity waves into magnetic waves

    Science.gov (United States)

    Lecoanet, D.; Vasil, G. M.; Fuller, J.; Cantiello, M.; Burns, K. J.

    2017-04-01

    Asteroseismology probes the interiors of stars by studying oscillation modes at a star's surface. Although pulsation spectra are well understood for solar-like oscillators, a substantial fraction of red giant stars observed by Kepler exhibit abnormally low-amplitude dipole oscillation modes. Fuller et al. (2015) suggest this effect is produced by strong core magnetic fields that scatter dipole internal gravity waves (IGWs) into higher multipole IGWs or magnetic waves. In this paper, we study the interaction of IGWs with a magnetic field to test this mechanism. We consider two background stellar structures: one with a uniform magnetic field, and another with a magnetic field that varies both horizontally and vertically. We derive analytic solutions to the wave propagation problem and validate them with numerical simulations. In both cases, we find perfect conversion from IGWs into magnetic waves when the IGWs propagate into a region exceeding a critical magnetic field strength. Downward propagating IGWs cannot reflect into upward propagating IGWs because their vertical wavenumber never approaches zero. Instead, they are converted into upward propagating slow (Alfvénic) waves, and we show they will likely dissipate as they propagate back into weakly magnetized regions. Therefore, strong internal magnetic fields can produce dipole mode suppression in red giants, and gravity modes will likely be totally absent from the pulsation spectra of sufficiently magnetized stars.

  2. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    Science.gov (United States)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  3. Statistical characteristics of gravity waves observed by an all-sky airglow imager at Maui, HI and Cerro Pachon, Chile

    Science.gov (United States)

    Cao, Bing; Liu, Alan Z.

    2016-07-01

    Many long-term observations, such as airglow imaging, have shown that gravity waves exist in the mesopause region most of the time. These waves deposit momentum and energy into the background atmosphere when dissipating, and thus exert strong influence to the atmosphere. In this study, we focus on (1) the climatology of gravity waves characteristics, (2) the intermittency of gravity wave momentum flux and (3) the duration/lifespan of gravity wave events. These properties have important implications for gravity wave parameterizations. This study is based on multi-year all sky OH airglow observations obtained at Maui, HI (20.7° N, 156.3° W) and the Andes Lidar Observatory in Chile (30.3° S, 70.7° W). The statistical distribution of intrinsic wave parameters and the momentum flux are analyzed. The probability density functions of gravity wave momentum flux and duration can be described by simple functions and are related to the gravity wave intermittency. The probability distributions of the two sites have some similarity but with noticeable differences, indicating different effects of the background flow and wave source on the gravity wave intermittency in the mesopause region.

  4. Gravity waves in the thermosphere during a sudden stratospheric warming

    Science.gov (United States)

    Yigit, E.; Medvedev, A. S.

    2012-12-01

    For the first time, the propagation and dissipation of internal gravity waves (GWs) of lower atmospheric origin to the thermosphere above the turbopause (~105 km) during a sudden stratospheric warming (SSW) are examined. The study is performed with a general circulation model (GCM) coupling the lower atmosphere with the thermosphere and the implemented spectral nonlinear extended GW parameterization of Yigit et al. (2008). The Yigit et al. (2008) extended GW parameterization calculates the propagation and dissipation of small-scale GWs in the whole atmosphere system by physically taking into account ion drag, molecular viscosity and thermal conduction, eddy viscosity, nonlinear diffusion, and radiative damping in form of Newtonian cooling. Model simulations reveal a strong modulation by SSWs of GW activity, momentum deposition rates, and the circulation feedbacks at heights up to F region altitudes (~270 km). Wave-induced root mean square wind fluctuations increase several times during the warming in the thermosphere above the turbopause. This occurs mainly due to a reduction of filtering eastward traveling GWs by the weaker stratospheric jet. These waves propagate higher under the favorable conditions, grow in amplitude, and produce stronger forcing on the mean flow, compared to pre-warming period, when they are dissipated in the thermosphere. The evolution of stratospheric and mesospheric winds during an SSW life-cycle creates a robust and distinctive response in GW activity and mean fields deeply in the thermosphere. Yigit, E., A.~D. Aylward, and A.~S. Medvedev (2008), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135.

  5. Impact of an additional radiative CO2 cooling induced by subgrid-scale gravity waves in the middle and upper atmosphere

    Science.gov (United States)

    Medvedev, A. S.; Yigit, E.; Kutepov, A.; Feofilov, A.

    2011-12-01

    Atmospheric fluctuations produced by GWs are a substantial source of momentum and energy in the thermosphere (Yigit et al., 2009). These fluctuations also affect radiative transfer and, ultimately, the radiative heating/cooling rates. Recently, Kutepov et al. (2007) developed a methodology to account for radiative effects of subgrid-scale GWs not captured by general circulation models (GCMs). It has been extended by Kutepov et al (2011) to account not only for wave-induced variations of temperature, but also of CO2 and atomic oxygen. It was shown that these GWs can cause additional cooling of up to 3 K/day around mesopause. A key parameter for calculating the additional cooling is the temperature variance associated with GWs, which is a subproduct of conventional GW schemes. In this study, the parameterization of Kutepov et al. (2011) has been implemented into a 3-D comprehensive GCM that incorporates the effects of unresolved GWs via the extended nonlinear scheme of Yigit et al. (2008). Simulated net effects of the additional radiative CO2 cooling on the temperature and wind in the mesosphere and lower thermosphere are presented and discussed for solstice conditions. 1. Kutepov, A. A, A. G. Feofilov, A. S. Medvedev, A. W. A. Pauldrach, and P. Hartogh (2007), Geophys. Res. Lett. 34, L24807, doi:10.1029/2007GL032392. 2. Kutepov, A. A., A. G. Feofilov, A. S. Medvedev, U. Berger, and M. Kaufmann (2011), submitted to Geophys. Res. Letts. 3. Yigit, E., A. D. Aylward, and A. S. Medvedev (2008), J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135. 4. Yigit, E., A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris (2009), J. Geophys. Res., 114, D07101, doi:10.1029/2008JD011132.

  6. Electro-gravity spin density waves

    Science.gov (United States)

    Syromyatnikov, A. G.

    It is known that some string models predict that strong bursts of gravitational radiation which should be detectable by LIGO, VIRGO and LISA detectors are accompanied by cosmologic gamma-ray bursts (GRBs). GRBs of low-energy gamma ray are associated with core-collapse supernovae (SN). However, measurements of the X-ray afterglow of very intense GRBs (allow a critical test of GRB theories) disagree with that predicted by widely accepted fireball internal-external shocks models of GRBs. It is also known that in a system of a large number of fermions, pairs of gravitational interaction occur on spontaneous breaking of the vacuum spatial symmetry, accompanied by gravitational mass defect. In another side, the space rays generation mechanism on a method of direct transformation of intergalactic gamma-rays to the proton current on spin shock-waves ensures precise agreement between generated proton currents (spin shock waves theory) with the angular distribution data of Galactic gamma-rays as well as for the individual pulses of gamma-/X-ray bursts. There is a precise confirmation of the generated currents (theory) with the burst radiation data characterized by the standard deviation of ± 1% in intensity in relative units within the sensitivity of the equipment. Thus, it was found that the spin angular momentum conservation law (equation of dynamics of spin shock waves) in the X-ray/gamma ranges is fulfilled exactly in real time. The nature of gamma bursts is largely determined by the influence of powerful external sources. The angular distributions anisotropy of Galactic gamma rays and pulsars are determined by the paradoxes way, so this can only take place under conditions of the isotropy of space-time. In this regard, promising gravity in a Finsler space can have the selected direction in flat Minkowski space metric with torsion as in the Einstein-Cartan theory. Considering the induction of torsion in conformal transformations of tetrades (N-ades in arbitrary

  7. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    Science.gov (United States)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  8. Gravity Waves Near 300 km Over the Polar Caps

    Science.gov (United States)

    Johnson, F. S.; Hanson, W. B.; Hodges, R. R.; Coley, W. R.; Carignan, G. R.; Spencer, N. W.

    1995-01-01

    Distinctive wave forms in the distributions of vertical velocity and temperature of both neutral particles and ions are frequently observed from Dynamics Explorer 2 at altitudes above 250 km over the polar caps. These are interpreted as being due to internal gravity waves propagating in the neutral atmosphere. The disturbances characterized by vertical velocity perturbations of the order of 100 m/s and horizontal wave lengths along the satellite path of about 500 km. They often extend across the entire polar cap. The associated temperature perturbations indicate that the horizontal phase progression is from the nightside to the dayside. Vertical displacements are inferred to be of the order of 10 km and the periods to be of the order of 10(exp 3) s. The waves must propagate in the neutral atmosphere, but they usually are most clearly recognizable in the observations of ion vertical velocity and ion temperature. By combining the neutral pressure calculated from the observed neutral concentration and temperature with the vertical component of the neutral velocity, an upward energy flux of the order of 0.04 erg/sq cm-s at 250 km has been calculated, which is about equal to the maximum total solar ultraviolet heat input above that altitude. Upward energy fluxes calculated from observations on orbital passes at altitudes from 250 to 560 km indicate relatively little attenuation with altitude.

  9. New Gravity Wave Treatments for GISS Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

  10. Mesoscale simulations of the gravity waves observed during VOROCRE

    Science.gov (United States)

    Arsac, A.; Plougonven, R.; Hertzog, A.; Guez, L.; Vial, F.

    2009-04-01

    The VORCORE campaign (September 2005-February 2006) has provided aunique dataset for the investigation of gravity waves and the associated momentum fluxes in the lower stratosphere (16-19km) above Antarctica. Because the measurements were made with superpressure balloons that behave as quasi-Lagrangian tracers, they provide direct estimates of key quantities such as the intrinsic frequencies of the gravity waves. In order to investigate further the gravity wave field, numerical simulations with the mesoscale meteorological model Weather Research and Forecast have been conducted on a domain covering the Antarctic continent, for several periods during the VORCORE campaign. The VORCORE dataset provides a unique opportunity to test several modelling issues: 1) what part of the gravity wave spectrum can we simulate with available resolutions (typically 15 to 20 km in the horizontal, and more than a hundred levels in the vertical, up to the mid-stratosphere)? 2) How does the agreement between model and observations vary for different types of gravity waves (e.g. orographic waves / non-orographic waves, low-frequency / high frequency)? 3) How sensitive are the simulated waves to different parameters of the model setting (length of simulation, height of model top, sponge layer, parameterizations for boundary layer)? Simulations have been conducted in different settings to bring answers to these questions and determine how close an agreement we can expect to find between observations and simulations. To the extent that such simulations reproduce quantitatively well the gravity wave field in the locations where observations are available, they can be used to investigate other aspects of the wave field. For example, a more global view of the momentum fluxes, their variability and their evolution with height can be obtained. Also, the sources of the gravity waves, in particular of non-oographic inertia-gravity waves, can be investigated.

  11. Large-scale gravity wave perturbations in the mesopause region above Northern Hemisphere midlatitudes during autumnal equinox: a joint study by the USU Na lidar and Whole Atmosphere Community Climate Model

    Directory of Open Access Journals (Sweden)

    X. Cai

    2017-02-01

    Full Text Available To investigate gravity wave (GW perturbations in the midlatitude mesopause region during boreal equinox, 433 h of continuous Na lidar full diurnal cycle temperature measurements in September between 2011 and 2015 are utilized to derive the monthly profiles of GW-induced temperature variance, T′2, and the potential energy density (PED. Operating at Utah State University (42° N, 112° W, these lidar measurements reveal severe GW dissipation near 90 km, where both parameters drop to their minima (∼ 20 K2 and ∼ 50 m2 s−2, respectively. The study also shows that GWs with periods of 3–5 h dominate the midlatitude mesopause region during the summer–winter transition. To derive the precise temperature perturbations a new tide removal algorithm suitable for all ground-based observations is developed to de-trend the lidar temperature measurements and to isolate GW-induced perturbations. It removes the tidal perturbations completely and provides the most accurate GW perturbations for the ground-based observations. This algorithm is validated by comparing the true GW perturbations in the latest mesoscale-resolving Whole Atmosphere Community Climate Model (WACCM with those derived from the WACCM local outputs by applying this newly developed tidal removal algorithm.

  12. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  13. Internal gravity waves: parametric instability and deep ocean mixing

    Science.gov (United States)

    Staquet, Chantal

    2007-09-01

    The Boussinesq approximation provides a convenient framework to describe the dynamics of stably-stratified fluids. A fundamental motion in these fluids consists of internal gravity waves, whatever the strength of the stratification. These waves may be unstable through parametric instability, which results in turbulence and mixing. After a brief review of the main properties of internal gravity waves, we show how the parametric instability of a monochromatic internal gravity wave organizes itself in space and time, using energetics arguments and a simple kinematic model. We provide an example, in the deep ocean, where such instability is likely to occur, as estimates of mixing from in situ measurements suggest. We eventually discuss the fundamental role of internal gravity wave mixing in the maintenance of the abyssal thermal stratification. To cite this article: C. Staquet, C. R. Mecanique 335 (2007).

  14. Numerical Study of Balearic Meteotsunami Generation and Propagation under Synthetic Gravity Wave Forcing

    Science.gov (United States)

    Licer, Matjaz; Mourre, Baptiste; Troupin, Charles; Krietemeyer, Andreas; Tintoré, Joaquín

    2017-04-01

    A high resolution nested ocean modelling system forced by synthetic atmospheric gravity waves is used to investigate meteotsunami generation, amplification and propagation properties over the Mallorca-Menorca shelf (Balearic Islands, Western Mediterranean Sea). We determine how meteotsunami amplitude outside and inside of the Balearic port of Ciutadella depends on forcing gravity wave direction, speed and trajectory. Contributions of Mallorca shelves and Menorca Channel are quantified for different gravity wave forcing angles and speeds. Results indicate that the Channel is the key build-up region and that Northern and Southern Mallorca shelves do not significantly contribute to the amplitude of substantial harbour oscillations in Ciutadella. This fact seriously reduces early-warning alert times in cases of locally generated pressure perturbations. Tracking meteotsunami propagation paths in the Menorca Channel for several forcing velocities, we show that the Channel bathymetry serves as a focusing lens for meteotsunami waves whose paths are constrained by the forcing direction. Faster meteotsunamis are shown to propagate over deeper ocean regions, as required by the Proudman resonance. Meteotsunami speed under sub- and supercritical forcing is estimated and a first order estimate of its magnitude is derived. Meteotsunamis generated by the supercritical gravity waves are found to propagate with a velocity which is equal to an arithmetic mean of the gravity wave speed and local ocean barotropic wave speed.

  15. Possibility of measuring gravity-wave momentum flux by single beam observation of MST radar

    Science.gov (United States)

    Liu, C. H.

    1986-01-01

    Vincent and Reid (1983) proposed a technique to measure gravity-wave momentum fluxes in the atmosphere by mesosphere-stratosphere-troposphere (MST) radars using two or more radar beams. Since the vertical momentum fluxes are assumed to be due to gravity waves, it appears possible to make use of the dispersion and polarization relations for gravity waves in extracting useful information from the radar data. In particular, for an oblique radar beam, information about both the vertical and the horizontal velocities associated with the waves are contained in the measured Doppler data. Therefore, it should be possible to extract both V sub Z and V sub h from a single beam observational configuration. A procedure is proposed to perform such an analysis. The basic assumptions are: the measured velocity fluctuations are due to gravity waves and a separable model gravity-wave spectrum of the Garrett-Munk type that is statistically homogeneous in the horizontal plane. Analytical expressions can be derived that relate the observed velocity fluctuations to the wave momentum flux at each range gate. In practice, the uncertainties related to the model parameters and measurement accuracy will affect the results. A MST radar configuration is considered.

  16. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an Atom Interferometry-based gravity wave detector (vs Optical Interferometry). Characterize a high power laser. Use Goddard Space Flight Center Mission...

  17. Gravity Wave and Turbulence Transport in the Mesopause Region

    Science.gov (United States)

    Guo, Yafang

    Vertical transport due to dissipating gravity waves and turbulence in the mesopause region (85-100 km) are analyzed with observational data obtained from a narrow-band sodium wind/temperature lidar located at Andes Lidar Observatory (ALO), Cerro Pachon (30.25° S, 70.73° W), Chile. The Na lidar at ALO has been in regular operation since 2010. The upgrade of the lidar system in May 2014 resulted in great improvements of the signal levels, which enabled data acquisition of high temporal and vertical resolutions reaching 6 s and 25 m. Traditional data processing utilizes signals at lower resolutions, typically at 60 s and 500 m, to reduce the measurement errors caused by photon noise. By using the high quality signals at much higher resolutions, the lidar is capable of resolving smallest scale gravity waves and even turbulence. This dissertation focuses on characterizing the vertical heat flux induced by both dissipating gravity waves and turbulence with observations after the upgrade. The vertical heat flux is defined as the covariance between vertical wind and temperature perturbations (also called sensible heat flux or enthalpy flux if it is potential temperature). The associated cooling and heating effects on the atmosphere due to this heat transport are also determined. Starting from the observational data, the increased signal of ALO Na lidar significantly reduces the photon noise error but leads to challenges with photomultiplier tube (PMT) saturation at the same time. Corrections to this effect can be measured in a laboratory setting but may have large uncertainties at high photon count rates. Results show that this laboratory-correction can induce large errors for temperature, wind, and Na density measurements, which generates significant bias in the heat flux calculation due to the inherent correlation between vertical wind and temperature errors. A calibration procedure is developed to remove such PMT correction errors from laboratory measurements; then

  18. No further gravitational wave modes in F(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu, E-mail: bamba@kmi.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); De Laurentis, Mariafelicia, E-mail: felicia@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Sáez-Gómez, Diego, E-mail: diego.saezgomez@uct.ac.za [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, 48080 Bilbao (Spain)

    2013-11-25

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar–tensor representation of F(T) gravity.

  19. Three-wave and four-wave interactions in gravity wave turbulence

    Science.gov (United States)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  20. Observation of resonant interactions among surface gravity waves

    CERN Document Server

    Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E

    2016-01-01

    We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.

  1. A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E China

    Directory of Open Access Journals (Sweden)

    S. D. Zhang

    2005-03-01

    Full Text Available Several works concerning the dynamical and thermal structures and inertial gravity wave activities in the troposphere and lower stratosphere (TLS from the radiosonde observation have been reported before, but these works were concentrated on either equatorial or polar regions. In this paper, background atmosphere and gravity wave activities in the TLS over Wuhan (30° N, 114° E (a medium latitudinal region were statistically studied by using the data from radiosonde observations on a twice daily basis at 08:00 and 20:00 LT in the period between 2000 and 2002. The monthly-averaged temperature and horizontal winds exhibit the essential dynamic and thermal structures of the background atmosphere. For avoiding the extreme values of background winds and temperature in the height range of 11-18km, we studied gravity waves, respectively, in two separate height regions, one is from ground surface to 10km (lower part, and the other is within 18-25km (upper part. In total, 791 and 1165 quasi-monochromatic inertial gravity waves were extracted from our data set for the lower and upper parts, respectively. The gravity wave parameters (intrinsic frequencies, amplitudes, wavelengths, intrinsic phase velocities and wave energies are calculated and statistically studied. The statistical results revealed that in the lower part, there were 49.4% of gravity waves propagating upward, and the percentage was 76.4% in the upper part. Moreover, the average wave amplitudes and energies are less than those at the lower latitudinal regions, which indicates that the gravity wave parameters have a latitudinal dependence. The correlated temporal evolution of the monthly-averaged wave energies in the lower and upper parts and a subsequent quantitative analysis strongly suggested that at the observation site, dynamical instability (strong wind shear induced by the tropospheric jet is the main excitation source of inertial gravity waves in the TLS.

  2. The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia

    Science.gov (United States)

    Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha

    2017-11-01

    The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.

  3. Gravity-Wave Dynamics in the Atmosphere

    Science.gov (United States)

    2010-02-01

    is governed by a system of Volterra integral equations . Upon taking one derivative with respect to x of the first-kind formulation given in KA, the...Ψy − ( 1 + ν2wT ) (13) 6 1.1.2 Integration of Density Equation Making the assumption that the streamlines never become vertical, Ψy 6= 0, throughout... Equation We next integrate the second equation in (13). Taking the y−derivative of the left-hand-side gives ρJ (Ψyy,Ψ) + ρΨΨyJ (Ψy,Ψ)− 1 β ρx|Ψ − 1 β

  4. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.

    Science.gov (United States)

    Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E

    2016-11-10

    Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.

  5. Characteristics of mesospheric gravity waves over Antarctica observed by Antarctic Gravity Wave Instrument Network imagers using 3-D spectral analyses

    Science.gov (United States)

    Matsuda, Takashi S.; Nakamura, Takuji; Ejiri, Mitsumu K.; Tsutsumi, Masaki; Tomikawa, Yoshihiro; Taylor, Michael J.; Zhao, Yucheng; Pautet, P.-Dominique; Murphy, Damian J.; Moffat-Griffin, Tracy

    2017-09-01

    We have obtained horizontal phase velocity distributions of the gravity waves around 90 km from four Antarctic airglow imagers, which belong to an international airglow imager/instrument network known as ANGWIN (Antarctic Gravity Wave Instrument Network). Results from the airglow imagers at Syowa (69°S, 40°E), Halley (76°S, 27°W), Davis (69°S, 78°E), and McMurdo (78°S, 167°E) were compared, using a new statistical analysis method based on 3-D Fourier transform (Matsuda et al., 2014) for the observation period between 7 April and 21 May 2013. Significant day-to-day and site-to-site differences were found. The averaged phase velocity spectrum during the observation period showed preferential westward direction at Syowa, McMurdo, and Halley, but no preferential direction at Davis. Gravity wave energy estimated by I'/I was 5 times larger at Davis and Syowa than at McMurdo and Halley. We also compared the phase velocity spectrum at Syowa and Davis with the background wind field and found that the directionality only over Syowa could be explained by critical level filtering of the waves. This suggests that the eastward propagating gravity waves over Davis could have been generated above the polar night jet. Comparison of nighttime variations of the phase velocity spectra with background wind measurements suggested that the effect of critical level filtering could not explain the temporal variation of gravity wave directionality well, and other reasons such as variation of wave sources should be taken into account. Directionality was determined to be dependent on the gravity wave periods.

  6. Does strong tropospheric forcing cause large amplitude mesospheric gravity waves? A Deepwave Case Study

    Science.gov (United States)

    Bramberger, Martina; Dörnbrack, Andreas; Ehard, Benedikt; Kaifler, Bernd; Kaifler, Natalie; Rahm, Stephan; Witschas, Benjamin; Rapp, Markus; Vosper, Simon; Orr, Andrew; Williams, Bifford P.; Fritts, David C.; Pautet, P.-Dominique; Taylor, Michael J.; Mallaun, Christian

    2017-04-01

    On 4 July 2014, during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), strong horizontal winds up to 35 ms-1 caused the excitation of gravity waves containing the largest energy fluxes of the complete campaign (38 W m-2). At the same time, large amplitude mesospheric gravity waves were detected by the Temperature Lidar for Middle Atmospheric Research (TELMA) located in Lauder (45.0° S, 169.7° E). This combination lead to the question whether the observed mesospheric gravity waves are generated by the tropospheric forcing. For our study we use an extensive data set which comprises TELMA data, in situ measurements of the two aircraft, radiosondes, wind lidar measurements aboard DLR Falcon as well as Rayleigh lidar and advanced mesospheric temperature mapper (AMTM) measurements aboard the NSF/NCAR GV. To complement the measurements, studies with limited area simulations of the Unified Model are taken into account. This unique data set allows for the observation of the evolution of the gravity waves from the troposphere to the mesosphere. Our investigations revealed a complicated situation where the propagation of mountain waves is influenced by partial reflection at the tropopause, a valve layer in the lower stratosphere filtering a part of the wave spectrum and possibly partial reflection at the polar night jet. Nevertheless stationary waves are found in the AMTM measurements with horizontal wavelengths between 30 and 130 km. Although the measurements comprised all altitudes from the troposphere to the mesosphere, still numerical studies proved to be a valuable asset in order to answer the question raised.

  7. Causal properties of nonlinear gravitational waves in modified gravity

    Science.gov (United States)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  8. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    1998-10-01

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  9. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.

    Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  10. Acoustic-Gravity Waves Interacting with a Rectangular Trench

    Directory of Open Access Journals (Sweden)

    Usama Kadri

    2015-01-01

    Full Text Available A mathematical solution of the two-dimensional linear problem of an acoustic-gravity wave interacting with a rectangular trench, in a compressible ocean, is presented. Expressions for the flow field on both sides of the trench are derived. The dynamic bottom pressure produced by the acoustic-gravity waves on both sides of the trench is measurable, though on the transmission side it decreases with the trench depth. A successful recording of the bottom pressures could assist in the early detection of tsunami.

  11. Gravitational Waves in Effective Quantum Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; Kuntz, Ibere; Mohapatra, Sonali [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)

    2016-08-15

    In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration. (orig.)

  12. Extreme Gravity Waves In The Arabian Gulf

    Directory of Open Access Journals (Sweden)

    S. Neelamani

    2009-06-01

    Full Text Available The extreme significant wave heights and the corresponding mean wave periods were predicted for return periods of 12, 25, 50, 100 and 200 years for 38 different locations in the territorial and offshore locations of countries surrounding the Arabian Gulf. The input wave data for the study is hindcast waves obtained using a WAM model for a total period of 12 years, (1993 to 2004. The peak over threshold method (with 1.0 m as threshold value, is used for selecting the data for the extreme wave analysis. In general, a Weibull distribution is found to fit the data well compared to the Gumbel distribution for all these locations. From the joint probability of wave height and wave period, a simple polynomial relationship (Tmean = C3 (HsC4 is used to obtain the relationship between the significant wave height and mean wave period for all the 38 locations. The value of C3 is found to vary from 3.8 to 4.8 and the value of C4 is found to vary from 0.19 to 0.32. The mean wave period was found to be more sensitive to change in locations within the Gulf and it is less sensitive to change in return periods from 12 years to 200 years. The significant wave heights for 100 year return period varied from 3.0 to 4.5 for water depths of 9 to 16 m, whereas in the offshore sites (depths from 30 to 60 m it varied from 5.0 to 7.0 m. A large number of coastal projects are in progress in the Arabian Gulf and many new projects are being planned in this region for the future. The results of the present study will be highly useful for optimal design of the ocean structures for these projects.

  13. Resonant Interactions of Capillary-Gravity Water Waves

    Science.gov (United States)

    Martin, Calin Iulian

    2017-12-01

    We show here that capillary-gravity wave trains can propagate at the free surface of a rotational water flow of constant non-zero vorticity over a flat bed only if the flow is two-dimensional. Moreover, we also show that the vorticity must have only one non zero component which points in the horizontal direction orthogonal to the direction of wave propagation. This result is of relevance in the study of nonlinear resonances of wave trains. We perform such a study for three- and four wave interactions.

  14. MHD wave transmission in the Sun's atmosphere

    Science.gov (United States)

    Stangalini, M.; Del Moro, D.; Berrilli, F.; Jefferies, S. M.

    2011-10-01

    Magnetohydrodynamics (MHD) wave propagation inside the Sun's atmosphere is closely related to the magnetic field topology. For example, magnetic fields are able to lower the cutoff frequency for acoustic waves, thus allowing the propagation of waves that would otherwise be trapped below the photosphere into the upper atmosphere. In addition, MHD waves can be either transmitted or converted into other forms of waves at altitudes where the sound speed equals the Alfvén speed. We take advantage of the large field-of-view provided by the IBIS experiment to study the wave propagation at two heights in the solar atmosphere, which is probed using the photospheric Fe 617.3 nm spectral line and the chromospheric Ca 854.2 nm spectral line, and its relationship to the local magnetic field. Among other things, we find substantial leakage of waves with five-minute periods in the chromosphere at the edges of a pore and in the diffuse magnetic field surrounding it. By using spectropolarimetric inversions of Hinode SOT/SP data, we also find a relationship between the photospheric power spectrum and the magnetic field inclination angle. In particular, we identify well-defined transmission peaks around 25° for five-minute waves and around 15° for three-minute waves. We propose a very simple model based on wave transmission theory to explain this behavior. Finally, our analysis of both the power spectra and chromospheric amplification spectra suggests the presence of longitudinal acoustic waves along the magnetic field lines.

  15. Cloudless Atmospheres for Young Low-gravity Substellar Objects

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Baraffe, I.; Liu, Michael. C.; Magnier, E. A.; Lagage, P.-O.; Alves de Oliveira, C.; Burgasser, A. J.; Amundsen, D. S.; Drummond, B.

    2017-11-01

    Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains challenging. The presence of very thick clouds is a possible source of this challenge, because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data with a radius compatible with the evolutionary models for these objects. We show that cloudless atmospheres assuming a temperature gradient reduction caused by fingering convection provide a very good model to match the observed VL-G NIR spectra. The sequence of extremely red colors in the NIR for atmospheres with effective temperatures from ∼2000 K down to ∼1200 K is very well reproduced with predicted radii typical of young low-gravity objects. Future observations with NIRSPEC and MIRI on the James Webb Space Telescope (JWST) will provide more constraints in the mid-infrared, helping to confirm or refute whether or not the NIR reddening is caused by fingering convection. We suggest that the presence or absence of clouds will be directly determined by the silicate absorption features that can be observed with MIRI. JWST will therefore be able to better characterize the atmosphere of these hot young brown dwarfs and their low-gravity exoplanet analogs.

  16. Bounding the Speed of Gravity with Gravitational Wave Observations

    Science.gov (United States)

    Cornish, Neil; Blas, Diego; Nardini, Germano

    2017-10-01

    The time delay between gravitational wave signals arriving at widely separated detectors can be used to place upper and lower bounds on the speed of gravitational wave propagation. Using a Bayesian approach that combines the first three gravitational wave detections reported by the LIGO Scientific and Virgo Collaborations we constrain the gravitational waves propagation speed cgw to the 90% credible interval 0.55 c light in vacuum. These bounds will improve as more detections are made and as more detectors join the worldwide network. Of order 20 detections by the two LIGO detectors will constrain the speed of gravity to within 20% of the speed of light, while just five detections by the LIGO-Virgo-Kagra network will constrain the speed of gravity to within 1% of the speed of light.

  17. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  18. Observations of up- and downward propagating gravity waves in the strato- and mesosphere.

    Science.gov (United States)

    Strelnikova, Irina; Baumgarten, Gerd; Lübken, Franz-Josef; Hildebrand, Jens; Höffner, Josef; Stober, Gunter

    2017-04-01

    Experimental and modeling efforts show that small-scale gravity waves (GW) essentially affect large-scale circulations, thermal states, and dynamics from the surface to the middle atmosphere. In climate modeling and weather-forecasting applications the gravity-wave drag and its interaction with large-scale dynamics are referred to as sub-gridscale, i.e. unresolved processes and are the most uncertain aspect of these models. Advances in lidar measurement techniques allow for experimental studies of GWs at very small spatial and temporal scales, which are not accessible by other means. The state of the art Doppler lidars and radars at the ALOMAR research station located in Northern Norway (69°N, 16°E) provide an observational database of GWs at the edge of the polar vortex connected to global dynamics of the Earth atmosphere. Doppler Rayleigh Iodine System (DoRIS) provides horizontal wind measurements in addition to the temperature observation. The altitude coverage is extended from 30 to 110 km by using the temperature observed by mobile Fe lidar with wind observations taken from meteor radar system. This give us unique possibility to obtain wave propagation direction, intrinsic frequency and horizontal wavelength from the single station. Making use of the advantage of this system, we derive wave parameters more precisely, and under some conditions we observe waves with downward propagating energy. In this paper we will present results of analyses of the GW observations by lidars and radars and discuss implications on atmospheric dynamics.

  19. Impulsive gravitational waves in general massive 3D gravity

    Science.gov (United States)

    Baykal, Ahmet; Dereli, Tekin

    2017-10-01

    Impulsive, nondiverging, Petrov-Segre type-N gravitational wave solutions to a general massive three-dimensional gravity in the de Sitter, anti-de Sitter, and flat Minkowski backgrounds are constructed in a unified manner by using the exterior algebra of differential forms.

  20. Field verification of ADCP surface gravity wave elevation spectra

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Peters, H.C.; Schroevers, M.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration technique to significantly reduce the influence of

  1. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity

    Science.gov (United States)

    Das, S.; Sahoo, T.; Meylan, M. H.

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  2. Gravity's shadow the search for gravitational waves

    CERN Document Server

    Collins, Harry

    2004-01-01

    According to the theory of relativity, we are constantly bathed in gravitational radiation. When stars explode or collide, a portion of their mass becomes energy that disturbs the very fabric of the space-time continuum like ripples in a pond. But proving the existence of these waves has been difficult; the cosmic shudders are so weak that only the most sensitive instruments can be expected to observe them directly. Fifteen times during the last thirty years scientists have claimed to have detected gravitational waves, but so far none of those claims have survived the scrutiny of the scie

  3. On detection of extra dimensions with gravity waves from cosmic strings

    CERN Document Server

    O'Callaghan, Eimear; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-01-01

    We show how taking into account the kinematical effect of extra dimensions can have a significant impact on the gravity wave emission from cosmic strings. Additional dimensions both round off cusps, as well as reduce the probability of their formation. We recompute the cusp gravity wave burst with these factors and find a significant dimension dependent damping of the gravity waves.

  4. The effect of extra dimensions on gravity wave bursts from cosmic string cusps

    CERN Document Server

    O'Callaghan, Eimear; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-01-01

    We explore the kinematical effect of having extra dimensions on the gravity wave emission from cosmic strings. Additional dimensions both round off cusps, and reduce the probability of their formation. We recompute the gravity wave burst, taking into account these two factors, and find a potentially significant damping on the gravity waves of the strings.

  5. Capillary-Gravity Waves Generated by a Sudden Object Motion

    CERN Document Server

    Closa, Fabien; Raphael, Elie

    2010-01-01

    We study theoretically the capillary-gravity waves created at the water-air interface by a small object during a sudden accelerated or decelerated rectilinear motion. We analyze the wave resistance corresponding to the transient wave pattern and show that it is nonzero even if the involved velocity (the final one in the accelerated case, the initial one in the decelerated case) is smaller than the minimum phase velocity $c_{min}=23 \\mathrm{cm s^{-1}}$. These results might be important for a better understanding of the propulsion of water-walking insects where accelerated and decelerated motions frequently occur.

  6. Testing strong gravity with gravitational waves and Love numbers

    Science.gov (United States)

    Franzin, E.; Cardoso, V.; Pani, P.; Raposo, G.

    2017-05-01

    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects.

  7. Non-local boundary conditions and internal gravity wave generation

    CERN Document Server

    Bulatov, Vitaly V

    2010-01-01

    This work focuses on the mathematical modeling of wave dynamics in a stratified medium. Non-local absorbing boundary conditions are considered based on the two following assumptions: (i) a linear theory can be applied at large distances from perturbation sources; and (ii) there are no other sources of wave disturbance outside the mixing zone in the stratified medium. The boundary conditions considered in this paper allowed us to describe the diverging internal gravity waves generated by the mixing region in a stratified medium.

  8. Resonance Vibrations of the Ross Ice Shelf and Observations of Persistent Atmospheric Waves

    Science.gov (United States)

    Zabotin, N. A.; Godin, O. A.

    2016-12-01

    Recently reported lidar observations at McMurdo have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at mid- and low-latitude locations [Chen et al., JGR Space Physics, 2016]. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 hours. Here, we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vector of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity.

  9. Lensing of Oceanic Gravity Waves: Theory and Experiment

    Science.gov (United States)

    Alam, Mohammad-Reza; Elandt, Ryan Blake; Shakeri, Mostafa

    2014-11-01

    In this talk we show that small features embedded to the seafloor can result in a lensing effect for overpassing oceanic surface waves, similar to how glass lenses focus or defocus light. These seafloor features are typically in the shape of curved periodic sandbars, and the effect is a result of a nonlinear interaction between surface waves and seabed undulations which is known as ``Bragg Resonance.'' We further show that for a broadband incident wave spectrum (i.e. a wave group composed of multitude of different-frequency waves) a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g. for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g. harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves at certain bodies of water.

  10. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    Science.gov (United States)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  11. Seasonal variation of gravity wave parameters using different filter methods with daylight lidar measurements at midlatitudes

    Science.gov (United States)

    Baumgarten, K.; Gerding, M.; Lübken, F.-J.

    2017-03-01

    The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at the midlatitude station in Kühlungsborn (54°N, 12°E) is in operation since 2010. The RMR lidar system is used to investigate different fractions of atmospheric waves, like gravity waves (GW) and thermal tides (with diurnal, semidiurnal, and terdiurnal components) at day and night. About 6150 h of data have been acquired until 2015. The general challenge for GW observations is the separation of different wave contributions from the observed superposition of GW, tides, or even longer periodic waves. Unfiltered lidar data always include such a superposition. We applied a Butterworth filter to separate GW and tides by vertical wavelength with a cutoff wavelength of 15 km and by observed periods with a cutoff period of 8 h. GW activity and characteristics are derived in an altitude range between 30 and 70 km. The retrieved vertically filtered temperature deviations contain GW with small vertical wavelengths over a broad range of periods, while only a small range of periods is included in the temporally filtered temperature deviations. We observe an annual variation of the wave activity for unfiltered and vertically filtered data, which is caused from tides and inertia gravity waves. In contrast to that, filtering in time leads to a weak semiannual variation for gravity waves with periods of 4-8 h, especially in higher altitudes. During summer, these waves have the half of the total amount of the potential energy budget compared to the unfiltered data. This shows the importance of waves with periods smaller than 8 h.

  12. Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves

    Directory of Open Access Journals (Sweden)

    Llanes-Estrada Felipe J.

    2017-01-01

    Full Text Available The finding of Gravitational Waves (GW by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f (R gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.

  13. Stratospheric Gravity Waves excited during a Minor Sudden Stratospheric Warming

    Science.gov (United States)

    Dörnbrack, A.; Kaifler, N.; Gisinger, S.; Zagar, N.; Jelić, D.

    2016-12-01

    The Arctic polar vortex in the early winter 2015/16 was the strongest and coldest of the last 68 years. The characteristics of the early stage polar vortex were investigated using global reanalysis data and satellite observations. In November/December 2015, less planetary waves were excited in the troposphere and an enhanced filtering in the troposphere and stratosphere resulted in stronger zonal winds at middle latitudes and a stronger polar vortex. Starting end of January 2016, the polar vortex became disturbed by a sequence of three minor sudden stratospheric warmings (SSWs) until the final major warming occurred at beginning of March 2016. Here, we report about a unique high-resolution radiosonde sounding launched in Kiruna, Sweden during the first minor SSW on 30 January 2016. The radiosonde ascended to an altitude of 38.7 km and detected pronounced gravity wave signatures at inner edge of the polar vortex. Different diagnostics are applied to reveal the properties of the observed gravity waves and to deduce their sources. All analysis results suggest that the gravity wave was excited by spontaneous adjustment through the decelerating flow of the polar night jet in the course of the minor SSW.

  14. Case study of stratospheric gravity waves of convective origin over Arctic Scandinavia. VHF radar observations and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Rechou, A. [La Reunion Univ., St. Denis Messag, Ile de La Reunion (France). Lab. de l' Atmosphere et des Cyclones; Arnault, J.; Dalin, P.; Kirkwood, S. [Swedish Institute of Space Physics, Kiruna (Sweden)

    2013-03-01

    Orography is a well-known source of gravity and inertia-gravity waves in the atmosphere. Other sources, such as convection, are also known to be potentially important but the large amplitude of orographic waves over Scandinavia has generally precluded the possibility to study such other sources experimentally in this region. In order to better understand the origin of stratospheric gravity waves observed by the VHF radar ESRAD (Esrange MST radar) over Kiruna, in Arctic Sweden (67.88 N, 21.10 E), observations have been compared to simulations made using the Weather Research and Forecasting model (WRF) with and without the effects of orography and clouds. This case study concerns gravity waves observed from 00:00 UTC on 18 February to 12:00 UTC on 20 February 2007. We focus on the wave signatures in the static stability field and vertical wind deduced from the simulations and from the observations as these are the parameters which are provided by the observations with the best height coverage. As is common at this site, orographic gravity waves were produced over the Scandinavian mountains and observed by the radar. However, at the same time, southward propagation of fronts in the Barents Sea created short-period waves which propagated into the stratosphere and were transported, embedded in the cyclonic winds, over the radar site. (orig.)

  15. Tidal and gravity waves study from the airglow measurements at ...

    Indian Academy of Sciences (India)

    E) during the period 2004–2007 are analyzed to study the dominant waves present in the 80–100 km altitude region of the atmosphere. The nocturnal intensity variations of different airglow emissions are observed using scanning temperature controlled filter photometers. Waves having period lying between 2 and 12 hours ...

  16. Investigating of short period gravity waves using multi-beam experiments above Andenes in the polar summer mesopause

    Science.gov (United States)

    Stober, Gunter; Sommer, Svenja; Chau, Jorge L.; Latteck, Ralph

    2014-05-01

    In summer 2013 the Middle Atmosphere Alomar Radar System (MAARSY) conducted a multi-beam scanning experiment using 65 different beam directions. These systematic scanning experiments are analysed with respect to gravity waves with periods from 4 minutes up to 8 hours using polar mesospheric summer echoes (PMSE) as tracer. The gravity waves are investigated by decomposing the wind field into a mean wind and superimposed tidal components (diurnal, semidiurnal and terdiurnal). After subtracting these mean winds and tides we get a residuum wind dominated by the gravity waves with periods shorter than 8 hours. Using this approach we have been able to identified significant wave burst, with amplitudes as high as 50 m/s and 10-20 m/s for the horizontal and vertical wind components, respectively. In addition, we have identified events that indicate the development of KH-instabilities.

  17. New Perspective on the Role of Gravity Waves in the Stratospheric Dynamics and Variability

    Science.gov (United States)

    Šácha, Petr; Pišoft, Petr; Kuchař, Aleš; Lilienthal, Friederike; Jacobi, Christoph; Mikšovský, Jiří

    2017-04-01

    In the lower and middle atmosphere, the most natural, immediate and fastest way for communication of information in the vertical are gravity waves (GWs). Although GWs induce highest accelerations in the mesosphere, lower thermosphere region, the imposed drag force is much bigger in the stratosphere. In our study we present results from idealistic model sensitivity simulations showing an important role of the spatial distribution of GW activity for the polar vortex stability, formation of planetary waves and for the strength and structure of the zonal mean residual circulation. Consequently, using multiple linear regression and conditional analysis, we study the relation between spatial distribution of the GW drag in the stratosphere and selected atmospheric phenomena (ENSO, NAO, QBO) showing possible implications for the middle atmospheric dynamics and teleconnection patterns.

  18. Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data

    Science.gov (United States)

    Ern, M.; Hoffmann, L.; Preusse, P.

    2017-01-01

    In order to reduce uncertainties in modeling the stratospheric circulation, global observations of gravity wave momentum flux (GWMF) vectors are required for comparison with distributions of resolved and parametrized GWMF in global models. For the first time, we derive GWMF vectors globally from data of a nadir-viewing satellite instrument: we apply a 3-D method to an Atmospheric Infrared Sounder (AIRS) temperature data set that was optimized for gravity wave (GW) analysis. For January 2009, the resulting distributions of GW amplitudes and of net GWMF highlight the importance of GWs in the polar vortex and the summertime subtropics. Net GWMF is preferentially directed opposite to the background wind, and, interestingly, it is dominated by large-amplitude GWs of relatively long horizontal wavelength. For convective GW sources, these large horizontal scales are in contradiction with traditional thoughts. However, the observational filter effect needs to be kept in mind when interpreting the results.

  19. Thermospheric gravity waves in Fabry-Perot Interferometer measurements of the 630.0nm OI line

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2006-03-01

    Full Text Available Gravity waves are an important feature of mesosphere - lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. It is known that some gravity waves may propagate through the mesopause and reach greater altitudes before eventually "breaking" and depositing energy. The generation, propagation, and breaking of upper thermospheric gravity waves have not been studied directly often. However, their ionospheric counterparts, travelling ionospheric disturbances (TIDs, have been extensively studied in, for example, radar data. At high latitudes, it is believed localised auroral activity may generate gravity waves in-situ. Increases in sensor efficiency of Fabry-Perot Interferometers (FPIs located in northern Scandinavia have provided higher time resolution measurements of the auroral oval and polar cap atomic oxygen red line emission at 630.0 nm. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with periods ranging from a few tens of minutes to several hours. Oscillations are seen in the intensity of the line as well as the temperatures and line of sight winds. Instruments are located in Sodankylä, Finland; Kiruna, Sweden; Skibotn, Norway, and Svalbard in the Arctic Ocean. A case study is presented here, where a wave of 1.8 h period has a phase speed of 250 ms-1 with a propagation angle of 302°, and a horizontal wavelength of 1600 km. All the FPIs are co-located with EISCAT radars, as well as being supplemented by a range of other instrumentation. This allows the waves found in the FPI data to be put in context with the ionosphere and atmosphere system. Consequently, the source region of the gravity waves can be determined.

  20. Thermospheric gravity waves in Fabry-Perot Interferometer measurements of the 630.0nm OI line

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2006-03-01

    Full Text Available Gravity waves are an important feature of mesosphere - lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. It is known that some gravity waves may propagate through the mesopause and reach greater altitudes before eventually "breaking" and depositing energy. The generation, propagation, and breaking of upper thermospheric gravity waves have not been studied directly often. However, their ionospheric counterparts, travelling ionospheric disturbances (TIDs, have been extensively studied in, for example, radar data. At high latitudes, it is believed localised auroral activity may generate gravity waves in-situ. Increases in sensor efficiency of Fabry-Perot Interferometers (FPIs located in northern Scandinavia have provided higher time resolution measurements of the auroral oval and polar cap atomic oxygen red line emission at 630.0 nm. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with periods ranging from a few tens of minutes to several hours. Oscillations are seen in the intensity of the line as well as the temperatures and line of sight winds. Instruments are located in Sodankylä, Finland; Kiruna, Sweden; Skibotn, Norway, and Svalbard in the Arctic Ocean. A case study is presented here, where a wave of 1.8 h period has a phase speed of 250 ms-1 with a propagation angle of 302°, and a horizontal wavelength of 1600 km. All the FPIs are co-located with EISCAT radars, as well as being supplemented by a range of other instrumentation. This allows the waves found in the FPI data to be put in context with the ionosphere and atmosphere system. Consequently, the source region of the gravity waves can be determined.

  1. Viscous damping of gravity waves over a permeable bed

    Directory of Open Access Journals (Sweden)

    K. K. Puri

    1978-01-01

    Full Text Available The damping of gravity waves over the surface of a layer of viscous fluid which overlies a porous bed saturated with the same fluid is studied. It is shown that viscosity may not be the dominant influence in the damping mechanism; the damping effects due to percolation in the fixed bed may be of the same or even higher order than those due to viscosity.

  2. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    Science.gov (United States)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  3. Observation of ionospheric gravity waves induced by the 2011 Tohoku earthquake and tsunami using GPS networks in Japan

    Science.gov (United States)

    Tang, Long; Guo, Bofeng; Zhang, Xiaohong

    2017-04-01

    Recent observation results show the atmospheric gravity waves produced by both tsunami and earthquake can propagate upward to the atmosphere and interact with the plasma at the ionospheric height, leading to the generation of ionospheric disturbances. Carefully analyzing the propagation characteristics of ionospheric disturbances is necessary in order to distinguish the sources. Here, we use the GPS total electron content (TEC) observations in Japan to detect the ionospheric disturbances after the 2011 Tohoku earthquake, respectively. The Tohoku (Japan) earthquake (Mw=9) occurred at 05:46 UT on 11 March 2011 and then triggered powerful tsunami. The fundamental work is to properly isolate the ionospheric disturbances from raw TEC observations. Here, a second-order number difference method is employed to extract disturbance series and analyze the propagation characteristics of the ionospheric disturbances. The results show there are two types of gravity waves in the ionosphere over Japan, which is produced by the tsunami waves and the seismic rupture process, respectively. The earthquake-driven ionospheric gravity waves are distributed around the epicenter (including the areas over and far from the ocean) whereas the tsunami-driven ionospheric gravity waves are observed above the ocean. The earthquake-driven ionospheric gravity waves have different horizontal velocities, including about 210 m/s and 170 m/s, and frequency of about 1.5 mHz. The tsunami-driven ionospheric gravity waves have velocity of about 280 m/s, which are faster than that of the earthquake-driven ionospheric gravity waves, and frequency of about 1.0 mHz. In addition, the tsunami-driven ionospheric gravity waves have similar propagation characteristics in terms of horizontal velocity, direction, travel time, waveform and frequency compared to the tsunami waves causing them. In short, this study distinguishes the tsunami signals in ionosphere from ionospheric disturbances triggered by the earthquake

  4. Simultaneous Antarctic Gravity Wave Observations in PMCs from the AIM Satellite and PMSE Observations from PANSY Radar

    Science.gov (United States)

    Buzanowicz, M. E.; Yue, J.; Russell, J. M., III; Sato, K.; Kohma, M.; Nakamura, T.

    2015-12-01

    Polar mesospheric clouds (PMCs) are high-altitude ice clouds that form in the cold summer mesopause region due to adiabatic cooling caused by an upwelling induced by the global meridional circulation, which is driven by gravity wave dissipation and forcing. Polar mesospheric summer echoes (PMSEs) are strong coherent echoes also observed in the polar summer mesosphere and are considered to be related to ionization and the small-scale structure associated with PMCs, with their origins thought to be strongly related. The peak PMSE height can be located slightly below the summer mesopause temperature minimum but above the PMC altitude. Upward propagating atmospheric gravity waves (AGWs) are usually considered to be the cause of the wave patterns seen in PMCs. Monitoring PMCs and PMSEs will provide important tools in detecting climate change in the upper atmosphere and a better understanding of the earth-climate system. The science goal I plan to accomplish is to investigate the possibility of a connection between gravity wave perturbation characteristics in PMCs from the AIM (Aeronomy of Ice in the Mesosphere) satellite and PMSE structures observed by PANSY (program of the Antarctic Syowa MST/IS radar). Data from the CIPS instrument onboard AIM, PANSY, and AIRS (Atmospheric Infrared Sounder) will be used. AIM provides a two-dimensional horizontal view of the atmosphere dynamics embedded in PMCs, while PANSY provides a vertical view of PMSEs and gravity waves with high temporal resolution. The combination of AIM and PANSY will provide a three-dimensional view of the atmosphere, AGWs, PMCs and PMSEs. AIRS provides information about AGWs in the stratosphere. Wave analysis of the Fast Fourier Transform or a wavelet analysis will be used to complete the science goal. AIRS will be used to examine how lower atmosphere meteorology may impact the PMC and PMSE structures.

  5. On the nonlinear evolution of wind-driven gravity waves

    Science.gov (United States)

    Alexakis, A.; Calder, A. C.; Dursi, L. J.; Rosner, R.; Truran, J. W.; Fryxell, B.; Zingale, M.; Timmes, F. X.; Olson, K.; Ricker, P.

    2004-09-01

    We present a study of wind-driven nonlinear interfacial gravity waves using numerical simulations in two dimensions. We consider a case relevant to mixing phenomenon in astrophysical events such as novae in which the density ratio is approximately 1:10. Our physical setup follows the proposed mechanism of Miles [J. Fluid Mech. 3, 185 (1957)] for the amplification of such waves. Our results show good agreement with linear predictions for the growth of the waves. We explore how the wind strength affects the wave dynamics and the resulting mixing in the nonlinear stage. We identify two regimes of mixing, namely, the overturning and the cusp-breaking regimes. The former occurs when the wind is strong enough to overcome the gravitational potential barrier and overturn the wave. This result is in agreement with the common notion of turbulent mixing in which density gradients are increased to diffusion scales by the stretching of a series of vortices. In the latter case, mixing is the result of cusp instabilities. Although the wind is not strong enough to overturn the wave in this case, it can drive the wave up to a maximum amplitude where a singular structure at the cusp of the wave forms. Such structures are subject to various instabilities near the cusp that result in breaking the cusp. Mixing then results from these secondary instabilities and the spray-like structures that appear as a consequence of the breaking.

  6. Formation of ice supersaturation by mesoscale gravity waves

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2005-01-01

    Full Text Available We investigate the formation and evolution of an ice-supersaturated region (ISSR that was detected by means of an operational radiosonde sounding launched from the meteorological station of Lindenberg on 21 March 2000, 00:00 UTC. The supersaturated layer was situated below the local tropopause, between 320 and 408 hPa altitude. Our investigation uses satellite imagery from METEOSAT and the Advanced Very High Resolution Radiometer (AVHRR and analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF. Mesoscale simulations reveal that the ISSR was formed by a temporary vertical uplift of upper tropospheric air parcels by 20 to 40 hPa in 1 to 2 h. This resulted in a significant local increase of the specific humidity by the moisture transport from below. The ascent was triggered by the superposition of two internal gravity waves, a mountain wave induced by flow past the Erzgebirge and Riesengebirge south of Lindenberg, and an inertial gravity wave excited by the anti-cyclonically curved jet stream over the Baltic Sea. The wave-induced ISSR was rather thick with a depth of about 2 km. The wave-induced upward motion causing the supersaturation also triggered the formation of a cirrus cloud. METEOSAT imagery shows that the cirrus cloud got optically thick within two hours. During this period another longer lasting thin but extended cirrus existed just beneath the tropopause. The wave-induced ISSR disappeared after about half a day in accordance with the decaying wave activity.

  7. A plant's response to gravity as a wave phenomenon.

    Science.gov (United States)

    Wagner, O E

    1999-07-01

    to lower waves when traveling along the gravitational field as compared to traveling perpendicular to the gravitational field. Both effects may complete the picture. Gravity has a very large influence on frequencies appearing to reduce frequencies to lower values by as much as a factor of one third (or even a smaller fraction) in live plant material. This results in cell lengths and internodal spacings being up to three (or even more) times longer parallel to the gravitational field compared to perpendicular to the gravitational field. Cell lengths and internodal spacings take on immediate values between vertical and horizontal. If the gravitational field is missing or nearly so as with microgravity, the cell is missing the gravity references that determine its shape, for example. It appears that plant parts grow at discrete angles to the gravitational field. All these features constitute overwhelming proof that plants are wave operated with the characteristics of the waves involved very much influenced by the gravitational field.

  8. Characteristics of gravity waves revealed in a high-resolution baroclinic wave simulation

    Science.gov (United States)

    Kim, Young-Ha; Chun, Hye-Yeong; Park, Sang-Hun; Choi, Hyun-Joo; Song, In-Sun

    2015-04-01

    Mesoscale modeling results from an idealized baroclinic wave simulation are used to investigate gravity waves associated with jet and frontal systems. The simulation is conducted using the global Weather Research and Forecasting (WRF) model with a horizontal resolution of ~0.09°, based on the balanced initial conditions proposed by Jablonowski and Williamson and a baroclinic wave disturbance with a zonal wavenumber 9. In the simulation, the mesoscale gravity waves begin to appear around 55°N when and where the baroclinic wave disturbance is well developed. These gravity waves (G1) are identified by three wave packets in the upper troposphere propagating eastward, southeastward, and northeastward, which are advected by the background westerly jet. They have horizontal wavelengths of 50-600 km at 300 hPa, with a peak of approximately 110 km. Their phase speed ranges from 10 to 23 m s-1. About one day after the G1 appears, a secondary cyclone is developed in the lower troposphere around 45°N according to the development of baroclinic waves, and mesoscale gravity waves distinct from G1 appear (G2) above this cyclone. The G2 is quasi-stationary, with a peak wavelength of about 360 km at 300 hPa. For both G1 and G2, the zonal momentum flux is negative, implying that upward-propagating mode is dominant. In the lower stratosphere, the magnitude of G1 decreases significantly because the waves are largely filtered above the jet, whereas the quasi-stationary G2 propagates into the stratosphere with substantial amplitudes.

  9. Wave heating of the solar atmosphere.

    Science.gov (United States)

    Arregui, Iñigo

    2015-05-28

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie

    2017-01-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  11. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  12. Kelvin-Helmholtz billows and their effects on mean state during gravity wave propagation

    Directory of Open Access Journals (Sweden)

    X. Liu

    2009-07-01

    Full Text Available The Kelvin-Helmholtz (KH billows which appear in the process of gravity wave (GW propagation are simulated directly by using a compressible nonlinear two-dimensional gravity wave model. The differences between our model and others include: the background field has no special initial configuration and there is no initial triggering mechanism needed in the mesosphere and lower thermosphere (MLT region to excite the KH billows. However, the initial triggering mechanism is performed in the lower atmosphere through GW, which then propagate into the MLT region and form billows. The braid structures and overturning of KH billows, caused by nonlinear interactions between GWs and mean flow, can be resolved precisely by the model. These results support the findings in airglow studies that GWs propagating from below into the MLT region are important sources of KH billows. The onset of small scale waves and the wave energy transfer induce the shallower vertical wave number power spectral densities (PSD. However, most of the slopes are steeper than the expected kz−3 power law, which indicates that GWs with 10 km vertical wavelength are still a dominant mode. The results also show that the evolution of mean wind vary substantially between the different processes of GWs propagation. Before the KH billows evolve, the mean wind is accelerated greatly by GWs. By contrast, as the KH billows evolve and mix with mean flow, the mean wind and its peak value decrease.

  13. On the Chemical Mixing Induced by Internal Gravity Waves

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-10-10

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.

  14. Picture of the global field of quasi-monochromatic gravity waves observed by stratospheric balloons and MST radars

    Science.gov (United States)

    Yamanaka, M. D.

    1989-01-01

    In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.

  15. Anisotropy in internal gravity waves in conditions of a stable nocturnal boundary layer

    Directory of Open Access Journals (Sweden)

    Anke Kniffka

    2009-06-01

    Full Text Available In July 2005 the Oboukhov Institute of Atmospheric Physics (OIAP and the Leipzig Institute for Meteorology (LIM conducted a joint experiment at Zvenigorod (Russia using the OIAP's acoustic pulse sounding method and the acoustic travel time tomography of the LIM group. These were deployed simultaneously with SODAR and temperature profiler measurements of wind speed and temperature profiles used for monitoring the state of the lower atmosphere. Internal gravity waves (IGWs in the stably stratified atmosphere were detected by means of cross-coherence analysis of the acoustic travel times. The acoustic receivers were placed in groups of three at several locations distributed within the measurement field. Two methods were employed for detecting coherent structures: first in the vertical direction along refracting ray paths with turning points in the atmosphere between 50 m to 300 m and second the pulse propagation along almost horizontal ray paths that connect pairs of source and receivers. In this way both horizontal and vertical information of the state of the atmosphere was monitored continuously during the experiment; this allowed both the detection of wave-like structures and the spatial and temporal characteristics of the effective sound speed fluctuations. From these fluctuations the anisotropy of the IGW's is deduced. Two measurement days are analysed in this study which revealed several anisotropic frequency domains caused by wave-like structures.

  16. Longitudinal and transverse modes of slosh wave excitation in rotating dewar associated with gravity jitters

    Science.gov (United States)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1991-01-01

    Characteristics of slosh waves based on the dynamical behavior of oscillations at the liquid-vapor interface have been investigated. Twelve case studies of slosh wave excitation due to various frequencies of gravity jitters under different rotating speeds of the propellant tank and different levels of background gravity environment have been simulated. The study shows that slosh waves excited inside the spacecraft propellant tank are characterized by the lowest frequency of the waves initiated, frequencies of the gravity jitters imposed on the propellant system, the levels of background gravity environment, and dewar rotating speeds. Conditions for suppression and amplification of the slosh waves are discussed.

  17. Recent progress in mesospheric gravity wave studies using nightglow imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael J.; Pendleton Junior, William R.; Pautet, Pierre-Dominique; Zhao, Yucheng; Olsen, Chris; Babu, Hema Karnam Surendra [Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah (United States); Medeiros, Amauri F. [Universidade Federal de Campina Grande, Centro de Ciencias e Tecnologia, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Takahashi, Hisao, E-mail: mtaylor@cc.usu.edu, E-mail: wpen@cc.usu.edu, E-mail: dominiquepautet@gmail.com, E-mail: yucheng@cc.usu.edu, E-mail: cmellob@gmail.com, E-mail: hema_sb@rediffmail.com, E-mail: afragoso@df.ufcg.edu.br, E-mail: hisaotak@laser.inpe.br [INPE, Sao Jose dos Campos, SP (Brazil)

    2007-07-01

    A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from {approx} 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( {approx} 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art ground-based CCD imaging techniques to detect these waves in intensity and temperature. All-sky (180 deg ) image measurements are used to illustrate the characteristics of small-scale, short period ( < 1 hour) waves and to investigate their seasonal propagation and momentum impact on the MLT region. These results are then contrasted with measurements of mesospheric temperature made using a new temperature mapping imaging system capable of determining induced temperature amplitudes of a large range of wave motions and investigating night-to-night and seasonal variability in mesospheric temperature. (author)

  18. Millimeter-Wave Atmospheric Sounder (MAS)

    Science.gov (United States)

    Hartmann, G. K.

    1988-01-01

    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided.

  19. Empirical Mode Decomposition of the atmospheric wave field

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2007-03-01

    Full Text Available This study examines the utility of the Empirical Mode Decomposition (EMD time-series analysis technique to separate the horizontal wind field observed by the Scott Base MF radar (78° S, 167° E into its constituent parts made up of the mean wind, gravity waves, tides, planetary waves and instrumental noise. Analysis suggests that EMD effectively separates the wind field into a set of Intrinsic Mode Functions (IMFs which can be related to atmospheric waves with different temporal scales. The Intrinsic Mode Functions resultant from application of the EMD technique to Monte-Carlo simulations of white- and red-noise processes are compared to those obtained from the measurements and are shown to be significantly different statistically. Thus, application of the EMD technique to the MF radar horizontal wind data can be used to prove that this data contains information on internal gravity waves, tides and planetary wave motions.

    Examination also suggests that the EMD technique has the ability to highlight amplitude and frequency modulations in these signals. Closer examination of one of these regions of amplitude modulation associated with dominant periods close to 12 h is suggested to be related to a wave-wave interaction between the semi-diurnal tide and a planetary wave. Application of the Hilbert transform to the IMFs forms a Hilbert-Huang spectrum which provides a way of viewing the data in a similar manner to the analysis from a continuous wavelet transform. However, the fact that the basis function of EMD is data-driven and does not need to be selected a priori is a major advantage. In addition, the skeleton diagrams, produced from the results of the Hilbert-Huang spectrum, provide a method of presentation which allows quantitative information on the instantaneous period and amplitude squared to be displayed as a function of time. Thus, it provides a novel way to view frequency and amplitude-modulated wave phenomena and potentially non

  20. Empirical Mode Decomposition of the atmospheric wave field

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2007-03-01

    Full Text Available This study examines the utility of the Empirical Mode Decomposition (EMD time-series analysis technique to separate the horizontal wind field observed by the Scott Base MF radar (78° S, 167° E into its constituent parts made up of the mean wind, gravity waves, tides, planetary waves and instrumental noise. Analysis suggests that EMD effectively separates the wind field into a set of Intrinsic Mode Functions (IMFs which can be related to atmospheric waves with different temporal scales. The Intrinsic Mode Functions resultant from application of the EMD technique to Monte-Carlo simulations of white- and red-noise processes are compared to those obtained from the measurements and are shown to be significantly different statistically. Thus, application of the EMD technique to the MF radar horizontal wind data can be used to prove that this data contains information on internal gravity waves, tides and planetary wave motions. Examination also suggests that the EMD technique has the ability to highlight amplitude and frequency modulations in these signals. Closer examination of one of these regions of amplitude modulation associated with dominant periods close to 12 h is suggested to be related to a wave-wave interaction between the semi-diurnal tide and a planetary wave. Application of the Hilbert transform to the IMFs forms a Hilbert-Huang spectrum which provides a way of viewing the data in a similar manner to the analysis from a continuous wavelet transform. However, the fact that the basis function of EMD is data-driven and does not need to be selected a priori is a major advantage. In addition, the skeleton diagrams, produced from the results of the Hilbert-Huang spectrum, provide a method of presentation which allows quantitative information on the instantaneous period and amplitude squared to be displayed as a function of time. Thus, it provides a novel way to view frequency and amplitude-modulated wave phenomena and potentially non

  1. On the internal gravity waves in the stratified ocean with shear flows

    CERN Document Server

    Bulatov, Vitaly V

    2013-01-01

    In this paper, we consider a fundamental problem of describing the dynamics of internal gravity waves in the stratified ocean with shear flows. We develop an asymptotic representation of the wave fields in terms of the Green's functions. We explore the far field of the internal gravity waves generated by disturbing sources, and propose asymptotic algorithms for calculating its dynamics.

  2. Resonance vibrations of the Ross Ice Shelf cause persistent atmospheric waves

    Science.gov (United States)

    Godin, Oleg; Zabotin, Nikolay

    2017-04-01

    Recently reported lidar observations have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at mid- and low-latitude locations [Chen et al., 2016]. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 hours. Here, we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vectors of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity], including frequency band, vertical wavelength range, and weak variation of the vertical wavelength with the height. The present work is a motivation for in-depth studies of coupling between vibrations of ice shelves and waves in the upper and middle atmosphere at high latitudes.

  3. First champ mission results for gravity, magnetic and atmospheric studies

    CERN Document Server

    Lühr, Hermann; Schwintzer, Peter

    2003-01-01

    In the summer of 2000 the German geo-research satellite CHAMP was launched into orbit. Its innovative payload arrangement and the low intial orbit allow CHAMP to simultaneously collect and almost continuously analyse precise data relating to gravity and magnetic fields at low altitude. In addition to this CHAMP also measures the neutral atmosphere and ionosphere using GPS techniques. Eighteen months after the launch, CHAMP research groups from all over the world met at the Geo-Forschungs-Zentrum in Potsdam for an initial exchange of experiences and results. The main outcome of this user meeting is summarized in this volume. Apart from technical information about the mission, the book offers a comprehensive insight into the present status of CHAMP data exploitation for Earth system research and practical applications in geodesy, geophysics and meteorology.

  4. Gravity wave life cycle (GW-LCYCLE): Initial results from a coordinated field program to trace gravity waves from the troposphere to the MLT-region

    Science.gov (United States)

    Rapp, Markus

    Gravity waves (GW) play an important role in the coupling between the troposphere and the middle atmosphere (˜10 - 120 km). GWs couple different atmospheric regions both in the vertical as well as in the horizontal directions by means of momentum and energy transport. Notably, this coupling is effective both from the troposphere upwards, and also in the opposite direction by indirect effects on circulation patterns. While the importance of GW for understanding atmospheric structure, dynamics and climate is now widely recognized, surprisingly little is still known about the details of the GW life cycle, i.e., the processes of GW excitation, propagation and dissipation. To address this issue a coordinated field program - named GW-LCYCLE - has been established in which ground based observations with radars, lidars and airglow imagers are combined with airborne observations, balloon soundings, and modelling to trace GWs from their source in the troposphere to their area of dissipation in the middle atmosphere. Within GW-LCYCLE an initial field campaign was conducted in December 2013 in Northern Scandinavia. The research aircraft DLR-FALCON was deployed to Kiruna, Sweden, from where several flights (with a total of 25 flight hours) were conducted to study mountain wave generation by flow over the Scandinavian mountain ridge. The FALCON was equipped with a downward looking wind lidar operating at a wavelength of 2 mum as well as with an in-flight system to measure winds, temperatures and pressures and with several in-situ instruments to detect wave signatures in trace gases like H _{2}O, CO _{2}, CO, CH _{4}, N _{2}O, HNO _{3} and SO _{2}. Ground based observations of winds and temperatures from the troposphere to the mesosphere/lower thermosphere (MLT-) region were conducted from Kiruna as well as from Andenes, Norway. These measurements were augmented by balloon soundings from the same places as well as from Sodankylä in Finland. Coordinated observations were

  5. Spatiotemporal measurement of surfactant distribution on gravity-capillary waves

    CERN Document Server

    Strickland, Stephen L; Daniels, Karen E

    2015-01-01

    Materials adsorbed to the surface of a fluid -- for instance, crude oil, biogenic slicks, or industrial/medical surfactants -- will move in response to surface waves. Due to the difficulty of non-invasive measurement of the spatial distribution of a molecular monolayer, little is known about the dynamics that couple the surface waves and the evolving density field. Here, we report measurements of the spatiotemporal dynamics of the density field of an insoluble surfactant driven by gravity-capillary waves in a shallow cylindrical container. Standing Faraday waves and traveling waves generated by the meniscus are superimposed to create a non-trivial surfactant density field. We measure both the height field of the surface using moir\\'e-imaging, and the density field of the surfactant via the fluorescence of NBD-tagged phosphatidylcholine, a lipid. Through phase-averaging stroboscopically-acquired images of the density field, we determine that the surfactant accumulates on the leading edge of the traveling menis...

  6. Convectively generated stratospheric gravity waves - The role of mean wind shear

    Science.gov (United States)

    Holton, J. R.; Durran, D.

    1993-01-01

    A two-dimensional numerical simulation of mid-latitude squall lines is used to study the properties of storm-induced stratospheric gravity waves. Owing to the tendency for convective cells to form at the forward edge of a squall line, and then propagate toward the rear, the simulated storms preferentially generate gravity waves that propagate toward the rear of the storm. This anisotropy in gravity wave generation leads to a net vertical transfer of momentum into the stratosphere. Cases with and without stratospheric mean wind shear are compared. In the latter case Doppler shifting of the waves to lower frequencies leads to wave breaking and enhanced wave - mean-flow interaction.

  7. Long-period unstable gravity-waves and associated VHF radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    Full Text Available VHF atmospheric radar is used to measure the wind velocity and radar echo power related to long-period wind perturbations, including gravity waves, which are observed commonly in the lower stratosphere and tropopause region, and sometimes in the troposphere. These wind structures have been identified previously as either inertia-gravity waves, often associated with jet streams, or mountain waves. At heights of peak wind shear, imbalances are found between the echo powers of a symmetric pair of radar beams, which are expected to be equal. The largest of these power differences are found for conditions of simultaneous high wind shear and high aspect sensitivity. It is suggested that the effect might arise from tilted specular reflectors or anisotropic turbulent scatterers, a result of, for example, Kelvin-Helmholtz instabilities generated by the strong wind shears. This radar power-difference effect could offer information about the onset of saturation in long-period waves, and the formation of thin layers of turbulence.

  8. Numerical simulation of convectively generated gravity waves in West Africa and comparisons with observations

    Science.gov (United States)

    Heinrich, P.; Blanc, E.

    2012-04-01

    Convective clouds in the ITCZ (Intertropical Convergence Zone) are a major source of nonstationary gravity waves, that propagate to the stratosphere and result in upward displacements at low levels, which induces new convection. Simulations of wind fields are performed by the mesoscale meteorological model WRF (Advanced Research Weather Research and Forecasting) over a period of 2 days during active thunderstorm days. Simulations are carried out in a domain covering the ITCZ in West Africa using 2 nested grids with horizontal grid spacing of 27 and 9 km respectively. Simulations are driven by ECMWF winds (defined by 91 levels from surface to 80 km), using 100 levels from surface to 50 Pa and a sponge layer above 45 km. The waves characteristics are compared to observations at the CTBT (Comprehensive Test Ban Treaty) infrasound station in Ivory Coast. The aim of this study is to further understand the mechanisms of wave generation by deep convection and propagation to the stratosphere. In a second part, we also study the effects of gravity waves on the dynamics of the tropical atmosphere and perform sensitivity simulations to the top height of the model.

  9. Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics

    Science.gov (United States)

    MacKenzie Laxague, Nathan Jean

    Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of

  10. Variation of gravity waves on different time scales and the differences between day and nighttime lidar soundings at mid-latitudes

    Science.gov (United States)

    Baumgarten, Kathrin; Gerding, Michael; Luebken, Franz-Josef

    2017-04-01

    A daylight capable Rayleigh-Mie-Raman (RMR) lidar is in operation since summer 2010 at the mid-latitude station at Kühlungsborn (54° N, 12° E). The RMR lidar system is used for measuring wave structures at day and night to investigate short and long periodic atmospheric waves, like gravity waves (GW) and thermal tides (with diurnal, semidiurnal and terdiurnal components) between 30 and 70 km altitude. An extensive data set with over 7500 measurements hours allows deriving the seasonal variation of, e.g., gravity wave potential energy density (GWPED), while several multi-day observations show the variability of gravity waves and tides on shorter time scales. To separate gravity waves, tides and other long periodic waves a 1-dimensional spectral filtering technique is used. The seasonal variation of the potential energy per unit volume shows a clear summer minimum for inertia gravity waves as well as for tides. Contrary to this, short periodic gravity waves with periods between 4 and 8 h show no clear seasonal variation. Especially for altitudes above 55 km an additional semiannual component with a second summer maximum is observed, which shows the increasing relevance of these waves. Because of the availability of whole day data, we have the possibility to distinguish between day and nighttime data. By using only data between 20 UT and 4 UT ("nighttime") we found a summer minimum in GWPED that is hidden in the whole day data. We relate these differences in the seasonal behavior to a diurnal variation of propagation conditions for the particular gravity waves. Beside the monthly averaged data, we will present a 10-day continuous lidar sounding to show the variability of gravity waves and tides on short time scales.

  11. Turbulence-particle interactions under surface gravity waves

    Science.gov (United States)

    Paskyabi, Mostafa Bakhoday

    2016-11-01

    The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ɛ turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.

  12. Stability of an external gravity wave in a stratified basic flow with lateral shear

    OpenAIRE

    Tomizuka, Akira

    2005-01-01

    The author investigates the stability of an external gravity wave progressing horizontally in an inviscid and incompressible stratified basic flow with lateral shear. (1) In the model which basic flow has a Helmholtz velocity profile, there exist no neutral solutions contrary to internal gravity waves. Perturbations are always unstable independent of the coefficient of vertical wave mode m or the wave number k_y. (2) In the model which basic flow is composed of unbounded layers with the centr...

  13. HOW GRAVITY WAVES AFFECT FORMATION OF LOW TEMPERATURE REGION IN ANTARCTIC LOWER STRATOSPHERE

    OpenAIRE

    タナカ, ヒロシ; Hiroshi, Tanaka

    1987-01-01

    A mechanism is proposed for the formation of an "ozone hole" over Antarctica. Gravity waves emitted from the circum-continental mountain (or cliff) belt may be partly saturated in the lower stratosphere and suppress planetary wave activity there. This process results in shielding a poleward heat transport associated with planetary waves. A long-term trend of gravity wave activity and prevailing wind system for the past several years should be detected in the polar region.

  14. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1 Bands

    Directory of Open Access Journals (Sweden)

    Young-In Won

    2001-06-01

    Full Text Available As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1 bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E. These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1 airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  15. Tsunami-driven gravity waves in the presence of vertically varying background and tidal wind structures

    Science.gov (United States)

    Laughman, B.; Fritts, D. C.; Lund, T. S.

    2017-05-01

    Many characteristics of tsunami-driven gravity waves (TDGWs) enable them to easily propagate into the thermosphere and ionosphere with appreciable amplitudes capable of producing detectable perturbations in electron densities and total electron content. The impact of vertically varying background and tidal wind structures on TDGW propagation is investigated with a series of idealized background wind profiles to assess the relative importance of wave reflection, critical-level approach, and dissipation. These numerical simulations employ a 2-D nonlinear anelastic finite-volume neutral atmosphere model which accounts for effects accompanying vertical gravity wave (GW) propagation such as amplitude growth with altitude. The GWs are excited by an idealized tsunami forcing with a 50 cm sea surface displacement, a 400 km horizontal wavelength, and a phase speed of 200 ms-1 consistent with previous studies of the tsunami generated by the 26 December 2004 Sumatra earthquake. Results indicate that rather than partial reflection and trapping, the dominant process governing TDGW propagation to thermospheric altitudes is refraction to larger and smaller vertical scales, resulting in respectively larger and smaller vertical group velocities and respectively reduced and increased viscous dissipation. Under all considered background wind profiles, TDGWs were able to attain ionospheric altitudes with appreciable amplitudes. Finally, evidence of nonlinear effects is observed and the conditions leading to their formation is discussed.

  16. Secondary gravity wave generation over New Zealand during the DEEPWAVE campaign

    Science.gov (United States)

    Bossert, Katrina; Kruse, Christopher G.; Heale, Christopher J.; Fritts, David C.; Williams, Bifford P.; Snively, Jonathan B.; Pautet, Pierre-Dominique; Taylor, Michael J.

    2017-08-01

    Multiple events during the Deep Propagating Gravity Wave Experiment measurement program revealed mountain wave (MW) breaking at multiple altitudes over the Southern Island of New Zealand. These events were measured during several research flights from the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft, utilizing a Rayleigh lidar, an Na lidar, and an Advanced Mesospheric Temperature Mapper simultaneously. A flight on 29 June 2014 observed MWs with horizontal wavelengths of 80-120 km breaking in the stratosphere from 10 to 50 km altitude. A flight on 13 July 2014 observed a horizontal wavelength of 200-240 km MW extending from 20 to 90 km in altitude before breaking. Data from these flights show evidence for secondary gravity wave (SGW) generation near the breaking regions. The horizontal wavelengths of these SGWs are smaller than those of the breaking MWs, indicating a nonlinear generation mechanism. These observations reveal some of the complexities associated with MW breaking and the implications this can have on momentum fluxes accompanying SGWs over MW breaking regions.

  17. On reduced models for gravity waves generated by moving bodies

    CERN Document Server

    Trinh, Philippe H

    2015-01-01

    In 1982, Marshall P. Tulin published a report proposing a framework for reducing the equations for gravity waves generated by moving bodies into a single nonlinear differential equation solvable in closed form [Proc. 14th Symp. on Naval Hydrodynamics, 1982, pp.19-51]. Several new and puzzling issues were highlighted by Tulin, notably the existence of weak and strong wave-making regimes, and the paradoxical fact that the theory seemed to be applicable to flows at low speeds, "but not too low speeds". These important issues were left unanswered, and despite the novelty of the ideas, Tulin's report fell into relative obscurity. Now thirty years later, we will revive Tulin's observations, and explain how an asymptotically consistent framework allows us to address these concerns. Most notably, we will explain, using the asymptotic method of steepest descents, how the production of free-surface waves can be related to the arrangement of integration contours connected to the shape of the moving body. This approach p...

  18. Analytical and numerical investigation of nonlinear internal gravity waves

    Directory of Open Access Journals (Sweden)

    S. P. Kshevetskii

    2001-01-01

    Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory

  19. Holographic p-wave superfluid in Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shancheng [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunnu.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-02-10

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  20. A fast wind-farm boundary-layer model to investigate gravity wave effects and upstream flow deceleration

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2017-11-01

    Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  1. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Science.gov (United States)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  2. Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data

    Science.gov (United States)

    Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.

    2009-12-01

    We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  3. DEEPWAVE Initial Investigation of Mesospheric Gravity Wave Signatures Generated by Variable Orographic Forcing Over Lauder Station (45°S). New Zealand

    Science.gov (United States)

    Criddle, N.; Taylor, M. J.; Pautet, P. D.; Zhao, Y.

    2014-12-01

    DEEPWAVE is a new international collaborative research program focused on identifying, characterizing, and predicting the generation and propagation of deeply propagating atmospheric gravity waves from the Earth's surface up to ̴100 km altitude and beyond. An extended series of coordinated airborne and ground-based measurements were recently conducted from New Zealand's South Island to investigate gravity wave forcing during the winter months when strong North-Westerly winds are known to generate gravity waves capable of penetrating well into the stratosphere. As part of this collaborative effort the Atmospheric Imaging Lab at Utah State University (USU) deployed and operated an Advanced Mesospheric Temperature Mapper (AMTM) at the National Institute for Water and Atmosphere (NIWA) Lauder research station, NZ (45°S 169°E). In the lee of the Southern Alps, Lauder is well positioned for measuring a broad spectrum of gravity waves launched from south island orography and from other meteorological sources. The AMTM is uniquely capable of mapping the wave-induced temperature perturbations to investigate the two-dimensional gravity wave field with high temporal ( ̴10 sec) and high temperature precision ( ̴1-2 K in 30 sec). High-quality infrared image measurements of the OH (3,1) band emission layer (altitude ̴ 87 km) were made nightly from May 31 to July 22, 2014. The DEEPWAVE program has been a resounding success and over 42 nights of data were obtained at Lauder with distinct mesospheric mountain wave signatures recorded there in OH intensity, and in temperatures for the first time. In this poster we provide a summary of the AMTM data set from Lauder, complemented by data from coincident airborne over-flights where appropriate, and we present initial results characterizing the mesopause gravity wave field under varying orographic forcings. We thank the NSF for sponsoring this research program.

  4. Breaking of internal solitary waves generated by an estuarine gravity current

    Science.gov (United States)

    Xie, Xiaohui; Li, Ming; Boicourt, William C.

    2017-07-01

    Mooring and ship-based data collected in a stratified estuary showed the generation of internal solitary waves by a bottom gravity current. Down-estuary winds drove a counterclockwise lateral circulation over channel-shoal bathymetry. When the lateral flows became supercritical, the pycnocline was sharply raised at the edge of the deep channel, leading to flow convergences and formation of a bottom gravity current. As the lateral circulation weakened during wind relaxation, the gravity current propagated onto the shoal and excited internal disturbances around its head. These disturbances evolved into a train of large-amplitude internal solitary waves that subsequently propagated ahead of the gravity current. The waves moving out of the gravity current broke, generating overturning and turbulence with energy dissipation rate reaching 1 × 10-4 m2 s-3, 3 orders of magnitude larger than the background value. Our observations suggest that breaking internal waves may be an important source of turbulent mixing in stratified estuaries.

  5. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  6. The dynamics of internal gravity waves in the ocean: theory and applications

    CERN Document Server

    Bulatov, Vitaly V

    2013-01-01

    In this paper we consider fundamental processes of the disturbance and propagation of internal gravity waves in the ocean modeled as a vertically stratified, horizontally non-uniform, and non-stationary medium. We develop asymptotic methods for describing the wave dynamics by generalizing the spatiotemporal ray-tracing method (a geometrical optics method). We present analytical and numerical algorithms for calculating the internal gravity wave fields using actual ocean parameters such as physical characteristics of the sea water, topography of its floor, etc. We demonstrate that our mathematical models can realistically describe the internal gravity wave dynamics in the ocean. Our numerical and analytical results show that the internal gravity waves have a significant impact on underwater objects in the ocean.

  7. Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region

    Directory of Open Access Journals (Sweden)

    L. Thomas

    Full Text Available Radar measurements at Aberystwyth (52.4° N, 4.1° W of winds at tropospheric and lower stratospheric heights are shown for 12-13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; middle atmosphere dynamics; waves and tides

  8. Effects of anisotropy on the frequency spectrum of gravity waves observed by MST radar

    Science.gov (United States)

    Liu, C. H.

    1986-01-01

    In the investigation of gravity waves using mesosphere-stratosphere-troposphere radar data, model gravity-wave spectra have been used. In these model spectra, one usually assumes azimuthal symmetry. The effect of spectral anisotropy on the observed spectrum is studied here. It is shown that for a general Garrett-Munk-type spectrum, the anisotropy does not affect the frequency spectrum observed by the vertically beamed radar. For the oblique beam, however, the observed frequency spectrum is changed. A general gravity wave spectrum including azimuthal anisotropy is considered.

  9. The propagation of orographic gravity waves into the stratosphere. Linear theory, idealized and realistic numerical simulation; Die Ausbreitung orographisch angeregter Schwerewellen in die Stratosphaere. Lineare Theorie, idealisierte und realitaetsnahe numerische Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-07-01

    Flow over mountains in the stably stratified atmosphere excites gravity waves. The three-dimensional propagation of these waves into the stratosphere is studied using linear theority as well as idealized and realistic numerical simulations. Stagnation, momentum fluxes and temperature anomalies are analyzed for idealized types of flow. Isolated mountains with elliptical contours are considered. The unperturbed atmosphere has constant wind speed and constant static stability or two layers (troposphere/stratosphere) of constant stability each. Real flow over orography is investigated where gravity waves in the stratosphere have been observed. Characteristics of the gravity wave event over the southern tip of Greenland on 6 January 1992 were recorded on a flight of the ER-2 at an altitude of 20 km. In the second case polar stratospheric clouds (PSC) were observed by an airborne Lidar over Northern Scandinavia on 9 January 1997. The PSC were induced by temperature anomalies in orographic gravity waves. (orig.)

  10. Stratosphere and lower mesosphere wind observation and gravity wave activities of the wind field in China using a mobile Rayleigh Doppler lidar

    Science.gov (United States)

    Zhao, Ruocan; Dou, Xiankang; Xue, Xianghui; Sun, Dongsong; Han, Yuli; Chen, Chong; Zheng, Jun; Li, Zimu; Zhou, Anran; Han, Yan; Wang, Guocheng; Chen, Tingdi

    2017-08-01

    Since the mobile Rayleigh Doppler lidar of the University of Science and Technology of China was developed in 2013, more than 100 days of valid nighttime wind data from 15 to 60 km altitude were obtained during recent 3 years. The observation locations cover the northwest (midlatitude) of China: Delingha (37.371°N, 97.374°E), Xinzhou (38.425°N, 112.729°E), and Jiuquan (39.741°N, 98.495°E). Recently, we have extracted perturbations of the wind profiles from the wind field measurements and we have found that inertia gravity waves and mountain waves existed at the same time. The results of wind field and several gravity waves cases are shown in this paper. Typical characteristics of the gravity waves are analyzed in this midlatitude area of China. A 2-D fast Fourier transform of the wind perturbation shows that a dominant stationary wave mode and a downward wave mode exist simultaneously in the spectrum. A band-pass 2-D filter was applied to the spectrum followed by inverse fast Fourier transform to separate inertia gravity waves from stationary mountain waves. The horizontal wavelength is retrieved using hodograph methods, indicating that the inertia waves are generated thousands of kilometers away. Observed mountain waves from a combination of vertical wind and leaned line of sight wind measurements show a small-angle leaned wave front from the horizontal direction. This kind of gravity wave observation of the stratospheric wind field and its wave patterns is rare and significant for the study of atmospheric dynamics.

  11. Internal Gravity Wave Interactions with Double-Diffusive Instabilities

    Science.gov (United States)

    Brown, Justin; Radko, Timour

    2017-04-01

    In this study, we focus on the phenomenon of oscillatory double-diffusive convection, which occurs when cool fresh water is stratified above warm salty water, as commonly observed in the Arctic Ocean. In the Arctic, these regions are generally stable to the development of oscillatory double-diffusive instabilities; despite this, observations show the presence of staircases, i.e., the well-defined structures consisting of a series of homogeneous layers separated by thin high-gradient interfaces. Recent studies have shown that an instability can develop in such circumstances if weak static shear is present even when the shear and double-diffusion are themselves individually stable. However, the impact of oscillating shear, associated with the ubiquitous presence of internal gravity waves, has not yet been addressed for the diffusive case. Through two-dimensional simulations of diffusive convection, we have investigated the impact of magnitude and frequency of externally forced internal waves on the double-diffusive shear instability. The analysis is focused on the parameter regime in which the flow is individually stable with respect to double-diffusion and Kelvin-Helmholtz instabilities, but could be susceptible to the combined thermohaline-shear instability. We have illustrated that rapid oscillation inhibits the development of this instability if the dominant period is shorter than four hours for the oceanographically relevant parameters; otherwise, models with static shear adequately reproduce our results. If the dominant period is shorter than four hours but still significantly exceeds the buoyancy period, the instability range is much reduced to the low Richardson number regime. Some of these simulations show the saturated system developing into structures reminiscent of double-diffusive staircases whose thickness is given by the wavelength of the forced shear. Finally, preliminary three-dimensional simulations show no major differences in the growth rate of

  12. Dynamical influence of gravity waves generated by the Vestfjella Mountains in Antarctica: radar observations, fine-scale modelling and kinetic energy budget analysis

    Directory of Open Access Journals (Sweden)

    Joel Arnault

    2012-02-01

    Full Text Available Gravity waves generated by the Vestfjella Mountains (in western Droning Maud Land, Antarctica, southwest of the Finnish/Swedish Aboa/Wasa station have been observed with the Moveable atmospheric radar for Antarctica (MARA during the SWEDish Antarctic Research Programme (SWEDARP in December 2007/January 2008. These radar observations are compared with a 2-month Weather Research Forecast (WRF model experiment operated at 2 km horizontal resolution. A control simulation without orography is also operated in order to separate unambiguously the contribution of the mountain waves on the simulated atmospheric flow. This contribution is then quantified with a kinetic energy budget analysis computed in the two simulations. The results of this study confirm that mountain waves reaching lower-stratospheric heights break through convective overturning and generate inertia gravity waves with a smaller vertical wavelength, in association with a brief depletion of kinetic energy through frictional dissipation and negative vertical advection. The kinetic energy budget also shows that gravity waves have a strong influence on the other terms of the budget, i.e. horizontal advection and horizontal work of pressure forces, so evaluating the influence of gravity waves on the mean-flow with the vertical advection term alone is not sufficient, at least in this case. We finally obtain that gravity waves generated by the Vestfjella Mountains reaching lower stratospheric heights generally deplete (create kinetic energy in the lower troposphere (upper troposphere–lower stratosphere, in contradiction with the usual decelerating effect attributed to gravity waves on the zonal circulation in the upper troposphere–lower stratosphere.

  13. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Science.gov (United States)

    Spargo, Andrew J.; Reid, Iain M.; MacKinnon, Andrew D.; Holdsworth, David A.

    2017-06-01

    Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.

  14. Physical mechanism of centrifugal-gravity wave resonant instability in azimuthally symmetric swirling flows

    Science.gov (United States)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2017-10-01

    We present an explicit analysis of wave-resonant instability of swirling flows inside fast rotating cylindrical containers. The linear dynamics are decomposed into the interaction between the horizontal inner centrifugal edge waves and the outer vertical gravity waves with the aim of understanding the dynamics of the centrifugal waves. We show how the far field velocity induced respectively by the centrifugal and the gravity waves affect each other's propagation rates and amplitude growth. We follow this with an analysis of the instability in terms of a four-wave interaction, two centrifugal and two gravity ones, and explain why the resonant instability can be obtained only between a pair of two counterpropagating waves, one centrifugal and one gravity. Furthermore, a near resonant regime which does not yield instability is shown to result from a phase-locking configuration between a pair of a counterpropagating centrifugal wave and a propropagating gravity one, where the interaction affects the waves' propagation rates but not the amplitude growth.

  15. Seasonal and interannual variability of mesospheric gravity wave activity at high and mid-latitudes

    Science.gov (United States)

    Hoffmann, Peter; Singer, Werner; Becker, Erich; Latteck, Ralph; Keuer, Dieter

    The seasonal variation and interannual variability of the gravity wave activity in the mesosphere/lower thermosphere (MLT) region at high and mid-latitudes is investigated. Variations of the gravity wave activity are examined in relation to the filtering processes due to the changes of the background winds, tides and planetary waves. Our studies are basing on wind measurements from meteor and MF radars at Andenes (69° N, 16° E) and Juliusruh (55° N, 13° E). These measurements are supplemented by mesospheric temperatures derived from meteor decay times. Additionally, turbulent energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the influence of the solar activity on the gravity wave activity during the summer months when the mesospheric winds show the strongest correlation with the solar activity. Possible dependencies between the occurrence rates of polar mesospheric summer echoes (PMSE) and the gravity wave activity are discussed. Furthermore, the activity of gravity waves and their dissipation are investigated in winter in relation with wind changes during sudden stratospheric warming (SSW) events. The summer/ winter behavior of the gravity wave activity will be compared to simulations with the simple general circulation model KMCM (K¨hlungsborn Mechanistic u Circulation Model) that extends up to 100 km. In all cases, the percentage rates of the kinetic energy of defined period ranges in relation to the total variances of the horizontal wind fluctuations are estimated.

  16. Deriving daily and seasonal variations in meteorological gravity wave parameters from a tropical infrasound station and comparisons with lightning strike data form ATDnet and TRMM LIS.

    Science.gov (United States)

    Marlton, Graeme; Charlton-Perez, Andrew; Harrison, Giles

    2017-04-01

    A wealth of work has shown that meteorological gravity wave parameters can be derived from both satellite data and weather balloons. Satellite data has good temporal and spatial coverage but can only probe the lower stratosphere and mesosphere. Radiosonde wind and temperature profiles can also be used to infer gravity wave information in the upper troposphere and lower stratosphere. Both methods have been used to investigate seasonal variations in gravity wave parameters at these heights. However, these methods cannot be used to infer gravity wave parameters near the surface. One method to detect atmospheric gravity waves at the surface is by using an infrasound array. Infrasound arrays consist of several microbarometers which are spaced kilometres apart. As the wave passes over the array subtle pressure perturbations are subsequently detected at each microbarometer. The temporal differences in each microbarometer's time series allow a gravity wave's velocity, back azimuth, ground based frequency and amplitude to be calculated using the progressive multichannel correlation method. In order to calculate further meteorological values such as wave number, velocity perturbations and hence find the momentum flux for each gravity wave, data from meteorological station in close proximity to the array need to be combined with the infrasound data, which is explored here. Gravity wave parameters calculated from infra sound data combined with meteorological data over several years will be shown for a station (IS17) in the Ivory Coast. Blanc et al 2010 showed an annual variation in gravity wave back azimuth due to the shifting of thunderstorms associated with the ITCZ. A spectral analysis of all gravity wave parameters has revealed daily and seasonal variations, which are further explored. To further understand the seasonal variations observed data from the Tropical Rainfall Measurement Mission (TRMM) rainfall estimate and TRMM LIS lightning data are used to relate how the

  17. Thermal effect on gravity waves in a compressible liquid layer over a ...

    Indian Academy of Sciences (India)

    This paper deals with the effect of temperature on gravity waves in a compressible liquid layer over a solid half-space. It has been assumed that the liquid layer is under the action of gravity, while the solid half-space is under the influence of initial compressive hydrostatic stress. When the temperature of the half-space is ...

  18. Thermal effect on gravity waves in a compressible liquid layer over a ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. This paper deals with the effect of temperature on gravity waves in a compressible liquid layer over a solid half-space. It has been assumed that the liquid layer is under the action of gravity, while the solid half-space is under the influence of initial compressive hydrostatic stress. When the temperature of the.

  19. Ultra-Low Noise Quad Photoreceiver for Space Based Laser Interferometric Gravity Wave Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravity wave detection using space-based long-baseline laser interferometric sensors imposes stringent noise requirements on the system components, including the...

  20. Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations

    Directory of Open Access Journals (Sweden)

    J. L. Innis

    Full Text Available Zenith-directed Fabry-Perot Spectrometer (FPS and 3-Field Photometer (3FP observations of the λ630 nm emission (~240 km altitude were obtained at Davis station, Antarctica, during the austral winter of 1999. Eleven nights of suitable data were searched for significant periodicities common to vertical winds from the FPS and photo-metric variations from the 3FP. Three wave-like events were found, each of around one or more hours in duration, with periods around 15 minutes, vertical velocity amplitudes near 60 ms–1 , horizontal phase velocities around 300 ms–1 , and horizontal wavelengths from 240 to 400 km. These characteristics appear consistent with polar cap gravity waves seen by other workers, and we conclude this is a likely interpretation of our data. Assuming a source height near 125 km altitude, we determine the approximate source location by calculating back along the wave trajectory using the gravity wave property relating angle of ascent and frequency. The wave sources appear to be in the vicinity of the poleward border of the auroral oval, at magnetic local times up to 5 hours before local magnetic midnight.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides

  1. UA-ICON - A non-hydrostatic global model for studying gravity waves from the troposphere to the thermosphere

    Science.gov (United States)

    Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa

    2017-04-01

    In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378

  2. Second-order Lagrangian description of tri-dimensional gravity wave interactions

    OpenAIRE

    NOUGUIER, Frederic; Chapron, Bertrand; GUERIN, Charles-Antoine

    2015-01-01

    We revisit and supplement the description of gravity waves based on perturbation expansions in Lagrangian coordinates. A general analytical framework is developed to derive a second-order Lagrangian solution to the motion of arbitrary surface gravity wave fields in a compact and vectorial form. The result is shown to be consistent with the classical second-order Eulerian expansion by Longuet-Higgins (J. Fluid Mech., vol. 17, 1963, pp. 459-480) and is used to improve the original derivation by...

  3. Gravitational Wave Polarizations in f (R) Gravity and Scalar-Tensor Theory

    Science.gov (United States)

    Gong, Yungui; Hou, Shaoqi

    2018-01-01

    The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R) gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.

  4. Fundamental problems of modeling the dynamics of internal gravity waves with applications to the Arctic Basin

    CERN Document Server

    Bulatov, Vitaly V

    2012-01-01

    In this paper, we consider fundamental problems of the dynamics of internal gravity waves. We present analytical and numerical algorithms for calculating the wave fields for a set of values of the parameters, as observed in the ocean. We show that our mathematical models can describe the wave dynamics of the Arctic Basin, taking into account the actual physical characteristics of sea water, topography of its floor, etc. The numerical and analytical results show that the internal gravity waves have a significant effect on underwater sea objects in the Arctic Basin.

  5. A Numerical Investigation on Tidal and Gravity Wave Contributions to the Summer Time Na Variations in the Midlatitude E Region

    Science.gov (United States)

    Cai, Xuguang; Yuan, Tao; Eccles, J. Vincent

    2017-10-01

    The Na density variations in the E region have been studied over the past few decades. Although considerable progress in understanding and in modeling the metal layer observations has been made, Na density features above 100 km have yet to be explained. Various studies have linked them to the Na+ variations, a major reservoir for Na in E region. But the lack of comprehensive modeling investigations and of wind and temperature observations prevents further understanding on this important ion-neutral coupling topic. In this study, we conduct a numerical simulation on the summer time Na density behavior in the midlatitude E region, where both the ion density and the neutral atmosphere are modulated by tidal and gravity waves. Simulation results show good agreement with Na lidar measurements and reveal that atmospheric waves can transport Na upward to generate Na layers and variations in E region considerably. The vertical wind component of the large amplitude tidal wave can extend the Na layer above 120 km into the thermosphere. The simulation also demonstrates that the modulation of large amplitude gravity (GW) wave can generate small-scale sporadic Na layers (Nas) in the E region. Finally, eddy diffusion enhancement in the GW saturation process can significantly alter the Nas spatial and temporal structures.

  6. Frequency variations of gravity waves interacting with a time-varying tide

    Directory of Open Access Journals (Sweden)

    C. M. Huang

    2013-10-01

    Full Text Available Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs in a time-varying tide. Our simulations show that when a GW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative accelerations induce frequency increases (decreases with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal–GW interactions are more complicated than usually taken into account by GW parameterizations in global models.

  7. Frequency variations of gravity waves interacting with a time-varying tide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.M.; Zhang, S.D.; Yi, F.; Huang, K.M.; Gan, Q.; Gong, Y. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan, Hubei (China); Zhang, Y.H. [Nanjing Univ. of Information Science and Technology (China). College of Hydrometeorolgy

    2013-11-01

    Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when aGW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal-GW interactions are more complicated than usually taken into account by GW parameterizations in global models.

  8. Use of the oblique ionospheric sounding data for detection internal gravity waves in bottom thermosphere

    Science.gov (United States)

    Bochkarev, V.; Petrova, I.; Teplov, V.

    The opportunity of use of the oblique ionospheric sounding data for study Internal Gravity Waves at heights of 80-150 kms is discussed in this report. The moving of electronic concentration inhomogeneities caused by passage of Internal Gravity Waves, is resulted in variations of radiowave parameters, such as angle of arrival, phase and Doppler shift of frequency. It is necessary to distinguish variations caused to passages of Internal Gravity Waves from variations caused by other reasons (interference of modes, turbulent scattering etc.). For this purpose the modelling estimations and information on properties of Internal Gravity Waves are used. The period of Internal Gravity Waves depends on Brant- Vaisala's frequency, which is determined by size of a density gradient , and angle between a vector of phase speed and vertical line. The Brant-Vaisala's frequency changes a little (and slowly), therefore angle of a wave vector with a vertical line can be estimated on the period of these variations. Inhomo geneities, which are oriented along a radio beam, do not cause changes of vertical arrival angle. Inhomogeneities, which are oriented across a radio beam, cause fluctuation angle of elevation and horizontal angle. Thus, the amplitudes and phases of Doppler shift variations of frequency and angle of arrival allow to define a direction of propagation of Internal Gravity Waves . The oblique ionospheric sounding experiment in a short-wave region was carried out in the autumn of 2001. The monitoring was carried out by a passive 4-channel complex for measurements of corners and phases with small base. As a result of processing measurements the periodic variations of parameters of an oblique sounding signal which can be interpreted as caused by propagation of Internal Gravity Waves.

  9. Logarithmic AdS waves and Zwei-Dreibein gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Goya, Andres F.; Merbis, Wout; Rosseel, Jan

    2014-01-01

    We show that the parameter space of Zwei-Dreibein Gravity (ZDG) in AdS(3) exhibits critical points, where massive graviton modes coincide with pure gauge modes and new 'logarithmic' modes appear, similar to what happens in New Massive Gravity. The existence of critical points is shown both at the

  10. Analysis of gravity wave propagation and properties, comparison between WRF model simulations and LIDAR data in Southern France

    Science.gov (United States)

    Costantino, Lorenzo; Heinrich, Philippe

    2014-05-01

    Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the

  11. On weakly singular and fully nonlinear travelling shallow capillary–gravity waves in the critical regime

    Energy Technology Data Exchange (ETDEWEB)

    Mitsotakis, Dimitrios, E-mail: dmitsot@gmail.com [Victoria University of Wellington, School of Mathematics, Statistics and Operations Research, PO Box 600, Wellington 6140 (New Zealand); Dutykh, Denys, E-mail: Denys.Dutykh@univ-savoie.fr [LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc, Campus Scientifique, F-73376 Le Bourget-du-Lac Cedex (France); Assylbekuly, Aydar, E-mail: asylbekuly@mail.ru [Khoja Akhmet Yassawi International Kazakh–Turkish University, Faculty of Natural Science, Department of Mathematics, 161200 Turkestan (Kazakhstan); Zhakebayev, Dauren, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics, Department of Mathematical and Computer Modelling, 050000 Almaty (Kazakhstan)

    2017-05-25

    In this Letter we consider long capillary–gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott–Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well. - Highlights: • A model for long capillary–gravity weakly dispersive and fully nonlinear water waves is derived. • Shallow capillary–gravity waves are classified using phase plane analysis. • Peaked travelling waves are found in the critical regime. • The dynamics of peakons in Serre–Green–Naghdi equations is studied numerically.

  12. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    Full Text Available MaCWAVE (Mountain and Convective Waves Ascending VErtically was a highly coordinated rocket, ground-based, and satellite program designed to address gravity wave forcing of the mesosphere and lower thermosphere (MLT. The MaCWAVE program was conducted at the Norwegian Andøya Rocket Range (ARR, 69.3° N in July 2002, and continued at the Swedish Rocket Range (Esrange, 67.9° N during January 2003. Correlative instrumentation included the ALOMAR MF and MST radars and RMR and Na lidars, Esrange MST and meteor radars and RMR lidar, radiosondes, and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite measurements of thermal structures. The data have been used to define both the mean fields and the wave field structures and turbulence generation leading to forcing of the large-scale flow. In summer, launch sequences coupled with ground-based measurements at ARR addressed the forcing of the summer mesopause environment by anticipated convective and shear generated gravity waves. These motions were measured with two 12-h rocket sequences, each involving one Terrier-Orion payload accompanied by a mix of MET rockets, all at ARR in Norway. The MET rockets were used to define the temperature and wind structure of the stratosphere and mesosphere. The Terrier-Orions were designed to measure small-scale plasma fluctuations and turbulence that might be induced by wave breaking in the mesosphere. For the summer series, three European MIDAS (Middle Atmosphere Dynamics and Structure rockets were also launched from ARR in coordination with the MaCWAVE payloads. These were designed to measure plasma and neutral turbulence within the MLT. The summer program exhibited a number of indications of significant departures of the mean wind and temperature structures from ``normal" polar summer conditions, including an unusually warm mesopause and a slowing of the formation of polar mesospheric summer echoes (PMSE and noctilucent clouds (NLC. This

  13. Inferring the depth of the atmospheric flows on Jupiter from the Juno gravity measurements

    Science.gov (United States)

    Kaspi, Yohai; Galanti, Eli; Hubbard, William B.; Stevenson, David J.; Iess, Luciano; Guillot, Tristan; Bloxham, Jeremy; Cao, Hao; Durante, Daniele; Folkner, William; Helled, Ravit; Ingersoll, Andrew P.; Lunine, Jonathan I.; Miguel, Yamila; Militzer, Burkhard; Parisi, Marzia; Wahl, Sean; Connerney, John E. P.; Levin, Steven; Bolton, Scott J.

    2017-10-01

    For the past year the Juno spacecraft has been in orbit around Jupiter, performing close flybys of the planet and measuring the gravity field to very high precision. These gravity measurements can be used to infer the depth of Jupiter's observed cloud-level winds, and decipher the possible internal flows within the planet. In light of the first few Juno orbits we discuss the gravity measurements and present initial results for the depth and vertical structure of the atmospheric flows of Jupiter. Particularly we focus on the odd gravity harmonics, which reflect asymmetries between the northern and southern hemispheres and therefore are a pure signature of the dynamics with no contribution from the static planet. In order to invert the gravity measurements into flow fields we use an adjoint based inverse model at several levels of complexity for the vertical and meridional structure. As the accuracy of the gravity measurement has improved by two orders of magnitude compared to pre-Juno knowledge, the effective uncertainty for the static even harmonics now comes from the contribution of the flow field to the gravity spectrum. We show how this narrows the range of possible interior structure models and the implications for the core mass. Implications regarding the physics governing the atmospheric and internal flows on Jupiter are discussed.

  14. Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images

    Directory of Open Access Journals (Sweden)

    P. Rong

    2018-01-01

    Full Text Available We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs. Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM Cloud Imaging and Particle Size (CIPS instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of  ∼ 20–60 km are the focus of the study. It shows that the albedo (wave power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent  =  −3.2 and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of −2.9 and −2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  15. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies

    Science.gov (United States)

    Savage, Anna C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Buijsman, Maarten C.; Thomas Farrar, J.; Sharma, Hari; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-03-01

    High horizontal-resolution (1/12.5° and 1/25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1.05 and 0.43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0.15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency "noise" that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.

  16. Satellite Detection of Orographic Gravity-wave Activity in the Winter Subtropical Stratosphere over Australia and Africa

    Science.gov (United States)

    Eckermann, S. D.; Wu, D. L.

    2012-01-01

    Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.

  17. Observations and Modeling of Plasma Waves in the Solar Atmosphere

    Science.gov (United States)

    Liu, W.; Ofman, L.; Downs, C.

    2016-12-01

    The solar atmosphere, especially the extended corona, provides rich observations of magnetohydrodynamic (MHD) waves and plasma waves in general. Such waves can be used as seismological tools to probe the physical conditions of the medium in which they travel, such as the coronal magnetic field and plasma parameters. Recent high-resolution imaging and spectroscopic observations in extreme ultraviolet (EUV) by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and in UV by the Interface Region Imaging Spectrograph (IRIS) have opened a new chapter in understanding these waves and in utilizing them for coronal seismology. We will review such new observations of two intimately related phenomena - global EUV waves (so-called "EIT waves") associated with coronal mass ejections (CMEs) and quasi-periodic, fast-mode magnetosonic wave trains associated with flares. We will focus on the generation and propagation of global EUV waves and their interaction with coronal structures, as well as the correlation of AIA-detected fast-mode wave trains with flare pulsations seen from radio to hard X-ray wavelengths. We will also present recent MHD modeling efforts in reproducing these waves using realistic, observationally-driven simulations. We will discuss the roles of such waves in energy transport within the solar atmosphere and in their associated CME/flare eruptions.

  18. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    Full Text Available MaCWAVE (Mountain and Convective Waves Ascending VErtically was a highly coordinated rocket, ground-based, and satellite program designed to address gravity wave forcing of the mesosphere and lower thermosphere (MLT. The MaCWAVE program was conducted at the Norwegian Andøya Rocket Range (ARR, 69.3° N in July 2002, and continued at the Swedish Rocket Range (Esrange, 67.9° N during January 2003. Correlative instrumentation included the ALOMAR MF and MST radars and RMR and Na lidars, Esrange MST and meteor radars and RMR lidar, radiosondes, and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite measurements of thermal structures. The data have been used to define both the mean fields and the wave field structures and turbulence generation leading to forcing of the large-scale flow. In summer, launch sequences coupled with ground-based measurements at ARR addressed the forcing of the summer mesopause environment by anticipated convective and shear generated gravity waves. These motions were measured with two 12-h rocket sequences, each involving one Terrier-Orion payload accompanied by a mix of MET rockets, all at ARR in Norway. The MET rockets were used to define the temperature and wind structure of the stratosphere and mesosphere. The Terrier-Orions were designed to measure small-scale plasma fluctuations and turbulence that might be induced by wave breaking in the mesosphere. For the summer series, three European MIDAS (Middle Atmosphere Dynamics and Structure rockets were also launched from ARR in coordination with the MaCWAVE payloads. These were designed to measure plasma and neutral turbulence within the MLT. The summer program exhibited a number of indications of significant departures of the mean wind and temperature structures from ``normal" polar summer conditions, including an unusually warm mesopause and

  19. Atom Interferometry for detection of Gravity Waves-a Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atom interferometers are more sensitive to inertial effects. This is because atoms in their inertial frame are ideal test masses for detection of gravity effects...

  20. Atmospheric CO2 supersaturation in the Martian polar nights: Role of large-scale atmospheric waves

    Science.gov (United States)

    Noguchi, K.; Kuroda, T.; Tellmann, S.; Pätzold, M.

    2017-09-01

    This study aims at investigating the role of large-scale atmospheric waves (stationary waves and transient waves) on CO2 supersaturation at northern winter high latitudes on Mars. A distinct longitudinal dependence of CO2 supersaturation was observed at high altitude levels (around 100 Pa), where a wavenumber 2 stationary wave lowered the background temperature. However, the stationary wave alone was not sufficient to cause CO2 supersaturation. We found that additional temperature disturbances caused by transient waves, namely, superposition of both waves, had a significant role in CO2 supersaturation.

  1. A solution of nonlinear equation for the gravity wave spectra from Adomian decomposition method: a first approach

    Directory of Open Access Journals (Sweden)

    Antonio Gledson Goulart

    2013-12-01

    Full Text Available In this paper, the equation for the gravity wave spectra in mean atmosphere is analytically solved without linearization by the Adomian decomposition method. As a consequence, the nonlinear nature of problem is preserved and the errors found in the results are only due to the parameterization. The results, with the parameterization applied in the simulations, indicate that the linear solution of the equation is a good approximation only for heights shorter than ten kilometers, because the linearization the equation leads to a solution that does not correctly describe the kinetic energy spectra.

  2. Analytical Solution for Waves in Planets with Atmospheric Superrotation. II. Lamb, Surface, and Centrifugal Waves

    Science.gov (United States)

    Peralta, J.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.; López-Valverde, M. A.

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  3. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  4. View-Angle Dependent AIRS Cloud Radiances: Implication for Tropical Gravity Waves and Anvil Structures

    Science.gov (United States)

    Wu, Dong L.; Gong, Jie

    2011-01-01

    Tropical anvil clouds play important roles in redistributing energy, water in the troposphere. Interacting with dynamics at a wide range of spatial and temporal scales, they can become organized internally and form structured cells, transporting momentum vertically and laterally. To quantify small-scale structures inside cirrus and anvils, we study view-dependence of the cloud-induced radiance from Atmospheric Infrared Sounder (AIRS) using channels near CO2 absorption line. The analysis of tropical eight-year (30degS-30degN, 2003-2010) data suggests that AIRS east-views observe 10% more anvil clouds than westviews during day (13:30 LST), whereas east-views and westviews observe equally amount of clouds at midnight (1 :30 LST). For entire tropical averages, AIRS oblique views observe more anvils than the nadir views, while the opposite is true for deep convective clouds. The dominance of cloudiness in the east-view cannot be explained by AIRS sampling and cloud microphysical differences. Tilted and banded anvil structures from convective scale to mesoscale are likely the cause of the observed view-dependent cloudiness, and gravity wave-cloud interaction is a plausible explanation for the observed structures. Effects of the tilted and banded cloud features need to be further evaluated and taken into account potentially in large-scale model parameterizations because of the vertical momentum transport through cloud wave breaking.

  5. On the influence of zonal gravity wave distributions on the Southern Hemisphere winter circulation

    Directory of Open Access Journals (Sweden)

    F. Lilienthal

    2017-07-01

    Full Text Available A mechanistic global circulation model is used to simulate the Southern Hemisphere stratospheric, mesospheric, and lower thermospheric circulation during austral winter. The model includes a gravity wave (GW parameterization that is initiated by prescribed 2-D fields of GW parameters in the troposphere. These are based on observations of GW potential energy calculated using GPS radio occultations and show enhanced GW activity east of the Andes and around the Antarctic. In order to detect the influence of an observation-based and thus realistic 2-D GW distribution on the middle atmosphere circulation, we perform model experiments with zonal mean and 2-D GW initialization, and additionally with and without forcing of stationary planetary waves (SPWs at the lower boundary of the model. As a result, we find additional forcing of SPWs in the stratosphere, a weaker zonal wind jet in the mesosphere, cooling of the mesosphere and warming near the mesopause above the jet. SPW wavenumber 1 (SPW1 amplitudes are generally increased by about 10 % when GWs are introduced being longitudinally dependent. However, at the upper part of the zonal wind jet, SPW1 in zonal wind and GW acceleration are out of phase, which reduces the amplitudes there.

  6. On weakly singular and fully nonlinear travelling shallow capillary-gravity waves in the critical regime

    CERN Document Server

    Mitsotakis, Dimitrios; Assylbekuly, Aydar; Zhakebaev, Dauren

    2016-01-01

    In this Letter we consider long capillary-gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott-Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well.

  7. Nontropospheric excitation of a ring-like gravity wave observed by several instruments operating at Cerro Pachon, Chile.

    Science.gov (United States)

    Vargas, F.; Swenson, G. R.; Liu, A. Z.; Pautet, P. D.

    2016-12-01

    The occurrence of a single ring-like gravity wave event has been observed at the OH and O(1S) nightglow layers. The event is associated with a secondary wave generation source localized at the upper stratosphere-mesosphere altitude range and represents rare case a nontropospheric wave excitation. In this paper we will present data from several instruments that registered the event simultaneously, discuss the secondary wave generation process, and review other nontropospheric gravity wave excitation sources.

  8. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    Science.gov (United States)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  9. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Erin Hoffmann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-30

    In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. The coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.

  10. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2017-10-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  11. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2018-02-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  12. Sensitivity of the Quasi-Biennial Oscillation to different gravity wave parameterizations in a changing climate

    Science.gov (United States)

    Schirber, Sebastian; Manzini, Elisa; Krismer, Thomas

    2014-05-01

    The stratospheric Quasi-Biennial Oscillation (QBO) of equatorial zonal winds is driven to by a wide range of waves originating from the troposphere. Due to the limited spatial resolution of general circulation models (GCM), unresolved waves like gravity waves (GW) need to be parameterized in order that GCMs can simulate the QBO. Only a fraction of GCMs which took part in the climate-model intercomparison project phase 5 (CMIP5) produce a QBO. Under climate change conditions, those models reveal diverging behaviour in various QBO characteristics, most notably the QBO period. While some models show a shortening of the QBO period, others produce a longer period in a future climate. In this work, we address this unconformity in QBO characteristics predicted in climate models by exploring the sensitivity of simulated QBO characteristics to different parameterizations of gravity waves, leaving all remaining influential factors like model resolution and experimental setup untouched. Using the atmospheric GCM ECHAM6 we perform AMIP style simulations of both present and warming climate, by increasing sea surface temperatures (SST) uniformely by 4K, with three different set-ups of GW parameterizations: (1) GWs are treated via the Hines parameterization (HINES) which launches a constant, prescribed spectrum of GWs. (2) A specific source spectrum of GW is prescribed, which the GW propagation scheme after Alexander and Dunkerton (AD) maps to momentum deposition in the regions of GW breaking. (3) A GW spectrum dependent on the background wind and heating characteristics of a convectively active gridcell is coupled to the propagation scheme of Alexander and Dunkerton (BERES+AD). While HINES and AD generate constant wave sources in both present and warmer climate, GW properties in BERES+AD change according to the simulated climatic conditions. All three GW setups are tuned to reproduce QBO characteristics of present day climate, including a QBO period of roughly 28 months. Under

  13. Laboratory observations and numerical simulations of shoaling surface gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Becq, F. [Electricite de France, (France). Maritime Hydraulics Section; Benoit, M. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique; Forget, Ph. [Toulon Univ., 83 - La Garde (France)

    1997-09-01

    An investigation is presented of some of the processes affecting shoaling waves in shallow water, with particular attention paid to the non-linear interactions between triplets of waves (triad interactions) and depth-induced breaking. Four mono-dimensional non-linear wave models (two phase-resolving and two phase-averaged spectral models) have been implemented and compared to laboratory experiments performed in a wave flume of the National Hydraulics Laboratory (NHL). Tests were realised in breaking and non-breaking wave conditions. The non-linear mechanisms associated with the models are found to satisfactorily reproduce, both qualitatively and quantitatively, the wave spectra evolution along the bathymetric profile. The non-linear coupling effects are characterised by strong energy transfers between the interacting components of the wave field, and for some test-cases, by an important decay of wave energy. (author) 16 refs.

  14. Cutoff frequencies for Alfven waves in the solar atmosphere

    Science.gov (United States)

    Perera, B. L. Harsha Kalpanie

    Propagation of linear Alfven waves in the isothermal and non-isothermal solar atmosphere is investigated numerically and analytically. It is shown that the two wave variables, the velocity and magnetic field perturbations, behave differently and that there is a range of wave frequencies for which the wave behavior changes from propagating to non-propagating. The so-called transition and turning points corresponding to this change are determined analytically, and their locations in the atmosphere are calculated and verified against the numerical results. The transition and turning points are then used to introduce cutoff frequencies, which are different for different wave variables. The main result is that there isn't a unique cutoff frequency for Alfven waves. Instead, a number of cutoff frequencies can be introduced depending upon the method used to define them, as well as on the choice of the wave variable used to describe the waves. Relevance of the obtained results to recent observations of Alfven waves in the solar atmosphere is also discussed. A concept of global cutoff frequencies is also introduced by using Leighton's, Hille's and Kneser's oscillation theorems, as well as the Sturm comparison theorems. The oscillation theorems have been applied to bounded and unbounded Alfven wave equations for both the velocity and magnetic field wave variables. The obtained results demonstrated that the global cutoff frequency and the local cutoff frequency are two different physical concepts. Furthermore, the latter exists if and only if the wave frequency is greater than the former. These analytical results have been verified using numerical solutions of the linear Alfven wave equations. The original ideal MHD equations were modified by taking into account the displacement current, and several oscillations theorems were applied to the resulting wave equations. As expected, only oscillatory solutions were found. The results presented in this PhD dissertation give strong

  15. Coupling Atmosphere and Waves for Coastal Wind Turbine Design

    DEFF Research Database (Denmark)

    Bolanos, Rodolfo; Larsén, Xiaoli Guo; Petersen, Ole S.

    2014-01-01

    Offshore wind farms in coastal areas are considered by the Danish government to contribute to the goal of having 50% of the energy consumption from renewable sources by 2025. Therefore, new coastal developments will take place in Danish areas. The impact of waves on atmosphere is most often......, but new roughness formulations have been proposed to better estimate wave-wind interactions according to observations. In the present work, an assessment of several roughness descriptions is performed, and implications for coastal wind and wave modelling are studied. An atmospheric (WRF) and spectral wave...... more realistic values. However, at a coastal site, both estimates were within the same range. The impact of roughness on the wave model is discussed in terms of an idealized case for fetch-limited wave growth....

  16. Tomographic retrieval approach for mesoscale gravity wave observations by the PREMIER Infrared Limb-Sounder

    Directory of Open Access Journals (Sweden)

    J. Ungermann

    2010-03-01

    Full Text Available PREMIER is one of three candidates for ESA's 7th Earth Explorer mission that are currently undergoing feasibility studies. The main mission objective of PREMIER is to quantify processes controlling atmospheric composition in the mid/upper troposphere and lower stratosphere, a region of particular importance for climate change. To achieve this objective, PREMIER will employ the first satellite Fourier transform infrared limb-imager with a 2-D detector array combined with a millimetre-wave limb-sounder. The infrared limb-imager can be operated in a high spatial resolution mode ("dynamics mode" for observations of small-scale structures in atmospheric temperatures and trace gas fields with unprecedented 3-D sampling (0.5 km in the vertical direction, 50 km along track, 25 km across track. In this paper, a fast tomographic retrieval scheme is presented, which is designed to fully exploit the high-resolution radiance observations of the dynamics mode. Based on a detailed analysis of the "observational filter", we show that the dynamics mode provides unique information on global distributions of gravity waves (GW. The achievable vertical resolution for GW observations has values between the vertical sampling (0.5 km of the dynamics mode and the vertical field of view (about 0.75 km. The horizontal across track resolution corresponds to the horizontal across track sampling of 25 km. Since the achievable along track horizontal resolution is about 70 km, the dynamics mode will provide GW limb-observations with a horizontal resolution comparable to nadir sounders. Compared to previous observations, PREMIER will therefore considerably extend the range of detectable GWs in terms of horizontal and vertical wavelength.

  17. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, Michael J. [Monash University; Lane, Todd P. [University of Melbourne; Hankinson, Mai Chi Nguyen [Monash University

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  18. Internal gravity waves in a stratified medium of non-uniform depth

    CERN Document Server

    Bulatov, Vitaly V

    2011-01-01

    The problem of reconstructing non-harmonic internal gravity wave packets generated by a source moving in a stratified ocean is considered. The uniform asymptotic form of the internal gravity waves field generated by a source moving above the smoothly varying floor is constructed. The solution is proposed in terms of wave modes, propagating independently at the adiabatic approximation, and described as a non-integral degree series of a small parameter characterizing the stratified medium. A specific form of the wave packets, which can be parameterized in terms of model functions (Airy functions), depends on a local behavior of the dispersion curves of individual wave mode. A modified space-time ray method was proposed, which belongs to the class of geometrical optics methods. The key point of the proposed technique is the possibility to derive the asymptotic representation of the solution in terms of a non-integral degree series of the some small parameter.

  19. Estimations of model parameters for gravity wave spectra observed by MST radar

    Science.gov (United States)

    Scheffler, A. O.; Liu, C. H.; Franke, S. J.

    1989-01-01

    The general theory of MST radar observations of gravity wave spectra is developed. This effort extends the previous results to include anisotropy and Doppler effects for the spectra, as well as the consequences for the multibeam configuration. The relationships between the observed one- or two-dimensional spectra for the line-of-sight velocity in the gravity wave spectra are derived. Expressions for cross spectra, as well as covariances between velocities observed on different beams, are computed. Using these results, studies are carried out to show how model parameters for gravity wave spectra can be estimated from the observed quantities. Model parameters include the variance, power law indices, anisotropy parameters, Doppler parameters, mean scale sizes, etc. Cases with different numbers of beams are investigated.

  20. Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow

    Directory of Open Access Journals (Sweden)

    D. B. Simkhada

    2009-08-01

    Full Text Available Short-period gravity waves of especially-small horizontal scale have been observed in the Maui, Hawaii airglow. Typical small-scale gravity wave events have been investigated, and intrinsic wave propagation characteristics have been calculated from simultaneous meteor radar wind measurements. Here we report specific cases where wave structure is significantly determined by the local wind structure, and where wave characteristics are consistent with ducted or evanescent waves throughout the mesopause region. Two of the documented events, exhibiting similar airglow signatures but dramatically different propagation conditions, are selected for simple numerical modeling case studies. First, a Doppler-ducted wave trapped within relatively weak wind flow is examined. Model results confirm that the wave is propagating in the 85–95 km region, trapped weakly by evanescence above and below. Second, an evanescent wave in strong wind flow is examined. Model results suggest an opposite case from the first case study, where the wave is instead trapped above or below the mesopause region, with strong evanescence arising in the 85–95 km airglow region. Distinct differences between the characteristics of these visibly-similar wave events demonstrate the need for simultaneous observations of mesopause winds to properly assess local propagation conditions.

  1. Gravity wave effects on the occurrence and brightness of Polar Mesospheric Clouds

    Science.gov (United States)

    Chandran, Amal

    This dissertation is concerned with characterizing the effects of Atmospheric Gravity Waves (AGWs) on Polar Mesospheric Cloud (PMC) occurrence and brightness. In this study, PMC images from the Cloud Imaging and Particle Size (CIPS) experiment, which is one of the three instruments on board the NASA Aeronomy of Ice in the Mesosphere (AIM) spacecraft is used. AIM was launched into a 600 km sun-synchronous orbit on April 25, 2007. CIPS is a four camera, ultraviolet imager designed to measure PMC morphology and particle properties. CIPS images have shown distinct wave patterns and structures in Polar Mesospheric Clouds (PMC), around the summertime mesopause region, which are qualitatively similar to structures seen in Noctilucent Clouds (NLC) from ground-based photographs. The structures in PMC are generally considered to be manifestations of upward propagating AGWs. Variability of AGW effects on PMC reported at several lidar sites has led to the notion of longitudinal differences in this relationship. This study compares the longitudinal variability in the CIPS observed wave occurrence frequency with CIPS measured PMC occurrence frequency and albedo along with mesospheric temperatures measured by the SABER instrument on board the TIMED spacecraft. In this dissertation, AGW structures were first identified in PMCs. An automated wave detection technique was developed for this purpose. The global longitudinal variability in AGW occurrences was determined and correlated with the observed longitudinal variability in PMC occurrences and longitudinal variations in temperature structures from the SABER instrument. From these studies it is apparent that the longitudinal variability in PMC wave structures is anti-correlated with the PMC occurrence variability, while deviations in SABER temperatures from mean temperatures at 83 km is correlated with GW occurrences. Hence GW occurrence variability appears to be a driving mechanism for the variability in PMC occurrences. In the

  2. Global estimates of gravity wave parameters from GPS radio occultation temperature data

    Science.gov (United States)

    Wang, L.; Alexander, M. J.

    2010-11-01

    Gravity waves (GWs) play critical roles in the global circulation and the temperature and constituent structures in the middle atmosphere. They also play significant roles in the dynamics and transport and mixing processes in the upper troposphere and lower stratosphere and can affect tropospheric weather. Despite significant advances in our understanding of GWS and their effects in different regions of the atmosphere in the past few decades, observational constraints on GW parameters including momentum flux and propagation direction are still sorely lacking. Global Positioning System (GPS) radio occultation (RO) technique provides global, all-weather, high vertical resolution temperature profiles in the stratosphere and troposphere. The unprecedentedly large number of combined temperature soundings from the Constellation Observing System for Meteorology, Ionosphere, and Climate and Challenging Minisatellite Payload GPS RO missions allows us to obtain GW perturbations by removing the gravest zonal modes using the wavelet method for each day. We extended the GW analysis method of Alexander et al. (2008) to three dimensions to estimate the complete set of GW parameters (including momentum flux and horizontal propagation direction) from the GW temperature perturbations thus derived. To demonstrate the effectiveness of the analysis, we showed global estimates of GW temperature amplitudes, vertical and horizontal wavelengths, intrinsic frequency, and vertical flux of horizontal momentum in the altitude range of 17.5-22.5 km during December 2006 to February 2007. Consistent with many previous studies, GW temperature amplitudes are a maximum in the tropics and are generally larger over land, likely reflecting convection and topography as main GW sources. GW vertical wavelengths are a minimum at equator, likely due to wave refraction, whereas GW horizontal wavelengths are generally longer in the tropics. Most of the waves captured in the analysis of the GPS data are low

  3. Characteristics of cyclone generated gravity waves observed using assimilated WRF model simulations over Bay of Bengal

    Science.gov (United States)

    Hima Bindu, H.; Venkat Ratnam, M.; Yesubabu, V.; Narayana Rao, T.; Kesarkar, Amit; Naidu, C. V.

    2016-11-01

    Characteristics of gravity waves (GWs) generated due to tropical cyclone (TC) Phailin (2013) that occurred over Bay of Bengal are investigated using the Weather Research and Forecast (WRF) model simulations from its depression stage to weakening stage (10-14 October 2013). Two types of numerical experiments are conducted with and without assimilating conventional and satellite observations using the 3-Dimentional Variational (3DVAR) technique. The results show that the experiment without assimilating any observations (control) has produced a large difference in terms of track and intensity with observed best track estimates of IMD. Similar features are noticed also in winds, reflectivity and independent GPS Radio Occultation (temperature) and radiosonde (temperature and winds) profiles. The experiment with assimilation significantly reduced the observed differences in all the above mentioned parameters. A close match of the assimilated outputs with observations prompted us to use it to identify the TC generated GW characteristics. GW perturbation components are extracted from the three day mean (4-7 October 2013) calm background atmosphere prior to the formation of depression. When compared to the control run, assimilated outputs show a clear increase in all the gravity wave parameters except the amplitudes where control run wave amplitudes are found to be stronger than the assimilated outputs. Fast Fourier transform (FFT) analysis in the time domain revealed dominance of GWs with periods of 2-4 h. Band pass filtered vertical velocity perturbations for these periods showed clear downward phase propagation (0.05-0.07 ms- 1) in the upper troposphere and lower stratosphere (UTLS) at different latitude/longitude positions away from the centre of the TC revealing an upward energy propagation of generated GWs. Interestingly, an increase in GW activity during the landfall of the TC is found. FFT in the vertical domain revealed vertical wavelengths ranging from 3 to 8 km

  4. What GRACE/GRACE-FO satellite gravity may tell about the atmosphere (and what not)

    Science.gov (United States)

    Eicker, Annette; Springer, Anne; Hense, Andreas; Panet, Isabelle; Kusche, Jürgen

    2017-04-01

    In this presentation we would like to discuss the present benefit and future potential of satellite gravity observations, as obtained from the satellite mission GRACE and its successor GRACE-Follow-On (GRACE-FO), for studying the atmospheric water cycle. In the first part of the presentation, we will show recent results of using GRACE to constrain atmospheric water budgets. GRACE-derived water storage changes (in combination with observed runoff) can be used to solve for the vertical water flux deficit of precipitation (P) minus evapotranspiration (E), which links the terrestrial and the atmospheric water balance equations. This relates gravity change to moisture flux divergence and water vapor change and thus provides, in principle, a link between GRACE/GRACE-FO and (area-averaged) GNSS integrated water vapor observations that may be exploited in the future. We will show that such an independent estimate of P minus E can be used to constrain land-atmosphere fluxes from monthly time scales to decadal trends and even provides meaningful flux information down to daily time steps. In the second part of the presentation, we would like to give an outlook towards the potential of using satellite gravity data directly for the estimation of atmospheric water mass changes. On the basis of ERA-Interim data, we provide a first assessment which suggests that an anticipated future double-pair gravity mission with enhanced temporal and spatial resolution would be sensitive to 'feeling' atmospheric water mass (water vapor) variations. However, whether these (faster) variations could be separated from dry air mass variations through modeling needs to be investigated. If possible, this would offer a completely new tool for validating atmospheric analyses and for improving engergy and mass budgets in models.

  5. Manipulating Effective Gravity and Trapping Shallow Water Waves

    Science.gov (United States)

    Zareei, Ahmad; Alam, Mohammad-Reza

    2017-11-01

    A perfect manipulation of water waves in shallow water using transformation media methods usually requires changes in both water depth and gravitational acceleration as medium properties; however gravitational acceleration is always a physical constant. Reduced models and conformal transformations are used to keep the gravitational acceleration as a constant at the cost of performance and restriction of use. Here we present a novel method of changing effective gravitational acceleration using a visco-elastic bottom topography. This method of manipulating effective gravitational acceleration, beside changes in bottom topography, opens new applications toward controlling surface waves and enables perfect manipulation of water waves in a broad range of frequencies. Using the visco-elastic bottom topography, we present a GRIN-lens based wave-guide that traps water waves in a region along the axis of the lens. The presented method of manipulating effective gravitational acceleration can as well be applied to perfectly focus and rotate the waves for energy harvesting applications.

  6. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... and coastal conditions, z0 parameterization method often fails in reproducing z0 because the complexity of the sea state cannot be represented by a few selected wave parameters. Different from the parameterization method, physics-based methods take the idea that the loss of momentum and kinetic energy from...... the above mentioned challenges, a wave boundary layer model (WBLM) is implemented in the wave model SWAN as a new Sin. The WBLM Sin is based on the momentum and kinetic energy conservation. The wave-induced mean wind profile changes at all vertical levels within the wave boundary layer, and the spectral...

  7. Hamiltonian discontinuous Galerkin FEM for linear, stratified (in)compressible Euler equations: internal gravity waves

    Science.gov (United States)

    van Oers, Alexander M.; Maas, Leo R. M.; Bokhove, Onno

    2017-02-01

    The linear equations governing internal gravity waves in a stratified ideal fluid possess a Hamiltonian structure. A discontinuous Galerkin finite element method has been developed in which this Hamiltonian structure is discretized, resulting in conservation of discrete analogs of phase space and energy. This required (i) the discretization of the Hamiltonian structure using alternating flux functions and symplectic time integration, (ii) the discretization of a divergence-free velocity field using Dirac's theory of constraints and (iii) the handling of large-scale computational demands due to the 3-dimensional nature of internal gravity waves and, in confined, symmetry-breaking fluid domains, possibly its narrow zones of attraction.

  8. Scattering of coherent sound waves by atmospheric turbulence

    Science.gov (United States)

    Chow, P. L.; Liu, C. H.; Maestrello, L.

    1975-01-01

    An analytical study of the propagation of coherent sound waves through an atmosphere containing both mean and fluctuating flow variables is presented. The general flow problem is formulated as a time-dependent wave propagation in a half-space containing the turbulent medium. The coherent acoustic waves are analyzed by a smoothing technique, assuming that mean flow variables vary with the height only. The general equations for the coherent waves are derived, and then applied to two special cases, corresponding to uniform and shear mean flow, respectively. The results show that mean shear and turbulence introduce pronounced effects on the propagation of coherent acoustic disturbances.

  9. Surface Gravity Waves: Resonance in a Fish Tank

    Science.gov (United States)

    Sinick, Scott J.; Lynch, John J.

    2010-01-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…

  10. On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current

    Directory of Open Access Journals (Sweden)

    Dali Guo

    2014-01-01

    Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.

  11. A formulation of three-dimensional residual mean flow and wave activity flux applicable to both to Rossby waves and gravity waves

    Science.gov (United States)

    Kinoshita, T.; Sato, K.

    2012-12-01

    The Transformed Eulerian-Mean (TEM) equations formulated by Andrews and McIntyre (1976, 1978) has been widely used to examine wave-mean flow interaction in the meridional cross section. Although a lot of efforts have been made to generalize the TEM equations to three dimensions so far, formulae derived by previous studies are applicable to particular waves, mainly Rossby waves on the quasi-geostrophic (QG) equations or inertia-gravity waves on the primitive equations. This study has newly formulated three-dimensional (3D) TEM equations which are applicable to both Rossby waves and gravity waves. The formulae can be used to examine the 3D material transport driven by these waves. Moreover, two kinds of 3D wave activity flux have been derived respectively for describing the wave force to the mean flow and for the wave propagation. The residual mean flow is expressed with the sum of the Eulerian-mean flow and the Stokes drift in the 2D TEM equations. Thus, a formulation is made for the 3D Stokes drift on the primitive equation (PRSD) from its original definition using a small amplitude theory for a slowly-varying mean flow. The PRSD is equivalent to the 3D Stokes drift derived by Kinoshita et al. (2010) for gravity waves for the constant Coriolis parameter and to the 3D QG Stokes drift which is also derived in this study for the small Rossby number limit. The 3D wave activity flux (3D-flux-M), whose divergence corresponds to the wave force, is derived by using PRSD. The 3D residual mean flow associated with synoptic-scale wave disturbances in the upper troposphere in April is investigated by applying the new formulae to ERA-Interim data. It is found that the sum of time-mean unbalanced flow and PRSD is southward in the east end of the storm track although it is northward in the west as is consistent with the 2D residual flow. A case study is also made for dominant gravity waves around the Southern Andes by applying the PRSD and 3D-flux-M to the simulation data of a

  12. The instability of counter-propagating kernel gravity waves in a constant shear flow

    CERN Document Server

    Umurhan, O M; Harnik, N; Lott, F

    2007-01-01

    The mechanism describing the recently developed notion of kernel gravity waves (KGWs) is reviewed and such structures are employed to interpret the unstable dynamics of an example stratified plane parallel shear flow. This flow has constant vertical shear, is infinite in the vertical extent, and characterized by two density jumps of equal magnitude each decreasing successively with height, in which the jumps are located symmetrically away from the midplane of the system. We find that for a suitably defined bulk-Richardson number there exists a band of horizontal wavenumbers which exhibits normal-mode instability. The instability mechanism closely parallels the mechanism responsible for the instability seen in the problem of counter-propagating Rossby waves. In this problem the instability arises out of the interaction of counter-propagating gravity waves. We argue that the instability meets the Hayashi-Young criterion for wave instability. We also argue that the instability is the simplest one that can arise ...

  13. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field...Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to

  14. An Experimental Investigation of the Wave Pattern Generated by a Moving Pressure Source: Solitary Capillary-Gravity Waves

    Science.gov (United States)

    Duncan, J. H.; Diorio, J. D.; Lisiewski, A.; Harris, R.

    2009-11-01

    The wave pattern generated by a small pressure source moving across a water surface at speeds less than the minimum phase speed for linear gravity-capillary waves (cmin = 23 cm/s) was investigated experimentally. The resulting wave pattern was measured using cinematic shadowgraph and laser-induced fluorescence (LIF) techniques. The results show the existence of several distinct behavioral states. At low speeds, no wave behavior is observed and the pattern resembles the symmetric stationary condition. However, at a critical speed, but still below cmin, the pattern undergoes a sudden transition to an asymmetric state with a stationary, 2D solitary wave that forms behind the pressure source. This solitary wave is elongated in the cross-stream relative to the stream-wise direction and resembles gravity-capillary ``lumps'' observed in previous numerical calculations. As the translation speed approaches cmin, another time-dependent behavior is observed characterized by periodic ``shedding'' from a V-shaped solitary wave pattern. This work will be discussed in conjunction with the recent numerical calculations of T. Akylas and his research group.

  15. Did Tsunami-Launched Gravity Waves Trigger Ionospheric Turbulence over Arecibo?

    Science.gov (United States)

    Lee, M. C.; Pradipta, R.; Burke, W. J.; Labno, A.; Burton, L. M.; Cohen, J. A.; Dorfman, S. E.; Coster, A. J.; Sulzer, M. P.; Kuo, S. P.

    2008-01-01

    We report on measurements of ionospheric plasma dynamics conducted at the Arecibo Observatory between 20:00 and 24:00 local time (LT) on December 25 and 26, 2004 using the 430 MHz incoherent scatter radar (ISR). For interpretive purposes these measurements are supported by data from two nearby ionosondes and Global Positioning System (GPS) satellites. The ISR detected different ionospheric behaviors during the vertical-transmission periods on the consecutive, magnetically quiet nights. On the night of December 25 the ionosphere descended smoothly and spread F signatures faded. For about two hours on the following evening the bottomside ionosphere rose by ˜50 km, inducing plasma irregularities and intense spread F. Alternating cycles of bottom-side plasma rising and falling persisted through the remainder of the experiments. We postulate that this sinusoidal behavior is a response to gravity waves propagating above Puerto Rico. Nearly simultaneous data from two nearby stations show that GPS signals were modified by variations in total electron content (TEC) indicating the presence of traveling ionospheric disturbances (TIDs). The December 26 experiments were conducted about a day after an MW = 9.2 earthquake launched tsunami waves first across the Indian, then into the Atlantic and Pacific Oceans. We suggest that coupling at the tsunami sea-air interface launched gravity waves that propagated for great distances beneath the mesopause. GPS data recorded TEC variation in Asia, Europe, and the Caribbean, suggesting that TIDs were induced on a global scale at the wake of tsunami-launched gravity waves. Energy from imperfectly ducted gravity waves leaked into the ionosphere, partially over Puerto Rico. The wind-velocity field of these gravity waves caused local ionospheric plasma to rise, seeding bottomside irregularities via the generalized Rayleigh-Taylor instability.

  16. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves.

    Science.gov (United States)

    Hagala, R; Llinares, C; Mota, D F

    2017-03-10

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  17. Nonlinear Gravity-Capillary Waves on a Compressible Viscous Fluid with Edge Constraints.

    Science.gov (United States)

    1983-05-01

    Rc is positive and finite and m 3 < 0 when R > Rc . Then the Surgers equation is ill-posed for R > Rc and we define R < Rc as a criterion for the...8217 block number) Gravity-Capillary waves, compressible viscous fluid, edge constraints, Surgers equation S. LOIST RIACY (Cone Mu. an tgve* side it naava sod

  18. On the time varying horizontal water velocity of single, multiple, and random gravity wave trains

    NARCIS (Netherlands)

    Wells, D.R.

    1964-01-01

    In this dissertation some characteristics of the horizontal water velocity for single, multiple, and random gravity wave trains are studied. This work consists of two parts, an analogue study and hydraulic measurements. An important aspect in this work is to suggest the horizontal water velocity

  19. Hamiltonian discontinuous Galerkin FEM for linear, stratified (in)compressible Euler equations: internal gravity waves

    NARCIS (Netherlands)

    van Oers, A.M.; Maas, L.R.M.; Bokhove, O.

    2017-01-01

    The linear equations governing internal gravity waves in a stratified ideal fluid possess a Hamiltonian structure. A discontinuous Galerkin finite element method has been developed in which this Hamiltonian structure is discretized, resulting in conservation of discrete analogs of phase space and

  20. A Coupled Atmosphere-Ocean-Wave Modeling System

    Science.gov (United States)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  1. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    Science.gov (United States)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  2. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  3. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  4. Toward An Internal Gravity Wave Spectrum In Global Ocean Models

    Science.gov (United States)

    2015-05-14

    inertial waves arising from surface wind forcing [e.g., D’Asaro, 1984; Silverthorne and Toole, 2009; Simmons and Alford, 2012] and by internal tides...10.1029/2012JC008170. Silverthorne , K. E., and J. M. Toole (2009), Seasonal kinetic energy variability of near-inertial motions, J. Phys. Oceanogr., 39

  5. The separated polar winter stratopause - A gravity wave driven climatological feature

    Science.gov (United States)

    Hitchman, Matthew H.; Gille, John C.; Rodgers, Clive D.; Brasseur, Guy

    1989-01-01

    An examination of satellite-derived temperatures reveals that the winter polar stratopause is usually elevated and warmer than the adjacent midlatitude stratopause. This separated stratopause occurs in both hemispheres, but is more pronounced and persistent in the southern winter. It descends with time towards spring and exhibits week-to-week variability. Observational diagnostics and results from a two-dimensional model suggest that gravity-wave driving can account for this separated polar stratopause by driving a meridional circulation, with downwelling over the winter pole. In the model, the solar heating pattern induces stronger winter westerlies than summer easterlies, which leads to a stronger gravity-wave-driven circulation in the winter hemisphere. Spherical geometry and the high latitude location of the winter westerly jet combine to yield a concentrated region of downwelling. Model results suggest that descent of the temperature maximum with time is probably caused by wave/mean-flow interaction.

  6. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong, in northern China

    Directory of Open Access Journals (Sweden)

    Q. Li

    2011-08-01

    Full Text Available An all-sky airglow imager (ASAI was installed at Xinglong, in northern China (40.2° N, 117.4° E in November 2009 to study the morphology of atmospheric gravity waves (AGWs in the mesosphere and lower thermosphere (MLT region. Using one year of OH airglow imager data from December 2009 to November 2010, the characteristics of short-period AGWs are investigated and a yearlong AGW climatology in northern China is first ever reported. AGW occurrence frequency in summer and winter is higher than that in equinoctial months. Observed bands mainly have horizontal wavelengths from 10 to 35 km, observed periods from 4 to 14 min and observed horizontal phase speeds in the range of 30 to 60 m s−1. Most of the bands propagate in the meridional direction. The propagation directions of the bands show a strong southwestward preference in winter, while almost all bands propagate northeastward in summer. Although the wind filtering in the middle atmosphere may control AGW propagations in the zonal direction, the non-uniform distribution of wave sources in the lower atmosphere may contribute to the anisotropy in the meridional direction in different seasons. Additionally, as an indication of local instability, the characteristics of ripples are also analyzed. It also shows seasonal variations, occurring more often in summer and winter and mainly moving westward in summer and eastward in winter.

  7. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong, in northern China

    Directory of Open Access Journals (Sweden)

    Q. Li

    2011-08-01

    Full Text Available An all-sky airglow imager (ASAI was installed at Xinglong, in northern China (40.2° N, 117.4° E in November 2009 to study the morphology of atmospheric gravity waves (AGWs in the mesosphere and lower thermosphere (MLT region. Using one year of OH airglow imager data from December 2009 to November 2010, the characteristics of short-period AGWs are investigated and a yearlong AGW climatology in northern China is first ever reported. AGW occurrence frequency in summer and winter is higher than that in equinoctial months. Observed bands mainly have horizontal wavelengths from 10 to 35 km, observed periods from 4 to 14 min and observed horizontal phase speeds in the range of 30 to 60 m s−1. Most of the bands propagate in the meridional direction. The propagation directions of the bands show a strong southwestward preference in winter, while almost all bands propagate northeastward in summer. Although the wind filtering in the middle atmosphere may control AGW propagations in the zonal direction, the non-uniform distribution of wave sources in the lower atmosphere may contribute to the anisotropy in the meridional direction in different seasons. Additionally, as an indication of local instability, the characteristics of ripples are also analyzed. It also shows seasonal variations, occurring more often in summer and winter and mainly moving westward in summer and eastward in winter.

  8. The Quasi-Biennial Oscillation Based on Double Gaussian Distributional Parameterization of Inertial Gravity Waves in WACCM Model

    Science.gov (United States)

    Yu, C.; Xue, X.; Dou, X.; Wu, J.

    2015-12-01

    The adjustment of gravity wave parameterization associated with model convection has made possible the spontaneous generation of the quasi-biennial oscillation (QBO) in the Whole Atmosphere Community Climate Model (WACCM 4.0), although there are some mismatching when compared with the observation. The parameterization is based on Lindzen's linear saturation theory which can better describe inertia-gravity waves (IGW) by taking the Coriolis effects into consideration. In this work we improve the parameterization by importing a more realistic double Gaussian distribution IGW spectrum, which is calculated from tropical radiosonde observations. A series of WACCM simulations are performed to determine the relationship between the period and amplitude of equatorial zonal wind oscillations and the feature of parameterized IGW. All of these simulations are capable of generating equatorial wind oscillations in the stratosphere using the standard spatial resolution settings. The period of the oscillation is associate inversely with the strength of the IGW forcing, but the central values of double Gaussian distribution IGW have influence both on the magnitude and period of the oscillation. In fact, the eastward and westward IGWs affect the amplitude of the QBO wind, respectively, and the strength of IGWs forcing determines the accelerating rate of the QBO wind. Furthermore, stronger forcing of IGWs can lead to a deeper propagate of the QBO phase, which can extend the lowest altitude of the constant zonal wind amplitudes to about 100 hPa.

  9. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    Science.gov (United States)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  10. Preface: MHD wave phenomena in the solar interior and atmosphere

    Science.gov (United States)

    Fedun, Viktor; Srivastava, A. K.

    2018-01-01

    The Sun is our nearest star and this star produces various plasma wave processes and energetic events. These phenomena strongly influence interplanetary plasma dynamics and contribute to space-weather. The understanding of solar atmospheric dynamics requires hi-resolution modern observations which, in turn, further advances theoretical models of physical processes in the solar interior and atmosphere. In particular, it is essential to connect the magnetohydrodynamic (MHD) wave processes with the small and large-scale solar phenomena vis-a-vis transport of energy and mass. With the advent of currently available and upcoming high-resolution space (e.g., IRIS, SDO, Hinode, Aditya-L1, Solar-C, Solar Orbiter), and ground-based (e.g., SST, ROSA, NLST, Hi-C, DKIST, EST, COSMO) observations, solar physicists are able to explore exclusive wave processes in various solar magnetic structures at different spatio-temporal scales.

  11. Seasonal Variations of Mesospheric Gravity Waves Observed with an Airglow All-sky Camera at Mt. Bohyun, Korea (36° N

    Directory of Open Access Journals (Sweden)

    Yong Ha Kim

    2010-09-01

    Full Text Available We have carried out all-sky imaging of OH Meinel, O2 atmospheric and OI 557.7 nm airglow layers in the period from July of 2001 through September of 2005 at Mt. Bohyun, Korea (36.2° N, 128.9° E, Alt = 1,124 m. We analyzed the images observed during a total of 153 clear moonless nights and found 97 events of band-type waves. The characteristics of the observed waves (wavelengths, periods, and phase speeds are consistent with internal gravity waves. The wave occurrence shows an approximately semi-annual variation, with maxima near solstices and minima near equinoxes, which is consistent with other studies of airglow wave observations, but not with those of mesospheric radar/lidar observations. The observed waves tended to propagate westward during fall and winter, and eastward during spring and summer. Our ray tracing study of the observed waves shows that majority of the observed waves seemed to originate from mesospheric altitudes. The preferential directions and the apparent source altitudes can be explained if the observed waves are secondary waves generated from primary waves that have been selected by the filtering process and break up at the mesospheric altitudes.

  12. Wavemaker theories for acoustic-gravity waves over a finite depth

    CERN Document Server

    Tian, Miao

    2016-01-01

    Acoustic-gravity waves (hereafter AGWs) in ocean have received much interest recently, mainly with respect to early detection of tsunamis as they travel at near the speed of sound in water which makes them ideal candidates for early detection of tsunamis. While the generation mechanisms of AGWs have been studied from the perspective of vertical oscillations of seafloor and triad wave-wave interaction, in the current study we are interested in their generation by wave-structure interaction with possible implication to the energy sector. Here, we develop two wavemaker theories to analyze different wave modes generated by impermeable (the classic Havelock's theory) and porous (porous wavemaker theory) plates in weakly compressible fluids. Slight modification has been made to the porous theory so that, unlike the previous theory, the new solution depends on the geometry of the plate. The expressions for three different types of plates (piston, flap, delta-function) are introduced. Analytical solutions are also de...

  13. Observation of mesospheric gravity waves at Comandante Ferraz Antarctica Station (62° S

    Directory of Open Access Journals (Sweden)

    P. B. Souza

    2009-06-01

    Full Text Available An airglow all-sky imager was operated at Comandante Ferraz Antarctica Station (62.1° S, 58.4° W, between April and October of 2007. Mesospheric gravity waves were observed using the OH airglow layer during 43 nights with good weather conditions. The waves presented horizontal wavelengths between 10 and 60 km and observed periods mainly distributed between 5 and 20 min. The observed phase speeds range between 5 m/s and 115 m/s; the majority of the wave velocities were between 10 and 60 m/s. The waves showed a preferential propagation direction towards the southwest in winter (May to July, while during spring (August to October there was an anisotropy with a preferential propagation direction towards the northwest. Unusual mesospheric fronts were also observed. The most probable wave source could be associated to orographic forcing, cold fronts or strong cyclonic activity in the Antarctica Peninsula.

  14. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    KAUST Repository

    Kavulich, Michael J.

    2013-11-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  15. Polar mesosphere and lower thermosphere dynamics: 1. Mean wind and gravity wave climatologies

    Science.gov (United States)

    Dowdy, Andrew J.; Vincent, Robert A.; Tsutsumi, Masaki; Igarashi, Kiyoshi; Murayama, Yasuhiro; Singer, Werner; Murphy, Damian J.

    2007-09-01

    Mean wind and gravity wave climatologies are presented for the polar mesosphere and lower thermosphere (MLT). The data were derived using MF radars at Davis (69°S, 78°E) and Syowa (69°S, 40°E) in the Antarctic and Poker Flat (65°N, 147°W) and Andenes (69°N, 16°E) in the Arctic. The dynamics of the Antarctic MLT are found to be significantly different from the Arctic MLT. Summer maxima in both the westward and equatorward winds occur closer to the solstice in the Antarctic than in the Arctic. The greater symmetry around the solstice suggests radiative effects may play a greater role in controlling the state of the Antarctic MLT than in the Arctic, where dynamical effects appear to be more important. Gravity wave observations also suggest that wave drag may be greater in the Arctic than in the Antarctic. The equatorward flow near the mesopause persists later in summer in the Arctic than in the Antarctic, as do observations of polar mesospheric clouds and polar mesospheric summer echoes. All three phenomena begin at about the same time in each hemisphere, but end later in the Arctic than in the Antarctic. It is proposed that the magnitude of the meridional winds can be used as a proxy for gravity wave driving and the consequent adiabatic cooling in the MLT. Seasonal variations in gravity wave activity are predominately combinations of annual and semiannual components. Significant hemispheric differences are observed for both the timing and magnitude of these seasonal variations.

  16. The gravitational wave stress–energy (pseudo)-tensor in modified gravity

    Science.gov (United States)

    Saffer, Alexander; Yunes, Nicolás; Yagi, Kent

    2018-03-01

    The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.

  17. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than......This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... for the coastal condition. With the current model setup, using high spatial resolution gives better results for strong winds both for the open ocean and coastal sites. The signicant wave height (Hm0) is very sensitive to the model resolution and bathymetry data for the coastal zone. In addition, using Janssen...

  18. Stratospheric gravity wave activities inferred through the GPS radio occultation technique; Ondas de gravidade na estratosfera terrestre inferida atraves da tecnica de radio ocultacao de GPS

    Energy Technology Data Exchange (ETDEWEB)

    Wrasse, Cristiano Max [Universidade do Vale do Paraiba (UNIVAP), Instituto de Pesquisa e Desenvolvimento (IPeD), Sao Jose dos Campos, SP (Brazil); Takahashi, Hisao; Fechine, Joaquim; Denardini, Clezio Marcos [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Wickert, Jens, E-mail: cmw@univap.br, E-mail: hisaotak@laser.inpe.br, E-mail: joaquim@laser.inpe.br, E-mail: denardin@dae.inpe.br, E-mail: jens.wickert@gfz-potsdam.de [GeoForschungsZentrum, Potsdam (GFZ), Department of Geodesy and Remote Sensing (Germany)

    2007-07-01

    Stratospheric gravity wave activities were deduced from GPS radio occultation temperature profiles obtained by CHAMP satellite between 2001 and 2005. Potential energy profiles are used to analyze the gravity wave activity over South America. The results showed an inter-annual variation of the potential energy integrated between 24 and 34 km of altitude. The gravity wave activity is more concentrated around the equatorial region. In order to evaluate the seasonal variation of the gravity wave activity, a mean potential energy was determined over (10 deg N-10 deg S) and (100 deg W-20 deg W). The results showed a lower gravity wave activity during winter time, while during spring time the mean potential energy showed an increase in the wave activity. The results of the mean potential energy also showed that the gravity wave activity in the lower stratosphere exhibits a higher wave activity during 2002 and 2004 and a lower wave activity during 2003 and 2005. (author)

  19. Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 1: Simple forward model

    Directory of Open Access Journals (Sweden)

    S. D. Eckermann

    2006-01-01

    Full Text Available Using a simplified model of in-orbit radiance acquisition by the Advanced Microwave Sounding Unit (AMSU-A, we derive three-dimensional temperature weighting functions for Channel 9 measurements (peaking at ~60–90 hPa at all 30 cross-track beam positions and use them to investigate the sensitivity of these radiances to gravity waves. The vertical widths of the weighting functions limit detection to waves with vertical wavelengths of ≳10 km, with slightly better vertical wavelength sensitivity at the outermost scan angles due to the limb effect. Fourier Transforms of two-dimensional cross-track weighting functions reveal optimal sensitivity to cross-track wavelengths at the near-nadir scan angles, where horizontal measurement footprints are smallest. This sensitivity is greater for the AMSU-A on the Aqua satellite than for the identical instruments on the NOAA meteorological satellites, due to a lower orbit altitude and thus smaller horizontal footprints from antenna spreading. Small cross-track asymmetries in the radiance response to gravity waves are found that peak at the mid-range scan angles, with more symmetric responses at near-nadir and far off-nadir scan angles. Three-dimensional simulations show gravity wave oscillations imaged in horizontal AMSU-A radiance maps swept out by the scan pattern and satellite motion. A distorting curvature is added to imaged wave phase lines due to vertical variations in weighting function peaks with cross-track scan angle. This wave distortion is analogous to the well-known "limb darkening" and "limb brightening" of microwave radiances acquired from purely vertical background temperature profiles by cross-track scanners. Waves propagating along track are more visible in these images at the outermost scan angles than those propagating cross track, due to oversampling and narrower widths of the horizontal measurement footprints in the along track direction. Based on nominal noise floors and representative

  20. Surface gravity waves in the presence of an unsteady uniform current: application to tsunami warning

    Science.gov (United States)

    Dubosq, S.; Francius, M.; Saillard, M.; Grilli, S.; Branger, H.; Rey, V.

    2009-04-01

    In recent years, there has been an increased interest in the possibility for tsunami radar remote sensing, owing to the effects of tsunami-induced changes on the propagation of short sea waves. Well before microwave radars, HF radars have been investigated to detect tsunami induced- current effects on ocean surface waves (Barrick, 1979). Nonetheless no warning system has been proposed with a sufficiently short warning time, say between 5 and 20min depending on the shelf width, which is more adapted to tsunami early warning system in coastal regions. Alternatively, the potential use of Ultra High Frequency (UHF) radar technology has been suggested based on recent observations of modulation processes in radar echoes, which indicates the possibility for the short wind waves to be affected by the tsunami (Troïtskaya and Ermakov, 2005). In addition to current-induced effects on short gravity waves, like for instance current-induced Doppler shift in the apparent wave frequencies, it is well known that short waves modulations could also arise from other mechanism interactions, such as wind-wave interactions and nonlinear wave-wave interactions. Thus the identification and quantification of the interaction between short waves and current-induced tsunami is very challenging, in particular for waves in the submetric range (high frequency). To achieve these tasks, we use a Higher Order Spectral (HOS) method to simulate numerically the nonlinear evolution of gravity waves in the presence of a time-varying current but spatially homogeneous. The HOS formulation of the prognostic equations has been modified to account for the presence of a time-varying current, whereas numerical time integration has been improved by using both an integrating factor method (unconditionally linearly stable) and an embedded Runge-Kutta method with variable time steps. This paper presents initial numerical results obtained with our modified HOS model. To explore the signature of tsunami induced

  1. Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf

    Science.gov (United States)

    Guo, Lanli; Sheng, Jinyu

    2017-05-01

    A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.

  2. The mean flow and long waves induced by two-dimensional internal gravity wavepackets

    Science.gov (United States)

    van den Bremer, T. S.; Sutherland, B. R.

    2014-10-01

    Through theory supported by numerical simulations, we examine the induced local and long range response flows resulting from the momentum flux divergence associated with with a two-dimensional Boussinesq internal gravity wavepacket in a uniformly stratified ambient. Our theoretical approach performs a perturbation analysis that takes advantage of the separation of scales between waves and the amplitude envelope of a quasi-monochromatic wavepacket. We first illustrate our approach by applying it to the well-studied case of deep water surface gravity waves, showing that the induced flow, UDF, resulting from the divergence of the horizontal momentum flux is equal to the Stokes drift. For a localized surface wavepacket, UDF is itself a divergent flow and so there is the well-known non-local response manifest in the form of a deep return flow beneath the wavepacket. For horizontally periodic and vertically localized internal wavepackets, the divergent-flux induced flow, uDF, is found from consideration of the vertical gradient of the vertical flux of horizontal momentum associated with the waves. Because uDF is itself a non-divergent flow field, this accounts entirely for the wave-induced flow; there is no response flow. Our focus is upon internal wavepackets that are localized in the horizontal and vertical. We derive a formula for the divergent-flux induced flow that, as in this case of surface wavepackets, is itself a divergent flow. We show that the response is a horizontally long internal wave that translates vertically with the wavepacket at its group velocity. Scaling relationships are used to estimate the wavenumber, horizontal extent, and amplitude of this induced long wave. At higher order in perturbation theory we derive an explicit integral formula for the induced long wave. Thus, we provide validation of Bretherton's analysis of flows induced by two-dimensional internal wavepackets [F. P. Bretherton, "On the mean motion induced by gravity waves," J. Fluid

  3. Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity.

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás; Tanaka, Takahiro

    2012-12-21

    Dynamical Chern-Simons gravity cannot be strongly constrained with current experiments because it reduces to general relativity in the weak-field limit. This theory, however, introduces modifications in the nonlinear, dynamical regime, and thus it could be greatly constrained with gravitational waves from the late inspiral of black-hole binaries. We complete the first self-consistent calculation of such gravitational waves in this theory. For favorable spin orientations, advanced ground-based detectors may improve existing solar system constraints by 6 orders of magnitude.

  4. Mixing by Non-linear Gravity Wave Breaking on a White Dwarf Surface

    Science.gov (United States)

    Calder, A. C.; Alexakis, A.; Dursi, L. J.; Rosner, R.; Truran, J. W.; Fryxell, B.; Ricker, P.; Zingale, M.; Olson, K.; Timmes, F. X.; MacNeice, P.

    2002-11-01

    We present the results of a simulation of a wind-driven non-linear gravity wave breaking on the surface of a white dwarf. The ``wind'' consists of H/He from an accreted envelope, and the simulation demonstrates that this breaking wave mechanism can produce a well-mixed layer of H/He with C/O from the white dwarf above the surface. Material from this mixed layer may then be transported throughout the accreted envelope by convection, which would enrich the C/O abundance of the envelope as is expected from observations of novae.

  5. Propagation of Love waves in a void medium over a sandy half space under gravity

    Science.gov (United States)

    Patra, Pulak; Gupta, Asit Kumar; Kundu, Santimoy

    2017-04-01

    The present study investigates the propagation of Love wave in a void layer resting over a sandy half space under the effect of gravitational force. The equations of motion have been gathered separately for different layers, and the boundary conditions have been introduced for two different layers at their interface. The mathematical analysis of the problem has been dealt with the help of Whittaker's function by expanding it asymptotically up to linear terms. The study reveals that in such a situation there exist two different wave fronts for the two above-mentioned layers: one is for the effects of gravity and sandy parameters, whereas other is for the effect of void parameter.

  6. Second generation diffusion model of interacting gravity waves on the surface of deep fluid

    Directory of Open Access Journals (Sweden)

    A. Pushkarev

    2004-01-01

    Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.

  7. Massive, massless and ghost modes of gravitational waves from higher-order gravity

    DEFF Research Database (Denmark)

    Bogdanos, Charalampos; Capozziello, Salvatore; De Laurentis, Mariafelicia

    , we investigate the possible detectability of such additional polarization modes of a stochastic gravitational wave by ground-based and space interferometric detectors. Finally, we extend the formalism of the cross-correlation analysis, including the additional polarization modes, and calculate...... the detectable energy density of the spectrum for a stochastic background of the relic gravity waves that corresponds to our model. For the situation considered here, we find that these massive modes are certainly of interest for direct detection by the LISA experiment....

  8. Wind-farms in shallow conventionally neutral boundary layers: effects of transition and gravity waves on energy budget

    Science.gov (United States)

    Meyers, Johan; Allaerts, Dries

    2016-11-01

    Conventionally neutral boundary layers (CNBL) often arise in offshore conditions. In these situations the neutral boundary layer is capped by a strong inversion layer and a stably stratified free atmosphere aloft. We use large-eddy simulations to investigate the interaction between a CNBL and a large wind farm. Following the approach of Allaerts & Meyers (2015), a set of equilibrium CNBLs are produced in a precursor simulation, with a height of approx. 300, 500, and 1000m, respectively. These are used at the inlet of a large wind-farm with a fetch of 15 km, and 20 rows of turbines. We find that above the farm, an internal boundary layer (IBL) develops. For the two lower CNBL cases, the IBL growth is stopped by the overlying capping inversion. Moreover, the upward displacement of the CNBL excites gravity waves in the inversion layer and the free atmosphere above. For the lower CNBL cases, these waves induce significant pressure gradients in the farm. A detailed energy budget analysis of the CNBL is further presented. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  9. Retrieving mesospheric winds and gravity waves using high resolution radar measurements of polar mesospheric summer echoes with MAARSY

    Science.gov (United States)

    Stober, G.; Sommer, S.; Schult, C.; Chau, J. L.; Latteck, R.

    2013-12-01

    The Middle Atmosphere Alomar Radar System (MAARSY) located at the northern Norwegian island of Andøya (69.3 ° N, 16° E) observes polar mesosphere summer echoes (PMSE) on a regular basis. This backscatter turned out to be an ideal tracer of atmospheric dynamics and to investigate the wind field at the mesosphere/lower thermosphere (MLT) at high spatial and temporal scales. MAARSY is dedicated to explore the polar mesosphere at such high resolution and employs an active phased array antenna with the capability to steer the beam on a pulse-to-pulse basis, which permits to perform systematic scanning of PMSE and to investigate the horizontal structure of the backscatter. The radar also uses a 16 channel receiver system for interferometric applications e.g. mean angle of arrival analysis or coherent radar imaging. Here we present measurements using these features of MAARSY to study the wind field at the MLT applying sophisticated wind analysis algorithms such as velocity azimuth display or volume velocity processing to derive gravity wave parameters such as horizontal wave length, phase speed and propagation direction. Further, we compare the interferometrically corrected and uncorrected wind measurements to emphasize the importance to account for likely edge effects using PMSE as tracer of the dynamics. The observations indicate huge deviations from the nominal beam pointing direction at the upper and lower edges of the PMSE altering the wind analysis.

  10. Pulsar Timing Sensitivities to Gravitational Waves from Relativistic Metric Theories of Gravity

    CERN Document Server

    Alves, Marcio Eduardo da Silva

    2011-01-01

    Pulsar timing experiments aimed at the detection of gravitational radiation have been performed for decades now. With the forthcoming construction of large arrays capable of tracking multiple millisecond pulsars, it is very likely we will be able to make the first detection of gravitational radiation in the nano-Hertz band, and test Einstein's theory of relativity by measuring the polarization components of the detected signals. Since a gravitational wave predicted by the most general relativistic metric theory of gravity accounts for {\\it six} polarization modes (the usual two Einstein's tensor polarizations as well as two vector and two scalar wave components), we have estimated the single-antenna sensitivities to these six polarizations. We find pulsar timing experiments to be significantly more sensitive, over their entire observational frequency band ($\\approx 10^{-9} - 10^{-6}$ Hz), to scalar-longitudinal and vector waves than to scalar-transverse and tensor waves. At $10^{-7}$ Hz and with pulsars at a ...

  11. Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere

    Science.gov (United States)

    Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal; Legras, Bernard

    2016-04-01

    Wave-induced Lagrangian fluctuations of temperature and vertical velocity in the lower stratosphere are quantified using measurements from superpressure balloons (SPBs). Observations recorded every minute along SPB flights allow the whole gravity wave spectrum to be described and provide unprecedented information on both the intrinsic frequency spectrum and the probability distribution function of wave fluctuations. The data set has been collected during two campaigns coordinated by the French Space Agency in 2010, involving 19 balloons over Antarctica and 3 in the deep tropics. In both regions, the vertical velocity distributions depart significantly from a Gaussian behavior. Knowledge on such wave fluctuations is essential for modeling microphysical processes along Lagrangian trajectories. We propose a new simple parameterization that reproduces both the non-Gaussian distribution of vertical velocities (or heating/cooling rates) and their observed intrinsic frequency spectrum.

  12. Influence of tides and gravity waves on layering processes in the polar summer mesopause region

    Science.gov (United States)

    Hoffmann, P.; Rapp, M.; Fiedler, J.; Latteck, R.

    2008-12-01

    Polar Mesosphere Summer Echoes (PMSE) have been studied at Andenes (69° N, 16° E), Norway, using VHF radar observations since 1994. One remarkable feature of these observations is the fact that {during 50% of the time,} the radar echoes occur in the form of two or more distinct layers. In the case of multiple PMSE layers, statistical analysis shows that the lower layer occurs at a mean height of 83.4 km, which is almost identical to the mean height of noctilucent clouds (NLC) derived from observation with the ALOMAR Rayleigh/Mie/Raman lidar at the same site. To investigate the layering processes microphysical model simulations under the influence of tidal and gravity waves were performed. In the presence of long period gravity waves, these model investigations predict an enhanced formation of multiple PMSE layer structures, where the lower layer is a consequence of the occurrence of the largest particles at the bottom of the ice cloud. This explains the coincidence of the lowermost PMSE layers and NLC. During periods with enhanced amplitudes of the semidiurnal tide, the observed NLC and PMSE show pronounced tidal structures comparable to the results of corresponding microphysical simulations. At periods with short period gravity waves there is a tendency for a decreasing occurrence of NLC and for variable weak PMSE structures.

  13. QBO Modulation of the Mesopause Gravity Wave Momentum Flux over Tierra del Fuego

    Science.gov (United States)

    De Wit, R. J.; Janches, D.; Fritts, D. C.; Hibbins, R. E.

    2016-01-01

    The interannual variability of the mesosphere and lower thermosphere (MLT) gravity wave momentum flux over southern mid latitudes (53.7degS) has been studied using more than 7 years of meteor radar observations at Ro Grande, Argentina. A modulation, with periods similar to that of the equatorial stratospheric quasi-biennial oscillation (QBO), is observed in the vertical flux of zonal as well as meridional momentum. The QBO signal is largest in the zonal component during summer and is in phase with the stratospheric QBO at 50 hPa (approx. 21 km). The relation between the stratospheric QBO and the QBO modulation in the MLT gravity wave forcing (derived from the divergence of the momentum flux) was found to be consistent with that expected from the Holton-Tan effect coupled to the interhemispheric coupling mechanism. These results provide the first observational support for the existence of the midlatitude gravity wave forcing anomalies as hypothesized in the interhemispheric coupling mechanism.

  14. Influence of tides and gravity waves on layering processes in the polar summer mesopause region

    Directory of Open Access Journals (Sweden)

    P. Hoffmann

    2008-12-01

    Full Text Available Polar Mesosphere Summer Echoes (PMSE have been studied at Andenes (69° N, 16° E, Norway, using VHF radar observations since 1994. One remarkable feature of these observations is the fact that {during 50% of the time,} the radar echoes occur in the form of two or more distinct layers. In the case of multiple PMSE layers, statistical analysis shows that the lower layer occurs at a mean height of ~83.4 km, which is almost identical to the mean height of noctilucent clouds (NLC derived from observation with the ALOMAR Rayleigh/Mie/Raman lidar at the same site. To investigate the layering processes microphysical model simulations under the influence of tidal and gravity waves were performed. In the presence of long period gravity waves, these model investigations predict an enhanced formation of multiple PMSE layer structures, where the lower layer is a consequence of the occurrence of the largest particles at the bottom of the ice cloud. This explains the coincidence of the lowermost PMSE layers and NLC. During periods with enhanced amplitudes of the semidiurnal tide, the observed NLC and PMSE show pronounced tidal structures comparable to the results of corresponding microphysical simulations. At periods with short period gravity waves there is a tendency for a decreasing occurrence of NLC and for variable weak PMSE structures.

  15. Lidar observations of the polar atmosphere. Clouds and waves - phenomena and mechanisms; Lidarbeobachtungen der polaren Atmosphaere. Wolken und Wellen - Phaenomene und Mechanismen

    Energy Technology Data Exchange (ETDEWEB)

    Blum, U.

    2003-11-01

    Since 1997 the Bonn University Institute of Physics operates a Rayleigh/Mie/Raman lidar on the Esrange near the Swedish city of Kiruna north of the Arctic circle. During seven winter and six summer campaigns a large amount of cloud and temperature observations were obtained in the polar middle atmosphere. The temperature observations of the U. Bonn lidar regularly show waves superposed on the temperature profiles. An analysis of these atmospheric gravity waves reveals strong wave activity during winter and little wave activity during summer. This seasonal variability can be understood in terms of the dominant wind regimes in the troposphere and stratosphere. A continuous decrease in the potential energy density of the gravity waves is observable since 1997. During winter polar stratospheric clouds (PSC) are frequently observed. PSCs play a key role in the polar stratospheric chemistry which leads to the formation of the ozone hole. The existence of these clouds depends crucially on atmospheric temperatures, which determine the PSC types formed. An analysis of the occurrence of PSCs regarding the types and synoptical temperatures disclose that most of the observed PSCs need additional cooling to below synoptic scale temperatures for formation. Dynamically induced cooling is provided by the large gravity wave activity observed in the winter temperature data. (orig.)

  16. Influence of the Observation Geometry on the Estimation of Gravity Wave Amplitudes using TIMED-SABER, NDMC and Radiosonde Measurements and Conclusions concerning Wave Characteristics

    Science.gov (United States)

    Wüst, S.; Wendt, V.; Schmidt, C.; Yee, J. H.; Mlynczak, M. G.; Russell, J. M., III; Bittner, M.

    2014-12-01

    Gravity wave parameters can be derived by means of different instrumental techniques. Due to instrumental-specific limitations, information about the waves' amplitudes is averaged individually in time and space; this leads to an underestimation of amplitudes depending on wavelengths and periods, respectively. Global TIMED-SABER temperature data from 2002 to 2013 are analysed with respect to gravity wave activity in the strato- and mesosphere as well as in the mesopause region. Depending on geographical position significant differences for the ascending and descending part of the orbit can be observed when gravity wave activity is averaged over one yaw cycle. Due to the specific orientation of the fields-of-view at polar latitudes the result might be explained by a preferred horizontal wave orientation. Analyses of radiosondes released at ALOMAR, Northern Norway in late winter / early spring 2012 confirm a preferred orientation of wave fronts which is parallel to the mountain ridge. The analysis is repeated for Oberpfaffenhofen, Southern Germany in the vicinity of the Alps. The underestimation of amplitudes by SABER is quantified for both locations on a statistical base. Finally, gravity wave activity in the mesopause is derived from NDMC (Network for the Detection of Mesospheric Change) data including amongst others the stations at ALOMAR and Oberpfaffenhofen. The effects of the size and orientation of the different fields-of-view are discussed. Conclusions how to make use of the different instrumental averaging effects in terms of gravity wave characterization - especially for polar latitudes - are drawn.

  17. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  18. 2D instabilities of surface gravity waves on a linear shear current

    Science.gov (United States)

    Francius, Marc; Kharif, Christian

    2016-04-01

    instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437

  19. Convective gravity wave propagation and breaking in the stratosphere: comparison between WRF model simulations and lidar data

    Directory of Open Access Journals (Sweden)

    L. Costantino

    2015-09-01

    Full Text Available In this work we perform numerical simulations of convective gravity waves (GWs, using the WRF (Weather Research and Forecasting model. We first run an idealized, simplified and highly resolved simulation with model top at 80 km. Below 60 km of altitude, a vertical grid spacing smaller than 1 km is supposed to reliably resolve the effects of GW breaking. An eastward linear wind shear interacts with the GW field generated by a single convective thunderstorm. After 70 min of integration time, averaging within a radius of 300 km from the storm centre, results show that wave breaking in the upper stratosphere is largely dominated by saturation effects, driving an average drag force up to −41 m s−1 day−1. In the lower stratosphere, mean wave drag is positive and equal to 4.4 m s−1 day−1. In a second step, realistic WRF simulations are compared with lidar measurements from the NDACC network (Network for the Detection of Atmospheric Composition Changes of gravity wave potential energy (Ep over OHP (Haute-Provence Observatory, southern France. Using a vertical grid spacing smaller than 1 km below 50 km of altitude, WRF seems to reliably reproduce the effect of GW dynamics and capture qualitative aspects of wave momentum and energy propagation and transfer to background mean flow. Averaging within a radius of 120 km from the storm centre, the resulting drag force for the study case (2 h storm is negative in the higher (−1 m s−1 day−1 and positive in the lower stratosphere (0.23 m s−1 day−1. Vertical structures of simulated potential energy profiles are found to be in good agreement with those measured by lidar. Ep is mostly conserved with altitude in August while, in October, Ep decreases in the upper stratosphere to grow again in the lower mesosphere. On the other hand, the magnitude of simulated wave energy is clearly underestimated with respect to lidar data by about 3–4 times.

  20. Generalized analytical model for benthic water flux forced by surface gravity waves

    Science.gov (United States)

    King, J.N.; Mehta, A.J.; Dean, R.G.

    2009-01-01

    A generalized analytical model for benthic water flux forced by linear surface gravity waves over a series of layered hydrogeologic units is developed by adapting a previous solution for a hydrogeologic unit with an infinite thickness (Case I) to a unit with a finite thickness (Case II) and to a dual-unit system (Case III). The model compares favorably with laboratory observations. The amplitude of wave-forced benthic water flux is shown to be directly proportional to the amplitude of the wave, the permeability of the hydrogeologic unit, and the wave number and inversely proportional to the kinematic viscosity of water. A dimensionless amplitude parameter is introduced and shown to reach a maximum where the product of water depth and the wave number is 1.2. Submarine groundwater discharge (SGD) is a benthic water discharge flux to a marine water body. The Case I model estimates an 11.5-cm/d SGD forced by a wave with a 1 s period and 5-cm amplitude in water that is 0.5-m deep. As this wave propagates into a region with a 0.3-m-thick hydrogeologic unit, with a no-flow bottom boundary, the Case II model estimates a 9.7-cm/d wave-forced SGD. As this wave propagates into a region with a 0.2-m-thick hydrogeologic unit over an infinitely thick, more permeable unit, the Case III quasi-confined model estimates a 15.7-cm/d wave-forced SGD. The quasi-confined model has benthic constituent flux implications in coral reef, karst, and clastic regions. Waves may undermine tracer and seepage meter estimates of SGD at some locations. Copyright 2009 by the American Geophysical Union.

  1. Testing effective quantum gravity with gravitational waves from extreme mass ratio inspirals

    Energy Technology Data Exchange (ETDEWEB)

    Yunes, N [Institute for Gravitational Physics and Geometry, Center for Gravitational Wave Physics, Department of Physics, Pennsylvania State University, University Park, PA 16802-6300 (United States); Sopuerta, C F, E-mail: nyunes@princeton.ed [Institut de Ciencies de l' Espai (CSIC-IEEC), Facultat de Ciencies, Campus UAB, Torre C5 parells, Bellaterra, 08193 Barcelona (Spain)

    2010-05-01

    Testing deviation of GR is one of the main goals of the proposed Laser Interferometer Space Antenna. For the first time, we consistently compute the generation of gravitational waves from extreme-mass ratio inspirals (stellar compact objects into supermassive black holes) in a well-motivated alternative theory of gravity, that to date remains weakly constrained by double binary pulsar observations. The theory we concentrate on is Chern-Simons (CS) modified gravity, a 4-D, effective theory that is motivated both from string theory and loop-quantum gravity, and which enhances the Einstein-Hilbert action through the addition of a dynamical scalar field and the parity-violating Pontryagin density. We show that although point particles continue to follow geodesics in the modified theory, the background about which they inspiral is a modification to the Kerr metric, which imprints a CS correction on the gravitational waves emitted. CS modified gravitational waves are sufficiently different from the General Relativistic expectation that they lead to significant dephasing after 3 weeks of evolution, but such dephasing will probably not prevent detection of these signals, but instead lead to a systematic error in the determination of parameters. We end with a study of radiation-reaction in the modified theory and show that, to leading-order, energy-momentum emission is not CS modified, except possibly for the subdominant effect of scalar-field emission. The inclusion of radiation-reaction will allow for tests of CS modified gravity with space-borne detectors that might be two orders of magnitude larger than current binary pulsar bounds.

  2. Joint Optimization of Vertical Component Gravity and Seismic P-wave First Arrivals by Simulated Annealing

    Science.gov (United States)

    Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.

    2015-12-01

    Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could

  3. Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Claudio Cremaschini

    2017-07-01

    Full Text Available Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017 are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ g μ ν and its conjugate momentum, referred to as (canonical g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ , which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ g μ ν and its quantum conjugate momentum operator.

  4. Field investigations on port non-tranquility caused by infra-gravity water waves

    Directory of Open Access Journals (Sweden)

    A. Najafi-Jilani

    2010-03-01

    Full Text Available Field investigations have been carried out in two 60-day stages on the surf beat low frequency waves in Anzali port, one of the main commercial ports in Iran, located in southwest coast of the Caspian Sea. The characteristics of significant water waves were measured at three metering stations in the sea, one at the entrance of the port and three in the basin. The measured data were inspected to investigate the surf beat negative effects on the tranquility of the port. Using field measurements and complementary numerical modeling, the response of the basin to the infra-gravity long waves was inspected for a range of wave frequencies. It was concluded that the water surface fluctuations in the port is strongly related to the incident wave period. The long waves with periods of about 45s were recognized as the worst cases for water surfaceperturbation in the port. For wave periods higher than the mentioned range, the order of fluctuation was generally low.

  5. Validation of Atmospheric Dynamics (VADY) - connections between planetary waves and atmospheric circulation types

    Science.gov (United States)

    Lang, Benjamin; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas

    2015-04-01

    The climate research program "Medium-range Climate Predictions" (MiKlip), funded by the Federal Ministry of Education and Research in Germany (BMBF), has the aim to develop a climate model system (MPI-ESM) that can provide reliable decadal predictions of climate, including extreme weather events. A substantial part of the development process is a comprehensive model validation. Within MiKlip, it includes comparisons of model simulations and observations in order to allow statements about the performance of the model and to give particular recommendations for the further development of the model. The research project "Validation of Atmospheric Dynamics" (VADY), conducted by the cooperation partners "Institute of Geography at the University of Augsburg" (IGUA) and the "German Aerospace Centre" (DLR), contributes to model validation within MiKlip with a special focus on atmospheric waves and circulation dynamics. Within the framework of VADY, DLR validates the representation of atmospheric waves on different levels and scales based on suitable activity indices (e.g. the so-called large-scale dynamical activity index (LDAI), which is a measure for the activity of planetary waves). The focus of IGUA is on the model validation with respect to the representation of atmospheric circulation types, dynamical modes and the teleconnectivity of the atmospheric circulation. Currently, the connection between LDAI and atmospheric circulation types on different levels and for different seasons in the North Atlantic-European region is analysed by considering, in particular, the North Atlantic Oscillation. Results will be shown for the connection between LDAI and atmospheric circulation types and subsequently for the representation of the identified connections in the decadal-prediction model system of MPI-ESM.

  6. Wave localization of linear gravity waves in shallow water: Global measurements and agreement between random matrix theory and experiments

    Science.gov (United States)

    Schmessane, Andrea; Laboratory of matter out equilibrium Team

    2012-11-01

    Wave localization explains how a perturbation is trapped by the randomness present in a propagation medium. As it propagates, the localized wave amplitude decreases strongly by multiple internal reflections with randomly positioned scatterers, effectively trapping the perturbation inside the random region. The characteristic length where a localized wave is propagated before being extinguish by randomness is called localization length. We carried experiments in a quasi-onedimensional channel with random bottom in a shallow water regime for surface gravity water waves, using a Perfilometry Fourier Transform method, which enables us to obtain global surface measurements. We discuss keys aspects of the control of variables, the experimental setup and the implementation of the measurement method. Thus, we can control, measure and evaluate fundamental variables present in the localization phenomenon such as the type of randomness, scattering intensity and sample length, which allows us to characterize wave localization. We use the scattering matrix method to compare the experimental measurements with theoretical and numerical predictions, using the Lyapunov exponent of the scattering matrix, and discuss their agreement. Conicyt

  7. Statistical Comparison of Gravity Wave Characteristics Obtained from Airglow All-Sky Observation at Mt. Bohyun, Korea and Shigaraki, Japan

    Directory of Open Access Journals (Sweden)

    Tae-Yong Yang

    2015-12-01

    Full Text Available Previously, all-sky airglow images observed at Shigaraki (34.9° N, 136.1° E, Japan, during 2004 and 2005 were analyzed in relation to those observed at Mt. Bohyun (36.2° N, 128.9° E for a comparison of their gravity wave characteristics (Kim et al. 2010. By applying the same selection criteria of waves and cloud coverages as in the case of Mt. Bohyun all-sky images, we derived apparent wavelengths, periods, phase velocities, and monthly occurrence rates of gravity waves at Shigaraki in this study. The distributions of wavelengths, periods, and speeds derived for Shigaraki were found to be roughly similar to those for Mt. Bohyun. However, the overall occurrence rates of gravity waves at Shigaraki were 36% and 34% for OI 557.7 nm and OH Meinel band airglow layers, respectively, which were significantly higher than those at Mt. Bohyun. The monthly occurrence rates did not show minima near equinox months, unlike those for Mt. Bohyun. Furthermore, the seasonal preferential directions that were clearly apparent for Mt. Bohyun were not seen in the wave propagation trends for Shigaraki. These differences between the two sites imply different origins of the gravity waves near the Korean peninsula and the Japanese islands. The gravity waves over the Japanese islands may originate from sources at various altitudes; therefore, wind filtering may not be effective in causing any seasonal preferential directions in the waves in the airglow layers. Our analysis of the Shigaraki data supports recent theoretical studies, according to which gravity waves can be generated from in situ sources, such as mesosphere wind shear or secondary wave formation, in the mesosphere.

  8. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Luz M., E-mail: luzmarinareyes@gmail.com [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Moreno, Claudia, E-mail: claudia.moreno@cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Madriz Aguilar, Jose Edgar, E-mail: edgar.madriz@red.cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) - Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2012-10-22

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  9. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Science.gov (United States)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  10. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas, E-mail: llo@roe.ac.uk; Lima, Nelson A.

    2017-02-10

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  11. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Directory of Open Access Journals (Sweden)

    Lucas Lombriser

    2017-02-01

    Full Text Available With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  12. Regional variations of mesospheric gravity-wave momentum flux over Antarctica

    Directory of Open Access Journals (Sweden)

    P. J. Espy

    2006-03-01

    Full Text Available Images of mesospheric airglow and radar-wind measurements have been combined to estimate the difference in the vertical flux of horizontal momentum carried by high-frequency gravity waves over two dissimilar Antarctic stations. Rothera (67° S, 68° W is situated in the mountains of the Peninsula near the edge of the wintertime polar vortex. In contrast, Halley (76° S, 27° W, some 1658 km to the southeast, is located on an ice sheet at the edge of the Antarctic Plateau and deep within the polar vortex during winter. The cross-correlation coefficients between the vertical and horizontal wind perturbations were calculated from sodium (Na airglow imager data collected during the austral winter seasons of 2002 and 2003 at Rothera for comparison with the 2000 and 2001 results from Halley reported previously (Espy et al., 2004. These cross-correlation coefficients were combined with wind-velocity variances from coincident radar measurements to estimate the daily averaged upper-limit of the vertical flux of horizontal momentum due to gravity waves near the peak emission altitude of the Na nightglow layer, 90km. The resulting momentum flux at both stations displayed a large day-to-day variability and showed a marked seasonal rotation from the northwest to the southwest throughout the winter. However, the magnitude of the flux at Rothera was about 4 times larger than that at Halley, suggesting that the differences in the gravity-wave source functions and filtering by the underlying winds at the two stations create significant regional differences in wave forcing on the scale of the station separation.

  13. Gravity wave generation and propagation during geomagnetic storms over Kiruna (67.8°N, 20.4°E

    Directory of Open Access Journals (Sweden)

    P. R. Fagundes

    1995-04-01

    Full Text Available Atmospheric gravity waves, detected over Kiruna (67.8°N, 20.4°E during geomagnetic storms, are presented and analysed. The data include direct measurements of the OI 630.0 nm emission line intensity, the x-component of the local geomagnetic field and thermospheric (meridional and zonal wind velocities derived from the OI 630.0 nm Doppler shift observed with an imaging Fabry-Perot interferometer (IFPI. A low pass band filter technique was used to determine short-period variations in the thermospheric meridional wind velocities observed during geomagnetic storms. These short-period variations in the meridional wind velocities, which are identified as due to gravity waves, are compared to the corresponding variations observed in the OI 630.0 nm emission line intensity, x-component of the local geomagnetic field and the location of the auroral electrojet. A cross-correlation analysis was used to calculate the propagation velocities of the observed gravity waves.

  14. Tsunami mitigation by resonant triad interaction with acoustic–gravity waves

    Directory of Open Access Journals (Sweden)

    Usama Kadri

    2017-01-01

    Full Text Available Tsunamis have been responsible for the loss of almost a half million lives, widespread long lasting destruction, profound environmental effects, and global financial crisis, within the last two decades. The main tsunami properties that determine the size of impact at the shoreline are its wavelength and amplitude in the ocean. Here, we show that it is in principle possible to reduce the amplitude of a tsunami, and redistribute its energy over a larger space, through forcing it to interact with resonating acoustic–gravity waves. In practice, generating the appropriate acoustic–gravity modes introduces serious challenges due to the high energy required for an effective interaction. However, if the findings are extended to realistic tsunami properties and geometries, we might be able to mitigate tsunamis and so save lives and properties. Moreover, such a mitigation technique would allow for the harnessing of the tsunami's energy.

  15. High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer

    Science.gov (United States)

    Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-12-01

    A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) at Oberpfaffenhofen (48.09° N, 11.28° E), Germany. The spatial resolution of the instrument is 17 m pixel-1 in zenith direction with a field of view (FOV) of 11.1 km × 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 and 0°) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the maximum entropy method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4-5 April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM provides new insights into the structure of atmospheric wave instability and

  16. High resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer

    Science.gov (United States)

    Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2017-04-01

    A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Centre (DFD) of the German Aerospace Centre (DLR) at Oberpfaffenhofen (48.09 ° N, 11.28 ° E), Germany. The spatial resolution of the instrument is 17 m/pixel in zenith direction with a field of view (FOV) of 11.1 km x 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 ° and 0 °) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the Maximum Entropy Method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4th to 5th April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM airglow imager provides new insights into the structure of

  17. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.

    Science.gov (United States)

    Lin, Ying-Tsong; McMahon, Kara G; Lynch, James F; Siegmann, William L

    2013-01-01

    The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.

  18. Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves

    Science.gov (United States)

    Iooss, Gérard; Plotnikov, Pavel

    2009-09-01

    We consider periodic travelling gravity waves at the surface of an infinitely deep perfect fluid. The pattern is non-symmetric with respect to the propagation direction of the waves and we consider a general non-resonant situation. Defining a couple of amplitudes ɛ,ɛ along the basis of wave vectors which satisfy the dispersion relation, following Iooss and Plotnikov (2009), travelling waves exist with an asymptotic expansion in powers of ɛ,ɛ, for nearly all pair of angles made by the basic wave vectors with the critical propagation direction, and for values of the couple (ɛ12,ɛ22) in a subset of the plane, with asymptotic full measure at the origin. We prove the remarkable property that on the free surface, observed in the moving frame, the propagation direction of the waves differs from the asymptotic direction taken by fluid particles, by a small angle which is computed. To cite this article: G. Iooss, P. Plotnikov, C. R. Mecanique 337 (2009).

  19. Interactions between the surface gravity waves and the Von Karman streets: a numerical study

    Science.gov (United States)

    Gunnoo, Hans; Bennis, Anne-Claire; Rivier, Aurélie; Abcha, NIzar; Ezersky, Alexander

    2015-04-01

    The growth of renewable energy over the past decade is impressive. Offshore wind farms are planned to construct along the site of Courseulles s/mer (Normandy, France) in 2018. The ofelia project leads to study the environmental impacts of the offshore wind farms in the Channel. In parallel with the regional modeling of the changes in hydrodynamic and in sediment transport due to monopiles (Rivier et al., 2014), studies at local scales are also carried out. Laboratory experiments show that the resonance between the surface gravity waves and the Von Karman streets leads to modify the synchronisation of the vortex (Gunnoo et al., 2014). Numerical simulations are performed to reproduce this mechanism. The CFD code, IHFOAM, based on an OpenFoam Kernel, allows to simulate the wave-current interactions at local scales. First, bi-dimensional and three-dimensional simulations without waves are set-up to validate our modeling plateform. The well-known Von Karman streets are obtained. Results are in agreement with the experimental data. Second, waves are included in the simulations. The free-surface is explicitely solved by the Volume Of Fluid method. Regular and irregular wave spectrums are tested. Changes in Von Karman Streets due to waves are observed. In the future, some comparisons with the experimental results will be done.

  20. Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current

    Directory of Open Access Journals (Sweden)

    A. A. Slepyshev

    2017-08-01

    Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than

  1. Gravity Wave-Induced Ionospheric Irregularities in the Postsunset Equatorial Valley Region

    Science.gov (United States)

    Hysell, D. L.; Fritts, D. C.; Laughman, B.; Chau, J. L.

    2017-11-01

    Plasma irregularities in the postsunset equatorial valley region ionosphere are investigated experimentally and through numerical simulation. Coherent radar backscatter observed at the Jicamarca Radio Observatory shows two classes of irregularities in different altitude bands—one mainly below about 125 km and the other mainly above. Irregularities in both bands are organized into wavefronts with wavelengths of a few kilometers. However, only the irregularities in the high-altitude band exhibit consistent propagation speeds and directions. Some previous observations of irregularities in the nighttime electrojet suggest that gravity waves may sometimes influence their morphology. The possibility that the valley region irregularities are also related to gravity waves (GWs) is therefore investigated numerically. A model of a GW packet propagating through a tidal wind field is used to drive another model which predicts the resulting ionospheric electrodynamics. The combined simulation shows that GWs can induce field-aligned currents and excite resistive drift waves which could be responsible for the valley region irregularities in the high-altitude band. The GWs also induce irregularities in the upper E region directly through simple dynamo action which subsequently deform under the influence of shear flow. This may explain the irregularities in the low-altitude band.

  2. Formation and mechanics of granular waves in gravity and shallow overland flow

    Science.gov (United States)

    Römkens, Mathias J. M.; Suryadevara, Madhu R.; Prasad, Shyam N.

    2010-05-01

    Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of sediment movement under different hydraulic regimes in channel flow for use in soil erosion and sediment transport prediction models. Relatively few studies have focused on the more basic aspects of sediment movement in which particle-to-particle, particle-to-boundary, and particle-to-fluid interactions determine in an important way the nature of the movement. Our experimental work under highly controlled experimental conditions with both gravity flow of granular material (glass beads) in air and sediment transport (sand particles and glass beads) in shallow overland flow have shown that sediment movement is not a simple phenomenon solely determined by flow rates on a proportional basis, but that it is represented by a highly structured and organized regime determined by sedimentary fluid mechanical principles which yield very characteristic waves during transport. In the gravity flow case involving granular chute flow, two-dimensional grain waves developed into the rolling and saltating moving grain mass at certain grain concentrations. This phenomenon appeared to be related to an energy exchange process as a result of collisions between moving grain particles that led to reduced kinetic velocities. As a result, particle concentration differences in the direction of flow developed that were noted as denser zones. In these zones, particles dropped out at the upstream part of these denser zones to resume their accelerating motion once they reached the downstream part of the zone until, during the next collision event, the process is repeated. Thus a periodic granular wave structure evolved. Depending on the addition rate, the granular flow regime may be a fluidized

  3. Low Noise Amplifier Receivers from Millimeter Wave Atmospheric Remote Sensing

    Science.gov (United States)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; hide

    2012-01-01

    We currently achieve 3.4 dB noise figure at 183GHz and 2.1 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  4. Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study

    Directory of Open Access Journals (Sweden)

    S. D. Eckermann

    2006-01-01

    , horizontal structure and time evolution that closely match those observed in the AMSU-A data. These comparisons not only verify gravity wave detection and horizontal imaging capabilities for AMSU-A Channel 9, but provide an absolute validation of the anticipated radiance signals for a given three-dimensional gravity wave, based on the modeling of Eckermann and Wu (2006.

  5. The vertical gradient of gravity wave momentum flux in global observations and modeling

    Science.gov (United States)

    Preusse, Peter; Trinh, Thai; Chen, Dan; Ern, Manfred; Krisch, Isabell; Nogai, Karlheinz; Riese, Martin; Strube, Cornelia

    2017-04-01

    In their recent review paper Geller et al. (2013) compared climatologies of gravity wave momentum flux (GWMF) from various global models with GWMF inferred from different observation techniques. They find a generally good agreement in the global distributions in the lower stratosphere, but a strong difference in the vertical gradient of GWMF profiles: observations from various satellite data sets show a strong decrease of GWMF with a scale height of 9-12km while parametrized GWMF in ECHAM decreases only slowly with a scale height of 24km. The authors hint that this may be caused by the fact that observations see only part of the wave spectrum. In particular, gravity waves (GWs) with short horizontal scales are not seen by the infrared limb sounders. Is the horizontal scale the major reason? Are there other effects responsible for the different vertical gradients? We here consider this question using the GROGRAT ray-tracing model and GWs that are, in principle, visible to infrared limb sounding instruments. For this we analyze GWs in high resolution ECMWF analysis fields at 25km altitude and determine wave amplitudes and the 3D wave vector. The horizontal distribution of GWMF from these ECMWF-resolved waves matches observed distributions well. The inferred wave parameters are used as launch parameters and the GWs are propagated upward with GROGRAT up to 90km altitude. GROGRAT is here used as a 3D ray-tracer with wave action flux conservation and a Fritts and Rastogi saturation scheme, i.e. it is similar to a GW parametrization but can handle 3D propagation in addition. The GROGRAT results also display a very weak decrease of GWMF in the stratosphere and lower mesosphere, similar as the GW parametrization, and are thus an interesting test-bed for searching reasons for the difference between observed and modeled vertical gradients as they were seen in Geller et al. (2013). Using the GROGRAT simulations we investigate the following potential reasons for the difference

  6. Ion Friction and Quantification of the Geomagnetic Influence on Gravity Wave Propagation and Dissipation in the Thermosphere-Ionosphere

    Science.gov (United States)

    Medvedev, Alexander S.; Yiǧit, Erdal; Hartogh, Paul

    2017-12-01

    Motions of neutrals and ions in the thermosphere-ionosphere (TI) do not, generally, coincide due to the presence of the geomagnetic field and associated electromagnetic forces affecting plasma. Collisions of ions with gravity wave (GW)-induced motions of neutrals impose damping on the latter. We derive a practical formula for the vertical damping rate of GW harmonics that accounts for the geometry of the geomagnetic field and the direction of GW propagation. The formula can be used in parameterizations of GW effects developed for general circulation models extending from the lower atmosphere into the mesosphere and thermosphere. Vertical damping of GW harmonics by ion-neutral interactions in the TI depends on the geometry of the geomagnetic field but not the strength of the latter. The ion damping of harmonics propagating in the meridional direction (in the geomagnetic coordinates) maximizes over the poles and reduces to zero over the equator. Waves propagating in the zonal direction are uniformly affected by ions at all latitudes. Accounting for the anisotropy produces changes in the GW drag in the F region of more than 100 m s-1 d-1, cooling/heating rates of more than 15 K d-1, and in GW temperature variance of disturbances by more than 5 K.

  7. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, Silvia Anna; Paetzold, Martin; Häusler, Bernd; Hinson, David P.; Peter, Kerstin; Tyler, G. Leonard

    2017-10-01

    Atmospheric waves play a crucial role for the dynamics in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and the coupling of the different atmospheric regions on Mars.Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, and gravity waves). Atmospheric waves are also known to exist in the middle atmosphere of Mars (~70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars.Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to ~ 40-50 km) and electron density profiles in the ionosphere of Mars.Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement.A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations.The MaRS experiment is funded by DLR under grant 50QM1401.

  8. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing

    Science.gov (United States)

    Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B.; Monserrat, Sebastian

    2015-01-01

    A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems. PMID:26119833

  9. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign. Part I. Observations with collocated radars

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, P.; Serafimovich, A.; Peters, D.; Latteck, R. [Leibniz-Inst. fuer Atmosphaerenphysik, Kuehlungsborn (Germany); Dalin, P. [Swedish Inst. of Space Physics, Kiruna (Sweden); Goldberg, R. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States)

    2006-07-01

    During the MaCWAVE campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andoeya rocket range (ARR) near Andenes and the Swedish rocket range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHP radar in the upper troposphere/ lower stratosphere at Andenes (69.3 N, 16.0 E) and the ESRAD VHP radar near Kiruna (67.9 N, 21.9 E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24-26 January 2003 with dominant vertical wavelengths of about 4-5 km as well as with dominant observed periods of about 13-14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of {proportional_to}200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of {proportional_to}5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains. (orig.)

  10. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part I: Observations with collocated radars

    Science.gov (United States)

    Hoffmann, P.; Serafimovich, A.; Peters, D.; Dalin, P.; Goldberg, R.; Latteck, R.

    2006-11-01

    During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR) near Andenes and the Swedish Rocket Range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E) and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24-26 January 2003 with dominant vertical wavelengths of about 4-5 km as well as with dominant observed periods of about 13-14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of 200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of 5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.

  11. Gravitational waves induced by massless vector fields with non-minimal coupling to gravity

    CERN Document Server

    Feng, Kaixi

    2016-01-01

    In this paper, we calculate the contribution of the late time mode of a massless vector field to the power spectrum of the primordial gravitational wave using retarded Green's propagator. We consider a non-trivial coupling between gravity and the vector field. We find that the correction is scale-invariant and of order $\\frac{H^4}{M_P^4}$. The non-minimal coupling leads to a dependence of $\\frac{H^2}{M^2}$, which can amplify the correlation function up to the level of $\\frac{H^2}{M^2_P}$.

  12. Equatorial oscillations maintained by gravity waves as described with the Doppler Spread Parameterization: II. Heuristic analysis

    Science.gov (United States)

    Mayr, H. G.; Hartle, R. E.; Chan, K. L.

    1998-01-01

    The Doppler Spread Parameterization (DSP) for gravity waves (GW) developed by Hines is applied to the zonal momentum budget at the equator. For sufficiently large oscillation amplitudes in the background zonal winds, comparable to the GW induced wind variability, the momentum source is intermittent and as such it represents a nonlinearity of third or generally odd order. This kind of nonlinearity generates, besides higher harmonics, the fundamental harmonic itself which is retained in a simplified analytical solution that can describe self-sustained oscillations without invoking external, time dependent forcing. The formulation is discussed to provide some understanding of the numerical results presented in the companion paper.

  13. Mars' gravity field and upper atmosphere with MGS, Mars Odyssey, and MRO radio science data

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander J.; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-04-01

    The Mars exploration program conducted by NASA during the last decade has enabled continuous observations of the planet from orbit with three different missions: the Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). These spacecraft were equipped with on board instrumentation dedicated to collect radio tracking data in the X-band. The analysis of these data has provided a high-resolution gravity field model of Mars. MGS and ODY were inserted into two separate frozen sun-synchronous, near-circular, polar orbits with different local times, with their periapsis altitude at ~370 km and ~390 km, respectively. MGS was in orbit around Mars between 1999 and 2006, whereas ODY has been orbiting the planet since January 2002. Using the radio science data of these two spacecraft, gravity models with a maximum resolution of degree and order 95 in spherical harmonics (spatial resolution of 112 km) have been determined. MRO has been orbiting Mars since August 2006 in a frozen sun-synchronous orbit with a periapsis at 255 km altitude. Therefore, its radio data helped significantly improve Mars' gravity field model, up to degree and order 110 (spatial resolution of 96 km). However, mismodeling of the atmospheric drag, which is the strongest non-conservative force acting on the spacecraft at MRO's low altitude, compromises the estimation of the temporal variations of the gravity field zonal harmonics that provide crucial information on the seasonal mass of carbon dioxide in the polar caps. For this reason, we implemented the Drag Temperature Model (DTM)-Mars model (Bruinsma and Lemoine 2002) into our Precise Orbit Determination (POD) program GEODYN-II. We estimated key model parameters to adequately reproduce variations in temperatures and (partial) density along the spacecraft trajectories. Our new model allows us to directly estimate the long-term periodicity of the major constituents at MGS, ODY, and MRO altitudes (~255-450 km). In this

  14. Solar winds surfs waves in the Sun's atmosphere!

    Science.gov (United States)

    1999-07-01

    The fact that this electrified plasma speeds up to almost 3 million kilometres per hour as it leaves the Sun - twice as fast as originally predicted - has been known for years. The interpretation of how it happens is the real and surprising novelty: "The waves in the Sun's atmosphere are produced by vibrating solar magnetic field lines, which give solar wind particles a push just like an ocean wave gives a surfer a ride" said Dr John Kohl, principal investigator for the Ultraviolet Coronal Spectrometer (UVCS) - the instrument among the 12 aboard SOHO which gathered the data - and for the Spartan 201 mission. The outermost solar atmosphere, or corona, is only seen from Earth during a total eclipse of the Sun, when it appears as a shimmering, white veil surrounding the black lunar disc. The corona is an extremely tenuous, electrically charged gas, known as plasma, that flows throughout the solar system as the solar wind. The waves are formed by rapidly vibrating magnetic fields in the coronal plasma. They are called magneto - hydro - dynamic (MHD) waves and are believed to accelerate the solar wind. The solar wind is made up of electrons and ions, electrically charged atoms that have lost electrons. The electric charge of the solar wind particles forces them to travel along invisible lines of magnetic force in the corona. The particles spiral around the magnetic field lines as they rush into space. "The magnetic field acts like a violin string: when it's touched, it vibrates. When the Sun's magnetic field vibrates with a frequency equal to that of the particle spiraling around the magnetic field, it heats it up, producing a force that accelerates the particle upward and away from the Sun," says Dr. Ester Antonucci, an astronomer at the observatory of Turin, Italy, and co-investigator for SOHO's UVCS an instrument developed with considerable financial support by the Italian Space Agency, ASI. In a way this is similar to what happens if two people hold a string at

  15. Observations on the Stanford 4800 KG gravity wave detector with a cosmic ray monitor

    Science.gov (United States)

    Moskowitz, B. E.

    1986-09-01

    The group at Stanford University has constructed a 4800 kg cryogenic detector which is the most sensitive detector for gravitational radiation successfully operated to date. In this dissertation data are presented from the 1985 run of 36.8 days aggregate collection time. Over the full bandwidth of approximately 13 Hz, the optimum detector noise temperature was found to be 8 mK when the system was operated at 4.3 K. An actual filter was implemented over a 5 Hz bandwidth which yielded the filtered noise temperature of 15 mK. Filtering over the entire bandwidth and operation of a dilution refrigerator at 1 K should lower the noise temperature to below 3 mK. The rate of events whose signal temperature exceeded 0.6 K was found to be higher than that for a similar run in 1981, partly due to greater general activity in the laboratory. A preliminary coincidence experiment was conducted between the Stanford detector and a room temperature detector in Guangzhou, China. In a total of 9.38 days of simultaneous data collection the number of coincidences observed was entirely consistent with random statistics. In the second half of this dissertation, the effect of cosmic rays on a gravity wave bar detector is considered. A one-dimensional thermoacoustic model is used to predict the size of the signal. Measurable effects are restricted to rarer events which may easily be vetoed as gravity wave candidates.

  16. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    Science.gov (United States)

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  17. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    Science.gov (United States)

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  18. Oscillations of the Sun's chromosphere. VI. K grains, resonances, and gravity waves

    Science.gov (United States)

    Kneer, F.; von Uexkull, M.

    1993-07-01

    We present observations of simultaneous filtergram time sequences in Mg b2, Ca K and Hα obtained from quiet Sun disc centre with the Vacuum Tower Telescope at Observatorio del Teide, Tenerife. Fourier analyses are performed to obtain power, coherence and phase spectra in the k-ω plane. There, the dominant features are the wellknown ridges of the 5 min resonant modes. Yet in the chromosphere the ridges extend to high wavenumbers (wavelengths ≍ 1.3 Mm) and to high frequencies (periods ≍ 105 s). Neither the famous chromospheric "3 min" oscillations nor an oscillation at the acoustic cutoff frequency (period 210 s) appear exceptionally pronounced. The signature of gravity waves is indicated from phase relations. We distinguish between the behaviour in the interior of the chromospheric network and on the boundary. The network boundary behaves less oscillatory than the interior. In snapshots of chromospheric intensities the K grains (Beckers 1964), or, synonymously the bright cell points, appear in the cell interior. They represent the phases of high temperature of a wave field with partly resonant and coherent properties. (We take intensity fluctuations as proxies for temperature fluctuations.) The waves are only partly upward propagating p-modes with a multitude of eigenvalues in frequency and wavenumber, like the subphotospheric p-modes. We suggest that an excitation mechanism acts within the chromosphere itself to drive the waves. This could explain the phase relations between intensity and velocity oscillations.

  19. Idealized numerical studies of gravity wave alteration in the tropopause region

    Science.gov (United States)

    Bense, Vera; Spichtinger, Peter

    2017-04-01

    When travelling through the tropopause region, characterised by strong gradients in static stability, wind shear and trace gases, the properties of gravity waves often change drastically. Within this work, the EULAG model (Prusa et al., 2008) is used to provide an idealized setup for sensitivity studies on these modifications. The characteristics of the tropopause are introduced by specifiying environmental profiles for Brunt-Väisälä frequency and horizontal wind speed, partly extracted from measurement and reanalysis data. Tropospheric and stratospheric wave spectra extracted for flows under varying tropopause sharpness are analysed, respectively. In particular, different regimes for transmission behaviour are classified for a series of Brunt-Väisälä frequency profiles showing a tropopause inversion layer (TIL, see e.g. Birner et al., 2002). Furthermore, this study focusses on the comparison of transmission coefficients deduced from numerical simulations with values derived from asymptotical analysis of the governing equations and investigates where the threshold of linear behaviour are for the respective setups, The wave generation is implemented in the model both through topography at the lower model domain and through the prescription of wave packets at initialization of the simulations. References: Prusa, J. M., P. K. Smolarkiewicz, P. K. and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows, Computers & Fluids 37, 1193-1207 Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142.

  20. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    Science.gov (United States)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  1. Lidar observations of vertical wavelengths, potential energy densities, and frequency spectra of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84° S, 166.69° E), Antarctica

    Science.gov (United States)

    Zhao, J.; Chen, C.; Chu, X.; Lu, X.; Fong, W.; Yu, Z.; Roberts, B. R.; Dörnbrack, A.; Smith, J. A.

    2016-12-01

    Five years of atmospheric temperature data have been accumulated since the University of Colorado lidar group deployed an Fe Boltzmann lidar to Arrival Heights near McMurdo, Antarctica. Vertical wavelengths, periods, phase speeds, potential energy densities, and frequency spectra of gravity waves in the stratosphere (from 30 to 50 km) from 2011 to 2015 are investigated. Typical values for gravity wave vertical wavelength and period are 7.5 km and 5.5 h, respectively. However, they are all subjected to seasonal changes. Monthly means of vertical wavelength show a clear seasonal trend with considerably longer wavelengths in winter. Gravity wave potential energy densities (GWPEDs) obtained through temperature perturbations vary significantly from observation to observation; however, they do follow a seasonal trend with a winter maximum and a summer minimum. Efforts were made in order to reveal the mechanisms behind the observed signatures of stratospheric gravity waves. Background wind from European Centre for Medium-Range Weather Forecasts (ECMWF) model and polar vortex position information from Modern Era Retrospective-Analysis for Research and Applications (MERRA) are invoked. The increase in vertical wavelength in winter is linked to strong stratospheric westerlies due to the formation of polar vortex while the GWPED seasonal variations are connected to the changes of gravity wave sources and selective critical-level filtering. We did the first study of gravity wave frequency spectra in the Antarctica upper stratosphere. The slopes of power spectral density versus frequency range from 1.6 to 1.4 from 30 to 50 km, however, they change to 1.0 around 60 km.

  2. Deep water velocities and particle displacements induced by acoustic-gravity waves from submarine earthquakes

    Science.gov (United States)

    Oliveira, T. C. A.; Kadri, U.

    2016-02-01

    An uplift of the ocean bottom caused by a submarine earthquake can generate Acoustic-Gravity Waves (AGW), progressive compression-type waves that travel at near the speed of sound in water. The role of AGW for oceans hydrodynamics has recently became a topic of increasing scientific interest. Kadri [Deep ocean water transport by acoustic-gravity waves, J.Geo. Res. Oceans, 119, (2014)] showed theoretically that AGW can contribute to deep ocean currents and circulation. We analyze and simulate the fundamental AGW modes generated by a submarine earthquake. We consider the first five AGW modes and show that they may all induce comparable temporal variations in water particle velocities at different depths in regions far from the epicenter. Results of temporal variations of horizontal and vertical fluid parcel velocities induced by AGW confirm chaotic flow trajectories at different water depths. A realistic example based on the 2004 Indian Ocean earthquake shows that vertical water particle displacements of O(10-2 ) m can be generated at 1 Km depth in a 4 km water depth ocean. We show that the velocity field depends on the presence of the leading AGW modes. Each AGW mode becomes evanescent at a critical time, at which energy is transferred to the next higher modes. Consequently, the main pattern of the velocity field changes as the leading mode change. As an example, for a reference point located at 1000 Km from the epicenter, the first five AGW become evanescent after 1.6, 4.6, 7.7, 10.8 and 13.8 hours, respectively. Our analysis and simulations shed light on the spatio-temporal evolution of the deep water velocities and particle displacements induced by AGW that radiate during submarine earthquakes. Thus, this work is a contribution to understand the role of high moment magnitude submarine earthquakes in deep water mixing mechanism.

  3. Two Scales of Mixed Rossby-gravity and Kelvin Waves in the lower Stratosphere

    Science.gov (United States)

    Trenberth, K. E.; Karl, T. R.; Xie, S. P.; Nieves, V.; Tung, K. K.; Roemmich, D. H.; Kiladis, G. N.; Gehne, M.; Dias, J.

    2015-12-01

    Two scales of mixed Rossby-gravity (MRG) and Kelvin waves in the lower stratosphere are identified through space time spectral, cross spectral and Principal Component analysis of filtered dynamical fields from radiosonde and reanalysis data. A standard covariance matrix EOF analysis of filtered wind along the equator at 50 hPa is used to isolate MRG and Kelvin waves, using ERA Interim analyses for the entire period 1979-2012. This approach uses 2-6 day meridional wind for MRG waves and 10-25 day eastward zonal wind for Kelvin waves as a basis for the two independent EOF analyses, respectively. Raw wind, geopotential height and CLAUS brightness temperature are then projected onto the EOF PCs at all levels from 1000 to 1 hPa to obtain the structure and evolution of the waves. In all cases EOF pairs are obtained corresponding to propagating modes. The classical Yanai MRG waves are readily identified, and have periods of around 4 days and zonal wavenumber four meridional wind and streamfunction structures centered on the equator, with antisymmetric zonal wind and geopotential as expected. However a faster mode, with a period of around three days is also identified, with a zonal wavenumber three structure. This latter mode is actually much more coherent in cross spectra between antisymmetric zonal wind, geopotential and temperature at 10 degrees north and south. This scale matches the equatorial Rossby radius expected of a disturbance with an equivalent depth of about 120 meters, as identified in space-time spectra of various dynamical quantities obtained from lower stratospheric radiosonde and reanalyses. Strong modulation of this MRG activity by the QBO is also seen for both modes. Kelvin waves are similarly identified using equatorial zonal wind filtered for 10-25 day eastward travelling fluctuations. Two scales are evident here: a wave one and also a wave two disturbance, each with periods of around 14 days. Evidence that the Kelvin and MRG modes are excited by

  4. Properties of internal planetary-scale inertio gravity waves in the mesosphere

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2004-11-01

    Full Text Available At high latitudes in the upper mesosphere, horizontal wind oscillations have been observed with periods around 10h. Waves with such a period are generated in our Numerical Spectral Model (NSM, and they are identified as planetary-scale inertio gravity waves (IGW. These IGWs have periods between 9 and 11h and appear above 60km in the zonal mean (m=0, as well as in m=1 to 4, propagating eastward and westward. Under the influence of the Coriolis force, the amplitudes of the waves propagating westward are larger at high latitudes than those propagating eastward. The waves grow in magnitude at least up to about 100km and have vertical wavelengths around 25km. Applying a running window of 15 days for spectral analysis, the amplitudes in the wind field are typically between 10 and 20m/s and can reach 30m/s in the westward propagating component for m=1 at the poles. In the temperature perturbations, the wave amplitudes above 100km are typically 5K and as large as 10K for m=0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. Numerical experiments show that such waves are also generated without excitation of the migrating tides. The amplitudes and periods then are similar, indicating that the tides are not essential to generate the waves. However, the seasonal variations without tides are significantly different, which leads to the conclusion that non linear interactions between the semidiurnal tide and planetary waves must contribute to the excitation of the IGWs. Directly or indirectly through the planetary waves, the IGWs are apparently excited by the instabilities that arise in the zonal mean circulation. When the solar heating is turned off for m=0, both the PWs and IGWs essentially disappear. That the IGWs and PWs have common roots in their excitation mechanism is also indicated by the striking similarity of their seasonal variations in the

  5. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  6. Wave- and Current-Supported Gravity Flows: Insights from Direct Numerical Simulations (DNS)

    Science.gov (United States)

    Ozdemir, C. E.

    2016-12-01

    Discoveries over the last three decades have shown that current- and wave-enhanced gravity flows (CWEGFs) are among the significant agents that carry substantial amounts of sediments across low-gradient shelves and thereby they are important elements of sediment source-to-sink. Computational fluid dynamics (CFD) complement the existing field and laboratory experiments in that it offers unprecedented details of participating physical processes. Also, since the state-of-the-art optical and acoustic sensors are limited to measure 50 kg/m3 of suspended sediment concentration, CFD becomes the only means to evaluate the physical processes when the turbid layer is highly concentrated. In this presentation, the roles of wave- and alongshore current-induced turbulent boundary layers are investigated separately on across-shelf fine sediment transport. Turbulence-resolving simulations (Direct Numerical Simulations) that utilize a simplified Eulerian-Eulerian two-phase flow model are conducted. The results show that the sediment carrying capacity of wave boundary layers far exceeds the ones carried by along-shelf currents. The results also show that across-shelf velocity in wall units obeys a logarithmic profile, u+=α ln(z+)+β . However, this logarithmic velocity profile is far apart from the log-law and parameters α and β are dependent on sediment loading and the representative settling velocity of sediments. The key parameters that characterize CWEGFs, such as drag coefficient, Cd, and their variation are also calculated and are found to be close to the ones that are observed in the field experiments. It is also found that for wave boundary layers, drag coefficient increases as the wave orbital velocity increases. Further discussion on the details of the sediment-turbulence interaction is also warranted.

  7. Geodetic refraction effects of electromagnetic wave propagation through the atmosphere

    CERN Document Server

    1984-01-01

    With very few exceptions, geodetic measurements use electro­ magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter­ restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow­ ing parameters of the electromagnetic wave are measured: ampli­ tude, phase, angle-of-arrival, polarisation and frequency. Ac­ curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at­ mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter­ restrial and space applications. Instrumental accuracies are al­ ready below the atmospherically i...

  8. Waiting for 21-Lutetia "Rosetta" images as a final proof of structurizing force of inertia-gravity waves

    Science.gov (United States)

    Kochemasov, Gennady G.

    2010-05-01

    The 100 km long flattened asteroid 21-Lutetia will be imaged by the "Rosetta' spacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia-gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies' accelerations imply inertia-gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four directions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising strongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) makes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the essentially dichotomous simplest Plato's figure. In this polyhedron always there is an opposition of extension (a face) to contraction (a vertex). The first overtone wave2 (long πR) makes tectonic sectors, also risen and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes and is shown in their tectonics

  9. Unseeded Large Scale PIV measurements accounting for capillary-gravity waves phase speed

    CERN Document Server

    Benetazzo,; Gamba,; M.,; Barbariol,; F,

    2016-01-01

    Large Scale Particle Image Velocimetry (LSPIV) is widely recognized as a reliable method to measure water surface velocity field in open channels and rivers. LSPIV technique is based on a camera view that frames the water surface in a sequence, and image-processing methods to compute water surface displacements between consecutive frames. Using LSPIV, high flow velocities, as for example flood conditions, were accurately measured, whereas determinations of low flow velocities is more challenging, especially in absence of floating seeding transported by the flow velocity. In fact, in unseeded conditions, typical surface features dynamics must be taken into account: besides surface structures convected by the current, capillary-gravity waves travel in all directions, with their own dynamics. Discrimination between all these phenomena is here discussed, providing a new method to distinguish and to correct unseeded LSPIV measurements associated with wavy structures, accounting for their phase speed magnitude and ...

  10. Constraints on fourth order gravity from binary pulsars and gravitational waves

    Science.gov (United States)

    Banerjee, Shreya; Bera, Sayantani; Banerjee, Srimanta; Singh, Tejinder P.

    2017-10-01

    We have earlier proposed a fourth order gravity model as a possible explanation for late time cosmic acceleration and for flattened galaxy rotation curves. The model has a free length parameter whose value depends on the scale of the system under study (e.g., the whole Universe, a galaxy, or a compact binary pulsar). In the present work, we investigate the constraints imposed on the free model parameter by PSR 1913 +16 (Hulse-Taylor binary pulsar), PSR J 1518 +4904 , and PSR J0737-3039 data: periastron advance, and emission of gravitational waves and consequent period decay. It is shown that the model is consistent with these observations, provided the length parameter is bounded from above, but is unstable due to the presence of ghost degrees of freedom.

  11. μ -hybrid inflation with low reheat temperature and observable gravity waves

    Science.gov (United States)

    Rehman, Mansoor Ur; Shafi, Qaisar; Vardag, Fariha K.

    2017-09-01

    In μ -hybrid inflation a nonzero inflaton vacuum expectation value induced by supersymmetry breaking is proportional to the gravitino mass m3 /2, which can be exploited to resolve the minimal supersymmetric standard model μ problem. We show how this scenario can be successfully implemented with m3 /2˜1 - 100 TeV and reheat temperature as low as 1 06 GeV by employing a minimal renormalizable superpotential coupled with a well-defined nonminimal Kähler potential. The tensor-to-scalar ratio r , a canonical measure of primordial gravity waves, in most cases is less than or of the order of 10-6- 10-3 .

  12. Transition to turbulence in internal gravity waves at stratospheric and mesospheric heights

    Science.gov (United States)

    Klostermeyer, J.

    Even though only little knowledge about turbulence effects on hypersonic aircraft and re-entry vehicles exists, experience from conventional and transsonic aircraft (e.g. Etkin, 1981) suggests that turbulence probably plays a decisive role because, for example, it may lead to loss of control of attitude or flight path and failures of structure or air-breathing engines. To design and operate hypersonic aircraft and re-entry vehicles safely, engineering turbulence models must be developed which describe not only the most intense turbulence encountered with any given low probability, but also the occurrence of turbulence and its mean intensity along particular routes. Engineering models, in turn, will be reliable only if they are based on an understanding of why it is so. Since the stratosphere and mesosphere are of particular interest, this paper concentrates on turbulence generation in internal gravity waves which are of central importance in the dynamics of these regions.

  13. Simulating influence of QBO phase on planetary waves during a stratospheric warming in a general circulation model of the middle atmosphere

    Science.gov (United States)

    Koval, Andrey; Gavrilov, Nikolai; Pogoreltsev, Alexander; Savenkova, Elena

    2016-04-01

    One of the important factors of dynamical interactions between the lower and upper atmosphere is energy and momentum transfer by atmospheric internal gravity waves. For numerical modeling of the general circulation and thermal regime of the middle and upper atmosphere, it is important to take into account accelerations of the mean flow and heating rates produced by dissipating internal waves. The quasi-biennial oscillations (QBOs) of the zonal mean flow at lower latitudes at stratospheric heights can affect the propagation conditions of planetary waves. We perform numerical simulation of global atmospheric circulation for the initial conditions corresponding to the years with westerly and easterly QBO phases. We focus on the changes in amplitudes of stationary planetary waves (SPWs) and traveling normal atmospheric modes (NAMs) in the atmosphere during SSW events for the different QBO phases. For these experiments, we use the global circulation of the middle and upper atmosphere model (MUAM). There is theory of PW waveguide describing atmospheric regions where the background wind and temperature allow the wave propagation. There were introduced the refractive index for PWs and found that strongest planetary wave propagation is in areas of large positive values of this index. Another important PW characteristic is the Eliassen-Palm flux (EP-flux). These characteristics are considered as useful tools for visualizing the PW propagation conditions. Sudden stratospheric warming (SSW) event has significant influence on the formation of the weather anomalous and climate changes in the troposphere. Also, SSW event may affect the dynamical and energy processes in the upper atmosphere. The major SSW events imply significant temperature rises (up to 30 - 40 K) at altitudes 30 - 50 km accompanying with corresponding decreases, or reversals, of climatological eastward zonal winds in the stratosphere.

  14. Pressure field induced in the water column by acoustic-gravity waves generated from sea bottom motion

    Science.gov (United States)

    Oliveira, Tiago C. A.; Kadri, Usama

    2016-10-01

    An uplift of the ocean bottom caused by a submarine earthquake can trigger acoustic-gravity waves that travel at near the speed of sound in water and thus may act as early tsunami precursors. We study the spatiotemporal evolution of the pressure field induced by acoustic-gravity modes during submarine earthquakes, analytically. We show that these modes may all induce comparable temporal variations in pressure at different water depths in regions far from the epicenter, though the pressure field depends on the presence of a leading acoustic-gravity wave mode. Practically, this can assist in the implementation of an early tsunami detection system by identifying the pressure and frequency ranges of measurement equipment and appropriate installation locations.

  15. Seasonal and interannual variations of mesospheric gravity waves and background winds

    Science.gov (United States)

    Hoffmann, P.; Rapp, M.; Becker, E.; Placke, M.

    2011-12-01

    The seasonal variation of the activity of gravity waves (GW) in the mesosphere/lower thermosphere is investigated using wind measurements with meteor and MF radars at Juliusruh (55°N, 13°E) and Andenes (69°N, 16°E), as well as on the basis of the simulated annual cycle using a gravity-wave resolving mechanistic general circulation model. Observational and computational results show the strongest GW energy during winter and a secondary maximum during summer. Additional observational analysis of short-period GWs yields a more pronounced summer maximum. The semi-annual variation is consistent with the selective filtering of westward and eastward GWs by the mean zonal wind. The latitudinal dependence during summer is characterized by stronger GW energy between 65 and 85 km at middle latitudes than at polar latitudes, and a corresponding upward shift of the wind reversal towards the pole which is also reflected by the simulated GW drag. Based on long term measurements of mesospheric winds at mid and polar altitudes, the interannual variations of the activity of GW with different periods and their dependence from the background winds are investigated. First results indicate that the observed zonal wind trend at about 75 km during summer at mid latitudes goes along with an enhanced activity of GW with periods between 3 - 6 hours at altitudes between 80 and 88 km. We will continue our studies of GW trends for other seasons at both latitudes to illuminate the contribution of the selective GW filtering by the background winds.

  16. Some Expressions for Gravity without the Big G and their Possible Wave-Theoretical-Explanation

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2013-01-01

    Full Text Available This letter presents some new expressions for gravity without the big G and proposes their possible wave-theoretical-explanation. This attempt leads to some insight that: (i We need the proportionality-constant G because we measure masses and distances in our arbitrarily-chosen units of kg and meters; but if we measure “mass” as a fraction of “total-mass of the universe” M 0 and measure distances as a fraction of “radius-of-the- universe” R 0 then there is no need for the proportionality-constant G . However, large uncertainties in the M 0 and R 0 limit the general application of this relation presently. (ii The strength of gravity would be different if the total-mass of the universe were different. Then this possibility is supported with the help of wave-theory. (iii This understanding of G leads to an insight that Plancks-length, Planck-mass and Planck’s unit of time are geometric-mean-values of astrophysical quantities like: total-mass of the universe and the smallest-possible-mass hH 0 = c 2 . (iv There appears a law followed by various systems-of-matter, like: the electron, the proton, the nucleus-of-atom, the globular-clusters, the spiral-galaxies, the galactic-clusters and the whole universe; that their ratio Mass / Radius 2 remains constant. This law seems to be more fundamental than the fundamental-forces because it is obeyed irrespective of the case, whether the system is bound by strong-force, electric-force, or gravitational-force.

  17. Non-Equilibrium Radiative Transfer in Structured Atmospheres

    National Research Council Canada - National Science Library

    Picard, R. H; Winick, J. R; Wintersteiner, P. P

    2002-01-01

    ... passage of both atmospheric gravity waves and transient frontal disturbances or bores. The infrared emissions from this part of the atmosphere are already typically not in local thermodynamic equilibrium (LTE...

  18. Effects of Rotation and Gravity Field on Surface Waves in Fibre-Reinforced Thermoelastic Media under Four Theories

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2013-01-01

    Full Text Available Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T, Lord-Shulman theory (L-S, Green-Lindsay theory (G-L, and the linearized (G-N theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.

  19. The relationship between mixed Rossby-gravity waves and convection in a general circulation model

    Science.gov (United States)

    Hess, Peter G.; Hendon, Harry H.; Battisti, David S.

    1993-01-01

    We investigate the relationship between mixed Rossby-gravity waves (MRGWs) and convection in a general circulation model. The experiments described are performed in a general circulation model with the lower boundary set to that of an ocean surface everywhere. Several experiments are run varying the convective parameterization scheme (using either a modified Kuo scheme or a moist convective adjustment scheme) and varying the tropical sea surface temperatures (specified to be zonally symmetric in all cases), thereby changing the location of the modeled intertropical convergence zones (ITCZs). The appearance of a robust MRGW occurs when the sea surface temperature is such that two ITCZs straddle the equator. The particular sea surface temperature distribution used and the parameterization scheme for convection also affect the structure and strength of the modeled MRGW. The vertical structure of MRGWs is analyzed in the experiment in which this wave mode is the most energetic. We show that MRGWs of several different zonal length scales exist in the troposphere in association with convection; however, it is only the longer length scales which can be discerned in the upper troposphere and lower stratosphere.

  20. Millimeter Wave Radar for Atmospheric Turbulence Characterization and Wind Profiling for Improved Naval Operations

    Science.gov (United States)

    2016-12-29

    we consider the capabilities of a millimeter-wave radar to make atmospheric air flow measurements relevant to naval operations . The measurements could...Conclusions 14 References 14 1iii Millimeter Wave Radar for Atmospheric Turbulence Characterization and Wind Profiling for Improved Naval Operations Ben Rock... operations . We begin with a discussion of previous efforts to mitigate the aforementioned difficulties, and argue that millimeter wave radar techniques can be

  1. Generation of sound by Alfven waves with random phases in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, N.S.; Fainshtein, S.M.

    1976-11-01

    The problem of the excitation of sound by Alfven waves meeting in the solar plasma is discussed. Kinetic equations for the interacting waves are derived and analyzed on the assumption that the Alfven waves have random phases. Estimates are given which show the possibility of the generation of LF-pulsations in the solar atmosphere.

  2. Sensitivity of the quasi-biennial oscillation simulated in WACCM to the phase speed spectrum and the settings in an inertial gravity wave parameterization

    Science.gov (United States)

    Yu, Chao; Xue, Xianghui; Wu, Jianfei; Chen, Tingdi; Li, Huimin

    2017-03-01

    The application of inertial gravity wave parameterization has allowed for the spontaneous generation of quasi-biennial oscillation (QBO) in the Whole Atmosphere Community Climate Model (WACCM), although there is some mismatch when comparing with observations. The parameterization is based on Lindzen's linear saturation theory, modified to describe inertia-gravity waves (IGW) by considering the Coriolis effect. In this work, we improve the parameterization by importing a more realistic IGW phase speed spectrum that exhibits a double peak Gaussian distribution calculated from tropical radiosonde observations. A series of numeric simulations are performed to test the sensitivity of QBO-like oscillation features to the phase speed spectrum and the settings of parameterized IGW. All these simulations are capable of generating equatorial wind oscillations in the stratosphere based on standard spatial resolution settings. Central phase speeds of the "double-Gaussian parameterization" affect QBO magnitudes and periods, and the momentum flux of IGW determines the acceleration rate of zonal wind. Furthermore, stronger IGW forcing can lead to a propagation of the QBO-like oscillation to lower altitude. The intermittency factor of the parameterization also prominently affects the QBO period. Stratospheric QBO-like oscillation with obvious improvements is generated using the new IGW parameterization in a long-time simulation.

  3. Large-scale dynamical influence of a gravity wave generated over the Antarctic Peninsula – regional modelling and budget analysis

    Directory of Open Access Journals (Sweden)

    JOEL Arnault

    2013-03-01

    Full Text Available The case study of a mountain wave triggered by the Antarctic Peninsula on 6 October 2005, which has already been documented in the literature, is chosen here to quantify the associated gravity wave forcing on the large-scale flow, with a budget analysis of the horizontal wind components and horizontal kinetic energy. In particular, a numerical simulation using the Weather Research and Forecasting (WRF model is compared to a control simulation with flat orography to separate the contribution of the mountain wave from that of other synoptic processes of non-orographic origin. The so-called differential budgets of horizontal wind components and horizontal kinetic energy (after subtracting the results from the simulation without orography are then averaged horizontally and vertically in the inner domain of the simulation to quantify the mountain wave dynamical influence at this scale. This allows for a quantitative analysis of the simulated mountain wave's dynamical influence, including the orographically induced pressure drag, the counterbalancing wave-induced vertical transport of momentum from the flow aloft, the momentum and energy exchanges with the outer flow at the lateral and upper boundaries, the effect of turbulent mixing, the dynamics associated with geostrophic re-adjustment of the inner flow, the deceleration of the inner flow, the secondary generation of an inertia–gravity wave and the so-called baroclinic conversion of energy between potential energy and kinetic energy.

  4. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  5. Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002

    Directory of Open Access Journals (Sweden)

    E. Becker

    2006-07-01

    Full Text Available We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere.

    We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004. In the present version, however, the model includes no gravity wave (GW parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height.

    The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower

  6. Estimation of Intrinsic Wave Parameters and Momentum Fluxes of Mesospheric Gravity Waves over Korea Peninsula Using All-Sky Camera and Fabry-Perot Interferometer

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    2007-12-01

    Full Text Available We estimate the momentum fluxes of short-period gravity waves which are observed in the OI 557.7 nm nightglow emission with all-sky camera at Mt. Bohyun (36.2° N, 128.9° E in Korea. The intrinsic phase speed (C_{int}, the intrinsic period (τ_{int}, and vertical wavelength (λ_z are also deduced from the horizontal wavelength (λ_h, observed period (τ_{ob}, propagation direction (φ_{ob}, observe phase speed (υ_{ob} of the gravity wave on the all-sky images. The neutral winds to deduce intrinsic wave parameters are measured with Fabry-Perot interferometer on Shigaraki (34.8° N, 13.1° E in Japan. We selected 5-nights of observations during the period between July 2002 and December 2006 considering of the weather and instrument conditions in two observation sites. The mean values of intrinsic parameter of gravity waves are (τ_{int} = 12.9 ± 6.1 m/s, (λ_z = 12.9 ± 6.5, and (C_{int} = 40.6 ± 11.6 min. The mean value of calculated momentum fluxes for four nights besides of λ_z < 6 km is 12.0 ± 15.2 m^2/s^2. It is needed the long-term coherent observation to obtain typical values of momentum fluxes of the mesospheric gravity waves using all-sky camera and the neutral wind measurements.

  7. Gravity wave control on ESF day-to-day variability: An empirical approach

    Science.gov (United States)

    Aswathy, R. P.; Manju, G.

    2017-06-01

    The gravity wave control on the daily variation in nighttime ionization irregularity occurrence is studied using ionosonde data for the period 2002-2007 at magnetic equatorial location Trivandrum. Recent studies during low solar activity period have revealed that the seed perturbations should have the threshold amplitude required to trigger equatorial spread F (ESF), at a particular altitude and that this threshold amplitude undergoes seasonal and solar cycle changes. In the present study, the altitude variation of the threshold seed perturbations is examined for autumnal equinox of different years. Thereafter, a unique empirical model, incorporating the electrodynamical effects and the gravity wave modulation, is developed. Using the model the threshold curve for autumnal equinox season of any year may be delineated if the solar flux index (F10.7) is known. The empirical model is validated using the data for high, moderate, and low solar epochs in 2001, 2004, and 1995, respectively. This model has the potential to be developed further, to forecast ESF incidence, if the base height of ionosphere is in the altitude region where electrodynamics controls the occurrence of ESF. ESF irregularities are harmful for communication and navigation systems, and therefore, research is ongoing globally to predict them. In this context, this study is crucial for evolving a methodology to predict communication as well as navigation outages.Plain Language SummaryThe manifestation of nocturnal ionospheric irregularities at magnetic equatorial regions poses a major hazard for communication and navigation systems. It is therefore essential to arrive at prediction methodologies for these irregularities. The present study puts forth a novel empirical model which, using only solar flux index, successfully differentiates between days with and without nocturnal ionization irregularity occurrence. The model-derived curve is obtained such that the days with and without occurrence of

  8. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  9. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  10. Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere

    Science.gov (United States)

    Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.

    2012-02-01

    Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi

  11. Momentum flux associated with gravity waves in the low-latitude troposphere

    Directory of Open Access Journals (Sweden)

    S. R. Prabhakaran Nayar

    Full Text Available The vertical fluxes of horizontal momentum at tropospheric heights are calculated for four days, 25–28 August 1999. The mean zonal wind during these days show the presence of strong westward wind at the upper troposphere. Both the symmetric beam radar method and the power spectral method of evaluation of vertical flux of zonal and meridional momentum shows nearly the same result for quiet conditions. The temporal evolution of the momentum flux is estimated for a day with strong zonal shear and convection. These results indicate that on 28 August 1999, the strong downward vertical wind in the lower altitude range is associated with upward vertical flux of zonal momentum, and strong upward vertical wind is associated with downward vertical flux. Similarly, the strong shear in zonal wind is associated with the increase in negative values in vertical flux in the upper troposphere. Analysis of the role of wave periods in the transport of momentum flux indicates that the vertical momentum flux magnitude is not evenly distributed in all wave periods, but instead it peaks at certain wave periods in the range 10 to 100 min.

    Key words. Meteorology and atmospheric dynamics (convective process; tropical meteorology; precipitation

  12. Temporal power spectra of irradiance scintillation for infrared optical waves' propagation through marine atmospheric turbulence.

    Science.gov (United States)

    Cui, Linyan

    2014-09-01

    Current theoretical temporal power spectra models of an optical wave have been developed for terrestrial environments. The interactions between humidity and temperature fluctuations in the marine atmospheric environments make the marine atmospheric turbulence particularly challenging, and the optical waves' propagation through marine turbulence exhibits a different behavior with respect to terrestrial propagation. In this paper, the temporal power spectra of irradiance scintillation under weak marine atmospheric turbulence, which is one of the key temporal statistics to describe the correlation of irradiance fluctuations at different time instances, is investigated in detail both analytically and numerically. Closed-form expressions for the temporal power spectra of irradiance scintillation are derived for infrared plane and spherical waves under weak marine atmospheric turbulence, and they consider physically the influences of finite turbulence inner and outer scales. The final results indicate that the marine atmospheric turbulence brings more effects on the irradiance scintillation than the terrestrial atmospheric turbulence.

  13. Reconstruction of the gravity wave field from convective plumes via ray tracing

    Directory of Open Access Journals (Sweden)

    S. L. Vadas

    2009-01-01

    Full Text Available We implement gravity wave (GW phases into our convective plume and anelastic ray trace models. This allows us to successfully reconstruct the GW velocity, temperature, and density perturbation amplitudes and phases in the Mesosphere-Lower-Thermosphere (MLT via ray tracing (in real space those GWs that are excited from a deep convective plume. We find that the ray trace solutions agree very well with the exact, isothermal, zero-wind, Fourier-Laplace solutions in the Boussinesq limit. This comparison also allows us to determine the normalization factor which converts the GW spectral amplitudes to real-space amplitudes in the ray trace model. This normalization factor can then be used for ray tracing GWs through varying temperature and wind profiles. We show that by adding GW reflection off the Earth's surface, the resulting GW spectrum has more power at larger vertical and horizontal wavelengths. We determine the form of the momentum flux and velocity spectra which allows for easy calculation of GW amplitudes in the MLT and thermosphere. Finally, we find that the reconstructed (ray traced solution for a deep, convective plume with a duration much shorter than the buoyancy period does not equal the Fourier-Laplace Boussinesq solution; this is likely due to errors in the Boussinesq dispersion relation for very high frequency GWs.

  14. Detection of mesospheric gravity waves in Odin/OSIRIS PMC data in 2002- 2008

    Science.gov (United States)

    Petelina, S. V.; Rusch, D. W.

    2008-12-01

    The Optical Spectrograph and InfraRed Imager System instrument (OSIRIS) on the limb-viewing Odin satellite observes Polar Mesospheric Clouds (PMCs) in both hemispheres since November, 2001. The orbit period of Odin is 96 minutes and the maximum latitudinal coverage in the orbit plane is between 82.2 N and 82.2 S. In this work, the longitudinal distribution of Odin/OSIRIS PMC brightness in each hemisphere during a 4-week period around the summer solstice from 2002 until 2008 is analysed. In the Northern Hemisphere, the PMC brightness around 60+-20 W and around 80+-20 E is up to 30 percent lower than that at other longitudes. In the Southern Hemisphere, the cloud brightness is also 30-60 percent lower around 80+-20 W. We attribute this effect to the influence of gravity waves generated by the Earth's terrain above Greenland and Ural mountains (the natural boundary between Europe and Asia) in the Northern Hemisphere and by the Antarctic Peninsula mountains in the Southern Hemisphere.

  15. Diurnal variation in gravity wave activity at low and middle latitudes

    Directory of Open Access Journals (Sweden)

    V. F. Andrioli

    2013-11-01

    Full Text Available We employ a modified composite day extension of the Hocking (2005 analysis method to study gravity wave (GW activity in the mesosphere and lower thermosphere using 4 meteor radars spanning latitudes from 7° S to 53.6° S. Diurnal and semidiurnal modulations were observed in GW variances over all sites. Semidiurnal modulation with downward phase propagation was observed at lower latitudes mainly near the equinoxes. Diurnal modulations occur mainly near solstice and, except for the zonal component at Cariri (7° S, do not exhibit downward phase propagation. At a higher latitude (SAAMER, 53.6° S these modulations are only observed in the meridional component where we can observe diurnal variation from March to May, and semidiurnal, during January, February, October (above 88 km and November. Some of these modulations with downward phase progression correlate well with wind shear. When the wind shear is well correlated with the maximum of the variances the diurnal tide has its largest amplitudes, i.e., near equinox. Correlations exhibiting variations with tidal phases suggest significant GW-tidal interactions that have different characters depending on the tidal components and possible mean wind shears. Modulations that do not exhibit phase variations could be indicative of diurnal variations in GW sources.

  16. Spectral decomposition of internal gravity wave sea surface height in global models

    Science.gov (United States)

    Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-10-01

    Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.

  17. Axisymmetric capillary-gravity waves at the interface of two viscous, immiscible fluids - Initial value problem

    Science.gov (United States)

    Farsoiya, Palas Kumar; Dasgupta, Ratul

    2017-11-01

    When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.

  18. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign. Part II. Radar investigations and modelling studies

    Energy Technology Data Exchange (ETDEWEB)

    Serafimovich, A.; Zuelicke, C.; Hoffmann, P.; Peters, D.; Singer, W. [Leibniz-Inst. fuer Atmosphaerenphysik, Kuehlungsborn (Germany); Dalin, P. [Swedish Inst. of Space Physics, Kiruna (Sweden)

    2006-07-01

    We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHP radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya rocket range (ARR) near Andenes (69.3 N, 16 E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR fifth-generation mesoscale model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of {proportional_to}4.5-5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity. (orig.)

  19. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part II: Radar investigations and modelling studies

    Science.gov (United States)

    Serafimovich, A.; Zülicke, Ch.; Hoffmann, P.; Peters, D.; Dalin, P.; Singer, W.

    2006-11-01

    We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5-5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.

  20. The DYNAMO Orbiter Project: High Resolution Mapping of Gravity/Magnetic Fields and In Situ Investigation of Mars Atmospheric Escape

    Science.gov (United States)

    Smrekar, S.; Chassefiere, E.; Forget, F.; Reme, H.; Mazelle, C.; Blelly, P. -L.; Acuna, M.; Connerney, J.; Purucker, M.; Lin, R.

    2000-01-01

    Dynamo is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for Dynamo of 120-130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere, and water, from the planet. There is much room for debate on the importance of current atmosphere escape processes in the evolution of the Martian atmosphere, as early "exotic" processes including hydrodynamic escape and impact erosion are traditionally invoked to explain the apparent sparse inventory of present-day volatiles. Yet, the combination of low surface gravity and the absence of a substantial internally generated magnetic field have undeniable effects on what we observe today. In addition to the current losses in the forms of Jeans and photochemical escape of neutrals, there are solar wind interaction-related erosion mechanisms because the upper atmosphere is directly exposed to the solar wind. The solar wind related loss rates, while now comparable to those of a modest comet, nonetheless occur continuously, with the intriguing possibility of important cumulative and

  1. Parametric generation of Alfven and sound waves in the solar atmosphere. Isothermal atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, N.S.; Fajnshtejn, S.M. (Gor' kovskij Politekhnicheskij Inst. (USSR))

    The parametric instability of Alfven and sound waves in an isothermal layer of the solar plasma is investigated. Conditions of the wave generation are found under the condition that the velocities of Alfven waves and isothermal sound are constant. The results obtained are used for the interpretation of attenuation of Alfven wave fluxes in solar spots.

  2. Waves In Space Plasmas (WISP)

    Science.gov (United States)

    Fredericks, R. W.

    1980-01-01

    Topics included in the WISP science objectives are: (1) VLF wave injection experiments; (2) traveling ionospheric disturbances and atmospheric gravity waves; (3) ionospheric bubbles; and (4) plasma wave physics. Flow charts of the WISP investigation organization, the project life cycle and the instrumentation are given.

  3. Transverse instability and viscous dissipation of forced 3-D gravity-capillary solitary waves on deep water

    Science.gov (United States)

    Cho, Yeunwoo

    2014-11-01

    The shedding phenomena of 3-D viscous gravity-capillary solitary waves generated by a moving air-forcing on the surface of deep water are investigated. Near the resonance where the forcing speed is close to 23 cm/s, two kinds of shedding modes are possible; Anti-symmetric and symmetric modes. A relevant theoretical model equation is numerically solved for the identification of shedding of solitary waves, and is analytically studied in terms of their linear stability to transverse perturbations. Furthermore, by tracing trajectories of shed solitary waves, the decay rate of a 3-D solitary wave due to viscous dissipation is estimated. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1002441).

  4. Equatorial oscillations maintained by gravity waves as described with the Doppler Spread Parameterization: I. Numerical experiments

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.

    1998-01-01

    Gravity Waves (GW) as described with the Doppler Spread Parameterization (DSP) of Hines have been shown to produce significant Quasi-biennial and Semi-annual oscillations (QBO and SAO) in the zonal circulation at equatorial latitudes. To elucidate the process involved, we discuss computer experiments performed without the external, seasonal variations in solar differential heating, and the conclusions are summarized here. (1) As reported earlier, two kinds of oscillations are then generated spontaneously: one at lower altitudes in the stratosphere which has a long period approaching that of the QBO, the other one at higher altitudes in the mesosphere which has a shorter period close to that of the SAO. The amplitudes of these oscillations are weaker, however, than those generated with seasonal heating. (2) When the time independent solar heating is turned off, the oscillations continue but with significantly reduced period in the mesosphere where the vertical winds driven by solar differential heating produce Doppler shifting. The associated temperature variations are then small, consistent with the one dimensional prototype calculations discussed by Lindzen and Holton. (3) When the GW momentum source is turned off above 40 km to suppress the short-period oscillation, the long-period oscillation below continues with enhanced amplitude and period. When the source is turned off below 35 km, the amplitude of the short-period oscillation increases at higher altitudes, indicative of increased acceleration. (4) The wind oscillations change systematically and dramatically with changing eddy diffusivity/viscosity (K). The amplitudes and periods of both short- and long-period oscillations decrease (increase) with increasing (decreasing) K, and above a certain value of viscosity, both oscillations completely cease. Lowering K thus helps in generating a larger and longer period QBO at lower altitudes, but can be detrimental to the SAO when the natural oscillation period

  5. Low-level vertical wind shear effects on the gravity wave breaking over an isolated two-dimensional orography

    Directory of Open Access Journals (Sweden)

    Xu-Wei Bao

    2012-02-01

    Full Text Available Flow regimes of dry, stratified flow passing over an isolated two-dimensional (2-D orography mainly concentrate at two stagnation points. One occurs on the upslope of the orography owing to flow blocking; another is related to gravity wave breaking (GWB over the leeside. Smith (1979 put forward a hypothesis that the occurring of GWB is suppressed when the low-level vertical wind shear (VWS exceeds some value. In the present study, a theoretical solution in a two-layer linear model of orographic flow with a VWS over a bell-shaped 2-D orography is developed to investigate the effect of VWS on GWB's occurring over a range of surface Froude number Fr0=U0/Nh (U0 is surface wind speed, h is orography height and N is stability parameter, over which the GWB occurs first and the upstream flow blocking is excluded. Based on previous simulations and experiments, the range of surface Froude number selected is 0.6 ≤ Fr0≤2.0. Based on this solution, the conditions of surface wind speed (U0 and one-to-one matching critical VWS (Δuc for GWB's occurring are discussed. Over the selected range of Fr0, GWB's occurring will be suppressed if the VWS (Δu is larger than Δuc at given U0. Moreover, there is a maximum value of Δuc over the selected range of Fr0, which is labelled as Δumax, and its matching surface wind speed by U0m. Once the Δu is larger than Δumax, the flow will pass over the orography without GWB's occurring. That means, over the selected range of Fr0, the flow regime of 2-D orographic flow related to GWB occurring primarily will be absent when Δu > Δumax, regardless of the value for U0. In addition, the vertical profile of atmospheric stability and height of VWS could result in different features of mountain wave, which leads to different Δuc and Δumax for the GWB's occurring. The possible inaccuracy of estimated Δuc in the present linear model is also discussed.

  6. Diffusion of Sound Waves in a Turbulent Atmosphere

    Science.gov (United States)

    Lyon, Richard H.

    1960-01-01

    The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.

  7. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  8. Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage

    Science.gov (United States)

    Wright, Corwin J.; Hindley, Neil P.; Hoffmann, Lars; Alexander, M. Joan; Mitchell, Nicholas J.

    2017-07-01

    Gravity waves (GWs) transport momentum and energy in the atmosphere, exerting a profound influence on the global circulation. Accurately measuring them is thus vital both for understanding the atmosphere and for developing the next generation of weather forecasting and climate prediction models. However, it has proven very difficult to measure the full set of GW parameters from satellite measurements, which are the only suitable observations with global coverage. This is particularly critical at latitudes close to 60° S, where climate models significantly under-represent wave momentum fluxes. Here, we present a novel fully 3-D method for detecting and characterising GWs in the stratosphere. This method is based around a 3-D Stockwell transform, and can be applied retrospectively to existing observed data. This is the first scientific use of this spectral analysis technique. We apply our method to high-resolution 3-D atmospheric temperature data from AIRS/Aqua over the altitude range 20-60 km. Our method allows us to determine a wide range of parameters for each wave detected. These include amplitude, propagation direction, horizontal/vertical wavelength, height/direction-resolved momentum fluxes (MFs), and phase and group velocity vectors. The latter three have not previously been measured from an individual satellite instrument. We demonstrate this method over the region around the Southern Andes and Antarctic Peninsula, the largest known sources of GW MFs near the 60° S belt. Our analyses reveal the presence of strongly intermittent highly directionally focused GWs with very high momentum fluxes (˜ 80-100 mPa or more at 30 km altitude). These waves are closely associated with the mountains rather than the open ocean of the Drake Passage. Measured fluxes are directed orthogonal to both mountain ranges, consistent with an orographic source mechanism, and are largest in winter. Further, our measurements of wave group velocity vectors show clear observational

  9. Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage

    Directory of Open Access Journals (Sweden)

    C. J. Wright

    2017-07-01

    Full Text Available Gravity waves (GWs transport momentum and energy in the atmosphere, exerting a profound influence on the global circulation. Accurately measuring them is thus vital both for understanding the atmosphere and for developing the next generation of weather forecasting and climate prediction models. However, it has proven very difficult to measure the full set of GW parameters from satellite measurements, which are the only suitable observations with global coverage. This is particularly critical at latitudes close to 60° S, where climate models significantly under-represent wave momentum fluxes. Here, we present a novel fully 3-D method for detecting and characterising GWs in the stratosphere. This method is based around a 3-D Stockwell transform, and can be applied retrospectively to existing observed data. This is the first scientific use of this spectral analysis technique. We apply our method to high-resolution 3-D atmospheric temperature data from AIRS/Aqua over the altitude range 20–60 km. Our method allows us to determine a wide range of parameters for each wave detected. These include amplitude, propagation direction, horizontal/vertical wavelength, height/direction-resolved momentum fluxes (MFs, and phase and group velocity vectors. The latter three have not previously been measured from an individual satellite instrument. We demonstrate this method over the region around the Southern Andes and Antarctic Peninsula, the largest known sources of GW MFs near the 60° S belt. Our analyses reveal the presence of strongly intermittent highly directionally focused GWs with very high momentum fluxes (∼ 80–100 mPa or more at 30 km altitude. These waves are closely associated with the mountains rather than the open ocean of the Drake Passage. Measured fluxes are directed orthogonal to both mountain ranges, consistent with an orographic source mechanism, and are largest in winter. Further, our measurements of wave group velocity

  10. Duration of Gravity Waves in OH Airglow Layer Observed by an All-sky Airglow Imager at Maui and Cerro Pachón

    Science.gov (United States)

    Cao, B.; Liu, A. Z.; Gardner, C. S.

    2015-12-01

    OH airglow layer has a typical FWHM of ~7 km centered at ~87 km altitude. Observations from airglow imaging have shown that gravity waves exist most of the time in this layer. The duration or lifespan of wave events has important implications for gravity wave parameterization. In this study, persistent wave events are isolated from long-term airglow measurements from Maui, HI(20.7°N, 156.3°W) and Cerro Pachón, Chile(30.2°S, 70.7°W) by restricting the consecutive wave's parameters within certain threshold. The probably distribution of the duration of wave events is found be exponentially distributed and the exponents are different at these two different sites. Explanations for such distributions are proposed based on the wave breaking or wave propagation through the airglow layer.

  11. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)

    2015-12-15

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.

  12. influence of gravity

    Directory of Open Access Journals (Sweden)

    Animesh Mukherjee

    1991-01-01

    Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.

  13. The impact of rain on wave evolution and its feedback to the atmosphere

    Science.gov (United States)

    Varlas, George; Katsafados, Petros; Papadopoulos, Anastasios; Korres, Gerasimos

    2017-04-01

    Rain can alter the exchange of properties across the ocean surface in several ways. In particular, rainfall can cause an increase in the surface roughness by enhancing both vertical and horizontal stresses on the water surface when raindrops strike the moving water surface. In the context of this study, the impact of rain on wave evolution and its feedback to atmosphere is examined using a two-way fully coupled atmosphere-ocean wave system. The system consists of the Weather Research Forecasting model coupled with Chemistry (WRF-Chem) as the atmospheric component and the Wave model (WAM) as the ocean wave component. Due to their advanced capabilities and features, the two models have been dynamically coupled using the OASIS Model Coupling Toolkit (OASIS3-MCT) and the resulting name of the coupled system is CHAOS (CHemical Atmospheric Ocean wave System). In order to analyze the rain-ocean wave interactions, a new parameterization scheme was added in the surface layer scheme of CHAOS. The new scheme incorporates indirect rain-ocean wave effects adding a rain-induced roughness length to the roughness length produced by wind blowing over sea-surface as initially proposed by Kitaigorodskii (1973) and afterwards by Kumar et al (2009). CHAOS has been assessed for its consistency and performance in the high-impact atmospheric and sea-state case study of hurricane Sandy occurred in late October 2012. Its efficiency was statistically evaluated against buoys records and satellite retrievals. Preliminary results indicate that the coupled system was mainly able to resolve the rain-ocean wave interaction mechanisms, improve the simulation of wave formation and decrease of the simulation errors. The feedbacks have systematic effects on the momentum fluxes and the sea surface roughness by modifying the characteristics of the atmospheric boundary layer and offering further improvements in the simulation of near surface wind.

  14. Gravity wave momentum fluxes from MF and meteor radar measurements in the polar MLT region

    Science.gov (United States)

    Placke, Manja; Hoffmann, Peter; Latteck, Ralph; Rapp, Markus

    2015-01-01

    Annual cycles of horizontal winds and gravity wave (GW) momentum fluxes in the mesosphere/lower thermosphere (MLT) are presented for the medium frequency Doppler radar at Saura (SMF radar, located at 69°N, 16°E) for the first time. Four year mean wind and momentum flux fields for 2008 through 2011 clearly show the coupling and interactions between GWs and the mean flow especially in the summer months. GW breaking at mesopause heights results in momentum flux divergence and affects the wind field by forcing a reversal of the wind profile in summer. Height-time cross sections for the individual years (2008 to 2011) illustrate the year-to-year variation of horizontal winds and the vertical fluxes of zonal and meridional momentum. They show similar annual patterns from year to year which are more consistent in the summer months than during winter and have maximum absolute values in 2009. Furthermore, the precise SMF radar measurements give an excellent possibility to evaluate momentum flux estimates from the colocated meteor radar at Andenes. Both radars have different capabilities, and different techniques are applied to derive momentum fluxes. They show comparable results for the 4 year mean annual cycles of horizontal winds and momentum fluxes especially in summer. This holds for both structure and magnitudes in the overlapping heights, where the SMF radar data provide a wider vertical coverage. The best agreement is found for the zonal components of both radars, whereas there are some larger discrepancies in the meridional components, especially in the vertical flux of meridional momentum.

  15. Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign

    Science.gov (United States)

    Williams, B. P.; Fritts, D. C.; She, C. Y.; Goldberg, R. A.

    2006-07-01

    The winter MaCWAVE (Mountain and convective waves ascending vertically) rocket campaign took place in January 2003 at Esrange, Sweden and the ALOMAR observatory in Andenes, Norway. The campaign combined balloon, lidar, radar, and rocket measurements to produce full temperature and wind profiles from the ground to 105 km. This paper will investigate gravity wave propagation in the mesosphere and lower thermosphere using data from the Weber sodium lidar on 28-29 January 2003. A very large semidiurnal tide was present in the zonal wind above 80 km that grew to a 90 m/s amplitude at 100 km. The superposition of smaller-scale gravity waves and the tide caused small regions of possible convective or shear instabilities to form along the downward progressing phase fronts of the tide. The gravity waves had periods ranging from the Nyquist period of 30 min up to 4 h, vertical wavelengths ranging from 7 km to more than 20 km, and the frequency spectra had the expected -5/3 slope. The dominant gravity waves had long vertical wavelengths and experienced rapid downward phase progression. The gravity wave variance grew exponentially with height up from 86 to 94 km, consistent with the measured scale height, suggesting that the waves were not dissipated strongly by the tidal gradients and resulting unstable regions in this altitude range.

  16. Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign

    Directory of Open Access Journals (Sweden)

    B. P. Williams

    2006-07-01

    Full Text Available The winter MaCWAVE (Mountain and convective waves ascending vertically rocket campaign took place in January 2003 at Esrange, Sweden and the ALOMAR observatory in Andenes, Norway. The campaign combined balloon, lidar, radar, and rocket measurements to produce full temperature and wind profiles from the ground to 105 km. This paper will investigate gravity wave propagation in the mesosphere and lower thermosphere using data from the Weber sodium lidar on 28–29 January 2003. A very large semidiurnal tide was present in the zonal wind above 80 km that grew to a 90 m/s amplitude at 100 km. The superposition of smaller-scale gravity waves and the tide caused small regions of possible convective or shear instabilities to form along the downward progressing phase fronts of the tide. The gravity waves had periods ranging from the Nyquist period of 30 min up to 4 h, vertical wavelengths ranging from 7 km to more than 20 km, and the frequency spectra had the expected –5/3 slope. The dominant gravity waves had long vertical wavelengths and experienced rapid downward phase progression. The gravity wave variance grew exponentially with height up from 86 to 94 km, consistent with the measured scale height, suggesting that the waves were not dissipated strongly by the tidal gradients and resulting unstable regions in this altitude range.

  17. Assessing the performance of formulations for nonlinear feedback of surface gravity waves on ocean currents over coastal waters

    Science.gov (United States)

    Wang, Pengcheng; Sheng, Jinyu; Hannah, Charles

    2017-08-01

    This study presents applications of a two-way coupled wave-circulation modelling system over coastal waters, with a special emphasis of performance assessments of two different methods for nonlinear feedback of ocean surface gravity waves on three-dimensional (3D) ocean currents. These two methods are the vortex force (VF) formulation suggested by Bennis et al. (2011) and the latest version of radiation stress (RS) formulation suggested by Mellor (2015). The coupled modelling system is first applied to two idealized test cases of surf-zone scales to validate implementations of these two methods in the coupled wave-circulation system. Model results show that the latest version of RS has difficulties in producing the undertow over the surf zone. The coupled system is then applied to Lunenburg Bay (LB) of Nova Scotia during Hurricane Juan in 2003. The coupled system using both the VF and RS formulations generates much stronger and more realistic 3D circulation in the Bay during Hurricane Juan than the circulation-only model, demonstrating the importance of surface wave forces to the 3D ocean circulation over coastal waters. However, the RS formulation generates some weak unphysical currents outside the wave breaking zone due to a less reasonable representation for the vertical distribution of the RS gradients over a slopping bottom. These weak unphysical currents are significantly magnified in a two-way coupled system when interacting with large surface waves, degrading the model performance in simulating currents at one observation site. Our results demonstrate that the VF formulation with an appropriate parameterization of wave breaking effects is able to produce reasonable results for applications over coastal waters during extreme weather events. The RS formulation requires a complex wave theory rather than the linear wave theory for the approximation of a vertical RS term to improve its performance under both breaking and non-breaking wave conditions.

  18. Extreme winds and waves for offshore turbines: Coupling atmosphere and wave modeling for design and operation in coastal zones

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Bolanos, Rodolfo; Du, Jianting

    , which can aect the choice of the off-shore wind turbine type. X-WiWa examined various methodologies for wave modeling. The offline coupling system using atmospheric data such as WRF or global reanalysis wind field to the MIKE 21 SW model has been improved with considerations of stability, air density...

  19. Probing the sky with radio waves from wireless technology to the development of atmospheric science

    CERN Document Server

    Yeang, Chen-Pang

    2013-01-01

    By the late nineteenth century, engineers and experimental scientists generally knew how radio waves behaved, and by 1901 scientists were able to manipulate them to transmit messages across long distances. What no one could understand, however, was why radio waves followed the curvature of the Earth. Theorists puzzled over this for nearly twenty years before physicists confirmed the zig-zag theory, a solution that led to the discovery of a layer in the Earth's upper atmosphere that bounces radio waves earthward-the ionosphere. In Probing the Sky with Radio Waves,

  20. Harvesting Atmospheric Ions Using Surface Electromagnetic Wave Technologies

    Directory of Open Access Journals (Sweden)

    Louis Wai Yip Liu

    2017-05-01

    Full Text Available For the first time, this paper discloses the use of flowing water for capturing atmospheric ions into a DC electricity. The proposed methodology can be employed to neutralize the positively charged pollutants in air, which are believed to be harmful to our health. Methodology: Atmospheric ions can be collected by a negatively charged antenna which comprises a dielectric layer sandwiched between a top aluminium layer and a bottom lead plate. The top aluminium layer is used to collect the ambient protons, whilst the bottom lead plate is negatively charged by a negative static electricity extracted from flowing water. The voltage has been measured between the top aluminium layer and the bottom lead plate with and without any sunlight. Results: Without any UV light or other electromagnetic disturbance, the generated voltage has rapidly increased from 200 mV to 480 mV within 5 seconds if the bottom lead plate is connected to the negative ion source. Without the negative ion source, however, the output voltage fell to around 10 mV and any significant voltage rise can be observed even in the presence of an UV light. Conclusions: Capturing atmospheric ions is technically feasible. Measured results suggest that, when used in conjunction with a negative ion source, the proposed device can harvest atmospheric ions without any UV light.

  1. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign – Part I: Observations with collocated radars

    Directory of Open Access Journals (Sweden)

    P. Hoffmann

    2006-11-01

    Full Text Available During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR near Andenes and the Swedish Rocket Range (ESRANGE near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E. Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24–26 January 2003 with dominant vertical wavelengths of about 4–5 km as well as with dominant observed periods of about 13–14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of ~200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of ~5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.

  2. Massive gravity and the suppression of anisotropies and gravitational waves in a matter-dominated contracting universe

    Science.gov (United States)

    Lin, Chunshan; Quintin, Jerome; Brandenberger, Robert H.

    2018-01-01

    We consider a modified gravity model with a massive graviton, but which nevertheless only propagates two gravitational degrees of freedom and which is free of ghosts. We show that non-singular bouncing cosmological background solutions can be generated. In addition, the mass term for the graviton prevents anisotropies from blowing up in the contracting phase and also suppresses the spectrum of gravitational waves compared to that of the scalar cosmological perturbations. This addresses two of the main problems of the matter bounce scenario.

  3. Relationship between propagation direction of gravity waves in OH and OI airglow images and VHF radar echo occurrence during the SEEK-2 campaign

    Directory of Open Access Journals (Sweden)

    F. Onoma

    2005-10-01

    Full Text Available We report simultaneous observations of atmospheric gravity waves (AGW in OI (557.7nm and OH airglow images and VHF radar backscatter from field-aligned irregularities (FAI in the E-region during the SEEK-2 (Sporadic-E Experiment over Kyushu 2 campaign period from 29 July to 9 August 2002. An all-sky imager was operated at Nishino-Omote (30.5 N, 130.1 E, Japan. On 14 nights, 17 AGW events were detected in OI and OH airglow images. AGW propagated mostly toward the northeast or southeast. From comparison with the E-region FAI occurrence, which is detected by a nearby VHF radar (31.57MHz, we found that AGW tended to propagate southeastward during FAI events. This result suggests that the interaction between AGW and E-region plasma plays an important role in generating FAI. Furthermore, polarization electric fields generated directly by AGW may contribute to the FAI generation.

    Keywords. Atmospheric composition and structure (Airglow and aurora, Ionosphere (Ionospheric irregularities, Mid-latitude ionosphere

  4. Incorporating Planetary-Scale Waves Into the VTGCM: Understanding the Waves Impact on the Upper Atmosphere of Venus.

    Science.gov (United States)

    Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.

    2017-01-01

    Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.

  5. Numerical modeling of wind waves in the Black Sea generated by atmospheric cyclones

    Science.gov (United States)

    Fomin, V. V.

    2017-09-01

    The influence of the translation speed and intensity of atmospheric cyclones on surface wind waves in the Black Sea is investigated by using tightly-coupled model SWAN+ADCIRC. It is shown that the wave field has a spatial asymmetry, which depends on the velocity and intensity of the cyclone. The region of maximum waves is formed to the right of the direction of the cyclone motion. Speedier cyclones generate wind waves of lower height. The largest waves are generated at cyclonic translation speed of 7-9 m/s. This effect is due to the coincidence of the characteristic values of the group velocity of the dominant wind waves in the deep-water part of the Black Sea with the cyclone translation speed.

  6. Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign

    Science.gov (United States)

    Nielsen, K.; Taylor, M. J.; Pautet, P.-D.; Fritts, D. C.; Mitchell, N.; Beldon, C.; Williams, B. P.; Singer, W.; Schmidlin, F. J.; Goldberg, R. A.

    2006-07-01

    As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically) winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27-31 January 2003. Coincident wind measurements over the altitude range (~80-100 km) using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted). Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.

  7. Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign

    Directory of Open Access Journals (Sweden)

    K. Nielsen

    2006-07-01

    Full Text Available As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27–31 January 2003. Coincident wind measurements over the altitude range (~80–100 km using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted. Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.

  8. Development and applications of a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System

    Science.gov (United States)

    Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.

    2012-12-01

    Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the

  9. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  10. Recent Developments in Gravity-Wave Effects in Climate Models and the Global Distribution of Gravity-Wave Momentum Flux from Observations and Models

    Science.gov (United States)

    2010-07-01

    and Technology, Yokohama, Japan jCenter for Atmosphere Ocean Sci., Courant Inst. of Mathematical Sci., NYU, New York, USA kPhysics, Univ. Adelaide...Picard RH, O’Neil RR, Gardiner HA, Gibson J, Mill JD, Richards E, Kendra M, Gallery WO. 1998. MSX satellite observations of thunderstorm-generated...Sensing 41: 173–183. Picard RH, O’Neil RR, Gardiner HA, Gibson J, Winick JR, Gallery WO, Stair AT Jr, Wintersteiner PP, Hegblom ER, Richards E. 1998

  11. Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission

    CERN Document Server

    Blázquez-Salcedo, Jose Luis

    2016-01-01

    Gravitational waves emitted by distorted black holes---such as those arising from the coalescence of two neutron stars or black holes---carry not only information about the corresponding spacetime but also about the underlying theory of gravity. Although general relativity remains the simplest, most elegant and viable theory of gravitation, there are generic and robust arguments indicating that it is not the ultimate description of the gravitational universe. Here we focus on a particularly appealing extension of general relativity, which corrects Einstein's theory through the addition of terms which are second order in curvature: the topological Gauss-Bonnet invariant coupled to a dilaton. We study gravitational-wave emission from black holes in this theory, and (i) find strong evidence that black holes are linearly (mode) stable against both axial and polar perturbations; (ii) discuss how the quasinormal modes of black holes can be excited during collisions involving black holes, and finally (iii) show that...

  12. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign – Part II: Radar investigations and modelling studies

    Directory of Open Access Journals (Sweden)

    A. Serafimovich

    2006-11-01

    Full Text Available We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR near Andenes (69.3° N, 16° E in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5 data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.

  13. Acoustic-gravity nonlinear structures

    Directory of Open Access Journals (Sweden)

    D. Jovanović

    2002-01-01

    Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.

  14. Gravity wave momentum fluxes in the MLT—Part II: Meteor radar investigations at high and midlatitudes in comparison with modeling studies

    Science.gov (United States)

    Placke, Manja; Hoffmann, Peter; Becker, Erich; Jacobi, Christoph; Singer, Werner; Rapp, Markus

    2011-06-01

    For the analysis of gravity waves the method presented by Hocking (2005) is used, which enables us to derive wind variances and gravity wave momentum fluxes in the mesosphere and lower thermosphere from all-sky interferometric meteor radar wind measurements considering waves and variances with periods less than 2 h. A sensitivity study for the applicability of this method has been performed for the first time using a mechanistic general circulation model with high spatial resolution and explicit description of gravity waves. Wind variances and momentum fluxes have been determined from the model directly and by Hocking’s method. Results of both methods are in good agreement except for vertical wind variances in case of weak vertical winds, which in the model are of the order of 1 m/s, whereas short period gravity waves estimated by meteor radar lead to larger vertical winds with a smaller ratio between horizontal and vertical wind fluctuations. A latitudinal comparison of mean annual variations of wind variances and momentum fluxes has been performed using meteor radar measurements at the high latitude site Andenes (69.3°N, 16.0°E) and the midlatitude site Juliusruh (54.6°N, 13.4°E). A semi-annual variation of the activity of short period gravity waves has been found having stronger magnitudes at high latitudes. The mean zonal winds show the typical summer wind reversal that shifts to higher altitudes from middle to high latitudes. Finally, the coupling between gravity waves and the mean background circulation is investigated based on long-term measurements at Andenes and the midlatitude site Collm (51.3°N, 13.0°E) during a period from 2004 to 2009.

  15. Instability of the zonal jets and longitudinal thermal waves in a Jovian atmosphere

    Science.gov (United States)

    Pirraglia, Joseph A.

    1992-01-01

    Jupiter atmosphere observations conducted during the Voyager 1 and 2 encounters indicate slowly moving large-scale features; ground-based measurements with the NASA IR Telescope Facility have noted large scale waves that are either fixed or slowly moving relative to system III. These observations suggest features originating deep in the atmosphere. The present suggestion of an alternative source proceeds from a model of the jets which views the observed waves as due to the quasigeostrophic instability of the jets in the upper troposphere; these are of sufficient duration to give the impression of permanence under observational conditions.

  16. Introduction to PDEs and waves for the atmosphere and ocean

    CERN Document Server

    Majda, Andrew

    2003-01-01

    The goals of these lecture notes, based on courses presented by the author at the Courant Institute of Mathematical Sciences, are to introduce mathematicians to the fascinating and important area of atmosphere/ocean science (AOS) and, conversely, to develop a mathematical viewpoint on basic topics in AOS of interest to the disciplinary AOS community, ranging from graduate students to researchers. The lecture notes emphasize the serendipitous connections between applied mathematics and geophysical flows in the style of modern applied mathematics, where rigorous mathematical analysis as well as

  17. On Dirac equations for linear magnetoacoustic waves propagating in an isothermal atmosphere

    Science.gov (United States)

    Alicki, R.; Musielak, E. Z.; Sikorski, J.; Makowiec, D.

    1994-01-01

    A new analytical approach to study linear magnetoacoustic waves propagating in an isothermal, stratified, and uniformly magnetized atmosphere is presented. The approach is based on Dirac equations, and the theory of Sturm-Liouville operators is used to investigate spectral properties of the obtained Dirac Hamiltonians. Two cases are considered: (1) the background magnetic field is vertical, and the waves are separated into purely magnetic (transverse) and purely acoustic (longitudinal) modes; and (2) the field is tilted with respect to the vertical direction and the magnetic and acoustic modes become coupled giving magnetoacoustic waves. For the first case, the Dirac Hamiltonian possesses either a discrete spectrum, which corresponds to standing magnetic waves, or a continuous spectrum, which can be clearly identified with freely propagating acoustic waves. For the second case, the quantum mechanical perturbation calculus is used to study coupling and energy exchange between the magnetic and acoustic components of magnetoacoustic waves. It is shown that this coupling may efficiently prevent trapping of magnetoacoustic waves instellar atmospheres.

  18. Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution

    Directory of Open Access Journals (Sweden)

    C. Bossuet

    Full Text Available Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere, and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere; the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the

  19. Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution

    Directory of Open Access Journals (Sweden)

    C. Bossuet

    1998-02-01

    Full Text Available Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere, and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere; the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the

  20. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  1. Generalized plane waves in Poincaré gauge theory of gravity

    Science.gov (United States)

    Blagojević, Milutin; Cvetković, Branislav; Obukhov, Yuri N.

    2017-09-01

    A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in the gauge field strength. The structure of the solution shows that the wave metric significantly depends on the spacetime torsion.

  2. Noise Reduction, Atmospheric Pressure Admittance Estimation and Long-Period Component Extraction in Time-Varying Gravity Signals Using Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Linsong Wang

    2015-01-01

    Full Text Available Time-varying gravity signals, with their nonlinear, non-stationary and multi-scale characteristics, record the physical responses of various geodynamic processes and consist of a blend of signals with various periods and amplitudes, corresponding to numerous phenomena. Superconducting gravimeter (SG records are processed in this study using a multi-scale analytical method and corrected for known effects to reduce noise, to study geodynamic phenomena using their gravimetric signatures. Continuous SG (GWR-C032 gravity and barometric data are decomposed into a series of intrinsic mode functions (IMFs using the ensemble empirical mode decomposition (EEMD method, which is proposed to alleviate some unresolved issues (the mode mixing problem and the end effect of the empirical mode decomposition (EMD. Further analysis of the variously scaled signals is based on a dyadic filter bank of the IMFs. The results indicate that removing the high-frequency IMFs can reduce the natural and man-made noise in the data, which are caused by electronic device noise, Earth background noise and the residual effects of pre-processing. The atmospheric admittances based on frequency changes are estimated from the gravity and the atmospheric pressure IMFs in various frequency bands. These time- and frequency-dependent admittance values can be used effectively to improve the atmospheric correction. Using the EEMD method as a filter, the long-period IMFs are extracted from the SG time-varying gravity signals spanning 7 years. The resulting gravity residuals are well correlated with the gravity effect caused by the _ polar motion after correcting for atmospheric effects.

  3. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  4. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  5. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  6. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  7. New theory of the Great Red Spot from solitary waves in the Jovian atmosphere

    Science.gov (United States)

    Maxworthy, T.; Redekopp, L. G.

    1976-01-01

    It is shown that many characteristics of the Great Red Spot (GRS) and numerous other features that have been observed on Jupiter can be explained by solitary waves on a horizontally sheared zonal flow in a rotating, stratified atmosphere. Streamline patterns for waves corresponding to combined depression-elevation solitary waves (D-E solitrons) show a strong resemblence to the flow around the GRS. The morphology and flow pattern of the South Tropical Disturbance indicate that it was a D solitron. Numerous spot-like features situated in regions between cloud bands where horizontal shear forces might be expected have the morphology of E solitrons. Restrictions placed on the atmospheric parameters by the model are consistent with available models and observations.

  8. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  9. A topological study of gravity free-surface waves generated by bluff bodies using the method of steepest descents

    Science.gov (United States)

    Trinh, Philippe H.

    2016-07-01

    The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel.

  10. Testing Chern-Simons Modified Gravity with Gravitational-Wave Detections of Extreme-Mass-Ratio Binaries

    CERN Document Server

    Canizares, Priscilla; Sopuerta, Carlos F

    2012-01-01

    [abridged] The detection of gravitational waves from extreme-mass-ratio (EMRI) binaries, comprising a stellar-mass compact object orbiting around a massive black hole, is one of the main targets for low-frequency gravitational-wave detectors in space, like the Laser Interferometer Space Antenna (LISA or eLISA/NGO). The long-duration gravitational-waveforms emitted by such systems encode the structure of the strong field region of the massive black hole, in which the inspiral occurs. The detection and analysis of EMRIs will therefore allow us to study the geometry of massive black holes and determine whether their nature is as predicted by General Relativity and even to test whether General Relativity is the correct theory to describe the dynamics of these systems. To achieve this, EMRI modeling in alternative theories of gravity is required to describe the generation of gravitational waves. In this paper, we explore to what extent EMRI observations with LISA or eLISA/NGO might be able to distinguish between G...

  11. Observational evidence of mixed rossby gravity waves at the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.; Mohankumar, K.; Sijikumar, S.; Sivakumar, K.U.; Mathew, T.

    observed. The asymmetric bifurcation of warm surface water by the subsurface cold water off Sumatra generate asymmetric convective regimes in the vicinity of the equator probably triggered convection with periodicity similar to MRG waves. The intermittent...

  12. Surface gravity wave transformation across a platform coral reef in the Red Sea

    National Research Council Canada - National Science Library

    Lentz, S. J; Churchill, J. H; Davis, K. A; Farrar, J. T

    2016-01-01

    .... The observations and model indicate that wave breaking dominates the dissipation in a 20–30 m wide surf zone while bottom drag dominates the dissipation over the rest of the reef. Friction factors (drag coefficients...

  13. Dynamics of sessile and pendant drop excited by surface acoustic waves: gravity effects and correlation between oscillatory and translational motions

    CERN Document Server

    Bussonière, Adrien; Brunet, Philippe; Matar, Olivier Bou

    2016-01-01

    When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or more generally by an initial or dynamically induced stretching of the drop. In...

  14. Sensitivity of ionosonde detection of atmospheric disturbances induced by seismic Rayleigh waves at different latitudes

    Science.gov (United States)

    Maruyama, Takashi; Shinagawa, Hiroyuki; Yusupov, Kamil; Akchurin, Adel

    2017-01-01

    Ionospheric disturbance was observed in ionograms at Kazan, Russia (55.85°N, 48.81°E), associated with the M8.8 Chile earthquake in 2010 (35.91°S, 72.73°W). The disturbance was caused by infrasound waves that were launched by seismic Rayleigh waves propagating over 15,000 km along Earth's surface from the epicenter. This distance was extremely large compared with the detection limit of similar ionospheric disturbances that were previously studied at lower latitudes over Japan. The observations suggest that the sensitivity of ionograms to coseismic atmospheric disturbances in the infrasound range differs at different locations on the globe. A notable difference in the geophysical condition between the Russian and Japanese ionosonde sites is the magnetic inclination (dip angle), which affects the ionosphere-atmosphere dynamical coupling and radio propagation of vertical incidence ionosonde sounding. Numerical simulations of atmospheric-ionospheric perturbation were conducted, and ionograms were synthesized from the disturbed electron density profiles for different magnetic dip angles. The results showed that ionosonde sounding at Kazan was sensitive to the atmospheric disturbances induced by seismic Rayleigh waves compared with that at Japanese sites by a factor of ˜3.

  15. Wave equations and computational models for sonic boom propagation through a turbulent atmosphere

    Science.gov (United States)

    Pierce, Allan D.

    1992-01-01

    The improved simulation of sonic boom propagation through the real atmosphere requires greater understanding of how the transient acoustic pulses popularly termed sonic booms are affected by atmospheric turbulence. A nonlinear partial differential equation that can be used to simulate the effects of smaller-scale atmospheric turbulence on sonic boom waveforms is described. The equation is first order in the time derivative and involves an extension of geometrical acoustics to include diffraction phenomena. Various terms in the equation are explained in physical terms. Such terms include those representing convection at the wave speed, diffraction, molecular relaxation, classical dissipation, and nonlinear steepening. The atmospheric turbulence enters through an effective sound speed, which varies with all three spatial coordinates, and which is the sum of the local sound speed and the component of the turbulent flow velocity projected along a central ray that connects the aircraft trajectory with the listener.

  16. Atmospheric Waves and Dynamics Beneath Jupiters Clouds from Radio Wavelength Observations

    Science.gov (United States)

    Cosentino, Richard G.; Butler, Bryan; Sault, Bob; Morales-Juberias, Raul; Simon, Amy; De Pater, Imke

    2017-01-01

    We observed Jupiter at wavelengths near 2 cm with the Karl G. Jansky Very Large Array (VLA) in February 2015. These frequencies are mostly sensitive to variations in ammonia abundance and probe between approx. 0.5- 2.0 bars of pressure in Jupiters atmosphere; within and below the visible cloud deck which has its base near 0.7 bars. The resultant observed data were projected into a cylindrical map of the planet with spatial resolution of approx. 1500 km at the equator. We have examined the data for atmospheric waves and observed a prominent bright belt of radio hotspot features near 10 N, likely connected to the same equatorial wave associated with the 5-m hotspots. We conducted a passive tracer power spectral wave analysis for the entire map and latitude regions corresponding to eastward and westward jets and compare our results to previous studies. The power spectra analysis revealed that the atmosphere sampled in our observation (excluding the NEB region) is in a 2-D turbulent regime and its dynamics are predominately governed by the shallow water equations. The Great Red Spot (GRS) is also very prominent and has a noticeable meridional asymmetry and we compare it, and nearby storms, with optical images. We find that the meridional radio profile has a global north-south hemisphere distinction and find correlations of it to optical intensity banding and to shear zones of the zonal wind profile over select regions of latitude. Amateur optical images taken before and after our observation complemented the radio wave- length map to investigate dynamics of the equatorial region in Jupiters atmosphere. We find that two radio hotspots at 2 cm are well correlated with optical plumes in the NEB, additionally revealing they are not the same 5 m hotspot features correlated with optical dark patches between adjacent plumes. This analysis exploits the VLAs upgraded sensitivity and explores the opportunities now possible when studying gas giants, especially atmospheric

  17. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  18. Ocean-atmosphere-wave characterisation of a wind jet (Ebro shelf, NW Mediterranean Sea)

    Science.gov (United States)

    Grifoll, Manel; Navarro, Jorge; Pallares, Elena; Ràfols, Laura; Espino, Manuel; Palomares, Ana

    2016-06-01

    In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterised by persistent and energetic offshore winds during autumn and winter. During these seasons, a seaward wind jet usually develops in a ˜ 50 km wide band offshore. The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system was implemented in the region with a set of downscaling meshes to obtain high-resolution meteo-oceanographic outputs. Wind, waves and water currents were compared with in situ observations and remote-sensing-derived products with an acceptable level of agreement. Focused on an intense offshore wind event, the modelled wind jet appears in a limited area offshore with strong spatial variability. The wave pattern during the wind jet is characterised by the development of bimodal directional spectra, and the ocean circulation tends to present well-defined two-layer flow in the shallower region (i.e. inner shelf). The outer shelf tends to be dominated by mesoscale dynamics such as the slope current. Due to the limited fetch length, ocean surface roughness considering sea state (wave-atmosphere coupling) modifies to a small extent the wind and significant wave height under severe cross-shelf wind events. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.

  19. Advanced sine wave modulation of continuous wave laser system for atmospheric CO(2) differential absorption measurements.

    Science.gov (United States)

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R

    2014-02-10

    In this theoretical study, modulation techniques are developed to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. A continuous wave (CW) lidar system using sine waves modulated by maximum length (ML) pseudo-noise (PN) codes is described for making simultaneous online/offline differential absorption measurements. Amplitude and phase-shift keying (PSK) modulated intensity modulation (IM) carriers, in addition to a hybrid-pulse technique are investigated, which exhibit optimal autocorrelation properties. A method is presented to bandwidth limit the ML sequence based on a filter implemented in terms of Jacobi theta functions, which does not significantly degrade the resolution or introduce sidelobes as a means of reducing aliasing and IM carrier bandwidth.

  20. Idealized Modeling Studies of Long-Lived Large Amplitude Inertia Gravity Waves

    National Research Council Canada - National Science Library

    Bosart, Lance

    1999-01-01

    ... (abstracts are attached elsewhere to this report). The results from (2) show that a significant mesoscale pressure disturbance passes through the Flatland Atmospheric Observatory just after 1600 UTC 28 April 1996...

  1. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    Science.gov (United States)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  2. Laboratory simulation of pelagic asteroidal impact Atmospheric injection, benthic topography, and the surface wave radiation field

    Science.gov (United States)

    Gault, D. E.; Sonett, C. P.

    1982-01-01

    The hypervelocity impact (1.25-6 km/s) of projectiles into water overlying unconsolidated strata is reported for a variety of water depths. Variation of the background atmospheric pressure is found to be an important additional parameter. The relation of these exploratory experiments to pelagic impact of asteroidal-sized objects is discussed from the standpoint of atmospheric injection of sea water, the modification of bottom (benthic) topography, and the generation of a field of mega-amplitude sea waves and their propagation away from the source.

  3. Near-surface current meter array measurements of internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured du