WorldWideScience

Sample records for atmospheric electrons due

  1. Greenhouse effect due to atmospheric nitrous oxide

    Science.gov (United States)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  2. Park power deficit due to atmospheric stability

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Barthelmie, Rebecca; Ott, Søren

    The purpose of this paper is to present a power deficit analysis based on offshore wind farm measurements with respect to the atmospheric stability classification. The result is used to validate wind farm prediction models under different inflow and atmospheric stability conditions...

  3. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    microscope, and since its invention by Ernst Ruska, the idea of imaging samples under gaseous atmospheres was envisioned. However, microscopes have traditionally been operated in high vacuum due to sensitive electron sources, sample contamination, and electron scattering off gas molecules resulting in loss...... of resolution. Using suitably clean gases, modified pumping schemes, and short pathways through dense gas regions, these issues are now circumvented. Here we provide an account of best practice using environmental transmission electron microscopy on catalytic systems illustrated using select examples from...

  4. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    Science.gov (United States)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  5. The solvation of electrons by an atmospheric-pressure plasma

    Science.gov (United States)

    Rumbach, Paul; Bartels, David M.; Sankaran, R. Mohan; Go, David B.

    2015-01-01

    Solvated electrons are typically generated by radiolysis or photoionization of solutes. While plasmas containing free electrons have been brought into contact with liquids in studies dating back centuries, there has been little evidence that electrons are solvated by this approach. Here we report direct measurements of solvated electrons generated by an atmospheric-pressure plasma in contact with the surface of an aqueous solution. The electrons are measured by their optical absorbance using a total internal reflection geometry. The measured absorption spectrum is unexpectedly blue shifted, which is potentially due to the intense electric field in the interfacial Debye layer. We estimate an average penetration depth of 2.5±1.0 nm, indicating that the electrons fully solvate before reacting through second-order recombination. Reactions with various electron scavengers including H+, NO2−, NO3− and H2O2 show that the kinetics are similar, but not identical, to those for solvated electrons formed in bulk water by radiolysis. PMID:26088017

  6. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2015-11-01

    The U.S. Department of Energy’s Atmosphere to Electrons research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth’s atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind.

  7. Characteristic energy range of electron scattering due to plasmaspheric hiss

    Science.gov (United States)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Angelopoulos, V.

    2016-12-01

    We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4-200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2-6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV-1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.

  8. Atmospheric Baseline Monitoring Data Losses Due to the Samoa Earthquake

    Science.gov (United States)

    Schnell, R. C.; Cunningham, M. C.; Vasel, B. A.; Butler, J. H.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates an Atmospheric Baseline Observatory at Cape Matatula on the north-eastern point of American Samoa, opened in 1973. The manned observatory conducts continuous measurements of a wide range of climate forcing and atmospheric composition data including greenhouse gas concentrations, solar radiation, CFC and HFC concentrations, aerosols and ozone as well as less frequent measurements of many other parameters. The onset of September 29, 2009 earthquake is clearly visible in the continuous data streams in a variety of ways. The station electrical generator came online when the Samoa power grid failed so instruments were powered during and subsequent to the earthquake. Some instruments ceased operation in a spurt of spurious data followed by silence. Other instruments just stopped sending data abruptly when the shaking from the earthquake broke a data or power links, or an integral part of the instrument was damaged. Others survived the shaking but were put out of calibration. Still others suffered damage after the earthquake as heaters ran uncontrolled or rotating shafts continued operating in a damaged environment grinding away until they seized up or chewed a new operating space. Some instruments operated as if there was no earthquake, others were brought back online within a few days. Many of the more complex (and in most cases, most expensive) instruments will be out of service, some for at least 6 months or more. This presentation will show these results and discuss the impact of the earthquake on long-term measurements of climate forcing agents and other critical climate measurements.

  9. Changes in the Martian atmosphere induced by auroral electron precipitation

    Science.gov (United States)

    Shematovich, V. I.; Bisikalo, D. V.; Gérard, J.-C.; Hubert, B.

    2017-09-01

    Typical auroral events in the Martian atmosphere, such as discrete and diffuse auroral emissions detected by UV spectrometers onboard ESA Mars Express and NASA MAVEN, are investigated. Auroral electron kinetic energy distribution functions and energy spectra of the upward and downward electron fluxes are obtained by electron transport calculations using the kinetic Monte Carlo model. These characteristics of auroral electron fluxes make it possible to calculate both the precipitation-induced changes in the atmosphere and the observed manifestations of auroral events on Mars. In particular, intensities of discrete and diffuse auroral emissions in the UV and visible wavelength ranges (Soret et al., 2016; Bisikalo et al., 2017; Gérard et al., 2017). For these conditions of auroral events, the analysis is carried out, and the contribution of the fluxes of precipitating electrons to the heating and ionization of the Martian atmosphere is estimated. Numerical calculations show that in the case of discrete auroral events the effect of the residual crustal magnetic field leads to a significant increase in the upward fluxes of electrons, which causes a decrease in the rates of heating and ionization of the atmospheric gas in comparison with the calculations without taking into account the residual magnetic field. It is shown that all the above-mentioned impact factors of auroral electron precipitation processes should be taken into account both in the photochemical models of the Martian atmosphere and in the interpretation of observations of the chemical composition and its variations using the ACS instrument onboard ExoMars.

  10. Distortion of Crabbed Bunch Due to the Electron Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L; Raubenheimer, T.; /SLAC

    2008-05-28

    In order to improve the luminosity, two crab cavities have been installed in KEKB HER and LER [1]. Since there is only one crab cavity in each ring, the crab cavity generates a horizontally titled bunch along the whole ring. The achieved specific luminosity with crabbed bunch is higher, but it is not as high as that from beam-beam simulation [2]. One of the suspicions is the electron cloud. The electron cloud in LER (positron beam) may distort the crabbed bunch and cause the luminosity drop. This note briefly estimates the bunch shape distortion due to the electron cloud in KEKB LER.

  11. Modelling atmospheric temperature rise due to pollutants and its ...

    African Journals Online (AJOL)

    ... a mathematical model we show that temperature increases (warming) as the Hartman number due to pollutant increases. Thus, temperature and pollutants contribute to global warming. We also discuss the implications of the result on agriculture and forestry. Journal of the Nigerian Association of Mathematical Physics, ...

  12. Electroluminescence from porous silicon due to electron injection from solution

    NARCIS (Netherlands)

    Kooij, Ernst S.; Despo, R.W.; Kelly, J.J.

    1995-01-01

    We report on the electroluminescence from p‐type porous silicon due to minority carrier injection from an electrolyte solution. The MV+• radical cation formed in the reduction of divalent methylviologen is able to inject electrons into the conduction band of crystalline and porous silicon. The

  13. Atmospheric Corrosion on Steel Studied by Conversion Electron Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akio; Kobayashi, Takayuki [Shiga University of Medical Science, Department of Physics (Japan)

    2004-12-15

    In order to investigate initial products on steel by atmospheric corrosion, conversion electron Moessbauer measurements were carried out at temperatures between 15 K and room temperature. From the results obtained at low temperatures, it was found that the corrosion products on steel consisted of ferrihydrite.

  14. Corrosion failure due to flux residues in an electronic add-on device

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    contamination is solder flux residues which can act as a corrosion promoter in humid atmosphere due to the presence of ionic substances and a resin component. The presence of ionic substances will increase the conductivity of a condensed water layer and influence corrosion processes, depending on the species......Corrosion of components and sub-assemblies on an electronic Printed Circuit Board Assembly (PCBA) is a major reliability concern. Both process and user related contamination will influence the corrosion reliability of a PCBA and the electronic device as a whole. An important process related......-electrochemical technique, in situ ECM studies, and scanning electron microscopy (SEM). Failure of the switches was found to be either due to the flux residue acting as an nsulating layer or as a corrosion accelerator causing ECM....

  15. Electron spin dynamics due to hyperfine coupling in quantum dots

    Science.gov (United States)

    Woods, L. M.; Reinecke, T. L.; Rajagopal, A. K.

    2008-02-01

    The dynamics of spins in semiconductor quantum dots often is controlled by their hyperfine coupling to nuclear spins. We develop a straightforward and efficient approach to describe the dynamics and the effective decoherence of the electron spins due to hyperfine coupling in realistic quantum dots. Systems with a large number of nuclei and an arbitrary initial nuclear polarization for which the number of nuclei initially flipped over is much less than the total number of nuclei are treated. This treatment employs a pole approximation within a Schrödinger equation of motion for the state of the coupled electron and nuclear spin system, and it allows us to treat systems with arbitrary initial conditions. We find that typical time scales for the effective spin decoherence are on the order of tens of microseconds.

  16. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  17. Electron density increases due to Lightning activity as deduced from LWPC code and VLF signal perturbations.

    Science.gov (United States)

    Samir, Nait Amor; Bouderba, Yasmina

    VLF signal perturbations in association with thunderstorm activity appear as changes in the signal amplitude and phase. Several papers reported on the characteristics of thus perturbations and their connection to the lightning strokes amplitude and polarity. In this contribution, we quantified the electrons density increases due to lightning activity by the use of the LWPC code and VLF signal perturbations parameters. The method is similar to what people did in studying the solar eruptions effect. the results showed that the reference height (h') decreased to lower altitudes (between 70 and 80 km). From the LWPC code results the maximum of the electron density was then deduced. Therefore, a numerical simulation of the atmospheric species times dependences was performed to study the recovery times of the electrons density at different heights. The results showed that the recovery time last for several minutes and explain the observation of long recovery Early signal perturbations.

  18. Energetic electron precipitation into the middle atmosphere -- Constructing the loss cone fluxes from MEPED POES

    Science.gov (United States)

    Nesse Tyssøy, H.; Sandanger, M. I.; Ødegaard, L.-K. G.; Stadsnes, J.; Aasnes, A.; Zawedde, A. E.

    2016-06-01

    The impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50-90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites (POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith (0°) and in the horizontal plane (90°). Using measurements from either the 0° or 90° telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss cone flux is constructed for each of the electron energy channels >50 keV, >100 keV, and >300 keV. We apply a correction method to remove proton contamination in the electron counts. We also account for the relativistic (>1000 keV) electrons contaminating the proton detector at subauroral latitudes. This gives us full range coverage of electron energies that will be deposited in the middle atmosphere. Finally, we demonstrate the method's applicability on strongly anisotropic pitch angle distributions during a weak geomagnetic storm in February 2008. We compare the electron fluxes and subsequent energy deposition estimates to OH observations from the Microwave Limb Sounder on the Aura satellite substantiating that the estimated fluxes are representative for the true precipitating fluxes impacting the atmosphere.

  19. Energetic electron precipitation into the middle atmosphere - Constructing the loss cone fluxes from MEPED POES

    CERN Document Server

    Tyssøy, H Nesse; Ødegaard, L -K G; Stadsnes, J; Aasnes, A; Zawedde, A E

    2016-01-01

    The impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50-90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites(POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith ($0\\,^{\\circ}$) and in the horizontal plane ($90\\,^{\\circ}$). Using measurements from either the $0\\,^{\\circ}$ or $90\\,^{\\circ}$ telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss ...

  20. Artificial auroras in the upper atmosphere. I - Electron beam injections

    Science.gov (United States)

    Burch, J. L.; Mende, S. B.; Kawashima, N.; Roberts, W. T.; Taylor, W. W. L.; Neubert, T.; Gibson, W. C.; Marshall, J. A.; Swenson, G. R.

    1993-03-01

    The Atlas-1 Spacelab payload's Space Experiments with Particle Accelerators generated artificial electron beams for the stimulation of auroral emissions at southern auroral latitudes. Optical measurements were made by the Shuttle Orbiter's onboard TV cameras, as well as by the Atmospheric Emissions Photometric Imager (in both white light and the 427.8 nm N2(+) emission line). Shuttle-based auroral imaging furnished a novel perspective on the artificial auroras; the emissions were traced from 295 km to the 110 km level along the curved magnetic-field lines.

  1. Artificial auroras in the upper atmosphere. I - Electron beam injections

    Science.gov (United States)

    Burch, J. L.; Mende, S. B.; Kawashima, N.; Roberts, W. T.; Taylor, W. W. L.; Neubert, T.; Gibson, W. C.; Marshall, J. A.; Swenson, G. R.

    1993-01-01

    The Atlas-1 Spacelab payload's Space Experiments with Particle Accelerators generated artificial electron beams for the stimulation of auroral emissions at southern auroral latitudes. Optical measurements were made by the Shuttle Orbiter's onboard TV cameras, as well as by the Atmospheric Emissions Photometric Imager (in both white light and the 427.8 nm N2(+) emission line). Shuttle-based auroral imaging furnished a novel perspective on the artificial auroras; the emissions were traced from 295 km to the 110 km level along the curved magnetic-field lines.

  2. Atmospheric electron neutrinos in the MINOS far detector

    Energy Technology Data Exchange (ETDEWEB)

    Speakman, Benjamin Phillip [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-01-01

    Neutrinos produced as a result of cosmic-ray interactions in the earth's atmosphere offer a powerful probe into the nature of this three-membered family of low-mass, weakly-interacting particles. Ten years ago, the Super-Kamiokande Experiment has confirmed earlier indications that neutrinos undergo lepton-flavor oscillations during propagation, proving that they are massive contrary to the previous Standard Model assumptions. The Soudan Underground Laboratory, located in northern Minnesota, was host to the Soudan2 Experiment, which has made important contributions to atmospheric neutrino research. This same lab has more recently been host to the MINOS far detector, a neutrino detector which serves as the downstream element of an accelerator-based long-baseline neutrino-oscillation experiment. This thesis has examined 418.5 live days of atmospheric neutrino data (fiducial exposure of 4.18 kton-years) collected in the MINOS far detector prior to the activation of the NuMI neutrino beam, with a specific emphasis on the investigation of electron-type neutrino interactions. Atmospheric neutrino interaction candidates have been selected and separated into showering or track-like events. The showering sample consists of 89 observed events, while the track-like sample consists of 112 observed events. Based on the Bartol atmospheric neutrino flux model of Barr et al. plus a Monte Carlo (MC) simulation of interactions in the MINOS detector, the expected yields of showering and track-like events in the absence of neutrino oscillations are 88.0 ± 1.0 and 149.1 ± 1.0 respectively (where the uncertainties reflect only the limited MC statistics). Major systematic uncertainties, especially those associated with the flux model, are cancelled by forming a double ratio of these observed and expected yields: R$data\\atop{trk/shw}$/R$MC\\atop{trk/shw}$ = 0.74$+0.12\\atop{-1.0}$(stat.) ± 0.04 (syst.) This double ratio should be equal to unity in the absence of oscillations, and

  3. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  4. Middle atmosphere NO/x/ production due to ion propulsion induced radiation belt proton precipitation

    Science.gov (United States)

    Aikin, A. C.; Jackman, C. H.

    1980-01-01

    The suggestion that keV Ar(+) resulting from ion propulsion operations during solar power satellite construction could cause energetic proton precipitation from the inner radiation belt is examined to determine if such precipitation could cause significant increases in middle atmosphere nitric oxide concentrations thereby adversely affecting stratospheric ozone. It is found that the initial production rate of NO (mole/cu cm-sec) at 50 km is 130 times that due to nitrous oxide reacting with excited oxygen. However, since the time required to empty the inner belt of protons is about 1 sec and short compared to the replenishment time due to neutron decay, precipitation of inner radiation belt protons will have no adverse atmospheric environmental effect.

  5. Calculated ionization rates, ion densities, and airglow emission rates due to precipitating electrons in the nightside ionosphere of Mars

    Science.gov (United States)

    Haider, S. A.; Kim, J.; Nagy, A. F.; Keller, C. N.; Verigin, M. I.; Gringauz, K. I.; Shutte, N. M.; Szego, K.; Kiraly, P.

    1992-01-01

    The calculations presented in this paper clearly establish that the electron fluxes measured by the HARP instrument, carried on board Phobos 2, could cause significant electron impact ionization and excitation in the nightside atmosphere of Mars, if these electrons actually do precipitate. The calculated peak electron densities were found to be about a factor of 2 larger than the mean observed nightside densities, indicating that if a significant fraction of the measured electrons actually precipitate, they could be the dominant mechanism responsible for maintaining the nightside ionosphere. The calculated zenith column emission rates of the O I 5577-A and 6300-A and CO Cameron band emissions, due to electron impact and dissociative recombination mechanisms, were found to be significant.

  6. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  7. Degradation of the surface of a metasilicate glass due to atmosphere moisture

    Directory of Open Access Journals (Sweden)

    Ervino Carlos Ziemath

    1998-06-01

    Full Text Available Glasses with low silica content are very susceptible to suffer pronounced degradation when exposed to room atmosphere during short times. In this work the results of the degradation of the surface of a metasilicate glass with composition 2Na2O.1CaO.3SiO2 are presented. Optical and scanning electron microscopy observations, X-ray diffraction, infrared and Raman microprobe spectroscopic measurements of the modified surface of this glass show strong evidences that it is formed essentially by a crystalline carbonate layer.

  8. Trapping of an electron due to molecular vibrations

    Science.gov (United States)

    Narevicius; Moiseyev

    2000-02-21

    Here we first show that the nuclear motion of H-2 generates a continuum of autoionization resonance states. The interference between them increases the lifetime of the trapped electron in the e(-)/H(2) scattering experiments and leads to asymmetric oscillations in the phase of the excitation probability amplitude. This collective coherent interference resonance phenomenon is very different from any known mechanism in quantum mechanics which reveals the fingerprints of overlapping resonances in scattering cross section and results from the non-Hermitian properties of the H-2 Hamiltonian.

  9. Spin g -factor due to electronic interactions in graphene

    Science.gov (United States)

    Menezes, Natália; Alves, Van Sérgio; Marino, E. C.; Nascimento, Leonardo; Nascimento, Leandro O.; Morais Smith, C.

    2017-06-01

    The gyromagnetic factor is an important physical quantity relating the magnetic-dipole moment of a particle to its spin. The electron spin g -factor in vacuo is one of the best model-based theoretical predictions ever made, showing agreement with the measured value up to ten parts per trillion [J. Schwinger, Phys. Rev. 73, 416 (1948), 10.1103/PhysRev.73.416; R. S. Van Dyck, Jr. et al., Phys. Rev. Lett. 59, 26 (1987), 10.1103/PhysRevLett.59.26; D. Hanneke et al., Phys. Rev. Lett. 100, 120801 (2008), 10.1103/PhysRevLett.100.120801; T. Aoyama et al., Phys. Rev. Lett. 109, 111807 (2012), 10.1103/PhysRevLett.109.111807]. However, for electrons in a material the g -factor is modified with respect to its value in vacuo because of environment interactions. Here, we show how interaction effects lead to the spin g -factor correction in graphene by considering the full electromagnetic interaction in the framework of pseudo-QED [A. Kovner et al., Phys. Rev. B 42, 4748 (1990), 10.1103/PhysRevB.42.4748; N. Dorey et al., Nucl. Phys. B 386, 614 (1992), 10.1016/0550-3213(92)90632-L; S. Teber, Phys. Rev. D 86, 025005 (2012), 10.1103/PhysRevD.86.025005; S. Teber, Phys. Rev. D 89, 067702 (2014), 10.1103/PhysRevD.89.067702; E. C. Marino, Nucl. Phys. B 408, 551 (1993), 10.1016/0550-3213(93)90379-4]. We compare our theoretical prediction with experiments performed on graphene deposited on SiO2 and SiC, and we find a very good agreement between them.

  10. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    Directory of Open Access Journals (Sweden)

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  11. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    Directory of Open Access Journals (Sweden)

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  12. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  13. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P.M.

    line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results from the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere...... electrons and thereby limits the ionization of the neutral atmosphere. As an example we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1-10 keV electron beams from sounding rockets...

  14. Atmospheric entry of nuclear-powered vehicles due to accidental/inadvertent termination of operations

    Science.gov (United States)

    Menees, Gene P.; Park, Chul; Tauber, Michael E.

    1992-07-01

    The entries of the radioactive components into earth's atmosphere resulting from an accident or inadvertent abort of a space vehicle powered by nuclear-thermal-rockets are investigated. The study is made for a typical piloted Mars mission vehicle incapacitated by an accident or malfunction during the trans-Mars-injection maneuver due to simultaneous multiple failures of its component systems. The three different accident/abort modes considered are the following: (1) a constant-rate angular pitching motion of the vehicle, (2) a constant-acceleration angular pitching motion of the vehicle, and (3) the rocket engine breaks away from the rest of the vehicle with a finite relative (dispersion) velocity. The speeds and angles of the atmospheric entries are calculated for each mode for different values of the time of the accident, pitching rate, acceleration, and dispersion velocity. For the most severe entry speeds and flight-path angles, the stagnation-point pressures, heat transfer rates, thickness, and mass per unit area of the heat shields necessary to protect the radioactive components from disintegrating, deceleration g-loads, and high ground-impact velocities are calculated. The study points out that the high g-loads and high ground-impact velocities are the most serious problems that must be addressed.

  15. Thickness of the electron atmosphere in large nuclear systems

    Science.gov (United States)

    Pacheco, A. F.; Sañudo, J.

    1986-03-01

    Using the relativistic Thomas-Fermi model and the virial theorem it is found that the thickness of the electron skin outside a large nuclear system is given by S⋍6.73 n-1/3, n being the electron density inside the nucleus. On leave from Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.

  16. Atmospheric entry of Mars-return nuclear-powered vehicles due to accidental termination of operations

    Science.gov (United States)

    Menees, Gene P.; Park, Chul

    1993-06-01

    The entry of nuclear reactors into Earth's atmosphere resulting from an accidental or inadvertent abort of a space vehicle powered by nuclear-thermal rockets is investigated. The study is made for a typical piloted Mars mission vehicle incapacitated by an accident or malfunction during the Earth-arrival phase of the Mars-return journey due to simultaneous, multiple failures of its component systems. A single accident/abort scenario resulting in three entry possibilities is considered for a nominal hyperbolic in-bound approach velocity of 8 km/sec. The most severe case involving a direct entry is then analyzed over a broad range of approach velocities extending to 12 km/sec to include sprint-type missions. The results indicate that the severe surface heating, stagnation pressures, and g-loads are greater than 150 kW/sq cm, 300 atm, and 800-g, respectively. The wall heat transfer rate exceeds the value that can be accommodated by a carbon heatshield through radiation equilibrium prior to sublimation at 5500 K. These conditions are beyond our previous experience in crew safety, structural design, and thermal protection.

  17. Oxidation of the Martian surface - Constraints due to chemical processes in the atmosphere

    Science.gov (United States)

    Mcelroy, M. B.; Kong, T. Y.

    1976-01-01

    Dissociation of water in the Martian atmosphere may supply oxygen to the surface and may result in the formation of minerals such as goethite, as proposed by Huguenin. The supply rate is limited by chemical processes in the atmosphere which regulate the abundance of O2. The net surface sink for atmospheric oxygen can be as large as 33 million atoms per sq cm per sec which compares to the escape rate of 60 million atoms per sq cm per sec.

  18. Electron and proton kinetics and dynamics in flaring atmospheres

    CERN Document Server

    Zharkova, Valentina

    2012-01-01

    This timely book presents new research results on high-energy particle physics related to solar flares, covering the theory and applications of the reconnection process in a clear and comprehensible way. It investigates particle kinetics and dynamics in flaring atmospheres and their diagnostics from spectral observations, while providing an analysis of the observation data and techniques and comparing various models. Written by an internationally acclaimed expert, this is vital reading for all solar, astro-, and plasma physicists working in the field.

  19. Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration

    DEFF Research Database (Denmark)

    Uskov, Alexander; Protsenko, Igor E.; Mortensen, N. Asger

    2014-01-01

    We present a quantum mechanical approach to calculate broadening of plasmonic resonances in metallic nanostructures due to collisions of electrons with the surface of the structure. The approach is applicable if the characteristic size of the structure is much larger than the de Broglie electron...

  20. Secondary Cosmic Ray Particles Due to GCR Interactions in the Earth's Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, G.; /Milan U. /INFN, Milan; Cerutti, F.; /CERN; Fasso, A.; /SLAC; Ferrari, A.; /CERN; Garzelli, M.V.; /Milan U. /INFN, Milan; Lantz, M.; /Goteborg, ITP; Muraro, S. /Milan U. /INFN, Milan; Pinsky, L.S.; /Houston U.; Ranft, J.; /Siegen U.; Roesler, S.; /CERN; Sala, P.R.; /Milan U. /INFN, Milan

    2009-06-16

    Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

  1. Secondary Cosmic Ray particles due to GCR interactions in the Earth's atmosphere

    CERN Document Server

    Battistoni, G.; Fasso, A.; Ferrari, A.; Garzelli, M.V.; Lantz, M.; Muraro, S.; Pinsky, L.S.; Ranft, J.; Roesler, S.; Sala, P.R.

    2008-01-01

    Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

  2. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  3. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  4. Electron cooling by carbon monoxide in the atmospheres of Mars and Venus

    CERN Document Server

    Campbell, Laurence

    2008-01-01

    Electron cooling, in which free electrons lose energy to vibrational excitation of gases, has been identified as a significant process in the atmospheres of Mars and Venus for electron impact on CO2. This process does not appear to have been evaluated for CO, although the density of CO exceeds that of CO2 in the upper atmospheres of these planets. In this paper electron cooling rates for CO are calculated and compared with existing rates for CO2. It is found that electron cooling by CO becomes more significant than by CO2 above altitudes of about 300 km on Mars and about 168 km on Venus. The sensitivity of the calculated cooling rates to different measurements of the integral cross sections for electron-impact vibrational excitation of CO is also investigated. PACS Codes: 34.80.Gs, 96.12.Jt

  5. Improved calculation of the electron self-energy due to electron-phonon coupling in solids

    CERN Document Server

    Fortini, A

    1998-01-01

    An improved method for solving time-dependent problems in quantum mechanics, in the customary cases of constant or harmonic perturbation, is applied to the calculation of the self-energy of electrons interacting with phonons in solids. The mixing of unperturbed Bloch states, resulting from the actual coupling, is self-consistently taken into account, and the related quantum probability amplitudes are determined through direct integration over the quasiparticle spectrum. Laplace transform and elementary mathematics are used, thereby enhancing the physical transparency, and bringing out approximations in every stage. Explicit illustrative results are worked out in the simple case of slowly varying self-energy parameters. The method is critically compared with the standard Green function approach, and further encourages more detailed applications. (author)

  6. Direct Observation of Protein Microcrystals in Crystallization Buffer by Atmospheric Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Chikara Sato

    2012-08-01

    Full Text Available X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called “crystallization bottleneck”. Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few µm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals.

  7. Microwave Propagation Attenuation due to Earth's Atmosphere and Weather at SHF Band

    Science.gov (United States)

    Ho, Christian; Wang, Charles; Gritton, Kelly; Angkasa, Kris

    2004-01-01

    In this study we have estimated radio wave propagation losses at super high frequency (SHF) band by applying available propagation models into several Air Force benchmark scenarios. The study shows that dominantly additional losses over the free space loss are atmospheric absorption, clouds, fog, and precipitation, as well as scintillation /multipath at low elevation angles. The free space loss equation has been modified to include all atmospheric attenuation and fading effects that cannot be neglected over the range of frequency of interest. Terrain profiles along all directions of interest within the coastal areas and inland areas for four benchmark cases have been analyzed in detail. We find that while the atmospheric gaseous absorption plays a significant role under a clear weather, heavy rainfalls can cause several tens of dB loss for a 100- km path through the rain. At very low elevation angles (propagation between the east and the west coastal receiving stations.

  8. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    NARCIS (Netherlands)

    Zemp, Delphine Clara; Schleussner, Carl Friedrich; Barbosa, Henrique M.J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-01-01

    © 2017 The Author(s).Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified

  9. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    NARCIS (Netherlands)

    Zemp, Delphine Clara; Schleussner, Carl Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, L.; Rammig, Anja

    2017-01-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss

  10. Assessing the Habitability of TRAPPIST-1e: MHD Simulations of Atmospheric Loss Due to CMEs and Stellar Wind

    Science.gov (United States)

    Harbach, Laura Marshall; Drake, Jeremy J.; Garraffo, Cecilia; Alvarado-Gomez, Julian D.; Moschou, Sofia P.; Cohen, Ofer

    2018-01-01

    Recently, three rocky planets were discovered in the habitable zone of the nearby planetary system TRAPPIST-1. The increasing number of exoplanet detections has led to further research into the planetary requirements for sustaining life. Habitable zone occupants have, in principle, the capacity to retain liquid water, whereas actual habitability might depend on atmospheric retention. However, stellar winds and photon radiation interactions with the planet can lead to severe atmospheric depletion and have a catastrophic impact on a planet’s habitability. While the implications of photoevaporation on atmospheric erosion have been researched to some degree, the influence of stellar winds and Coronal Mass Ejections (CMEs) has yet to be analyzed in detail. Here, we model the effect of the stellar wind and CMEs on the atmospheric envelope of a planet situated in the orbit of TRAPPIST-1e using 3D magnetohydrodynamic (MHD) simulations. In particular, we discuss the atmospheric loss due to the effect of a CME, and the relevance of the stellar and planetary magnetic fields on the sustainability of M-dwarf exoplanetary atmospheres.

  11. Uncertainties in Regional Carbon Budgets Due to Land-Atmosphere Coupling at Synoptic Timescales

    Science.gov (United States)

    Williams, I. N.; Riley, W. J.; Torn, M. S.; Biraud, S. C.; Fischer, M. L.

    2012-12-01

    Recent advances in surface carbon flux inversions could significantly reduce uncertainties in land carbon uptake through assimilation of higher frequency weather and carbon cycle data in atmospheric transport models. This framework resolves the covariation between atmospheric dynamics and surface fluxes important for synoptic-scale transport, but also places greater demand on underlying land surface models to adequately simulate land-atmosphere coupling at these scales. This study quantifies sensitivities of transport model inversions to covariation between atmospheric dynamics and surface carbon dioxide fluxes at synoptic timescales. Monte-Carlo simulations were performed using synthetic datasets as empirical forcing to a dynamical boundary layer model that predicts vertical concentration gradients. Cross-spectra and rank-correlations were fitted to eddy covariance fluxes and LiDAR-derived boundary layer depths to generate synthetic forcing for simulations having realistic synoptic (1-45 day) variability, with control simulations having uncorrelated Gaussian white-noise added to seasonal means. Results show that non-linear correlations between surface fluxes and boundary-layer depth together with temporally autocorrelated vertical velocities cause rectification of seasonal concentration gradients by up to 0.5 ppm CO2, or about 25% of the seasonal cycle at the U.S. Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility (ARM-SGP). These gradients oppose the traditional seasonal rectifier effect by depleting boundary layer carbon dioxide during the growing season in spring without enhancing concentrations in winter, and would result in large errors in land carbon fluxes if inverted using data assimilation systems that fail to capture the observed serial and rank correlations. We find that a state-of-the art data assimilation system produces weaker synoptically-forced seasonal gradients relative to empirical estimates, which we propose as a

  12. Failure Analysis of a Nickel-Plated Electronic Connector Due to Salt-Induced Corrosion (ENGE 2014).

    Science.gov (United States)

    Lee, Na-Ri; Choi, Hyoung-Seuk; Choi, Duck-Kyun

    2015-10-01

    When electronic connectors in mobile devices are miniaturized, the thickness of plating decreases. However, this thin plating is expected to decrease the life of the connector due to problems with corrosion. In this study, salt spray aging tests were performed on miniaturized nickel-plated stainless steel electronic connectors to observe failure mechanisms in realistic environments. The tests were performed three times using a 5% NaCl solution in an atmosphere of 45 °C; each test included several cycles where one cycle was one 24-h period consisting of 8 h of salt spray and 16 h without salt spray. The nickel-plating layers were periodically observed by electron probe X-ray micro-analyzer, wavelength dispersive spectroscopy, and field-emission scanning electron microscopy to analyze and identify the corrosion mechanism. We found that the primary failure mode of the nickel plating is blistering and delamination. The corrosion mechanism is typically a chain reaction of several corrosion mechanisms: pitting corrosion --> stress corrosion cracking --> hydrogen-induced cracking --> blistering and delamination. Finally, we discuss countermeasures to prevent corrosion of the nickel layer based on the corrosion mechanisms identified in this study.

  13. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  14. Radiative absorption enhancements due to the mixing state of atmospheric black carbon.

    Science.gov (United States)

    Cappa, Christopher D; Onasch, Timothy B; Massoli, Paola; Worsnop, Douglas R; Bates, Timothy S; Cross, Eben S; Davidovits, Paul; Hakala, Jani; Hayden, Katherine L; Jobson, B Tom; Kolesar, Katheryn R; Lack, Daniel A; Lerner, Brian M; Li, Shao-Meng; Mellon, Daniel; Nuaaman, Ibraheem; Olfert, Jason S; Petäjä, Tuukka; Quinn, Patricia K; Song, Chen; Subramanian, R; Williams, Eric J; Zaveri, Rahul A

    2012-08-31

    Atmospheric black carbon (BC) warms Earth's climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (E(abs)) and mixing state are reported for two California regions. The observed E(abs) is small-6% on average at 532 nm-and increases weakly with photochemical aging. The E(abs) is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial E(abs) for BC are possible.

  15. Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects

    Science.gov (United States)

    Lillis, Robert J.; Fang, Xiaohua

    2015-07-01

    Precipitating electrons are typically the dominant source of energy input into Mars' nighttime upper atmosphere, with consequences for atmospheric and ionospheric structure, composition, chemistry, and electrodynamics. Mars' spatially heterogeneous crustal magnetic fields affect the fluxes of precipitating electrons, via both the magnetic mirror force and Gauss' law of conservation of magnetic flux. We use a kinetic electron transport model to examine ionization rate profiles that result from the combination of these magnetic effects and elastic and inelastic scattering by atmospheric neutrals. Specifically, we calculate ionization rates as a function of altitude, crustal magnetic field strength, and the initial energy and pitch angle of the precipitating electrons, covering the relevant ranges of these parameters. Several complex behaviors are exhibited, including bifurcating ionization peaks with distinct characteristics and energy-dependent and crustal field strength-dependent increases in ionization with decreasing pitch angle. Elucidating such behavior is important for understanding the effect of Mars' unique crustal fields on the Mars upper atmosphere and ionosphere, both to predict the consequences of measured electron precipitation and to enable, for the first time, downward coupling of global plasma models with thermosphere-ionosphere models.

  16. A case study of electron precipitation fluxes due to plasmaspheric hiss

    Science.gov (United States)

    Hardman, Rachael; Clilverd, Mark A.; Rodger, Craig J.; Brundell, James B.; Duthie, Roger; Holzworth, Robert H.; Mann, Ian R.; Milling, David K.; Macusova, Eva

    2015-08-01

    We find that during a large geomagnetic storm in October 2011 the trapped fluxes of >30, >100, and >300 keV outer radiation belt electrons were enhanced at L = 3-4 during the storm main phase. A gradual decay of the trapped fluxes was observed over the following 5-7 days, even though no significant precipitation fluxes could be observed in the Polar Orbiting Environmental Satellite (POES) electron precipitation detectors. We use the Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium receiver network to investigate the characteristics of the electron precipitation throughout the storm period. Weak electron precipitation was observed on the dayside for 5-7 days, consistent with being driven by plasmaspheric hiss. Using a previously published plasmaspheric hiss-induced electron energy e-folding spectrum of E0 = 365 keV, the observed radio wave perturbation levels at L = 3-4 were found to be caused by >30 keV electron precipitation with flux ~100 el cm-2 s-1 sr-1. The low levels of precipitation explain the lack of response of the POES telescopes to the flux, because of the effect of the POES lower sensitivity limit and ability to measure weak diffusion-driven precipitation. The detection of dayside, inner plasmasphere electron precipitation during the recovery phase of the storm is consistent with plasmaspheric hiss wave-particle interactions and shows that the waves can be a significant influence on the evolution of the outer radiation belt trapped flux that resides inside the plasmapause.

  17. Polarization of Sunyaev-Zel'dovich signal due to electron pressure anisotropy in galaxy clusters

    Science.gov (United States)

    Khabibullin, I.; Komarov, S.; Churazov, E.; Schekochihin, A.

    2018-02-01

    We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 10-8 (˜10 nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-β weakly collisional plasma from the point of view of both astrophysics and plasma theory.

  18. Line broadening in a photoionization spectrometer due to elastic electron--atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Butikov, E.I.; Mishchenko, E.D.; Tumarkin, Y.N.

    1984-02-01

    Line broadening in a photoionization spectrometer due to elastic collisions between photoelectrons and atoms of the working gas is considered. Expressions are obtained for the stationary electron energy distribution function and for the initial part of the current-voltage characteristic in the case of monochromatic ionizing radiation for intensities of the retarding field close to the initial photoelectron energy.

  19. On transient climate change at the Cretaceous-Paleogene boundary due to atmospheric soot injections

    Science.gov (United States)

    Bardeen, Charles G.; Garcia, Rolando R.; Toon, Owen B.; Conley, Andrew J.

    2017-09-01

    Climate simulations that consider injection into the atmosphere of 15,000 Tg of soot, the amount estimated to be present at the Cretaceous-Paleogene boundary, produce what might have been one of the largest episodes of transient climate change in Earth history. The observed soot is believed to originate from global wildfires ignited after the impact of a 10-km-diameter asteroid on the Yucatán Peninsula 66 million y ago. Following injection into the atmosphere, the soot is heated by sunlight and lofted to great heights, resulting in a worldwide soot aerosol layer that lasts several years. As a result, little or no sunlight reaches the surface for over a year, such that photosynthesis is impossible and continents and oceans cool by as much as 28 °C and 11 °C, respectively. The absorption of light by the soot heats the upper atmosphere by hundreds of degrees. These high temperatures, together with a massive injection of water, which is a source of odd-hydrogen radicals, destroy the stratospheric ozone layer, such that Earth’s surface receives high doses of UV radiation for about a year once the soot clears, five years after the impact. Temperatures remain above freezing in the oceans, coastal areas, and parts of the Tropics, but photosynthesis is severely inhibited for the first 1 y to 2 y, and freezing temperatures persist at middle latitudes for 3 y to 4 y. Refugia from these effects would have been very limited. The transient climate perturbation ends abruptly as the stratosphere cools and becomes supersaturated, causing rapid dehydration that removes all remaining soot via wet deposition.

  20. On transient climate change at the Cretaceous-Paleogene boundary due to atmospheric soot injections.

    Science.gov (United States)

    Bardeen, Charles G; Garcia, Rolando R; Toon, Owen B; Conley, Andrew J

    2017-09-05

    Climate simulations that consider injection into the atmosphere of 15,000 Tg of soot, the amount estimated to be present at the Cretaceous-Paleogene boundary, produce what might have been one of the largest episodes of transient climate change in Earth history. The observed soot is believed to originate from global wildfires ignited after the impact of a 10-km-diameter asteroid on the Yucatán Peninsula 66 million y ago. Following injection into the atmosphere, the soot is heated by sunlight and lofted to great heights, resulting in a worldwide soot aerosol layer that lasts several years. As a result, little or no sunlight reaches the surface for over a year, such that photosynthesis is impossible and continents and oceans cool by as much as 28 °C and 11 °C, respectively. The absorption of light by the soot heats the upper atmosphere by hundreds of degrees. These high temperatures, together with a massive injection of water, which is a source of odd-hydrogen radicals, destroy the stratospheric ozone layer, such that Earth's surface receives high doses of UV radiation for about a year once the soot clears, five years after the impact. Temperatures remain above freezing in the oceans, coastal areas, and parts of the Tropics, but photosynthesis is severely inhibited for the first 1 y to 2 y, and freezing temperatures persist at middle latitudes for 3 y to 4 y. Refugia from these effects would have been very limited. The transient climate perturbation ends abruptly as the stratosphere cools and becomes supersaturated, causing rapid dehydration that removes all remaining soot via wet deposition.

  1. Response to comment on "Radiative absorption enhancements due to the mixing state of atmospheric black carbon".

    Science.gov (United States)

    Cappa, Christopher D; Onasch, Timothy B; Massoli, Paola; Worsnop, Douglas R; Bates, Timothy S; Cross, Eben S; Davidovits, Paul; Hakala, Jani; Hayden, Katherine L; Jobson, B Tom; Kolesar, Katheryn R; Lack, Daniel A; Lerner, Brian M; Li, Shao-Meng; Mellon, Daniel; Nuaaman, Ibraheem; Olfert, Jason S; Petäjä, Tuukka; Quinn, Patricia K; Song, Chen; Subramanian, R; Williams, Eric J; Zaveri, Rahul A

    2013-01-25

    Jacobson argues that our statement that "many climate models may overestimate warming by BC" has not been demonstrated. Jacobson challenges our results on the basis that we have misinterpreted some model results, omitted optical focusing under high relative humidity conditions and by involatile components, and because our measurements consist of only two locations over short atmospheric time periods. We address each of these arguments, acknowledging important issues and clarifying some misconceptions, and stand by our observations. We acknowledge that Jacobson identified one detail in our experimental technique that places an additional constraint on the interpretation of our observations and reduces somewhat the potential consequences of the stated implications.

  2. Electronic dynamics due to exchange interaction with holes in GaAs

    Science.gov (United States)

    Schneider, Hans Christian; Krauß, Michael

    2010-02-01

    We present an investigation of electron-spin dynamics in p-doped bulk GaAs due to the electron-hole exchange interaction, aka the Bir-Aronov-Pikus mechanism. We discuss under which conditions a spin relaxation times for this mechanism is, in principle, accessible to experimental techniques, in particular to 2-photon photoemission, but also Faraday/Kerr effect measurements. We give numerical results for the spin relaxation time for a range of p-doping densities and temperatures. We then go beyond the relaxation time approximation and calculate numerically the spin-dependent electron dynamics by including the spin-flip electron-hole exchange scattering and spin-conserving carrier Coulomb scattering at the level of Boltzmann scattering integrals. We show that the electronic dynamics deviates from the simple spin-relaxation dynamics for electrons excited at high energies where the thermalization does not take place faster than the spin relaxation time. We also present a derivation of the influence of screening on the electron-hole exchange scattering and conclude that it can be neglected for the case of GaAs, but may become important for narrow-gap semiconductors.

  3. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  4. Characteristics of energetic electron precipitation into the earth's polar atmosphere and geomagnetic conditions

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.

    A number of energetic electron precipitation events (EPEs) were observed in the Earth's polar atmosphere (Murmansk region, geographical coordinates 68.57 N, 33.03 E and Mirny, Antarctica, 66.34 S, 92.55 E) during the long-term cosmic ray balloon experiment from 1957 up to now. During geomagnetic storms significant X-ray fluxes caused by precipitating electrons at the top of the atmosphere sometimes penetrated to the atmospheric depth of 60 gcm-2. We show that (1) there is a quasi-11-year cycle in EPE occurrence shifted with respect to solar activity cycle, and (2) the yearly rate of EPE occurrence has an ascending trend during the period 1965-1999. The EPE characteristics evaluated from the balloon experiment are compared with the available data on geomagnetic activity and the possible relations between the features of EPE events and geomagnetic conditions are discussed.

  5. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  6. Comparison of probability density functions for analyzing irradiance statistics due to atmospheric turbulence.

    Science.gov (United States)

    Mclaren, Jason R W; Thomas, John C; Mackintosh, Jessica L; Mudge, Kerry A; Grant, Kenneth J; Clare, Bradley A; Cowley, William G

    2012-09-01

    A large number of model probability density functions (PDFs) are used to analyze atmospheric scintillation statistics. We have analyzed scintillation data from two different experimental setups covering a range of scintillation strengths to determine which candidate model PDFs best describe the experimental data. The PDFs were fitted to the experimental data using the method of least squares. The root-mean-squared fitting error was used to monitor the goodness of fit. The results of the fitting were found to depend strongly on the scintillation strength. We find that the log normally modulated Rician and the log normal PDFs are the best fit to the experimental data over the range of scintillation strengths encountered.

  7. A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback

    Science.gov (United States)

    Ham, Yoo-Geun

    2017-08-01

    This study analyzes a reduction in the asymmetry of El Niño Southern-Oscillation (ENSO) amplitude due to global warming in Coupled Model Intercomparison Project Phase 5 models. The multimodel-averaged Niño3 skewness during December-February season decreased approximately 40% in the RCP4.5 scenario compared to that in the historical simulation. The change in the nonlinear relationship between sea surface temperature (SST) and precipitation is a key factor for understanding the reduction in ENSO asymmetry due to global warming. In the historical simulations, the background SST leading to the greatest precipitation sensitivity (SST for Maximum Precipitation Sensitivity, SST_MPS) occurs when the positive SST anomaly is located over the equatorial central Pacific. Therefore, an increase in climatological SST due to global warming weakens the atmospheric response during El Niño over the central Pacific. However, the climatological SST over this region in the historical simulation is still lower than the SST_MPS for the negative SST anomaly; therefore, a background SST increase due to global warming can further increase precipitation sensitivity. The atmospheric feedbacks during La Niña are enhanced and increase the La Niña amplitude due to global warming.

  8. Ion production and ionization effect in the atmosphere during the Bastille day GLE 59 due to high energy SEPs

    Science.gov (United States)

    Mishev, A. L.; Velinov, P. I. Y.

    2018-01-01

    The influence of high energy particles, specifically cosmic rays, on atmospheric physics and chemistry is highly discussed. In most of the proposed models the role of ionization in the atmosphere due to cosmic rays is not negligible. Moreover, effect(s) on minor constituents and aerosols are recently observed, specifically over the polar regions during strong solar particle events. According to the recent findings for such effects it is necessary an essential increase of ion production, specifically during the winter period. The galactic cosmic rays are the main source of ionization in the Earth's stratosphere and troposphere. Occasionally, the atmospheric ionization is significantly enhanced during strong solar energetic particles events, specifically over the polar caps. During the solar cycle 23 several strong ground level enhancements were observed. One of the strongest was the Bastille day event occurred on 14 July 2000. Using a full Monte Carlo 3-D model, we compute the atmospheric ionization, considering explicitly the contribution of cosmic rays with galactic and solar origin, focusing on high energy particles. The model is based on atmospheric cascade simulation with the PLANETOCOSMICS code. The ion production rate is computed as a function of the altitude above the sea level. The ion production rate is computed on a step ranging from 10 to 30 min throughout the event, considering explicitly the spectral and angular characteristics of the high energy part of solar protons as well as their time evolution. The corresponding event averaged ionization effect relative to the average due to galactic cosmic rays is computed in lower stratosphere and upper troposphere at various altitudes, namely 20 km, 15 km, 12 km and 8 km above the sea level in a sub-polar and polar regions. The 24h and the weekly ionization effects are also computed in the troposphere and low stratosphere. Several applications are discussed.

  9. Changes in the Earth’s Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

    Directory of Open Access Journals (Sweden)

    Sung-Ho Na

    2016-12-01

    Full Text Available The atmosphere strongly affects the Earth’s spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i the Earth orientation parameter and ii the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth’s spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth’s pole has been observed. The change in the Earth’s inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

  10. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  11. Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    1997-09-01

    Full Text Available Latent heat release associated with tropical deep convective activity is investigated as a source for migrating (sun-synchronous diurnal and semidiurnal tidal oscillations in the 80–150-km height region. Satellite-based cloud brightness temperature measurements made between 1988 and 1994 and averaged into 3-h bins are used to determine the annual- and longitude-average local-time distribution of rainfall rate, and hence latent heating, between ±40° latitude. Regional average rainfall rates are shown to be in good agreement with climatological values derived from surface rain gauge data. A global linearized wave model is used to estimate the corresponding atmospheric perturbations in the mesosphere/lower thermosphere (80–150 km resulting from upward-propagating tidal components excited by the latent heating. The annual-average migrating diurnal and semidiurnal components achieve velocity and temperature amplitudes of order 10–20 m s–1 and 5–10 K, respectively, which represent substantial contributions to the dynamics of the region. The latent heat forcing also shifts the phase (local solar time of maximum of the semidiurnal surface pressure oscillation from 0912 to 0936 h, much closer to the observed value of 0944 h.

  12. Numerical and experimental investigation of light emissions of a planar nitrogen atmospheric-pressure dielectric barrier discharge due to addition of ammonia considering oxygen impurity

    Science.gov (United States)

    Li, F.-L.; Hung, C.-T.; Lin, K.-M.; Wei, T.-C.; Wu, J.-S.

    2013-12-01

    In this paper, the mechanisms of light emissions, including NO-γ, NO-β and N2-SPS, produced in a N2/NH3 atmospheric-pressure dielectric barrier discharge considering realistic oxygen impurity (30 ppm) are investigated numerically and experimentally. Self-consistent, one-dimensional fluid modeling is used to numerically simulate the discharge process with 48 species and 235 reaction channels. An optical emission spectrometer (OES) is used to measure the relative intensities of the light emission. The simulations of the light emission intensities for the above-mentioned OES lines generally reproduce the trends observed in the experiments caused by changes in the NH3 concentration. All of the predicted intensities of NO-γ, NO-β and N2-SPS decrease with increasing amount of NH3 caused by various reaction mechanisms. The former is due to the loss of N2(A) and NO(A) by the reaction of NH3 with N2(A) and NO(A), respectively. The decrease in NO-β is due to the depletion of N and O because of NH3, and the decrease in N2-SPS is due to electron attachment to NH3 and a weaker metastable-metastable associative ionization of N2. All of the simulated results demonstrate that the discharges are typically Townsend-like because the ions outnumber the electrons and the electric field across the gap is distorted only slightly by the charged particles during the breakdown. Finally, a reduced chemical kinetics model for a planar atmospheric-pressure N2/O2/NH3 dielectric barrier discharge is proposed and validated by benchmarking against the above complete chemical kinetics. This results in a reduced chemical kinetics consisting of 33 species and 87 reactions with a very limited loss of accuracy of discharge properties, while it is 2.1 times faster in computational time as compared with the complete version.

  13. Generation of Electron Suprathermal Tails in the Upper Solar Atmosphere: Implications for Coronal Heating

    Science.gov (United States)

    Vinas, Adolfo F.; Wong, Hung K.; Klimas, Alexander J.

    1999-01-01

    We present a mechanism for the generation of non-Maxwellian electron distribution function in the upper regions of the solar atmosphere in the presence of collisional damping. It is suggested that finite amplitude, low frequency, obliquely propagating electromagnetic waves can carry a substantial electric field component parallel to the mean magnetic field that can be significantly larger than the Dreicer electric field. This long wavelength electric fluctuation is capable of generating high frequency electron plasma oscillations and low frequency ion acoustic-like waves. The analysis has been performed using 1-1/2D Vlasov and PIC numerical simulations in which both electrons and ions are treated kinetically and self consistently. The simulation results indicate that high frequency electron plasma oscillations and low frequency ion acoustic-like waves are generated. The high frequency electron plasma oscillation drives electron plasma turbulence, which subsequently is damped out by the background electrons. The turbulence damping results in electron acceleration and the generation of non-Maxwellian suprathermal tails on time scales short compared to collisional damping. Bulk heating also occurs if the fluctuating parallel electric field is strong enough. This study suggests that finite amplitude, low frequency, obliquely propagating, electromagnetic waves can play a significant role in the acceleration and heating of the solar corona electrons and in the coupling of medium and small-scale phenomena.

  14. Parameterization of aerosol scavenging due to atmospheric ionization under varying relative humidity

    Science.gov (United States)

    Zhang, Liang; Tinsley, Brian A.

    2017-05-01

    Simulations and parameterizations of the modulation of aerosol scavenging by electric charges on particles and droplets for different relative humidities have been made for 3 μm radii droplets and a wide range of particle radii. For droplets and particles with opposite-sign charges, the attractive Coulomb force increases the collision rate coefficients above values due to other forces. With same-sign charges, the repulsive Coulomb force decreases the rate coefficients, and the short-range attractive image forces become important. The phoretic forces are attractive for relative humidity less than 100% and repulsive for relative humidity greater than 100% and have increasing overall effect for particle radii up to about 1 μm. There is an analytic solution for rate coefficients if only inverse square forces are present, but due to the presence of image forces, and for larger particles the intercept, weight, and the flow around the particle affecting the droplet trajectory, the simulated results usually depart far from the analytic solution. We give simple empirical parameterization formulas for some cases and more complex parameterizations for more exact fits to the simulated results. The results can be used in cloud models with growing droplets, as in updrafts, as well as with evaporating droplets in downdrafts. There is considered to be little scavenging of uncharged ice-forming nuclei in updrafts, but with charged ice-forming nuclei it is possible for scavenging in updrafts in cold clouds to produce contact ice nucleation. Scavenging in updrafts below the freezing level produces immersion nuclei that promote enhanced freezing as droplets rise above it.

  15. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  16. Ion Emittance Growth Due to Focusing Modulation from Slipping Electron Bunch

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-02-17

    Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunch from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.

  17. Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse.

    Science.gov (United States)

    Solovyev, A A; Terekhin, V A; Tikhonchuk, V T; Altgilbers, L L

    1999-12-01

    A physical model is proposed for description of electron kinetics driven by a powerful electromagnetic pulse in the Earth's atmosphere. The model is based on a numerical solution to the Boltzmann kinetic equation for two groups of electrons. Slow electrons (with energies below a few keV) are described in a two-term approximation assuming a weak anisotropy of the electron distribution function. Fast electrons (with energies above a few keV) are described by a modified macroparticle method, taking into account the electron acceleration in the electric field, energy losses in the continuous deceleration approximation, and the multiple pitch angle scattering. The model is applied to a problem of the electric discharge in a nitrogen, which is preionized by an external gamma-ray source. It is shown that the runaway electrons have an important effect on the energy distribution of free electrons, and on the avalanche ionization rate. This mechanism might explain the observation of multiple lightning discharges observed in the Ivy-Mike thermonuclear test in the early 1950's.

  18. External costs of atmospheric Pb emissions: valuation of neurotoxic impacts due to inhalation

    Directory of Open Access Journals (Sweden)

    Frohn Lise

    2010-02-01

    Full Text Available Abstract Background The Impact Pathway Approach (IPA is an innovative methodology to establish links between emissions, related impacts and monetary estimates. Only few attempts have so far been presented regarding emissions of metals; in this study the external costs of airborne lead (Pb emissions are assessed using the IPA. Exposure to Pb is known to provoke impacts especially on children's cognition. As cognitive abilities (measured as IQ, intelligence quotient are known to have implications for lifetime income, a pathway can be established leading from figures for Pb emissions to the implied loss in earnings, and on this basis damage costs per unit of Pb emission can be assessed. Methods Different types of models are here linked. It is relatively straightforward to establish the relationship between Pb emissions and consequent increase in air-Pb concentration, by means of a Gaussian plume dispersion model (OML. The exposed population can then be modelled by linking the OML-output to population data nested in geo-referenced grid cells. Less straightforward is to establish the relationship between exposure to air-Pb concentrations and the resulting blood-Pb concentration. Here an Age-Dependent Biokinetic Model (ADBM for Pb is applied. On basis of previous research which established links between increases in blood-Pb concentrations during childhood and resulting IQ-loss we arrive at our results. Results External costs of Pb airborne emissions, even at low doses, in our site are in the range of 41-83 €/kg emitted Pb, depending on the considered meteorological year. This estimate applies only to the initial effects of air-Pb, as our study does not address the effects due to the Pb environmental-accumulation and to the subsequent Pb re-exposure. These are likely to be between one and two orders of magnitude higher. Conclusions Biokinetic modelling is a novel tool not previously included when applying the IPA to explore impacts of Pb emissions

  19. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    Science.gov (United States)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  20. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Mitsuo, E-mail: msuga@jeol.co.jp [Clair Project, JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Nishiyama, Hidetoshi; Konyuba, Yuji [Clair Project, JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki [Yamagata Research Institute of Technology, 2-2-1, Matsuei, Yamagata, 990-2473 (Japan); Yoshiura, Chie; Ueda, Takumi [Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-4, Umezono, Tsukuba 305-8568 (Japan)

    2011-12-15

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. -- Highlights: Black-Right-Pointing-Pointer Atmospheric SEM (ASEM) observes dynamic phenomena in liquid or gas in open ASEM dish. Black-Right-Pointing-Pointer Random motion and radiation-induced self-organization were observed. Black-Right-Pointing-Pointer Tree-like electrochemical deposition of gold was observed on an electrode in situ. Black-Right-Pointing-Pointer Temperature-dependent phase transitions of solder were dynamically observed in air. Black-Right-Pointing-Pointer Silver and solder pastes were easily and rapidly observed in air for process control.

  1. Electron heating and mode transition in dual frequency atmospheric pressure argon dielectric barrier discharge

    Science.gov (United States)

    Zhang, Z. L.; Lim, J. W. M.; Nie, Q. Y.; Zhang, X. N.; Jiang, B. H.

    2017-10-01

    Plasma ionization, excitation, mode transitions and associated electron heating mechanisms in atmospheric pressure dielectric barrier discharges (DBD) driven by dual radio frequency sources are investigated in this paper. The electrons are found to be heated mainly by the high frequency component in the plasma bulk when discharged in α mode. On the contrary, the low frequency component is primarily responsible for heating in the sheath which is caused by intense motion in the sheath. It was also found that variation of the lower frequency component ratio could effectively modulate the electron energy distribution as determined from time averaged EEDF. The results above have demonstrated that the independent control of plasma parameters via non-linear synergistic effect between the dual frequency sources can be achieved through reasonable selection of processing parameters.

  2. The 10 sheath-accelerated electrons and ions. [atmospheric models of plasma sheaths and ionospheric electron density

    Science.gov (United States)

    Shawhan, S. D.

    1975-01-01

    A model is presented that suggests that plasma sheaths form between the ionospheric plasma moving with Io and the ambient plasma corotating with Jupiter. Potentials across these sheaths could be as high as 580 kV which is the motional emf across Io's ionosphere. Electrons and ions can be accelerated across these sheaths. The sheaths may exist at the top of the Io ionosphere with characteristic thicknesses of 1/4 kilometers. The model is consistent with the Pioneer observations of 0.15 MeV electrons at the inner edge of Io's L-shell and the enhanced number density of low-energy protons at the outer edge. Ion sputtering of the Io surface is discussed and may explain the presence of atomic hydrogen and sodium in the vicinity of Io. Also these accelerated particles may be important to the formation of the Io ionosphere. High electron flux which may lead to decametric radio emissions, Jovian atmospheric heating and optical and X-ray emissions is also discussed.

  3. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu [University of Georgia, Department of Chemistry, 101 Cedar St., Athens, Georgia 30602 (United States)

    2014-01-21

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.

  4. Observation of reduction of secondary electron emission from helium ion impact due to plasma-generated nanostructured tungsten fuzz

    Science.gov (United States)

    Hollmann, E. M.; Doerner, R. P.; Nishijima, D.; Pigarov, A. Yu

    2017-11-01

    Growth of nanostructured fuzz on a tungsten target in a helium plasma is found to cause a significant (~3×) reduction in ion impact secondary electron emission in a linear plasma device. The ion impact secondary electron emission is separated from the electron impact secondary electron emission by varying the target bias voltage and fitting to expected contributions from electron impact, both thermal and non-thermal; with the non-thermal electron contribution being modeled using Monte-Carlo simulations. The observed (~3×) reduction is similar in magnitude to the (~2×) reduction observed in previous work for the effect of tungsten fuzz formation on secondary electron emission due to electron impact. It is hypothesized that the observed reduction results from re-absorption of secondary electrons in the tungsten fuzz.

  5. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  6. Fluorescence excited in a thunderstorm atmosphere by relativistic runaway electron avalanches

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.

    2017-05-01

    The spectrum and spatiotemporal evolution of the fluorescence of an atmospheric discharge developing in the regime of relativistic runaway electron avalanche (RREA) generation have been calculated without involving the relativistic feedback. The discharges generating narrow bipolar pulses, along with the discharges responsible for terrestrial gamma-ray flashes, are shown to be relatively dark. Nevertheless, the fluorescence excited by a discharge involving RREAs can be recorded with cameras used to record high-altitude optical phenomena. A possible connection between a certain class of optical phenomena observed at the tops of thunderclouds and RREA emission is pointed out.

  7. Monte Carlo analysis of field-dependent electron avalanche coefficients in nitrogen at atmospheric pressure

    Science.gov (United States)

    Nguyen, H. K.; Mankowski, J.; Dickens, J. C.; Neuber, A. A.; Joshi, R. P.

    2017-12-01

    Calculations of electron impact ionization of nitrogen gas at atmospheric pressure are presented based on the kinetic Monte Carlo technique. The emphasis is on energy partitioning between primary and secondary electrons, and three different energy sharing schemes have been evaluated. The ionization behavior is based on Wannier's classical treatment. Our Monte Carlo results for the field-dependent drift velocities match the available experimental data. More interestingly, the field-dependent first Townsend coefficient predicted by the Monte Carlo calculations is shown to be in close agreement with reported data for E/N values ranging as high as 4000 Td, only when a random assignment of excess energies between the primary and secondary particles is used.

  8. Electron energy and vibrational distribution functions of carbon monoxide in nanosecond atmospheric discharges and microsecond afterglows

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Nanopulse atmospheric carbon monoxide discharges and corresponding afterglows have been investigated in a wide range of applied reduced electric field (130 kinetics of vibrational and electronic excited states as well as to a simplified plasma chemistry for the different species formed during the activation of CO. The molar fraction of electronically excited states generated in the discharge is sufficient to create structures in the EEDF in the afterglow regime. On the other hand, only for long duration pulses (i.e. 50 ns), non-equilibrium vibrational distributions can be observed especially in the afterglow. The trend of the results for the case study E/N = 200 Td, \\text{pulse}=2$ ns is qualitatively and quantitatively similar to the corresponding case for CO2 implying that the activation of CO2 by cold plasmas should take into account the kinetics of formed CO with the same accuracy as the CO2 itself.

  9. Analysis of improvement in performance and design parameters for enhancing resolution in an atmospheric scanning electron microscope.

    Science.gov (United States)

    Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan

    2015-12-01

    The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Imprint of the atmospheric attenuation process on electron distribution in EAS

    Science.gov (United States)

    Dey, R. K.; Dam, S.; Ray, S.

    2017-04-01

    The lateral density distribution (LDD) of shower particles in an extensive air shower (EAS) experiment is commonly approximated by a particular type of lateral density function (LDF). A standard perception is being used in air shower physics since long, according to which the LDD is assumed to be symmetric about the EAS axis, and the adopted LDF is adequate for the description of the LDD. However, the simulated electron density of a non-vertical EAS is asymmetric. In this work, such asymmetry in the LDD can be qualitatively explained as the atmospheric attenuation suffered by each shower particle. Quantitatively, the asymmetry can be roughly described in terms of a gap length (GL) between the EAS core and the center of the modified density pattern consisting of several equi-density ellipses. This study also validates the use of such a modeling of the atmospheric attenuation on the electromagnetic component in an EAS by investigating the so called GL in simulated density data. A modified LDF is proposed, based on these features of the simulated densities for the purpose of shower reconstruction in EAS experiments. The GL arises from attenuation effect is found to increase with the mass of the shower initiating particle. A different radial dependence of the local age parameter (LAP) is seen, if the modified LDF is applied to simulated electron densities. Primary cosmic-ray mass sensitivity of the LAP is also re-examined.

  11. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    Science.gov (United States)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  12. Effect of reduced atmospheric pressure on patients with fluctuating hearing loss due to Ménière's disease.

    Science.gov (United States)

    Younger, R; Longridge, N S; Mekjavic, I

    1984-04-01

    Subjective symptomatic and objective audiologic effects of reduced atmospheric pressure on patients with confirmed fluctuating hearing loss due to Ménière's disease were statistically assessed on a prospective basis. The effect of hypobaric environments on absolute hearing thresholds was investigated in 10 normal subjects at 6,500 ft. Absolute hearing threshold levels obtained at altitude, after one hour altitude exposure, and on descent to normobaric conditions were compared with levels obtained prior to the hypobaric exposure. The results indicated slightly increasing sensitivity of the audiometer headphones with altitude and an insignificant difference in hearing threshold when comparing the differing experimental conditions. The Ménière's disease study group of 16 patients was followed symptomatically and audiologically for one year prehypobaric exposure and for one month post-treatment. The results in this group utilizing the same experimental protocol as with normal subjects indicated a mild deterioration of hearing in the lower frequencies (1,000, 2,000 Hz and calculating the Ménière's pure tone average) despite significant improvements in the vertigo and disability components of their disease.

  13. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  14. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  15. Electron heating due to microwave photoexcitation in the high mobility GaAs/AlGaAs two dimensional electron system

    Energy Technology Data Exchange (ETDEWEB)

    Ramanayaka, A. N.; Mani, R. G. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich (Switzerland)

    2013-12-04

    We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ω{sub c}, and the microwave angular frequency, ω, satisfy 2ω ≤ ω{sub c} ≤ 3.5ω The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modest microwave photo-excitation, in good agreement with theoretical predictions.

  16. Determination of the atmospheric optical depth due to the El Chichon stratospheric aerosol cloud in the polluted atmosphere of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, Ignacio [Centro Universitario de Investigaciones en Ciencia del Ambiente, Universidad de Colima, Colima, Colima, (Mexico); Kondratyev, Kirill Ya. [Academician, Counsellor Center for Ecological Safety, Russian Academy of Sciences, St. Petersburg (Russian Federation); Zenteno, Gerardo [Instituto de Geofisica, UNAM, Mexico, D.F. (Mexico)

    1996-01-01

    Direct solar radiation measurements were used to determine the aerosol optical depth (AOD) increase associated with the presence of aerosol and large particles (ash) originating from the 28 March to 4 April 1982 El Chichon eruptions (17.5 degrees N, 93.3 degrees W; Mexico) on Mexico City's polluted atmospheric aerosol layer. The results are compared with those obtained at Vancouver, British Columbia, revealing that a first AOD increase occurred in both locations during May, June, and July 1982, the Mexico City AOD decay is more extended, not reaching normal climatological values until February 1983. Meanwhile, Vancouver's AOD reached minimum values in September 1982, which subsequently increased over a period from October 1982 to September 1983. This secondary maximum was recorded in Mexico City from March to August 1983. Results suggest that the first AOD increases in May, June and July 1982, both at Vancouver and Mexico City, are due chiefly to short life-time volcanic ash particles being located near the surface. However, the second AOD increases, associated with anomalously colored twilights, corresponds to stratospheric volcanic aerosols. [Spanish] Se utilizaron mediciones de radiacion solar directa para determinar el incremento de la profundidad optica del aerosol (AOD) asociada a la presencia de aerosoles y particulas grandes (cenizas) organizadas por las erupciones de El Chichon (17.5 grados N, 93.3 grados W; Mexico) del 28 de marzo al 4 de abril de 1982 sobre la capa atmosferica contaminada de la Ciudad de Mexico. Los resultados se comparan con los obtenidos en Vancouver, Colombia Britanica, relevando que un primer aumento de AOD ocurrio en ambos lugares durante mayo, junio y julio de 1982. Sin embargo, la AOD decayo en Ciudad de Mexico mas lentamente, alcanzando los valores climatologicos normales hasta febrero de 1983. Mientras tanto la AOD para Vancouver alcanzo valores minimos en septiembre de 1982; estos subsecuentemente se incrementaron en

  17. Studying thickness loss in extreme ultraviolet resists due to electron beam exposure using experiment and modeling

    Science.gov (United States)

    Narasimhan, Amrit; Grzeskowiak, Steven; Srivats, Bharath; Herbol, Henry; Wisehart, Liam; Schad, Jonathon; Kelly, Chris; Earley, William; Ocola, Leonidas E.; Neisser, Mark; Denbeaux, Greg; Brainard, Robert L.

    2015-10-01

    Extreme ultraviolet (EUV) photons expose photoresists by complex interactions starting with photoionization that create primary electrons (˜80 eV), followed by ionization steps that create secondary electrons (10 to 60 eV). Ultimately, these lower energy electrons interact with specific molecules in the resist that cause the chemical reactions which are responsible for changes in solubility. The mechanisms by which these electrons interact with resist components are key to optimizing the performance of EUV resists. A resist exposure chamber was built to probe the behavior of electrons within photoresists. Resists were exposed under electron beam and then developed; ellipsometry was used to identify the dependence of electron penetration depth and number of reactions on dose and energy. Additionally, our group has updated a robust software that uses a first principles-based Monte Carlo model called low-energy electron scattering in solids (LESiS) to track secondary electron production, penetration depth, and reaction mechanisms within materials-defined environments. LESiS was used to model the thickness loss experiments to validate its performance with respect to simulated electron penetration depths to inform future modeling work.

  18. Land-atmosphere interactions due to anthropogenic and natural changes in the land surface: A numerical modeling study

    Science.gov (United States)

    Yang, Zhao

    Alterations to the land surface can be attributed to both human activity and natural variability. Human activities, such as urbanization and irrigation, can change the conditions of the land surface by altering albedo, soil moisture, aerodynamic roughness length, the partitioning of net radiation into sensible and latent heat, and other surface characteristics. On the other hand, natural variability, manifested through changes in atmospheric circulation, can also induce land surface changes. These regional scale land surface changes, induced either by humans or natural variability, can effectively modify atmospheric conditions through land-atmosphere interactions. However, only in recent decades have numerical models begun to include representations of the critical processes driving changes at the land surface, and their associated effects on the overlying atmosphere. In this work we explore three mechanisms by which changes to the land surface - both anthropogenic and naturally induced - impact the overlying atmosphere and affect regional hydroclimate. (Abstract shortened by ProQuest.).

  19. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  20. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2009-01-01

    2004 FEL Conference, pp. 18–21, MOCOS05, available at http://www.JACoW.org], a code with similar capabilities. For this comparison an appropriately new, 50 MeV, “standard chicane” is introduced. Unlike CSRTrack (which neglects vertical forces the present simulation shows substantial growth of vertical emittance. But “turning off” vertical forces in the UAL code (to match the CSRTrack treatment brings the two codes into excellent agreement. (iii Results are also obtained for 5 GeV electrons passing through a previously introduced “standard chicane” [Coherent Synchrotron Radiation, CSR Workshop, Berlin 2002, http://www.desy.de/csr] [of the sort needed for linear colliders and free electron lasers (FEL’s currently under design or construction]. Relatively little emittance growth is predicted for typical bunch parameters at such high electron energy. Results are obtained for both round beams and ribbon beams (like those actually needed in practice. Little or no excess emittance growth is found for ribbon bunches compared to round bunches of the same charge and bunch width. The UAL string space charge formulation (like TraFic4 and CSRTrack avoids the regularization step (subtracting the free-space space charge force which is required (to remove divergence in some methods. Also, by avoiding the need to calculate a retarded-time, four-dimensional field history, the computation time needed for realistic bunch evolution calculations is modest. Some theories of bunch dilution, because they ascribe emittance growth entirely to CSR, break down at low energy. In the present treatment, as well as CSR, all free-space Coulomb and magnetic space charge forces (but not image forces, and also the centrifugal space charge force (CSCF are included. Charge-dependent beam steering due to CSCF, as observed recently by Beutner et al. [B. Beutner et al., in Proceedings of FEL Conference, BESSY, Berlin, Germany, 2006, MOPPH009], is also investigated.

  1. Atmospheric muon and electron neutrino energy spectrum measured by first year of IceCube-86 detector

    Science.gov (United States)

    Kuwabara, Takao; IceCube Collaboration

    2017-09-01

    The flux of atmospheric neutrinos is the main background for searches for cosmic neutrinos. Precise measurement of its spectrum allows us to reduce uncertainty of any kind of signal analysis. A unified analysis of atmospheric neutrinos using data collected with the full IceCube detector between May 2011 and May 2012 is presented in which both muon and electron flavors are included in a single framework.

  2. Radial transport of radiation belt electrons due to stormtime Pc5 waves

    Directory of Open Access Journals (Sweden)

    A. Y. Ukhorskiy

    2009-05-01

    Full Text Available During geomagnetic storms relativistic electron fluxes in the outer radiation belt exhibit dynamic variability over multiple orders of magnitude. This requires radial transport of electrons across their drift shells and implies violation of their third adiabatic invariant. Radial transport is induced by the interaction of the electron drift motion with electric and magnetic field fluctuations in the ULF frequency range. It was previously shown that solar-wind driven ULF waves have long azimuthal wave lengths and thus can violate the third invariant of trapped electrons in the process of resonant interaction with their gradient-curvature motion. However, the amplitude of solar-wind driven ULF waves rapidly decreases with decreasing L. It is therefore not clear what mechanisms are responsible for fast transport rates observed inside the geosynchronous orbit. In this paper we investigate wether stormtime Pc5 waves can contribute to this process. Stormtime Pc5s have short azimuthal wave lengths and therefore cannot exhibit resonance with the the electron drift motion. However we show that stormtime Pc5s can cause localized random scattering of electron drift motion that violates the third invariant. According to our results electron interaction with stormtime Pc5s can produce rapid radial transport even as low as L≃4. Numerical simulations show that electron transport can exhibit large deviations from radial diffusion. The diffusion approximation is not valid for individual storms but only applies to the statistically averaged response of the outer belt to stormtime Pc5 waves.

  3. TEC Enhancement due to Energetic Electrons Above Taiwan and the West Pacific

    Directory of Open Access Journals (Sweden)

    Alla V. Suvorova

    2013-01-01

    Full Text Available The energetic electrons of the inner radiation belt during a geomagnetic disturbance can penetrate in the forbidden range of drift shells located at the heights of the topside equatorial ionosphere (< 1000 km. A good correlation was previously revealed between positive ionospheric storms and intense fluxes of quasi-trapped 30-keV electrons at ~900 km height in the forbidden zone. In the present work, we use statistics to validate an assumption that the intense electron fluxes in the topside equatorial ionosphere can be an important source of the ionization in the low-latitude ionosphere. The data on the energetic electrons were obtained from polar orbiting satellites over the periods of the 62 strong geomagnetic storms from 1999 to 2006. Ionospheric response to the selected storms was determined using global ionospheric maps of vertical total electron content (VTEC. A case-event study of a major storm on 9 November 2004 provided experimental evidence in support to the substantial ionization effect of energetic electrons during positive ionospheric storms at the low latitudes. Statistical analysis of nine magnetic storms indicated that the VTEC increases coincided with and coexisted with intense 30-keV electron fluxes irrespective of local time and phase of geomagnetic storm. We concluded that extremely intense fluxes of the 30-keV electrons in the topside low-latitude ionosphere can contribute ~ 10 - 30 TECU to the localized positive ionospheric storms.

  4. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.

    Science.gov (United States)

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-02-21

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the

  5. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, A. David; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.

    2009-01-01

    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.

  6. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  7. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  8. Electron reflectometry as a probe of the Martian crust and atmosphere

    Science.gov (United States)

    Lillis, Robert James

    This thesis is devoted to the expansion of the technique of electron reflectometry from its prior purpose in mapping lunar crustal magnetic fields to the same purpose at Mars, where the presence of a substantial atmosphere considerably complicates matters. Previous work, using magnetometer data from the Mars Global Surveyor (MGS) spacecraft, established the existence of surprisingly strong crustal remanent magnetic fields and placed important constraints both upon the properties of the crustal magnetic sources responsible for the fields and upon the timing and orientation of Mars's ancient core dynamo. To build upon this work, I have analyzed pitch angle distributions of magnetically reflecting solar wind electrons measured by the MGS Magnetometer/ Electron Reflectometer (MAG/ER) to create a map of Martian crustal magnetic fields at ~195 km altitude, giving greater spatial resolution and sensitivity than was previously possible using magnetometer data alone. Low magnetic fields measured above most volcanoes indicate thermal demagnetization of the crust by magmatism and underplating after the cessation of the core dynamo, while relatively high fields measured above the Hadriaca Patera volcano imply that Martian volcanism predates this cessation and is significantly older than any exposed volcanic surface. The geographic and size distribution of demagnetization signatures of impact craters and the suggested presence of magnetic edge effects, indicates that (1) crustal magnetization occurs at typically shallower depths in the northern Martian lowlands than in the southern highlands and (2) the typical crustal magnetic coherence scale, is >100 km. A comparison of crater retention ages with magnetic signatures of some of the oldest impact basins on Mars confirms that Mars's core dynamo ceased operating early in the planet's history, >4 billion years ago. Significant differences in magnetization between geologically contemporary basins suggests that the dynamo's final

  9. Anomalously Hot Electrons due to Rescatter of Stimulated Raman Scattering in the Kinetic Regime

    CERN Document Server

    Winjum, B J; Tsung, F S; Mori, W B

    2012-01-01

    Using particle-in-cell simulations, we examine hot electron generation from electron plasma waves excited by stimulated Raman scattering and rescattering in the kinetic regime where the wavenumber times the Debye length (k\\lambda_D) is greater than 0.3 for backscatter. We find that for laser and plasma conditions of possible relevance to experiments at the National Ignition Facility (NIF), anomalously energetic electrons can be produced through the interaction of a discrete spectrum of plasma waves generated from SRS (back and forward scatter), rescatter, and the Langmuir decay of the rescatter-generated plasma waves. Electrons are bootstrapped in energy as they propagate into plasma waves with progressively higher phase velocities.

  10. Radial transport of radiation belt electrons due to stormtime Pc5 waves

    Directory of Open Access Journals (Sweden)

    A. Y. Ukhorskiy

    2009-05-01

    Full Text Available During geomagnetic storms relativistic electron fluxes in the outer radiation belt exhibit dynamic variability over multiple orders of magnitude. This requires radial transport of electrons across their drift shells and implies violation of their third adiabatic invariant. Radial transport is induced by the interaction of the electron drift motion with electric and magnetic field fluctuations in the ULF frequency range. It was previously shown that solar-wind driven ULF waves have long azimuthal wave lengths and thus can violate the third invariant of trapped electrons in the process of resonant interaction with their gradient-curvature motion. However, the amplitude of solar-wind driven ULF waves rapidly decreases with decreasing L. It is therefore not clear what mechanisms are responsible for fast transport rates observed inside the geosynchronous orbit. In this paper we investigate wether stormtime Pc5 waves can contribute to this process. Stormtime Pc5s have short azimuthal wave lengths and therefore cannot exhibit resonance with the the electron drift motion. However we show that stormtime Pc5s can cause localized random scattering of electron drift motion that violates the third invariant. According to our results electron interaction with stormtime Pc5s can produce rapid radial transport even as low as L≃4. Numerical simulations show that electron transport can exhibit large deviations from radial diffusion. The diffusion approximation is not valid for individual storms but only applies to the statistically averaged response of the outer belt to stormtime Pc5 waves.

  11. Ion potential in warm dense matter: wake effects due to streaming degenerate electrons.

    Science.gov (United States)

    Moldabekov, Zhandos; Ludwig, Patrick; Bonitz, Michael; Ramazanov, Tlekkabul

    2015-02-01

    The effective dynamically screened potential of a classical ion in a stationary flowing quantum plasma at finite temperature is investigated. This is a key quantity for thermodynamics and transport of dense plasmas in the warm-dense-matter regime. This potential has been studied before within hydrodynamic approaches or based on the zero temperature Lindhard dielectric function. Here we extend the kinetic analysis by including the effects of finite temperature and of collisions based on the Mermin dielectric function. The resulting ion potential exhibits an oscillatory structure with attractive minima (wakes) and, thus, strongly deviates from the static Yukawa potential of equilibrium plasmas. This potential is analyzed in detail for high-density plasmas with values of the Brueckner parameter in the range 0.1≤r(s)≤1 for a broad range of plasma temperature and electron streaming velocity. It is shown that wake effects become weaker with increasing temperature of the electrons. Finally, we obtain the minimal electron streaming velocity for which attraction between ions occurs. This velocity turns out to be less than the electron Fermi velocity. Our results allow for reliable predictions of the strength of wake effects in nonequilibrium quantum plasmas with fast streaming electrons showing that these effects are crucial for transport under warm-dense-matter conditions, in particular for laser-matter interaction, electron-ion temperature equilibration, and stopping power.

  12. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Hidetoshi, E-mail: hinishiy@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Koizumi, Mitsuru, E-mail: koizumi@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Ogawa, Koji, E-mail: kogawa@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Kitamura, Shinich, E-mail: kitamura@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Konyuba, Yuji, E-mail: ykonyuub@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Watanabe, Yoshiyuki, E-mail: watanabeyoshiy@pref.yamagata.jp [Yamagata Research Institute of Technology, 2-2-1, Matsuei, Yamagata 990-2473 (Japan); Ohbayashi, Norihiko, E-mail: n.ohbayashi@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Fukuda, Mitsunori, E-mail: nori@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Suga, Mitsuo, E-mail: msuga@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-4, Umezono, Tsukuba 305-8568 (Japan)

    2014-12-15

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control.

  13. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics

    Science.gov (United States)

    Wang, Tao; Wang, Xiaolin; Yang, Bin; Chen, Xiang; Yang, Chunsheng; Liu, Jingquan

    2017-07-01

    In this paper, the uniformity of polymer film etching by an atmospheric pressure He/O2 microplasma jet array (μPJA) is first investigated with different applied voltage. Plasma characteristics of μPJA were recorded by optical discharge images. Morphologies and chemical compositions of polymer film etched by μPJA were analyzed by optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). By increasing the applied voltage from 8.5 kV to 16.4 kV, the non-uniformity of the luminous intensity of the plasma jets increases. It is interesting that the plasma treated regions are actually composed of an etched region and modification region, with distinct morphologies and chemical compositions. The diameters of the etched parylene-C film show the increase of non-uniformity with higher applied voltage. SEM results show that the non-uniformity of surface morphologies of both the modification regions and etched regions increases with the increase of applied voltage. EDS and XPS results also present the significant effect of higher applied voltage on the non-uniformity of surface chemical compositions of both modification and etched regions. The Coulomb interaction of the streamer heads and the hydrodynamic interaction between the plasma jets and the surrounding air are considered to be responsible for this phenomenon. The results shown in this work can help improve the processing quality of polymer film etched by an atmospheric pressure microplasma jet array and two applications are demonstrated to illustrate the uniform downstream surface treatment.

  14. TEC enhancement due to energetic electrons above Taiwan and the West Pacific

    CERN Document Server

    Suvorova, A V; Dmitriev, A V

    2013-01-01

    The energetic electrons of the inner radiation belt during a geomagnetic disturbance can penetrate in the forbidden range of drift shells located at the heights of the topside equatorial ionosphere (<1000 km). A good correlation was previously revealed between positive ionospheric storms and intense fluxes of quasi-trapped 30-keV electrons at ~900 km height in the forbidden zone. In the present work, we use statistics to validate an assumption that the intense electron fluxes in the topside equatorial ionosphere can be an important source of the ionization in the low-latitude ionosphere. The data on the energetic electrons were obtained from polar orbiting satellites over the periods of the 62 strong geomagnetic storms from 1999 to 2006. Ionospheric response to the selected storms was determined using global ionospheric maps of vertical total electron content (VTEC). A case-event study of a major storm on 9 November 2004 provided experimental evidence in support to the substantial ionization effect of ener...

  15. Current densities due to electron-hole puddles in graphene flakes at the charge neutrality point

    Science.gov (United States)

    Lima, Leandro; Lewenkopf, Caio

    2014-03-01

    Graphene flakes show a typical conductivity minimum of about e2 / h , almost independent of sample mobility, at the charge neutrality point. This is at odds with the notion that as the mobility increases, and graphene becomes more ballistic, its density of states (DOS) and conductivity at the charge neutrality point should vanish. The observed conductivity minimum is often attributed to the presence of electron-hole charge puddles, that give rise to an effective local-dependent chemical potential. In this way, the local chemical potential fluctuates creating p and n-doped regions and the electronic transport is facilitated by Klein tunneling through the p and n-doped domains. Although very attractive, there is little quantitative support for this this picture. We revisit this problem and analyze the transport properties using a self-consistent recursive Green's functions technique with spin resolution that includes the electronic interaction modeled by a mean field Hubbard term. We calculate electronic current densities between neighboring carbon sites near the p-n interface and relate the electronic propagation to the puddles charge, size and shapes.

  16. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (arctic Ocean) due to sea ice loss

    DEFF Research Database (Denmark)

    Else, B.G.T.; Galley, R.J.; Lansard, B.

    2013-01-01

    . Galley, B. Lansard, D. G. Barber, K. Brown, L. A. Miller, A. Mucci, T. N. Papakyriakou, J.-É. Tremblay, and S. Rysgaard (2013), Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss, Geophys. Res. Lett., 40, 1132–1137, doi:10.1002/grl...

  17. Chirped Auger electron emission due to field-assisted post-collision interaction

    Directory of Open Access Journals (Sweden)

    Bonitz M.

    2013-03-01

    Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.

  18. Metal-insulator transition in Honeycomb lattice due to electronic correlation

    Science.gov (United States)

    Fathi, M. B.; Tehranchi, M. M.

    2013-12-01

    The role of electronic correlation in metallicity and insulating behavior of Honeycomb (HC) lattice is investigated via the Hubbard model. It is shown that the HC lattice suffers an evolution from an ionic band insulator to a metal on increasing the electronic interaction, U. There is no critical value Uc1 for onset of metallic state and each of two common van Hove singularities splits into two extra singularities. The metallic state is enhanced with further increasing the interaction strength U, and the characteristic Kondo peak develops. The height of Kondo peak completely vanishes at U≃6.15t, and then a Mott insulator develops at U≃6.5t.

  19. Numerical study of the electron and muon lateral distribution in atmospheric showers of high energy cosmic rays

    Directory of Open Access Journals (Sweden)

    Georgios Atreidis

    2017-01-01

    Full Text Available The lateral distribution of an atmospheric shower depends on the characteristics of the high energy interactions and the type of the primary particle. The influence of the primary particle in the secondary development of the shower into the atmosphere, is studied by analyzing the lateral distribution of electron and muon showers having as primary particle, proton, photon or iron nucleus. This study of the lateral distribution can provide useful conclusions for the mass and energy of the primary particle. This paper compares the data that we get from simulations with CORSIKA program with experimental data and the theoretical NKG function expressing lateral electron and muon distribution. Then we modify the original NKG function to fit better to the simulation data and propose a method for determining the mass of the original particle started the atmospheric shower.

  20. Electron residual energy due to stochastic heating in field-ionized plasma

    CERN Document Server

    Khalilzadeh, Elnaz; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-01-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is here investigated. The optical response of plasma is initially modeled by using the concept of two counter-propagating electromagnetic waves. The solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared to the case without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will significantly be changed by applying a minor change to the initial conditions. Extensive kinetic 1D-3V particle-in-cell (PIC) simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in sufficient long pulse length is high enough to act as a second counter-propagating wave for triggering the stochastic e...

  1. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  2. Dosimetry in thyroid follicles due to low-energy electrons of iodine using the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia; Silva, Frank da [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. of Statistics and Information Technology]. E-mail: lpbcampos@gmail.com; l.campos@deinfo.ufrpe.br

    2008-11-15

    Objective: To evaluate the absorbed dose in thyroid follicles due to low-energy electrons such as Auger and internal conversion electrons, besides beta particles, for iodine radioisotopes ({sup 131}I, {sup 132}I, {sup 13}'3I, {sup 134}I and {sup 135}I) utilizing the Monte Carlo method. Materials And Methods: The dose calculation was performed at follicular level, simulating Auger, internal conversion electrons and beta particles, with the MCNP4C code. The follicles (colloid and follicular cells) were modeled as spheres with colloid diameter ranging from 30 to 500 {mu}m, and with the same density of water (1.0 g.cm{sup -3}). Results: Considering low-energy particles, the contribution of {sup 131}I for total absorbed dose to the colloid is about 25%, while the contribution due to short-lived isotopes is 75%. For follicular cells, this contribution is still higher achieving 87% due to short-lived iodine and 13% due to {sup 131}I. Conclusion: The results of the present study demonstrate the importance of considering low energy particles in the contribution for the total absorbed dose at follicular level (colloid and follicular cells) due to iodine radioisotopes ({sup 13}'1I, {sup 13}'2I, {sup 1}'3'3I, {sup 1}'3{sup 4}I and {sup 135}I). (author)

  3. Enhanced radial transport and energization of radiation belt electrons due to drift orbit bifurcations.

    Science.gov (United States)

    Ukhorskiy, A Y; Sitnov, M I; Millan, R M; Kress, B T; Smith, D C

    2014-01-01

    [1]Relativistic electron intensities in Earth's outer radiation belt can vary by multiple orders of magnitude on the time scales ranging from minutes to days. One fundamental process contributing to dynamic variability of radiation belt intensities is the radial transport of relativistic electrons across their drift shells. In this paper we analyze the properties of three-dimensional radial transport in a global magnetic field model driven by variations in the solar wind dynamic pressure. We use a test particle approach which captures anomalous effects such as drift orbit bifurcations. We show that the bifurcations lead to an order of magnitude increase in radial transport rates and enhance the energization at large equatorial pitch angles. Even at quiet time fluctuations in dynamic pressure, radial transport at large pitch angles exhibits strong deviations from the diffusion approximation. The radial transport rates are much lower at small pitch angle values which results in a better agreement with the diffusion approximation.

  4. Shifts and Dips in Inelastic Electron Tunneling Spectra Due to the Tunnel Junction Environment.

    Science.gov (United States)

    1981-05-27

    electrode. Peak shifts have La ’ en typically less than the line width of the peaks and peak __ intensities have been comparable to infrared and Raman...biochemistry,7𔄂 9 10 1water polution , electron beam irradiation, UV irradiation 12and lubrication 2 . Particularly promising applications have...equivalent to a lA -thick continuous layer. To obtain spectra without large background struccure 35 36 and zero-bias anamolies, we kept the particle size

  5. Enhanced O2 Loss at Mars Due to an Ambipolar Electric Field from Electron Heating

    Science.gov (United States)

    Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; Delory, G. T.; Andrews, D. J.; Eriksson, A. I.; Mcenulty, T.; Morooka, M. W.; hide

    2016-01-01

    Recent results from the MAVEN Langmuir Probe and Waves (LPW) instrument suggest higher than predicted electron temperatures (T sub e) in Mars dayside ionosphere above approx. 180 km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer (NGIMS) indicate significant abundances of O2+ up to approx. 500 km in altitude, suggesting that O2+ may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher T(sub e) (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher T(sub e) may greatly increase O2+ loss at Mars. In particular, enhanced T(sub e) in Mars ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (e) of several k(sub b)T(sub e), which draws ions out of the region allowing for enhanced escape. With active solar wind, electron and ion heating, direct O2+ loss could match or exceed loss via dissociative recombination of O2+. These results suggest that direct loss of O2+ may have played a significant role in the loss of oxygen at Mars over time.

  6. Solar radiation absorption in the atmosphere due to water and ice clouds: Sensitivity experiments with plane-parallel clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    One cloud radiation issue that has been troublesome for several decades is the absorption of solar radiation by clouds. Many hypotheses have been proposed to explain the discrepancies between observations and modeling results. A good review of these often-competing hypotheses has been provided by Stephens and Tsay. They characterize the available hypotheses as failing into three categories: (1) those linked to cloud microphysical and consequent optical properties; (2) those linked to the geometry and heterogeneity of clouds; and (3) those linked to atmospheric absorption.Current modeling practice is seriously inconsistent with new observational inferences concerning absorption of solar radiation in the atmosphere. The author and her colleagues contend that an emphasis on R may, therefore, not be the optimal way of addressing the cloud solar absorption issue. 4 refs., 1 fig.

  7. Two-dimensional electron density measurement of pulsed positive primary streamer discharge in atmospheric-pressure air

    Science.gov (United States)

    Inada, Yuki; Aono, Kaiho; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2017-05-01

    Elucidating the electron density of streamer discharges propagating in atmospheric-pressure air is critical for achieving a systematic understanding of the production mechanisms of reactive species. Using Shack-Hartmann-type laser wavefront sensors with a temporal resolution of 2 ns, we carried out single-shot two-dimensional electron density measurements for positive primary streamers generated in a 13 mm air gap between pin-to-plate electrodes. The electron density over the positive primary streamers decayed from 1015 to {{10}14}\\text{c}{{\\text{m}}-3} during the propagation. The decay time constant of the electron density in the primary streamer channels was estimated to be  ˜2 ns. The distribution widths of the electron density were in good agreement with those of the light emission, typically ranging from 0.8 to 1.5 mm.

  8. Evaluation of thermal effects due to back-streaming electrons in the IAE RF gun

    CERN Document Server

    Kii, T; Amazaki, S; Horii, T; Toku, H; Yoshikawa, K; Ohgaki, H; Yamazaki, T

    2002-01-01

    Back-streaming electrons in thermionic RF guns give a serious thermal effect to a cathode. In this study, the back-streaming beam power onto a thermionic cathode of the IAE RF gun was evaluated quantitatively by using an infrared radiation thermometer. Time evolutions of cathode surface temperature during RF macro-pulse were also calculated by using a simple 1-dimensional heat conduction model and results of a 2-dimensional particle simulation for several methods expected to reduce back-bombardment effect.

  9. Simulation Study of Coupled-Bunch Instabilities due to Resistive Wall, Ions, or Electron Cloud

    CERN Document Server

    Zimmermann, Frank; Ohmi, K; Ohnishi, Y; Win, S S

    2003-01-01

    We simulate the interaction of a bunch train with either an external wake field, (semi-)trapped ions in a field-free region or in a dipole field, or an electron cloud, on successive turns, using a simplified algorithm with only a small number of macro-particles. We present simulated mode spectra and rise times for the ensuing coupled-bunch instabilities, and show that observations at the KEKB HER are consistent with a horizontal instability driven by carbon monoxide ions in a region without magnetic field.

  10. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    Science.gov (United States)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  11. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    CERN Document Server

    Talman, Richard; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004); N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using trafic4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)] and elegant [M. Borland, Argonne National Laboratory...

  12. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    Science.gov (United States)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  13. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation.

    Science.gov (United States)

    Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie

    2013-12-03

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.

  14. Transport properties of a two-dimensional electron gas due to a spatially random magnetic field

    Science.gov (United States)

    Rushforth, A. W.; Gallagher, B. L.; Main, P. C.; Neumann, A. C.; Marrows, C. H.; Zoller, I.; Howson, M. A.; Hickey, B. J.; Henini, M.

    2000-02-01

    We have studied the magnetoresistance of a near-surface two-dimensional electron gas (2DEG) in the presence of a random magnetic field produced by CoPd multilayers deposited onto the surface of the heterostructure. This novel method allows us to switch the random field on and off by applying an external magnetic field and also to control the amplitude and correlation length of the random field by varying the growth parameters of the multilayers. The presence of the random field is confirmed by quenching of the Shubnikov-de Haas oscillations and we see an enhanced magnetoresistance which can be interpreted semi-classically. We also observe other unusual features which may be quantum in origin.

  15. Prediction of electron concentration reductions in re-entry flow fields due to electrophilic liquid and water injection.

    Science.gov (United States)

    Pergament, H. S.; Mikatarian, R. R.; Kurzius, S. C.

    1972-01-01

    Discussion of an analytical model which leads to predictions of reductions in electron concentrations in reentry flow fields due to the injection of electrophilic liquids and water. The processes incorporated into the model are: penetration and breakup of the liquid jet, droplet acceleration and vaporization, expansion of the liquid spray due to droplet vaporization, electrophilic vapor diffusion, heterogeneous and homogeneous charged species recombination kinetics and homogeneous electron attachment kinetics. Spray boundary calculations are shown to be in good agreement with photographic observations of water and Freon E-3 sprays in wind tunnel tests of a scale model RAM C-III flight vehicle. Fixed-bias electrostatic probe data taken during the RAM C-III flight are interpreted in terms of effective jet penetration distances - which are shown to be consistent with calculations using the present model.

  16. Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink

    Science.gov (United States)

    Xavier, L. J. P.; da Costa, D. R.; Chaves, A.; Pereira, J. M., Jr.; Farias, G. A.

    2016-12-01

    We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term Δ is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or {{K}\\prime} valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.

  17. Resonance frequency shifts due to quantized electronic states in atomically thin NEMS

    Science.gov (United States)

    Chen, Changyao; Deshpande, Vikram; Koshino, Mikito; Lee, Sunwoo; Gondarenko, Alexander; MacDonald, Allan; Kim, Philip; Hone, James

    The classic picture of the force exerted on a parallel plate capacitor assumes infinite density of states (DOS), which implies identical electrochemical and electrostatic potential. However, such assumption can breakdown in low-dimensional devices where the DOS is finite or quantized. Here we consider the mechanical resonance shift of a nanoelectromechanical (NEMS) resonator with small DOS, actuated and detected capacitively at fixed electrochemical potential. We found three leading correction terms to the classical picture: the first term leads to the modulation of static force due to the variation in chemical potential, and the second and third terms are related to the static and dynamic changes in spring constants, caused by quantum capacitance. The theory agrees well with recent experimental findings from graphene resonator in quantum Hall regimes, where the chemical potential and quantum capacitance are tuned by magnetic field, while the gate voltage is kept constant.

  18. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    Science.gov (United States)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies Including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers Of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software. tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tin) algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  19. Electron density increase due to QEF and comparison between the reference height lifetime and the VLF signal perturbations

    Science.gov (United States)

    Nait Amor, Samir; Bouderba, Yasmina

    2014-05-01

    In this contribution we will present a new result on the atmospheric ionisation due to QEF by considering the real values of the electric filed breakdown. Since the refence height of the VLF signal propagation is at 87 km, the numerical results showed that the ionisation started at 86 km and below for a lower QEF amplitudes. The reference height build-up time decreases to the stationary value of 20ms in agreement with the recorded ealry/fast VLF signal perturbations. For QEF values greater than 35 V/m the ionisation increase drastically and therefore the reference height is formed at lower altitudes (80 and 78 km). Since mutliple reference heights are formed and are capable to reflect the VLF signal, the corresponding signal perturbation time recovery is then the sum of all lifetimes of the reference heights.

  20. Opto-electronic properties of Zn(1-x)VxO: Green emission enhancement due to V4+ state

    Science.gov (United States)

    Srivastava, Tulika; Bajpai, Gaurav; Tiwari, Nidhi; Bhattacharya, Dibyendu; Jha, S. N.; Kumar, Sunil; Biring, Sajal; Sen, Somaditya

    2017-07-01

    Vanadium incorporation in ZnO modifies the lattice structure. The valence state of V plays an important role, controlling the oxygen content and thereby dimensions of the lattice. Both V4+ and V5+ are more electropositive than Zn2+ and reduce oxygen vacancies, resulting in lattice expansion. However, the sizes of both V4+ and V5+ are smaller than Zn2+, thereby resulting in the lattice contraction. The internal competition of increasing oxygen content and reducing effective crystal radius decides the lattice expansion and contraction. This affects the lattice strain and changes electronic levels, which modify absorption and emission processes in between the valence and conduction bands. A strong green emission band not due to oxygen vacancy but due to defects contributed by vanadium is also dependent on the oxidation state of vanadium. Bandgap also increases with the increase in the V4+ content.

  1. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  2. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  3. Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation

    Science.gov (United States)

    Chen, Shijun; Sun, Fuyu; Bai, Qingsong; Chen, Dawei; Chen, Qiang; Hou, Dong

    2017-10-01

    We demonstrated a timing fluctuation suppression in outdoor laser-based atmospheric radio-frequency transfer over a 110 m one-way free-space link using an electronic phase compensation technique. Timing fluctuations and Allan Deviation are both measured to characterize the instability of transferred frequency incurred during the transfer process. With transferring a 1 GHz microwave signal over a timing fluctuation suppressed transmission link, the total root-mean-square (rms) timing fluctuation was measured to be 920 femtoseconds in 5000 s, with fractional frequency instability on the order of 1 × 10-12 at 1 s, and order of 2 × 10-16 at 1000 s. This atmospheric frequency transfer scheme with the timing fluctuation suppression technique can be used to fast build an atomic clock-based frequency free-space transmission link since its stability is superior to a commercial Cs and Rb clock.

  4. Long-Term cosmic ray experiment in the atmosphere: Energetic electron precipitation events during the 20-23 solar activity cycles.

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.; Storini, M.

    2001-08-01

    More than 400 energetic electron precipitation events (EPEs) were observed in the Earth's Northern polar atmosphere (Murmansk region, 68°57'N, 33°03'E) during a long-term cosmic ray balloon experiment (from 1957 up to now). It is shown that the significant X-ray fluxes, caused by precipitating electrons at the top of the atmosphere, sometimes penetrated down to the atmospheric depth of ~60 g· cm-2 (about 20 km). It means that primary energy of precipitating electrons was more than ~ 6 10 MeV. Here we summarize only the characteristics of the energetic electron precipitation events recorded during solar activity cycles 20 to 23. We dis cuss results from the analyses of the interplanetary and geomagnetic conditions related to these events in the atmosphere.

  5. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gessel, Bram van; Bruggeman, Peter [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Brandenburg, Ronny [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany)

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  6. Apparent ionospheric total electron content variations prior to major earthquakes due to electric fields created by tectonic stresses

    Science.gov (United States)

    Kelley, Michael C.; Swartz, Wesley E.; Heki, Kosuke

    2017-06-01

    Growing evidence for ionospheric signatures of impending earthquakes comes from electron content measurements along slanted paths from GPS satellites to multiple ground stations located up to 500 km away from the epicenters. These slant total electron content (STEC) measurements deviate from the classic U-shape pattern, starting about 40 min to over an hour before major earthquakes. Unlike other naturally occurring STEC fluctuations at midlatitudes, we show here that these earthquake-induced deviations are simultaneous over a wide geographical area and do not propagate, thereby indicating a ground-based origin. Prior to the 11 March 2011 Tohoku-Oki earthquake (Mw 9.0), the deviations were as much as 10% of the undisturbed STEC. We argue that such deviations must be due to an electric field-forced rise or fall of the main ionosphere with little change in the vertical electron density profile. Hence, "apparent" is used in the title. We show how stress-related underground electric fields penetrate to 80 km altitude (above which penetration to the main ionosphere easily occurs) with magnitudes high enough to create STEC variations comparable to those observed. Since many thousands of GPS receivers exist worldwide, our theory suggests the possibility of early warning systems that could provide 10 to 20 min notice prior to large earthquakes, after allowing time for signal processing. This theory for prequake-induced STEC fluctuations also explains the ground-based ULF magnetic field data acquired by Fraser-Smith et al. 40 min prior to the Loma Prieta earthquake.

  7. Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, K.; O' Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O' Connell, D.; Gans, T. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2012-05-25

    Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

  8. A study of the dissociative recombination of CaO+ with electrons: Implications for Ca chemistry in the upper atmosphere

    Science.gov (United States)

    Bones, D. L.; Gerding, M.; Höffner, J.; Martín, Juan Carlos Gómez; Plane, J. M. C.

    2016-12-01

    The dissociative recombination of CaO+ ions with electrons has been studied in a flowing afterglow reactor. CaO+ was generated by the pulsed laser ablation of a Ca target, followed by entrainment in an Ar+ ion/electron plasma. A kinetic model describing the gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a rate coefficient of (3.0 ± 1.0) × 10-7 cm3 molecule-1 s-1 at 295 K. This result has two atmospheric implications. First, the surprising observation that the Ca+/Fe+ ratio is 8 times larger than Ca/Fe between 90 and 100 km in the atmosphere can now be explained quantitatively by the known ion-molecule chemistry of these two metals. Second, the rate of neutralization of Ca+ ions in a descending sporadic E layer is fast enough to explain the often explosive growth of sporadic neutral Ca layers.

  9. Atmospheric Pressure Plasma Jet as a Dry Alternative to Inkjet Printing in Flexible Electronics

    Science.gov (United States)

    Gandhiraman, Ram Prasad; Lopez, Arlene; Koehne, Jessica; Meyyappan, M.

    2016-01-01

    We have developed an atmospheric pressure plasma jet printing system that works at room temperature to 50 deg C unlike conventional aerosol assisted techniques which require a high temperature sintering step to obtain desired thin films. Multiple jets can be configured to increase throughput or to deposit multiple materials, and the jet(s) can be moved across large areas using a x-y stage. The plasma jet has been used to deposit carbon nanotubes, graphene, silver nanowires, copper nanoparticles and other materials on substrates such as paper, cotton, plastic and thin metal foils.

  10. Experimental and Model Study of Changes in Spectral Solar Irradiance in the Atmosphere of Large City due to Tropospheric NO2 Content

    Science.gov (United States)

    Chubarova, N. Ye.; Larin, I. K.; Lebedev, V. V.; Partola, V. S.; Lezina, Ye. A.; Rublev, A. N.

    2009-03-01

    An experimental and model approach has been used to study the NO2 vertical profiles and its effect on solar irradiance. The profiles of NO2 were obtained using gas analyzers, which had been installed at different levels at the Moscow State University (MSU) located at the south-western part of Moscow and at the Ostankino tower located at the north of Moscow up to the height of 350 m. Using these data diurnal and spatial variability of the NO2 content in the most polluted part of planetary boundary layer (PBL) has been analyzed within the large megalopolis. On the base of photochemical modeling we have simulated the diurnal cycle of NO2 vertical profiles for summer and winter conditions and have compared the results with the experimental ones. Using the RT modeling with input gaseous and aerosol parameters of the atmosphere obtained from the MSU Meteorological Observatory we have estimated the attenuation of spectral solar irradiance in UV and visible region of spectrum due to the NO2 content in the polluted atmosphere for different seasons.

  11. Effect of Atmosphere on Recovery Dynamics of Polyimide Film Damaged by Electron Radiation

    Science.gov (United States)

    Plis, E.; Engelhart, D. P.; Cooper, R.; Humagain, S.; Brunetti, M.; Koch, A.; Greenbaum, S.; Ferguson, D.; Hoffmann, R.

    2017-09-01

    Since electrons are the primary charged particles at the geosynchronous Earth orbit (GEO), understanding of their interactions with spacecraft materials, such as polyimide (PI, Kapton-H®), is important. Understanding of the chemical nature of electron damage and its effect on PI’s electrical and optical properties is still limited. Thus, predictive spacecraft models (electrical charging, thermal, etc) are restricted to only pristine material properties. This is a major source of error in spacecraft construction and anomaly resolution, since material properties change after exposure to the space environment. Ground based measurements are critical to understanding the dynamics of spacecraft materials however it will be shown in this work that standard material handling practice and exposure to air are unacceptable for these studies.

  12. Semiannual Variation in the Number of Energetic Electron Precipitation Events Recorded in the Polar Atmosphere

    Science.gov (United States)

    Stozhkov, Y. Ivanovich; Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.; Svirkhevskaya, A. K.; Svirzhevsky, N. S.; Mailin, S. Y.

    2003-07-01

    The analysis of the monthly numbers of Electron Precipitation Events (EPEs) recorded at Olenya station (Murmansk region) during 1970-1987, shows the semiannual variation with two maxima centered on April and September. We analyse the interplanetary plasma and geomagnetic indices data sets associated with the EPEs recorded. The possible relationship of this variation and RusselMcPherron, Equino ctial and Axial effects is discussed.

  13. Nonlinear Structuring and High-energy Electrons: Role in Ionosphere and in Thunderstorm Atmosphere Processes

    Science.gov (United States)

    2010-05-01

    elastic and inelastic scattering at the atom as a whole to the Coulomb scattering at the electrons and the atomic nucleus . To describe this process...wave scattering off these structures. 3. The theory of the high-altitude thunder discharges generating of the powerful gamma emission, powerful...UHF radio wave scattering off these structures. 3. The theory of the high-altitude thunder discharges generating of the powerful gamma emission

  14. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  15. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  16. Statins and risk of diabetes: an analysis of electronic medical records to evaluate possible bias due to differential survival.

    Science.gov (United States)

    Danaei, Goodarz; García Rodríguez, Luis A; Fernandez Cantero, Oscar; Hernán, Miguel A

    2013-05-01

    Two meta-analyses of randomized trials of statins found increased risk of type 2 diabetes. One possible explanation is bias due to differential survival when patients who are at higher risk of diabetes survive longer under statin treatment. We used electronic medical records from 500 general practices in the U.K. and included data from 285,864 men and women aged 50-84 years from January 2000 to December 2010. We emulated the design and analysis of a hypothetical randomized trial of statins, estimated the observational analog of the intention-to-treat effect, and adjusted for differential survival bias using inverse-probability weighting. During 1.2 million person-years of follow-up, there were 13,455 cases of type 2 diabetes and 8,932 deaths. Statin initiation was associated with increased risk of type 2 diabetes. The hazard ratio (95% CI) of diabetes was 1.45 (1.39-1.50) before adjusting for potential confounders and 1.14 (1.10-1.19) after adjustment. Adjusting for differential survival did not change the estimates. Initiating atorvastatin and simvastatin was associated with increased risk of type 2 diabetes. In this sample of the general population, statin therapy was associated with 14% increased risk of type 2 diabetes. Differential survival did not explain this increased risk.

  17. Modeling D region Electron Density Enhancement Due to Solar Flares and Comparison with Algiers VLF Receiver Data

    Science.gov (United States)

    Bouderba, Yasmina; Nait Amor, Samir; Tribeche, Mouloud

    2014-05-01

    Solar flares cause additional ionization in the D layer of the ionosphere (60-90 Km), which appears as amplitude and phase perturbations on the VLF signal. In this work, we present results of the properties of the VLF signals perturbations (amplitude, phase, h' and β) and their dependences with solar flares flux (For the period: 2007-2012). In this analysis two VLF transmitters paths are chosen, a short path: NSC (45.9 KHz, 941 Km) and long path NRK (37.5 KHz, 3495 km). In addition to the VLF data analysis, a numerical modeling of the D layer ionization due to solar flares was made at different heights (65-80 km). Qualitatively, the data analysis showed that the perturbed signal behavior is different from one path to another. In fact, some solar flares are associated with decreasing amplitude and increasing phase, increasing amplitude and decreasing phase, and finally decreasing or increasing in both amplitude and phase. This behavior is independent on the solar flares flux, but it is closely related to the modal structure of the VLF signal.Numerical results show that the increasing solar flares flux leads to the increasing of electron density and thus reducing the reflection height of VLF signal. Therefore, the recovery times of perturbed signal depend on the reflection height lifetime. The comparison between the calculated and measured densities as a function of solar flares flux at different heights gives similar profiles.

  18. The Ocean Colour Climate Change Initiative: II. Spatial and Temporal Homogeneity of Satellite Data Retrieval Due to Systematic Effects in Atmospheric Correction Processors

    Science.gov (United States)

    Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Brockmann, Carsten; Deschamps, Pierre-Yves; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic; hide

    2015-01-01

    The established procedure to access the quality of atmospheric correction processors and their underlying algorithms is the comparison of satellite data products with related in-situ measurements. Although this approach addresses the accuracy of derived geophysical properties in a straight forward fashion, it is also limited in its ability to catch systematic sensor and processor dependent behaviour of satellite products along the scan-line, which might impair the usefulness of the data in spatial analyses. The Ocean Colour Climate Change Initiative (OC-CCI) aims to create an ocean colour dataset on a global scale to meet the demands of the ecosystem modelling community. The need for products with increasing spatial and temporal resolution that also show as little systematic and random errors as possible, increases. Due to cloud cover, even temporal means can be influenced by along-scanline artefacts if the observations are not balanced and effects cannot be cancelled out mutually. These effects can arise from a multitude of results which are not easily separated, if at all. Among the sources of artefacts, there are some sensor-specific calibration issues which should lead to similar responses in all processors, as well as processor-specific features which correspond with the individual choices in the algorithms. A set of methods is proposed and applied to MERIS data over two regions of interest in the North Atlantic and the South Pacific Gyre. The normalised water leaving reflectance products of four atmospheric correction processors, which have also been evaluated in match-up analysis, is analysed in order to find and interpret systematic effects across track. These results are summed up with a semi-objective ranking and are used as a complement to the match-up analysis in the decision for the best Atmospheric Correction (AC) processor. Although the need for discussion remains concerning the absolutes by which to judge an AC processor, this example demonstrates

  19. Microbial radio-resistance of Salmonella Typhimurium in egg increases due to repetitive irradiation with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tesfai, Adiam T.; Beamer, Sarah K.; Matak, Kristen E. [West Virginia University, Division of Animal and Nutritional Sciences, PO Box 6108, Morgantown, WV 26508 (United States); Jaczynski, Jacek, E-mail: Jacek.Jaczynski@mail.wvu.ed [West Virginia University, Division of Animal and Nutritional Sciences, PO Box 6108, Morgantown, WV 26508 (United States)

    2011-04-15

    Ionizing radiation improves food safety. However, foodborne pathogens develop increased resistance in response to sub-lethal stresses such as heat, pH, antibiotics, etc. Therefore, it is hypothesized that foodborne pathogens may develop increased radio-resistance to electron beam (e-beam) radiation. The objective was to determine if D{sub 10}-value for Salmonella Typhimurium in de-shelled raw egg (egg white and yolk mixed together) increases due to repetitive processing with e-beam at sub-lethal doses. Survivors were enumerated on non-selective (TSA) and selective (XLD) media. Survivors from the highest dose were isolated and used in subsequent e-beam cycle. This process was repeated four times for a total of five e-beam cycles. D{sub 10}-values for S. Typhimurium enumerated on TSA and XLD following each e-beam cycle were calculated as inverse reciprocal of the slope of survivor curves. D{sub 10}-values for the ATCC strain were 0.59{+-}0.031 and 0.46{+-}0.022 kGy on TSA and XLD, respectively. However, following the fifth e-beam cycle, the respective D{sub 10}-values increased (P<0.05) to 0.69{+-}0.026 and 0.61{+-}0.029 kGy, respectively. S. Typhimurium showed a trend (P>0.05) to develop radio-resistance faster on selective media, likely due to facilitated selection of radio-resistant cells within microbial population following each e-beam cycle. For all five e-beam cycles, S. Typhimurium had higher (P<0.05) D{sub 10}-values on non-selective media, indicating that sub-lethal injury followed by cellular repair and recovery are important for radio-resistance and inactivation of this microorganism. This study demonstrated that e-beam efficiently inactivates S. Typhimurium in raw egg; however, similar to other inactivation techniques and factors affecting microbial growth, S. Typhimurium develops increased radio-resistance if repetitively processed with e-beam at sub-lethal doses.

  20. Physical principles of the amplification of electromagnetic radiation due to negative electron masses in a semiconductor superlattice

    Science.gov (United States)

    Shorokhov, A. V.; Pyataev, M. A.; Khvastunov, N. N.; Hyart, T.; Kusmartsev, F. V.; Alekseev, K. N.

    2015-02-01

    In a superlattice placed in crossed static electric and magnetic fields, under certain conditions, the inversion of electron population can appear at which the average energy of electrons is above the middle of the mini-band and the effective mass of the electron is negative. This is the implementation of the negative effective mass amplifier and generator (NEMAG) in the superlattice. It can result in the amplification and generation of terahertz radiation even in the absence of negative differential conductivity.

  1. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat].

    Science.gov (United States)

    Zhang, Xu-cheng; Yu, Xian-feng; Ma, Yi-fan

    2011-03-01

    Wheat (Triticum aestivum) plants were pot-cultured in open top chambers at the nitrogen application rate of 0 and 200 mg x kg(-1) soil and the atmospheric CO2 concentration of 400 and 760 micromol x mol(-1). Through the determination of flag leaf nitrogen and chlorophyll contents, photosynthetic rate (Pn)-intercellar CO2 concentration (Ci) response curve, and chlorophyll fluorescence parameters at heading stage, the photosynthetic electron transport rate and others were calculated, aimed to investigate the effects of nitrogen application and elevated atmospheric CO2 concentration on the photosynthetic energy partitioning in wheat flag leaves. Elevated atmospheric CO2 concentration decreased the leaf nitrogen and chlorophyll contents, compared with the ambient one, and the chlorophyll a/b ratio increased at the nitrogen application rate of 200 mg x kg(-1). With the application of nitrogen, no evident variations were observed in the maximal photochemical efficiency (Fv/Fm), maximal quantum yield under irradiance (Fv'/Fm') of PS II reaction center, photochemical fluorescence quenching coefficient (q(p)), and actual PS II efficiency under irradiance (phi(PS II) at elevated atmospheric CO2 concentration, and the total photosynthetic electron transport rate (J(F)) of PS II reaction center had no evident increase, though the non-photochemical fluorescence quenching coefficient (NPQ) decreased significantly. With no nitrogen application, the Fv'/Fm', psi(PS II), and NPQ at elevated atmospheric CO2 concentration decreased significantly, and the J(F) had a significant decrease though the Fv/Fm and q(p) did not vary remarkably. Nitrogen application increased the J(F) and photochemical electron transport rate (Jc); while elevated atmospheric CO2 concentration decreased the photorespiration electron transport rate (J0), Rubisco oxidation rate (V0), ratio of photorespiration to photochemical electron transport rate (J0/Jc) , and Rubisco oxidation/carboxylation rate (Vo/Vc), but

  2. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  3. Two-dimensional gas chromatography with electron capture detection for the analysis of atmospheric ozone depleting halocarbons.

    Science.gov (United States)

    Ou-Yang, Chang-Feng; Hua, Hsi-Che; Chou, Yu-Chieh; Teng, Ming-Kai; Liu, Wen-Tzu; Wang, Jia-Lin

    2017-05-26

    This study is to develop a GC×GC method with electron capture detection (ECD) to analyze atmospheric halocarbons in the concentration range of parts per trillion by volume (pptv). To enrich atmospheric halocarbons a home-built thermal desorption (TD) device was coupled to the GC×GC-ECD. The technique of flow modulation was adopted using a Deans switch for GC×GC. Several column combinations of first and second dimensions were tested and the column set of DB-5×TG-1301 was found to show the best orthogonality for halocarbons. A series of modulation parameters were tested for their optimal settings. The modulation period (PM) was found to have minimal wrap-around when set at 3s. The modulation ratio (MR) was determined to be 7.82 to ensure reproducible results and maximum sensitivity. The modulation duty cycle (DC) was calculated to be approximately 0.17. Nine halocarbons were separated successfully and seven were calibrated with the use of a certified standard gas mixture. The correlation coefficients (R2) were greater than 0.9972. The reproducibility was better than 1.90% as expressed in relative standard deviation (RSD; N=30) and the detection limits were in the range of pptv for the target halocarbons. A field test by continuous analyzing ambient air with hourly resolution was performed to show the stability of the method as suggested by the homogeneity of certain halocarbons, while also reflecting concentration variation for others when emissions did arise. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of salinity and short-term elevated atmospheric CO2on the chemical equilibrium between CO2fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Hussin, Sayed; Geissler, Nicole; El-Far, Mervat M M; Koyro, Hans-Werner

    2017-09-01

    The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO 2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m -3 NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m -3  NaCl while C50 was between 50 and 100 mol m -3  NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (A net ) at high salinity treatment, leading consequently to a disequilibrium between CO 2 -assimilation and electron transport rates (indicated by enhanced ETR max /A gross ratio). Elevated atmospheric CO 2 enhanced CO 2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO 2 concentration (indicated by enhanced C i /C a ). The priority for Stevia under elevated atmospheric CO 2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETR max /A gross ). The results imply that elevated CO 2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2009-08-01

    Full Text Available An electric solar wind sail is a recently introduced propellantless space propulsion method whose technical development has also started. The electric sail consists of a set of long, thin, centrifugally stretched and conducting tethers which are charged positively and kept in a high positive potential of order 20 kV by an onboard electron gun. The positively charged tethers deflect solar wind protons, thus tapping momentum from the solar wind stream and producing thrust. The amount of obtained propulsive thrust depends on how many electrons are trapped by the potential structures of the tethers, because the trapped electrons tend to shield the charged tether and reduce its effect on the solar wind. Here we present physical arguments and test particle calculations indicating that in a realistic three-dimensional electric sail spacecraft there exist a natural mechanism which tends to remove the trapped electrons by chaotising their orbits and causing them to eventually collide with the conducting tethers. We present calculations which indicate that if these mechanisms were able to remove trapped electrons nearly completely, the electric sail performance could be about five times higher than previously estimated, about 500 nN/m, corresponding to 1 N thrust for a baseline construction with 2000 km total tether length.

  6. Mechanism of electron multiplication due to charging for a SiO2sample with a buried microstructure in SEM: A simulation analysis.

    Science.gov (United States)

    Wang, Fang; Feng, Guobao; Zhang, Xiusheng; Cao, Meng

    2016-11-01

    This study investigates the mechanism of electron redistribution and multiplication for a SiO 2 sample with a buried structure in scanning electron microscopy by numerical simulation. The simulation involved electron scattering and internal charge transport in the sample, the tracking of emitted secondary electrons (SEs), and the generation of tertiary electrons (TEs) produced by returned SEs due to charging of the sample. The results show that a buried grounded structure causes a non-uniform distribution of surface potential, and an electric field above the surface. As a result, although the number of escaped SEs above the margin of the buried structure decreases, the number of generated TEs increases more, leading to a final current of electrons that include escaped SEs and increased TEs. This multiplication of SEs might make a crucial contribution to the abnormal negative-charging contrast in SEM. During the electron beam irradiation, the variation in the number of total escaped electrons presents an obvious increase after an initial slight decrease, which corresponded to the transient characteristics of gray levels in SEM images from dark to abnormally bright. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Degradation of spatial resolution in thin-foil x-ray microchemical analysis due to plural scattering of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Twigg, Mark Erickson [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1982-01-01

    A computer-based Monte Carlo simulation of incoherent plural scattering of electrons has been developed in order to estimate the broadening of an electron probe as it propagates through a solid. By applying this approach to modeling the spreading of a fine (50 A) probe focused on a thin foil in a scanning transmission electron microscope (STEM), we have estimated the spatial resolution of the compositional analysis obtainable using energy dispersive x-ray spectroscopy (EDS). Specifically, an attempt has been made to determine how the apparent microchemistry of a feature of finer dimensions than the broadened beam differs from the actual composition of the given feature. The apparent Ge concentration profile in the vicinity of a 200 A wide Ge platelet in a 5000 A thick Al foil was measured, using STEM and EDS, and compared with the profile predicted by Monte Carlo calculations. Results are presented and discussed.

  8. Comparison of macroscopic and microscopic (stereomicroscopy and scanning electron microscopy) features of bone lesions due to hatchet hacking trauma.

    Science.gov (United States)

    Nogueira, Luísa; Quatrehomme, Gérald; Bertrand, Marie-France; Rallon, Christophe; Ceinos, Romain; du Jardin, Philippe; Adalian, Pascal; Alunni, Véronique

    2017-03-01

    This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were described. The length and maximum width of the lesions were also recorded. The microscopic analysis of the lesions led to the description of a sharp-blunt mechanism. Specific criteria were identified (lateral pushing back, fragmentation of the upraising, fossa dug laterally to the edge and vertical striae) enabling the forensic expert to conclude that a hacking instrument was used. These criteria are easily identifiable using scanning electron microscopy, but can also be observed with stereomicroscopy. Overall, lateral pushing back and vertical striae visible using stereomicroscopy and scanning electron microscopy signal the use of a hacking tool.

  9. Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators

    Directory of Open Access Journals (Sweden)

    Aihua Deng

    2012-08-01

    Full Text Available In plasma-based accelerators, electrons are accelerated by ultrahigh gradient of 1–100  GV/m and undergo the focusing force with the same order as the accelerating force. Heated electrons are injected in a plasma wake and exhibit the betatron oscillation that generates synchrotron radiation. Intense betatron radiation from laser-plasma accelerators is attractive x-ray/gamma-ray sources, while it produces radiation loss and significant effects on energy spread and transverse emittance via the radiation reaction force. In this article, electron beam dynamics on transverse emittance and energy spread with considering radiation reaction effects are studied numerically. It is found that the emittance growth and the energy spread damping initially dominate and balance with radiative damping due to the betatron radiation. Afterward the emittance turns to decrease at a constant rate and leads to the equilibrium at a nanometer radian level with growth due to Coulomb scattering at PeV-level energies. A constant radiation loss rate R_{T}=2/3 is found without regard to the electron beam and plasma conditions. Self-cooling of electron beams due to betatron radiation may guarantee TeV-range linear colliders and give hints on astrophysical ultrahigh-energy phenomena.

  10. Verification of electron doping in single-layer graphene due to H{sub 2} exposure with thermoelectric power

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Ju; Kang, Hojin; Soler-Delgado, David; Kim, Kyung Ho; Park, Yung Woo, E-mail: ywpark@phya.snu.ac.kr, E-mail: kbh37@incheon.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Min [Department of Nano Science and Technology, Seoul National University, Seoul 151-747 (Korea, Republic of); Lee, Minwoo; Jeong, Dae Hong [Department of Chemistry Education, Seoul National University, Seoul 151-742 (Korea, Republic of); Shin, Dong Seok; Kim, Byung Hoon, E-mail: ywpark@phya.snu.ac.kr, E-mail: kbh37@incheon.ac.kr [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Kubatkin, Sergey [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2015-04-06

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H{sub 2} molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  11. Simulation of irradiation exposure of electronic devices due to heavy ion therapy with Monte Carlo Code MCNP6

    Science.gov (United States)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang; Buck, Arnulf

    2017-09-01

    During heavy ion irradiation therapy the patient has to be located exactly at the right position to make sure that the Bragg peak occurs in the tumour. The patient has to be moved in the range of millimetres to scan the ill tissue. For that reason a special table was developed which allows exact positioning. The electronic control can be located outside the surgery. But that has some disadvantage for the construction. To keep the system compact it would be much more comfortable to put the electronic control inside the surgery. As a lot of high energetic secondary particles are produced during the therapy causing a high dose in the room it is important to find positions with low dose rates. Therefore, investigations are needed where the electronic devices should be located to obtain a minimum of radiation, help to prevent the failure of sensitive devices. The dose rate was calculated for carbon ions with different initial energy and protons over the entire therapy room with Monte Carlo particle tracking using MCNP6. The types of secondary particles were identified and the dose rate for a thin silicon layer and an electronic mixture material was determined. In addition, the shielding effect of several selected material layers was calculated using MCNP6.

  12. Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Uskov, Alexander; Gritti, Claudia

    2014-01-01

    We model the electron photoemission frommetal nanoparticles into a semiconductor in a Schottky diode with a conductive oxide electrode hosting the nanoparticles. We show that plasmonic effects in the nanoparticles lead to a substantial enhancement in photoemission compared with devices with conti....... Such structure can form the dais of the development of plasmonic photoemission enhanced solar cells....

  13. An assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2009-03-01

    Full Text Available Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs, even for the same electron beam energy. The aims of this study were to simulate the NEPTUN 10PC linac electron beams and to calculate the photon contamination dose due to bremsstrahlung radiation in these beams using a Monte Carlo method. Materials and methods: A NEPTUN 10PC linac was simulated in its electron mode using the BEAMnrc code. This linac can provide three electron beam energies of 6, 8 and 10 MeV. Detailed information required for the simulation, including the geometry and materials of various components of the linac treatment head, was provided by the vender. For all simulations, the cut-off energies for electron and photon transport were set at ECUT=0.521 MeV and PCUT=0.010 MeV, respectively. The KS statistical test was used for validation of the simulated models. Then, relevant bremsstrahlung radiation doses for the three electron beam energies of the linac were calculated for the reference field using the Monte Carlo method.   Results: The KS test showed a good agreement between the calculated values (resulting from the simulations and the measured ones. The results showed that the amount of contaminated photon dose due to bremsstrahlung radiation from various components of the simulated linac at the surface of the phantom was between 0.2%-0.5% of the maximum dose for the three electron beam energies. Conclusion:  Considering the good agreement between the measured and simulated data, it can be concluded that the simulation method as well as the calculated bremsstrahlung doses have been made at a good level of accuracy and precision

  14. Pressure-Induced Ferromagnetism due to an Anisotropic Electronic Topological Transition in Fe1.08Te

    Science.gov (United States)

    Mydeen, K.; Kasinathan, D.; Koz, C.; Rößler, S.; Rößler, U. K.; Hanfland, M.; Tsirlin, A. A.; Schwarz, U.; Wirth, S.; Rosner, H.; Nicklas, M.

    2017-12-01

    A rapid and anisotropic modification of the Fermi-surface shape can be associated with abrupt changes in crystalline lattice geometry or in the magnetic state of a material. We show that such an electronic topological transition is at the basis of the formation of an unusual pressure-induced tetragonal ferromagnetic phase in Fe1.08Te . Around 2 GPa, the orthorhombic and incommensurate antiferromagnetic ground state of Fe1.08Te is transformed upon increasing pressure into a tetragonal ferromagnetic state via a conventional first-order transition. On the other hand, an isostructural transition takes place from the paramagnetic high-temperature state into the ferromagnetic phase as a rare case of a "type-0" transformation with anisotropic properties. Electronic-structure calculations in combination with electrical resistivity, magnetization, and x-ray diffraction experiments show that the electronic system of Fe1.08Te is instable with respect to profound topological transitions that can drive fundamental changes of the lattice anisotropy and the associated magnetic order.

  15. Magnetoresistance of a two-dimensional electron gas due to a single magnetic barrier and its use for nanomagnetometry

    Science.gov (United States)

    Kubrak, V.; Rahman, F.; Gallagher, B. L.; Main, P. C.; Henini, M.; Marrows, C. H.; Howson, M. A.

    1999-04-01

    We investigate the longitudinal resistance of a semiconductor near-surface two-dimensional electron gas (2DEG) subjected to a magnetic barrier induced by the stray field from a single sub-micron ferromagnetic line on the surface of the device. The amplitude of the magnetic barrier is controlled by the application of an external magnetic field in the plane of the 2DEG. We show that this type of magnetoresistance can be used to deduce properties of the ferromagnetic line, so that our hybrid ferromagnet-semiconductor structure acts as a nanomagnetometer.

  16. Resonant absorption of electromagnetic radiation in a quantum channel due to the scattering of electrons by impurities

    Science.gov (United States)

    Karpunin, V. V.; Margulis, V. A.

    2017-06-01

    We have found an analytical expression for the absorption coefficient of electromagnetic radiation in a quantum channel with a parabolic confinement potential. The calculation has been performed using the second-order perturbation theory taking into account the scattering of a quasi-one-dimensional electron gas by ionized impurities. We have analyzed the dependences of the absorption coefficient on the frequency of the electromagnetic radiation and the magnetic field. The appearance of additional resonant peaks, which are caused by scattering by impurities, has been found.

  17. Lattice parameter change due to electronic excitation in oxygen-deficient EuBa 2Cu 3O y

    Science.gov (United States)

    Ishikawa, N.; Iwase, A.; Chimi, Y.; Michikami, O.; Wakana, H.; Hashimoto, T.

    2002-05-01

    The films of EuBa 2Cu 3O y (EBCO) having different oxygen contents are irradiated with 125 MeV Br, 200 MeV I and 200 MeV Au, and their irradiation-induced change in c-axis lattice parameter is measured. Although the electrical resistivity of EBCO is drastically changed by varying oxygen content from y=7 to 6.1, almost the same slope of c-axis lattice parameter as a function of fluence is observed. This result shows that the electrical resistivity is not necessarily a dominant parameter that determines the electronic excitation effect.

  18. Non-Maxwellian electron distribution functions due to self-generated turbulence in collisionless guide-field reconnection

    CERN Document Server

    Muñoz, P A

    2016-01-01

    Non-Maxwellian electron velocity space distribution functions (EVDF) are useful signatures of plasma conditions and non-local consequences of collisionless magnetic reconnection. In the past, the evolution of the EVDFs was investigated mainly for antiparallel or weak-guide-field reconnection. The shape of EVDFs is, however, not well known yet for oblique (or component-) reconnection in dependence on a finite guide magnetic field component perpendicular to the reconnection plane. In view of the multi-spacecraft mission MMS, we derive the non-Maxwellian features of EVDFs formed by collisionless magnetic reconnection starting from very weak ($b_g\\approx0$) up to very strong ($b_g=8$) guide-field strengths $b_g$, taking into account the feedback of the self-generated turbulence. For this sake, we carry out 2.5D fully-kinetic Particle-in-Cell (PiC) simulations using the ACRONYM code. We obtained anisotropic EVDFs and the distribution of electron beams propagating along the separatrices as well as in the exhaust re...

  19. Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and In situ ptychography

    DEFF Research Database (Denmark)

    Baier, Sina; Wittstock, Arne; Damsgaard, Christian Danvad

    2016-01-01

    A novel complementary approach of electron microscopy/environmental TEM and in situ hard X-ray ptychography was used to study the thermally induced coarsening of nanoporous gold under different atmospheres, pressures and after ceria deposition. The temperature applied during ptychographic imaging...... was determined by IR thermography. While using elevated temperatures (room temperature - 400 °C) and realistic gas atmospheres (1 bar) we achieved for the first time a spatial resolution of about 20 nm during hard X-ray ptychography. The annealing of pure and ceria stabilized nanoporous gold in different...... of ceria on the nanoporous gold led to an improvement of the stability, but did not alleviate the influence of the gas atmosphere. Different behaviors were observed, such as coarsening and even material loss or migration. The results suggest that additional mechanisms beyond surface diffusion need...

  20. Numerical and experimental study of the load of an object due to the effects of a flow field in the atmospheric boundary layer

    Czech Academy of Sciences Publication Activity Database

    Michalcová, V.; Kuznetsov, Sergeii; Pospíšil, S.

    2014-01-01

    Roč. 8, č. 1 (2014), s. 135-140 ISSN 1998-0159 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060 Institutional support: RVO:68378297 Keywords : atmospheric boundary layer ABL * bluff body * CFD * ELES * SAS * wind tunnel Subject RIV: JM - Building Engineering http://www.naun.org/cms.action?id=7632

  1. Altered state of primordial follicles in neonatal and early infantile rats due to maternal hypothyroidism: Light and electron microscopy approach.

    Science.gov (United States)

    Danilović Luković, Jelena; Korać, Aleksandra; Milošević, Ivan; Lužajić, Tijana; Puškaš, Nela; Kovačević Filipović, Milica; Radovanović, Anita

    2016-11-01

    Thyroid hormones (TH) are one of the key factors for normal prenatal development in mammals. Previously, we showed that subclinical maternal hypothyroidism leads to premature atresia of ovarian follicles in female rat offspring in the pre-pubertal and pubertal periods. The influence of decreased concentration of TH on primordial follicles pool formation during neonatal and early infantile period of rat pups was not investigated previously. Maternal hypothyroidism during pregnancy has irreversible negative influence on primordial follicles pool formation and population of resting oocytes in female rat offspring. The study was done on neonatal and early infantile control (n-10) and hypothyroid (n-10) female rat pups derived from control (n-6) and propylthiouracil (PTU) treated pregnant dams (n-6), respectively. Ovaries of all pups were removed and processed for light and transmission electron microscopy (TEM). Number of nests, oogonia and oocytes per nest, primordial, primary, secondary and preantral follicles were determined. Screening for overall calcium presence in ovarian tissue was done using Alizarin red staining. Morphology and volume density of nucleus, mitochondria and smooth endoplasmic reticulum (sER) in the oocytes in primordial follicles was also assessed. Caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), both markers for apoptosis, and proliferating cell nuclear antigen (PCNA) for proliferation were determined in oocytes and granulosa cells in different type of follicles. In neonatal period, ovaries of hypothyroid pups had a decreased number of oogonia, oocytes and nests, an increased number of primordial follicles and a decreased number of primary and secondary follicles, while in early infantile period, increased number of primary, secondary and preantral follicles were found. Alizarin red staining was intense in hypothyroid neonatal rats that also had the highest content of dilated sER. Number of mitochondria with

  2. Evaporative deposition patterns of bacteria from a sessile drop: effect of changes in surface wettability due to exposure to a laboratory atmosphere.

    Science.gov (United States)

    Baughman, Kyle F; Maier, Raina M; Norris, Theresa A; Beam, Brooke M; Mudalige, Anoma; Pemberton, Jeanne E; Curry, Joan E

    2010-05-18

    Evaporative deposition from a sessile drop is a simple and appealing way to deposit materials on a surface. In this work, we deposit living, motile colloidal particles (bacteria) on mica from drops of aqueous solution. We show for the first time that it is possible to produce a continuous variation in the deposition pattern from ring deposits to cellular pattern deposits by incremental changes in surface wettability which we achieve by timed exposure of the mica surface to the atmosphere. We show that it is possible to change the contact angle of the drop from less than 5 degrees to near 20 degrees by choice of atmospheric exposure time. This controls the extent of drop spreading, which in turn determines the architecture of the deposition pattern.

  3. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  4. Dual electron transfer pathways from the excited C60 radical anion: enhanced reactivities due to the photoexcitation of reaction intermediates.

    Science.gov (United States)

    Fujitsuka, Mamoru; Ohsaka, Tatsuya; Majima, Tetsuro

    2015-12-14

    In the present study, electron transfer (ET) processes from excited radical anions have been investigated using dyad molecules including C60. The deactivation process of excited C60˙(-), including the internal conversion from the D1 to the D0 state and the cooling process of the vibrationally hot ground state (D), was observed spectroscopically for the first time. These processes could be unambiguously distinguished by the observation of the stimulated emission from the D1 state. The intramolecular ET processes from the excited C60˙(-) were confirmed by the transient absorption spectra. Clearly, both D1 and D states acted as precursors for the ET, i.e., dual ET pathways were confirmed. The driving force dependence of the ET rates was well characterized by the Marcus theory, which revealed that the forward ET processes are located at the top region of the Marcus parabola. In addition, the ET from the excited imide radical anion to C60 and that from the ground state C60˙(-) to imide were examined. The ET rate from the excited imide radical anion and that from ground state C60˙(-) did not follow the Marcus parabola estimated for the ET from the excited C60˙(-). The observed difference can be attributed to the difference in the energy required to form the reduced spacer (Δ) in the superexchange mechanism. Because the Δ value tends to become smaller for ET processes from excited radical ions, fast and efficient ET processes are expected from these states as demonstrated in the present study.

  5. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    Science.gov (United States)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.

  6. Impact of neocrystallisations on the SiO2-K2O-CaO glass degradation due to atmospheric dry depositions

    Science.gov (United States)

    Gentaz, L.; Lombardo, T.; Chabas, A.; Loisel, C.; Verney-Carron, A.

    2012-08-01

    The medieval SiO2-CaO-K2O stained glasses are particularly vulnerable to the impact of their environment. In the urban atmosphere, they will tend to rapidly deteriorate either by loss of matter or by addition of atmospheric material, that tend to form a crust on the surface of the glass. If the glass surface is protected from the rain run-off, this second phenomenon will be favoured. In the early stage of crust formation, it was shown that primary constituents were salts, called neocrystallisations. However, it is still not clear, if their presence induce further deterioration of the glass matrix. In order to answer this question both field exposure and laboratory experiments were carried out. Model glasses, chosen with compositions similar to those of ancient stained glasses, were exposed to the urban atmosphere in sheltered conditions. Samples exposed were analysed in order to identify the neocrystallisations and further tests were undertaken in order to observe their impact on the glass itself. The analyses of the weathering products on the glasses showed the presence of three principal minerals: syngenite, gypsum, and potassium carbonate. The observed mineral phases were then artificially deposited on model glass surfaces submitted to cycles of relative humidity. It was found that the presence of salts increased the glass degradation by extending the time of wetness of the glass surface and forming saline solutions in the case of deliquescent salts. Evidence of strong leaching could be observed on the glass surface and even more so when considering glass samples in contact with multiple salts. Finally, the impact of potassium carbonate (K2CO3) on the glass was dramatic, since it induced a loss of matter caused by the dissolution of the lattice in contact with the alkaline solution.

  7. Calculation of DNA strand breaks due to direct and indirect effects of Auger electrons from incorporated 123I and 125I radionuclides using the Geant4 computer code.

    Science.gov (United States)

    Raisali, Gholamreza; Mirzakhanian, Lalageh; Masoudi, Seyed Farhad; Semsarha, Farid

    2013-01-01

    In this work the number of DNA single-strand breaks (SSB) and double-strand breaks (DSB) due to direct and indirect effects of Auger electrons from incorporated (123)I and (125)I have been calculated by using the Geant4-DNA toolkit. We have performed and compared the calculations for several cases: (125)I versus (123)I, source positions and direct versus indirect breaks to study the capability of the Geant4-DNA in calculations of DNA damage yields. Two different simple geometries of a 41 base pair of B-DNA have been simulated. The location of (123)I has been considered to be in (123)IdUrd and three different locations for (125)I. The results showed that the simpler geometry is sufficient for direct break calculations while indirect damage yield is more sensitive to the helical shape of DNA. For (123)I Auger electrons, the average number of DSB due to the direct hits is almost twice the DSB due to the indirect hits. Furthermore, a comparison between the average number of SSB or DSB caused by Auger electrons of (125)I and (123)I in (125)IdUrd and (123)IdUrd shows that (125)I is 1.5 times more effective than (123)I per decay. The results are in reasonable agreement with previous experimental and theoretical results which shows the applicability of the Geant-DNA toolkit in nanodosimetry calculations which benefits from the open-source accessibility with the advantage that the DNA models used in this work enable us to save the computational time. Also, the results showed that the simpler geometry is suitable for direct break calculations, while for the indirect damage yield, the more precise model is preferred.

  8. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    Science.gov (United States)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  9. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Moellmann, C; Diekmann, Rabea; Muller-Karulis, B

    2009-01-01

    Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure...... and function. Recently, studies demonstrated the existence of alternative stable states in various terrestrial and aquatic ecosystems. These so-called ecosystem regime shifts have been explained mainly as a result of multiple causes, e.g. climatic regime shifts, overexploitation or a combination of both...... ecosystem structure to have the characteristics of a discontinuous regime shift, initiated by climate-induced changes in the abiotic environment and stabilized by fisheries-induced feedback loops in the food web. Our results indicate the importance of maintaining the resilience of an ecosystem...

  10. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Barthelmie, Rebecca J.; Jensen, Leo E.

    2012-01-01

    the flow inside the wind farm, and the power deficits along rows of wind turbines have been determined for different inflow directions and wind speed intervals. A method to classify the atmospheric stability based on the Bulk-Ri number has been implemented. Long-term stability conditions have been...... unstable conditions, whereas northerly winds have fewer observations in the stable classes. Stable conditions also tend to be associated with lower levels of turbulence intensity, and this relationship persists as wind speeds increase. Power deficit is a function of ambient turbulence intensity. The level...... of power deficit is strongly dependent on the wind turbine spacing; as turbulence intensity increases, the power deficit decreases. The power deficit is determined for four different wind turbine spacing distances and for stability classified as very stable, stable and others (near neutral to very unstable...

  11. Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

    Directory of Open Access Journals (Sweden)

    J. V. Lukovich

    2017-07-01

    Full Text Available A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time changed from superdiffusive (α ∼ 3 to ballistic (α ∼ 2 as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.

  12. Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

    Science.gov (United States)

    Lukovich, Jennifer V.; Geiger, Cathleen A.; Barber, David G.

    2017-07-01

    A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute) dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP) high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time) changed from superdiffusive (α ˜ 3) to ballistic (α ˜ 2) as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.

  13. Electron-cyclotron maser utilizing free-electron two-quantum magnetic-wiggler radiation, and explanation of effective laser injection in an electron cyclotron maser as lift-up of saturated power level arisen from uncertainty in electron energy due to electron's transverse wiggling

    Science.gov (United States)

    Kim, S. H.

    2017-12-01

    We reason that in the free-electron radiation if the transition rate τ is less than the radiation frequency ν, the radiation is of broad-band spectrum whereas if τ ≫ ν, the radiation is of monochromatic. We find that when a weaker magnetic wiggler (MW) is superpositioned on a predominantly strong uniform magnetic field, free-electron two-quantum magnetic-wiggler (FETQMW) radiation takes place. In FETQMW radiation, the MW and the electron's intrinsic motivity to change its internal configuration through radiation play as two first-order perturbers while the uniform magnetic field acts as the sole zeroth-order perturber. When Δ E≪ hν, where Δ E is the uncertainty in the electron energy produced by transverse wiggling due to the MW in conjuction with a Heisenberg's uncertainty principle Δ EΔ x h and E = ( m 2 c 4 + c 2 p 2)1/2, the power of FETQMW radiation cannot exceed hν 2. However, we find that this power cap is lifted by the amount of νΔ E when Δ E ≫ hν holds [1,2]. This lift-up of the saturated radiation power is the responsible mechanism for the effective external injection of a 20 kW maser in an electron-cyclotron maser (ECM). We find that an MW-added ECM with radius 5 cm and length 1 m and operating parameters of the present beam technology can yield laser power of 50 MW at the radiation wavelength of 0.001 cm.

  14. Atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2004-12-01

    Neutrino oscillation was discovered through the study of atmospheric neutrinos. Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron neutrinos and muon neutrinos are produced mainly by the decay chain of charged pions to muons and electrons. Depending on the energy of the neutrinos, atmospheric neutrinos are observed as fully contained events, partially contained events and upward-going muon events. The energy range covered by these events is from a few hundred MeV to >1 TeV. Data from various experiments showed zenith angle- and energy-dependent deficit of {nu}{sub {mu}} events, while {nu}{sub e} events did not show any such effect. It was also shown that the {nu}{sub {mu}} survival probability obeys the sinusoidal function as predicted by neutrino oscillations. Two-flavour {nu}{sub {mu}} {r_reversible} {nu}{sub {tau}} oscillations, with sin{sup 2} 2{theta} > 0.90 and {delta}m{sup 2} in the region of 1.9 x 10{sup -3} to 3.0 x 10{sup -3} eV{sup 2}, explain all these data. Various detailed studies using high statistics atmospheric neutrino data excluded the alternative hypotheses that were proposed to explain the {nu}{sub {mu}} deficit.

  15. Welding of a corrosion-resistant composite material based on VT14 titanium alloy obtained using an electron beam emitted into the atmosphere

    Science.gov (United States)

    Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.

    2017-01-01

    The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.

  16. ON THE POSSIBILITY OF SIGNIFICANT ELECTRON DEPLETION DUE TO NANOGRAIN CHARGING IN THE COMA OF COMET 67P/CHURYUMOV-GERASIMENKO NEAR PERIHELION

    Energy Technology Data Exchange (ETDEWEB)

    Vigren, E.; Eriksson, A. I.; Wahlund, J.-E. [Swedish Institute of Space physics, Uppsala (Sweden); Galand, M. [Department of Physics, Imperial College London, London (United Kingdom); Lavvas, P., E-mail: erik.vigren@irfu.se [Groupe de Spectrométrie Moléculaire et Atmosphérique, Université Reims Champagne-Ardenne, UMR 7331, F-51687 Reims (France)

    2015-01-10

    We approach the complicated phenomena of gas-dust interactions in a cometary ionosphere, focusing in particular on the possibility of significant depletion in electron number density due to grain charging. Our one-dimensional ionospheric model, accounting for grain charging processes, is applied to the subsolar direction and the diamagnetic cavity of 67P/Churyuomov-Gerasimenko, the target comet for the ESA Rosetta mission, at perihelion (∼1.25-1.30 AU). We argue on the one hand that grains with radii >100 nm are unlikely to significantly affect the overall ionospheric particle balance within this environment, at least for cometocentric distances >10 km. On the other hand, if nanograins with radii in the 1-3 nm range are ejected to the coma at a level of ∼1% with respect to the mass of the sublimated gas, a significant electron depletion is expected up to cometocentric distances of several tens of kilometers. We relate these results to the recent Cassini discoveries of very pronounced electron depletion compared with the positive ion population in the plume of Enceladus, which has been attributed to nanograin charging.

  17. Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics

    Science.gov (United States)

    Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi

    2017-10-01

    Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.

  18. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Stuart R., E-mail: s.thomas09@imperial.ac.uk, E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D., E-mail: s.thomas09@imperial.ac.uk, E-mail: thomas.anthopoulos@imperial.ac.uk [Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2BW (United Kingdom); Adamopoulos, George [Department of Engineering, Engineering Building, Lancaster University, Bailrigg, Lancaster LA1 4YR (United Kingdom); Sygellou, Labrini [Institute of Chemical Engineering and High Temperature Processes (ICEHT), Foundation of Research and Technology Hellas (FORTH), Stadiou Strasse Platani, P.O. Box 1414, Patras GR-265 04 (Greece); Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003 (Greece); Materials Science and Technology Department, University, of Crete, Heraklion 71003 (Greece); Pliatsikas, Nikos; Patsalas, Panos A. [Laboratory of Applied Physics, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece)

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450 °C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700 °C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ∼4.9 eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ∼2 cm{sup 2}/V s.

  19. Emission of greenhouse gases in the atmosphere of the Manaus city due to burning of fossil fuels; Emissao de gases poluentes na atmosfera urbana da cidade de Manaus devida a queima de combustiveis fosseis

    Energy Technology Data Exchange (ETDEWEB)

    Valois, I.M. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Fac. de Tecnologia], E-mail: ivalois@ufam.edu.br; Cartaxo, E.F. [Universidade Federal do Amazonas (NIEMA/UFAM), Manaus, AM (Brazil). Fac. de Tecnologia. Nucleo de Energia, Meio Ambiente e Agua], E-mail: ecartaxo@ufam.edu.br; Chaar, Jamal da Silva [Universidade Federal do Amazonas (ICE/UFAM), Manaus, AM (Brazil). Inst. de Ciencias Exatas

    2009-07-01

    This paper intends to think over the impacts of pollutants gases in the atmosphere of the city of Manaus, caused by the thermal, the main electricity source in the State of Amazonas. The focus of the study is the urban atmosphere where physical and chemical phenomenon accelerate the effects of increased concentration of some components and secondary pollutants, which are produced due to human activities. It is based on two studies: monitoring the exhaust gas applied at a factory in the district of Aparecida, located in the urban area, and monitoring conducted by the energy operating company, about the influence of exhaust gas around the district of Mauazinho, also in urban area. It is a preliminary research that seeks to demonstrate the inconsistency of some studies and the need to make progress in search for more efficient methods and techniques. This is an important step toward a policy of environmental management that will complement future studies about air pollution in the city. (author)

  20. A Critical Review of Published Data on the Gas Temperature and the Electron Density in the Electrolyte Cathode Atmospheric Glow Discharges

    Directory of Open Access Journals (Sweden)

    Tamás Cserfalvi

    2012-05-01

    Full Text Available Electrolyte Cathode Discharge (ELCAD spectrometry, a novel sensitive multielement direct analytical method for metal traces in aqueous solutions, was introduced in 1993 as a new sensing principle. Since then several works have tried to develop an operational mechanism for this exotic atmospheric glow plasma technique, however these attempts cannot be combined into a valid model description. In this review we summarize the conceptual and technical problems we found in this upcoming research field of direct sensors. The TG gas temperature and the ne electron density values published up to now for ELCAD are very confusing. These data were evaluated by three conditions. The first is the gas composition of the ELCAD plasma, since TG was determined from the emitted intensity of the N2 and OH bands. Secondly, since the ELCAD is an atmospheric glow discharge, thus, the obtained TG has to be close to the Te electron temperature. This can be used for the mutual validation of the received temperature data. Thirdly, as a consequence of the second condition, the values of TG and ne have to agree with the Engel-Brown approximation of the Saha-equation related to weakly ionized glow discharge plasmas. Application of non-adequate experimental methods and theoretical treatment leads to unreliable descriptions which cannot be used to optimize the detector performance.

  1. Bad news about an old poison. A case of nicotine poisoning due to both ingestion and injection of the content of an electronic cigarette refill

    Directory of Open Access Journals (Sweden)

    Gianfranco Cervellin

    2013-10-01

    Full Text Available There are increasing concerns about the escalating use of electronic cigarettes (e-cigarettes. In particular, smokers have been advised by important agencies such as the US Food and Drug Administration about the potential harm to the health of these products, being now considered as drug delivery devices. The leading issues supporting this statement include the repeated inhalation of propylene glycol that is used as a diluent in refills, accidental poisoning, as well as evidence that ecigarettes may promote continued smoking since their use may compromise quitting motivations. Some authors have minimized these risks, considering the potential advantages of these devices for public health. Here we describe the first case of nicotine poisoning due to both ingestion and intravenous injection of the content of an e-cigarette refill, incorrectly mixed with methadone, bottled in a generic vial.

  2. Observation of Shubnikov de Haas oscillations due to interfacial two dimensional electron gas in epitaxial HgCdTe on CdZnTe heterostructure

    Science.gov (United States)

    Jain, Tapasya; Manchanda, Rachna; Kumari Mishra, Manna; Thakur, O. P.; Sharma, R. K.

    2017-01-01

    The presence of two dimensional electron gas associated with misfit dislocation network at the compositionally graded interface of HgCdTe/CdZnTe heterostructure prepared by liquid phase epitaxy has been reported. Shubnikov-de-Haas (SdH) oscillations were observed in Ga-diffused n-type HgCdTe/CdZnTe heterostructures in the temperature range of 1.8-10 K with magnetic field swept up to 8 T. The epilayer was thinned down from an initial thickness of ˜23 μm to the graded interfacial region of ˜3 μm in steps of ˜10 μm each and the magneto-transport measurements were done at each differential etch step. The SdH oscillations observed at three steps were coherent with all the peaks occurring at same magnetic field value. An estimation of electron effective mass and sheet carrier density helped conclude that these SdH oscillations are due to a 2DEG present at HgCdTe-CdZnTe hetero interface. It is proposed that the stress field of misfit dislocation network in the interfacial region is responsible for the formation of this 2DEG.

  3. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Department of Applied Science and Energy Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  4. Ultrahigh Capacity Due to Multi-Electron Conversion Reaction in Reduced Graphene Oxide-Wrapped MoO2 Porous Nanobelts.

    Science.gov (United States)

    Tang, Wei; Peng, Cheng Xin; Nai, Chang Tai; Su, Jie; Liu, Yan Peng; Reddy, M V Venkatashamy; Lin, Ming; Loh, Kian Ping

    2015-05-01

    Multivalent transition metal oxides (MOx ) containing redox centers which can theoretically accept more than one electron have been suggested as promising anode materials for high-performance lithium ion batteries (LIBs). The Li-storage mechanism of these oxides is suggested to involve an unusual conversion reaction leading to the formation of metallic nanograins and Li2 O; however, a full-scale conversion reaction is seldom observed in molybdenum dioxide (MoO2 ) at room temperature due to slow kinetics. Herein, a full-scale multi-electron conversion reaction, leading to a high reversible capacity (974 mA h g(-1) charging capacity at 60 mA g(-1) ) in LIBs, is realized in a hybrid consisting of reduced graphene oxide (rGO) sheet-wrapped MoO2 porous nanobelts (rGO/MoO2 NBs). The rGO wrapping layers stabilize the nanophase transition in MoO2 and alleviate volume swing effects during lithiation/delithiation processes. This enables the hybrid to exhibit great cycle stability (tested to around 1900 cycles) and ultrafast rate capability (tested up to 50 A g(-1) ). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Radiation exposure due to cosmic rays and solar X-ray photons at various atmospheric heights in aviation range over India

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Bhattacharya, Arnab

    2016-07-01

    In this presentation we present our work on the continuous monitoring of radiation exposure in terms of effective dose rates, due to galactic cosmic rays (GCR) and solar X-rays at various altitudes within aviation range over India. As India belongs to equatorial region, there is negligible contribution from solar energetic particles (SEP). The calculation of cosmic ray counts as well as the solar X-ray photons are performed on the basis of the observation of various Dignity series balloon experiments on cosmic ray and solar high energy radiation studies, conducted by ICSP and Monte Carlo simulations performed with GEANT4 detector simulation software. The information on solar activity level from Geostationary Operational Environmental Satellite system (GOES) are employed in the calculations. A program, which is done entirely in MATLAB is employed to update regularly in a website, where we show images of dose rate (μSv) distribution over India at four different heights within the aviation range (updating at an interval of 30 minutes) and the approximate dose rates thats should be experienced by a pilot in an entire flight time between pairs of stations distributed all over India.

  6. 'Shake-off' account of effects from a Beta-decay at determination of internal conversion coefficients due to secondary electron radiation

    CERN Document Server

    Mitrokhovich, N F

    2002-01-01

    By means of selection coincidence of gamma-quantum with the secondary electrons (e sub o -electrons) and beta-particles (gamma beta e sub 0 -coincidences) and special geometry of measurements the formation of e sub o -electrons from electrons of 'shake-off' accompanying beta-decay is chosen and its output is determined. Influence of this additional source of e sub o -electrons formation on the accuracy of the internal conversion coefficient determination is estimated, when the output of e sub o -electrons from electrons of conversion is defined on the output of e sub o -electrons from beta-particles.

  7. The electronic Space Weather upper atmosphere (eSWua project at INGV: advancements and state of the art

    Directory of Open Access Journals (Sweden)

    V. Romano

    2008-02-01

    Full Text Available The eSWua project is based on measurements performed by all the instruments installed by the upper atmosphere physics group of the Istituto Nazionale di Geofisica e Vulcanologia, Italy and on all the related studies. The aim is the realization of a hardware-software system to standardize historical and real-time observations for different instruments.

    An interactive Web site, supported by a well organized database, can be a powerful tool for the scientific and technological community in the field of telecommunications and space weather. The most common and useful database type for our purposes is the relational one, in which data are organized in tables for petabytes data archiving and the complete flexibility in data retrieving.

    The project started in June 2005 and will last till August 2007. In the first phase the major effort has been focused on the design of hardware and database architecture. The first two databases related to the DPS4 digisonde and GISTM measurements are complete concerning populating, tests and output procedures. Details on the structure and Web tools concerning these two databases are presented, as well as the general description of the project and technical features.

  8. The electronic Space Weather upper atmosphere (eSWua project at INGV: advancements and state of the art

    Directory of Open Access Journals (Sweden)

    V. Romano

    2008-02-01

    Full Text Available The eSWua project is based on measurements performed by all the instruments installed by the upper atmosphere physics group of the Istituto Nazionale di Geofisica e Vulcanologia, Italy and on all the related studies. The aim is the realization of a hardware-software system to standardize historical and real-time observations for different instruments. An interactive Web site, supported by a well organized database, can be a powerful tool for the scientific and technological community in the field of telecommunications and space weather. The most common and useful database type for our purposes is the relational one, in which data are organized in tables for petabytes data archiving and the complete flexibility in data retrieving. The project started in June 2005 and will last till August 2007. In the first phase the major effort has been focused on the design of hardware and database architecture. The first two databases related to the DPS4 digisonde and GISTM measurements are complete concerning populating, tests and output procedures. Details on the structure and Web tools concerning these two databases are presented, as well as the general description of the project and technical features.

  9. Discovery of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Tokyo Univ., Inst. for Cosmic Ray Research, Kashiwa, Chiba (Japan)

    2003-05-01

    Cosmic ray particles entering the atmosphere interact with the air nuclei produce neutrinos. These neutrinos are called atmospheric neutrinos. The atmospheric neutrino anomaly observed in Kamiokande is now understood as due to neutrino oscillations by high statistics measurements of the atmospheric neutrinos in Super-Kamiokande. The studies of the atmospheric neutrinos have matured into detailed studies of neutrino masses and mixings. (author)

  10. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    Science.gov (United States)

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  11. Correction for 'artificial' electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung.

    Science.gov (United States)

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J

    2013-06-21

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  12. Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere.

    Science.gov (United States)

    Da Pieve, Fabiana; Stankowski, Martin; Hogan, Conor

    2014-09-15

    Mercury is a hazardous environmental pollutant mobilized from natural sources, and anthropogenically contaminated and disturbed areas. Current methods to assess mobility and environmental impact are mainly based on field measurements, soil monitoring, and kinetic modelling. In order to understand in detail the extent to which different mineral sources can give rise to mercury release it is necessary to investigate the complexity at the microscopic level and the possible degradation/dissolution processes. In this work, we investigated the potential for mobilization of mercury structurally trapped in three relevant minerals occurring in hot spring environments and mining areas, namely, cinnabar (α-HgS), corderoite (α-Hg3S2Cl2), and mercuric chloride (HgCl2). Quantum chemical methods based on density functional theory as well as more sophisticated approaches are used to assess the possibility of a) direct photoreduction and formation of elemental Hg at the surface of the minerals, providing a path for ready release in the environment; and b) reductive dissolution of the minerals in the presence of solutions containing halogens. Furthermore, we study the use of TiO2 as a potential photocatalyst for decontamination of polluted waters (mainly Hg(2+)-containing species) and air (atmospheric Hg(0)). Our results partially explain the observed pathways of Hg mobilization from relevant minerals and the microscopic mechanisms behind photocatalytic removal of Hg-based pollutants. Possible sources of disagreement with observations are discussed and further improvements to our approach are suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol.

    Science.gov (United States)

    Jo, Sang-Hee; Kim, Ki-Hyun

    2016-01-15

    In this study, an experimental method for the collection and analysis of carbonyl compounds (CCs) released due to the use of electronic cigarettes (e-cigarettes or ECs) was developed and validated through a series of laboratory experiments. As part of this work, the conversion of CCs from a refill solution (e-solution) to aerosol also was investigated based on mass change tracking (MCT) approach. Aerosol samples generated from an e-cigarette were collected manually using 2,4-dinitrophenylhydrazine (DNPH) cartridges at a constant sampling (puffing) velocity of 1 L min(-1) with the following puff conditions: puff duration (2s), interpuff interval (10s), and puff number (5, 10, and 15 times). The MCT approach allowed us to improve the sampling of CCs through critical evaluation of the puff conditions in relation to the consumed quantities of refill solution. The emission concentrations of CCs remained constant when e-cigarettes were sampled at or above 10 puff. Upon aerosolization, the concentrations of formaldehyde and acetaldehyde increased 6.23- and 58.4-fold, respectively, relative to their concentrations in e-solution. Furthermore, a number of CCs were found to be present in the aerosol samples which were not detected in the initial e-solution (e.g., acetone, butyraldehyde, and o-tolualdehyde). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis.

    Science.gov (United States)

    Lu, Yanhong; Yang, Yang; Zhang, Tengfei; Ge, Zhen; Chang, Huicong; Xiao, Peishuang; Xie, Yuanyuan; Hua, Lei; Li, Qingyun; Li, Haiyang; Ma, Bo; Guan, Naijia; Ma, Yanfeng; Chen, Yongsheng

    2016-11-22

    Ammonia synthesis is the single most important chemical process in industry and has used the successful heterogeneous Haber-Bosch catalyst for over 100 years and requires processing under both high temperature (300-500 °C) and pressure (200-300 atm); thus, it has huge energy costs accounting for about 1-3% of human's energy consumption. Therefore, there has been a long and vigorous exploration to find a milder alternative process. Here, we demonstrate that by using an iron- and graphene-based catalyst, Fe@3DGraphene, hot (ejected) electrons from this composite catalyst induced by visible light in a wide range of wavelength up to red could efficiently facilitate the activation of N2 and generate ammonia with H2 directly at ambient pressure using light (including simulated sun light) illumination directly. No external voltage or electrochemical or any other agent is needed. The production rate increases with increasing light frequency under the same power and with increasing power under the same frequency. The mechanism is confirmed by the detection of the intermediate N2H4 and also with a measured apparent activation energy only ∼1/4 of the iron based Haber-Bosch catalyst. Combined with the morphology control using alumina as the structural promoter, the catalyst retains its activity in a 50 h test.

  15. Variation in mechanical behavior due to different build directions of Titanium6Aluminum4Vanadium fabricated by electron beam additive manufacturing technology

    Science.gov (United States)

    Roy, Lalit

    Titanium has always been a metal of great interest since its discovery especially for critical applications because of its excellent mechanical properties such as light weight (almost half of that of the steel), low density (4.4 gm/cc) and high strength (almost similar to steel). It creates a stable and adherent oxide layer on its surface upon exposure to air or water which gives it a great resistance to corrosion and has made it a great choice for structures in severe corrosive environment and sea water. Its non-allergic property has made it suitable for biomedical application for manufacturing implants. Having a very high melting temperature, it has a very good potential for high temperature applications. But high production and processing cost has limited its application. Ti6Al4V is the most used titanium alloy for which it has acquired the title as `workhouse' of the Ti family. Additive layer Manufacturing (ALM) has brought revolution in manufacturing industries. Today, this additive manufacturing has developed into several methods and formed a family. This method fabricates a product by adding layer after layer as per the geometry given as input into the system. Though the conception was developed to fabricate prototypes and making tools initially, but its highly economic aspect i.e., very little waste material for less machining and comparatively lower production lead time, obviation of machine tools have drawn attention for its further development towards mass production. Electron Beam Melting (EBM) is the latest addition to ALM family developed by Arcam, ABRTM located in Sweden. The electron beam that is used as heat source melts metal powder to form layers. For this thesis work, three different types of specimens have been fabricated using EBM system. These specimens differ in regard of direction of layer addition. Mechanical properties such as ultimate tensile strength, elastic modulus and yield strength, have been measured and compared with standard data

  16. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  17. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Schram, Daan C [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Iza, Felipe; Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Guns, Peter; Lauwers, Daniel; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Gonzalvo, Yolanda Aranda [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: p.j.bruggeman@tue.nl

    2010-02-15

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H{sub 2}O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J {<=} 7) are thermalized and representative for the gas temperature.

  18. Outward radial transport and drift loss due to ULF waves during an energetic electron dropout during the storm on 1 June 2013

    Science.gov (United States)

    Kang, S. B.; Fok, M. C. H.; Li, W.; Komar, C. M.; Engebretson, M. J.; Glocer, A.; Buzulukova, N.

    2016-12-01

    A flux dropout is a sudden and considerable decrease in the relativistic electron population of the outer radiation belt occurring over timescales of a few hours. A significant dropout of electrons with energies ranging from 0.1 to 7MeV was observed by Van Allen Probes during the storm on June 1, 2013. To understand the physical mechanisms of this dropout, we simulate flux and phase space density of energetic electrons with event specific plasma waves using the Comprehensive Inner Magnetosphere and Ionosphere (CIMI) model. We update the magnetic field configuration every 30 seconds using the Tsyganenko 2004 empirical magnetic field model. Likewise, the electric field is updated every 10 seconds using a self-consistent convection potential from ring current pressure to reproduce fluctuations comparable to ultralow frequency (ULF) waves. CIMI reproduces the significant dropout with the last closed drift shell estimated to be L* electrons. We conclude that outward radial transport results from electric and magnetic fluctuations and the Dst effect. These effects combine together and result in electron losses for a wide range of energies to the magnetopause and are the primary driver of the deep dropout over a large range of L values.

  19. Impacts on Air Quality due to Photosensitized Production of Excited State O2 (1Δg) by PAHs and Oxy-PAHs in the Lower Atmosphere: An Experimental and Computational Modeling Approach

    Science.gov (United States)

    Montoya, G. A.; Carreras-Sospedra, M.; Montoya, J.; Dabdub, D.; Foster, K. L.

    2014-12-01

    Complex reactions between hydroxyl radicals (OH) and volatile organic compounds (VOCs) in the lower atmosphere have a high impact on the formation/fates of airborne toxic chemicals, polycyclic aromatic hydrocarbons (PAHs), and particulate matter.1 Recently, air quality models have been implemented to identify OH sources, but have underpredicted OH concentrations. Studies suggest that O2 (1Δg) is produced via an energy transfer (ET) mechanism initiated by the electronic excitation of PAH and oxygenated-PAH. Energy transfer involves the formation of triplet excited state PAH which is then quenched by the surrounding ground state O2 (3∑g) resulting in excited state O2 (1Δg) formation. Excited state O2 (1Δg) is known to readily react with mono-olefins to produce organic hydroperoxides.2,3 Furthermore, the organic hydroperoxide can photodegrade to yield OH. In this study, a Nd:YAG laser coupled to a time-resolved near infrared detector was used to obtain quantum yields of O2 (1Δg) production by irradiating PAHs and oxy-PAHs at both 355 nm and 532 nm in different solvents. Select PAHs, primarily emitted by combustion engines (e.g. pyrene and benzo[a]pyrene), and their oxygenated forms (oxy-PAHs) have been identified as highly efficient O2 (1Δg) photosensitizers. For example, the measured quantum yield for pyrene in toluene was 0.90 ± 0.02. The measured quantum yields were used to calculate the photochemical rate constants for O2 (1Δg) production via ET from electronically excited PAHs and oxy-PAHs. These results were incorporated into the University of California, Irvine-California Institute of Technology (UCI-CIT) model to assess the impact on OH concentrations and the overall air quality of the South Coast Air Basin of California. References 1 Finlayson-Pitts, B.J., and J. N. Pitts (1997), Science, 276(5315),1045-1052. 2 Foote, C. S. (1968), Accts. Chem. Res., 1, 104-110; Gollnick, K. (1968), Adv. Photochem., 6, 1-112; Kearns, D. R. (1971), Chem. Rev., 71, 395

  20. Microinstabilities from the Ion Inertia Length to the Electron Gyroradius Due to Reflected Ions in the Front of Supercritical Perpendicular Shocks

    Science.gov (United States)

    Muschietti, L.; Lembege, B.

    2014-12-01

    We present a synthetic view of the plasma microinstabilities which can occur in the foot of supercritical perpendicular shocks. In these shocks a substantial fraction of ions is reflected at the steep shock ramp. Then, some streaming instabilities are excited by the relative drifts between populations of incoming ions, reflected ions, and electrons across the foot's magnetic field. The instabilities cover wavelengths from the ion inertia length to the electron gyroradius and frequencies from the lower-hybrid to the electron cyclotron, depending upon solar wind characteristics. The particle distributions are modelled as three components: a broad electron population and two ion populations, namely a core and a beam representing the reflected ions. The two ion populations drift in opposite direction with respect to the electron population so as to ensure the zero current condition along the shock normal direction. Assuming the ion beam is directed along the shock normal at 90° to B0, we investigate the possible instabilities under various wave propagation angles. The plasma considered is characterized by a double anisotropy: one defined by the direction of B0, the other by that of the reflected beam. Let Ψ be the magnetic coplanarity plane defined by these two directions. There are therefore two main angles playing a role for the instabilities: (a) the angle θbk between the wave vector and B0, (b) the angle ψvk between the wave vector and the plane Ψ containing the beam. As a result the 3 × 3 dielectric tensor Q is full with terms that are distinct. We show three types of instability at various angles: 1) one about the electron gyroradius with frequencies at the electron cyclotron frequency Ωe and harmonics; 2) one about the electron inertia length with frequencies less than Ωe ; 3) one about the ion inertia length with frequencies of the order of the lower-hybrid. The dispersion relation is computed with the dielectric tensor Q for different parameter values

  1. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic-Theater 2002. Spectacular Visualizations of our Blue Marble

    Science.gov (United States)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    Spectacular Visualizations of our Blue Marble The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC). See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nicola Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  2. Changes of the Electrical and Optical Character of Polyimide Films (and the Chemistry that Drives Them) Due to Exposure to High Energy GEO-like Electrons

    Science.gov (United States)

    2015-10-18

    electrical conduction of aluminized polyimide film after simulated aging in a GEO-like electron environment. We correlate these data with the chemical...and D. Yang, "Damage effect of keV proton irradiation on aluminized Kapton film," Radiation Physics and Chemistry, vol. 77, pp. 482-489, 2008. [21] T

  3. Energy sources of the high latitude upper atmosphere

    Science.gov (United States)

    Banks, P. M.

    1981-01-01

    Electrodynamic (Joule) dissipation and plasma wave heating are reviewed as sources of energy for the upper atmosphere at high latitudes. Electrodynamic heating in the thermosphere is described by a generalized energy balance equation taking into account a variety of inelastic processes and energy losses, and the use of height-integrated values of the Joule heating rate to estimate the importance of electrodynamic heating at high latitudes is discussed. Observations of electrons between 95 and 115 km altitude that are up to 1000 K hotter than the neutral atmosphere is presented as evidence for atmospheric heating due to unstable plasma waves arising from the Farley-Buneman modified two-stream instability.

  4. Enhanced THz emission from c-plane InxGa1-xN due to piezoelectric field-induced electron transport

    Science.gov (United States)

    Woodward, Nathaniel; Gallinat, C.; Rodak, L. E.; Metcalfe, G. D.; Shen, H.; Wraback, M.

    2012-05-01

    Enhanced terahertz emission from coherently strained InxGa1-xN epilayers on GaN is observed, which exceeds or is comparable to bulk InAs emission at pump wavelengths of 400 nm or 800 nm, respectively. The inverted terahertz waveform from the InxGa1-xN/GaN heterostructure indicates that the dominant terahertz generation mechanism is electron acceleration toward the InxGa1-xN surface in an internal electric field primarily associated with piezoelectric polarization charge at the heterointerface, rather than diffusive transport away from the surface typically observed in bulk semiconductors. The persistence of the inverted waveform for 266 nm excitation provides evidence of ultrafast electron relaxation via LO phonon emission.

  5. Animal evolution and atmospheric pO2: is there a link between gradual animal adaptation to terrain elevation due to Ural orogeny and survival of subsequent hypoxic periods?

    Science.gov (United States)

    Kurbel, Sven

    2014-10-22

    Considering evolution of terrestrial animals as something happening only on flat continental plains seems wrong. Many mountains have arisen and disappeared over the geologic time scale, so in all periods some areas of high altitude existed, with reduced oxygen pressure (pO2) and increased aridity. During orogeny, animal species of the raising terrain can slowly adapt to reduced oxygen levels.This review proposes that animal evolution was often driven by atmospheric oxygen availability. Transitions of insect ancestors and amphibians out of water are here interpreted as events forced by the lack of oxygen in shallow and warm water during Devonian. Hyperoxia during early Carboniferous allowed giant insects to be predators of lowlands, forcing small amphibians to move to higher terrains, unsuitable to large insects due to reduced pO2. In arid mountainous habitats, ascended animals evolved in early reptiles with more efficient lungs and improved circulation. Animals with alveolar lungs became the mammalian ancestors, while those with respiratory duct lungs developed in archosaurs. In this interpretation, limb precursors of wings and pneumatised bones might have been adaptations for moving on steep slopes.Ural mountains have risen to an estimated height of 3000 m between 318 and 251 Mya. The earliest archosaurs have been found on the European Ural side, estimated 275 Myr old. It is proposed that Ural orogeny slowly elevated several highland habitats within the modern Ural region to heights above 2500 m. Since this process took near 60 Myr, animals in these habitats fully to adapted to hypoxia.The protracted P-Tr hypoxic extinction event killed many aquatic and terrestrial animals. Devastated lowland areas were repopulated by mammaliaformes that came down from mountainous areas. Archosaurs were better adapted to very low pO2, so they were forced to descend to the sea level later when the lack of oxygen became severe. During the Triassic period, when the relative content

  6. Infrared rovibrational spectroscopy of OH–C{sub 2}H{sub 2} in {sup 4}He nanodroplets: Parity splitting due to partially quenched electronic angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Douberly, Gary E., E-mail: douberly@uga.edu; Liang, Tao [Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 (United States); Raston, Paul L. [Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005 (Australia); Marshall, Mark D., E-mail: mdmarshall@amherst.edu [Department of Chemistry, Amherst College, Amherst, Massachusetts 01002-5000 (United States)

    2015-04-07

    The T-shaped OH–C{sub 2}H{sub 2} complex is formed in helium droplets via the sequential pick-up and solvation of the monomer fragments. Rovibrational spectra of the a-type OH stretch and b-type antisymmetric CH stretch vibrations contain resolved parity splitting that reveals the extent to which electronic angular momentum of the OH moiety is quenched upon complex formation. The energy difference between the spin-orbit coupled {sup 2}B{sub 1} (A″) and {sup 2}B{sub 2} (A′) electronic states is determined spectroscopically to be 216 cm{sup −1} in helium droplets, which is 13 cm{sup −1} larger than in the gas phase [Marshall et al., J. Chem. Phys. 121, 5845 (2004)]. The effect of the helium is rationalized as a difference in the solvation free energies of the two electronic states. This interpretation is motivated by the separation between the Q(3/2) and R(3/2) transitions in the infrared spectrum of the helium-solvated {sup 2}Π{sub 3/2} OH radical. Despite the expectation of a reduced rotational constant, the observed Q(3/2) to R(3/2) splitting is larger than in the gas phase by ≈0.3 cm{sup −1}. This observation can be accounted for quantitatively by assuming the energetic separation between {sup 2}Π{sub 3/2} and {sup 2}Π{sub 1/2} manifolds is increased by ≈40 cm{sup −1} upon helium solvation.

  7. Lattice parameter change due to electronic excitation in oxygen-deficient EuBa{sub 2}Cu{sub 3}O{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, N. E-mail: ishikawa@popsvr.tokai.jaeri.go.jp; Iwase, A.; Chimi, Y.; Michikami, O.; Wakana, H.; Hashimoto, T

    2002-05-01

    The films of EuBa{sub 2}Cu{sub 3}O{sub y} (EBCO) having different oxygen contents are irradiated with 125 MeV Br, 200 MeV I and 200 MeV Au, and their irradiation-induced change in c-axis lattice parameter is measured. Although the electrical resistivity of EBCO is drastically changed by varying oxygen content from y=7 to 6.1, almost the same slope of c-axis lattice parameter as a function of fluence is observed. This result shows that the electrical resistivity is not necessarily a dominant parameter that determines the electronic excitation effect.

  8. A due

    DEFF Research Database (Denmark)

    to acknowledge the excellence of these two scholars by a double Festschrift, "A due". Both have been working at the Music Department of the University of Copenhagen and have collaborated with The Royal Library on various projects. This publication contains contributions from 44 colleagues, who thus - in topics...

  9. Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites.

    Science.gov (United States)

    Fuller, Samuel J; Burke, Ian T; McMillan, Duncan G G; Ding, Weixuan; Stewart, Douglas I

    A serial enrichment culture has been grown in an alkaline Fe(III)-citrate-containing medium from an initial inoculum from a soil layer beneath a chromium ore processing residue (COPR) disposal site where Cr(III) is accumulating from Cr(VI) containing leachate. This culture is dominated by two bacterial genera in the order Clostridiales, Tissierella, and an unnamed Clostridium XI subgroup. This paper investigates the growth characteristics of the culture when Cr(VI) is added to the growth medium and when aquifer sand is substituted for Fe(III)-citrate. The aim is to determine how the availability and chemical form of Fe(III) affects the growth of the bacterial consortium, to determine the impact of Cr(VI) on growth, and thus attempt to understand the factors that are controlling Cr(III) accumulation beneath the COPR site. The culture can grow fermentatively at pH 9.2, but growth is stronger when it is associated with Fe(III) reduction. It can withstand Cr(VI) in the medium, but growth only occurs once Cr(VI) is removed from solution. Cr(VI) reduced the abundance of Tissierella sp. in the culture, whereas the Clostridium XI sp. was Cr(VI) tolerant. In contrast, growth with solid phase Fe(III)-oxyhydroxides (present as coatings on aquifer sand) favoured the Tissierella C sp., possibly because it produces riboflavin as an extracellular electron shuttling compound allowing more efficient electron transfer to solid Fe(III) phases. Thus, it is suggested that bacterially mediated Cr(III) reduction in the soil beneath the COPR site is dependent on Fe(III) reduction to sustain the bacterial community.

  10. Oven atmosphere influence on the defects elimination in tile ceramics; Influencia da atmosfera do forno na eliminacao de defeitos em pecas ceramicas para revestimento

    Energy Technology Data Exchange (ETDEWEB)

    Cava, S.S.; Cerri, J.A.; Paskocimas, C.A.; Longo, E. [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Varela, J.A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Mendonca, T.; Herter, C.G. [White Martins Gases Industriais S.A., Sao Paulo, SP (Brazil)

    1997-12-31

    Ceramic tiles show defects after firing due to reaction of transition metals with atmosphere at high temperatures. These defects (differential colors at surface) can be eliminated by skin atmosphere control. Test samples obtained from industrial composition with addition of transition metal oxides were heat treated in different atmospheres. The samples were analysed by X-ray diffraction, scanning electron microscopy and thermal analysis to evaluate the effect of transition metals and firing atmosphere in defect formation. The results showed that skin atmosphere and organic matter concentration play an important role in the differential color formation due to transition metals reduction or metal carbide formation. (author) 11 refs., 3 figs.

  11. Atmospheric Loss and Warming Of The Early Mars

    Science.gov (United States)

    Airapetian, V.; Gronoff, G.; Grocer, A.; Khazanov, G. V.; Hébrard, E.

    2016-12-01

    Today Mars represents an inhospitable world with a thin 6-mbar atmosphere that cannot support surface water. Current evidence suggests that the early Mars was a wet and at least somewhat warmer world that could support life. How hospitable Mars was for life? The atmospheric evolution of Mars over the last 4 billion years was affected by the rate of atmospheric loss and the chemical changes induced by space weather events from the evolving Sun and the planet's early outgassing history. We apply our atmospheric model enhanced with chemistry that describes photo-collisional dissociation and ionization of molecular nitrogen and carbon dioxide rich atmosphere of the early Mars due to XUV emission and penetration of energetic protons accelerated in extended shock waves driven by super Carrington events from the young Sun. We calculate the rate of atmospheric loss of oxygen ions from the atmosphere of early Mars to be 200 kg/s. This suggests that the early Martian atmosphere was subject to significant erosion, which implies the large rate of outgassing due to tectonic and volcanic activity. We also show that energetic protons produce multiple generations of secondary electrons that contribute to the destruction of N2 into reactive nitrogen, and the subsequent destruction of CO2 and CH4 efficiently producing N2O, a powerful greenhouse gas. The efficient production of nitrous oxide in the Martian troposphere can explain the longstanding problem of the Faint Young Sun paradox for Mars.

  12. Methodology for the accelerated simulation of the deterioration that by atmospheric corrosion appears in electronic equipment; Metodologia para la simulacion acelerada del deterioro que por corrosion atmosferica se presenta en equipo electronico

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Prado, A.; Schouwenaars, R.; Cerrud Sanchez, S.M. [Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2002-12-01

    The corrosion resistance of systems and electronic parts which are designed to work in atmospheric conditions have been tested for decades; some of these methods were the Cyclic Humidity Test, Field Tests and Salt Spray (Fog) Testing, the latter was one of the most popular methods. However, the salt spray test and most of the other existing methods do not show strong relationships with the real conditions of service. For this reason, it is necessary to develop appropriated methods and equipment for the accelerated simulation of real atmospheric corrosion phenomena. This article seeks to demonstrate the need to develop a test and the necessary equipment to reproduce the damage in electronic systems and equipment by atmospheric corrosion. [Spanish] Para la evaluacion de la resistencia a la corrosion de sistemas y equipo electronico que trabajaran bajo condiciones de deterioro generadas por el medio ambiente, se han aplicado una serie de ensayos, donde el mas popular es el de camara de niebla salina. Sin embargo, este y otros que se han elaborado para tal efecto no tienen ninguna relacion con las condiciones reales de servicio, por lo que es necesario un metodo de evaluacion que permita simular de forma acelerada los fenomenos de deterioro por efectos ambientales. Este articulo pretende demostrar la necesidad de desarrollar una prueba, que en forma acelerada, reproduzca el dano que sufre el material por efecto de la atmosfera; el cual se orienta a la evaluacion de equipo electrico y electronico.

  13. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    Through the coupling of dispositif with atmosphere this paper engages in a discussion of the atmospherics as both a form of knowledge and a material practice. In doing so the objective is to provide an inventory of tools and methodologies deployed in the construction of atmosphere understood......, the conceptual foundations and protocols for the production of atmosphere in architecture might be found beneath the surface of contemporary debates. In this context, the notion of atmospheric dispositif – illustrated through an oeuvre of the German architect Werner Ruhnau and its theoretical and historical...

  14. SU-E-T-325: Dosimetric Impact Due to FlexiShield in Electronic Brachytherapy (eBx) of Breast IORT: A Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y; Huynh, J; Ley, M; Gonzalez, V [University of Arizona, Tucson, AZ (United States)

    2015-06-15

    Purpose: To evaluate dosimetric change of eBx plan due to Flexishield. Methods: To simulate a clinically difficult case (skin spacing < 1 cm and touching chest wall), prostheses breast tissue phantom overlaid Xoft spherical balloon applicator. To minimize significant metal streak artifact, megavoltage CT (MVCT) scan was acquired using helical TomoTherapy HiART. Two sets of MVCT images were taken with/without FlexiShield for 15 cases: 4 for small (3–4 cm), 4 for medium (4–5 cm) and 7 for large (5–6 cm) balloon. Total 30 MVCT scans were obtained with 50 % contrast to improve image contrast of balloon relative to breast tissue phantom. Balloon deformation was measured in anterior-posterior (AP) and lateral (LAT) dimensions in the middle of balloon. Skin spacing was also evaluated. Treatment plan was made based on each MVCT scan and two balloon surface doses (AP and LAT directions) and skin dose were compared between plans with/without FlexiShield. Results: The balloon was deformed due to pressure from both FlexiShield (skin side) and FlexiShield mini (chest wall side). Mean ± standard deviation (maximum) value was 1.5 ± 1.0 mm (3.3 mm) for AP compression and 0.4 ± 0.3 mm (1.1 mm) for LAT expansion. Balloon surface dose was increased by 1.8 ± 1.2 Gy (4.9 Gy) at AP point and decreased by 0.4 ± 0.4 Gy (1.3 Gy) at LAT point. Skin spacing was constantly reduced by 1.1 ± 0.8 mm (3 mm). Skin surface dose was increased by 1.5 ± 0.8 Gy (3.3 Gy) and its relative increase was 17.9 ± 9.3% (39.6%). Conclusion: FlexiShield deforms the balloon and reduces skin spacing, thereby resulting in higher dose in AP direction, lower dose in LAT direction, and elevated skin dose compared to the plan without FlexiShield. In the clinic, this balloon deformation and corresponding dose variation should be considered.

  15. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily exper......” implications and qualities of the approach are identified through concrete examples of a design case, which also investigates the qualities and implications of addressing atmospheres both as design concern and user experience.......This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  16. Cosmic-ray-driven electron-induced reactions of halogenated molecules adsorbed on ice surfaces: Implications for atmospheric ozone depletion and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qingbin [Department of Physics and Astronomy and Departments of Biology and Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada)], E-mail: qblu@uwaterloo.ca

    2010-02-15

    The cosmic-ray-driven electron-induced reaction of halogenated molecules adsorbed on ice surfaces has been proposed as a new mechanism for the formation of the polar ozone hole. Here, experimental findings of dissociative electron transfer reactions of halogenated molecules on ice surfaces in electron stimulated desorption, electron trapping and femtosecond time-resolved laser spectroscopic measurements are reviewed. This is followed by a review of the evidence from recent satellite observations of this new mechanism for the Antarctic ozone hole, and all other possible physical mechanisms are discussed. Moreover, new observations of the 11-year cyclic variations of both polar ozone loss and stratospheric cooling and the seasonal variations of CFCs and CH{sub 4} in the polar stratosphere are presented, and quantitative predictions of the Antarctic ozone hole in the future are given. Finally, a new observation of the effects of CFCs and cosmic-ray-driven ozone depletion on global climate change is also presented and discussed.

  17. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  18. Urban atmospheres.

    Science.gov (United States)

    Gandy, Matthew

    2017-07-01

    What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.

  19. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth's formation. Volatiles were accreted throughout the Earth's formation, but Earth's early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth's formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the {}3He/{}^{22}Ne, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (m_{cap} ≳ √{2

  20. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma; Modelisation de phenomenes de polarisation par des gaines rf et des faisceaux electroniques dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E

    2005-07-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  1. Chemical and Astrobiological Effects of Ionizing Irradiation of Planetary Atmospheres

    Science.gov (United States)

    Smith, D. S.; Scalo, J.; Wheeler, J. C.

    2001-12-01

    Monte Carlo simulations of γ -ray and hard X-ray irradiation of planetary atmospheres are presented, with an emphasis on astrobiological implications involving atmospheric chemistry and direct surface mutational and sterilization affects. Possible radiation sources include flares from late-type parent stars, γ -ray bursts, and γ -ray lines from supernovae. We present spectra as a function of depth in the atmosphere and underlying oceans for various incident energy spectra, angles of incidence, and atmospheric column densities. Independent of composition, the fraction of photons reaching the ground and their spectrum are partly controlled by Compton downscattering high in the atmosphere to energies ~50 keV, below which the atmosphere becomes ``black" due to strong photoelectric absorption. The fraction of incident radiation that reaches the ground in the form of ionizing radiation for normal incidence and terrestrial surface gravity is found to depend on column density N as exp(-N/N0) where N0 is 16 gm cm-2. This suggests that Mars has been sterilized by γ -ray bursts many times during the past few eons. In addition, secondary electrons from these processes are capable of exciting UV spectral lines whose yield can be a significant fraction of the incident ionizing radiation. Depending on the presence of various UV atmospheric shielding components, a biologically significant dose of soft UV radiation can reach the ground even for atmospheres that are very optically thick to the incident ionizing radiation. Speculations concerning the formation of intense molecular ion emission lines due to secondary electron impact excitation and their implications for external detection of intense aurora from such planets and for photosynthesis on planets orbiting dMe stars are discussed. This work was supported by NSF grant 9907582.

  2. Seasonal variations of the intensity of decay muons and electrons at points of sounding measurements of cosmic rays in the atmosphere

    Science.gov (United States)

    Kurguzova, A. I.; Charakhchyan, T. N.

    1983-10-01

    The height dependences of the intensity of decay muons and electrons were calculated for the summer and winter seasons in the Murmansk, Moscow, Alma-Ata, and Mirnyi (Antarctica) regions. It is shown that the seasonal variations are practically the same for all measurement points at heights above 300 g/cu cm (about 5 percent for muons and about 1 percent for electrons). At heights below 200 g/cu cm these variations are significantly higher at Mirnyi than at the other points.

  3. Modification of spacecraft charging and the near-plasma environment caused by the interaction of an artificial electron beam with the earth's upper atmosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P. M.; Gilchrist, B.E.

    1991-01-01

    V, it is shown that secondary electrons supply a significant contribution to the return current to the spacecraft and thereby reduce the spacecraft potential. Our numerical results are in good agreement with observations from the CHARGE-2 sounding rocket experiment.A more detailed study of the BAI as it relates...

  4. Dynamics of Massive Atmospheres

    Science.gov (United States)

    Chemke, Rei; Kaspi, Yohai

    2017-10-01

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  5. Atmospheric Infancy

    DEFF Research Database (Denmark)

    Roald, Tone; Pedersen, Ida Egmose; Levin, Kasper

    2017-01-01

    In this article we establish intersubjective meaning-making in infancy as atmospheric. Through qualitative descriptions of five mother–infant dyads in a video-recorded, experimental setting when the infant is 4, 7, 10, and 13 months, we discovered atmospheric appearances with a developmental...... pattern of atmospheric variations. These appearances, we argue, are contextual and intersubjective monologues. The monologues are similar to what Daniel Stern describes with his concept of “vitality affects,” but they arise as a unified force that envelops the mother and child. As such, we present a new...

  6. Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells.

    Science.gov (United States)

    Pathak, Sandeep; Sepe, Alessandro; Sadhanala, Aditya; Deschler, Felix; Haghighirad, Amir; Sakai, Nobuya; Goedel, Karl C; Stranks, Samuel D; Noel, Nakita; Price, Michael; Hüttner, Sven; Hawkins, Nicholas A; Friend, Richard H; Steiner, Ullrich; Snaith, Henry J

    2015-03-24

    Recently, solution-processable organic-inorganic metal halide perovskites have come to the fore as a result of their high power-conversion efficiencies (PCE) in photovoltaics, exceeding 17%. To attain reproducibility in the performance, one of the critical factors is the processing conditions of the perovskite film, which directly influences the photophysical properties and hence the device performance. Here we study the effect of annealing parameters on the crystal structure of the perovskite films and correlate these changes with its photophysical properties. We find that the crystal formation is kinetically driven by the annealing atmosphere, time and temperature. Annealing in air produces an improved crystallinity and large grain domains as compared to nitrogen. Lower photoluminescence quantum efficiency (PLQE) and shorter photoluminescence (PL) lifetimes are observed for nitrogen annealed perovskite films as compared to the air-annealed counterparts. We note that the limiting nonradiative pathways (i.e., maximizing PLQE) is important for obtaining the highest device efficiency. This indicates a critical impact of the atmosphere upon crystallization and the ultimate device performance.

  7. Intensifying the Atmospheric

    DEFF Research Database (Denmark)

    Liebst, Lasse Suonperä

    2012-01-01

    The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its under...... sufficiently intense. All things considered, the paper should be read as a sociological contribution to theoretically reconstruct the concept of urban atmospheres in the light of spatial morphology.......The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its...

  8. Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atmospheres

    CERN Document Server

    González-Díaz, Diego; Borges, F.I.G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L.M.P.; Ferrario, P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; Gómez-Cadenas, J.J.; Gutiérrez, R.M.; Hauptman, J.; Hernando Morata, J.A.; Herrera, D.C.; Irastorza, I.G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C.A.B.; Pérez, J.; Pérez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Azevedo, C.; Aznar, F.; Calvet, D.; Castel, J.; Ferrer-Ribas, E.; García, J.A.; Giomataris, I.; Gómez, H.; Iguaz, F.J.; Lagraba, A.; Le Coguie, A.; Mols, J.P.; Şahin, Ö.; Rodríguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomás, A.; Veenhof, R.

    2015-01-01

    We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +-0.13 mm-sigma (longitudinal), 0.8 +-0.15 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent mixture. The TPC, that houses 1.1 kg of gas in its active volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8mm x 8mm x 1.2mm for approximately 10 cm/MeV-long electron tracks. This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the 0bbnu decay in 136Xe, specifically those based ...

  9. Dynamics in Atmospheric Physics

    Science.gov (United States)

    Lindzen, Richard A.

    2005-08-01

    Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.

  10. Atmospheric Change on Pluto

    Science.gov (United States)

    Person, Michael

    2013-10-01

    We propose to use SOFIA with HIPO and FLITECAM (FLIPO) to measure the parameters of Pluto's atmosphere (temperature, pressure, possible particulate haze) by observing a stellar occultation by Pluto on 15 November 2014. Due to its highly elliptical orbit and seasonally variable obliquity, Pluto's atmosphere is predicted to condense onto its surface within the next ~10 years and possibly within the next few years and thus frequent observations are critical. Detection of the occultation central flash will allow measurement of the structure of Pluto's lower atmosphere and atmospheric oblateness. We will use FLIPO to measure the refracted starlight contemporaneously at visible and infrared wavelengths; this approach is needed to differentiate between two competing explanations for the deficiency in the observed light refracted from Pluto's lower atmosphere (strong thermal gradients versus variable particulate extinction). Only an airborne platform such as SOFIA has the flexibility to place a large telescope in the center of the shadow path of this brief event while at the same time nearly eliminating the possibility of missing time-critical observations due to unfortunate weather systems. Occultation predictions will be updated throughout the period preceding the observations with the goal of achieving sufficient prediction accuracy at the event time to place SOFIA directly in the path of Pluto's central flash. This SOFIA observation will be combined with our ongoing ground-based observing program whose goal is to measure the temporal variability of Pluto's atmosphere in response to its changing seasonal obliquity (and resulting ice migration) and recession from the sun. For the NASA New Horizons mission to Pluto and the Kuiper Belt, this Pluto occultation event represents the last chance, prior to the spacecraft closest approach to the Pluto/Charon system (July 2015), to provide input to the mission for encounter planning, as well as context and supporting atmospheric

  11. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  12. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    Nurses working in the Neuro-Intensive Care Unit at Aarhus University Hospital lack the tools to prepare children for the alarming atmosphere they will enter when visiting a hospitalised relative. The complex soundscape dominated by alarms and sounds from equipment is mentioned as the main stressor...

  13. Atmospheric humidity

    Science.gov (United States)

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  14. Computation of the free energy due to electron density fluctuation of a solute in solution: a QM/MM method with perturbation approach combined with a theory of solutions.

    Science.gov (United States)

    Suzuoka, Daiki; Takahashi, Hideaki; Morita, Akihiro

    2014-04-07

    We developed a perturbation approach to compute solvation free energy Δμ within the framework of QM (quantum mechanical)/MM (molecular mechanical) method combined with a theory of energy representation (QM/MM-ER). The energy shift η of the whole system due to the electronic polarization of the solute is evaluated using the second-order perturbation theory (PT2), where the electric field formed by surrounding solvent molecules is treated as the perturbation to the electronic Hamiltonian of the isolated solute. The point of our approach is that the energy shift η, thus obtained, is to be adopted for a novel energy coordinate of the distribution functions which serve as fundamental variables in the free energy functional developed in our previous work. The most time-consuming part in the QM/MM-ER simulation can be, thus, avoided without serious loss of accuracy. For our benchmark set of molecules, it is demonstrated that the PT2 approach coupled with QM/MM-ER gives hydration free energies in excellent agreements with those given by the conventional method utilizing the Kohn-Sham SCF procedure except for a few molecules in the benchmark set. A variant of the approach is also proposed to deal with such difficulties associated with the problematic systems. The present approach is also advantageous to parallel implementations. We examined the parallel efficiency of our PT2 code on multi-core processors and found that the speedup increases almost linearly with respect to the number of cores. Thus, it was demonstrated that QM/MM-ER coupled with PT2 deserves practical applications to systems of interest.

  15. Chemical reaction due to stronger Ramachandran interaction

    Indian Academy of Sciences (India)

    gmail.com. MS received 1 October 2013; ... Apparently, collisions among the reactant atoms can overcome this electron-electron ... Therefore, its existence is not due to some interpretational issues arising exclusively from the crude Drude model.

  16. The ancient oxygen exosphere of Mars - Implications for atmosphere evolution

    Science.gov (United States)

    Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.

    1993-01-01

    The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.

  17. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2016-01-01

    A disjunction between the material and the immaterial has been at the heart of the architectural debate for decades. In this dialectic tension, the notion of atmosphere which increasingly claims attention in architectural discourse seems to be parallactic, leading to the re-evaluation of perceptual...... experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... and complex interferences revealed through our perception; ‘the atmospheric’ is explored as a spatial and affective quality as well as a sensory background, and materiality as a powerful and almost magical agency in shaping of atmosphere. Challenging existing dichotomies and unraveling intrinsic...

  18. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  19. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    Science.gov (United States)

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  20. Measurement of the atmospheric νe flux in IceCube.

    Science.gov (United States)

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de Vries-Uiterweerd, G; de With, M; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Góra, D; Grant, D; Groß, A; Gurtner, M; Ha, C; Haj Ismail, A; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2013-04-12

    We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low-energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496±66(stat)±88(syst) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is consistent with models of atmospheric neutrinos in this energy range. This constitutes the first observation of electron neutrinos and neutral current interactions in a very large volume neutrino telescope optimized for the TeV energy range.

  1. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  2. Localization of electrons due to orbitally ordered bi-stripes in the bilayer manganite La(2-2x)Sr(1+2x)Mn2O7 (x ~ 0.59).

    Science.gov (United States)

    Sun, Z; Wang, Q; Fedorov, A V; Zheng, H; Mitchell, J F; Dessau, D S

    2011-07-19

    Electronic phases with stripe patterns have been intensively investigated for their vital roles in unique properties of correlated electronic materials. How these real-space patterns affect the conductivity and other properties of materials (which are usually described in momentum space) is one of the major challenges of modern condensed matter physics. By studying the electronic structure of La(2-2x)Sr(1+2x)Mn(2)O(7) (x ∼ 0.59) and in combination with earlier scattering measurements, we demonstrate the variation of electronic properties accompanying the melting of so-called bi-stripes in this material. The static bi-stripes can strongly localize the electrons in the insulating phase above T(c) ∼ 160 K, while the fraction of mobile electrons grows, coexisting with a significant portion of localized electrons when the static bi-stripes melt below T(c). The presence of localized electrons below T(c) suggests that the melting bi-stripes exist as a disordered or fluctuating counterpart. From static to melting, the bi-stripes act as an atomic-scale electronic valve, leading to a "colossal" metal-insulator transition in this material.

  3. Electron excitation of a Jovian Aurora

    Science.gov (United States)

    Heaps, M. G.; Bass, J. N.; Green, A. E. S.

    1973-01-01

    Because Jupiter possesses a magnetic field, auroral activity is very likely. The auroral emissions due to electron precipitation are estimated for a model atmosphere with and without helium. The incident primary electrons, which are characterized by representative spectra, are degraded in energy by applying the continuous slow down approximation. All secondaries, tertiaries, and higher generation electrons are assumed to be absorbed locally. A compilation of excitation, dissociation, and ionization cross section data for H, H2, and He are used to model all aspects of the energy deposition process. Volume emission rates are calculated from the total direct excitation rates, and appropriate corrections for cascading are applied. Helium emissions are relatively small because the majority of electrons are absorbed above the region of maximum He concentration.

  4. Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    Science.gov (United States)

    Vincent, R. A. (Editor)

    1984-01-01

    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.

  5. Comparative planetary nitrogen atmospheres: Density and thermal structures of Pluto and Triton

    Science.gov (United States)

    Strobel, Darrell F.; Zhu, Xun

    2017-07-01

    Both atmospheres of Pluto and Neptune's largest satellite Triton have cold surfaces with surface gravitational accelerations and atmospheric surface pressures of comparable magnitude. To study their atmospheres we have updated Zhu et al. (2014) model for Pluto's atmosphere by adopting Voigt line profiles in the radiation module with the latest spectral database and extended the model to Triton's atmosphere by including additional parameterized heating due to the magnetospheric electron transport and energy deposition. The CH4 mixing ratio profiles play central roles in differentiating the atmospheres of Pluto and Triton. On Pluto the surface CH4 mole fraction is in the range of 0.3-0.8%, sufficiently high to ensure that it is well mixed in the lower atmosphere and not subject to photochemical destruction. Near the exobase CH4 attains comparable density to N2 due to gravitational diffusive separation and escapes at 500 times the N2 rate (= 1 × 1023 N2 s-1). In Triton's atmosphere, the surface CH4 mole fraction is on the order of 0.015%, sufficiently low to ensure that it is photochemically destroyed irreversibly in the lower atmosphere and that N2 remains the major species, even at the exobase. With solar EUV power only, Triton's upper thermosphere is too cold and magnetospheric heating, approximately comparable to the solar EUV power, is needed to bring the N2 tangential column number density in the 500-800 km range up to values derived from the Voyager 2 UVS observations (Broadfoot et al., 1989). Due to their cold exobase temperatures relative to the gravitational potential energy wells that N2 resides in, atmospheric escape from Triton and Pluto is not dominated by N2 Jeans escape but by CH4 from Pluto and H, C, N and H2 from Triton. The atmospheric thermal structure near the exobase is sensitive to the atmospheric escape rate only when it is significantly greater than 2 × 1027 amu s-1, above which enhanced Jeans escape and larger radial velocity adiabatically

  6. Rectenna related atmospheric effects

    Science.gov (United States)

    Lee, J.

    1980-01-01

    Possible meteorological effects arising from the existence and operations of a solar power satellite (SPS) system rectenna are examined. Analysis and model simulations in some chosen site situations and meteorological conditions indicate that the meteorological effects of the construction and operation of a rectenna are small, particularly outside the boundary of the structure. From weather and climate points of view, installation of an SPS rectenna seems likely to have effects comparable with those due to other nonindustrial land use changes covering the same area. The absorption and scattering of microwave radiation in the troposphere would have negligible atmospheric effects.

  7. Effect of Atmospheric Pressure Plasma Modification on Polyimide and Adhesive Joining with Titanium

    Science.gov (United States)

    Akram, M.; Jansen, K. M. B.; Ernst, L. J.; Bhowmik, S.; Ajeesh, G.; Ahmed, S.; Chakraborty, D.

    2015-10-01

    This investigation highlights the effect of surface modification on polyimide by atmospheric pressure plasma treatment with different exposure time. Surface modification of polymer by plasma treatment essentially creates physical and chemical changes such as cross-linking and formation of free radicals. It also forms oxygen functionalization in the form of polar groups on polymer surface, hence improving the wetting and adhesion properties. It is observed that surface energy of the polymer increases with increasing exposure time of atmospheric pressure plasma. However, prolonged exposure time of plasma results in deterioration of the surface layer of polyimide resulting in degradation and embrittlement. Scanning electron microscopy and atomic force microscopy analysis reveal that there is a considerable morphological change on the polymer surface due to atmospheric pressure plasma treatment. X-ray photo electron spectroscopy analysis reveals that the oxygen functionalities of polymer surface increases significantly when polyimide is exposed to atmospheric pressure plasma. Untreated and atmospheric pressure plasma-treated polyimide sheet are adhesive bonded by employing polyimide adhesive as well as with titanium substrate. Due to surface modification of polyimide, it is observed that there is a significant increase in lap shear tensile strength, and therefore, this technology is highly acceptable for aviation and space applications.

  8. Evolution of the atmosphere.

    Science.gov (United States)

    Nunn, J F

    1998-01-01

    Planetary atmospheres depend fundamentally upon their geochemical inventory, temperature and the ability of their gravitational field to retain gases. In the case of Earth and other inner planets, early outgassing released mainly carbon dioxide and water vapour. The secondary veneer of comets and meteorites added further volatiles. Photodissociation caused secondary changes, including the production of traces of oxygen from water. Earth's gravity cannot retain light gases, including hydrogen. but retains oxygen. Water vapour generally does not pass the cold trap at the stratopause. In the archaean, early evolution of life, probably in hydrothermal vents, and the subsequent development of photosynthesis in surface waters, produced oxygen, at 3500 Ma or even earlier, becoming a significant component of the atmosphere from about 2000 Ma. Thereafter banded iron formations became rare, and iron was deposited in oxidized red beds. Atmospheric levels of carbon dioxide and oxygen have varied during the Phanerozoic: major changes may have caused extinctions. particularly the Permian/Triassic. The declining greenhouse effect due to the long-term decrease in carbon dioxide has largely offset increasing solar luminosity, and changes in carbon dioxide levels relate strongly to cycles of glaciation.

  9. Greening Electronics

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Søes Kokborg, Morten; Thomsen, Marianne

    Based on a literature review with focus on hazardous substances in waste electric and electronic equipment (WEEE) and numbers from a Danish treatment facility a flow analysis for specific substances has been conducted. Further, the accessible knowledge on human and environmental effects due to po...

  10. Greening Electronics

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Søes Kokborg, Morten; Thomsen, Marianne

    Based on a literature review with focus on hazardous substances in waste electric and electronic equipment (WEEE) and numbers from a Danish treatment facility a flow analysis for specific substances has been conducted. Further, the accessible knowledge on human and environmental effects due...

  11. History and modern applications of nano-composite materials carrying GA/cm2 current density due to a Bose-Einstein Condensate at room temperature produced by Focused Electron Beam Induced Processing for many extraordinary novel technical applications

    Science.gov (United States)

    Koops, Hans W. P.

    2015-12-01

    The discovery of Focused Electron Beam Induced Processing and early applications of this technology led to the possible use of a novel nanogranular material “Koops-GranMat®” using Pt/C and Au/C material. which carries at room temperature a current density > 50 times the current density which high TC superconductors can carry. The explanation for the characteristics of this novel material is given. This fact allows producing novel products for many applications using Dual Beam system having a gas supply and X.Y.T stream data programming and not using GDSII layout pattern control software. Novel products are possible for energy transportation. -distribution.-switching, photon-detection above 65 meV energy for very efficient energy harvesting, for bright field emission electron sources used for vacuum electronic devices like amplifiers for HF electronics, micro-tubes, 30 GHz to 6 THz switching amplifiers with signal to noise ratio >10(!), THz power sources up to 1 Watt, in combination with miniaturized vacuum pumps, vacuum gauges, IR to THz detectors, EUV- and X-Ray sources. Since focusing electron beam induced deposition works also at low energy, selfcloning multibeam-production machines for field emitter lamps, displays, multi-beam - lithography, - imaging, and - inspection, energy harvesting, and power distribution with switches controlling field-emitter arrays for KA of currents but with < 100 V switching voltage are possible. Finally the replacement of HTC superconductors and its applications by the Koops-GranMat® having Koops-Pairs at room temperature will allow the investigation devices similar to Josephson Junctions and its applications now called QUIDART (Quantum interference devices at Room Temperature). All these possibilities will support a revolution in the optical, electric, power, and electronic technology.

  12. Haze in Pluto's atmosphere

    Science.gov (United States)

    Cheng, A. F.; Summers, M. E.; Gladstone, G. R.; Strobel, D. F.; Young, L. A.; Lavvas, P.; Kammer, J. A.; Lisse, C. M.; Parker, A. H.; Young, E. F.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.

    2017-07-01

    Haze in Pluto's atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Pluto's surface at solar phase angles from ∼20° to ∼169°. The haze is structured with about ∼20 layers, and the extinction due to haze is greater in the northern hemisphere than at equatorial or southern latitudes. However, more haze layers are discerned at equatorial latitudes. A search for temporal variations found no evidence for motions of haze layers (temporal changes in layer altitudes) on time scales of 2 to 5 hours, but did find evidence of changes in haze scale height above 100 km altitude. An ultraviolet extinction attributable to the atmospheric haze was also detected by the ALICE ultraviolet spectrograph on New Horizons. The haze particles are strongly forward-scattering in the visible, and a microphysical model of haze is presented which reproduces the visible phase function just above the surface with 0.5 μm spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and account for UV extinction. A model of haze layer generation by orographic excitation of gravity waves is presented. This model accounts for the observed layer thickness and distribution with altitude. Haze particles settle out of the atmosphere and onto Pluto's surface, at a rate sufficient to alter surface optical properties on seasonal time scales. Pluto's regional scale albedo contrasts may be preserved in the face of the haze deposition by atmospheric collapse.

  13. Microwave diagnostics of atmospheric plasmas

    Science.gov (United States)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  14. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event

    Science.gov (United States)

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  15. Studies of suprathermal emission due to cyclotron-electronic heating of the tokamak TCV plasma; Etudes du rayonnement suprathermique emis lors du chauffage cyclotronique electronique du plasma du tokamak TCV

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P

    2002-07-01

    Photo sensitization of wide band gap semiconductors is used in a wide range of application like silver halide photography and xerography. The development of a new type of solar cells, based on the sensitization of meso porous metal oxide films by panchromatic dyes, has triggered a lot of fundamental research on electron transfer dynamics. Upon excitation, the sensitizer transfers an electron in the conduction band of the semiconductor. Recombination of the charge separated state is prevented by the fast regeneration of the dye by an electron donor present in solution. Until recently, most of the work in this area has been focused on the competition between the recombination and the regeneration processes, which take place in the nanosecond to millisecond regime. With the development of solid-state femtosecond laser, the measurement of the dynamics of the first electron transfer step occurring in the solar cell has become possible . Electron injection from ruthenium(Il) poly pyridyl complexes into titanium dioxide has been found to occur with a poly exponential rate, with time constants ranging from < 100 fs up to > 10 ps. In spite of the lately acquired capacity to measure the dynamics of these reactions, the physical meaning of this poly exponential kinetics and the factors that can influence this process are still poorly understood. In this work, the development of a new femtosecond pump-probe spectrometer, intended to monitor the ultrafast dynamics of electron injection, is presented. The study of this process requires an excellent temporal resolution and a large wavelength tunability to be able to excite a great variety of dyes and to probe the different products of the reaction. These specifications were met using the latest progress made in optical parametric amplification, which allowed the construction of a versatile experimental set-up. The interfacing by computer of the different devices used during the experiments increase the ease of use of the set

  16. Communications Blackout Prediction for Atmospheric Entry of Mars Science Laboratory

    Science.gov (United States)

    Morabito, David; Edquist, Karl

    2005-01-01

    When a supersonic spacecraft enters a planetary atmosphere with v >> v(sub sound), a shock layer forms in the front of the body. An ionized sheath of plasma develops around the spacecraft, which results from the ionization of the atmospheric constituents as they are compressed and heated by the shock or heated within the boundary layer next to the surface. When the electron density surrounding the spacecraft becomes sufficiently high, communications can be disrupted (attenuation/blackout). During Mars Science Laboratory's (MSL's) atmospheric entry there will likely be a communication outage due to charged particles on the order of 60 to 100 seconds using a UHF link frequency looking out the shoulders of the wake region to orbiting relay asset. A UHF link looking out the base region would experience a shorter duration blackout, about 35 seconds for the stressed trajectory and possibly no blackout for the nominal trajectory. There is very little likelihood of a communications outage using X-band (however, X-band is not currently planned to be used during peak electron density phase of EDL).

  17. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  18. The Antimalarial Activities of Methylene Blue and the 1,4-Naphthoquinone 3-[4-(Trifluoromethyl)Benzyl]-Menadione Are Not Due to Inhibition of the Mitochondrial Electron Transport Chain

    Science.gov (United States)

    Ehrhardt, Katharina; Ke, Hangjun; Vaidya, Akhil B.; Lanzer, Michael

    2013-01-01

    Methylene blue and a series of recently developed 1,4-naphthoquinones, including 3-[4-(substituted)benzyl]-menadiones, are potent antimalarial agents in vitro and in vivo. The activity of these structurally diverse compounds against the human malaria parasite Plasmodium falciparum might involve their peculiar redox properties. According to the current theory, redox-active methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione are “subversive substrates.” These agents are thought to shuttle electrons from reduced flavoproteins to acceptors such as hemoglobin-associated or free Fe(III)-protoporphyrin IX. The reduction of Fe(III)-protoporphyrin IX could subsequently prevent essential hemoglobin digestion and heme detoxification in the parasite. Alternatively, owing to their structures and redox properties, methylene blue and 1,4-naphthoquinones might also affect the mitochondrial electron transport chain. Here, we tested the latter hypothesis using an established system of transgenic P. falciparum cell lines and the antimalarial agents atovaquone and chloroquine as controls. In contrast to atovaquone, methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione do not inhibit the mitochondrial electron transport chain. A systematic comparison of the morphologies of drug-treated parasites furthermore suggests that the three drugs do not share a mechanism of action. Our findings support the idea that methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione exert their antimalarial activity as redox-active subversive substrates. PMID:23439633

  19. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  20. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant de...

  1. Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

    Science.gov (United States)

    Oza, A. V.; Leblanc, F.; Berthelier, J. J.; Becker, J.; Coulomb, R.; Gilbert, P.; Hong, N. T.; Lee, S.; Vettier, L.

    2015-12-01

    The characterization of planetary exospheres today, relies on the development of a highly efficient ionization source, due to the scant neutral molecules (n < 108 cm -3) present in diffuse planetary coronae. These tenuous atmospheres provide insight on to physical processes known to occur such as: space weathering, magneto-atmosphere interactions, as well as atmospheric escape mechanisms, all of which are being heavily investigated via current 3D Monte Carlo simulations (Turc et al. 2014, Leblanc et al. 2016 in prep) at LATMOS. Validation of these studies will rely on in-situ observations in the coming decades. Neutral detection strongly depends on electron-impact ionization which via conventional cathode-sources, such as thermal filaments (heated up to 2000 K), may only produce the target ionization essential for energy-measurements with large power consumption. Carbon nanotubes (CNTs) however are ideal low-power, cold cathodes, when subject to moderate electric fields (E ~ 1 MV / m). We present our current device, a small CNT chip, of emission area 15 mm2, emitting electrons that pass through an anode grid and subsequent electrostatic analyzer. The device currently extracts hundreds of µAmperes with applied external voltages ~ -150 Volts, approaching minimum power consumption < 0.1 Watts. The 3D modeling of field effect electrons ionizing a standard influx of neutrals is shown, using the multiphysics suite COMSOL. To better anticipate the species an ideal in-situ spacecraft equipped with such an ionization source would observe, we discuss Europa's exosphere. Europa's environment is largely shaped by the Jovian plasma sputtering the icy regolith with heavy ions and electrons (keV < E < MeV), producing predominately molecular oxygen (Johnson et al. 2002).

  2. Atmosphere: Power, Critique, Politics

    DEFF Research Database (Denmark)

    Albertsen, Niels

    2016-01-01

    This paper hans three interrelated parts. First, atmosphere is approached through the concept of power. Atmospheres 'grip' us directly or mediate power indirectly by manipulating moods and evoking emotions. How does atmosphere relate to different conceptions of power? Second, atmospheric powers may...

  3. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    user

    This research was conducted to study temperature fluctuation inside the inert atmosphere silos loaded with wheat, compare ... gases most especially carbondioxide (CO2) is due to safety of ... even to agriculture and resistance of pests to some.

  4. Robust entangled qutrit states in atmospheric turbulence

    CSIR Research Space (South Africa)

    Brunner, T

    2013-06-01

    Full Text Available The entangled quantum state of a photon pair propagating through atmospheric turbulence suffers decay of entanglement due to the scintillation it experiences. Here we investigate the robustness against this decay for different qutrit states. We use...

  5. The ratio between effective doses due to external exposure to electrons for tomographic and mathematical models; Razoes entre doses efetivas devido a exposicao externa de eletrons para modelos tomograficos e matematicos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fernando R.A. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil)]|[Faculdade Boa Viagem (FBV), Recife, PE (Brazil)]. E-mail: falima@cnen.gov.br; Kramer, Richard; Khoury, Helen J. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail: rkramer@uol.com.br; hjkhoury@globo.com; Vieira, Jose W. [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Recife, PE (Brazil)]. E-mail: jwvieira@br.inter.net; Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: hyotiyaz@ipen.br; Loureiro, Eduardo C.M. [Universidade de Pernambuco, Recife, PE (Brazil). Escola Politecnica (POLI/UPE)]. E-mail: eduloureiro@uol.com.br

    2005-07-01

    The development of new, sophisticated Monte Carlo codes, and of tomographic or voxel based human phantoms motivated the International Commission on Radiological Protection (ICRP) to call for a revision of traditional exposure models, which have been used in the past to calculate organ and tissue as well as effective dose coefficients for stylized MIRD5- type phantoms. This paper reports about calculations made with the recently developed tomographic MAX (Male Adult voXel) and FAX (Female Adult voXel) phantoms, as well as with the gender-specific MIRD5-type phantoms ADAM and EVA, coupled to the EGS4 and to the MCNP4C Monte Carlo code, for external whole-body irradiation with electrons. Effective doses for the tomographic and for the stylized exposure models will be compared separately as function of the replacement of the Monte Carlo code, of human tissue compositions, and of the stylized by the tomographic anatomy. The results indicate that for external exposures to electrons the introduction of voxel-based exposure models causes changes of the effective dose between +40% and - 60% depending on the energies and geometries considered compared to corresponding data of the MIRD5-type phantoms. (author)

  6. Dynamics of Atmospheric Waves In a Hazy Atmosphere: Implications for Titan and Pluto

    Science.gov (United States)

    Matcheva, Katia

    2017-10-01

    We present a dynamical model of atmospheric gravity waves propagating in a stable atmosphere in the presence of small-size particulates. We consider a two-way interaction: (i) the effect of atmospheric mass-loading on the propagation of the waves and (ii) the dynamical forcing of the haze particle motion in the presence of variable atmospheric winds. The model illustrates the effect on the vertical distribution of haze particles due to wave-induces vertical winds and wind gradients. The results are presented in the context of Titan’s atmosphere and Cassini observations.

  7. Ambipolar Electric Field, Photoelectrons, and Their Role in Atmospheric Escape From Hot Jupiters

    Science.gov (United States)

    Cohen, O.; Glocer, A.

    2012-01-01

    Atmospheric mass loss from Hot Jupiters can be large due to the close proximity of these planets to their host star and the strong radiation the planetary atmosphere receives. On Earth, a major contribution to the acceleration of atmospheric ions comes from the vertical separation of ions and electrons, and the generation of the ambipolar electric field. This process, known as the "polar wind," is responsible for the transport of ionospheric constituents to Earth's magnetosphere, where they are well observed. The polar wind can also be enhanced by a relatively small fraction of super-thermal electrons (photoelectrons) generated by photoionization.We formulate a simplified calculation of the effect of the ambipolar electric field and the photoelectrons on the ion scale height in a generalized manner. We find that the ion scale height can be increased by a factor of 2-15 due to the polar wind effects. We also estimate a lower limit of an order of magnitude increase of the ion density and the atmospheric mass-loss rate when polar wind effects are included.

  8. MOBILE ATMOSPHERIC SENSING

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-11-01

    Full Text Available Atmospheric quality dramatically deteriorates over the past decades around themetropolitan areas of China. Due to the coal combustion, industrial air pollution, vehicle waste emission, etc., the public health suffers from exposure to such air pollution as fine particles of particulates, sulfur and carbon dioxide, etc. Many meteorological stations have been built to monitor the condition of air quality over the city. However, they are installed at fixed sites and cover quite a small region. The monitoring results of these stations usually do NOT coincide with the public perception of the air quality. This paper is motivated to mimic the human breathing along the citys transportation network by the mobile sensing vehicle of atmospheric quality. To obtain the quantitative perception of air quality, the Environmental Monitoring Vehicle of Wuhan University (EMV-WHU has been developed to automatically collect the data of air pollutants. The EMV-WHU is equipped with GPS/IMU, sensors of PM2.5, carbon dioxide, anemometer, temperature, humidity, noise, and illumination, as well as the visual and infrared camera. All the devices and sensors are well collaborated with the customized synchronization mechanism. Each sort of atmospheric data is accompanied with the uniform spatial and temporal label of high precision. Different spatial and data-mining techniques, such as spatial correlation analysis, logistic regression, spatial clustering, are employed to provide the periodic report of the roadside air quality. With the EMV-WHU, constant collection of the atmospheric data along the Luoyu Road of Wuhan city has been conducted at the daily peak and non-peak time for half a year. Experimental results demonstrated that the EMV is very efficient and accurate for the perception of air quality. Comparative findings with the meteorological stations also show the intelligence of big data analysis and mining of all sorts of EMV measurement of air quality. It is

  9. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  10. NOAA Electronic Navigational Charts (ENC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Coast Survey (OCS) has been involved in the development of a NOAA Electronic Navigational Chart (NOAA ENC) suite to support the marine transportation...

  11. Vessel Electronic Reporting System (VERS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The VERS system is composed of a database and other related applications which facilitate the reporting of electronically collected research data via Fisheries...

  12. Atmosphere-Ionosphere Coupling via Atmospheric Waves

    Science.gov (United States)

    Koucka Knizova, Petra; Lastovicka, Jan

    2017-04-01

    The Earth atmosphere and ionosphere is complicated and highly variable system which displays oscillations on wide range scales. The most important factor influencing the ionosphere is certainly the solar and geomagnetic activity. However, the processes even in distant regions in the neutral atmosphere cannot be simply neglected. This contribution reviews aspects of ionospheric variability originating in the lower laying atmosphere. It focuses especially on the generation and propagation of the atmospheric waves from their source region up to the heights of the ionosphere. We will show the role of infrasound, gravity waves, tides and planetary waves in the atmosphere-ionosphere coupling. Particularly gravity waves are of high importance for the ionosphere. Recent theoretical and experimental results will briefly be reviewed.

  13. Impact of the Lower Atmosphere on the Ionosphere Response to a Geomagnetic Superstorm

    Science.gov (United States)

    Pedatella, N. M.

    2016-12-01

    Numerical simulations in the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) are performed to elucidate the impacts of lower atmosphere forcing on the ionosphere response to a geomagnetic superstorm. In particular, how the ionosphere variability due to the October 2003 Halloween storm would be different if it occurred in January coincident with a major sudden stratosphere warming (SSW) event is investigated. The TIE-GCM simulations reveal that the E x B vertical drift velocity and total electron content (TEC) respond differently to the geomagnetic disturbance when the lower atmosphere forcing is representative of SSW conditions compared to climatological lower atmosphere forcing conditions. Notably, the storm time variations in the E x B vertical drift velocity differ when the effects of the SSW are considered, and this is in part due to effects of the SSW on the equatorial ionosphere being potentially misinterpreted as being of geomagnetic origin. Differences in the TEC response to the geomagnetic storm can be up to 100% ( 30 TECU) of the storm induced TEC change, and the temporal variability of the TEC during the storm recovery phase is considerably different if SSW effects are considered. The results demonstrate that even during periods of extreme geomagnetic forcing it is important to consider the effects of lower atmosphere forcing on the ionosphere variability.

  14. Atmospheric structure from Phoenix atmospheric entry data

    Science.gov (United States)

    Catling, D. C.

    2008-12-01

    The atmospheric structure at the time of landing of NASA's Phoenix probe has been derived from measurements of the aerodynamic drag of the spacecraft during atmospheric entry and descent. The result provides the first atmospheric structure in Mars' polar environment obtained from in situ measurements. Phoenix was equipped with an inertial measurement unit (IMU) that used accelerometers for linear acceleration measurement in three Cartesian axes and ring-laser gyroscopes to measure the three- dimensional orientation of the probe (Taylor et al., 2008). The temperature structure of the atmosphere along the flight path was calculated via a four-step process: (i) integrating forward the IMU data to obtain the time history of the spacecraft velocity vector relative to the atmosphere as a function of altitude; (ii) calculating atmospheric density from drag, with iteration for aerodynamic coefficient dependence on density; (iii) integrating the hydrostatic equation to derive the vertical pressure; and (iv) calculating atmospheric temperature from the equation of state. Initial profile reconstruction shows reasonable agreement with predictions in the middle atmosphere for the given season and time of day (landing occurred at 16h 33min 37sec in local solar time expressed as a 24-hour clock). However, the derived lower atmospheric structure below ~0.1 mbar is generally warmer than predicted. A possible explanation could be a shallower vertical distribution of dust that usually assumed. References: P. A. Taylor, D. C. Catling, M. Daly, C. S. Dickinson, H. O. Gunnlaugsson, A-M. Harri, C. F. Lange, Temperature, pressure and wind instrumentation on the Phoenix meteorological package, J. Geophys. Res., 113, EA0A10, doi:10.1029/2007JE003015, 2008.

  15. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  16. Mirador - Atmospheric Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...

  17. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of

  18. Urticaria due to antihistamines

    National Research Council Canada - National Science Library

    Sánchez Morillas, L; Rojas Pérez-Ezquerra, P; Reaño Martos, M; Sanz, M L; Laguna Martínez, J J

    2011-01-01

    .... We report a patient with urticaria due to ingestion of ebastine and fexofenadine. Skin prick tests, patch tests, and basophil activation tests with the implicated drugs and antihistamines from other families were negative...

  19. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  20. PASCAL - Planetary Atmospheres Spectral Catalog

    Science.gov (United States)

    Rothman, Laurence; Gordon, Iouli

    2010-05-01

    Spectroscopic observation of planetary atmospheres, stellar atmospheres, comets, and the interstellar medium is the most powerful tool for extracting detailed information concerning the properties of these objects. The HITRAN molecular spectroscopic database1 has traditionally served researchers involved with terrestrial atmospheric problems, such as remote-sensing of constituents in the atmosphere, pollution monitoring at the surface, identification of sources seen through the atmosphere, and numerous environmental issues. A new thrust of the HITRAN program is to extend this longstanding database to have capabilities for studying the above-mentioned planetary and astronomical systems. The new extension is called PASCAL (Planetary Atmospheres Spectral Catalog). The methodology and structure are basically identical to the construction of the HITRAN and HITEMP databases. We will acquire and assemble spectroscopic parameters for gases and spectral bands of molecules that are germane to the studies of planetary atmospheres. These parameters include the types of data that have already been considered for transmission and radiance algorithms, such as line position, intensity, broadening coefficients, lower-state energies, and temperature dependence values. Additional parameters beyond what is currently considered for the terrestrial atmosphere will be archived. Examples are collision-broadened halfwidths due to various foreign partners, collision-induced absorption, and temperature dependence factors. New molecules (and their isotopic variants), not currently included in the HITRAN database, will be incorporated. That includes hydrocarbons found on Titan but not archived in HITRAN (such as C3H4, C4H2, C3H8). Other examples include sulfur-bearing molecules such as SO and CS. A further consideration will be spectral bands that arise as opportunities to study exosolar planets. The task involves acquiring the best high-resolution data, both experimental and theoretical

  1. A change in the electro-physical properties of narrow-band CdHgTe solid solutions acted upon by a volume discharge induced by an avalanche electron beam in the air at atmospheric pressure

    Science.gov (United States)

    Voitsekhovskii, A. V.; Grigor'ev, D. V.; Korotaev, A. G.; Kokhanenko, A. P.; Tarasenko, V. F.; Shulepov, M. A.

    2012-03-01

    The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V-1·s-1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.

  2. Electronic detectors for electron microscopy.

    Science.gov (United States)

    Faruqi, A R; Henderson, R

    2007-10-01

    Due to the increasing popularity of electron cryo-microscopy (cryoEM) in the structural analysis of large biological molecules and macro-molecular complexes and the need for simple, rapid and efficient readout, there is a persuasive need for improved detectors. Commercial detectors, based on phosphor/fibre optics-coupled CCDs, provide adequate performance for many applications, including electron diffraction. However, due to intrinsic light scattering within the phosphor, spatial resolution is limited. Careful measurements suggest that CCDs have superior performance at lower resolution while all agree that film is still superior at higher resolution. Consequently, new detectors are needed based on more direct detection, thus avoiding the intermediate light conversion step required for CCDs. Two types of direct detectors are discussed in this review. First, there are detectors based on hybrid technology employing a separate pixellated sensor and readout electronics connected with bump bonds-hybrid pixel detectors (HPDs). Second, there are detectors, which are monolithic in that sensor and readout are all in one plane (monolithic active pixel sensor, MAPS). Our discussion is centred on the main parameters of interest to cryoEM users, viz. detective quantum efficiency (DQE), resolution or modulation transfer function (MTF), robustness against radiation damage, speed of readout, signal-to-noise ratio (SNR) and the number of independent pixels available for a given detector.

  3. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  4. Colliding Electrons - Workhorses of Gaseous Electronics

    Science.gov (United States)

    McConkey, Bill

    2004-09-01

    The need for electron scattering data to explain the various observed phenomena encountered in electric discharges through gases and indeed in plasmas of all types, has provided strong motivation to collision physicists over the years to carry out the appropriate measurements and calculations. The field has been continually stimulated by new discoveries in such diverse areas as planetary atmosphere processes, low and high temperature plasma physics, lasers and radiation chemistry. In addition, electron collisions undergird the efficient operation of a multitude of practical devices and industrial processes. This talk will seek to give a flavor of what has been happening in this field, particularly over the past half-century.

  5. A stable snow-atmosphere coupled mode

    Science.gov (United States)

    Zhao, Liang; Zhu, Yuxiang; Liu, Haiwen; Liu, Zhongfang; Liu, Yanju; Li, Xiuping; Chen, Zhou

    2016-10-01

    Snow is both an important lower boundary forcing of the atmosphere and a response to atmospheric forcing in the extratropics. It is still unclear whether a stable snow-atmosphere coupled mode exists in the extratropics, like the ENSO in the tropics. Using Sliding Correlation analysis over Any Window, the present study quantitatively evaluates the stability of coupling relationships between the major modes of winter snow over the Northern Hemisphere and the winter atmospheric Arctic Oscillation (AO), the Antarctic Oscillation (AAO) and the Siberian High over the period 1872-2010, and discusses their possible relationships for different seasons. Results show that the first mode of the winter snow cover fraction and the winter AO together constitute a stable snow-atmosphere coupled mode, the SNAO. The coupled mode is stronger during recent decades than before. The snow anomaly over Europe is one key factor of the SNAO mode due to the high stability there, and the polar vortex anomaly in the atmosphere is its other key factor. The continuity of signals in the SNAO between autumn and winter is weaker than that between winter and spring. The second winter snow mode is generally stably correlated with the winter AAO and was more stable before the 1970s. The AAO signal with boreal snow has a strong continuity in seasonal transition. Generally, through these coupled modes, snow and atmosphere can interact in the same season or between different seasons: autumn snow can influence the winter atmosphere; the winter atmosphere can influence spring snow.

  6. Contribution of proton and electron precipitation to the observed electron concentration in October-November 2003 and September 2005

    Energy Technology Data Exchange (ETDEWEB)

    Verronen, P.T.; Andersson, M.E.; Kauristie, K.; Palmroth, M. [Finnish Meteorological Institute, Helsinki (Finland). Earth Observation; Kero, A. [Oulu Univ., Sodankylae (Finland). Sodankylae Geophysical Observatory; Enell, C.F. [EISCAT Scientific Association, Kiruna (Sweden); Wissing, J.M. [Osnabrueck Univ. (Germany). Inst. of Environmental Systems Research; Talaat, E.R. [Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.; Sarris, T.E. [Democritus Univ. of Thrace, Xanthi (Greece). Space Research Lab.; Armandillo, E. [European Space Agency, Nordwijk (Netherlands). ESTEC

    2015-01-01

    Understanding the altitude distribution of particle precipitation forcing is vital for the assessment of its atmospheric and climate impacts. However, the proportion of electron and proton forcing around the mesopause region during solar proton events is not always clear due to uncertainties in satellite-based flux observations. Here we use electron concentration observations of the European Incoherent Scatter Scientific Association (EISCAT) incoherent scatter radars located at Tromsoe (69.58 N, 19.23 E) to investigate the contribution of proton and electron precipitation to the changes taking place during two solar proton events. The EISCAT measurements are compared to the results from the SodankylaeIon and Neutral Chemistry Model (SIC). The proton ionization rates are calculated by two different methods - a simple energy deposition calculation and the Atmospheric Ionization Model Osnabrueck (AIMOS v1.2), the latter providing also the electron ionization rates. Our results show that in general the combination of AIMOS and SIC is able to reproduce the observed electron concentration within 50% when both electron and proton forcing is included. Electron contribution is dominant above 90 km, and can contribute significantly also in the upper mesosphere especially during low or moderate proton forcing. In the case of strong proton forcing, the AIMOS electron ionization rates seem to suffer from proton contamination of satellite-based flux data. This leads to overestimation of modelled electron concentrations by up to 90% between 75-90 km and up to 100-150% at 70-75 km. Above 90 km, the model bias varies significantly between the events. Although we cannot completely rule out EISCAT data issues, the difference is most likely a result of the spatio-temporal fine structure of electron precipitation during individual events that cannot be fully captured by sparse in situ flux (point) measurements, nor by the statistical AIMOS model which is based upon these observations

  7. Possible atmospheric research with Aristoteles

    Science.gov (United States)

    Barlier, Francois

    1991-12-01

    Use of the Aristoteles mission in measuring atmospheric parameters is discussed. The total density of the thermosphere, the temperature of the stratosphere and the total electron count of the ionosphere are identified as three areas in which the Aristoteles mission could be of great use in carrying out research. Combining the accelerometer measurements yields the gravity tensor as well as the nongravitational acceleration acting upon the satellite. Ways in which the temperature of the stratosphere around the Earth, and the annual, seasonal and secular variations it goes through could be measured are discussed.

  8. Would be the Atmosphere Chaotic?

    Directory of Open Access Journals (Sweden)

    Isimar de Azevedo Santos

    2013-07-01

    Full Text Available The atmosphere has often been considered “chaotic” when in fact the “chaos” is a manifestation of the models that simulate it, which do not include all the physical mechanisms that exist within it. A weather prediction cannot be perfectly verified after a few days of integration due to the inherent nonlinearity of the equations of the hydrodynamic models. The innovative ideas of Lorenz led to the use of the ensemble forecast, with clear improvements in the quality of the numerical weather prediction. The present study addresses the statement that “even with perfect models and perfect observations, the ‘chaotic’ nature of the atmosphere would impose a finite limit of about two weeks to the predictability of the weather” as the atmosphere is not necessarily “chaotic”, but the models used in the simulation of atmospheric processes are. We conclude, therefore, that potential exists for developments to increase the horizon of numerical weather prediction, starting with better models and observations.

  9. C/O atmosphere measurements

    Science.gov (United States)

    Kopytova, Taisiya

    2017-06-01

    The atmospheric carbon-to-oxygen ratio is believed to be a key to formation scenario of exoplanets. Due to different condensation temperatures for water, carbon oxide, and carbon dioxide, their "icelines" are situated at different parts of the protoplanetary disk resulting in different C/O ratio values through the disk. Therefore, by measuring a C/O ratio in the atmosphere of a giant exoplanet, we should be able to understand the planet's formation.I will give a brief overview of recent theoretical studies that predict how various mechanisms during planet formation (e.g. migration, pebble drift) may affect the feasability of using a C/O ratio to understand formation of exoplanets.In the second part of my talk, I will discuss various methods of measuring abundances in atmospheres. I will also talk about how to take into account systematic effects in observations and atmospheric models and if there is a possibility to determine and apply "C/O ratio indices".

  10. Atmospheric Infrasound during a Large Wildfire

    Science.gov (United States)

    Vance, Alexis; Elbing, Brian

    2017-11-01

    Numerous natural and manmade sources generate infrasound, including tornado producing storms, human heart, hurricanes, and volcanoes. Infrasound is currently being studied as part of Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP), which is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. To support this effort a fixed infrasonic microphone located in Stillwater, Oklahoma has been monitoring atmospheric emissions since September of 2016. While severe storm systems is the primary focus of this work, the system also captures a wide range of infrasonic sources from distances in excess of 300 miles due to an acoustic ceiling and weak atmospheric absorption. The current presentation will focus on atmospheric infrasound observations during a large wildfire on the Kansas-Oklahoma border that occurred between March 6-22, 2017. This work was supported by NSF Grant 1539070.

  11. Overview of the Martian nightside suprathermal electron depletions

    Science.gov (United States)

    Steckiewicz, Morgane; Garnier, Philippe; André, Nicolas; Mitchell, David; Andersson, Laila; Penou, Emmanuel; Beth, Arnaud; Fedorov, Andrei; Sauvaud, Jean-André; Mazelle, Christian; Lillis, Robert; Brain, David; Espley, Jared; McFadden, James; Halekas, Jasper; Luhmann, Janet; Soobiah, Yasir; Jakosky, Bruce

    2017-04-01

    Nightside suprathermal electron depletions have been observed at Mars by three spacecraft to date: Mars Global Surveyor (MGS), Mars EXpress (MEX) and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The global coverage of Mars by MEX and MGS at high altitudes (above approximately 250 km) revealed that these structures were mostly observed above strong crustal magnetic field sources which exclude the electrons coming from the dayside or from the tail. The MAVEN orbit now offers the possibility to observe this phenomenon at low altitudes, down to 125 km. A transition region near 170 km has been detected separating the collisional region where electron depletions are mainly due to electron absorption by atmospheric CO2 and the collisionless region where they are mainly due to closed crustal magnetic field loops. MAVEN is now in its third year of data recording and has covered a large range of latitudes, local times and solar zenith angles at low altitudes (Mars both in the Northern and Southern hemispheres. A modification in the CO2 density, gravity waves, or the presence of current sheets are potential drivers for that phenomenon.

  12. The Effects of a Concept Map-Based Information Display in an Electronic Portfolio System on Information Processing and Retention in a Fifth-Grade Science Class Covering the Earth's Atmosphere

    Science.gov (United States)

    Kim, Paul; Olaciregui, Claudia

    2008-01-01

    An electronic portfolio system, designed to serve as a resource-based learning space, was tested in a fifth-grade science class. The control-group students accessed a traditional folder-based information display in the system and the experimental-group students accessed a concept map-based information display to review a science portfolio. The…

  13. Electronic Noses and Applications

    Directory of Open Access Journals (Sweden)

    Martine LUMBRERAS

    2014-05-01

    Full Text Available Electronic noses are customized devices employed to detect and to identify gaseous mixtures, even to give the concentration of the atmosphere components. Nowadays, the research in this domain is more and more growing, in Europe and other countries in the world, for many applications, such as environmental protection, food industries, perfumery, public safety, medicine, and pharmacy. Electronic noses allow to detect many organic volatile compounds, for which there is no specific detector. They constitute an alternative to complex, long, and too expensive existing methods, unable to ensure continuous monitoring. Their conception deals with many related areas (metrology, chemistry, physics, electronics, informatics, statistics, modelisation as well as areas related to the molecules to be detected. The system training is a primary step: during a measurement under a gaseous atmosphere, we must record the sensor time-responses in a treatment system, while specifying the name of the concerned odor. This process must be repeated many times for each studied atmosphere, and for all the chosen atmospheres. So a learning data base can be created, made from representative parameters of all the realized measures. After this training stage, clustering software will classify the data analysis in “concentration” or “nature” groups. Using the group separation rules given by this supervised classification, the system will be able to find itself the name of an odor or a concentration.

  14. Death due to asthma

    Directory of Open Access Journals (Sweden)

    Albert L. Sheffer

    1996-01-01

    Full Text Available The prevalence and fatality rate of asthma have increased worldwide. Underdiagnosis and undertreatment of asthma are central to the occurrence of fatal asthma. Atopy is the principal risk factor associated with asthma. However, consideration of the epidemiologic, physiologic, pharmacologic, pathologic and clinical parameters of asthma assessment may provide valuable insight into death due to asthma. Psychologic and socioeconomic factors may further aggravate the asthma status. Ethnic minorities are at increased risk of asthma. The perception of dyspnea may be blunted in asthma sufferers. Slow-onset fatal asthma may be associated with submucosal eosinophilic, whereas sudden-onset may be associated with submucosal neutrophilia. Fatal asthma occurs in patients abusing regular |32-agonist therapy. Peak flow assessment often provides insight into asthma deterioration prior to signs of respiratory distress. Markers of risk of death due to asthma further identify the fatality-prone asthma patient.

  15. Death due to asthma

    OpenAIRE

    Sheffer, Albert L.

    1996-01-01

    The prevalence and fatality rate of asthma have increased worldwide. Underdiagnosis and undertreatment of asthma are central to the occurrence of fatal asthma. Atopy is the principal risk factor associated with asthma. However, consideration of the epidemiologic, physiologic, pharmacologic, pathologic and clinical parameters of asthma assessment may provide valuable insight into death due to asthma. Psychologic and socioeconomic factors may further aggravate the asthma status. Ethnic minoriti...

  16. Human due diligence.

    Science.gov (United States)

    Harding, David; Rouse, Ted

    2007-04-01

    Most companies do a thorough job of financial due diligence when they acquire other companies. But all too often, deal makers simply ignore or underestimate the significance of people issues in mergers and acquisitions. The consequences are severe. Most obviously, there's a high degree of talent loss after a deal's announcement. To make matters worse, differences in decision-making styles lead to infighting; integration stalls; and productivity declines. The good news is that human due diligence can help companies avoid these problems. Done early enough, it helps acquirers decide whether to embrace or kill a deal and determine the price they are willing to pay. It also lays the groundwork for smooth integration. When acquirers have done their homework, they can uncover capability gaps, points of friction, and differences in decision making. Even more important, they can make the critical "people" decisions-who stays, who goes, who runs the combined business, what to do with the rank and file-at the time the deal is announced or shortly thereafter. Making such decisions within the first 30 days is critical to the success of a deal. Hostile situations clearly make things more difficult, but companies can and must still do a certain amount of human due diligence to reduce the inevitable fallout from the acquisition process and smooth the integration. This article details the steps involved in conducting human due diligence. The approach is structured around answering five basic questions: Who is the cultural acquirer? What kind of organization do you want? Will the two cultures mesh? Who are the people you most want to retain? And how will rank-and-file employees react to the deal? Unless an acquiring company has answered these questions to its satisfaction, the acquisition it is making will be very likely to end badly.

  17. Astrophysical neutrinos and atmospheric leptons

    Directory of Open Access Journals (Sweden)

    Gaisser T.K.

    2017-01-01

    Full Text Available IceCube measurements of the neutrino flux from TeV to PeV show the signal of astrophysical neutrinos standing out at high energy well above the steeply falling foreground of atmospheric neutrinos. The astrophysical signal appears both in measurements of neutrino-induced muons and in the starting event sample, which responds preferentially to electron and tau neutrinos, but which also includes muon neutrinos. Searches for point sources of astrophysical neutrinos have, however, not yet identified a single source or class of sources for the astrophysical component. Some constraints on astrophysical sources implied by the current observations will be described in this talk. Uncertainties in the fluxes of atmospheric leptons resulting from an incomplete knowledge of the primary cosmic-ray spectrum and from a limited understanding of meson production, including charm will also be reviewed. The ultimate goal is to improve the understanding of the astrophysical spectrum in the transition to lower energy where atmospheric neutrinos dominate. The main aspects of this presentation will be included in the author's Review Talk at the end of the Symposium.

  18. Atmospheric Circulation of Exoplanets

    OpenAIRE

    Showman, Adam P.; Cho, James Y-K.; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-wate...

  19. The atmospheric extinction of light

    CERN Document Server

    Hughes, Stephen W; Powell, Sean; Carroll, Joshua

    2015-01-01

    An experiment is described that enables students to understand the properties of atmospheric extinction due to Rayleigh scattering. The experiment requires the use of red, green and blue lasers attached to a travelling microscope or similar device. The laser beams are passed through an artificial atmosphere, made from milky water, at varying depths, before impinging on either a light meter or a photodiode integral to a Picotech Dr. DAQ ADC. A plot of measured spectral intensity verses depth reveals the contribution Rayleigh scattering has to the extinction coefficient. For the experiment with the light meter, the extinction coefficients for red, green and blue light in the milky sample of water were 0.27, 0.36 and 0.47 cm^-1 respectively and 0.032, 0.037 and 0.092 cm^-1 for the Picotech Dr. DAQ ADC.

  20. The Electron

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, George

    1972-01-01

    Electrons are elementary particles of atoms that revolve around and outside the nucleus and have a negative charge. This booklet discusses how electrons relate to electricity, some applications of electrons, electrons as waves, electrons in atoms and solids, the electron microscope, among other things.

  1. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie; Højlund, Marie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful,....... The potentials and implica-­‐ tions are presented through a design case, Kidkit, highlighting temporality as design parametre within interaction design.......This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful...

  2. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  3. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  4. Finding Atmospheric Composition (AC) Metadata

    Science.gov (United States)

    Strub, Richard F..; Falke, Stefan; Fiakowski, Ed; Kempler, Steve; Lynnes, Chris; Goussev, Oleg

    2015-01-01

    The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all

  5. The effect of electron bite-outs on artificial electron heating and the PMSE overshoot

    Directory of Open Access Journals (Sweden)

    M. Kassa

    2005-12-01

    affected by it. On the third day there is little heating effect on the PMSE layer. This is probably due to a sufficiently high electron density in the atmosphere below the PMSE layer, so that the transmitted heater power is absorbed in these lower layers. On this day the D-region, as given by the UHF (933MHz observations, extends deeper down in the atmosphere than on the other two days, indicating that the degree of ionization in and below the PMSE layers is higher as well.

  6. Photochemistry of planetary atmospheres. [Mars atmospheric composition

    Science.gov (United States)

    Stief, L. J.

    1973-01-01

    The atmospheric composition of Mars is presented, and the applicability of laboratory data on CO2 absorption cross sections and quantum yields of dissociation is discussed. A summary and critical evaluation are presented on the various mechanisms proposed for converting the photodissociation products CO and O2 back to CO2.

  7. The energy spectrum of cosmic-ray electrons measured with H.E.S.S.

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Kathrin

    2009-03-30

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse {gamma} rays from the Galactic plane. (orig.)

  8. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    Science.gov (United States)

    Abel, Bob; Thorne, Richard M.

    1994-01-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  9. [Onychomycoses due to molds].

    Science.gov (United States)

    Chabasse, D; Pihet, M

    2014-12-01

    Onychomycoses represent about 30% of superficial mycosis that are encountered in Dermatology consults. Fungi such as dermatophytes, which are mainly found on the feet nails, cause nearly 50% of these onychopathies. Yeasts are predominantly present on hands, whereas non-dermatophytic moulds are very seldom involved in both foot and hand nails infections. According to literature, these moulds are responsible for 2 to 17% of onychomycoses. Nevertheless, we have to differentiate between onychomycoses due to pseudodermatophytes such as Neoscytalidium (ex-Scytalidium) and Onychocola canadensis, which present a high affinity for keratin, and onychomycoses due to filamentous fungi such as Aspergillus, Fusarium, Scopulariopsis, Acremonium... These saprophytic moulds are indeed most of the time considered as colonizers rather than real pathogens agents. Mycology and histopathology laboratories play an important role. They allow to identify the species that is involved in nail infection, but also to confirm parasitism by the fungus in the infected nails. Indeed, before attributing any pathogenic role to non-dermatophytic moulds, it is essential to precisely evaluate their pathogenicity through samples and accurate mycological and/or histological analysis. The treatment of onychomycoses due to non-dermatophytic moulds is difficult, as there is today no consensus. The choice of an antifungal agent will first depend on the species that is involved in the infection, but also on the severity of nail lesions and on the patient himself. In most cases, the onychomycosis will be cured with chemical or mechanical removing of the infected tissues, followed by a local antifungal treatment. In some cases, a systemic therapy will be discussed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    OpenAIRE

    Renata Raina; Patricia Hall

    2008-01-01

    A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) with gas chromatography-tandem mass spectrometry (GC-MS/MS) in selected reaction monitoring (SRM) mode with both electron ionization (EI) and negative-ion chemical ionization (NCI) are presented for over 50 pesticides ranging from organochlorines (OCs), organophosphorus pesticides (OPs) and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalflurali...

  11. Electrons in silicon microstructures.

    Science.gov (United States)

    Howard, R E; Jackel, L D; Mankiewich, P M; Skocpol, W J

    1986-01-24

    Silicon microstructures only a few hundred atoms wide can be fabricated and used to study electron transport in narrow channels. Spatially localized voltage probes as close together as 0.1 micrometer can be used to investigate a variety of physical phenomena, including velocity saturation due to phonon emission, the local potentials caused by scattering from a single trapped electron, and quantum tunneling or hopping among very few electron states.

  12. Electron radiography

    Science.gov (United States)

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  13. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  14. Ecton processes in the generation of pulsed runaway electron beams in a gas discharge

    Science.gov (United States)

    Mesyats, G. A.

    2017-09-01

    As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.

  15. Controlled Atmosphere Stunning

    NARCIS (Netherlands)

    Lambooij, E.; Gerritzen, M.A.

    2009-01-01

    Controlled atmosphere (CAS) stunning includes several variations of gaseous mixtures given to induce an anaesthetic state before slaughter poultry. One method of multi phase CAS is to unload the birds out of the crate on a conveyor belt and subject the birds to an atmosphere of 30% O2, 40% CO2 and

  16. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...

  17. The Power of Atmosphere

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    composed of bubbles of affects – that is, the particles that are charged with power and normativity. References Grtiffero, T. (2014 (2010)). Atmospheres: Aesthetics of Emotional Spaces. Ashgate Philippopoulos-Mihalopoulos, A. (2013). Atmospheres of law: Senses, affects, lawscapes, in Emotion, Space...

  18. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful....... The potentials and implications are presented through a design case, Kidkit, highlighting temporality as design parametre within interaction design....

  19. Franklin Lecture: Lightning in Planetary Atmospheres

    Science.gov (United States)

    Gurnett, D. A.

    2006-12-01

    A broad overview is given of lightning in planetary atmospheres. Searches for lightning using spacecraft-borne instrumentation have now been conducted at almost all of the planets in the solar system, the exceptions being Mercury, which has no appreciable atmosphere, and Pluto which has not yet been visited by a spacecraft. The techniques used include (1) imaging observations to detect optical flashes produced by lightning; (2) high-frequency radio measurements to detect the impulsive broadband radio bursts, called spherics, produced by lightning discharges; and (3) low-frequency plasma wave measurements to detect the whistling tones, called whistlers, produced by lightning. Using these techniques, lightning has been reported at five planets other than Earth. These are: Venus, Jupiter, Saturn, Uranus, and Neptune. Of these, the existence of lightning at Venus is doubtful, and the evidence of lightning at Neptune is at best marginal. Jupiter and Saturn have by far the most intense and well documented lightning activity. During the Voyager 1 flyby of Jupiter, whistlers and intense optical flashes, comparable to those from terrestrial superbolts, were observed by the plasma wave and optical imaging instruments. However, no impulsive high-frequency radio bursts were observed. Two factors may be responsible for the absence of high-frequency radio signals: (1) the very strong magnetic field of Jupiter, which blocks the escape of the extra-ordinary mode; and (2) the relatively high electron collision frequency in the ionosphere, which increases the absorption of radio waves. During the Voyager 1 and 2 flybys of Saturn many very strong high-frequency radio bursts, called Saturn Electrostatic Discharges (SEDs), were detected. Although the origin of these impulsive radio bursts was initially uncertain, strong evidence now exists that SEDs are produced by lightning. Recent optical imaging and radio measurements from the Cassini spacecraft clearly show that SEDs originate from

  20. Credit where due.

    Science.gov (United States)

    Friedman, Steven G

    2016-08-01

    The history of medicine is filled with stories of tireless researchers who failed to get credit for their hard work. Examples of this include Rosalind Franklin, who helped to elucidate the structure of DNA; Frederick Banting, who helped to discover insulin; and Jay McLean, who discovered heparin. The founding of the field of vascular surgery provides one of the most vivid examples of uncredited work. Even though Alexis Carrel was an unpaid, untitled assistant in Charles Guthrie's laboratory, it was Carrel alone who received a Nobel Prize for their work. In an attempt to give credit where due, the reasons for this injustice are described. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Shahre Rey Branch, Tehran (Iran, Islamic Republic of); Ebrahimi, Izadyar [Young Researchers Club, Islamic Azad University, Shahre Rey Branch, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Influence of atmospheric air plasma treatment on performance of nanoemulsion silicone softener on polyethylene terephthalate fibers was investigated by the use of fourier transform infrared spectroscopy (FTIR), bending lengths (BL), wrinkle recovery angles (WRA), fiber friction coefficient analysis (FFCA), moisture absorbency (MA), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Results indicated that the plasma pretreatment modifies the surface of fibers and increases the reactivity of substrate toward nanoemulsion silicone. Moisture regain and microscopic tests showed that the combination of plasma and silicone treatments on polyethylene terephthalate can decrease moisture absorption due to uniform coating of silicone emulsion on surface of fibers.

  2. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone

    Science.gov (United States)

    Parvinzadeh, Mazeyar; Ebrahimi, Izadyar

    2011-02-01

    Influence of atmospheric air plasma treatment on performance of nanoemulsion silicone softener on polyethylene terephthalate fibers was investigated by the use of fourier transform infrared spectroscopy (FTIR), bending lengths (BL), wrinkle recovery angles (WRA), fiber friction coefficient analysis (FFCA), moisture absorbency (MA), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Results indicated that the plasma pretreatment modifies the surface of fibers and increases the reactivity of substrate toward nanoemulsion silicone. Moisture regain and microscopic tests showed that the combination of plasma and silicone treatments on polyethylene terephthalate can decrease moisture absorption due to uniform coating of silicone emulsion on surface of fibers.

  3. Effects of pH on photochemical decomposition of perfluorooctanoic acid in different atmospheres by 185nm vacuum ultraviolet.

    Science.gov (United States)

    Wang, Yuan; Zhang, Pengyi

    2014-11-01

    Perfluorooctanoic acid (PFOA), a persistent organic pollutant, receives increasing concerns due to its worldwide occurrence and resistance to most conventional treatment processes. The photochemical decomposition by 185nm vacuum ultraviolet (VUV) is one of the efficient methods for PFOA decomposition. The effects of pH on PFOA decomposition in nitrogen atmosphere or oxygen atmosphere were investigated. At its original pH (4.5) of PFOA aqueous solution, PFOA decomposed efficiently both in nitrogen and in oxygen atmosphere. However, when the pH increased to 12.0, PFOA decomposition was greatly inhibited in oxygen atmosphere, while it was greatly accelerated in nitrogen atmosphere with a very short half-life time (9min). Furthermore, fluorine atoms originally contained in PFOA molecules were almost completely transformed into fluoride ions. Two decomposition pathways have been proposed to explain the PFOA decomposition under different conditions. In acidic and neutral solutions, PFOA predominantly decomposes via the direct photolysis in both atmospheres; while in the alkaline solution and in the absence of oxygen, the decomposition of PFOA is mainly induced by hydrated electrons. Copyright © 2014. Published by Elsevier B.V.

  4. Atmospheric composition change: Ecosystems–Atmosphere interactions

    DEFF Research Database (Denmark)

    Fowler, D.; Pilegaard, Kim; Sutton, M.A.

    2009-01-01

    in the size range 1 nm–10 μm including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean–atmosphere exchange are included. The material presented is biased...... and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using...... aircraft and satellite remote sensing. The application of a flux-based approach in assessment of O3 effects on vegetation at regional scales is an important policy linked development secured through improved quantification of fluxes. The coupling of monitoring, modelling and intensive flux measurement...

  5. Sound Propagation in the Atmosphere

    Science.gov (United States)

    Attenborough, Keith

    Propagation of sound close to the ground outdoors involves geometric spreading, air absorption, interaction with the ground, barriers, vegetation and refraction associated with wind and temperature gradients. After a brief survey of historical aspects of the study of outdoor sound and its applications, this chapter details the physical principles associated with various propagation effects, reviews data that demonstrate them and methods for predicting them. The discussion is concerned primarily with the relatively short ranges and spectra of interest when predicting and assessing community noise rather than the frequencies and long ranges of concern, for example, in infrasonic global monitoring or used for remote sensing of the atmosphere. Specific phenomena that are discussed include spreading losses, atmospheric absorption, diffraction by barriers and buildings, interaction of sound with the ground (ground waves, surface waves, ground impedance associated with porosity and roughness, and elasticity effects), propagation through crops, shrubs and trees, wind and temperature gradient effects, shadow zones and incoherence due to atmospheric turbulence. The chapter concludes by suggesting a few areas that require further research.

  6. Titan Atmospheric Entry Radiative Heating

    Science.gov (United States)

    Brandis, Aaron; Cruden, Brett

    2017-01-01

    Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube for conditions relevant to Titan entry, varying atmospheric composition, free-stream density (equivalent to altitude) and shock velocity. Permutations in atmospheric composition include 1.1, 2, 5 and 8.6 CH4 by mole with a balance of N2 and 1.5 CH4 0.5 Ar 98 N2 by mole, which is consistent with the current understanding of Titan's atmosphere. The effect of gas impurities identified in previous shock tube studies were also examined by testing in pure N2 and deliberate addition of air to the CH4N2 mixtures. The test campaign measured radiation at velocities from 4.7 kms to 8 kms and free-stream pressures from 0.1 to 0.47 Torr. These conditions cover a range of potential trajectories for flight missions, including a direct ballistic trajectory, a fly by or an extremely high speed entry. Radiances measured in this work are substantially larger compared to that reported both in past EAST test campaigns and other shock tube facilities. Depending on the metric used for comparison, the discrepancy can be as high as an order of magnitude. Potential causes for the discrepancy, such as the effect of oxygen due to Air leakage, gas composition and purity are discussed. The present work provides a new benchmark set of data to replace those published in previous studies.

  7. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  8. [Keratitis due to Acanthamoeba].

    Science.gov (United States)

    Pérez-Irezábal, Julio; Martínez, Inés; Isasa, Patricia; Barrón, Jorge

    2006-10-01

    Free-living amebae appertaining to the genus Acanthamoeba, Naegleria and Balamuthia are the most prevalent protozoa found in the environment. These amebae have a cosmopolitan distribution in soil, air and water, providing multiple opportunities for contacts with humans and animals, although they only occasionally cause disease. Acanthamoeba spp. are the causative agent of granulomatous amebic encephalitis, a rare and often fatal disease of the central nervous system, and amebic keratitis, a painful disease of the eyes. Keratitis usually follows a chronic course due to the delay in diagnosis and subsequent treatment. The clear increase in Acanthamoeba keratitis in the last 20 years is related to the use and deficient maintenance of contact lenses, and to swimming while wearing them. The expected incidence is one case per 30,000 contact lens wearers per year, with 88% of cases occurring in persons wearing hydrogel lenses. This review presents information on the morphology, life-cycle and epidemiology of Acanthamoeba, as well as on diagnostic procedures (culture), appropriate antimicrobial therapy, and prevention measures.

  9. Atmospheric refraction: a history

    Science.gov (United States)

    Lehn, Waldemar H.; van der Werf, Siebren

    2005-09-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  10. New atmospheric program

    Science.gov (United States)

    The National Science Foundation's Division of Atmospheric Sciences has established an Upper Atmospheric Facilities program within its Centers and Facilities section. The program will support the operation of and the scientific research that uses the longitudinal chain of incoherent scatter radars. The program also will ensure that the chain is maintained as a state-of-the-art research tool available to all interested and qualified scientists.For additional information, contact Richard A. Behnke, Division of Atmospheric Sciences, National Science Foundation, 1800 G Street, N.W., Washington, DC 20550 (telephone: 202-357-7390).

  11. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  12. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  13. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    Science.gov (United States)

    Raina, Renata; Hall, Patricia

    2008-01-01

    A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) with gas chromatography-tandem mass spectrometry (GC-MS/MS) in selected reaction monitoring (SRM) mode with both electron ionization (EI) and negative-ion chemical ionization (NCI) are presented for over 50 pesticides ranging from organochlorines (OCs), organophosphorus pesticides (OPs) and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin). The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT). PMID:19609395

  14. Atmospheric Transport Modeling Resources

    Energy Technology Data Exchange (ETDEWEB)

    Mazzola, Carl A. [Stone and Webster Engineering Corporation, Aiken, SC (United States); Addis, Robert P. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-03-01

    The purpose of this publication is to provide DOE and other federal agency emergency managers with an in-depth compilation and description of atmospheric dispersion models available to DOE and other Federal sites.

  15. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  16. Students 'Weigh' Atmospheric Pollution.

    Science.gov (United States)

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  17. Our Changing Atmosphere.

    Science.gov (United States)

    Clearing, 1988

    1988-01-01

    Summarizes what is known about two major variables involved in certain types of chemical pollution that seem to be changing the structure of the Earth's atmosphere. Discusses the greenhouse effect and the ozone layer. (TW)

  18. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer.

    Science.gov (United States)

    Martinez, Alejandra; Peluffo, Gonzalo; Petruk, Ariel A; Hugo, Martín; Piñeyro, Dolores; Demicheli, Verónica; Moreno, Diego M; Lima, Analía; Batthyány, Carlos; Durán, Rosario; Robello, Carlos; Martí, Marcelo A; Larrieux, Nicole; Buschiazzo, Alejandro; Trujillo, Madia; Radi, Rafael; Piacenza, Lucía

    2014-05-02

    Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 10(4) M(-1) s(-1) and 4.3 ± 0.4 × 10(4) M(-1) s(-1) at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr(35). Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys(83) mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys(83) present in Fe-SODB acts as an electron donor that repairs Tyr(35) radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.

  19. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  20. Effect of annealing atmosphere on microstructure, optical and ...

    Indian Academy of Sciences (India)

    61

    Effect of annealing atmosphere on microstructure, optical and electronic properties of spray pyrolysed ... gap energies of ZnO and ZnS lead to an unfavourable electronic properties for Zn(O,S), when used as buffer layer in ..... absorption coefficient (α) of the films was determined from the relationship, α = −. 1 d ln. T. (1−R)2.

  1. Satellite Anomalies Due to Environment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These events range from minor operational problems to permanent spacecraft failures. Australia, Canada, Germany, India, Japan, United Kingdom, and the United States...

  2. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    energy into chemical bonds. By means of Transmission Electron Microscopy (TEM) it is possible to gain insight in the fundamentals of their reaction mechanisms, chemical behaviour, structure and morphology before, during and after reaction using in situ investigations. In particular, the environmental TEM...... (ETEM) is the instrument of choice employed in this thesis to perform such studies. Typically, photocatalysts work in gaseous or liquid atmosphere upon light illumination. We aim at reproducing their working conditions in situ. The ETEM allows exposing specimens to a controlled gas atmosphere, thus...... the microscope that allows electron microscopy under nonconventional TEM conditions and new kinds of in situ spectroscopy....

  3. Poisoning due to pyrethroids.

    Science.gov (United States)

    Bradberry, Sally M; Cage, Sarah A; Proudfoot, Alex T; Vale, J Allister

    2005-01-01

    current') ensues which, if it is sufficiently large and/or long, lowers the action potential threshold and causes repetitive firing; this may be the mechanism causing paraesthesiae. At high pyrethroid concentrations, the sodium tail current may be sufficiently great to prevent further action potential generation and 'conduction block' ensues. Only low pyrethroid concentrations are necessary to modify sensory neurone function. Type II pyrethroids also decrease chloride currents through voltage-dependent chloride channels and this action probably contributes the most to the features of poisoning with type II pyrethroids. At relatively high concentrations, pyrethroids can also act on GABA-gated chloride channels, which may be responsible for the seizures seen with severe type II poisoning. Despite their extensive world-wide use, there are relatively few reports of human pyrethroid poisoning. Less than ten deaths have been reported from ingestion or following occupational exposure. Occupationally, the main route of pyrethroid absorption is through the skin. Inhalation is much less important but increases when pyrethroids are used in confined spaces. The main adverse effect of dermal exposure is paraesthesiae, presumably due to hyperactivity of cutaneous sensory nerve fibres. The face is affected most commonly and the paraesthesiae are exacerbated by sensory stimulation such as heat, sunlight, scratching, sweating or the application of water. Pyrethroid ingestion gives rise within minutes to a sore throat, nausea, vomiting and abdominal pain. There may be mouth ulceration, increased secretions and/or dysphagia. Systemic effects occur 4-48 hours after exposure. Dizziness, headache and fatigue are common, and palpitations, chest tightness and blurred vision less frequent. Coma and convulsions are the principal life-threatening features. Most patients recover within 6 days, although there were seven fatalities among 573 cases in one series and one among 48 cases in another

  4. Occultations for probing atmosphere and climate

    CERN Document Server

    Foelsche, Ulrich; Steiner, Andrea

    2004-01-01

    Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite­ crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi­ fication of the occultation-related scientific community into a...

  5. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2008-01-01

    Full Text Available A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS in selected ion monitoring (SIM with gas chromatography-tandem mass spectrometry (GC-MS/MS in selected reaction monitoring (SRM mode with both electron ionization (EI and negative-ion chemical ionization (NCI are presented for over 50 pesticides ranging from organochlorines (OCs, organophosphorus pesticides (OPs and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin. The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg µL−1 (<100 pg m−3 in air. No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5–10 pg µL−1 along with best confirmation (<25% RSD of ion ratio, while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion. GC-EI/SRM at concentration <100 pg µL−1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1–10 pg µL−1 for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT.

  6. Atmospheric Circulation of Exoplanets

    Science.gov (United States)

    Showman, A. P.; Cho, J. Y.-K.; Menou, K.

    2010-12-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from solar system studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and simple scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from solar system studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our solar system, our guiding philosophy is that the multidecade study of solar system planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.

  7. Global storm time depletion of the outer electron belt.

    Science.gov (United States)

    Ukhorskiy, A Y; Sitnov, M I; Millan, R M; Kress, B T; Fennell, J F; Claudepierre, S G; Barnes, R J

    2015-04-01

    The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by orders of magnitude at different spatial and temporal scales. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause loss to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of 17 March 2013 storm. The intensities of >1 MeV electrons were depleted by more than an order of magnitude over the entire radial extent of the belt in less than 6 h after the sudden storm commencement. For the analysis we used three-dimensional test particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with an inductive electric field. Comparison of the simulation results with electron measurements from the Magnetic Electron Ion Spectrometer experiment shows that magnetopause loss accounts for most of the observed depletion at L >5, while at lower L shells the depletion is adiabatic. Both magnetopause loss and the adiabatic effect are controlled by the change in global configuration of the magnetic field due to storm time development of the ring current; a simulation of electron evolution without a ring current produces a much weaker depletion.

  8. US-Total Electron Content Product (USTEC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Total Electron Content (US-TEC) product is designed to specify TEC over the Continental US (CONUS) in near real-time. The product uses a Kalman Filter data...

  9. Engineered phages for electronics.

    Science.gov (United States)

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fundamentals of Atmospheric Radiation

    Science.gov (United States)

    Bohren, Craig F.; Clothiaux, Eugene E.

    2006-02-01

    This textbook fills a gap in the literature for teaching material suitable for students of atmospheric science and courses on atmospheric radiation. It covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the book applies to planetary atmosphere. The authors are physicists and teach at the largest meteorology department of the US at Penn State. Craig T. Bohren has taught the atmospheric radiation course there for the past 20 years with no book. Eugene Clothiaux has taken over and added to the course notes. Problems given in the text come from students, colleagues, and correspondents. The design of the figures especially for this book is meant to ease comprehension. Discussions have a graded approach with a thorough treatment of subjects, such as single scattering by particles, at different levels of complexity. The discussion of the multiple scattering theory begins with piles of plates. This simple theory introduces concepts in more advanced theories, i.e. optical thickness, single-scattering albedo, asymmetry parameter. The more complicated theory, the two-stream theory, then takes the reader beyond the pile-of-plates theory. Ideal for advanced undergraduate and graduate students of atmospheric science.

  11. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  12. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µmcommunication, the results of both organic and inorganic analyses of aerosol samples from these two sites will be presented, compared and discussed. Results of this work are expected to cover a lack of reliable information regarding sources of atmospheric pollutants in Portugal and present, for the first time, systematic data of PAHs levels in Lisbon. Acknowledgement: This work was performed under Project PAHLIS (PTDC

  13. Atmospheric correction of Earth-observation remote sensing images ...

    Indian Academy of Sciences (India)

    correction algorithm for high spectral resolution data over land surfaces has been developed. It is ... SPOT satellites are invaluable resources for mon- ... Any change observed is, therefore, due to the atmospheric con- ditions. These methods require the identification of. Keywords. Atmospheric correction; reflectance; Monte ...

  14. Atomic and electronic structure of exfoliated black phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  15. Electron paramagnetic resonance study of nanostructured graphite

    Science.gov (United States)

    Kausteklis, Jonas; Cevc, Pavel; Arčon, Denis; Nasi, Lucia; Pontiroli, Daniele; Mazzani, Marcello; Riccò, Mauro

    2011-09-01

    We report on a systematic temperature-dependent x-band electron paramagnetic resonance (EPR) study of nanosized graphite particles prepared by ball milling. In as-prepared samples a very intense and sharp EPR resonance at g=2.0035 has been measured. The EPR line width shows a Korringa-like linear temperature dependence arising due to the coexistence and strong exchange coupling of itinerant and localized edge states. With a prolonged aging in inert atmosphere, changes in the EPR signal suggest gradual structural reconstruction where the localized edge states dominate the EPR signal. In this case the EPR spin susceptibility shows a maximum at ≈23K indicating the development of antiferromagnetic correlations as expected for the graphene lattice with a bipartite symmetry.

  16. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  17. Atmospheric pollution; Pollution atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lambrozo, J.; Guillossou, G. [EDF-Gas de France, Service des Etudes Medicales, 75 - Paris (France)

    2008-10-15

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  18. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  19. A New Look at Triton's Atmosphere

    Science.gov (United States)

    Person, Michael

    When it was first examined with stellar occultations in the 1990s, Triton's atmosphere was seen to undergo global expansion during the period from 1993 to 1997. This expansion was confirmed as a continuing phenomenon with a stellar occultation observation in 2001 . Unfortunately, as Triton started to pass through a fairly sparse star field, occultation observations have been much more difficult to make. There have been no published occultation data on Triton's atmosphere since the 2001 event, and reported observations in early 2007 had too low of a signal-to-noise ratio to say anything about the atmospheric profile. Thus, it has been over 15 years since the last direct measurement of Triton's expanding atmosphere was made, leaving wide open the question of Triton's current atmospheric state. Is the atmosphere still expanding or is it now collapsing? Are the haze layers seen by Voyager still present? Are the variations seen in the 1990s seasonal or cyclic on shorter time scales due to Triton surface processes? The observation of stellar occultations remains the only way to gain current data on Triton's atmosphere from Earth, and SOFIA's unique ability to be reliably placed in the central flash region of occultation events where the richest dataset is available, and its immunity to low-level weather disturbances make it the ideal platform for updating our knowledge on Triton and beginning to answer these many outstanding questions. We therefore propose to use SOFIA with HIPO, FLITECAM (FLIPO), and the FPI+ to measure temperature, pressure, and particulate haze radial profiles of Triton's atmosphere by observing a stellar occultation which will be visible over the eastern portion of North America in October of 2017. We expect to use FLITECAM/HIPO (FLIPO) Guaranteed Time Observing (GTO) hours for the included observations with the agreement of the FLITECAM and HIPO instrument teams.

  20. Atmospheric Infrared Radiance Variability.

    Science.gov (United States)

    1981-05-27

    ATMOSPHERIC VARIABILITY ON INFRARED RADIANCE PREDICTIONS - T. C. Degges 53 5. ATMOSPHERIC STRUCTURE - C.H. HLmphrey, C.R. Philbrick, S.M. Silverman , T.F. Tuan...variations similar to those shown in Figure 2. In arctic and subarctic regions, sudden warmings and coolings of the winter stratosphere and mesosphere... Silverman \\Jr I",rre. (;.L~~sIalmratorN Hanscom Air Force Base, Manss. T.F. Tuan Universitv of Cincinnati Cincinnati, (tio M. Anapol S.S.G.. Inc. Waltham

  1. Atmosphere and Heritage

    DEFF Research Database (Denmark)

    Ventzel Riis, Nina

    2012-01-01

    -between of the materials. This is what we identify as atmosphere, an enveloping phenomenon that surrounds and affects our sensuous system and well-being when we approach, enter, stay or move in a building. When we leave the building again we carry this atmospheric multi-sensory experience with us without adequate methods...... to describe and document it. In this paper I will introduce both new and traditional approaches to document the architectural heritage with the final conclusion to describe both tangible and intangible values, it requires an objective and geometrical approach as well as a subjective and phenomenological...

  2. Effect of storage conditions on graft of polypropylene non-woven fabric induced by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Young; Jeun, Joon Pyo; Kang, Phil Hyun [Radiation Research Dvision for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2015-05-15

    In this study, we fabricated effect of storage conditions on graft of polypropylene (PP) non-woven fabric induced by electron beam. The electron beam irradiations on PP non-woven fabric were carried out over a range of irradiation doses from 25 to 100 kGy to make free radicals on fabric surface. The radical measurement was established by electron spin resonance (ESR) for confirming the changes of the alkyl radical and peroxy radical according to effect of storage time, storage temperature and atmosphere. It was observed that the free radicals were increased with irradiation dose and decreased with storage time due to the continuous oxidation. However, the radical extinction was significantly delayed due to reduced mobility of radicals at extremely low temperature. The degree of graft based on the analysis of ESR was investigated. The conditions of graft reaction were set at a temperature: 60 degrees Celcius, reaction time: 6 hours and styrene monomer concentration: 20 wt%.

  3. Descargas atmosféricas e interrupções de energia elétrica na área da CHESF: relação com variáveis atmosféricas em anos de El Niño e La Niña Breaks in electric power supply due to atmospheric discharges in CHESF management area

    Directory of Open Access Journals (Sweden)

    Wendell Rondinelli Gomes Farias

    2008-09-01

    Full Text Available Condições climáticas e ambientais influenciam diretamente no desenvolvimento e intensificação de tempestades seguidas de descargas atmosféricas, e são responsáveis por interrupções no fornecimento de energia elétrica no Nordeste do Brasil. Este estudo tem como objetivo estabelecer relações entre variáveis meteorológicas, que permitam equacionar a influência de condições ambientais na intensificação de atividade convectiva responsável por interrupções no fornecimento de energia elétrica por descargas atmosféricas em anos de El Niño e La Nina. As análises são restritas à área de atuação da CHESF (Companhia Hidro Elétrica do São Francisco, a qual tem grande parte das Linhas de Transmissão de energia instaladas no semi-árido do Nordeste do Brasil. O método de componentes principais escolhido como principal ferramenta de análise permitiu isolar padrões significativos de umidade, vento e temperatura no domínio analisado. Vórtices ciclônicos em altos níveis (VCAN, foram os principais responsáveis pelo desenvolvimento de sistemas precipitantes intensos e ocorrências de falhas transitórias no sistema de transmissão da CHESF.Climatic and environmental conditions directly influence the development and the intensification of storms followed by atmospheric discharges and they are responsible for interruptions in the electric energy supply in the Northeast of Brazil. This study has as objective to establish relations between meteorological variables that allow formulating the influence of environmental conditions to the intensification of convective activity responsible for interruptions of the electric energy supply during years of El Niño and La Nina. The analyses are restricted to the CHESF (Companhia Hidro Elétrica do São Francisco activity areas having most of its energy Transmission Lines installed in the semi-arid of Northeastern Brazil. The method of principal component analysis chosen as main analysis

  4. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2007-08-01

    Full Text Available Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP. Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes <68 km for all locations, above which WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  5. Synthesis and influence of annealing atmosphere on the luminescence properties of ZnGa2O4 nanowires

    Science.gov (United States)

    Kim, Hyunsu; An, Soyeon; Park, Sunghoon; Lee, Chongmu

    2013-12-01

    ZnGa2O4 nanowires were synthesized on Si substrates by using the thermal evaporation of a mixture of Zn and GaN powders. Scanning electron microscopy showed that the diameters and the lengths of the nanowires ranged from a few tens to a few hundreds of nanometers and up to a few hundreds of micrometers, respectively. The ZnGa2O4 nanowires were found to have a face-centered cubic-structured monocrystalline phase. The photoluminescence properties of the ZnGa2O4 nanowires appeared to depend strongly on the annealing atmosphere. The ZnGa2O4 nanowires annealed in a hydrogen atmosphere showed a relatively weak broad visible emission band, ranging from 500 to 700 nm. In contrast, the ZnGa2O4 nanowires annealed in an oxygen atmosphere showed a relatively strong near-ultraviolet emission band centered at approximately 380 nm. On the other hand, the ZnGa2O4 nanowires annealed in an argon atmosphere showed a sharp, taller ultraviolet emission peak centered at approximately 380 nm, as well as a broad green emission band centered at approximately 510 nm. The origins of the enhanced luminescence in ZnGa2O4 nanowires due to annealing in different atmospheres are discussed.

  6. Electron Microscopy.

    Science.gov (United States)

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  7. Computer modeling of electron and proton transport in chloroplasts.

    Science.gov (United States)

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of

  8. Electronic Commerce

    OpenAIRE

    Slavko Đerić

    2016-01-01

    Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks...

  9. Understand electronics

    CERN Document Server

    Bishop, Owen

    2013-01-01

    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.

  10. Vacuum electronics

    CERN Document Server

    Eichmeier, Joseph A

    2008-01-01

    Nineteen experts from the electronics industry, research institutes and universities have joined forces to prepare this book. ""Vacuum Electronics"" covers the electrophysical fundamentals, the present state of the art and applications, as well as the future prospects of microwave tubes and systems, optoelectronics vacuum devices, electron and ion beam devices, light and X-ray emitters, particle accelerators and vacuum interrupters. These topics are supplemented by useful information about the materials and technologies of vacuum electronics and vacuum technology.

  11. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  12. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications ...

  13. SCIAMACHY’s View of the Polar Atmosphere

    Science.gov (United States)

    Gottwald, M.; Krieg, E.; von Savigny, C.; Noël, S.; Reichl, A.; Bovensmann, H.; Burrows, J.P.

    2007-01-01

    The instrument SCIAMACHY onboard the European ENVISAT mission provides unique capabilities for deriving atmospheric geophysical parameters. Since its launch in early 2002 it has operated successfully in orbit. Due to ENVISAT’s high inclination orbit the polar regions are monitored continuously. We report here results about the status of the polar atmosphere in the past 5 years with special emphasis on the southern hemisphere. This part of the atmosphere is considered to be highly sensitive to anthropogenic impacts on the Earth system and thus to climate change. The acquired data permit retrieving information on the Earth’s atmosphere from troposphere up to the mesosphere

  14. ESA Atmospheric Toolbox

    Science.gov (United States)

    Niemeijer, Sander

    2017-04-01

    The ESA Atmospheric Toolbox (BEAT) is one of the ESA Sentinel Toolboxes. It consists of a set of software components to read, analyze, and visualize a wide range of atmospheric data products. In addition to the upcoming Sentinel-5P mission it supports a wide range of other atmospheric data products, including those of previous ESA missions, ESA Third Party missions, Copernicus Atmosphere Monitoring Service (CAMS), ground based data, etc. The toolbox consists of three main components that are called CODA, HARP and VISAN. CODA provides interfaces for direct reading of data from earth observation data files. These interfaces consist of command line applications, libraries, direct interfaces to scientific applications (IDL and MATLAB), and direct interfaces to programming languages (C, Fortran, Python, and Java). CODA provides a single interface to access data in a wide variety of data formats, including ASCII, binary, XML, netCDF, HDF4, HDF5, CDF, GRIB, RINEX, and SP3. HARP is a toolkit for reading, processing and inter-comparing satellite remote sensing data, model data, in-situ data, and ground based remote sensing data. The main goal of HARP is to assist in the inter-comparison of datasets. By appropriately chaining calls to HARP command line tools one can pre-process datasets such that two datasets that need to be compared end up having the same temporal/spatial grid, same data format/structure, and same physical unit. The toolkit comes with its own data format conventions, the HARP format, which is based on netcdf/HDF. Ingestion routines (based on CODA) allow conversion from a wide variety of atmospheric data products to this common format. In addition, the toolbox provides a wide range of operations to perform conversions on the data such as unit conversions, quantity conversions (e.g. number density to volume mixing ratios), regridding, vertical smoothing using averaging kernels, collocation of two datasets, etc. VISAN is a cross-platform visualization and

  15. ELECTRONIC SIGNATURES

    African Journals Online (AJOL)

    10332324

    'electronic signature' means data attached to, incorporated in, or logically associated with other data and which is intended by the user to serve as a signature;. The suggested new definition for an electronic signature reads as follows: 'electronic signature' means a sound, symbol or process that is (i) uniquely linked to the ...

  16. ELECTRONIC SIGNATURES

    African Journals Online (AJOL)

    10332324

    (a) facilitate ecommerce;2. (b) remove and prevent barriers to electronic communications in South Africa;3. (c) ensure that electronic transactions in the Republic conform to the highest international standards;4. (d) promote the development of electronic transactions services which are responsive to the needs of users and ...

  17. Electron "bite-outs" in Dusty Plasmas

    Science.gov (United States)

    Horanyi, M.; Hsu, S.; Kempf, S.

    2012-12-01

    The study of dusty plasmas is still an emerging new field that bridges a number of traditionally separate subjects, including for example, celestial mechanics, and plasma physics. Dust particles immersed in plasmas and UV radiation collect electrostatic charges and respond to electromagnetic forces in addition to all the other forces acting on uncharged grains. Simultaneously, dust can alter its plasma environment. Dust particles in plasmas are unusual charge carriers. They are many orders of magnitude heavier than any other plasma particles, and they can have many orders of magnitude larger (negative or positive) time-dependent charges. Dust particles can communicate non-electromagnetic effects (gravity, drag, radiation pressure) to the plasma that can represent new free energy sources. Their presence can influence the collective plasma behavior, for example, by altering the traditional plasma wave modes and by triggering new types of waves and instabilities. Dusty plasmas represent the most general form of space, laboratory, and industrial plasmas. Interplanetary space, comets, planetary rings, asteroids, the Moon, aerosols in the atmosphere, are all examples where electrons, ions, and dust particles coexist. This talk will focus on "electron bite-outs", the apparent reduction of the electron density due to dust charging in a plasma comprised of electrons, ions and dust particles We will compare the recent observations of the plasma conditions near Enceladus at Saturn to the decades old measurements in the Earth's mesosphere. We present model calculations of dust charging in a region where plasma is maintained by UV radiation, and present the time-dependent charge distribution of grains as function of dust density and size distribution. We will also make estimates for possible dusty plasma wave activities as function of the magnitude of the electron "bite-outs".

  18. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...... is presented. Various failure modes resulting from the corrosion and influence factors are discussed including humid and gaseous conditions....

  19. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  20. Sticker electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-09-08

    Electronic stickers may be manufactured on flexible substrates (110, 120, 130) as layers and packaged together. The package may then have an adhesive applied to one side to provide capability for sticking the electronic devices to surfaces. The stickers can be wrappable, placed on surfaces, glued on walls or mirrors or wood or stone, and have electronics (112, 122, 132) which may or may not be ultrathin. Packaging for the electronic sticker can use polymer on cellulose manufacturing and/or three dimensional (3-D) printing. The electronic stickers may provide lighting capability, sensing capability, and/or recharging capabilities.

  1. Basic electronics

    CERN Document Server

    Holbrook, Harold D

    1971-01-01

    Basic Electronics is an elementary text designed for basic instruction in electricity and electronics. It gives emphasis on electronic emission and the vacuum tube and shows transistor circuits in parallel with electron tube circuits. This book also demonstrates how the transistor merely replaces the tube, with proper change of circuit constants as required. Many problems are presented at the end of each chapter. This book is comprised of 17 chapters and opens with an overview of electron theory, followed by a discussion on resistance, inductance, and capacitance, along with their effects on t

  2. Electronic Government and Electronic Participation

    NARCIS (Netherlands)

    Tambouris, E.; Scholl, H.J.; Janssen, M.F.W.H.A.; Wimmer, M.A.; Tarabanis, K.; Gascó, M.; Klievink, A.J.; Lindgren, I.; Milano, M.; Panagiotopoulos, P.; Pardo, T.A.; Parycek, P.; Sæbø, O.

    2015-01-01

    Electronic government and electronic participation continue to transform the public sector and society worldwide and are constantly being transformed themselves by emerging information and communication technologies. This book presents papers from the 14th International Federation for Information

  3. Electronic Government and Electronic Participation

    NARCIS (Netherlands)

    Tambouris, E; Scholl, H.J.; Janssen, M.F.W.H.A.; Wimmer, M.A.; Tarabanis, K; Gascó, M; Klievink, A.J.; Lindgren, I; Milano, M; Panagiotopoulos, P; Pardo, T.A.; Parycek, P; Sæbø, Ø

    2016-01-01

    Electronic government and electronic participation continue to transform the public sector and society worldwide and are constantly being transformed themselves by emerging information and communication technologies.This book presents papers from the 14th International Federation for Information

  4. Bounce Resonance Scattering of Radiation Belt Electrons by Low-Frequency Hiss: Comparison With Cyclotron and Landau Resonances

    Science.gov (United States)

    Cao, Xing; Ni, Binbin; Summers, Danny; Zou, Zhengyang; Fu, Song; Zhang, Wenxun

    2017-10-01

    Bounce resonant interactions with magnetospheric waves have been proposed as an important contributing mechanism for scattering near-equatorially mirroring electrons by violating the second adiabatic invariant associated with the electron bounce motion along a geomagnetic field line. This study demonstrates that low-frequency plasmaspheric hiss with significant wave power below 100 Hz can bounce resonate efficiently with radiation belt electrons. By performing quantitative calculations of pitch angle scattering rates, we show that low-frequency hiss-induced bounce resonant scattering of electrons has a strong dependence on equatorial pitch angle αeq. For electrons with αeq close to 90°, the timescale associated with bounce resonance scattering can be comparable to or even less than 1 h. Cyclotron and Landau resonant interactions between low-frequency hiss and electrons are also investigated for comparisons. It is found that while the bounce and Landau resonances are responsible for the diffusive transport of near-equatorially mirroring electrons to lower αeq, pitch angle scattering by cyclotron resonance could take over to further diffuse electrons into the atmosphere. Bounce resonance provides a more efficient pitch angle scattering mechanism of relativistic (≥1 MeV) electrons than Landau resonance due to the stronger scattering rates and broader resonance coverage of αeq, thereby demonstrating that bounce resonance scattering by low-frequency hiss can contribute importantly to the evolution of the electron pitch angle distribution and the loss of radiation belt electrons.

  5. Mechanisms of sustaining a radio-frequency atmospheric pressure planar discharge

    Science.gov (United States)

    Wang, Lei; Dinescu, Gheorghe; Deng, Xiaolong; Ionita, Eusebiu-Rosini; Leys, Christophe; Nikiforov, Anton Yu

    2017-07-01

    The time behavior of an atmospheric pressure planar discharge sustained in He gas was investigated experimentally and through two dimensional (2D) discharge simulation. The 30 mm long uniform α-mode discharge was observed at radio frequency (RF) input power below 35 W. The gas temperature of 375 ± 50 K in the discharge core was estimated by emission spectroscopy of OH(A-X) emission. A sheath region of about 100-150 μm width near both electrodes was observed during the whole RF cycle. However, there were differences in emission dynamics among various species detected in the discharge. OH(A) emission does not follow the RF voltage temporal variation. Strong He emission was always detected near the cathode, which was consistent with the 2D discharge simulation results. He-excited species production was found mainly due to the electron impact process. The simulation showed that both the electron and ion density vary from 1.88 × 1017 m-3 to 1.92 × 1017 m-3, and the electron temperature was about 1.85 eV in the plasma bulk. The ion temperature stayed close to the rotational temperature of OH radicals, and only increased near the sheath region to 0.65 eV. It was found that the mechanism of the sheath formation in atmospheric pressure discharge strongly correlates with the dynamics of the electron density and electron temperature variation in the gap, and the process is similar to low pressure RF capacitively coupled discharges. The high uniformity of the discharge and the upscale possibility to any desirable size are considered beneficial for industrial applications of the source, which is key for processes of thin coating deposition and polymer modification.

  6. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  7. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    OpenAIRE

    Veronica Vaida; Karl J. Feierabend; Nabilah Rontu; Kaito Takahashi

    2008-01-01

    Atmospheric chemical reactions are often initiated by ultraviolet (UV) solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical re...

  8. Applications of theoretical methods in atmospheric science

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Goodsite, Michael E.

    2008-01-01

    in addressing an issue of primary concern: understanding photochemical reaction rates at the various conditions found in the atmosphere. Atmospheric science includes both atmospheric chemistry and atmospheric physics, meteorology, climatology and the study of extraterrestrial atmospheres....

  9. Geologic emissions of methane to the atmosphere.

    Science.gov (United States)

    Etiope, Giuseppe; Klusman, Ronald W

    2002-12-01

    The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon-free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of "old" methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 10(0)-10(2) mg m(-2) day(-1), and localised flows and gas vents, on the order of 10(2) t y(-1), both on land and on the seafloor. Mud volcanoes producing flows of up to 10(3) t y(-1) represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.

  10. Introductory lecture: atmospheric chemistry in the Anthropocene.

    Science.gov (United States)

    Finlayson-Pitts, Barbara J

    2017-08-24

    The term "Anthropocene" was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic-anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.

  11. Atmospheric Bulges on Tidally-Locked Satellites

    Science.gov (United States)

    Oza, Apurva V.; Johnson, Robert E.; Leblanc, Francois

    2017-10-01

    We use a simple analytic model to examine the spatial distribution of a volatile species in a surface-bounded atmosphere on a rotating object that is tidally-locked to its parent body. Spatial asymmetries in such atmospheres have recently been observed via ultraviolet auroral emissions from the exospheres of the icy satellites Europa and Ganymede. The Hubble Space Telescope observations indicate that these satellites host unique, surface-bounded O2 exospheres which bulge towards dusk. Using a simple 1-D mass conservation balance we examine the nature of the volatile source, the surface temperature profile, the spatial morphology of the loss process, and the adsorption and desorption properties of the surfaces to understand the spatial distribution of the surface-bounded atmosphere for a number of objects. Since the ballistic hop distances are much smaller than the satellite radii, we show that the observed asymmetries at Europa and Ganymede can be simply due to a strongly thermally-dependent source, although asymmetries in the plasma-induced loss could contribute. A key condition for these atmospheric bulges that are shifted towards dusk is the relationship between the rotation rate and the atmospheric loss rate.

  12. Inflatable Emergency Atmospheric-Entry Vehicles

    Science.gov (United States)

    Jones, Jack; Hall, Jeffrey; Wu, Jiunn Jeng

    2004-01-01

    In response to the loss of seven astronauts in the Space Shuttle Columbia disaster, large, lightweight, inflatable atmospheric- entry vehicles have been proposed as means of emergency descent and landing for persons who must abandon a spacecraft that is about to reenter the atmosphere and has been determined to be unable to land safely. Such a vehicle would act as an atmospheric decelerator at supersonic speed in the upper atmosphere, and a smaller, central astronaut pod could then separate at lower altitudes and parachute separately to Earth. Astronaut-rescue systems that have been considered previously have been massive, and the cost of designing them has exceeded the cost of fabrication of a space shuttle. In contrast, an inflatable emergency-landing vehicle according to the proposal would have a mass between 100 and 200 kg, could be stored in a volume of approximately 0.2 to 0.4 cu m, and could likely be designed and built much less expensively. When fully inflated, the escape vehicle behaves as a large balloon parachute, or ballute. Due to very low mass-per-surface area, a large radius, and a large coefficient of drag, ballutes decelerate at much higher altitudes and with much lower heating rates than the space shuttle. Although the space shuttle atmospheric reentry results in surface temperatures of about 1,600 C, ballutes can be designed for maximum temperatures below 600 C. This allows ballutes to be fabricated with lightweight ZYLON(Registered TradeMark) or polybenzoxazole (PBO), or equivalent.

  13. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  14. Habituating alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie

    This paper proposes embodied rhythmic sound habituation as a possible resource when designing contextualized technologies in critical atmospheres. The main contribution is collating the concept of rhythm as presented by Henri Lefebvre with the concept of sound habituation to help operationalize...... essential dynamic parameters when designing atmospheres. This research is based on the development of the novel research artefact Kidkit, designed for children, who are going to meet a hospitalized relative with fatal injuries in a Neuro–Intensive Care Unit. Sounds from hospital equipment have important...... functionality for the staff, but are stressful for visitors and patients, as they are designed to demand attention even though they have no direct functional meaning to them. By introducing sounds from the ward, integrated in the furniture as simple sound sample triggers, KidKit invites children to become...

  15. Atmosphere beyond Poetics

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    , the notion of atmosphere is presented as parallactic for designing experience in architectural fields, since it transgresses formal and material boundaries of bodies, opening a new gap that exposes the orthodox space-body-environment relationships to questions. It leads to the dissolution...... of the architectural ‘object’ and its fixity and offers a new understanding of context and space – approached as a field of dynamic relationships. It calls for a re-evaluation of perceptual experience, offering to architecture an expanded domain in which architecture manifests itself, including qualities – besides...... poetics and beauty – that architecture has long resisted. That is, it defines space as a contingent construction, performative and intensely affective. Accordingly, the intention is to critically analyse what the term atmosphere entails in architecture, and to expand its notion in terms of affective...

  16. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...... Protection Agency supported this work with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region and the work is part of the Danish contribution to Arctic Monitoring and Assessment Programme, AMAP......This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...

  17. DREAMING OF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT (United Kingdom)

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  18. Dreaming of Atmospheres

    Science.gov (United States)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  19. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  20. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  1. Diffusive scattering of electrons by electron holes around injection fronts

    Science.gov (United States)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Krasnoselskikh, V. V.; Bonnell, J. W.

    2017-03-01

    Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of ≲5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L ˜ 5-8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

  2. Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Slavko Đerić

    2016-12-01

    Full Text Available Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks, including the Internet. Electronic commerce is not limited just to buying and selling, but it also includes all pre-sales and after-sales ongoing activities along the supply chain. Introducing electronic commerce, using the Internet and Web services in business, realizes the way to a completely new type of economy - internet economy.

  3. Micropower electronics

    CERN Document Server

    Keonjian, Edward

    1964-01-01

    Micropower Electronics deals with the operation of modern electronic equipment at micropower levels and the problems associated with micropower electronics. Topics covered include the relations between minimum required power density and frequency response for semiconductor triode amplifiers; physical realization of digital logic circuits; micropower microelectronic subsystems; and metal-oxide-semiconductor field-effect devices for micropower logic circuitry. This book is comprised of 10 chapters and begins with an analysis of fundamental relationships and basic requirements pertinent to the ph

  4. Atmospheric Climate Experiment Plus

    Science.gov (United States)

    Lundahl, K.

    ACE+ is an atmospheric sounding mission using radio occultation techniques and is a combination of the two Earth Explorer missions ACE and WATS earlier proposed to ESA. ACE was highly rated by ESA in the Call for Earth Explorer Opportunity Missions in 1999 and was prioritised as number three and selected as a "hot-stand-by". A phase A study was carried out during 2000 and 2001. ACE will observe atmospheric parameters using radio occultations from an array of 6 micro-satellites which track the L- band signal of GPS satellites to map the detailed refractivity and thermal structure of the global atmosphere from surface to space. Water vapour and wind in Atmospheric Troposphere and Stratosphere WATS was the response to ESA's Call for Ideas for the next Earth Explorer Core Missions in 2001. WATS combines ACE GPS atmospheric occultations and LEO-LEO cross-link occultations. Cross-links strongly enhance the capability of measuring humidity relative to the ACE mission. The Earth Science Advisory Committée at ESA noted that the LEO-GNSS occultation technique is already well established through several missions in recent years and could not recommend WATS for a Phase A study as an Earth Explorer Core Mission. The ESAC was, however, deeply impressed by the LEO-LEO component of the WATS proposal and would regard it as regrettable if this science would be lost and encourages the ACE/WATS team to explore other means to achieve its scientific goal. ACE+ is therefore the response to ESA's 2nd Call for Earth Explorer Opportunity Missions in 2001 and will contribute in a significant manner to ESA's Living Planet Programme. ACE+ will considerably advance our knowledge about atmosphere physics and climate change processes. The mission will demonstrate a highly innovative approach using radio occultations for globally measuring profiles of humidity and temperature throughout the atmosphere and stratosphere. A constellation of 4 small satellites, tracking L-band GPS/GALILEO signals and

  5. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  6. NOAA's Tropical Atmosphere Ocean Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Realtime El Nino and La Nina data from the tropical Pacific Ocean is provided by the Tropical Atmosphere Ocean / Triangle Trans-Ocean buoy network (TAO/TRITON) of...

  7. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  8. Electron Bifurcation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, John W.; Miller, Anne-Frances; Jones, Anne K.; King, Paul W.; Adams, Michael W. W.

    2016-04-01

    Electron bifurcation is the recently recognized third mechanism of biological energy conservation. It simultaneously couples exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss. Little is known about the details of how electron bifurcating enzymes function, but specifics are beginning to emerge for several bifurcating enzymes. To date, those characterized contain a collection of redox cofactors including flavins and iron-sulfur clusters. Here we discuss the current understanding of bifurcating enzymes and the mechanistic features required to reversibly partition multiple electrons from a single redox site into exergonic and endergonic electron transfer paths.

  9. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  10. Electron holography

    CERN Document Server

    Tonomura, Akira

    1993-01-01

    Holography was devised for breaking through the resolution limit of electron microscopes The advent of a "coherent" field emission electron beam has enabled the use of Electron Holography in various areas of magnetic domain structures observation, fluxon observation in superconductors, and fundamental experiments in physics which have been inaccessible using other techniques After examining the fundamentals of electron holography and its applications to the afore mentioned fields, a detailed discussion of the Aharonov-Bohm effect and the related experiments is presented Many photographs and illustrations are included to elucidate the text

  11. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  12. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, M.; de la Fuente, D.; Díaz, I.; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morphology of steel c...

  13. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, Manuel; Fuente, Daniel de la; Díaz, Iván; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morpholog...

  14. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  15. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  16. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  17. Enhancement of two dimensional electron gas concentrations due to Si{sub 3}N{sub 4} passivation on Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure: strain and interface capacitance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dinara, Syed Mukulika, E-mail: smdinara.iit@gmail.com; Jana, Sanjay Kr.; Ghosh, Saptarsi; Mukhopadhyay, Partha; Kumar, Rahul [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India 721302 (India); Chakraborty, Apurba; Biswas, Dhrubes [Dept. of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India 721 302 (India); Bhattacharya, Sekhar [SSN Research Center, Tamilnadu, India 603110 (India)

    2015-04-15

    Enhancement of two dimensional electron gas (2DEG) concentrations at Al{sub 0.3}Ga{sub 0.7}N/GaN hetero interface after a-Si{sub 3}N{sub 4} (SiN) passivation has been investigated from non-destructive High Resolution X-ray Diffraction (HRXRD) analysis, depletion depth and capacitance-voltage (C-V) profile measurement. The crystalline quality and strained in-plane lattice parameters of Al{sub 0.3}Ga{sub 0.7}N and GaN were evaluated from double axis (002) symmetric (ω-2θ) diffraction scan and double axis (105) asymmetric reciprocal space mapping (DA RSM) which revealed that the tensile strain of the Al{sub 0.3}Ga{sub 0.7}N layer increased by 15.6% after SiN passivation. In accordance with the predictions from theoretical solution of Schrödinger-Poisson’s equations, both electrochemical capacitance voltage (ECV) depletion depth profile and C-V characteristics analyses were performed which implied effective 9.5% increase in 2DEG carrier density after passivation. The enhancement of polarization charges results from increased tensile strain in the Al{sub 0.3}Ga{sub 0.7}N layer and also due to the decreased surface states at the interface of SiN/Al{sub 0.3}Ga{sub 0.7}N layer, effectively improving the carrier confinement at the interface.

  18. Precipitation of relativistic electrons of the Van Allen belts into the proton aurora

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory; Miyoshi, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [SEC/NOAA; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA

    2008-01-01

    The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  19. Printed Electronics

    Science.gov (United States)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2016-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  20. Electronic Cereal.

    Science.gov (United States)

    Frentrup, Julie R.; Phillips, Donald B.

    1996-01-01

    Describes activities that use Froot Loops breakfast cereal to help students master the concepts of valence electrons and chemical bonding and the implications of the duet and octet rules. Involves students working in groups to create electron dot structures for various compounds. (JRH)

  1. Atmospheric Composition Instrumentation.

    Science.gov (United States)

    1977-12-26

    9fI urpAt .~~~ — 7. A THOR(a) 9. CON I RACT OR GRANT HUM BER(.) ! ~~~~~~~~ /otis 7 ~~ ~~F 1962~~~ 4~~~~~~ 1 H 9. FoRMING ORGANIZATION NAN NO...objective of the Upper Atmosphere Re- search Program is the acquisition of 1- nowledge of the ohysica] and chemica ) properties and phenomena of the vitally

  2. Atmospheric gas phase reactions

    Science.gov (United States)

    Platt, Ulrich

    This chapter introduces the underlying physicochemical principles and the relevance of atmospheric gas phase reactions. In particular, reaction orders, the concept of elementary reactions, definition of and factors determining reaction rates (kinetic theory of chemical reactions), and photochemical reactions are discussed. Sample applications of the pertinent reaction pathways in tropospheric chemistry are presented, particularly reactions involving free radicals (OH, NO3, halogen oxides) and their roles in the self-cleaning of the troposphere. The cycles of nitrogen and sulfur species as well as the principles of tropospheric ozone formation are introduced. Finally, the processes governing the stratospheric ozone layer (Chapman Cycle and extensions) are discussed.

  3. Atmospheric pseudohalogen chemistry

    OpenAIRE

    Lary, D. J.

    2004-01-01

    There are at least three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. The first is well known, HCN is a product and marker of biomass burning. However, if a detailed ion chemistry of lightning is considered then it is almost certain than in addition to lightning producing NOx, it also produces HOx and HCN. Unlike NOx and HOx, HCN is long-lived and could therefore ...

  4. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.

    2016-10-21

    The opportunity for ignition assistance by a pulsed applied voltage is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields (E/N ≈ 100 Td) by a DC potential applied across the domain, resulting in non-thermal behavior of the plasma formed during the discharge. A two-fluid approach is employed to couple thermal neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported from the ignition zone drift rapidly through the domain, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect, which results in an increase in the energy of the electrons in the fresh mixture with increasing time. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame\\'s preheat zone. In the configuration considered, the effect of the nanosecond pulse is to increase the mass of fuel burned at equivalent times relative to the unsupported ignition through enhanced radical generation, resulting in an increased heat release rate in the immediate aftermath of the pulse.

  5. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    is vital for the more compact type of slab detectors. As well, the MACRO experiment ... sisting of those events in which both vertex and track ends remain in the fiducial volume. There are also 'partially .... more or less than 1.3 GeV) for single track events identified as either electron-like or muon- like. The partially contained ...

  6. Electrons and Phonons in High Temperature Superconductors

    Directory of Open Access Journals (Sweden)

    Anu Singh

    2013-01-01

    Full Text Available The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.

  7. Atmospheric mercury—An overview

    Science.gov (United States)

    Schroeder, William H.; Munthe, John

    This paper presents a broad overview and synthesis of current knowledge and understanding pertaining to all major aspects of mercury in the atmosphere. The significant physical, chemical, and toxicological properties of this element and its environmentally relebant species encountered in the atmosphere are examined. Atmospheric pathways and processes considered herein include anthropogenic as well as natural sources of Hg emissions to the atmosphere, aerial transport and dispersion (including spatial and temporal variability), atmospheric transformations (both physical and chemical types), wet and dry removal/deposition processes to Earth's surface. In addition, inter-compartmental (air-water/soil/vegetation) transfer and biogeochemical cycling of mercury are considered and discussed. The section on numerical modelling deals with atmospheric transport models as well as process-oriented models. Important gaps in our current knowledge of mercury in the atmospheric environment are identified, and suggestions for future areas of research are offered.

  8. 75 FR 8353 - Waiver of Filing Deadline Due to Adverse Weather Conditions

    Science.gov (United States)

    2010-02-24

    ... Commission closed early on Friday, February 5, and closed for business Monday, February 8 through Thursday... Washington, DC area, all paper and electronic filings that were due on February 5 through February 12 are now due on February 16, 2010. DATES: All paper and electronic filings that were due on February 5th...

  9. An investigation of aerosol optical properties: Atmospheric implications and influences

    Science.gov (United States)

    Penaloza-Murillo, Marcos A.

    An experimental, observational, and theoretical investigation of aerosol optical properties has been made in this work to study their implications and influences on the atmosphere. In the laboratory the scientific and instrumental methodology consisted of three parts, namely, aerosol generation, optical and mass concentration measurements, and computational calculations. In particular the optical properties of ammonium sulfate and caffeine aerosol were derived from measurements made with a transmissometer cell-reciprocal- integrating nephelometer (TCRIN), equipped with a laser beam at 632.8 nm, and by applying a Mie theory computer code The aerosol generators, optical equipment and calibration procedures were reviewed. The aerosol shape and size distribution were studied by means of scanning electron microscopy and the Gumprecht- Sliepcevich/Lipofsky-Green extinction-sedimentation method. In particular the spherical and cylindrical shape were considered. During this investigation, an alternative method for obtaining the optical properties of monodisperse spherical non-absorbing aerosol using a cell-transmissometer, which is based on a linearisation of the Lambert-Beer law, was found. In addition, adapting the TCRIN to electrooptical aerosol studies, the optical properties of a circular-cylindrical aerosol of caffeine were undertaken under the condition of random orientation in relation with the laser beam, and perpendicular orientation to it. A theoretical study was conducted to assess the sensitivity of aerosol to a change of shape under different polarisation modes. The aerosol optical properties, obtained previously in the laboratory, were then used to simulate the direct radiative forcing. The calculations and results were obtained by applying a one- dimensional energy-balance box model. The influence of atmospheric aerosol on the sky brightness due to a total solar eclipse was studied using the photometric and meteorological observations made during the

  10. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Deng, Yongfeng; Jiang, Jian; Han, Xianwei; Tan, Chang; Wei, Jianguo

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  11. Digital electronics

    CERN Document Server

    Morris, John

    2013-01-01

    An essential companion to John C Morris's 'Analogue Electronics', this clear and accessible text is designed for electronics students, teachers and enthusiasts who already have a basic understanding of electronics, and who wish to develop their knowledge of digital techniques and applications. Employing a discovery-based approach, the author covers fundamental theory before going on to develop an appreciation of logic networks, integrated circuit applications and analogue-digital conversion. A section on digital fault finding and useful ic data sheets completes th

  12. Electronic diagrams

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Diagrams is a ready reference and general guide to systems and circuit planning and in the preparation of diagrams for both newcomers and the more experienced. This book presents guidelines and logical procedures that the reader can follow and then be equipped to tackle large complex diagrams by recognition of characteristic 'building blocks' or 'black boxes'. The goal is to break down many of the barriers that often seem to deter students and laymen in learning the art of electronics, especially when they take up electronics as a spare time occupation. This text is comprised of nin

  13. Electronic identity

    CERN Document Server

    de Andrade, Norberto Nuno Gomes; Argles, David

    2014-01-01

    With the increasing availability of electronic services, security and a reliable means by which identity is verified is essential.Written by Norberto Andrade the first chapter of this book provides an overview of the main legal and regulatory aspects regarding electronic identity in Europe and assesses the importance of electronic identity for administration (public), business (private) and, above all, citizens. It also highlights the role of eID as a key enabler of the economy.In the second chapter Lisha Chen-Wilson, David Argles, Michele Schiano di Zenise and Gary Wills discuss the user-cent

  14. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  15. Stretchable electronics

    CERN Document Server

    Someya, Takao

    2012-01-01

    With its comprehensive coverage this handbook and ready reference brings together some of the most outstanding scientists in the field to lay down the undisputed knowledge on how to make electronics stretchable.As such, it focuses on gathering and evaluating the materials, designs, models and technologies that enable the fabrication of fully elastic electronic devices which can sustain high strain. Furthermore, it provides a review of those specific applications that directly benefit from highly compliant electronics, including transistors, photonic devices and sensors. In addition to stre

  16. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  17. Starting electronics

    CERN Document Server

    Brindley, Keith

    2005-01-01

    Starting Electronics is unrivalled as a highly practical introduction for hobbyists, students and technicians. Keith Brindley introduces readers to the functions of the main component types, their uses, and the basic principles of building and designing electronic circuits. Breadboard layouts make this very much a ready-to-run book for the experimenter; and the use of multimeter, but not oscilloscopes, puts this practical exploration of electronics within reach of every home enthusiast's pocket. The third edition has kept the simplicity and clarity of the original. New material

  18. The effect of electron bite-outs on artificial electron heating and the PMSE overshoot

    Directory of Open Access Journals (Sweden)

    M. Kassa

    2005-12-01

    with height, showing the presence of a bite-out, while on the next day the heating factor mainly decreases with height, indicating that the fractional amount of dust is low, so that the electron density is hardly affected by it. On the third day there is little heating effect on the PMSE layer. This is probably due to a sufficiently high electron density in the atmosphere below the PMSE layer, so that the transmitted heater power is absorbed in these lower layers. On this day the D-region, as given by the UHF (933MHz observations, extends deeper down in the atmosphere than on the other two days, indicating that the degree of ionization in and below the PMSE layers is higher as well.

  19. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  20. Toxicity of atmospheric aerosols on marine phytoplankton.

    Science.gov (United States)

    Paytan, Adina; Mackey, Katherine R M; Chen, Ying; Lima, Ivan D; Doney, Scott C; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F

    2009-03-24

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  1. Atmospheric Solar Heating in Minor Absorption Bands

    Science.gov (United States)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  2. Atmospheres and evolution. [of microbial life on earth

    Science.gov (United States)

    Margulis, L.; Lovelock, J. E.

    1981-01-01

    Studies concerning the regulation of the earth atmosphere and the relation of atmospheric changes to the evolution of microbial life are reviewed. The improbable nature of the composition of the earth atmosphere in light of the atmospheric compositions of Mars and Venus and equilibrium considerations is pointed out, and evidence for the existence of microbial (procaryotic) life on earth as far back as 3.5 billion years ago is presented. The emergence of eucaryotic life in the Phanerozoic due to evolving symbioses between different procaryotic species is discussed with examples given of present-day symbiotic relationships between bacteria and eucaryotes. The idea that atmospheric gases are kept in balance mainly by the actions of bacterial cells is then considered, and it is argued that species diversity is necessary for the maintenance and origin of life on earth in its present form.

  3. Caustics of atmospheric waves

    Science.gov (United States)

    Godin, Oleg A.

    2015-04-01

    Much like light and sound, acoustic-gravity waves in inhomogeneous atmosphere often have a caustic or caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Increase of the wave magnitude in the vicinity of a caustic makes such vicinities of primary interest in a number of problems, where a signal needs to be separated from a background noise. The value of wave focusing near caustics should be carefully quantified in order to evaluate possible nonlinearities promoted by the focusing. Physical understanding of the wave field in the vicinity of a caustic is also important for understanding of the wave reflection from and transmission (tunneling) through the caustic. To our knowledge, in contrast to caustics of acoustic, electromagnetic, and seismic waves as well as gravity waves in incompressible fluids, asymptotics of acoustic-gravity waves in the vicinity of a caustic have never been studied systematically. In this paper, we fill this gap. Atmospheric waves are considered as linear acoustic-gravity waves in a neutral, horizontally stratified, moving ideal gas of variable composition. Air temperature and wind velocity are assumed to be gradually varying functions of height, and slowness of these variations determines the large parameter of the problem. The scale height of the atmosphere can be large or small compared to the vertical wavelength. It is found that the uniform asymptotics of the wave field in the presence of a simple caustic can be expressed in terms of the Airy function and its derivative. As for the acoustic waves, the argument of the Airy function is expressed in terms of the eikonal calculated in the ray, or WKB, approximation. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In the uniform asymptotics, the terms with the Airy function and its derivative are weighted by cosine

  4. Paper electronics.

    Science.gov (United States)

    Tobjörk, Daniel; Österbacka, Ronald

    2011-05-03

    Paper is ubiquitous in everyday life and a truly low-cost substrate. The use of paper substrates could be extended even further, if electronic applications would be applied next to or below the printed graphics. However, applying electronics on paper is challenging. The paper surface is not only very rough compared to plastics, but is also porous. While this is detrimental for most electronic devices manufactured directly onto paper substrates, there are also approaches that are compatible with the rough and absorptive paper surface. In this review, recent advances and possibilities of these approaches are evaluated and the limitations of paper electronics are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electronic Cigarettes

    Science.gov (United States)

    ... Campaigns Infogallery Be Tobacco Free Search betobaccofree.gov Menu Search ABOUT TOBACCO Tobacco Facts and Figures Tobacco and Nicotine Smoked Tobacco Products Smokeless Tobacco Products Electronic Cigarettes New FDA Regulations HEALTH EFFECTS Nicotine Addiction ...

  6. Electronic Elections

    DEFF Research Database (Denmark)

    Schürmann, Carsten

    2009-01-01

    Electronic voting technology is a two edged sword. It comes with many risks but brings also many benefits. Instead of flat out rejecting the technology as uncontrollably dangerous, we advocate in this paper a different technological angle that renders electronic elections trustworthy beyond...... the usual levels of doubt. We exploit the trust that voters currently have into the democratic process and model our techniques around that observation accordingly. In particular, we propose a technique of trace emitting computations to record the individual steps of an electronic voting machine...... for a posteriori validation on an acceptably small trusted computing base. Our technology enables us to prove that an electronic elections preserves the voter’s intent, assuming that the voting machine and the trace verifier are independent....

  7. Electronic plants.

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T; Berggren, Magnus

    2015-11-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants' "circuitry" has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization.

  8. Electron Microprobe

    Data.gov (United States)

    Federal Laboratory Consortium — The JEOL JXA-8600 is a conventional hairpin filament thermal emission electron microprobe that is more than 20 years old. It is capable of performing qualitative and...

  9. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  10. Elemental analysis of atmospheric aerosols in Gaborone | Verma ...

    African Journals Online (AJOL)

    Aerosols are mixture of solid and liquid particles and have considerable variation in terms of their chemical composition and size. In this study the elemental composition of aerosol particles in the atmosphere of a city, Gaborone, was carried out. The elemental analysis was done by environmental scanning electron ...

  11. Energy distribution of cosmic rays in the Earth's atmosphere and ...

    Indian Academy of Sciences (India)

    Cosmic rays cause significant damage to the electronic equipments of the aircrafts. In this paper, we have investigated the accumulation of the deposited energy of cosmic rays on the Earth's atmosphere, especially in the aircraft area. In fact, if a high-energy neutron or proton interacts with a nanodevice having only a few ...

  12. An assessment of common atmospheric particulate matter sampling ...

    African Journals Online (AJOL)

    In this study, the atmospheric particulate matter (PM) was sampled using the tapered element oscillating microbalance, and the inductively coupled plasma mass spectroscopy (ICP-MS) and scanning electron microscopy coupled with energy dispersive spectrometry (SEM/EDS) were used for determination of elemental ...

  13. Negative ion-atmospheric pressure photoionization-mass spectrometry

    NARCIS (Netherlands)

    Kauppila, T.J.; Kotiaho, T.; Kostiainen, R; Bruins, A.P.

    The ionization mechanism in the novel atmospheric pressure photoionization mass spectrometry (APPI-MS) in negative ion mode was studied thoroughly by the analysis of seven compounds in 17 solvent systems. The compounds possessed either gas-phase acidity or positive electron affinity, whereas the

  14. Evaluation of Monte Carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    C. Rutjes (Casper); D. Sarria (David); A.B. Skeltved (Alexander Broberg); A. Luque (Alejandro); G. Diniz (Gabriel); N. Østgaard (Nikolai); U. Ebert (Ute)

    2016-01-01

    textabstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires

  15. First results of fair-weather atmospheric electricity measurements in ...

    Indian Academy of Sciences (India)

    Centre of Advanced Study in Radiophysics and Electronics 1, Girish Vidyaratna Lane,. University of Calcutta, Kolkata ... air–earth current density (Jz) and atmospheric electrical conductivity (σ) in fair-weather condi- tions. The diurnal variation of E ... The nearest city Agartala, the capital of the state. Tripura, is 10km away from ...

  16. Future Atmospheric Neutrino Detectors

    CERN Document Server

    Geiser, A

    2000-01-01

    Future experiments focusing on atmospheric neutrino detection are reviewed. One of the main goals of these experiments is the detection of an unambiguous oscillation pattern (nu_mu reappearance) to prove the oscillation hypothesis. Further goals include the discrimination of nu_mu - nu_tau and nu_mu - nu_sterile oscillations, and the detection of a potential small nu_mu - nu_e contribution. The search for matter effects in three or more flavour oscillations can be used to constrain hybrid oscillation models and potentially measure the sign of delta m^2. The detectors and measurement techniques proposed to achieve these goals are described, and their physics reach is discussed.

  17. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    photosynthetically fixing it into their tissues.  To calculate the atmospheric conductance or mass transfer  coefficient in vegetated fields of  maize  we used...uptake through aerodynamic and leaf boundary layers and the stomata of  maize  at  field scale as determined by continuous stable isotope measurements... digestion  with specific homing endonucleases (Figure 4).  Completion of the triple vector construction of mmoX, Y and Z in E. coli was confirmed by PCR

  18. Foundations of atmospheric pressure non-equilibrium plasmas

    Science.gov (United States)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  19. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  20. Atmospheric propagation of THz radiation.

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

    2005-11-01

    In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

  1. Characterization of a dielectric barrier discharge in controlled atmosphere

    Science.gov (United States)

    Kogelheide, Friederike; Offerhaus, Björn; Bibinov, Nikita; Bracht, Vera; Smith, Ryan; Lackmann, Jan-Wilm; Awakowicz, Peter; Stapelmann, Katharina; Bimap Team; Aept Team

    2016-09-01

    Non-thermal atmospheric-pressure plasmas are advantageous for various biomedical applications as they make a contact- and painless therapy possible. Due to the potential medical relevance of such plasma sources further understanding of the chemical and physical impact on biological tissue regarding the efficacy and health-promoting effect is necessary. The knowledge of properties and effects offers the possibility to configure plasmas free of risk for humans. Therefore, tailoring the discharge chemistry in regard to resulting oxidative and nitrosative effects on biological tissue by adjusting different parameters is of growing interest. In order to ensure stable conditions for the characterization of the discharge, the used dielectric barrier discharge was mounted in a vessel. Absolutely calibrated optical emission spectroscopy was carried out to analyze the electron density and the reduced electric field. The rather oxygen-based discharge was tuned towards a more nitrogen-based discharge by adjusting several parameters as reactive nitrogen species are known to promote wound healing. Furthermore, the impact of an ozone-free discharge has to be studied. This work was funded by the German Research Foundation (DFG) with the packet grant PAK 816 `Plasma Cell Interaction in Dermatology'.

  2. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  3. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    Science.gov (United States)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  4. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    Directory of Open Access Journals (Sweden)

    Veronica Vaida

    2008-01-01

    Full Text Available Atmospheric chemical reactions are often initiated by ultraviolet (UV solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical reactions. Experimental and theoretical O–H intensities of several carboxylic acids, alcohols, and peroxides are presented. The importance of combination bands in spectra at chemically relevant energies is examined in the context of atmospheric photochemistry. Candidate systems for overtone-initiated chemistry are provided, and their lowest energy barrier for reaction and the minimum quanta of O–H stretch required for reaction are calculated. We conclude with a discussion of the major pathways available for overtone-induced reactions in the atmosphere.

  5. Molecular Dications in Planetary Atmospheric Escape

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2016-08-01

    Full Text Available Fundamental properties of multiply charged molecular ions, such as energetics, structure, stability, lifetime and fragmentation dynamics, are relevant to understand and model the behavior of gaseous plasmas as well as ionosphere and astrophysical environments. Experimental determinations of the Kinetic Energy Released (KER for ions originating from dissociations reactions, induced by Coulomb explosion of doubly charged molecular ions (molecular dications produced by double photoionization of CO2, N2O and C2H2 molecules of interest in planetary atmospheres, are reported. The KER measurement as a function of the ultraviolet (UV photon energy in the range of 28–65 eV was extracted from the electron-ion-ion coincidence spectra obtained by using tunable synchrotron radiation coupled with ion imaging techniques at the ELETTRA Synchrotron Light Laboratory Trieste, Italy. These experiments, coupled with a computational analysis based on a Monte Carlo trajectory simulation, allow assessing the probability of escape for simple ionic species in the upper atmosphere of Mars, Venus and Titan. The measured KER in the case of H+, C+, CH+, CH2+, N+, O+, CO+, N2+ and NO+ fragment ions range between 1.0 and 5.5 eV, being large enough to allow these ionic species to participate in the atmospheric escape from such planets into space. In the case of Mars, we suggest a possible explanation for the observed behavior of the O+ and CO22+ ion density profiles.

  6. The Radiometer Atmospheric Cubesat Experiment

    Science.gov (United States)

    Lim, B.; Bryk, M.; Clark, J.; Donahue, K.; Ellyin, R.; Misra, S.; Romero-Wolf, A.; Statham, S.; Steinkraus, J.; Lightsey, E. G.; Fear, A.; Francis, P.; Kjellberg, H.; McDonald, K.

    2014-12-01

    The Jet Propulsion Laboratory (JPL) has been developing the Radiometer Atmospheric CubeSat Experiment (RACE) since 2012, which consists of a water vapor radiometer integrated on a 3U CubeSat platform. RACE will measure 2 channels of the 183 GHz water vapor line, and will be used to validate new low noise amplifier (LNA) technology and a novel amplifier based internal calibration subsystem. The 3U spacecraft is provided by the University of Texas at Austin's Satellite Design Laboratory. RACE will advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and a CubeSat 183 GHz radiometer system from TRL 4 to TRL 7. Measurements at 183 GHz are used to retrieve integrated products and vertical profiles of water vapor. Current full scale satellite missions that can utilize the technology include AMSU, ATMS, SSMIS and Megha-Tropiques. The LNAs are designed at JPL, based on a 35 nm indium phosphide (InP) high-electron-mobility transistors (HEMT) technology developed by Northrop Grumman. The resulting single chip LNAs require only 25 mW of power. Current pre-launch instrument performance specifications include an RF gain of over 30 dB and a room noise figure of noise figure is dominated by the insertion loss of the Dicke switch which at these frequencies are > 5dB. If a coupler based calibration system is shown to be sufficient, future receiver systems will have noise figures noise figure variation over temperature is approximately 0.55 dB/K. The NEDT of the system is power consumption by eliminating the need for a local oscillator. A 2012 NASA CubeSat Launch Initiative (CSLI) selection, RACE is manifested for launch on the Orbital 3 (Orb-3) mission scheduled for October 2014. RACE will be deployed from the International Space Station (ISS) by NanoRacks.

  7. Ensemble data assimilation in the Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Pedatella, N. M.; Raeder, K.; Anderson, J. L.; Liu, H.-L.

    2014-08-01

    We present results pertaining to the assimilation of real lower, middle, and upper atmosphere observations in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. The ability to assimilate lower atmosphere observations of aircraft and radiosonde temperature and winds, satellite drift winds, and Constellation Observing System for Meteorology, Ionosphere, and Climate refractivity along with middle/upper atmosphere temperature observations from SABER and Aura MLS is demonstrated. The WACCM+DART data assimilation system is shown to be able to reproduce the salient features, and variability, of the troposphere present in the National Centers for Environmental Prediction/National Center for Atmospheric Research Re-Analysis. In the mesosphere, the fit of WACCM+DART to observations is found to be slightly worse when only lower atmosphere observations are assimilated compared to a control experiment that is reflective of the model climatological variability. This differs from previous results which found that assimilation of lower atmosphere observations improves the fit to mesospheric observations. This discrepancy is attributed to the fact that due to the gravity wave drag parameterizations, the model climatology differs significantly from the observations in the mesosphere, and this is not corrected by the assimilation of lower atmosphere observations. The fit of WACCM+DART to mesospheric observations is, however, significantly improved compared to the control experiment when middle/upper atmosphere observations are assimilated. We find that assimilating SABER observations reduces the root-mean-square error and bias of WACCM+DART relative to the independent Aura MLS observations by ˜50%, demonstrating that assimilation of middle/upper atmosphere observations is essential for accurate specification of the mesosphere and lower thermosphere region in WACCM+DART. Last, we demonstrate that

  8. Atmospheric Impacts of a Close Cometary Encounter

    Science.gov (United States)

    Aylett, Tasha; Chipperfield, Martyn; Diego Carrillo Sánchez, Juan; Feng, Wuhu; Forster, Piers; Plane, John

    2017-04-01

    Although a close encounter with a comet is extremely unlikely, a significant perturbation to the flux of Earth-bound dust from a comet's close passage could have huge implications for both the chemistry of the atmosphere and climate. For example, following the close passage of Comet Halley to Earth in A.D. 536, dark skies, reduced day lengths and a protracted global cooling were reported [1], for which an extraterrestrial disturbance is likely to be at least partly responsible. Indeed, the recent encounter of Comet Siding Spring with Mars provided evidence that the risks posed by such an event are significant [2]. We have run sensitivity simulations using the Whole Atmosphere Community Climate Model (WACCM) with an elevated Meteoric Input Function (MIF) to investigate such an encounter - specifically, Comet Halley in A.D. 536. The simple analytical model developed by Moorhead et al. [3] has been incorporated into an atmospheric chemical ablation model to provide the MIF of several meteoric species (Na, Fe, Si, Mg and S) in the mesosphere and lower thermosphere (70-120 km) for input into WACCM. Key effects of this additional input on the chemistry of the upper atmosphere and the metal layers have been explored in the simulations and effects on mesospheric and stratospheric ozone chemistry have been assessed. In addition to any effects on atmospheric chemistry, WACCM will also be used to provide insight into the impacts of a high dust flux on the Earth's climate. References [1] Stothers, R. B. (1984), Mystery Cloud of Ad-536, Nature, 307(5949), 344-345. [2] Schneider, N. M., et al. (2015), MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars, Geophys Res Lett, 42(12), 4755-4761. [3] Moorhead, A. V., P. A. Wiegert, and W. J. Cooke (2014), The meteoroid fluence at Mars due to Comet C/2013 A1 (Siding Spring), Icarus, 231, 13-21.

  9. The Atmospheric Fate of Organic Nitrogen Compounds

    Science.gov (United States)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  10. Influence of photoelectrons on the structure and dynamics of the upper atmosphere of a hot Jupiter

    Science.gov (United States)

    Ionov, D. E.; Shematovich, V. I.; Pavlyuchenkov, Ya. N.

    2017-05-01

    A self-consistent, aeronomic model of the upper atmosphere of a "hot Jupiter" including reactions involving suprathermal photoelectrons is presented. This model is used to compute the height profiles of the gas density, velocity, and temperature in the atmosphere of the exoplanet HD 209458b. It is shown that including suprathermal electrons when computing the heating and cooling functions reduces the mass loss rate of the atmosphere by a factor of five.

  11. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.

    2015-06-01

    Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.

  12. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    Science.gov (United States)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  13. Earth's Atmospheric Electricity Parameter Response During Venus Transit

    Directory of Open Access Journals (Sweden)

    Syam Sundar De

    2015-01-01

    Full Text Available Venus transited across the Sun on 06 June 2012, introducing significant contribution to the tidal characteristics of the solar atmosphere. _ atmosphere was perturbed due to an anomalous Coronal Mass Ejection (CME and γ-radiationγ-radiation influenced by the solar tide due to Venus transit, thereby the Earth-ionosphere waveguide characteristics were changed. In this anomalous situation we measured some atmospheric electricity parameters such as Schumann resonance (SR amplitude, very low frequency (VLF sferics, subionospheric transmitted signals and the point discharge current (PDC along with the vertical electrical potential gradient (PG at the ground surface on the day of transit. The results showed some remarkable variations during the transit as well as pre- and post-transit periods. The observed anomalies in the recorded data were interpreted in terms of the anomalous solar tidal effects initiated due to Venus transit.

  14. Screen level temperature increase due to higher atmospheric carbon dioxide in calm and windy nights revisited

    NARCIS (Netherlands)

    Steeneveld, G.J.; Holtslag, A.A.M.; McNider, R.T.; Pielke sr., R.A.

    2011-01-01

    Long-term surface observations over land have shown temperature increases during the last century, especially during nighttime. Observations analyzed by Parker [2004] show similar long-term trends for calm and windy conditions at night, and on basis of this it was suggested that the possible effect

  15. External costs of atmospheric Pb emissions: valuation of neurotoxic impacts due to inhalation

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Thomsen, Marianne; Frohn, Lise

    2010-01-01

    The Impact Pathway Approach (IPA) is an innovative methodology to establish links between emissions, related impacts and monetary estimates. Only few attempts have so far been presented regarding emissions of metals; in this study the external costs of airborne lead (Pb) emissions are assessed us...

  16. Lindblad equation for the decay of entanglement due to atmospheric scintillation

    CSIR Research Space (South Africa)

    Roux, FS

    2014-06-01

    Full Text Available The quantum state for the spatial degrees of freedom of photons propagating through turbulence is analyzed. The turbulent medium is modeled by a single phase screen for weak scintillation conditions and by multiple phase screens for general...

  17. Application of PC-CREAM in the Netherlands - Dose impact due to atmospheric releases

    NARCIS (Netherlands)

    Eleveld H; Twenhofel CJW; Pruppers MJM; LSO

    1999-01-01

    CREAM, een model om de radiologische consequenties van reguliere lozingen te bepalen, is ontwikkeld door National Radiological Protection Board (UK). PC-CREAM, de PC-implementatie van het model, is vergeleken met de Nederlandse richtlijn. Voor twee specifieke referentiesituaties en elf natuurlijk

  18. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  19. Electronic Commerce

    Energy Technology Data Exchange (ETDEWEB)

    Laird, N. [NRG Information Services Inc., Calgary, AB (Canada)

    1995-11-01

    The concept of electronic commerce in the gas industry was discussed. It was defined as the integration of communication technology, advanced information processing capability and business standards, to improve effectiveness of the business process. Examples of electronic data interchange from the automotive, airline, and banking industry were given. The objective of using this technology in the gas industry was described as the provision of one electronic facility to make seamless contractual and operational arrangements for moving natural gas across participating pipelines. The benefit of seamless integration - one readily available standard system used by several companies - was highlighted. A list of value-added services such as the free movement of bulletins, directories, nominations,and other documents was provided.

  20. Impact of electron irradiation on electron holographic potentiometry

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. B.; Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Berger, D. [Technische Universität Berlin, Zentraleinrichtung für Elektronenmikroskopie, Strae des 17. Juni 135, 10623 Berlin (Germany); Knauer, A.; Weyers, M. [Ferdinand-Braun-Institut, Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Koslow, I.; Kneissl, M. [Ferdinand-Braun-Institut, Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, 10623 Berlin (Germany)

    2014-09-01

    While electron holography in the transmission electron microscope offers the possibility to measure maps of the electrostatic potential of semiconductors down to nanometer dimensions, these measurements are known to underestimate the absolute value of the potential, especially in GaN. We have varied the dose rates of electron irradiation over several orders of magnitude and observed strong variations of the holographically detected voltages. Overall, the results indicate that the electron beam generates electrical currents within the specimens primarily by the photovoltaic effect and due to secondary electron emission. These currents have to be considered for a quantitative interpretation of electron holographic measurements, as their negligence contributes to large parts in the observed discrepancy between the measured and expected potential values in GaN.