WorldWideScience

Sample records for atmospheric electrons due

  1. Greenhouse effect due to atmospheric nitrous oxide

    Science.gov (United States)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  2. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    microscope, and since its invention by Ernst Ruska, the idea of imaging samples under gaseous atmospheres was envisioned. However, microscopes have traditionally been operated in high vacuum due to sensitive electron sources, sample contamination, and electron scattering off gas molecules resulting in loss...

  3. Alignment of atmospheric mineral dust due to electric field

    OpenAIRE

    Z. Ulanowski; Bailey, J; Lucas, P.W.; Hough, J.H.; E. Hirst

    2007-01-01

    International audience Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and ch...

  4. Study of Compton Broadening Due to Electron-Photon Scattering

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao, M.

    2010-06-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radiation field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation.The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons.It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle.We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  5. Europa's Oxygen Atmosphere: Effects due to Regolith Porosity and Composition

    Science.gov (United States)

    Cassidy, T. A.; Johnson, R. E.

    2006-05-01

    The surfaces of "airless" bodies in our solar system are covered by porous regoliths, granular surfaces generated by micrometeor impact. Europa's tenuous neutral atmosphere is generated by UV and plasma irradiation of and sublimation from this regolith. Therefore, in addition to the atmosphere above the surface, there is a substantial amount of gas in the porous regolith. The effect of the regolith on the source processes and sinks are typically neglected in modeling the spatial distribution and composition of the atmosphere. The regolith complicates processes such as sputtering, the ejection of mostly neutral atoms and molecules due to energetic ion flux, because the incident ions encounter surfaces at a variety of angles, rather than one angle as usually assumed. Also, most ejecta produced within a regolith no longer have a direct line to space. If ejecta do not stick to or react with grain surfaces, then it may be safely assumed that the majority of ejecta will interact with grain surfaces before leaving the regolith. Similarly, a returning non-sticking particle experiences numerous interactions with grains below the nominal surface. As compared to a flat, smooth planetary surface, these many interactions enhance the probability of chemical reactions or sticking. F. Leblanc and R.E. Johnson have shown that the sticking coefficient is critical in describing the alkali atmosphere at Mercury and likely Europa. The regolith will also affect the velocity distribution of non-sticking ejecta and atmospheric species, which will affect the population of the Europa neutral torus. In this presentation the effect of regolith on the source and sink processes is demonstrated by generating the gravitationally bound and escaping components of the ballistic Europan atmosphere with and without regolith effects. Assuming that O2 can react in the regolith where there is a high sulfur content, we can generate a morphology roughly consistent with HST observations by McGrath and

  6. Lower Atmospheric Electric Field due to Cloud Charge Distribution

    Science.gov (United States)

    Paul, Suman; Haldar, Dilip kumar; Sundar De, Syam; Ghosh, Abhijit; Hazra, Pranab; Bandyopadhyay, Bijoy

    2016-07-01

    The distributions of electric charge in the electrified clouds introduce important effects in the ionosphere and into the region between the ionosphere and the Earth. The electrical properties of the medium are changed greatly between thundercloud altitudes and the magnetosphere. A model for the penetration of DC thundercloud electric field between the Earth's upper and lower atmosphere has been presented here. The model deals with the electromagnetic responses of the atmosphere simulated through Maxwell's equations together with a time-varying source charge distribution. The modified ellipsoidal-Gaussian profile has been taken for the charge distribution of the electrified cloud. The conductivity profile of the medium is taken to be isotropic below 70 km height and anisotropic above 70 km. The Earth's surface is considered to be perfectly conducting. A general form of equation representing the thundercloud electric field component is deduced. In spite of assumptions for axial symmetry of thundercloud charge distribution considered in the model, the results are obtained giving the electric field variation in the upper atmosphere. The vertical component of the electric field would relate the global electric circuit while the radial component showed the electrical coupling between the lower atmosphere and the ionized Earth's environment. The variations of the values of field components for different heights as well as Maxwell's current have been evaluated. Coupling between the troposphere and the ionosphere is critically dependent on the height variations of electrical conductivity. Field-aligned electron density irregularities in the ionosphere may be investigated through the present analyses.

  7. Runaway electron beam in atmospheric pressure discharges

    Science.gov (United States)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-11-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes.

  8. Alignment of atmospheric mineral dust due to electric field

    Directory of Open Access Journals (Sweden)

    Z. Ulanowski

    2007-12-01

    Full Text Available Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here. It is also possible that the alignment and the electric field modify dust transport.

  9. Alignment of atmospheric mineral dust due to electric field

    Directory of Open Access Journals (Sweden)

    Z. Ulanowski

    2007-09-01

    Full Text Available Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction consistent with the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling also indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here.

  10. Alignment of atmospheric mineral dust due to electric field

    Science.gov (United States)

    Ulanowski, Z.; Bailey, J.; Lucas, P. W.; Hough, J. H.; Hirst, E.

    2007-12-01

    Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here. It is also possible that the alignment and the electric field modify dust transport.

  11. Modification of Atmospheric Circulations and Transports due to Amazon Deforestation

    Science.gov (United States)

    Badger, A.; Dirmeyer, P.

    2013-12-01

    Land-use change (LUC) has generally been considered a local environmental issue, but it is now becoming a force of global importance. LUC occurs on local scales, with real world social and economic benefits, that can potentially cause ecological degradation. Large-scale LUC, such as deforestation in the Amazon, can have a significant local affect on the climate and has the potential to impact the regional and global climate systems. Previous climate modeling studies have shown non-local responses due to Amazon deforestation, however, a common flaw in these studies is the use of prescribed ocean conditions, which can dampen the global response. Using fully coupled modeling simulations with the Community Earth System Model version 1.2.0, the Amazon rainforest has been replaced with a distribution of representative tropical crops. The degree of modification to the general circulation due to heating anomalies in the tropics as a response to the removal of the Amazon rainforest is quantified. Most notably, modifications to the Hadley and Walker circulations, the two fundamental circulations mediating the climate at low latitudes, occur. Coupling these circulation changes with sensible heat and latent heat fluxes, atmospheric transports of heat and moisture are affected both regionally and globally.

  12. Atmospheric loss of energetic electrons in the Jovian synchrotron zone

    Science.gov (United States)

    Wang, K.; Bolton, S. J.; Gulkis, S. M.; Levin, S. M.

    2002-03-01

    For decades, ground-based radio observations of Jovian synchrotron radiation have shown emission originating predominantly from the equatorial region and from high-latitude regions (lobes) near L˜2.5. The observations show a longitudinally asymmetric gap between the emission peaks of the lobes and the atmosphere of Jupiter. One possible explanation for these gaps is the loss of electrons through collisions with atmospheric neutrals as the electrons bounce along magnetic field lines and drift longitudinally in the presence of asymmetric magnetic fields. To assess this hypothesis, we applied the recently developed O6 and VIP4 magnetic field models to calculate the trajectories of electrons as they drift longitudinally in Jupiter's magnetic field, and derive the sizes of their equatorial drift loss cones. We then identified the shells on which electrons would be lost due to collisions with the atmosphere. The calculated drift loss cone sizes could be applied in future to the modeling of electron distribution functions in this region and could also be applied to the study of Jovian auroral zone. This method also allowed us to compute the shell-splitting effects for these drifting electrons and we find the shell-splitting to be small (⩽0.05 RJ). This justifies a recent modeling assumption that particles drift on the same shells in a three-dimensional distribution model of electrons. We also compared the computed gaps with the observed gaps, and found that the atmospheric loss mechanism alone is not able to sufficiently explain the observed gap asymmetry.

  13. Resuspension of radionuclides into the atmosphere due to forest fires

    International Nuclear Information System (INIS)

    Two major wild fire episodes occurred in north-western Russia in April/May and August 2008. The burning biomass and heating of the surface soil released several hazardous components into the atmosphere. During the spring smoke episode the 137Cs activity concentration in the air in southern Finland increased by a factor of 10 compared to values just before the episode. Simultaneously there was an increase of a same order of magnitude in the concentrations of PM10, trace metals (e.g. lead), polycyclic aromatic hydrocarbons (e.g. benzo[a]pyrene) and potassium. The 210Po/210Pb activity ratio increased from the usual 3-5% to even as high as 35% because Po is more volatile than Pb. The summer episode was less severe but still the mercury concentration in the air increased by a factor of two while 137Cs activity concentration rose by a factor of eight. From the radiological point of view the exposure to the increased radionuclide concentration was insignificant compared to health hazards due to the increased concentration of aerosol particles and their chemical components. (author)

  14. Compensating image degradation due to atmospheric turbulence in anisoplanatic conditions

    Science.gov (United States)

    Huebner, Claudia S.

    2009-05-01

    In imaging applications the prevalent effects of atmospheric turbulence comprise image dancing and image blurring. Suggestions from the field of image processing to compensate for these turbulence effects and restore degraded imagery include Motion-Compensated Averaging (MCA) for image sequences. In isoplanatic conditions, such an averaged image can be considered as a non-distorted image that has been blurred by an unknown Point Spread Function (PSF) of the same size as the pixel motions due to the turbulence and a blind deconvolution algorithm can be employed for the final image restoration. However, when imaging over a long horizontal path close to the ground, conditions are likely to be anisoplanatic and image dancing will effect local image displacements between consecutive frames rather than global shifts only. Therefore, in this paper, a locally operating variant of the MCA-procedure is proposed, utilizing Block Matching (BM) in order to identify and re-arrange uniformly displaced image parts. For the final restoration a multistage blind deconvolution algorithm is used and the corresponding deconvolution results are presented and evaluated.

  15. Jet formation in solar atmosphere due to magnetic reconnection

    CERN Document Server

    González-Avilés, J J; Fedun, V

    2016-01-01

    Using numerical simulations, we show that jets with features of type II spicules and cold coronal jets corresponding to temperatures $10^{4}$ K can be formed due to magnetic reconnection in a scenario in presence of magnetic resistivity. For this we model the low chromosphere-corona region using the C7 equilibrium solar atmosphere model and assuming Resistive MHD rules the dynamics of the plasma. The magnetic filed configurations we analyze correspond to two neighboring loops with opposite polarity. The separation of the loops' feet determines the thickness of a current sheet that triggers a magnetic reconnection process, and the further formation of a high speed and sharp structure. We analyze the cases where the magnetic filed strength of the two loops is equal and different. In the first case, with a symmetric configuration the spicules raise vertically whereas in an asymmetric configuration the structure shows an inclination. With a number of simulations carried out under a 2.5D approach, we explore vario...

  16. Atmosphere-Ionosphere Coupling due to Atmospheric Tides (Julius Bartels Medal Lecture)

    Science.gov (United States)

    Forbes, Jeffrey M.

    2016-04-01

    Within the last decade, a new realization has arrived on the scene of ionosphere-thermosphere (IT) science: terrestrial weather significantly influences space weather. The aspect of space weather referred to here consists of electron density variability that translates to uncertainties in navigation and communications systems, and neutral density variability that translates to uncertainties in orbital and reentry predictions. In the present context "terrestrial weather" primarily refers to the meteorological conditions that determine the spatial-temporal distribution of tropospheric water vapor and latent heating associated with tropical convection, and the middle atmosphere disturbances associated with sudden stratosphere warmings. The net effect of these processes is a spatially- and temporally-evolving spectrum of waves (gravity waves, tides, planetary waves, Kelvin waves) that grows in amplitude with height and enters the IT system near ~100 km. Some members of the wave spectrum penetrate all the way to the base of the exosphere (ca. 500 km). Along the way, nonlinear interactions between different wave components occur, modifying the interacting waves and giving rise to secondary waves. Finally, the IT wind perturbations carried by the waves can redistribute ionospheric plasma, either through the electric fields generated via the dynamo mechanism between 100 and 150 km, or directly by moving plasma along magnetic field lines at higher levels. Additionally, the signatures of wave-driven dynamo currents are reflected in magnetic perturbations observed at the ground. This is how terrestrial atmospheric variability, through the spectrum of vertically- propagating waves that it produces, can effectively drive IT space weather. The primary objective of this Julius Bartels Lecture is to provide an overview of the global observational evidence for the IT consequences of these upward-propagating waves. In honor of Julius Bartels, who performed much research (including

  17. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2015-11-01

    The U.S. Department of Energy’s Atmosphere to Electrons research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth’s atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind.

  18. Electron as Spatiotemporal Complexity due to Self-Organized Criticality

    CERN Document Server

    Ta Chung Meng

    2001-01-01

    The electron, which has been pictured as an elementary particle ever since J.J. Thomson's e/m-measurement in 1897, and the relativistic motion of which is described by the Dirac equation, is discussed in the light of the recent progress made in Science of Complex Systems. Theoretical arguments and experimental evidences are presented which show that such an electron exhibits characteristic properties of spatiotemporal complexities due to Self-Organized Criticality (SOC). This implies in particular that, conceptually and logically, it is neither possible nor meaningful to identify such an object with an ordinary particle, which by definition is something that has a fixed mass (size), a fixed lifetime, and a fixed structure.

  19. Atmospheric Corrosion on Steel Studied by Conversion Electron Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    In order to investigate initial products on steel by atmospheric corrosion, conversion electron Moessbauer measurements were carried out at temperatures between 15 K and room temperature. From the results obtained at low temperatures, it was found that the corrosion products on steel consisted of ferrihydrite.

  20. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values

  1. Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing

    Science.gov (United States)

    Carruthers, G. R.; Opal, C. B.

    1983-01-01

    Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.

  2. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  3. Electron spectroscopy of selected atmospheric molecules and hydrocarbons

    Science.gov (United States)

    Davies, Julia Ann

    The thesis presents experimental results obtained by electron impact energy-loss spectroscopy. Differential oscillator strengths (DOS) of selected atmospheric molecules and hydrocarbons and vibrational excitation cross sections of ozone are measured. A critical comparison with earlier experiments and theory (where it exists) is made. The thesis is arranged in seven chapters. The first discusses molecular structure, spectroscopy and electron-molecule scattering as is relevant to the scope of this thesis. The next two chapters describe the experimental apparatus used. A high resolution electron spectrometer produces an electron beam (˜10 nA) incident upon the molecular target. Scattered electrons of selected energy-loss and scattering angle are detected by the spectrometer providing a total apparatus resolution of ˜50 meV. The vacuum system, gas inlet system and power supplies are also discussed. Chapters 4, 5 and 6 contain the main results obtained during postgraduate studies. DOS of selected atmospheric molecules (O2, N2, N2O, CO and CO2) are presented and critically compared with previous optical and synchrotron studies. Good agreement between results validates the experimental apparatus and techniques used in this work. A detailed study of the DOS of small alkanes (CH4, C2H6, C3H8 and C4H10) and small alkenes (C2H4, C3H6 and C4H8) shows similarities and trends in these series. DOS of ozone, O3, are also measured and the vibrational excitation of ozone is investigated as a function of scattering angle (40° ≤ theta ≤ 120°) and inccident energy (3 eVatmospheric molecules, are also presented.

  4. Mechanical energy input to the world oceans due to atmospheric loading

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; QIAN Chengchun; HUANG Ruixin

    2006-01-01

    Mechanical energy input to the oceans is one of the most important factors controlling the oceanic general circulation. The atmosphere transports mechanical energy to the oceans primarily through wind stress, plus changes of the sea level pressure (the so-called atmospheric loading). The rate of mechanical energy transfer into the ocean due to atmospheric loading is calculated, based on TOPEX/POSEIDON data over ten-year period (1993-2002). The rate of total energy input for the world oceans is estimated at 0.04TW (1TW=1012Watt), and most of this energy input is concentrated in the Southern Oceans and the Storm Tracks in the Northern Hemisphere. This energy input varied greatly with time, and the amplitude of the interannual variability over the past ten years is about 15%.

  5. Fast magnetic reconnection due to anisotropic electron pressure

    Science.gov (United States)

    Cassak, Paul; Baylor, Robert; Fermo, Raymond; Beidler, Matthew; Shay, Michael; Swisdak, Marc; Drake, James; Karimabadi, Homa

    2015-11-01

    A new regime of fast magnetic reconnection with an out-of-plane (guide) magnetic field is reported in which the key role is played by an electron pressure anisotropy described by the Chew-Goldberger-Low gyrotropic equations of state in the generalized Ohm's law, which even dominates the Hall term. A description of the physical cause of this behavior is provided and two-dimensional fluid simulations are used to confirm the results. The electron pressure anisotropy causes the out-of-plane magnetic field to develop a quadrupole structure of opposite polarity to the Hall magnetic field and gives rise to dispersive waves. In addition to being important for understanding what causes reconnection to be fast, this mechanism should dominate in plasmas with low plasma beta and a high in-plane plasma beta with electron temperature comparable to or larger than ion temperature, so it could be relevant in the solar wind and some tokamaks.

  6. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  7. Energetic electron precipitation into the middle atmosphere -- Constructing the loss cone fluxes from MEPED POES

    Science.gov (United States)

    Nesse Tyssøy, H.; Sandanger, M. I.; Ødegaard, L.-K. G.; Stadsnes, J.; Aasnes, A.; Zawedde, A. E.

    2016-06-01

    The impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50-90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites (POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith (0°) and in the horizontal plane (90°). Using measurements from either the 0° or 90° telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss cone flux is constructed for each of the electron energy channels >50 keV, >100 keV, and >300 keV. We apply a correction method to remove proton contamination in the electron counts. We also account for the relativistic (>1000 keV) electrons contaminating the proton detector at subauroral latitudes. This gives us full range coverage of electron energies that will be deposited in the middle atmosphere. Finally, we demonstrate the method's applicability on strongly anisotropic pitch angle distributions during a weak geomagnetic storm in February 2008. We compare the electron fluxes and subsequent energy deposition estimates to OH observations from the Microwave Limb Sounder on the Aura satellite substantiating that the estimated fluxes are representative for the true precipitating fluxes impacting the atmosphere.

  8. Energetic electron precipitation into the middle atmosphere - Constructing the loss cone fluxes from MEPED POES

    CERN Document Server

    Tyssøy, H Nesse; Ødegaard, L -K G; Stadsnes, J; Aasnes, A; Zawedde, A E

    2016-01-01

    The impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50-90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites(POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith ($0\\,^{\\circ}$) and in the horizontal plane ($90\\,^{\\circ}$). Using measurements from either the $0\\,^{\\circ}$ or $90\\,^{\\circ}$ telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss ...

  9. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    Science.gov (United States)

    Komarov, S. V.; Khabibullin, I. I.; Churazov, E. M.; Schekochihin, A. A.

    2016-09-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g. conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is ˜0.1 per cent at energies ≳kT. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scales, which are impossible to resolve spatially. The absence of the effect at the predicted level may set a lower limit on the electron collisionality in the ICM. At the same time, the small value of the effect implies that it does not preclude the use of clusters as (unpolarized) calibration sources for X-ray polarimeters at this level of accuracy.

  10. Electronic Data Discovery: Integrating Due Process into Cyber Forensic Practice

    Directory of Open Access Journals (Sweden)

    John W. Bagby

    2006-03-01

    Full Text Available Most organizations and government agencies regularly become engaged in litigation with suppliers, customers, clients, employees, competitors, shareholders, prosecutors or regulatory agencies that nearly assures the need to organize, retain, find and produce business records and correspondence, e-mails, accounting records or other data relevant to disputed issues. This article discusses some high visibility cases that constrain how metadata and content is routinely made available to opposing parties in civil litigation, to prosecutors in criminal prosecutions and to agency staff in regulatory enforcement litigation. Public policy, as implemented in the rules of evidence and pretrial discovery, restrict electronic data discovery (EDD as it becomes a predominant and potentially costly pre-trial activity pivotal to modern litigation. This article discusses these constraints while identifying opportunities for the interdisciplinary activities among litigators, forensic experts and information technology professionals.

  11. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    CERN Document Server

    Komarov, S; Churazov, E; Schekochihin, A

    2016-01-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g., conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is $\\sim 0.1 \\%$ at energies $\\gtrsim kT$. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scale...

  12. Global atmospheric energy deposition by energetic electrons - Quantitative spatial and temporal characteristics inferred from the Atmospheric X-ray Imaging Spectrometer (PEM/AXIS) on UARS

    Science.gov (United States)

    Chenette, D. L.; Datlowe, D. W.; Robinson, R. M.; Schumaker, T. L.; Vondrak, R. R.; Frahm, R. A.; Sharber, J. R.; Winningham, J. D.

    1993-01-01

    The primary purpose of PEM/AXIS is to provide a global monitor of the energy input to the upper atmosphere due to energetic electrons. The design, development, and calibration of AXIS are described and an assessment of its excellent on-orbit performance is presented. The unique capabilities of X-ray imaging spectrometers to monitor the global patterns of electron energy deposition in the atmosphere are shown through an analysis of some specific cases during the first year of the UARS mission.

  13. Electron densities and alkali atoms in exoplanet atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Lavvas, P. [GSMA, Université de Reims Champagne Ardenne, CNRS UMR 7331, Reims, 51687 France (France); Koskinen, T.; Yelle, R. V., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85719 (United States)

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  14. Electron densities and alkali atoms in exoplanet atmospheres

    CERN Document Server

    Lavvas, Panayotis; Yelle, Roger V

    2014-01-01

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458 b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations though result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2 b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of cl...

  15. Polarization of circumstellar bow shocks due to electron scattering

    Science.gov (United States)

    Shrestha, Manisha; Hoffman, J. L.; Neilson, H.; Ignace, R.

    2014-01-01

    Circumstellar material (CSM) provides a link between interacting supernovae and their massive progenitor stars. This CSM arises from stellar winds, outflows, or eruptions from a massive star before it explodes and can be detected around stars or supernovae with polarimetric observations. We use a Monte Carlo based radiative transfer code (SLIP) to investigate the polarization created by different models for the CSM surrounding a central source such as supernovae or massive stars. We vary parameters such as the shape, optical depth, temperature, and brightness of the CSM and compare the simulated flux and polarization behavior with observational data. We present results from new simulations that assume a bow shock shape for the CSM. Bow shocks are commonly observed around massive stars; this shape forms when a star moving more quickly than the speed of sound in the local interstellar medium emits a stellar wind that drives a shock wave into the ISM. Since a bow shock projects an aspherical shape onto the sky, light from the central source that scatters in the shock region becomes polarized. We present electron-scattering polarization maps for this geometry and discuss the behavior of observed polarization with viewing angle in the unresolved case.

  16. Atmospheric electron neutrinos in the MINOS far detector

    Energy Technology Data Exchange (ETDEWEB)

    Speakman, Benjamin Phillip [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-01-01

    Neutrinos produced as a result of cosmic-ray interactions in the earth's atmosphere offer a powerful probe into the nature of this three-membered family of low-mass, weakly-interacting particles. Ten years ago, the Super-Kamiokande Experiment has confirmed earlier indications that neutrinos undergo lepton-flavor oscillations during propagation, proving that they are massive contrary to the previous Standard Model assumptions. The Soudan Underground Laboratory, located in northern Minnesota, was host to the Soudan2 Experiment, which has made important contributions to atmospheric neutrino research. This same lab has more recently been host to the MINOS far detector, a neutrino detector which serves as the downstream element of an accelerator-based long-baseline neutrino-oscillation experiment. This thesis has examined 418.5 live days of atmospheric neutrino data (fiducial exposure of 4.18 kton-years) collected in the MINOS far detector prior to the activation of the NuMI neutrino beam, with a specific emphasis on the investigation of electron-type neutrino interactions. Atmospheric neutrino interaction candidates have been selected and separated into showering or track-like events. The showering sample consists of 89 observed events, while the track-like sample consists of 112 observed events. Based on the Bartol atmospheric neutrino flux model of Barr et al. plus a Monte Carlo (MC) simulation of interactions in the MINOS detector, the expected yields of showering and track-like events in the absence of neutrino oscillations are 88.0 ± 1.0 and 149.1 ± 1.0 respectively (where the uncertainties reflect only the limited MC statistics). Major systematic uncertainties, especially those associated with the flux model, are cancelled by forming a double ratio of these observed and expected yields: R$data\\atop{trk/shw}$/R$MC\\atop{trk/shw}$ = 0.74$+0.12\\atop{-1.0}$(stat.) ± 0.04 (syst.) This double ratio should be equal to unity in the absence of oscillations, and

  17. Atmospheric electron neutrinos in the MINOS far detector

    Energy Technology Data Exchange (ETDEWEB)

    Speakman, Benjamin Phillip; /Minnesota U.

    2007-01-01

    Neutrinos produced as a result of cosmic-ray interactions in the earth's atmosphere offer a powerful probe into the nature of this three-membered family of low-mass, weakly-interacting particles. Ten years ago, the Super-Kamiokande Experiment has confirmed earlier indications that neutrinos undergo lepton-flavor oscillations during propagation, proving that they are massive contrary to the previous Standard Model assumptions. The Soudan Underground Laboratory, located in northern Minnesota, was host to the Soudan2 Experiment, which has made important contributions to atmospheric neutrino research. This same lab has more recently been host to the MINOS far detector, a neutrino detector which serves as the downstream element of an accelerator-based long-baseline neutrino-oscillation experiment. This thesis has examined 418.5 live days of atmospheric neutrino data (fiducial exposure of 4.18 kton-years) collected in the MINOS far detector prior to the activation of the NuMI neutrino beam, with a specific emphasis on the investigation of electron-type neutrino interactions. Atmospheric neutrino interaction candidates have been selected and separated into showering or track-like events. The showering sample consists of 89 observed events, while the track-like sample consists of 112 observed events. Based on the Bartol atmospheric neutrino flux model of Barr et al. plus a Monte Carlo (MC) simulation of interactions in the MINOS detector, the expected yields of showering and track-like events in the absence of neutrino oscillations are 88.0 {+-} 1.0 and 149.1 {+-} 1.0 respectively (where the uncertainties reflect only the limited MC statistics). Major systematic uncertainties, especially those associated with the flux model, are cancelled by forming a double ratio of these observed and expected yields: R{sup data}{sub trk/shw}/R{sup MC}{sub trk/shw} = 0.74{sup +0.12}{sub -01.0}(stat.) {+-} 0.04 (syst.) This double ratio should be equal to unity in the absence of

  18. Cross Sections for Electron Impact Excitation of Ions Relevant to Planetary Atmospheres Observation

    Science.gov (United States)

    Tayal, Swaraj S.

    1998-01-01

    The goal of this research grant was to calculate accurate oscillator strengths and electron collisional excitation strengths for inelastic transitions in atomic species of relevance to Planetary Atmospheres. Large scale configuration-interaction atomic structure calculations have been performed to obtain oscillator strengths and transition probabilities for transitions among the fine-structure levels and R-matrix method has been used in the calculations of electron-ion collision cross sections of C II, S I, S II, S III, and Ar II. A number of strong features due to ions of sulfur have been detected in the spectra of Jupiter satellite Io. The electron excitation cross sections for the C II and S II transitions are studied in collaboration with the experimental atomic physics group at the Jet Propulsion Laboratory. There is excellent agreement between experiment and theory which provide an accurate and broad-base test of the ability of theoretical methods used in the calculation of atomic processes. Specifically, research problems have been investigated for: electron impact excitation cross sections of C II: electron impact excitation cross sections of S III; energy levels and oscillator strengths for transitions in S III; collision strengths for electron collisional excitation of S II; electron impact excitation of inelastic transitions in Ar II; oscillator strengths of fine-structure transitions in neutral sulfur; cross sections for inelastic scattering of electrons from atomic nitrogen; and excitation of atomic ions by electron impact.

  19. Differential pumping system for electron beam extraction in atmosphere

    International Nuclear Information System (INIS)

    The design of a differential pumping system (DPS) for extraction of an electron beam from the shaping region with a pressure of approximately 10-5 torr into the atmosphere is described. The system consists of five sections, with individual vacuum pumping. To reduce the dimensions of DPS the first three sections are pumped out through intermediate volumes connected to vapour-oil pumps. At the DPS outlet, a diaphragm with a small opening is replaced by an air ejector, which considerably improves the operation of DPS and makes it possible to increase the opening in the outlet diaphragm to 4-6 mm. The pressure in the DPS sections has been calculated, and the results are confirmed by experimental data

  20. Trust and Risk in Business Networks: Towards a Due Diligence for Electronic Commerce

    OpenAIRE

    Fritz, Melanie

    2006-01-01

    This paper develops a due diligence for electronic transactions with new partners in business networks with complex goods such as food products to enable the use of e-commerce potentials in first time transactions. The e-commerce due diligence is a means to reduce perceived risks and uncertainties for businesses and create trust and confidence in the electronic transaction with appropriate information. The paper presents a conceptual framework for the due diligence integrating the principles ...

  1. Fast dropouts of multi-MeV electrons due to combined effects of EMIC and whistler mode waves

    Science.gov (United States)

    Mourenas, D.; Artemyev, A. V.; Ma, Q.; Agapitov, O. V.; Li, W.

    2016-05-01

    We investigate how whole populations of 2-6 MeV electrons can be quickly lost from the Earth's outer radiation belt at L= 3-6 through precipitation into the atmosphere due to quasi-linear pitch angle scattering by combined electromagnetic ion cyclotron (EMIC) and whistler mode waves of realistic intensities occurring at the same or different local times. We provide analytical estimates of the corresponding relativistic electron lifetimes, emphasizing that the combined effects of both waves can lead to very fast (2-10 h) dropouts. Scaling laws for the loss timescales are derived, allowing us to determine the various plasma and wave parameter domains potentially leading to strong and fast dropouts. The analysis reveals that the fastest MeV electron dropouts occur at approximately the same rate over some high energy range and almost independently of EMIC wave amplitudes above a certain threshold. These results should help to better understand the dynamic variability of the radiation belts.

  2. Electronic pairing mechanism due to band modification in a two-band model: Tc evaluation

    International Nuclear Information System (INIS)

    Following the electronic model developed by us previously (Mizia and Romanowski, Mizia) we estimate the superconducting transition temperature in a simple electronic two-band model for materials characterized by a broad superconducting band and a narrow level within the same energy range. A large electron deformation coupling constant and large electron correlation effects are assumed. It is shown that high-temperature superconductivity is entirely possible within a range of reasonable electronic parameters. This model does not assume any artificial interactions to obtain a negative pairing potential. Instead, the negative part of the electronic interaction potential comes from the modification of the electron dispersion relation with growing number of superconducting pairs. Such a modification is possible in soft electronic systems, i.e. in systems partial to band modification due to large internal stresses, strong electronic correlation effects and broad band narrow level charge transfer during the superconducting transition. (orig.)

  3. Large-scale changes of the atmosphere (climate), geodynamics and biosphere due to the galactic shocks

    Science.gov (United States)

    Khristoforova, D.

    2009-04-01

    The Solar system periodically passes through spiral arms of the Galaxy, which are stellar density waves. Processes due to the presence of galactic shocks (shock waves) may be responsible for the abrupt atmosphere changes (climate), geodynamics (supercontinental cycle, large tectonic processes, mantle convection, geomagnetic field and others) and biosphere. Galactic shocks (GS) are the narrow region of high gas compression along the inner edge of spiral wave. Shock wave leads to the interstellar dust compression and to the phase transition in the interstellar gas. GS are large-scale trigger mechanism of active star formation. GS ultimately changes temperature, pressure and the radiation balance. It is quite surprisingly that majority of the "data points" of the geochronological and stratigraphic scales are closely related to the time moments when the Solar system has passed through the galactic shocks. This extraterrestrial cause for the change of physical and chemical conditions on the Earth had profound effects on the biologic extinction and explosions. This hypothesis explains the biologic explosion in Cambrian, the Permian - Triassic and Cretaceous-Tertiary extinctions, i.e., the beginning of Paleozoic, Mesozoic and Cenozoic. It is valid in the frame of galactic shock model that any discussion time estimates of these past events and their implications for the future must be quantitative. It will permit an evaluation of age of greater catastrophes and changes in the Earth history, of the future meets with the spiral arms of the Galaxy. It predicts the existence of chronological scales of other planets.

  4. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P.M.

    line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results from the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere...... electrons and thereby limits the ionization of the neutral atmosphere. As an example we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1-10 keV electron beams from sounding rockets...

  5. Radio Tomography of Ionospheric Structures (probably) due to Underground-Surface-Atmosphere-Ionosphere Coupling

    Science.gov (United States)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Rekenthaler, D. A.

    2012-12-01

    Ionospheric radio-tomography (RT) utilizes radio signals transmitted from the global navigational satellite systems (GNSS), including low-orbiting (LO) navigational systems such as Transit, Tsikada, etc., and high-orbiting (HO) navigational systems such as GPS, GLONASS, Galileo, Beidou, etc. The signals that are transmitted from the LO navigational satellites and recorded by ground receiving chains can be inverted for almost instantaneous (5-8 min) 2D snapshots of electron density. The data from the networks of ground receivers that record the signals of the HO satellites are suitable for implementing high-orbital RT (HORT), i.e. reconstructing the 4D distributions of the ionospheric electron density (one 3D image every 20-30 min). In the regions densely covered by the GNSS receivers, it is currently possible to get a time step of 2-4 min. The LORT and HORT approaches have a common methodical basis: in both these techniques, the integrals of electron density along the ray between the satellite and the receiver are measured, and then the tomographic procedures are applied to reconstruct the distributions of electron density. We present several examples of the experiments on the ionospheric RT, which are related to the Underground-Surface-Atmosphere-Ionosphere (USAI) coupling. In particular, we demonstrate examples of RT images of the ionosphere after industrial explosions, rocket launches, and modification of the ionosphere by high-power radio waves. We also show RT cross sections reflecting ionospheric disturbances caused by the earthquakes (EQ) and tsunami waves. In these cases, there is an evident cause-and-effect relationship. The perturbations are transferred between the geospheres predominantly by acoustic gravity waves (AGW), whose amplitudes increase with increasing height. As far as EQ are concerned, the cause of the USAI coupling mechanism is not obvious. It is clear, however, that the regular RT studies can promote the solution of this challenging problem

  6. Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration

    DEFF Research Database (Denmark)

    Uskov, Alexander; Protsenko, Igor E.; Mortensen, N. Asger;

    2014-01-01

    We present a quantum mechanical approach to calculate broadening of plasmonic resonances in metallic nanostructures due to collisions of electrons with the surface of the structure. The approach is applicable if the characteristic size of the structure is much larger than the de Broglie electron...

  7. Superficial violation of the Pauli principle due to the possible substructure of electrons

    International Nuclear Information System (INIS)

    Superficial violation of the Pauli principle due to the possible substructure of electrons is discussed in composite models of quarks and leptons. The ratio of the Pauli forbidden atomic transition to the allowed one is estimated to be of order 10-50--10-44 for heavy atoms if the size of the electron is of order 10-17 cm

  8. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation

    Science.gov (United States)

    Miralles, Diego G.; Teuling, Adriaan J.; van Heerwaarden, Chiel C.; Vilà-Guerau de Arellano, Jordi

    2014-05-01

    The recent European mega-heatwaves of 2003 and 2010 broke temperature records across Europe. Although events of this magnitude were unprecedented from a historical perspective, they are expected to become common by the end of the century. However, our understanding of extreme heatwave events is limited and their representation in climate models remains imperfect. Here we investigate the physical processes underlying recent mega-heatwaves using satellite and balloon measurements of land and atmospheric conditions from the summers of 2003 in France and 2010 in Russia, in combination with a soil-water-atmosphere model. We find that, in both events, persistent atmospheric pressure patterns induced land-atmosphere feedbacks that led to extreme temperatures. During daytime, heat was supplied by large-scale horizontal advection, warming of an increasingly desiccated land surface and enhanced entrainment of warm air into the atmospheric boundary layer. Overnight, the heat generated during the day was preserved in an anomalous kilometres-deep atmospheric layer located several hundred metres above the surface, available to re-enter the atmospheric boundary layer during the next diurnal cycle. This resulted in a progressive accumulation of heat over several days, which enhanced soil desiccation and led to further escalation in air temperatures. Our findings suggest that the extreme temperatures in mega-heatwaves can be explained by the combined multi-day memory of the land surface and the atmospheric boundary layer.

  9. Secondary Cosmic Ray Particles Due to GCR Interactions in the Earth's Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, G.; /Milan U. /INFN, Milan; Cerutti, F.; /CERN; Fasso, A.; /SLAC; Ferrari, A.; /CERN; Garzelli, M.V.; /Milan U. /INFN, Milan; Lantz, M.; /Goteborg, ITP; Muraro, S. /Milan U. /INFN, Milan; Pinsky, L.S.; /Houston U.; Ranft, J.; /Siegen U.; Roesler, S.; /CERN; Sala, P.R.; /Milan U. /INFN, Milan

    2009-06-16

    Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

  10. Simulation of Electron-Beam Generating Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    OUYANG Liang; LI Hong; LI Benben; ZHOU Junqing; YAN Hong; SU Tie; WANG Huihui; LIUWandong

    2007-01-01

    As electron-beam generating plasma is widely applied,the software tool EGS4(Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air.The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure,and the electron-beam of 200 keV could generate a plasma with a density 1011 cm-3 in air of latm.In addition,the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.

  11. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    Science.gov (United States)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  12. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during T

  13. Patterning of graphene for flexible electronics with remote atmospheric-pressure plasma using dielectric barrier

    Science.gov (United States)

    Kim, Duk Jae; Park, Jeongwon; Geon Han, Jeon

    2016-08-01

    We show results of the patterning of graphene layers on poly(ethylene terephthalate) (PET) films through remote atmospheric-pressure dielectric barrier discharge plasma. The size of plasma discharge electrodes was adjusted for large-area and role-to-role-type substrates. Optical emission spectroscopy (OES) was used to analyze the characteristics of charge species in atmospheric-pressure plasma. The OES emission intensity of the O2* peaks (248.8 and 259.3 nm) shows the highest value at the ratio of \\text{N}2:\\text{clean dry air (CDA)} = 100:1 due to the highest plasma discharge. The PET surface roughness and hydrophilic behavior were controlled with CDA flow rate during the process. Although the atmospheric-pressure plasma treatment of the PET film led to an increase in the FT-IR intensity of C–O bonding at 1240 cm‑1, the peak intensity at 1710 cm‑1 (C=O bonding) decreased. The patterning of graphene layers was confirmed by scanning electron microscopy and Raman spectroscopy.

  14. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with parametrization model

    CERN Document Server

    Artamonov, A A; Usoskin, I G

    2016-01-01

    A new model CRAC:EPII (Cosmic Ray Atmospheric Cascade: Electron Precipitation Induced Ionization) is presented. The CRAC:EPII is based on Monte Carlo simulation of precipitating electrons propagation and interaction with matter in the Earth atmosphere. It explicitly considers energy deposit: ionization, pair production, Compton scattering, generation of Bremsstrahlung high energy photons, photo-ionization and annihilation of positrons, multiple scattering as physical processes accordingly. The propagation of precipitating electrons and their interactions with atmospheric molecules is carried out with the GEANT4 simulation tool PLANETOCOSMICS code using NRLMSISE 00 atmospheric model. The ionization yields is compared with an analytical parametrization for various energies of incident precipitating electron, using a flux of mono-energetic particles. A good agreement between the two models is achieved. Subsequently, on the basis of balloon-born measured spectra of precipitating electrons at 30.10.2002 and 07.01....

  15. System for transporting an electron beam to the atmosphere for a gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.

    2016-06-01

    We report on the results of simulation of the gas flow in a gun with a plasma emitter and in the system for extracting the electron beam to the atmosphere, constructed on the basis of standard gasdynamic windows (GDWs). The design of the gun and GDWs is described. Calculations are performed for a pressure of about 10-3 Torr in the electron beam generation range. It is shown that the pressure drop to the atmospheric pressure in the system of electron beam extraction to the atmosphere can be ensured by two GDW stages evacuated by pumps with optimal performance.

  16. Clarifying the covariant formalism for the SZ effect due to relativistic non-thermal electrons

    OpenAIRE

    Boehm, Celine; Lavalle, Julien

    2008-01-01

    We derive the covariant formalism associated with the relativistic Sunyaev-Zel'dovich effect due to a non-thermal population of high energy electrons in clusters of galaxies. More precisely, we show that the formalism proposed by Wright in 1979, based on an empirical approach (and widely used in the literature) to compute the inverse Compton scattering of a population of relativistic electrons on CMB photons, can actually be re-interpreted as a Boltzmann-like equation, in the single scatterin...

  17. Magneto-oscillations due to electron-electron interactions in the ac conductivity of a 2D electron gas

    OpenAIRE

    Sedrakyan, T. A.; Raikh, M. E.

    2007-01-01

    Electron-electron interactions give rise to the correction, \\delta\\sigma^{int}(\\omega), to the ac magnetoconductivity, \\sigma(\\omega), of a clean 2D electron gas that is periodic in \\omega_c^{-1}, where \\omega_c is the cyclotron frequency. Unlike conventional harmonics of the cyclotron resonance, which are periodic with \\omega, this correction is periodic with \\omega^{3/2}. Oscillations in \\delta\\sigma^{int}(\\omega) develop at low magnetic fields, \\omega_c\\ll\\omega, when the conventional harm...

  18. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2012-01-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has revealed the presence of unexpected small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticisied by Stift et al. (2012), who claimed that magnetic inversions are not robust and are undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and neglected some of the most fundamental principles behind magnetic mapping. We demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalised local Stokes profiles. For the disk-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere ...

  19. Thickness of the electron atmosphere in large nuclear systems

    Science.gov (United States)

    Pacheco, A. F.; Sañudo, J.

    1986-03-01

    Using the relativistic Thomas-Fermi model and the virial theorem it is found that the thickness of the electron skin outside a large nuclear system is given by S⋍6.73 n-1/3, n being the electron density inside the nucleus. On leave from Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.

  20. Electron and proton kinetics and dynamics in flaring atmospheres

    CERN Document Server

    Zharkova, Valentina

    2012-01-01

    This timely book presents new research results on high-energy particle physics related to solar flares, covering the theory and applications of the reconnection process in a clear and comprehensible way. It investigates particle kinetics and dynamics in flaring atmospheres and their diagnostics from spectral observations, while providing an analysis of the observation data and techniques and comparing various models. Written by an internationally acclaimed expert, this is vital reading for all solar, astro-, and plasma physicists working in the field.

  1. Copper Corrosion by Atmospheric Pollutants in the Electronics Industry

    OpenAIRE

    Benjamin Valdez Salas; Michael Schorr Wiener; Roumen Zlatev Koytchev; Gustavo López Badilla; Rogelio Ramos Irigoyen; Monica Carrillo Beltrán; Nicola Radnev Nedev; Mario Curiel Alvarez; Navor Rosas Gonzalez; Jose María Bastidas Rull

    2013-01-01

    Hydrogen sulphide (H2S) is considered one of the most corrosive atmospheric pollutants. It is a weak, diprotic, reducing acid, readily soluble in water and dispersed into the air by winds when emitted from natural, industrial, and anthropogenic sources. It is a pollutant with a high level of toxicity impairing human health and the environment quality. It attacks copper forming thin films of metallic sulphides or dendrite whiskers, which are cathodic to the metal substrate, enhancing corrosion...

  2. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  3. Assessment of toxicity in waters due to heavy metals derived from atmospheric deposition using Vibrio fischeri.

    Science.gov (United States)

    Cukurluoglu, Sibel; Muezzinoglu, Aysen

    2013-01-01

    Water toxicity originating from the atmospheric deposition of six heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) was investigated on Vibrio fischeri activity in Izmir, Turkey. A LUMIStox® test was applied to dry and wet deposition samples and metal solutions. The inhibition levels and effective toxicity concentrations of these samples and solutions were determined. Interactive toxicity effects among the metals were investigated. When the impacts of the synthetic single heavy metal solutions were compared with each other, a toxicity ranking of Cr>Cd>Pb>Cu>Zn>Ni was obtained in order of decreasing severity. The total effective concentrations of these six metals were in the ranges of 0.074-0.221 mg/L and 0.071-0.225 mg/L for receiving aqueous solutions of dry and wet atmospheric depositions, respectively. The toxicity data showed that the wet deposition samples were 15% more toxic than the dry deposition samples. The interactive toxicity effects of the heavy metals in both dry and wet deposition samples were classified as antagonistic. High levels of heavy metals deposited in dissolved form may constitute an important input in the biochemical cycle and may have significant impacts. PMID:23030388

  4. Modeling ionospheric electron precipitation due to wave particle scattering in the magnetosphere and the feedback effect on the magnetospheric dynamics

    Science.gov (United States)

    Yu, Y.; Jordanova, V.; Ridley, A. J.; Albert, J.; Horne, R. B.; Jeffery, C. A.

    2015-12-01

    Electron precipitation down to the atmosphere caused by wave-particle scattering in the magnetosphere contribute significantly to the enhancement of auroral ionospheric conductivity. Global MHD models that are incapable of capturing kinetic physics in the inner magnetosphere usually adopt MHD parameters to specify the precipitation flux to estimate auroral conductivity, hence losing self-consistency in the global circulation of the magnetosphere-ionosphere system. In this study we improve the coupling structure in global models by connecting the physics-based (wave-particle scattering) electron precipitation with the ionospheric electrodynamics and investigate the feedback effect on the magnetospheric dynamics. We use BATS-R-US coupled with a kinetic ring current model RAM-SCB that solves pitch angle dependent particle distributions to study the global circulation dynamics during the Jan 25-26, 2013 storm event. Following tail injections, we found enhanced precipitation number and energy fluxes of tens of keV electrons being scattered into loss cone due to interactions with enhanced chorus and hiss waves in the magnetosphere. This results in a more profound auroral conductance and larger electric field imposing on the plasma transport in the magnetosphere. We also compared our results with previous methods in specifying the auroral conductance, such as empirical relation used in Ridley et al. (2004). It is found that our physics-based method develops a larger convection electric field in the near-Earth region and therefore leads to a more intense ring current.

  5. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ∼5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eUm, where Um is the maximum gap voltage, is relatively small.

  6. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  7. Electron cooling by carbon monoxide in the atmospheres of Mars and Venus

    CERN Document Server

    Campbell, Laurence

    2008-01-01

    Electron cooling, in which free electrons lose energy to vibrational excitation of gases, has been identified as a significant process in the atmospheres of Mars and Venus for electron impact on CO2. This process does not appear to have been evaluated for CO, although the density of CO exceeds that of CO2 in the upper atmospheres of these planets. In this paper electron cooling rates for CO are calculated and compared with existing rates for CO2. It is found that electron cooling by CO becomes more significant than by CO2 above altitudes of about 300 km on Mars and about 168 km on Venus. The sensitivity of the calculated cooling rates to different measurements of the integral cross sections for electron-impact vibrational excitation of CO is also investigated. PACS Codes: 34.80.Gs, 96.12.Jt

  8. Studies on the effects of atmospheric contamination due to fossil-fuel combustion in Japan

    International Nuclear Information System (INIS)

    Epidemiological studies have been conducted since 1961 to investigate health effects of sulphur dioxide in industrial areas of Japan where fossil-fuel power stations are located. The dose-response relationship between prevalence rates of chronic bronchitis and sulphur dioxide was established. The annual value of sulphur dioxide concentrations estimated by the national network of air pollutant measurements decreased from the peak value of 0.059 ppm in 1967 to 0.017 ppm in 1978. However, the atmospheric concentration of nitrogen dioxide estimated by the national network indicated an annual value of 0.022 ppm in 1968, but the annual value in 1978 was slightly increased to 0.027 ppm. It was therefore considered important to study the health effects of nitrogen dioxide. In six different areas in Japan with varying atmospheric concentrations of nitrogen dioxide, an extensive epidemiological survey was conducted with 12,717 school-children 6 to 12 years old during the period 1979 to 1981. The prevalence rate of asthma was estimated to be 4.7% for males and 2.1% for females in the high NO2 concentration area, and 1.9% for males and 0.9% for females in the low NO2 concentration area. For asthmalike symptoms, 12.2% for males and 11.9% for females was observed at the high NO2 concentration area, and 7.1% for males and 5.9% for females in the low NO2 concentration area. The natural radioactivity from fossil-fuel power plants as well as risk/benefit comparisons are also discussed. In decision-making on environmental protection and safety, it should be carefully considered whether a reduction of one type of risk might increase another type of risk. Not only the risk-reduction industries but also the construction and operation of the risk-reduction system may not be completely riskless

  9. Clarifying the covariant formalism for the SZ effect due to relativistic non-thermal electrons

    CERN Document Server

    Boehm, Celine

    2008-01-01

    We derive the covariant formalism associated with the relativistic Sunyaev-Zel'dovich effect due to a non-thermal population of high energy electrons in clusters of galaxies. More precisely, we show that the formalism proposed by Wright in 1979, based on an empirical approach (but widely used in the literature) to compute the inverse Compton scattering of a population of relativistic electrons on CMB photons, can actually be re-interpreted as a Boltzmann-like equation, in the single scattering approximation. Although this would tend to reconcile Wright's approach with the latest works on the relativistic corrections of the thermal SZ effect, we find that the squared matrix amplitude derived by Wright by applying a relativistic Lorentz boost on Chandrasekhar's non-relativistic formula is incorrect (it is not equivalent to the well-known Compton scattering squared matrix amplitude in the limit of relativistic incoming electrons and low energy photons). This has important consequences. In particular, this modifi...

  10. Corrosion failure due to flux residues in an electronic add-on device

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi;

    2010-01-01

    present. The resin component can easily attract dust during operation, which will eventually make surfaces hydrophilic and are thus become a potential source for ions. This paper describes the failure analysis of tactile switches, used in PCBAs mounted in wind turbines. More detailed investigation......-electrochemical technique, in situ ECM studies, and scanning electron microscopy (SEM). Failure of the switches was found to be either due to the flux residue acting as an nsulating layer or as a corrosion accelerator causing ECM....

  11. Evaluating bias due to data linkage error in electronic healthcare records.

    OpenAIRE

    Harron, K.; WADE, A.; Gilbert, R.; Muller-Pebody, B; Goldstein, H.

    2014-01-01

    Background Linkage of electronic healthcare records is becoming increasingly important for research purposes. However, linkage error due to mis-recorded or missing identifiers can lead to biased results. We evaluated the impact of linkage error on estimated infection rates using two different methods for classifying links: highest-weight (HW) classification using probabilistic match weights and prior-informed imputation (PII) using match probabilities. Methods A gold-standard dataset was crea...

  12. Standing striations due to ionization instability in atmospheric pressure He/H2O radio frequency capacitive discharges

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2016-10-01

    One-dimensional particle-in-cell (PIC) simulations of a narrow gap atmospheric pressure He/2%{{\\text{H}}2}\\text{O} radio frequency capacitive discharge showed standing striations in the bulk plasma region while previously conducted PIC simulations of a narrow gap atmospheric pressure He/0.1%{{\\text{N}}2} discharges [1] showed no such instabilities. We successively modified the base He/{{\\text{H}}2}\\text{O} chemistry to make it more similar to the He/{{\\text{N}}2} chemistry in order to determine the cause of the striations. Setting the e–{{\\text{H}}2}\\text{O} scattering, attachment, vibrational and rotational excitation rates to zero did not suppress the striations. However, a systematic reduction of the e–ion recombination cross section resulted in a transition to a stable state with no striations. The results are interpreted in terms of a model in which the balance between bulk direct ionization and bulk recombination loss determines the bulk plasma equilibrium. Perturbing the equilibrium, we find that the striations are consistent with an ionization instability induced by non-local electron kinetics that form a spatially-varying high energy tail of the electron energy distribution, causing the ionization rate coefficient to decrease with increasing electron temperature T e and root-mean-square electric field E in the instability regime.

  13. Atmospheric particulate matter and hospital admission due to lower respiratory tract infection: a case-cross study in Shijiazhuang, China

    Directory of Open Access Journals (Sweden)

    Zi-na BAI

    2016-03-01

    Full Text Available Objective  To explore the association between atmospheric particulate matter (PM10/PM2.5 levels and hospital admissions due to lower respiratory tract infection in Shijiazhuang. Methods  Data of air pollution, meteorologic data, and the data of patients admitted to hospital due to lower respiratory tract infection were retrospectively analyzed. Pearson's correlation coefficients were calculated to analyze correlations between atmospheric particulate matter and meteorologic factors. Data of hospital admission due to lower respiratory tract infection and of atmospheric air pollution levels in Shijiazhuang were obtained, a bidirectional case-crossover design was used to investigate the association between hospital admissions due to lower respiratory tract infection and levels of atmospheric particles. Stratified analyses of exposure based on age, gender, complications and season were performed to evaluate the effect. Results  Pearson's correlation analysis showed positive correlations among PM2.5, PM10, SO2, NO2 and CO. The concentration of all these five pollutants were negatively correlated with O3 and daily mean temperature, while a positive correlation was found between concentrations of the 5 pollutants and daily average temperature and O3. In single-pollutant model, every 10μg/m3 increase in PM2.5 and PM10 at lag5 brought the corresponding OR values (95%CI up to 1.010(1.005-1.015 and 1.006(1.003-1.009 respectively. In the multi-pollutant models, the observed effects of PM2.5 remained significant. Stratified analysis based on gender, age, season and comorbidities showed that the effect of PM2.5 exposure on lower respiratory tract infection admissions was stronger in males, persons younger than 60 years of age and persons without comorbidities, and even more stronger in cold season. The effect of PM10 exposure on lower respiratory tract infection admissions was stronger in females, persons older than 60 years of age and persons with

  14. Assessment of the effects of atmospheric neutrons on onboard electronic equipment and search for hardening solutions

    International Nuclear Information System (INIS)

    This work deals with the impact of atmospheric neutrons on complex electronic components such as built-in memories or processors. The first part describes the radiation environment, the neutron-matter interaction and the consequences on electronic devices, and presents the commonly used experimental simulations and the testing methods. The potential of laser beam for testing is highlighted. The second chapter presents the development of a testing platform for various types of memories (MRAM and SDRAM). The equipment and the dedicated software are described. A testing platform for processor is also presented. The third chapter is dedicated to the presentation of a 4 Mbit bulk-type SRAM memory and of its testing involving a laser beam equipment. Several results show the presence of error clusters that may endangered the memory as a whole. These error clusters are due to the architecture of the internal addressing scheme of the memory. The simulation of these error clusters must be improved in order to define an optimized strategy of hardening

  15. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  16. Modulation in Ocean Primary Production due to Variability of Photosynthetically Available Radiation under Different Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Madhumita Tripathy

    2014-01-01

    Full Text Available The rate of photosynthesis primarily depends on nutrients and photosynthetically available radiation (PAR at sea surface. Several ship cruises were carried out to measure optical, biological, and atmospheric parameters in the Arabian Sea and their variability were studied. An analytical nonspectral photosynthesis-irradiance model was used to estimate euphotic primary production (EuPP to study its variability during cruise periods. PAR was estimated using COART model using in situ measured aerosol optical depth (AOD to compare with in situ measured PAR. In order to understand the variability of PAR under different types of aerosol and different aerosol loading, a simulation study was carried out using COART model. EuPP was estimated for various PAR values under different aerosol loading and cloud coverage conditions. Sensitivity analysis showed that for maritime, maritime polluted, and desert aerosols, the ratio PAR/PAR0AOD has attenuated to about 11–25%, whereas it has attenuated to 44% for urban aerosol type. PAR/PARclear  sky was reduced by ~57% for high aerosol loading and for overcast sky. The decrease in EuPP under various aerosol loading and cloud coverage was observed to depend on the photoadaptation parameter. EuPP/EuPPclear  sky was reduced by 38% for maximum maritime aerosol loading and for overcast sky.

  17. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    Science.gov (United States)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  18. Software-based mitigation of image degradation due to atmospheric turbulence

    Science.gov (United States)

    Huebner, Claudia S.; Scheifling, Corinne

    2010-10-01

    Motion-Compensated Averaging (MCA) with blind deconvolution has proven successful in mitigating turbulence effects like image dancing and blurring. In this paper an image quality control according to the "Lucky Imaging" principle is combined with the MCA-procedure, weighting good frames more heavily than bad ones, skipping a given percentage of extremely degraded frames entirely. To account for local isoplanatism, when image dancing will effect local displacements between consecutive frames rather than global shifts only, a locally operating MCA variant with block matching, proposed in earlier work, is employed. In order to reduce loss of detail due to normal averaging, various combinations of temporal mode, median and mean are tested as reference image. The respective restoration results by means of a weighted blind deconvolution algorithm are presented and evaluated.

  19. Energy loss of a fast-electron beam due to the excitation of collective oscillation in hot plasma

    Institute of Scientific and Technical Information of China (English)

    Ma Jin-Yi; Qiu Xi-Jun; Zhu Zhi-Yuan

    2004-01-01

    Energy loss due to a fast-electron beam interacting with the hot plasma at a high density is analysed theoretically.By splitting the particle density fluctuations into the individual part due to the random thermal motion of the individual electrons and the collective part due to plasma-wave excitation, we are concerned with the collective interaction of the relativistic plasma electrons resulting from the Coulomb interactions. Consequently, we derive the frequency of the hot plasma and the "Debye length" with the modification of the relativistic effect. And finally we calculate the energy loss of a fast-electron beam due to the excitation of collective oscillation in the hot plasma.

  20. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  1. External costs of atmospheric Pb emissions: valuation of neurotoxic impacts due to inhalation

    Directory of Open Access Journals (Sweden)

    Frohn Lise

    2010-02-01

    Full Text Available Abstract Background The Impact Pathway Approach (IPA is an innovative methodology to establish links between emissions, related impacts and monetary estimates. Only few attempts have so far been presented regarding emissions of metals; in this study the external costs of airborne lead (Pb emissions are assessed using the IPA. Exposure to Pb is known to provoke impacts especially on children's cognition. As cognitive abilities (measured as IQ, intelligence quotient are known to have implications for lifetime income, a pathway can be established leading from figures for Pb emissions to the implied loss in earnings, and on this basis damage costs per unit of Pb emission can be assessed. Methods Different types of models are here linked. It is relatively straightforward to establish the relationship between Pb emissions and consequent increase in air-Pb concentration, by means of a Gaussian plume dispersion model (OML. The exposed population can then be modelled by linking the OML-output to population data nested in geo-referenced grid cells. Less straightforward is to establish the relationship between exposure to air-Pb concentrations and the resulting blood-Pb concentration. Here an Age-Dependent Biokinetic Model (ADBM for Pb is applied. On basis of previous research which established links between increases in blood-Pb concentrations during childhood and resulting IQ-loss we arrive at our results. Results External costs of Pb airborne emissions, even at low doses, in our site are in the range of 41-83 €/kg emitted Pb, depending on the considered meteorological year. This estimate applies only to the initial effects of air-Pb, as our study does not address the effects due to the Pb environmental-accumulation and to the subsequent Pb re-exposure. These are likely to be between one and two orders of magnitude higher. Conclusions Biokinetic modelling is a novel tool not previously included when applying the IPA to explore impacts of Pb emissions

  2. Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging

    Directory of Open Access Journals (Sweden)

    H. Tost

    2010-02-01

    Full Text Available Moist convection in global modelling contributes significantly to the transport of energy, momentum, water and trace gases and aerosols within the troposphere. Since convective clouds are on a scale too small to be resolved in a global model their effects have to be parameterised. However, the whole process of moist convection and especially its parameterisations are associated with uncertainties. In contrast to previous studies on the impact of convection on trace gases, which had commonly neglected the convective transport for some or all compounds, we investigate this issue by examining simulations with five different convection schemes. This permits an uncertainty analysis due to the process formulation, without the inconsistencies inherent in entirely neglecting deep convection or convective tracer transport for one or more tracers.

    Both the simulated mass fluxes and tracer distributions are analysed. Investigating the distributions of compounds with different characteristics, e.g., lifetime, chemical reactivity, solubility and source distributions, some differences can be attributed directly to the transport of these compounds, whereas others are more related to indirect effects, such as the transport of precursors, chemical reactivity in certain regions, and sink processes.

    The model simulation data are compared with the average regional profiles of several measurement campaigns, and in detail with two campaigns in fall and winter 2005 in Suriname and Australia, respectively.

    The shorter-lived a compound is, the larger the differences and consequently the uncertainty due to the convection parameterisation are, as long as it is not completely controlled by local production that is independent of convection and its impacts (e.g. water vapour changes. Whereas for long-lived compounds like CO or O3 the mean differences between the simulations are less than 25%, differences for short-lived compounds reach

  3. Supershort electron beam and voluminous heavy-current air discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The conditions of the electron beam and voluminous discharge formation in the air at the atmospheric pressure and subnanosecond pulse tension front are studied. It is shown that the electron beam in the gaseous diode originates at the pulse tension front over time of ∼ 0.5 ns and has duration at the semiheight of ≤0.4 ns. The electron beam with the electrons average energy of 60-80 keV and current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from the electron avalanches, originating in the gap on the account of the gas ionization by fast electrons at achieving the critical field between the expanding plasma cloud front and anode

  4. Atmospheric pollution due to mobile sources and effects on human health in Japan.

    Science.gov (United States)

    Kagawa, J

    1994-10-01

    Following the rapid economic growth after World War II, diseases associated with environmental pollution frequently occurred due to delayed implementation of countermeasures against environmental pollution. These diseases are exemplified by Minamata disease, Itai-itai disease, chronic arsenic poisoning, and Yokkaichi asthma. After multiple episodes of these pollution-related diseases were experienced, the government and the private sector made joint efforts to reduce environmental pollution. As a result of these efforts and because of changes in the industrial structure, pollution-related diseases have declined. Instead, however, air pollution from automobile exhaust and the health effects of automobile exhaust on people living along roads with heavy traffic began to attract the public's attention after an increase in the use of automobiles. The epidemiological surveys carried out by the Environmental Agency and the Tokyo Metropolitan Government also have suggested unfavorable effects of automobile-caused air pollution on people living in large cities or along major roads. To solve this problem, it seems imperative to promote the reasonable use of automobiles and to work toward more efficient transportation of goods based on analyses of city structure, the life-styles of city dwellers, and the socioeconomic composition of cities. In addition, the discharge of pollutants from automobiles could be controlled.

  5. New Microwave Diagnostic Theory for Measurement of Electron Density in Atmospheric Plasmas

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu; HU Xi-Wei

    2005-01-01

    @@ We present the phase shift of an electromagnetic wave passing through an atmospheric plasma layer. In this kind of plasma, the phase shift depends not only on the line average electron density and layer width, but also on the electron-neutral collision frequency. Since the collision frequency is close to or even larger than the incident microwave frequency, a one-dimensional code for the numerical solution of the wave equation with full time and space variables is established to give the phase shift. When the width and the pressure (hence the electron-neutral collision frequency) are known, the measurement of phase shift will uniquely determine the line average electrons density in an atmospheric plasma.

  6. Impact of electron chemistry on the structure and composition of Io's atmosphere

    Science.gov (United States)

    Smyth, William H.; Wong, M. C.

    2004-09-01

    Two-dimensional model calculations (altitude and solar zenith angle) are performed to investigate the impact of electron chemistry on the composition and structure of Io's atmosphere. The calculations are based upon the model of Wong and Smyth (2000, Icarus 146, 60-74) for Io's SO 2 sublimation atmosphere with the addition of new electron chemistry, where the interactions of the electrons and neutrals are treated in a simple fashion. The model calculations are presented for Io's atmosphere at western elongation (dusk ansa) for both a low-density case (subsolar temperature of 113 K) and a high-density case (subsolar temperature of 120 K). The impact of electron-neutral chemistry on the composition and structure of Io's atmosphere is confined primarily to an interaction layer. The penetration depth of the interaction layer is limited to high altitudes in the thicker dayside atmosphere but reaches the surface in the thinner dayside and/or nightside atmosphere at larger solar zenith angles. Within most of the thicker dayside atmosphere, the column density of SO 2 is not significantly altered by electrons, but in the interaction layer all number densities are significantly altered: SO 2 is reduced, O, SO, S, and O 2 are greatly enhanced, and O, SO, and S become comparable to SO 2 at high altitudes. For the thinner nightside atmosphere, the species number densities are dramatically altered: SO 2 is drastically reduced to the least abundant species of the SO 2 family, SO and O 2 are significantly reduced at all altitudes, and O and S are dramatically enhanced and become the dominant species at all altitudes except near the surface. The interaction layer also defines the location of the emission layer for neutrals excited by electron impact and hence determines the fraction of the total neutral column density that is visible in remote observation. Electron chemistry may also impact the ratio of the equatorial to polar SO 2 column density deduced from Lyman- α images and

  7. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus

    Institute of Scientific and Technical Information of China (English)

    SU Zhen-Peng; ZHENG Hui-Nan; XIONG Ming

    2009-01-01

    Following our preceding work,we perform a further study on dynamic evolution of energetic electrons in the outer radiation belt L = 4.5 due to a band of whistler-mode chorus frequency distributed over a standard Gaussian spectrum.We solve the 2D bounce-averaged Fokker-Planck equation by allowing incorporation of cross diffusion rates.Numerical results show that whistler-mode chorus can be effective in acceleration of electrons at large pitch angles,and enhance the phase space density for energies of about 1MeV by a factor of 102 or above in about one day,consistent with observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm.Moreover,neglecting cross diffusion often leads to overestimates of the phase space density evolution at large pitch angle by a factor of 5-10 after one day,with larger errors at smaller pitch angle,suggesting that cross diffusion also plays an important role in wave-particle interaction.

  8. Energetic electron precipitation impacts on the middle atmosphere: From satellite observations to chemistry-climate modeling

    Science.gov (United States)

    Sinnhuber, Miriam; Bender, Stefan; Burrows, John P.; Funke, Bernd; Fytterer, Tilo; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2016-04-01

    Precipitation of energetic particles - mainly protons from solar coronal mass ejections or electrons accelerated in auroral or geomagnetic storms - directly affects the mesosphere and lower thermosphere. Nitric oxides (N, NO, NO2) and hydrogen radicals (H, OH) are formed by particle impact dissociation and ionization and subsequent ion chemistry reactions. However, the stratosphere and possibly even tropospheric weather systems can be affected indirectly by downward transport of particle-induced nitric oxides from their source regions into the stratosphere during polar winter, subsequent ozone depletion, and dynamical feedbacks with radiative (ozone) heating and cooling. This so-called "EPP indirect effect" forms one aspect of solar-climate interactions which will be recommended to include in chemistry-climate models, e.g., in the upcoming CMIP-6 experiment. We will present recent observations of mesospheric nitric oxide formation due to particle precipitation, as well as downwelling of particle induced NOy. Observations are compared to results from three 3-dimensional global chemistry-climate and chemistry-transport models of the middle atmosphere, and the subsequent ozone depletion is assessed using CCM / CTM model results.

  9. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  10. Atmospheric Corrosion on Steel Studied by Conversion Electron Mössbauer Spectroscopy

    Science.gov (United States)

    Nakanishi, Akio; Kobayashi, Takayuki

    2004-12-01

    In order to investigate initial products on steel by atmospheric corrosion, conversion electron Mössbauer measurements were carried out at temperatures between 15 K and room temperature. From the results obtained at low temperatures, it was found that the corrosion products on steel consisted of ferrihydrite.

  11. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  12. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  13. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Science.gov (United States)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  14. Medium Vacuum Electron Emitter as Soft Atmospheric Pressure Chemical Ionization Source for Organic Molecules.

    Science.gov (United States)

    Liedtke, Sascha; Ahlmann, Norman; Marggraf, Ulrich; Schütz, Alexander; Vautz, Wolfgang; Franzke, Joachim

    2016-05-01

    An electron emitter as a soft atmospheric pressure chemical ionization source is presented, which operates at inner pressures of the device in the medium vacuum range (>10(-3) hPa). Conventional nonradioactive electron emitters require high vacuum (pump-by 2% compared to high-vacuum conditions. This can be compensated with an increase of the electron source output. The functionality of this ion source is demonstrated with mass spectrometric and ion mobility measurements of acetone, eucalyptol, and diisopropyl methanephosphonate. Additional mass spectrometric measurements of 20 different organic compounds demonstrate the soft characteristics of this ionization source. PMID:27046293

  15. Electric Currents and Fields in Middle and Low Atmosphere in Fair-Weather Regions due to Distant Thunderstorms

    Science.gov (United States)

    Velinov, Peter; Velinov, Peter; Tonev, Peter

    The electric currents created by the thunderstorms and the electrified shower clouds over the Earth flow into the global atmospheric electric circuit and are responsible for the formation in fair-weather regions of ionosphere-ground current of about 2 pA per square meter, as well as for the related fair-weather electric field of the order of 100 V/m at sea level. The link of the diurnal variations of the fair-weather electric field with the global thunderstorm activity has been widely studied with connection to the Wilson's hypothesis. To confirm this hypothesis directly, also the fair-weather electric field response to a strong single lightning discharge has being examined. Here we study theoretically the variations of the electric currents and fields in fair-weather regions at different altitudes of the lower and middle atmosphere, which are provoked by distant lightning discharges. The electric field variations can play an important role at higher altitudes (in the upper troposphere and above), where they are much larger and possibly influence the physical and chemical processes. For our goals we realize a globalscale model of the electric fields and currents generated by a lightning discharge, which is based on the Maxwell's equations. The fair-weather electric characteristics are studied by our model depending on the lightning parameters, location and distance. We also examine how variations of the conductivity in the strato/mesosphere due to changes of solar and geomagnetic activity affect the characteristics studied. Another question discussed is whether and how the mesospheric electric response to a remote lightning discharge is influenced by the conductivity anisotropy above 70 km and by the geomagnetic field geometry. The variations of the fairweather electric fields due to a distant lightning at tropospheric heights are also studied with respect to their presumable role in the cloud physics.

  16. Watching the wind: seismic data contamination at long-periods due to atmospheric pressure-field-induced tilting

    Science.gov (United States)

    de Angelis, S.; Bodin, P.; Hagel, K.; Fletcher, D.

    2010-12-01

    Long-period noise generated by the elastic response of the Earth to atmospheric pressure fluctuations has long been recognized as a limiting factor for seismic investigations. The quality of seismic data recorded by sensitive, near-surface broadband seismometers can be severely corrupted by this effect. During the recent installation of a new broadband site on the Olympic Peninsula in Washington, the Pacific Northwest Seismic Network recorded and investigated elevated daytime noise levels at periods exceeding 30 seconds. Substantial power spectral density variations of the background noise field, 15-20 dB, were observed in the horizontal component seismograms. The pattern of the long-period noise exhibited striking correlations with local fluctuations of the air temperature and wind speed as measured nearby the seismic station by the National Weather Service Forecast Office, Seattle, Washington, and the National Oceanic and Atmospheric Administration. Several past studies have demonstrated that local wind systems may lead to variations of the atmospheric pressure field that deform the ground and perturb seismograms. The rotational component of this motion is detected by horizontal-component seismometers because at periods longer than the sensor’s low corner frequency the sensor is acting essentially as a tiltmeter. We obtained a transfer function that describes the response of the broadband seismometer to a tilt step change and estimated the amplitude of tilt noise to be on the order of 10-9 - 10-8 radians. Within the seismic pass-band of the sensor, it is not possible to remove the tilt signal from the observed seismograms because the details of the tilting depend on the pressure field variations, the compliance of the near surface to pressure variations, and the design and construction of the seismometer vault itself. At longer periods, using the seismic data to recover tilts of tectonic origin is made challenging because of the needed instrument correction

  17. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  18. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation. PMID:18356524

  19. The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL) payload electronic subsystems

    Science.gov (United States)

    Focardi, M.; Pace, E.; Colomé, J.; Ribas, I.; Rataj, M.; Ottensamer, R.; Farina, M.; Di Giorgio, A. M.; Wawer, P.; Pancrazzi, M.; Noce, V.; Pezzuto, S.; Morgante, G.; Artigues, B.; Sierra-Roig, C.; Gesa, L.; Eccleston, P.; Crook, M.; Micela, G.

    2016-07-01

    The ARIEL mission has been proposed to ESA by an European Consortium as the first space mission to extensively perform remote sensing on the atmospheres of a well defined set of warm and hot transiting gas giant exoplanets, whose temperature range between ~600 K and 3000 K. ARIEL will observe a large number (~500) of warm and hot transiting gas giants, Neptunes and super-Earths around a range of host star types using transit spectroscopy in the ~2-8 μm spectral range and broad-band photometry in the NIR and optical. ARIEL will target planets hotter than 600 K to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk and elemental composition. One of the major motivations for exoplanet characterisation is to understand the probability of occurrence of habitable worlds, i.e. suitable for surface liquid water. While ARIEL will not study habitable planets, its major contribution to this topic will results from its capability to detect the presence of atmospheres on many terrestrial planets outside the habitable zone and, in many cases, characterise them. This represents a fundamental breakthrough in understanding the physical and chemical processes of a large sample of exoplanets atmospheres as well as their bulk properties and to probe in-space technology. The ARIEL infrared spectrometer (AIRS) provides data on the atmospheric composition; these data are acquired and processed by an On-Board Data Handling (OBDH) system including the Cold Front End Electronics (CFEE) and the Instrument Control Unit (ICU). The Telescope Control Unit (TCU) is also included inside the ICU. The latter is directly connected to the Control and Data Management Unit (CDMU) on board the Service Module (SVM). The general hardware architecture and the application software of the ICU are described. The Fine Guidance Sensor (FGS) electronics and the Cooler Control Electronics are also presented.

  20. Differential flux measurement of atmospheric pion, muon, electron and positron energy spectra at balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Finetti, N. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Stephens, S.A. [Tata Institute of Fundamental Researc, Bombay (International Commission on Radiation Units and Measurements); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ. Las Cruces, NM (United States). Particle Astrophysics Lab.

    1995-09-01

    The fluxes of atmospheric electrons, positrons, positive and negative muons and negative pions have been determined using the NMSU Wizard-MASS2 balloons-borne instrument. The instrument was launched from Fort Sumner, New Mexico, (geomagnetic cut-off about 4.5 GV/c) on september 23, 1991. The flight lasted 9.8 hours and remained above 100.000 ft. Muons and negative pions were observed and their momenta were determined. Since these particles are not a part of the primary component, the measurement of their fluxes provides information regarding production and propagation of secondary particles in the atmosphere. Similarly, observations of electrons and positrons well below the geomagnetic cut-off provides insight into electromagnetic cascade processes in the upper atmosphere. In addition, the determination of the energy spectra of rare particles such as positrons can be used for background subtraction for cosmic ray experiments gathering data below a few g/cm{sup 2} of overlying atmosphere.

  1. Experimental Evidence of Giant Electron - Gamma Bursts Generated by Extensive Atmospheric Showers in Thunderclouds

    CERN Document Server

    Gurevich, A V; Chubenko, A P; Duncan, L M; Ryabov, V A; Shepetov, A S; Antonova, V P; Kryukov, S V; Piscal, V V; Ptitsyn, M O; Vildanova, L I; Shlyugaev, Y V; Zybin, K P; Shlyugaev, Yu.V.

    2004-01-01

    The existence of a new phenomena - giant electron-gamma bursts is established. The bursts are generated in thunderclouds as a result of the combined action of runaway breakdown and extensive atmosphere showers (RB-EAS). The experiments were fulfilled at the Tien Shan Mountain Scientific Station using EAS-Radio installation. This specially constructed installation consists of a wide spread EAS trigger array and a high time resolution radiointerferometer.

  2. The measurement of the electron temperature in a spark discharge in air at atmospheric pressure

    International Nuclear Information System (INIS)

    The electron temperature in atmospheric pressure spark surface discharge was measured from the relative intensity ratio using several well-resolved atomic N I, N II, O II lines. The evaluated value is of 18 000 K. The repeated sparks were glowed by a pulsed high voltage source which restricted the are phase of sparks by appropriate low value of capacitors in voltage multiplier. (Authors)

  3. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Science.gov (United States)

    Talman, Richard; Malitsky, Nikolay; Stulle, Frank

    2009-01-01

    -21, MOCOS05, available at http://www.JACoW.org], a code with similar capabilities. For this comparison an appropriately new, 50 MeV, “standard chicane” is introduced. Unlike CSRTrack (which neglects vertical forces) the present simulation shows substantial growth of vertical emittance. But “turning off” vertical forces in the UAL code (to match the CSRTrack treatment) brings the two codes into excellent agreement. (iii) Results are also obtained for 5 GeV electrons passing through a previously introduced “standard chicane” [Coherent Synchrotron Radiation, CSR Workshop, Berlin 2002, http://www.desy.de/csr] [of the sort needed for linear colliders and free electron lasers (FEL’s) currently under design or construction]. Relatively little emittance growth is predicted for typical bunch parameters at such high electron energy. Results are obtained for both round beams and ribbon beams (like those actually needed in practice). Little or no excess emittance growth is found for ribbon bunches compared to round bunches of the same charge and bunch width. The UAL string space charge formulation (like TraFic4 and CSRTrack) avoids the regularization step (subtracting the free-space space charge force) which is required (to remove divergence) in some methods. Also, by avoiding the need to calculate a retarded-time, four-dimensional field history, the computation time needed for realistic bunch evolution calculations is modest. Some theories of bunch dilution, because they ascribe emittance growth entirely to CSR, break down at low energy. In the present treatment, as well as CSR, all free-space Coulomb and magnetic space charge forces (but not image forces), and also the centrifugal space charge force (CSCF) are included. Charge-dependent beam steering due to CSCF, as observed recently by Beutner et al. [B. Beutner , in Proceedings of FEL Conference, BESSY, Berlin, Germany, 2006, MOPPH009], is also investigated.

  4. Renormalization of transition matrix elements of particle number operators due to strong electron correlation

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Noboru, E-mail: noboru.fukushima@gmail.com [Motomachi 13-23, Sanjo, Niigata 955-0072 (Japan)

    2011-02-18

    Renormalization of non-magnetic and magnetic impurities due to electron double-occupancy prohibition is derived analytically by an improved Gutzwiller approximation. Non-magnetic impurities are effectively weakened by the same renormalization factor as that for the hopping amplitude, whereas magnetic impurities are strengthened by the square root of the spin-exchange renormalization factor, in contrast to results by the conventional Gutzwiller approximation. We demonstrate it by showing that transition matrix elements of number operators between assumed excited states and between an assumed ground state and excited states are renormalized differently than diagonal matrix elements. Deviation from such simple renormalization with a factor is also discussed. In addition, as a related calculation, we correct an error in treatment of the renormalization of charge interaction in the literature. Namely, terms from the second order of the transition matrix elements are strongly suppressed. Since all these results do not depend on the signs of impurity potential or the charge interaction parameter, they are valid both in attractive and repulsive cases.

  5. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanghoo; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Youn Moon, Se [High-enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Park, Jaeyoung [5771 La Jolla Corona Drive, La Jolla, CA 92037 (United States)

    2014-02-24

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 450–1000 nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popović. In 280–450 nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  6. Secondary electron emission from a charged spherical dust particle due to electron incidence according to OML model

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Y., E-mail: tomita@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Huang, Z.H.; Pan, Y.D. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Kawamura, G. [National Institute for Fusion Science, Toki 509-5292 (Japan); Yan, L.W. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China)

    2015-08-15

    Effect of secondary electron emission (SEE) current to dust charging and influence to forces on a dust particle are studied according to the orbital motion limited (OML) model. As higher electron temperature increases the SEE current, the negative dust charge decreases. As a result, the ion friction force on the dust particle decreases. The critical electron temperatures without the dust charge are 75.1, 70.3 and 55.9 eV for graphite and are 31.3, 30.4 and 27.1 eV for tungsten to the temperature ratio T{sub i}/T{sub e} = 0.1, 1.0 and 10.0, respectively. At the critical electron temperature, there is no ion scattering force but the ion absorption force remains finite.

  7. Enhanced laser-driven electron beam acceleration due to ionization-induced injection

    CERN Document Server

    Li, Song; Mirzaie, Mohammed; Sokollik, Thomas; Zeng, Ming; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    We report an overall enhancement of a laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3 % nitrogen gas in 99.7 % helium gas. Upon the interaction of 30 TW, 30 fs laser pulses with a gas jet of the above gas mixture, > 300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5*10^18 cm^{-3}. Compared with the electron self-injection in pure helium gas jet, the ionization injection has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1 %, making them suitable for driving ultra-compact free-electron lasers

  8. Anomalous Coulomb Drag in Electron-Hole Bilayers due to the Formation of Excitons

    Science.gov (United States)

    Efimkin, Dmitry K.; Galitski, Victor

    2016-01-01

    Several recent experiments have reported an anomalous temperature dependence of the Coulomb drag effect in electron-hole bilayers. Motivated by these puzzling data, we study theoretically a low-density electron-hole bilayer, where electrons and holes avoid quantum degeneracy by forming excitons. We describe the ionization-recombination crossover between the electron-hole plasma and exciton gas and calculate both the intralayer and drag resistivity as a function of temperature. The latter exhibits a minimum followed by a sharp upturn at low temperatures, in qualitative agreement with the experimental observations [see, e.g., J. A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009)]. Importantly, the drag resistivity in the proposed scenario is found to be rather insensitive to a mismatch in electron and hole concentrations, in sharp contrast to the scenario of electron-hole Cooper pairing.

  9. Electronic double refraction due to the Rashba effect: Analytical and numerical results

    Institute of Scientific and Technical Information of China (English)

    SHAO Peng-rui; DENG Wen-ji

    2007-01-01

    By analogy with the classic effect of the double refraction of light, we investigate the relevant effect of an electron entering from the Non-Rashba region to the Rashba region in two-dimensional systems. It is shown that the effect of electronic double refraction is determined by a combined parameter y=m*λF α/2πh2, rather than both the Rashba coefficient α and wavelength λF of a Fermi electron, separately. For the case of normal incidence, the analytical expressions for the wavefunction of the electron are presented; it is predicted that the Rashba spin-orbit coupling can induce a current perpendicular to the normal incident direction of the electron. Moreover, the general case of incident electron with any given momentum and spin state are studied numerically in detail, including the abrupt changes of spin direction and the two-step characters for reflection.

  10. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  11. Comparative Experimental Investigation of Titan's Atmospheric Chemistry Driven by Solar EUV Radiation and Energetic Electron Precipitation

    Science.gov (United States)

    Imanaka, Hiroshi; Lavvas, P.; Yelle, R. V.; Smith, M. A.

    2010-10-01

    The observations by the Cassini Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) clearly demonstrate the importance of complex organic chemistry in the upper atmosphere of Titan; a complex coupling of neutral and ion chemistry for organic aerosol generation induced by EUV photons and Saturn's magnetospheric charged particles. To understand the dominant energy source for aerosol formation and its formation chemistry, we comparatively investigate the chemical mechanism in N2/CH4 gas mixtures resulting from EUV-VUV synchrotron radiation (50-150 nm) and tunable mono-energetic electron beam irradiation (5 eV - 2000 eV). These excitation energy sources cover the dominant energy source available in Titan's upper atmosphere. Our previous study of the EUV-VUV photolysis of N2/CH4 gas mixtures revealed the unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons and in the major nitrogen fixation process in Titan's upper atmosphere (Imanaka and Smith, 2007, 2009, 2010). However, relative roles of ion-molecule reactions and radical/neutral reactions in such complex chemistry remain to be determined. We characterized the electron energy distribution by conducting the Langmuir probe measurements. Degradation of the primary photoelectron from N2 photoionization at 20.6 eV photons is clearly observed, and the electron density rapidly decreases down to 109-10 cm-3, which suggests the complex coupling of ion-molecular reactions and dissociative ion-electron recombination reactions for the observed development of complex organic molecules. The electron beam irradiation experiments at energy larger than 200 eV shows distinct gaseous product distribution with nitrogenated gaseous species from those with EUV irradiation products. The generation of secondary electrons and multiple inelastic collisions of fast electrons might increases the nitrogen fixation efficiency. The much less stringent spin selection rules could

  12. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu [University of Georgia, Department of Chemistry, 101 Cedar St., Athens, Georgia 30602 (United States)

    2014-01-21

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.

  13. Momentum spectra of atmospheric pions, muons, electrons and positrons at balloon altitudes

    International Nuclear Information System (INIS)

    Momentum spectra of pions, muons, electrons and secondary positrons have been measured at an atmospheric depth of 5.8 g cm-2 with the same instrument. Data was collected by the Matter Antimatter Space Spectrometer of the New Mexico State University in a balloon flight in September 1991 at the rigidity cut-off of 4.5 GV c-1 in Fort Sumner, New Mexico. The first measurement of the positive muon spectrum in the range 0.15 GeV c-1 to 2 GeV c-1 is reported in this paper. The spectral index above 3 GeV c-1 of the negative muon momentum spectrum of this measurement is -2.39±0.05 in agreement with analytical cascade calculations which assume a primary proton kinetic energy spectrum with a slope of -2.74±0.02 in the corresponding kinetic energy range. In the momentum interval 300-700 MeV c-1, both negative and positive muon fluxes turn out to be larger than calculated fluxes by a factor of about 1.4. The measurement of the secondary electron and positron energy spectra allows a reliable subtraction of the atmospheric background from the primary electron and positron fluxes which are affected by large uncertainties in most of the experiments. The energy spectra of the secondary particles reported here have the same systematic errors implying a higher relative accuracy with respect to those measurements made in different flights. (author)

  14. TEC Enhancement due to Energetic Electrons Above Taiwan and the West Pacific

    Directory of Open Access Journals (Sweden)

    Alla V. Suvorova

    2013-01-01

    Full Text Available The energetic electrons of the inner radiation belt during a geomagnetic disturbance can penetrate in the forbidden range of drift shells located at the heights of the topside equatorial ionosphere (< 1000 km. A good correlation was previously revealed between positive ionospheric storms and intense fluxes of quasi-trapped 30-keV electrons at ~900 km height in the forbidden zone. In the present work, we use statistics to validate an assumption that the intense electron fluxes in the topside equatorial ionosphere can be an important source of the ionization in the low-latitude ionosphere. The data on the energetic electrons were obtained from polar orbiting satellites over the periods of the 62 strong geomagnetic storms from 1999 to 2006. Ionospheric response to the selected storms was determined using global ionospheric maps of vertical total electron content (VTEC. A case-event study of a major storm on 9 November 2004 provided experimental evidence in support to the substantial ionization effect of energetic electrons during positive ionospheric storms at the low latitudes. Statistical analysis of nine magnetic storms indicated that the VTEC increases coincided with and coexisted with intense 30-keV electron fluxes irrespective of local time and phase of geomagnetic storm. We concluded that extremely intense fluxes of the 30-keV electrons in the topside low-latitude ionosphere can contribute ~ 10 - 30 TECU to the localized positive ionospheric storms.

  15. Simulating gamma-ray energy resolution in scintillators due to electron-hole pair statistics

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R.D., E-mail: rdnarayan@gmail.com [Arizona State University, Department of Physics, P.O. Box 871504, Tempe, AZ 85287-1504 (United States); Miranda, R., E-mail: ryan.miranda@asu.edu [Arizona State University, Department of Physics, P.O. Box 871504, Tempe, AZ 85287-1504 (United States); Rez, P., E-mail: peter.rez@asu.edu [Arizona State University, Department of Physics, P.O. Box 871504, Tempe, AZ 85287-1504 (United States)

    2011-11-15

    The best-possible limit to gamma-ray energy resolution in scintillators is given by the statistics of the number of electron-hole pairs produced by an incident gamma-ray, characterized by the Fano factor. The Fano factor is primarily controlled by the inelastic scattering during the electron cascade, which could be modeled by Monte Carlo simulation. Commonly used radiation transport codes do not follow the electrons to low enough energies to calculate electron-hole pair distributions. A Monte Carlo simulation for inelastic electron scattering is introduced based on cross-sections derived from data measured by Electron Energy-Loss Spectroscopy (EELS) for fast electrons. This inelastic scattering model was incorporated into the radiation transport code Penelope so that it could accurately count the number of electron-hole pairs produced by a gamma-ray. The Fano factor was calculated for the scintillators cerium fluoride (CeF{sub 3}) and lutetium oxyorthosilicate (Lu{sub 2}SiO{sub 5}).

  16. Simulating gamma-ray energy resolution in scintillators due to electron-hole pair statistics

    International Nuclear Information System (INIS)

    The best-possible limit to gamma-ray energy resolution in scintillators is given by the statistics of the number of electron-hole pairs produced by an incident gamma-ray, characterized by the Fano factor. The Fano factor is primarily controlled by the inelastic scattering during the electron cascade, which could be modeled by Monte Carlo simulation. Commonly used radiation transport codes do not follow the electrons to low enough energies to calculate electron-hole pair distributions. A Monte Carlo simulation for inelastic electron scattering is introduced based on cross-sections derived from data measured by Electron Energy-Loss Spectroscopy (EELS) for fast electrons. This inelastic scattering model was incorporated into the radiation transport code Penelope so that it could accurately count the number of electron-hole pairs produced by a gamma-ray. The Fano factor was calculated for the scintillators cerium fluoride (CeF3) and lutetium oxyorthosilicate (Lu2SiO5).

  17. Electron impact cross-sections and cooling rates for methane. [in thermal balance of electrons in atmospheres and ionospheres of planets and satellites in outer solar system

    Science.gov (United States)

    Gan, L.; Cravens, T. E.

    1992-01-01

    Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.

  18. [Research on electron density in DC needle-plate corona discharge at atmospheric pressure].

    Science.gov (United States)

    Liu, Zhi-Qiang; Guo, Wei; Liu, Tao-Tao; Wu, Wen-Shuo; Liu, Shu-Min

    2013-11-01

    Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2 (C3pi(u)) (337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge. PMID:24555347

  19. Intense electron emission due to picosecond laser-produced plasmas in high gradient electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.J.; Tsang, T.; Kirk, H.; Srinivasan-Rao, T.; Fischer, J.; Batchelor, K.; Russell, P.; Fernow, R.C. (Brookhaven National Laboratory, Upton, New York 11973 (United States))

    1992-08-01

    Picosecond laser pulses at a wavelength of 266 nm have been focused onto a solid metal cathode in coincidence with high gradient electric fields to produce high brightness electron beams. At power densities exceeding 10{sup 9} W/cm{sup 2}, a solid density plasma is formed and intense bursts of electrons are emitted from the target accompanied by macroscopic surface damage. An inferred {similar to}1 {mu}C of integrated charge with an average current of {similar to}20 A is emitted from a radio-frequency cavity driven at electric field gradients of {similar to}80 MV/m. In another experiment, where a dc extraction field of {similar to}6 MV/m is used, we observed an electron charge of {similar to}0.17 {mu}C. Both results are compared with the Schottky effect and the Fowler--Nordheim field emission. We found that this laser-induced intense electron emission shares many features with the explosive electron emission processes. No selective wavelength dependence is observed in the production of the intense electron emission in the dc extraction field. The integrated electrons give an apparent quantum efficiency of {similar to}1.2%, which is one of the highest reported to date from metal photocathodes at these photon energies.

  20. Electron Density and Temperature Measurements, and Abundance Anomalies in the Solar Atmosphere

    Indian Academy of Sciences (India)

    Anita Mohan; Bhola N. Dwivedi; Enrico Landi

    2000-09-01

    Using spectra obtained from the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) spectrograph on the spacecraft SOHO (Solar and Heliospheric Observatory), we investigate the height dependence of electron density, temperature and abundance anomalies in the solar atmosphere. In particular, we present the behaviour of the solar FIP effect (the abundance enhancement of elements with first ionization potential < 10 eV in the corona with respect to photospheric values) with height above an active region observed at the solar limb, with emphasis on the so-called transition region lines.

  1. Reformed Solitary Kinetic Alfvén Waves due to Dissipations and Auroral Electron Acceleration

    Institute of Scientific and Technical Information of China (English)

    WU De-Jin; CHAO Jih-Kwin; LEE Luo-Chuan; FENG Xue-Shang

    2001-01-01

    The physical nature of the auroral electron acceleration has been an outstanding problem in space physics for decades.Some recent observations from the auroral orbit satellites,FREJA and FAST,showed that large amplitude solitary kinetic Alfvén waves (SKAWs) are a common electromagnetic active phenomenon in the auroral magnetosphere. In a Iow-ββ/2 (i.e.,β/2 < me/mi < 1) plasma,the drift velocity of electrons relative to ions within SKAWs is much larger than thermal velocities of both electrons and ions.This leads to instabilities and causes dissipations of SKAWs.In the present work,based on the analogy of classical particle motion in a potential well,it is shown that a shock-like structure can be formed from SKAWs if dissipation effects are included.The reformed SKAWs with a shock-like structure have a local density jump and a net field-aligned electric potential drop of order of mev2A/e over a characteristic width of several )e.As a consequence,the reformed SKAWs can efficiently accelerate electrons field-aligned to the order of the local Alfvén velocity.In particular,we argue that this electron acceleration mechanism by reformed SKAWs can play an important role in the auroral electron acceleration problem.The result shows that not only the location of acceleration regions predicted by this model is well consistent with the observed auroral electron acceleration region of I 2 RE above the auroral ionosphere,but also the accelerated electrons from this region can obtain an energy of several keV and carry a field-aligned current of several/A/m2 which are comparable to the observations of auroral electrons.

  2. Anomalously Hot Electrons due to Rescatter of Stimulated Raman Scattering in the Kinetic Regime

    CERN Document Server

    Winjum, B J; Tsung, F S; Mori, W B

    2012-01-01

    Using particle-in-cell simulations, we examine hot electron generation from electron plasma waves excited by stimulated Raman scattering and rescattering in the kinetic regime where the wavenumber times the Debye length (k\\lambda_D) is greater than 0.3 for backscatter. We find that for laser and plasma conditions of possible relevance to experiments at the National Ignition Facility (NIF), anomalously energetic electrons can be produced through the interaction of a discrete spectrum of plasma waves generated from SRS (back and forward scatter), rescatter, and the Langmuir decay of the rescatter-generated plasma waves. Electrons are bootstrapped in energy as they propagate into plasma waves with progressively higher phase velocities.

  3. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    International Nuclear Information System (INIS)

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario

  4. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    Science.gov (United States)

    Masson-Laborde, P. E.; Mo, M. Z.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.

    2014-12-01

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.

  5. Radial transport of radiation belt electrons due to stormtime Pc5 waves

    Directory of Open Access Journals (Sweden)

    A. Y. Ukhorskiy

    2009-05-01

    Full Text Available During geomagnetic storms relativistic electron fluxes in the outer radiation belt exhibit dynamic variability over multiple orders of magnitude. This requires radial transport of electrons across their drift shells and implies violation of their third adiabatic invariant. Radial transport is induced by the interaction of the electron drift motion with electric and magnetic field fluctuations in the ULF frequency range. It was previously shown that solar-wind driven ULF waves have long azimuthal wave lengths and thus can violate the third invariant of trapped electrons in the process of resonant interaction with their gradient-curvature motion. However, the amplitude of solar-wind driven ULF waves rapidly decreases with decreasing L. It is therefore not clear what mechanisms are responsible for fast transport rates observed inside the geosynchronous orbit. In this paper we investigate wether stormtime Pc5 waves can contribute to this process. Stormtime Pc5s have short azimuthal wave lengths and therefore cannot exhibit resonance with the the electron drift motion. However we show that stormtime Pc5s can cause localized random scattering of electron drift motion that violates the third invariant. According to our results electron interaction with stormtime Pc5s can produce rapid radial transport even as low as L≃4. Numerical simulations show that electron transport can exhibit large deviations from radial diffusion. The diffusion approximation is not valid for individual storms but only applies to the statistically averaged response of the outer belt to stormtime Pc5 waves.

  6. Ion potential in warm dense matter: wake effects due to streaming degenerate electrons.

    Science.gov (United States)

    Moldabekov, Zhandos; Ludwig, Patrick; Bonitz, Michael; Ramazanov, Tlekkabul

    2015-02-01

    The effective dynamically screened potential of a classical ion in a stationary flowing quantum plasma at finite temperature is investigated. This is a key quantity for thermodynamics and transport of dense plasmas in the warm-dense-matter regime. This potential has been studied before within hydrodynamic approaches or based on the zero temperature Lindhard dielectric function. Here we extend the kinetic analysis by including the effects of finite temperature and of collisions based on the Mermin dielectric function. The resulting ion potential exhibits an oscillatory structure with attractive minima (wakes) and, thus, strongly deviates from the static Yukawa potential of equilibrium plasmas. This potential is analyzed in detail for high-density plasmas with values of the Brueckner parameter in the range 0.1≤r(s)≤1 for a broad range of plasma temperature and electron streaming velocity. It is shown that wake effects become weaker with increasing temperature of the electrons. Finally, we obtain the minimal electron streaming velocity for which attraction between ions occurs. This velocity turns out to be less than the electron Fermi velocity. Our results allow for reliable predictions of the strength of wake effects in nonequilibrium quantum plasmas with fast streaming electrons showing that these effects are crucial for transport under warm-dense-matter conditions, in particular for laser-matter interaction, electron-ion temperature equilibration, and stopping power.

  7. Electron residual energy due to stochastic heating in field-ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khalilzadeh, Elnaz [Department of Physics, Kharazmi University, 49 Mofateh Ave, Tehran (Iran, Islamic Republic of); The Plasma Physics and Fusion Research School, Tehran (Iran, Islamic Republic of); Yazdanpanah, Jam, E-mail: jamal.yazdan@gmail.com; Chakhmachi, Amir [The Plasma Physics and Fusion Research School, Tehran (Iran, Islamic Republic of); Jahanpanah, Jafar [Department of Physics, Kharazmi University, 49 Mofateh Ave, Tehran (Iran, Islamic Republic of); Yazdani, Elnaz [Laser and Optics Research School, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  8. Electron residual energy due to stochastic heating in field-ionized plasma

    Science.gov (United States)

    Khalilzadeh, Elnaz; Yazdanpanah, Jam; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-11-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  9. Monte Carlo simulation for the electron cascade due to gamma rays in semiconductor radiation detectors

    International Nuclear Information System (INIS)

    A Monte Carlo code was developed for simulating the electron cascade in radiation detector materials. The electron differential scattering cross sections were derived from measured electron energy-loss and optical spectra, making the method applicable for a wide range of materials. The detector resolution in a simplified model system shows dependence on the bandgap, the plasmon strength and energy, and the valence band width. In principle, these parameters could be optimized to improve detector performance. The intrinsic energy resolution was calculated for three semiconductors: silicon (Si), gallium arsenide (GaAs), and zinc telluride (ZnTe). Setting the ionization thresholds for electrons and holes is identified as a critical issue, as this strongly affects both the average electron-hole pair energy w and the Fano factor F. Using an ionization threshold from impact ionization calculations as an effective bandgap yields pair energies that are well matched to measured values. Fano factors of 0.091 (Si), 0.100 (GaAs), and 0.075 (ZnTe) were calculated. The Fano factor calculated for silicon using this model was lower than some results from past simulations and experiments. This difference could be attributed to problems in simulating inter-band transitions and the scattering of low-energy electrons.

  10. Monte Carlo simulation for the electron cascade due to gamma rays in semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Raman D.; Miranda, Ryan; Rez, Peter [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2012-03-15

    A Monte Carlo code was developed for simulating the electron cascade in radiation detector materials. The electron differential scattering cross sections were derived from measured electron energy-loss and optical spectra, making the method applicable for a wide range of materials. The detector resolution in a simplified model system shows dependence on the bandgap, the plasmon strength and energy, and the valence band width. In principle, these parameters could be optimized to improve detector performance. The intrinsic energy resolution was calculated for three semiconductors: silicon (Si), gallium arsenide (GaAs), and zinc telluride (ZnTe). Setting the ionization thresholds for electrons and holes is identified as a critical issue, as this strongly affects both the average electron-hole pair energy w and the Fano factor F. Using an ionization threshold from impact ionization calculations as an effective bandgap yields pair energies that are well matched to measured values. Fano factors of 0.091 (Si), 0.100 (GaAs), and 0.075 (ZnTe) were calculated. The Fano factor calculated for silicon using this model was lower than some results from past simulations and experiments. This difference could be attributed to problems in simulating inter-band transitions and the scattering of low-energy electrons.

  11. Spatial extent of band bending in diamond due to ion impact as measured by secondary electron emission: Experiment and theory

    International Nuclear Information System (INIS)

    Although hydrogentated diamond emits exceptionally high numbers of electrons upon single ion impact, the secondary electron yield decays at an extremely rapid rate as a function of ion fluence. We report measurements of this rapid decay at extremely low fluences where the ion tracks are widely separated and explain the results by a model based on the downwards bending of the conduction band edge, due to positive charge trapped within the ion track. The present work demonstrates the importance of charge trapping in explaining the electronic properties of diamond and other wide band gap materials

  12. Sources and sinks of atmospheric N2O and the possible ozone reduction due to industrial fixed nitrogen fertilizers

    Science.gov (United States)

    Liu, S. C.; Cicerone, R. J.; Donahue, T. M.; Chameides, W. L.

    1977-01-01

    The terrestrial and marine nitrogen cycles are examined in an attempt to clarify how the atmospheric content of N2O is controlled. We review available data on the various reservoirs of fixed nitrogen, the transfer rates between the reservoirs, and estimate how the reservoir contents and transfer rates can change under man's influence. It is seen that sources, sinks and lifetime of atmospheric N2O are not understood well. Based on our limited knowledge of the stability of atmospheric N2O we conclude that future growth in the usage of industrial fixed nitrogen fertilizers could cause a 1% to 2% global ozone reduction in the next 50 years. However, centuries from now the ozone layer could be reduced by as much as 10% if soils are the major source of atmospheric N2O.

  13. Studies of suprathermal emission due to cyclotron-electronic heating of the tokamak TCV plasma

    International Nuclear Information System (INIS)

    Photo sensitization of wide band gap semiconductors is used in a wide range of application like silver halide photography and xerography. The development of a new type of solar cells, based on the sensitization of meso porous metal oxide films by panchromatic dyes, has triggered a lot of fundamental research on electron transfer dynamics. Upon excitation, the sensitizer transfers an electron in the conduction band of the semiconductor. Recombination of the charge separated state is prevented by the fast regeneration of the dye by an electron donor present in solution. Until recently, most of the work in this area has been focused on the competition between the recombination and the regeneration processes, which take place in the nanosecond to millisecond regime. With the development of solid-state femtosecond laser, the measurement of the dynamics of the first electron transfer step occurring in the solar cell has become possible . Electron injection from ruthenium(Il) poly pyridyl complexes into titanium dioxide has been found to occur with a poly exponential rate, with time constants ranging from 10 ps. In spite of the lately acquired capacity to measure the dynamics of these reactions, the physical meaning of this poly exponential kinetics and the factors that can influence this process are still poorly understood. In this work, the development of a new femtosecond pump-probe spectrometer, intended to monitor the ultrafast dynamics of electron injection, is presented. The study of this process requires an excellent temporal resolution and a large wavelength tunability to be able to excite a great variety of dyes and to probe the different products of the reaction. These specifications were met using the latest progress made in optical parametric amplification, which allowed the construction of a versatile experimental set-up. The interfacing by computer of the different devices used during the experiments increase the ease of use of the set-up. Transient

  14. SEPERATION OF IKONOS SENSOR’S ELECTRONIC NOISE FROM ATMOSPHERIC INDUCED EFFECTS

    Directory of Open Access Journals (Sweden)

    M. R. Mobashery

    2013-09-01

    Full Text Available The quality of satellite images has always been of particular importance in remote sensing. Signals received from satellite sensors include some signals other than those of target signal that may be classified totally as the atmospheric effect and the sensor induced noise. Separating non-target signals and attempting in removing them from images is essential. One method for measuring and removing non-target signals is that of atmospheric correction by Dark Object Subtraction (DOS. This method is based on the sensor’s output for the targets that should have almost zero reflectance in a given band. Next, the obtained value will be deducted from the remaining pixels values; regardless of the type of the sensors. Each Charge-Coupled Device (CCD has its own noise behavior; therefore, the amount deducted values from each pixel can be different for each CCD unit and type. Among the various noises of the CCD and their related electronic circuits, dark current noise, non-uniform pixels noise and read noise were selected to be studied in this paper. The data were obtained from multispectral sensor images of IKONOS. This sensor can provide images in two forms of Panchromatic (PAN and Multispectral (MS. The results of this study showed that the amount of dark object pixels and the total amount of CCD noises in each band are different. Separation of the noises introduced in this paper from the amount of dark object pixel values can result in an upgraded method for image atmosphere corrections.

  15. TEC enhancement due to energetic electrons above Taiwan and the West Pacific

    CERN Document Server

    Suvorova, A V; Dmitriev, A V

    2013-01-01

    The energetic electrons of the inner radiation belt during a geomagnetic disturbance can penetrate in the forbidden range of drift shells located at the heights of the topside equatorial ionosphere (<1000 km). A good correlation was previously revealed between positive ionospheric storms and intense fluxes of quasi-trapped 30-keV electrons at ~900 km height in the forbidden zone. In the present work, we use statistics to validate an assumption that the intense electron fluxes in the topside equatorial ionosphere can be an important source of the ionization in the low-latitude ionosphere. The data on the energetic electrons were obtained from polar orbiting satellites over the periods of the 62 strong geomagnetic storms from 1999 to 2006. Ionospheric response to the selected storms was determined using global ionospheric maps of vertical total electron content (VTEC). A case-event study of a major storm on 9 November 2004 provided experimental evidence in support to the substantial ionization effect of ener...

  16. Evident elevation of atmospheric monoterpenes due to degradation-induced species changes in a semi-arid grassland.

    Science.gov (United States)

    Wang, Hongjun; Wang, Xinming; Zhang, Yanli; Mu, Yujing; Han, Xingguo

    2016-01-15

    Biogenic volatile organic compounds (BVOCs) emitted from plants have substantial effects on atmospheric chemistry/physics and feedbacks on ecosystem function. The on-going climate change and anthropogenic disturbance have been confirmed to cause the evident degradation of grassland with shift of plant community, and hence BVOCs emissions were suspected to be altered due to the different BOVCs emission potentials of different species. In this study, we investigated BVOCs concentration above ground surface during growing season in a degraded semi-arid grassland (41°2' N-45°6' N, 113°5'-117°8') in Inner Mongolia. The observed monoterpenes' concentrations varied from 0.10 to 215.78 μg m(-3) (34.88 ± 9.73 μg m(-3) in average) across 41 sites. Compared to non-degraded grassland, concentrations of monoterpenes were about 180 times higher at the sites dominated by subshrub--Artemisia frigida, a preponderant species under drought stress and over-grazing. The biomass of A. frigida explained 51.39% of the variation of monoterpenes' concentrations. α-pinene, β-pinene and γ-terpinene dominated in the 10 determined monoterpenes, accounting for 37.72 ± 2.98%, 14.65 ± 2.55% and 10.50 ± 2.37% of the total monoterpenes concentration, respectively. Low isoprene concentrations (≤ 3.25 μg m(-3)) were found and sedge biomass contributed about 51.76% to their spatial variation. α-pinene and isoprene emissions at noon were as high as 515.53 ± 88.34 μg m(-2)h(-1) and 7606.19 ± 1073.94 μg m(-2) h(-1) in A. frigida- and sedge-dominated areas where their biomass were 236.90 g m(-2) and 72.37 g m(-2), respectively. Our results suggested that the expansion of A. frigida and sedge caused by over-grazing and climatic stresses may increase local ambient BVOCs concentration in grassland. PMID:26490529

  17. Solvated electrons at the atmospheric pressure plasma-water anodic interface

    Science.gov (United States)

    Gopalakrishnan, R.; Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Graves, D. B.

    2016-07-01

    We present results from a particle-in-cell/Monte Carlo model of a dc discharge in argon at atmospheric pressure coupled with a fluid model of an aqueous electrolyte acting as anode to the plasma. The coupled models reveal the structure of the plasma-electrolyte interface and near-surface region, with a special emphasis on solvated or hydrated electrons. Results from the coupled models are in generally good agreement with the experimental results of Rumbach et al (2016 Nat. Commun. 6 7248). Electrons injected from the plasma into the water are solvated, then lost by reaction with water within about 10-20 nm from the surface. The major reaction products are OH- and H2. The solvated electron density profile is controlled by the injected electron current density and subsequent reactions with water, and is relatively independent of the external plasma electric field and the salt concentration in the aqueous electrolyte. Simulations of the effects of added scavenger compounds (H2O2, \\text{NO}2- , \\text{NO}2- and H+) on near-surface solvated electron density generally match the experimental results. The generation of near-surface OH- following electron-water decomposition in the presence of bulk acid creates a highly basic region (pH ~ 11) very near the surface. In the presence of bulk solution acidity, pH can vary from a very acidic pH 2 away from the surface to a very basic pH 11 over a distance of ~200 nm. High near-surface gradients in aqueous solution properties could strongly affect plasma-liquid applications and challenge theoretical understanding of this complex region.

  18. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    International Nuclear Information System (INIS)

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  19. Doppler broadening of in-flight positron annihilation radiation due to electron momentum.

    Science.gov (United States)

    Hunt, A W; Cassidy, D B; Sterne, P A; Cowan, T E; Howell, R H; Lynn, K G; Golevchenko, J A

    2001-06-11

    We report the first observation of electron momentum contributions to the Doppler broadening of radiation produced by in-flight two-photon annihilation in solids. In these experiments an approximately 2.5 MeV positron beam impinged on thin polyethylene, aluminum, and gold targets. Since energetic positrons easily penetrate the nuclear Coulomb potential and do not cause a strong charge polarization, the experimental annihilation line shapes agree well with calculations based on a simple independent-particle model. Moreover, annihilations with the deepest core electrons are greatly enhanced.

  20. Chirped Auger electron emission due to field-assisted post-collision interaction

    Directory of Open Access Journals (Sweden)

    Bonitz M.

    2013-03-01

    Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.

  1. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  2. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    CERN Document Server

    Peterson, J L; Mikkelsen, D R; Yuh, H Y; Candy, J; Guttenfelder, W; Kaye, S M; LeBlanc, B

    2011-01-01

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is nonlinearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  3. Electron residual energy due to stochastic heating in field-ionized plasma

    CERN Document Server

    Khalilzadeh, Elnaz; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-01-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is here investigated. The optical response of plasma is initially modeled by using the concept of two counter-propagating electromagnetic waves. The solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared to the case without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will significantly be changed by applying a minor change to the initial conditions. Extensive kinetic 1D-3V particle-in-cell (PIC) simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in sufficient long pulse length is high enough to act as a second counter-propagating wave for triggering the stochastic e...

  4. Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves

    Science.gov (United States)

    Li, Jinxing; Bortnik, Jacob; Thorne, Richard M.; Li, Wen; Ma, Qianli; Baker, Daniel N.; Reeves, Geoffrey D.; Fennell, Joseph F.; Spence, Harlan E.; Kletzing, Craig A.; Kurth, William S.; Hospodarsky, George B.; Angelopoulos, Vassilis; Blake, J. Bernard.

    2016-04-01

    The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6-3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron butterfly distributions, which primarily result from parallel acceleration caused by Landau resonance with magnetosonic waves. The coexistence of ultrarelativistic electron butterfly distributions with magnetosonic waves was also observed in the 24 June 2015 storm, providing further support that the magnetosonic waves play a key role in forming butterfly distributions.

  5. Momentum spectra of atmospheric pions, muons, electrons and positrons at balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Codino, A.; Brunetti, M.T.; Federico, C.; Grimani, C.; Lanfranchi, M.; Menichelli, M.; Miozza, M. [Dipartimento di Fisica dell' Universita and Sezione INFN di Perugia, Perugia (Italy); Stochaj, S.J. [Particle Astrophysics Laboratory, New Mexico State University, Las Cruces, NM (United States); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (India); Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Hof, M.; Pfeifer, C.; Menn, W.; Simon, M. [Universitaet Siegen, Siegen (Germany); Basini, G.; Ricci, M. [Laboratori Nazionale INFN di Frascati, Frascati (Italy); Brancaccio, F.M.; Papini, P.; Piccardi, S.; Spillantini, P. [Dipartimento di Fisica dell' Universita and Sezione INFN di Firenze, Firenze (Italy); De Pascale, M.P.; Morselli, A.; Picozza, P. [Dipartimento di Fisica dell' Universita Tor Vergata and Sezione INFN di Roma II, Roma (Italy)

    1997-11-01

    Momentum spectra of pions, muons, electrons and secondary positrons have been measured at an atmospheric depth of 5.8 g cm{sup -2} with the same instrument. Data was collected by the Matter Antimatter Space Spectrometer of the New Mexico State University in a balloon flight in September 1991 at the rigidity cut-off of 4.5 GV c{sup -1} in Fort Sumner, New Mexico. The first measurement of the positive muon spectrum in the range 0.15 GeV c{sup -1} to 2 GeV c{sup -1} is reported in this paper. The spectral index above 3 GeV c{sup -1} of the negative muon momentum spectrum of this measurement is -2.39{+-}0.05 in agreement with analytical cascade calculations which assume a primary proton kinetic energy spectrum with a slope of -2.74{+-}0.02 in the corresponding kinetic energy range. In the momentum interval 300-700 MeV c{sup -1}, both negative and positive muon fluxes turn out to be larger than calculated fluxes by a factor of about 1.4. The measurement of the secondary electron and positron energy spectra allows a reliable subtraction of the atmospheric background from the primary electron and positron fluxes which are affected by large uncertainties in most of the experiments. The energy spectra of the secondary particles reported here have the same systematic errors implying a higher relative accuracy with respect to those measurements made in different flights. (author)

  6. The potential for regional-scale bias in top-down CO2 flux estimates due to atmospheric transport errors

    Directory of Open Access Journals (Sweden)

    S. M. Miller

    2014-09-01

    Full Text Available Estimates of CO2 fluxes that are based on atmospheric data rely upon a meteorological model to simulate atmospheric CO2 transport. These models provide a quantitative link between surface fluxes of CO2 and atmospheric measurements taken downwind. Therefore, any errors in the meteorological model can propagate into atmospheric CO2 transport and ultimately bias the estimated CO2 fluxes. These errors, however, have traditionally been difficult to characterize. To examine the effects of CO2 transport errors on estimated CO2 fluxes, we use a global meteorological model-data assimilation system known as "CAM–LETKF" to quantify two aspects of the transport errors: error variances (standard deviations and temporal error correlations. Furthermore, we develop two case studies. In the first case study, we examine the extent to which CO2 transport uncertainties can bias CO2 flux estimates. In particular, we use a common flux estimate known as CarbonTracker to discover the minimum hypothetical bias that can be detected above the CO2 transport uncertainties. In the second case study, we then investigate which meteorological conditions may contribute to month-long biases in modeled atmospheric transport. We estimate 6 hourly CO2 transport uncertainties in the model surface layer that range from 0.15 to 9.6 ppm (standard deviation, depending on location, and we estimate an average error decorrelation time of ∼2.3 days at existing CO2 observation sites. As a consequence of these uncertainties, we find that CarbonTracker CO2 fluxes would need to be biased by at least 29%, on average, before that bias were detectable at existing non-marine atmospheric CO2 observation sites. Furthermore, we find that persistent, bias-type errors in atmospheric transport are associated with consistent low net radiation, low energy boundary layer conditions. The meteorological model is not necessarily more uncertain in these conditions. Rather, the extent to which meteorological

  7. Universal power-law decay of electron-electron interactions due to nonlinear screening in a Josephson junction array

    Science.gov (United States)

    Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.

  8. Energetic Electron Pitch Angle Diffusion due to Whistler Wave during Terrestrial Storms

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; HE Hui-Yong

    2006-01-01

    A concise and elegant expression of cyclotron harmonic resonant quasi-pure pitch-angle diffusion is constructed for the parallel whistler mode waves, and the quasi-linear diffusion coefficient is prescribed in terms of the whistler mode wave spectral intensity. Numerical computations are performed for the specific case of energetic electrons interacting with a band of frequency of whistler mode turbulence at L ≈ 3. It is found that the quasi-pure pitch-angle diffusion driven by the whistler mode scatters energetic electrons from the larger pitch-angles into the loss cone, and causes pitch-angle distribution to evolve from the pancake-shaped before the terrestrial storms to the flat-top during the main phase. This probably accounts for the quasi-isotropic pitch-angle distribution observed by the combined release and radiation effects satellite spacecraft at L ≈ 3.

  9. Intrapelvic dissemination of early low-grade endometrioid stromal sarcoma due to electronic morcellation

    OpenAIRE

    Choo, Kyoung-Ja; Lee, Hyun Joo; Lee, Tae Sung; Kim, Ju Hyun; Koh, Suk Bong; Choi, Youn Seok

    2015-01-01

    Endometrioid stromal sarcoma is a rare malignancy that originates from mesenchymal cells. It is classified into low-grade endometrioid stromal sarcoma (LGESS) and high-grade endometrioid stromal sarcoma. Ultrasonographic findings of LGESS resemble those of submucosal myomas, leading to the possible preoperative misdiagnosis of LGESS as uterine leiomyoma. Electronic morcellation during laparoscopic surgery in women with LGESS can result in iatrogenic intraabdominal dissemination and a poorer p...

  10. Enhanced O2+ loss at Mars due to an ambipolar electric field from electron heating

    Science.gov (United States)

    Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; Delory, G. T.; Andrews, D. J.; Eriksson, A. I.; McEnulty, T.; Morooka, M. W.; Stewart, A. I. F.; Mahaffy, P. R.; Jakosky, B. M.

    2016-05-01

    Recent results from the MAVEN Langmuir Probe and Waves instrument suggest higher than predicted electron temperatures (Te) in Mars' dayside ionosphere above ~180 km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer indicate significant abundances of O2+ up to ~500 km in altitude, suggesting that O2+ may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher Te (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher Te may greatly increase O2+ loss at Mars. In particular, enhanced Te in Mars' ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (eΦ) of several kBTe, which draws ions out of the region allowing for enhanced escape. With active solar wind, electron, and ion heating, direct O2+ loss could match or exceed loss via dissociative recombination of O2+. These results suggest that direct loss of O2+ may have played a significant role in the loss of oxygen at Mars over time.

  11. Variable Temperature Setup for Scanning Electron Microscopy in Liquids and Atmospheric Pressure Gaseous Environments

    Science.gov (United States)

    Al-Asadi, Ahmed; Zhang, Jie; Li, Jianbo; Denault, Lauraine; Potyrailo, Radislav; Kolmakov, Andrei

    2014-03-01

    A thermoelectric cooling / heating setup for commercial Quantomix QX WETSEM scanning electron microscopy environmental cells was designed and tested. This addition allows extending ambient pressure in situ studies to be conducted in a wide temperature range both in liquid and gaseous environments. Instead of cooling/heating the entire body of QX-WETCELL, ultrathin polyimide electron transparent membrane window supported by metal mesh on the top of the cell has been used as an agent for heat transfer to/ from the Pelltier element. A butterfly wing of Morph sulkowskyi has been used as a model object in the QX-WETCELL's chamber due to its unique micro/nanostructure and peculiar wettability behavior. The dynamics of the water desorption, condensation and freezing processes were observed complementary using both optical microscopy and Scanning Electron Microscopy in vivo. The observations revel that the initial droplet formation were most likely taking place on the top of the wing ridges due to the waxy component of its surface. In addition, The SEM observation showed that the high intensity electron beam can heat the butterfly wing locally delaying the water condensation and freezing processes.

  12. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Science.gov (United States)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Rayner, P. J.; Enting, I.; Mulvaney, R.; Steele, L. P.; Langenfelds, R. L.; Sturges, W. T.; Curran, M. A. J.; Smith, A. M.

    2016-09-01

    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties.

  13. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    International Nuclear Information System (INIS)

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs

  14. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  15. Energy Loss of Solar p Modes due to the Excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    Science.gov (United States)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-07-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).

  16. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).

  17. Stochastic instability of relativistic runaway electrons due to lower hybrid waves

    International Nuclear Information System (INIS)

    Runaway electrons and lower hybrid waves in tokamak discharges are coupled because of the relativistic decrease of the cyclotron frequency. Two interaction regimes must be considered. For the low energy part of the relativistic runaway spectrum, neighboring low harmonic nonlinear cyclotron resonances may overlap. For the high energy part, the influence of the higher order resonances are more conveniently studied with the help of a map describing nearly perpendicular Landau coupling. In both cases it is shown that the stochasticity threshold can be reached in typical discharges, leading to quasilinear diffusion

  18. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    CERN Document Server

    Talman, Richard; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004); N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using trafic4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)] and elegant [M. Borland, Argonne National Laboratory...

  19. Dependence of loss rate of electrons due to elastic gas scattering on the shape of the vacuum chamber in an electron storage ring

    CERN Document Server

    Kumar, Pradeep; Ghodke, A D; Singh, Pitamber

    2014-01-01

    The beam lifetime in an electron storage ring is also limited by the loss rate of the stored electrons due to the elastic coulomb scattering of electrons with the nuclei of residual gas atoms. The contribution to the beam lifetime due to this elastic scattering depends upon the shape factor which is governed by the shape of the vacuum chamber. In this paper, analytical expressions for the shape factor for a rectangular and an elliptical vacuum chamber as a function of longitudinal position along the circumference in a storage ring are derived using an approach in which the position of electrons at the focusing quadrupole is transformed to the location of defocusing quadrupole and vice versa to define the parts of the vacuum chamber, where the loss of electrons takes place at the location of quadrupoles. The expressions available in the literature are for the average shape factors. The expression of shape factor for a rectangular chamber derived in this paper are similar to the expression for average shape fac...

  20. Electric fields, electron precipitation, and VLF radiation during a simultaneous magnetospheric substorm and atmospheric thunderstorm

    International Nuclear Information System (INIS)

    A balloon payload instrumented with a double-probe electric field detector and an X ray scintillation counter was launched from Roberval, Quebec, Canada (L=4.1) at 0828 UT (0328 LT) on July 9, 1975. A magnetospheric substorm was observed locally between 0815 and 1100 UT, which produced a maximum ΔB of approx.500 nT at approx.0930 UT. A single-cell atmospheric thunderstorm developed northeast of Roberval beginning around 0925 UT which was most intense from approx.1000 to 1035 UT. Detailed study of the electrical properties of the thunderstorm, the X ray precipitation data, and VLF spheric data leads to three conclusions. First, the electrical coupling from the thunderstorm to the magnetosphere increases with frequency from dc to the VLF; for the observed storm the amplitude at the ionosphere of thunderstorm produced electric fields was not significant at frequencies below 0.1 Hz. Second, the atmospheric conductivity above the thunderstorm was observed to be about one-half the fair weather value prior to 1000 UT; decreased to about one-quarter the fair weather value at about 1000 UT; and remained depressed after the end of the thunderstorm. This result was contrary to that expected on the basis of previous work and is one which merits considerably more investigation. Third, the data show a high probability that half-hop whistlers initiated by sferics from the thunderstorm triggered energetic electron precipitation from the magnetosphere

  1. Solar radiation absorption in the atmosphere due to water and ice clouds: Sensitivity experiments with plane-parallel clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C. [Univ. of California, Santa Barbara, CA (United States)

    1995-09-01

    One cloud radiation issue that has been troublesome for several decades is the absorption of solar radiation by clouds. Many hypotheses have been proposed to explain the discrepancies between observations and modeling results. A good review of these often-competing hypotheses has been provided by Stephens and Tsay. They characterize the available hypotheses as failing into three categories: (1) those linked to cloud microphysical and consequent optical properties; (2) those linked to the geometry and heterogeneity of clouds; and (3) those linked to atmospheric absorption.Current modeling practice is seriously inconsistent with new observational inferences concerning absorption of solar radiation in the atmosphere. The author and her colleagues contend that an emphasis on R may, therefore, not be the optimal way of addressing the cloud solar absorption issue. 4 refs., 1 fig.

  2. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  3. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    International Nuclear Information System (INIS)

    Highlights: ► Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. ► Characteristic protein localizations were visualized using immuno-labeling. ► M. mobile attached to sialic acid on the SiN film surface within minutes. ► Cells were observed at low concentrations. ► ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2–3 μm-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  4. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions

    OpenAIRE

    Eckhardt, S; Breivik, K.; S. Mano; A. Stohl

    2007-01-01

    International audience; Soils and forests in the boreal region of the Northern Hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs), such as the polychlorinated biphenyls (PCBs). Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultu...

  5. Charging dynamics of a polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results

    Institute of Scientific and Technical Information of China (English)

    Cao Meng; Wang Fang; Liu Jing; Zhang Hai-Bo

    2012-01-01

    We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV.The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons.The dynamic spatial distribution of charges is obtained and validated by existing experimental data.Our simulations show that excess negative charges are concentrated near the edge of the electron range.However,the formed region of high charge density may extend to the surface and bottom of a kapton sample,due to the effects of the electric field on electron scattering and charge transport,respectively.Charge trapping is then demonstrated to significantly influence the charge motion.The charge distribution can be extended to the bottom as the trap density decreases.Charge accumulation is therefore balanced by the appearance and increase of leakage current.Accordingly,our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.

  6. Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with this code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.

  7. Effects of a Relativistic Electron Beam Interaction with the Upper Atmosphere: Ionization, X-Rays, and Optical Emissions

    Science.gov (United States)

    Marshall, R. A.; Nicolls, M. J.; Sanchez, E. R.; Lehtinen, N. G.; Neilson, J.

    2014-12-01

    An artificial beam of relativistic (0.5--10 MeV) electrons has been proposed as an active experiment in the ionosphere and magnetosphere, with applications to magnetic field-line tracing, studies of wave-particle interactions, and beam-atmosphere interactions. The beam-atmosphere interaction, while a scientific endeavor of its own, also provides key diagnostics for other experiments. We present results of Monte Carlo simulations of the interaction of a beam of relativistic electrons with the upper atmosphere as they are injected downwards from a notional high altitude (thermospheric / ionospheric) injection platform. The beam parameters, defined by realistic parameters of a compact linear accelerator, are used to create a distribution of thousands of electrons. Each electron is injected downwards from 300 km altitude towards the dense atmosphere, where it undergoes elastic and inelastic collisions, leading to secondary ionization, optical emissions, and X-rays via bremsstrahlung. Here we describe the Monte Carlo model and present calculations of diagnostic outputs, including optical emissions, X-ray fluxes, secondary ionization, and backscattered energetic electron fluxes. Optical emissions are propagated to the ground through the lower atmosphere, including the effects of atmospheric absorption and scattering, to estimate the brightness of the emission column for a given beam current and energy. Similarly, X-ray fluxes are propagated to hypothetical detectors on balloons and satellites, taking into account Compton scattering and photoabsorption. Secondary ionization is used to estimate the radar signal returns from various ground-based radar facilities. Finally, simulated backscattered electron fluxes are measured at the injection location. The simulation results show that for realizable accelerator parameters, each of these diagnostics should be readily detectable by appropriate instruments.

  8. Internal composition of atmospheric dust particles from focused ion-beam scanning electron microscopy.

    Science.gov (United States)

    Conny, Joseph M

    2013-08-01

    Use of focused ion-beam scanning electron microscopy (FIB-SEM) to investigate the internal composition of atmospheric particles is demonstrated for assessing particle optical properties. In the FIB-SEM instrument equipped with an X-ray detector, a gallium-ion beam mills the particle, while the electron beam images the slice faces and energy-dispersive X-ray spectroscopy provides element maps of the particle. Differences in assessments of optical behavior based on FIB-SEM and conventional SEM were shown for five selected urban dust particles. The benefit of FIB-SEM for accurately determining the depth and size of optically important phases within particles was shown. FIB-SEM revealed that iron oxide grains left undetected by conventional SEM could potentially shift the single-scattering albedo of the particle from negative to positive radiative forcing. Analysis of a coke-like particle showed that 73% of the light-scattering inclusion went undetected with conventional SEM, causing the bulk absorption coefficient to vary by as much as 25%. Optical property calculations for particles as volume-equivalent spheres and as spheroids that approximated actual particle shapes revealed that the largest effect between conventional SEM and FIB-SEM analyses was on backscattering efficiency, in some cases varying several-fold. PMID:23763344

  9. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  10. Radio and X-ray diagnostics of electron acceleration and propagation in the solar atmosphere

    Science.gov (United States)

    Vilmer, N.; Reid, H.

    2015-12-01

    Efficient particle acceleration is observed in association with solar flares. X-ray and radio emissions provide valuable information on the properties of electron acceleration, interaction and propagation. In particular, type III radio bursts observed in a whole frequency band from several hundred MHz to tens of MHz allow to diagnose the propagation of electron beams from the flare acceleration site in the corona to the outer solar atmosphere. We will present here the results of a study based on ten years of data (2002-2011) starting with a list of coronal type III bursts. We will reexamine long-standing questions on the connections between type III bursts and HXR flares using combined data from RHESSI, the Phoenix 2 and Blein 7M radiospectrometers, the NRH and Wind/Waves: -Do all coronal type III bursts have X-ray counterparts? -What kind of correlation between X-ray and radio intensities? -Do all coronal type III bursts have an Interplanetary component? We will further describe how these kind of studies can be continued in the future using the combination of ground-based measurements with Solar Orbiter and Solar Probe + observations.

  11. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2007-05-01

    Full Text Available Soils and forests in the boreal region of the northern hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs, such as the polychlorinated biphenyls (PCBs. Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007. Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3–4 weeks (Stohl et al., 2006. Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 μg PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere.

  12. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2007-08-01

    Full Text Available Soils and forests in the boreal region of the Northern Hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs, such as the polychlorinated biphenyls (PCBs. Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007. Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3–4 weeks (Stohl et al., 2006. Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 μg PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere.

  13. Resonance frequency shifts due to quantized electronic states in atomically thin NEMS

    Science.gov (United States)

    Chen, Changyao; Deshpande, Vikram; Koshino, Mikito; Lee, Sunwoo; Gondarenko, Alexander; MacDonald, Allan; Kim, Philip; Hone, James

    The classic picture of the force exerted on a parallel plate capacitor assumes infinite density of states (DOS), which implies identical electrochemical and electrostatic potential. However, such assumption can breakdown in low-dimensional devices where the DOS is finite or quantized. Here we consider the mechanical resonance shift of a nanoelectromechanical (NEMS) resonator with small DOS, actuated and detected capacitively at fixed electrochemical potential. We found three leading correction terms to the classical picture: the first term leads to the modulation of static force due to the variation in chemical potential, and the second and third terms are related to the static and dynamic changes in spring constants, caused by quantum capacitance. The theory agrees well with recent experimental findings from graphene resonator in quantum Hall regimes, where the chemical potential and quantum capacitance are tuned by magnetic field, while the gate voltage is kept constant.

  14. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production

    Science.gov (United States)

    Helmig, Detlev; Rossabi, Samuel; Hueber, Jacques; Tans, Pieter; Montzka, Stephen A.; Masarie, Ken; Thoning, Kirk; Plass-Duelmer, Christian; Claude, Anja; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Reimann, Stefan; Vollmer, Martin K.; Steinbrecher, Rainer; Hannigan, James W.; Emmons, Louisa K.; Mahieu, Emmanuel; Franco, Bruno; Smale, Dan; Pozzer, Andrea

    2016-07-01

    Non-methane hydrocarbons such as ethane are important precursors to tropospheric ozone and aerosols. Using data from a global surface network and atmospheric column observations we show that the steady decline in the ethane mole fraction that began in the 1970s halted between 2005 and 2010 in most of the Northern Hemisphere and has since reversed. We calculate a yearly increase in ethane emissions in the Northern Hemisphere of 0.42 (+/-0.19) Tg yr-1 between mid-2009 and mid-2014. The largest increases in ethane and the shorter-lived propane are seen over the central and eastern USA, with a spatial distribution that suggests North American oil and natural gas development as the primary source of increasing emissions. By including other co-emitted oil and natural gas non-methane hydrocarbons, we estimate a Northern Hemisphere total non-methane hydrocarbon yearly emission increase of 1.2 (+/-0.8) Tg yr-1. Atmospheric chemical transport modelling suggests that these emissions could augment summertime mean surface ozone by several nanomoles per mole near oil and natural gas production regions. Methane/ethane oil and natural gas emission ratios could suggest a significant increase in associated methane emissions; however, this increase is inconsistent with observed leak rates in production regions and changes in methane's global isotopic ratio.

  15. Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer

    Directory of Open Access Journals (Sweden)

    M. Ampferer

    2010-03-01

    Full Text Available It is well known that lithospheric electromagnetic emissions are generated before earthquakes occurrence. In our study, we consider the physical penetration mechanism of the electric field from the Earth's surface, through the atmosphere-ionosphere layers, and until its detection in space by satellites. A simplified approach is investigated using the electric conductivity equation, i.e., ∇ˆσ·∇Φ=0 in the case of a vertical inclination of the geomagnetic field lines. Particular interest is given to the conductivity profile near the ground and the electric field distribution at the Earth's surface. Our results are discussed and compared to the models of Pulinets et al. (2003 and Denisenko et al. (2008. It is shown that the near ground atmospheric layer with low conductivity decreases the electric field penetration into the ionosphere. The model calculations have demonstrated that the electric field of lithospheric origin is too weak to be observed at satellite altitudes.

  16. A temporal increase in the atmospheric {sup 210}Pb concentration possibly due to the 1991 eruption of Pinatubo volcano. An observation at Seoul, the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shin; Sato, Jun [Meiji Univ., Kawasaki, Kanagawa (Japan). School of Science and Technology; Doi, Taeko

    1999-08-01

    A temporal increase in the atmospheric concentration of {sup 210}Pb was observed in December, 1991, and January, 1992, at Seoul, the Republic of Korea. This increase was estimated to be due to the fallout of the stratospheric {sup 210}Pb originating from the 1991 eruption of Pinatubo volcano, Philippines, along with the aerosol particles injected into the stratosphere by the eruption. The present observation was similar to the previous observations made at Tsukuba Science City, Japan. (author)

  17. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Hidetoshi, E-mail: hinishiy@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Koizumi, Mitsuru, E-mail: koizumi@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Ogawa, Koji, E-mail: kogawa@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Kitamura, Shinich, E-mail: kitamura@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Konyuba, Yuji, E-mail: ykonyuub@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Watanabe, Yoshiyuki, E-mail: watanabeyoshiy@pref.yamagata.jp [Yamagata Research Institute of Technology, 2-2-1, Matsuei, Yamagata 990-2473 (Japan); Ohbayashi, Norihiko, E-mail: n.ohbayashi@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Fukuda, Mitsunori, E-mail: nori@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Suga, Mitsuo, E-mail: msuga@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-4, Umezono, Tsukuba 305-8568 (Japan)

    2014-12-15

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control.

  18. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    International Nuclear Information System (INIS)

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control

  19. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    Science.gov (United States)

    Meyerholt, Johannes; Zaehle, Sönke; Smith, Matthew J.

    2016-03-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 108 to 148 Tg N yr-1 (median: 128 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median: 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon (C) storage (+281 to +353 Pg C, or +13 to +16 %) as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  20. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  1. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    Science.gov (United States)

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-05-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y‑1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  2. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (arctic Ocean) due to sea ice loss

    DEFF Research Database (Denmark)

    Else, B.G.T.; Galley, R.J.; Lansard, B.;

    2013-01-01

    ), considering that surface water temperatures were low and the influence of ice melt was strong. A simple model simulating melt of the remaining ice and exposure of the surface water for 100 days revealed a weak capacity for atmospheric CO2 uptake (mean flux: 2.4 mmol m2 d1), due largely to warming of the shallow......[1] Using data collected in 2009, we evaluated the potential for the southeastern Canada Basin (Arctic Ocean) to act as an atmospheric CO2 sink under the summertime ice-free conditions expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high pCO2sw (~290–320matm...... mixed layer. Our results confirm a previous finding that the Canada Basin is not a significant sink of atmospheric CO2 under summertime ice-free conditions and that increased ventilation of the surface mixed layer due to sea ice loss is weakening the sink even further. Citation: Else, B. G. T., R. J...

  3. Differential conductance of armchair single-wall carbon nanotubes due to presence of electron-phonon interaction

    Science.gov (United States)

    Tajik, Fatemeh; Namiranian, Afshin

    2016-10-01

    We have theoretically investigated the first correction to conductance of armchair single wall carbon nanotubes (SWCNTs) with finite length, embedded between two electrodes, due to the presence of electron-transversal phonon interaction. The perturbative scheme has been used with finite length real space nearest neighbors tight binding method. Both radial breathing and tangential modes are investigated separately. It is found that not only the conductance correction crucially depends on source-drain voltage but also it strongly depends on the length and diameter of SWCNT. So, this work opens up opportunities to control the electrical conductance of SWCNT and increases yield of micro or nanodevices based on carbon nanotube.

  4. Runaway electrons and x-rays from a corona discharge in atmospheric pressure air

    International Nuclear Information System (INIS)

    The characteristics of a corona discharge in atmospheric pressure air are studied using pulsed power generators that produce voltage pulses of different durations, polarities and shapes. The characteristics are measured in the single pulse, batch, and repetitively pulsed modes. It is shown that no matter what the voltage pulse polarity is, a corona discharge starts developing as a conical diffuse discharge near the electrode tip with a voltage rate of increase of ∼1015 V s-1 across an electrode of small curvature radius. With lower voltage rate of increase (∼1013 V s-1 or lower), one or several diffuse jets develop from this electrode. The diameter of the jets at their front is less than 1 mm and depends on many factors (voltage pulse amplitude and increase, inter-electrode gap width, pulse repetition rate, etc). It is found that at long voltage pulse durations, the radiation spectrum of the corona discharge changes, and the bands and lines of the material of the electrode appear in the UV region at 200-300 nm. It is demonstrated that a runaway electron beam in a corona discharge is generated and detected at a distance several times greater than the brightly glowing plasma region of the corona discharge. It is shown that x-rays are generated from a corona discharge at high pulse repetition rates of up to 1 kHz. (paper)

  5. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  6. Atmospheric deposition of heavy metals due to dry, wet and occult deposition at the altitude profile Achenkirch

    International Nuclear Information System (INIS)

    The goal of this work was to determine the height dependence of the three types of deposition throughout a one year time period to be able to get information about their elevational and seasonal behavior. In the time period from October 1998 to November 1999 measurements of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in aerosol, rain and cloud water were conducted in the Achenkirch-Valley in Tyrol, Austria. Afterwards the dry and occult deposition were modeled. The estimated annual inputs of metals at the two measurement sites Christlumkopf (1758 m a.s.l.) Mueeggerkoel (940 m a.s.l.) and the limits of the national law for protection of forest are shown. The measured depositions at both sites were far below the legal regulations. Due to the much higher occult deposition ratio at the top of the mountain the total annual input at the Christlumkopf was higher than at the Mueeggerkoel. This indicates the potential importance of occult deposition. (author)

  7. Measurement and modeling of gamma-absorbed doses due to atmospheric releases from Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Short-term gamma-absorbed doses were measured by one high-pressure ionization chamber (HPIC) at an azimuth of 120 from the Los Alamos Meson Physics Facility (LAMPF) stack during the January 1 through February 8 operating cycle. Two HPICs were in the field during the September 8 through December 31 operating cycle, one north and the other north-northeast of the LAMPF stack, but they did not provide reliable data. Meteorological data were also measured at both East Gate and LAMPF. Airborne emission data were taken at the stack. Daily model predictions, based on the integration of modeled 15-min periods, were made for the first LAMPF operating cycle and were compared with the measured data. A comparison of the predicted and measured daily gamma doses due to LAMPF emissions is presented. There is very good correlation between measured and predicted values. During 39-day operating cycles, the model predicted an absorbed dose of 10.3 mrad compared with the 8.8 mrad that was measured, an overprediction of 17%

  8. Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere

    Science.gov (United States)

    Tomita, Kentaro; Urabe, Keiichiro; Shirai, Naoki; Sato, Yuta; Hassaballa, Safwat; Bolouki, Nima; Yoneda, Munehiro; Shimizu, Takahiro; Uchino, Kiichiro

    2016-06-01

    Laser Thomson scattering was applied to an atmospheric-pressure plasma produced in a helium (He) gas flow for measuring the spatial profiles of electron density (n e) and electron temperature (T e). Aside from the He core flow, the shielding gas flow of N2 or synthesized air (\\text{N}2:\\text{O}2 = 4:1) surrounding the He flow was introduced to evaluate the effect of ambient gas components on the plasma parameters, eliminating the effect of ambient humidity. The n e at the discharge center was 2.7 × 1021 m-3 for plasma generated with N2/O2 shielding gas, 50% higher than that generated with N2 shielding.

  9. Visions of Our Planet's Atmosphere, Land and Oceans Electronic-Theater 2001

    Science.gov (United States)

    Hasler, A. F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Fredericton New Brunswick. Drop in on the Kennedy Space Center and Park City Utah, site of the 2002 Olympics using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and International global satellite weather movies including hurricanes & tornadoes. See the latest spectacular images from NASA/NOAA and Canadian remote sensing missions like Terra GOES, TRMM, SeaWiFS, Landsat 7, and Radarsat that are visualized & explained. See how High Definition Television (HDTV) is revolutionizing the way we communicate science in cooperation with the American Museum of Natural History in NYC. See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. New visualization tools allow us to roam & zoom through massive global images eg Landsat tours of the US, Africa, & New Zealand showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Onyx II Graphics Supercomputer with four CPUs, 8 Gigabytes of RAM and Terabyte of disk. With multiple projectors on a giant screen. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP

  10. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    Science.gov (United States)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  11. Visions of Our Planet's Atmosphere, Land and Oceans: Electronic-Theater 2000

    Science.gov (United States)

    Hasler, A. F.

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Delaware Bay and Philadelphia area. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer tropical cyclones & tornadic thunderstorms. See the latest spectacular images from NASA, NOAA & UMETSAT remote sensing missions like GOES, Meteosat, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. see visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including Landsat tours of the US, and Africa with drill downs of major global cities using 1 m resolution commercialized spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. see ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across a super sized panoramic screen.

  12. Long-term nitrate increases in two oligotrophic lakes, due to the leaching of atmospherically-deposited N from moorland ranker soils

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)], E-mail: et@ceh.ac.uk; Thacker, S.A.; Wilson, D. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Hall, J.R. [Centre for Ecology and Hydrology (Monks Wood), Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)

    2008-03-15

    During the last 50 years nitrate concentrations in Buttermere and Wastwater (Cumbria, UK) have risen significantly, by 70 and 100%, respectively. By estimating contemporary nitrate fluxes in the lakes' catchments and in sub-catchments and comparing them with the fractional areas of different soil types, it is deduced that the surface water nitrate is derived almost entirely from organic-rich ranker soils that have a limited ability to retain atmospherically-deposited nitrogen. Little or no nitrate leaches from the other major soil type, a brown podzol, despite it having a lower C:N ratio (12.0 g g{sup -1}) than the ranker (17.0 g g{sup -1}), nor is there much contribution from the small areas of improved (chemically fertilised) grassland within the catchments. Although some nitrate leaching is occurring, total N losses are appreciably smaller than atmospheric inputs, so the catchment soils are currently accumulating between 3 and 4 g N m{sup -2} a{sup -1}. - Increases in lakewater nitrate concentrations over 50 years are due to the limited ability of ranker soils to retain atmospherically-deposited nitrogen.

  13. Electron beam generated in low pressure noble gas atmosphere – Compact device construction and applications

    International Nuclear Information System (INIS)

    During the process of low vacuum electron beam welding the energy of electrons is lower than the energy of electrons in the classical electron beam welding equipment. The classical electron beam welding can not always be used to weld of small work-piece details. Sometimes it’s impossible to reduce the electron beam energy because of poor focusing in the conventional electron beam welding machines. Low vacuum electron beam welding technique is well suitable to several niche products, such as thermocouples or aluminium seals. It also allows to treat the surface of dielectric materials, which is not possible using classical electron beam welding technique. The costs of low vacuum electron beam welding process are very low. (authors)

  14. A relative risk estimation of excessive frequency of malignant tumors in population due to discharges into the atmosphere from fossil-fuel power plants and nuclear power plants

    International Nuclear Information System (INIS)

    Exposure of the population (doses to lungs, bone and whole body) due to fossil-fuel power plants (FFPP) is estimated by the example of a large modern coal FFPP taking into account the contents of 226Ra, 228Ra, 210Pb, 210Po, 40K, 232Th in the fly ash and also radon discharges. The doses produced by radionuclides mentioned above for the individuals from the population living within the range of 18km from the FFPP together with the mean collective doses all over the territory of the country used for the agricultural purposes are given. These values are compared with literary data on the doses due to discharges into the atmosphere of inert radioactive gases, 60Co, 137Cs, 90Sr and 131I from nuclear power plants (NPP). It is revealed that the total exposure risk for the near-by population due to fly ash from coal FFPP is greater by about 2 orders than the risk for individuals from the population due to the discharges from NPP at normal operating conditions. The doses produced by the discharges from FFPP working on oil are lower by 1 order than the doses due to the discharges from coal FFPP. The risk of excessive cancer frequency due to chemical carcinogens contained in the discharges from FFPP including some metals is discussed. It is noted that a more complete evaluation of the risk from NPP requires the data on the doses to the population from all the cycles of nuclear fuel production and radioactive waste disposal as well as the predicted information on collective doses per power unit of NPP due to an accident

  15. Online diagnosis of electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure by optical emission spectra

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Methane coupling under low temperature plasmas at atmospheric pressure is a green process by use of renewable sources of energy. In this study, CH4+H2 dis- charge plasma was on-line diagnosed by optical emission spectra so as to char- acterize the discharge system and to do spade work for the optimization of the technical parameters for future commercial production of methane coupling under plasmas. The study was focused on a calculation method for the online diagnosis of the electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure. The diagnostic method is easy, efficient and fairly precise. A serious er- ror in a literature was corrected during the reasoning of its series of equations formerly used to calculate electron temperatures in plasmas.

  16. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, R. K.; Das, S.; Panda, A. K.; Sahu, T., E-mail: tsahu-bu@rediffmail.com [Department of Electronics and Communication Engineering, National Institute of Science and Technology, Palur Hills, Berhampur-761 008, Odisha (India)

    2015-11-15

    We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.

  17. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  18. Frequency effects on the electron density and {alpha}-{gamma} mode transition in atmospheric radio frequency discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuantao [Shandong Provincial Key Lab of UHV Technology and Gas Discharge Physics, School of Electrical Engineering, Shandong University, Jinan, Shandong Province 250061 (China); Cui Shaoyan [School of Mathematics and Information, Ludong University, Yantai, Shandong Province 264025 (China)

    2011-08-15

    In this paper, a one-dimensional model is explored to investigate the frequency effects on the characteristics of atmospheric radio frequency discharges at a given power. The simulation data and analytical results show that the improvement of electron density can be observed with better discharge stability by increasing excitation frequency in an appropriate range. Using the analytical equations deduced from the model, the mean electron density could be inferred by means of the measured parameters. The {alpha}-{gamma} mode transition especially in high frequency discharges is also analytically discussed based on the theoretical equations.

  19. Electronic-Theater 2001: Visions of Our Planet's Atmosphere, Land and Oceans

    Science.gov (United States)

    Hasler, Authur; Starr, David OC. (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Wisconsin, Madison and the Monona Terrace Center. Drop in on the Kennedy Space Center and Park City Utah, site of the 2002 Olympics using I m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s pioneered by UW. Scientists and see them contrasted with the latest US and International global satellite weather movies including hurricanes & tornadoes. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra GOES, TRMM, SeaWiFS, Landsat 7 that are visualized & explained. See how High Definition Television (HDTV) is revolutionizing the way we communicate science in cooperation with the American Museum of Natural History in NYC. See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. New visualization tools allow us to roam & zoom through massive global images eg Landsat tours of the US, Africa, & New Zealand showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See vortices and currents in the global oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nina/La Nina climate changes. The demonstration is interactively driven by a SGI Onyx 11 Graphics Supercomputer with four CPUs, 8 Gigabytes of RAM and Terabyte of disk. With five projectors on a giant IMAX sized 18 x 72 ft screen. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night

  20. Energy Loss of Solar $p$ Modes due to the excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    CERN Document Server

    Gascoyne, Andrew; Hindman, Bradley

    2014-01-01

    We consider damping and absorption of solar $p$ modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of $p$ modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by $p$ modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux-tube. The deficit of $p$-mode energy is quantified through the damping rate, $\\Gamma$ and absorption coefficient, $\\alpha$. The variation of $\\Gamma$ and $\\alpha$ as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modelled as a polytrope that has been truncated at the photosphere (Bogdan et al. (1996), Hindman & Jain 2008, Gascoyne et al. (2011)). Such studies have found that the resulting energy loss by the $p$ modes is very sensitiv...

  1. A study of external exposure variation due to atmospheric dispersion of 41Ar Plume in Bhabha Atomic Research Centre Trombay site

    International Nuclear Information System (INIS)

    Measurement of the ambient radiation level in the surroundings of any nuclear facility is necessary to ensure the regulation and control over the environmental releases and any possible radiological impact. This is achieved in Bhabha Atomic Research Centre Trombay site using various monitoring methodologies, different Dose Logging Equipments including Radiation Early Warning System and other passive devices. During the present study (October 2009 to September 2010), external exposures due to atmospheric dispersion of 41Ar, released from Cirus and Dhruva reactors (maximum cumulative release rate 8.27E+8 Bq.s-1) were assessed by installing Gamma tracers and TLDs at different monitoring locations. TLDs were used for the measurement of cumulative environmental doses for a longer period and Gamma tracer is primarily used for dose rate measurement with provision of dose assessment of any desired period

  2. Observation of Diffuse Cosmic and Atmospheric Gamma Rays at Balloon Altitudes with an Electron-tracking Compton Camera

    CERN Document Server

    Takada, Atsushi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Mizuta, Eiichi; Nagayoshi, Tsutomu; Nonaka, Naoki; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru

    2011-01-01

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronomical Science/Japan Space Exploration Agency on September 1, 2006, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60 degrees. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm-2, we found that 50% and 21% ...

  3. Observation of Diffuse Cosmic and Atmospheric Gamma Rays at Balloon Altitudes with an Electron-tracking Compton Camera

    Science.gov (United States)

    Takada, Atsushi; Kubo, Hidetoshi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Mizuta, Eiichi; Nagayoshi, Tsutomu; Nonaka, Naoki; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru

    2011-05-01

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency on 2006 September 1, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60°. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm-2 we found that 50% and 21% of the gamma rays at energies of 150 keV and 1 MeV, respectively, were scattered in the atmosphere prior to reaching the detector. Moreover, by using Geant4 simulations and the QinetiQ atmospheric radiation model, we estimated that the detected events consisted of diffuse cosmic and atmospheric gamma rays (79%), secondary photons produced in the instrument through the interaction between cosmic rays and materials surrounding the detector (19%), and other particles (2%). The obtained growth curve was comparable to Ling's model, and the fluxes of diffuse cosmic and atmospheric gamma rays were consistent with the results of previous experiments. The expected detection sensitivity of a future SMILE experiment measuring gamma rays between 150 keV and 20 MeV was estimated from our SMILE-I results and was found to be 10 times better than that of other experiments at around 1 MeV.

  4. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gessel, Bram van; Bruggeman, Peter [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Brandenburg, Ronny [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany)

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  5. Nighttime D region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes

    OpenAIRE

    İnan, Umran Savaş; Maurya, Ajeet K.; Veenadhari, B. ; Singh, Rajesh ; Kumar, Sushil ; Cohen, M. B. ; Selvakumaran, R. ; Gokani, Sneha ; Pant, P.; Singh, A. K.

    2012-01-01

    Dispersive atmospherics (tweeks) observed during 2010 simultaneously at two low-latitude stations, Allahabad (geomagnetic latitude, 16.05 N) and Nainital (geomagnetic latitude, 20.48 N), have been used to estimate the nighttime D region electron density at the ionospheric reflection height under the local nighttime propagation (21:00–02:00 LT or 15:30–20:30 UT). The analysis of simultaneously recorded tweeks at both the stations on five international quiet days during one month...

  6. The Ocean Colour Climate Change Initiative: II. Spatial and Temporal Homogeneity of Satellite Data Retrieval Due to Systematic Effects in Atmospheric Correction Processors

    Science.gov (United States)

    Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Brockmann, Carsten; Deschamps, Pierre-Yves; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic; Platt, Trevor; Regner, Peter; Sathyendranath, Shubha; Steinmetz, Francois; Swinton, John

    2015-01-01

    The established procedure to access the quality of atmospheric correction processors and their underlying algorithms is the comparison of satellite data products with related in-situ measurements. Although this approach addresses the accuracy of derived geophysical properties in a straight forward fashion, it is also limited in its ability to catch systematic sensor and processor dependent behaviour of satellite products along the scan-line, which might impair the usefulness of the data in spatial analyses. The Ocean Colour Climate Change Initiative (OC-CCI) aims to create an ocean colour dataset on a global scale to meet the demands of the ecosystem modelling community. The need for products with increasing spatial and temporal resolution that also show as little systematic and random errors as possible, increases. Due to cloud cover, even temporal means can be influenced by along-scanline artefacts if the observations are not balanced and effects cannot be cancelled out mutually. These effects can arise from a multitude of results which are not easily separated, if at all. Among the sources of artefacts, there are some sensor-specific calibration issues which should lead to similar responses in all processors, as well as processor-specific features which correspond with the individual choices in the algorithms. A set of methods is proposed and applied to MERIS data over two regions of interest in the North Atlantic and the South Pacific Gyre. The normalised water leaving reflectance products of four atmospheric correction processors, which have also been evaluated in match-up analysis, is analysed in order to find and interpret systematic effects across track. These results are summed up with a semi-objective ranking and are used as a complement to the match-up analysis in the decision for the best Atmospheric Correction (AC) processor. Although the need for discussion remains concerning the absolutes by which to judge an AC processor, this example demonstrates

  7. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    2012-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  8. Degradation of Cu(In, Ga)Se2 thin-film solar cells due to the ionization effect of low-energy electrons

    International Nuclear Information System (INIS)

    Cu (In, Ga)Se2 (CIGS) solar cells were irradiated with 100 keV electrons to reveal the characteristics of created radiation defects. 100 keV electrons cannot produce any displacement defects in CIGS. Low-fluence electrons improve the electrical performance of the CIGS solar cells due to the change in the conductive type of donor to acceptor in a metastable defect, which is equivalent to the light-soaking effect. However, high fluence electrons cause the cell performance to decline. From analysis based on changes in carrier density and electroluminescence, defects causing the decline in performance include donor- and non-radiative types. In addition, red-on-bias experiments showed an increase in IIICu defects due to electron irradiation. Based on these results, the degradation in the electrical performance of the CIGS solar cells irradiated with high electron fluence would be attributable to a change in the conductive type of IIICu defects. - Highlights: • Cu(In,Ga)Se2 Solar cells were irradiated with 100 and 250 keV electrons at low temperature. • These electrons degraded the electrical performance of Cu(In,Ga)Se2 sola cells. • The electrons induced ⅢCu defects in Cu(In,Ga)Se2

  9. Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain

    Science.gov (United States)

    Tiwari, S.; Dumka, U. C.; Hopke, P. K.; Tunved, P.; Srivastava, A. K.; Bisht, D. S.; Chakrabarty, R. K.

    2016-09-01

    Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the "Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III" of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (± 0.85) μg m- 3 with a daily variability between 2.4 and 5.64 μg m- 3, however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM10)] were 29.1(± 16.2), 34.7 (± 19.9) and 43.7 (± 28.3) μg m- 3, respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 μg m- 3) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be + 78.3, + 44.9, and + 45.0 W m- 2 and + 42.2, + 35.4 and + 34.3 W m- 2 during the months of June, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21, 1.26 and 1.26; and 1.19, 0.99 and 0.96 K day- 1 for the month of June, July and August, respectively, with a mean of 1.57 and 1.05 K day- 1 which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by

  10. Study of variations in structural, optical parameters and bulk etch rate of CR-39 polymer due to electron irradiation

    Science.gov (United States)

    Sahoo, G. S.; Tripathy, S. P.; Joshi, D. S.; Bandyopadhyay, T.

    2016-07-01

    In this work, electron induced modifications on the bulk etch rate, structural and optical parameters of CR-39 polymer were studied using gravimetric, FTIR (Fourier Transform Infrared) and UV-vis (Ultraviolet-Visible) techniques, respectively. CR-39 samples were irradiated with 10 MeV electron beam for different durations to have the absorbed doses of 1, 10, 550, 5500, 16 500, and 55 000 kGy. From the FTIR analysis, the peak intensities at different bands were found to be changing with electron dose. A few peaks were observed to shift at high electron doses. From the UV-vis analysis, the optical band gaps for both direct and indirect transitions were found to be decreasing with the increase in electron dose whereas the opacity, number of carbon atoms in conjugation length, and the number of carbon atoms per cluster were found to be increasing. The bulk etch rate was observed to be increasing with the electron dose. The primary objective of this investigation was to study the response of CR-39 to high electron doses and to determine a suitable pre-irradiation condition. The results indicated that, the CR-39 pre-irradiated with electrons can have better sensitivity and thus can be potentially applied for neutron dosimetry.

  11. Anomalous electron correlation due to near degeneracy effects : Low-lying ionic states of Ne and Ar

    NARCIS (Netherlands)

    Bagus, PS; Broer, R; Parmigiani, F

    2006-01-01

    This Letter addresses a long-standing problem related to non-dynamical electron correlation effects. The origin of the large differential electronic correlation energy among the neutral S-1 ground state, the lowest, P-2, ionic state and the first excited, S-2, ionic state of the Ne and Ar atoms is e

  12. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  13. Cold atmospheric pressure plasma jets: Interaction with plasmid DNA and tailored electron heating using dual-frequency excitation

    Science.gov (United States)

    Niemi, K.; O'Neill, C.; Cox, L. J.; Waskoenig, J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Currell, F. J.; Graham, W. G.; O'Connell, D.; Gans, T.

    2012-05-01

    Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations.

  14. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

    Science.gov (United States)

    Sharma, V.; Parlange, M. B.; Calaf, M.

    2016-08-01

    The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

  15. Indoor atmospheric corrosion of electronic materials in tropical-mountain environments

    Energy Technology Data Exchange (ETDEWEB)

    Gil, H. [Corrosion and Protection Group, University of Antioquia, Street 62 No 52-59, Medellin (Colombia)], E-mail: harveth@gmail.com; Calderon, J.A. [Corrosion and Protection Group, University of Antioquia, Street 62 No 52-59, Medellin (Colombia)], E-mail: jacalder@udea.edu.co; Buitrago, C.P.; Echavarria, A.; Echeverria, F. [Corrosion and Protection Group, University of Antioquia, Street 62 No 52-59, Medellin (Colombia)

    2010-02-15

    Indoor corrosion rate during one year exposure for carbon steel, copper, nickel, and tin was determined in three different atmospheres in Colombia. In addition, pollutants deposition rates and environmental parameters were also measured during indoor-outdoor conditions. The results show higher pollutant deposition in outdoor conditions, while inside metallic boxes the pollutant deposition significantly diminishes. No difference for relative humidity values was found between inside and outside measurements. For all samples, except nickel, the corrosion rate decrease with exposure time. The nature of corrosion products was found to be related to the exposure conditions.

  16. Indoor atmospheric corrosion of electronic materials in tropical-mountain environments

    International Nuclear Information System (INIS)

    Indoor corrosion rate during one year exposure for carbon steel, copper, nickel, and tin was determined in three different atmospheres in Colombia. In addition, pollutants deposition rates and environmental parameters were also measured during indoor-outdoor conditions. The results show higher pollutant deposition in outdoor conditions, while inside metallic boxes the pollutant deposition significantly diminishes. No difference for relative humidity values was found between inside and outside measurements. For all samples, except nickel, the corrosion rate decrease with exposure time. The nature of corrosion products was found to be related to the exposure conditions.

  17. Solar flare soft-X-ray spectra from Very Low Frequency observations of ionospheric modulations: Possibility of uninterrupted observation of non-thermal electron-plasma interaction in solar atmosphere.

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    The hard and soft X-ray regions of a solar flare spectrum are the manifestation of interaction, namely of bremsstrahlung radiation of the non-thermal electrons moving inward in the denser part of the solar atmosphere with the plasma heated by those energetic electrons. The continuous and uninterrupted knowledge of X-ray photon spectra of flares are of great importance to derive information on the electron acceleration and hence time-evolution of energy transport and physics during solar flares. Satellite observations of solar X-ray spectrum are often limited by the restricted windows in each duty cycle to avoid the interaction of detectors and instruments with harmful energetic charge particles. In this work we have tried to tackle the problem by examining the possibility of using Earth's ionosphere and atmosphere as the detector of such transient events. Earth's lower ionosphere and upper atmosphere are the places where the X-rays and gamma-rays from such astronomical sources are absorbed. The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectra and hence vary from one source to another. Obviously the electron and ion density vs. altitude profile has the imprint of the incident photon spectrum. As a preliminary exercise we developed a novel deconvolution method to extract the soft X-ray part of spectra of some solar flares of different classes from the electron density profiles obtained from Very Low Frequency (VLF) observation of lower ionosphere during those events. The method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. with the possibilities of probing even lower parts of the atmosphere.

  18. Response in electrostatic analyzers due to backscattered electrons: case study analysis with the Juno Jovian Auroral Distribution Experiment-Electron instrument.

    Science.gov (United States)

    Clark, G; Allegrini, F; Randol, B M; McComas, D J; Louarn, P

    2013-10-01

    In this study, we introduce a model to characterize electron scattering in an electrostatic analyzer. We show that electrons between 0.5 and 30 keV scatter from internal surfaces to produce a response up to ~20% of the ideal, unscattered response. We compare our model results to laboratory data from the Jovian Auroral Distribution Experiment-Electron sensor onboard the NASA Juno mission. Our model reproduces the measured energy-angle response of the instrument well. Understanding and quantifying this scattering process is beneficial to the analysis of scientific data as well as future instrument optimization. PMID:24182165

  19. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  20. On the generation and disruption of a picosecond runaway electron beam during the breakdown of an atmospheric-pressure gas gap

    Energy Technology Data Exchange (ETDEWEB)

    Barengolts, S. A. [Prokhorov General Physics Institute, RAS, 38 Vavilov St., 119991 Moscow (Russian Federation); Mesyats, G. A.; Tsventoukh, M. M. [Lebedev Physical Institute, RAS, 53 Leninsky Ave., 119991 Moscow (Russian Federation); Uimanov, I. V. [Institute of Electrophysics, RAS, 106 Amundsen St., 620016 Ekaterinburg (Russian Federation)

    2012-03-26

    The generation and disruption of the picosecond runaway electron beam in atmospheric pressure strongly overvolted gas gap is considered with emphasis on the runaway kinetics, the increase in emission current and plasma density, and beam instabilities. It has been shown that a few-nanosecond ten-kV prepulse gives rise to a streamer. Application of the main pulse ({approx}2 MV/ns) results in the runaway electron beam generation with the streamer electrons involved in the acceleration, and in increase of the electron emission from the cathode and the plasma density. At the high enough plasma density, fast beam instability disrupts the runaway electron beam.

  1. Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2009-08-01

    Full Text Available An electric solar wind sail is a recently introduced propellantless space propulsion method whose technical development has also started. The electric sail consists of a set of long, thin, centrifugally stretched and conducting tethers which are charged positively and kept in a high positive potential of order 20 kV by an onboard electron gun. The positively charged tethers deflect solar wind protons, thus tapping momentum from the solar wind stream and producing thrust. The amount of obtained propulsive thrust depends on how many electrons are trapped by the potential structures of the tethers, because the trapped electrons tend to shield the charged tether and reduce its effect on the solar wind. Here we present physical arguments and test particle calculations indicating that in a realistic three-dimensional electric sail spacecraft there exist a natural mechanism which tends to remove the trapped electrons by chaotising their orbits and causing them to eventually collide with the conducting tethers. We present calculations which indicate that if these mechanisms were able to remove trapped electrons nearly completely, the electric sail performance could be about five times higher than previously estimated, about 500 nN/m, corresponding to 1 N thrust for a baseline construction with 2000 km total tether length.

  2. Verification of electron doping in single-layer graphene due to H{sub 2} exposure with thermoelectric power

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Ju; Kang, Hojin; Soler-Delgado, David; Kim, Kyung Ho; Park, Yung Woo, E-mail: ywpark@phya.snu.ac.kr, E-mail: kbh37@incheon.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Min [Department of Nano Science and Technology, Seoul National University, Seoul 151-747 (Korea, Republic of); Lee, Minwoo; Jeong, Dae Hong [Department of Chemistry Education, Seoul National University, Seoul 151-742 (Korea, Republic of); Shin, Dong Seok; Kim, Byung Hoon, E-mail: ywpark@phya.snu.ac.kr, E-mail: kbh37@incheon.ac.kr [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Kubatkin, Sergey [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2015-04-06

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H{sub 2} molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy.

  3. Verification of electron doping in single-layer graphene due to H2 exposure with thermoelectric power

    International Nuclear Information System (INIS)

    We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition (CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H2 molecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption. Finally, the electron doping was also verified by Raman spectroscopy

  4. Polarized light emission after grazing ion-surface scattering due to capture of spin-polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.; Hagedorn, H.; Zimny, R.; Nienhaus, H.; Kirschner, J.

    1989-01-16

    We have observed the capture of polarized electrons into excited terms of atoms after the interaction of fast ions with a magnetized Fe(110) surface at grazing incidence. The spin polarization of captured electrons results in a modified circular polarization fraction of fluorescence light. This experiment has considerable potential as a new analytical tool for investigating surface magnetism with extreme surface sensitivity, as a method for detailed studies of ion-surface interaction, and as a means to produce nuclear spin-polarized beams.

  5. Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators

    Science.gov (United States)

    Deng, Aihua; Nakajima, Kazuhisa; Liu, Jiansheng; Shen, Baifei; Zhang, Xiaomei; Yu, Yahong; Li, Wentao; Li, Ruxin; Xu, Zhizhan

    2012-08-01

    In plasma-based accelerators, electrons are accelerated by ultrahigh gradient of 1-100GV/m and undergo the focusing force with the same order as the accelerating force. Heated electrons are injected in a plasma wake and exhibit the betatron oscillation that generates synchrotron radiation. Intense betatron radiation from laser-plasma accelerators is attractive x-ray/gamma-ray sources, while it produces radiation loss and significant effects on energy spread and transverse emittance via the radiation reaction force. In this article, electron beam dynamics on transverse emittance and energy spread with considering radiation reaction effects are studied numerically. It is found that the emittance growth and the energy spread damping initially dominate and balance with radiative damping due to the betatron radiation. Afterward the emittance turns to decrease at a constant rate and leads to the equilibrium at a nanometer radian level with growth due to Coulomb scattering at PeV-level energies. A constant radiation loss rate RT=2/3 is found without regard to the electron beam and plasma conditions. Self-cooling of electron beams due to betatron radiation may guarantee TeV-range linear colliders and give hints on astrophysical ultrahigh-energy phenomena.

  6. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Moellmann, C; Diekmann, Rabea; Muller-Karulis, B;

    2009-01-01

    Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure...... the Baltic Sea, the largest brackish water body in the world ocean, and its ecosystems are strongly affected by atmospheric and anthropogenic drivers. Here, we present results of an analysis of the state and development of the Central Baltic Sea ecosystem integrating hydroclimatic, nutrient, phyto...... to atmospherically induced environmental change by reducing the anthropogenic impact....

  7. N2O analysis in the atmosphere via electron capture-gas chromatography

    Science.gov (United States)

    Rasmussen, R. A.; Krasnec, J.; Pierotti, D.

    1976-01-01

    The potential of commercially available pulse-modulated electron capture detector (ECD)-equipped gas chromatographs for direct measurement of ambient levels of N2O is assessed. Since the sensitivity of ECD to N2O is directly proportional to the detector operating temperature and detector standing current, it is necessary to use a 'hot' ECD (250-350 C). The method is shown to be very precise with a standard error not exceeding 1% for automated analysis of ambient air samples. The technology is available to permit highly accurate routine direct analysis of N2O in the troposphere and stratosphere. Both captured air samples or direct real-time measurement from research vessels or airborne platforms are possible.

  8. Atmospheric and geomagnetic influence on thermospheric electron densities investigated by oblique radio sounding

    International Nuclear Information System (INIS)

    Complete text of publication follows. Mid-latitude HF sounder paths of ∼2400km are operating between New Zealand and Australia. The maximum observed frequencies, and hence electron densities at thermospheric altitudes, are compared with statistical predictions from a climatological HF radio propagation model which uses a database of vertical soundings. Variations from predicted median lower and upper decile frequencies, may be interpreted in terms of ionospheric and geomagnetic activity. Initial results indicate the dependence, of ionisation variations from the model, is at least as strong for neutral thermospheric variations as for geomagnetic variations. Closely spaced multiple paths provide opportunities to investigate F2 layer ionisation variations, inside the traditional 300km correlation scale. Preliminary investigations have also been made for long paths into high-latitudes from Australia to Antarctica using a new highly sensitive receiver.

  9. Characterization of Atmospheric Aerosol Particles from a Mining City in Southwest China Using Electron Probe microanalysis

    Science.gov (United States)

    Cheng, X.; Huang, Y.; Lu, H., III; Liu, Z., IV; Wang, N. V.

    2015-12-01

    Xin Cheng1, Yi Huang1*, Huilin Lu2, Zaidong Liu2, Ningming Wang21 Key Laboratory of Geological Nuclear Technology of Sichuan Province, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; E-mail:chengxin_cdut@163.com 2 College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; *Corresponding author: E-mail: huangyi@cdut.cn Panzhihua is a mining city located at Pan-Xi Rift valley, southwest China. It has a long industrial history of vanadium-titanium magnetite mining, iron and steel smelting, and coal-fired power plants. Atomospheric environment has been seriously contaminated with airborne paticles, which is threatening human health.The harmful effects of aerosols are dependent on certain characteristics such as microphysical properties. However, few studsies have been carried out on morphological information contained on single atmospheric particles in this area. In this study, we provide a detailed morphologically and chemically characterization of airborne particles collected at Panzhihua city in October, 2014, using a quantitative single particle analysis based on EPXMA. The results indicate that based on their chemical composition, five major types of particles were identified. Among these, aluminosilicate particles have typical spherical shapes and are produced during the high-temperature combustion; Fe-containing particles contains high level of Mn, and more likely originated from mineralogical and steel industry; Si-containing particles can originate from mineralogical source; V-Ti-Mn-containing particles are also produced by steel industry; Ca-containing particles,these particles are CaCO3, mainly from the mining of limestone mine. The results help us on tracing and partitioning different sources of atomospheric particles in the industrial area. Fig.1 Fe-rich shperical particles

  10. Model Simulations of Medium Time Scale Ionization Due to Cosmic Rays and Solar Energetic Particles (GLE59 and GLE in the Middle Atmosphere

    Science.gov (United States)

    Mishev, Alexander; Velinov, Peter

    2016-07-01

    The galactic cosmic rays (GCR) and solar energetic particles (SEP) could cause an excess of ionization in the atmosphere, specifically in polar and sub-polar regions. This effect is observed mainly in the middle atmosphere. The ionization effect could be strong at short time scales during major ground level enhancements (GLE)s of GCR. However, for the aims of recent atmospheric physics and atmospheric chemistry studies, namely the influence on the minor constituents and aerosols, it is important to derive the medium time scale ionization effect at various altitudes above the sea level. GLE 70 on December of 13, 2006 is the third strongest event of the previous solar cycle 23. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of a full Monte Carlo simulation of CR induced atmospheric cascade at several altitudes, namely 35 km, 25 km, 15 km and 8 km above the sea level. Here we adopt previously reported ion production rate profiles obtained with Monte Carlo simulation of atmospheric cascade performed with the CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron generators. A realistic winter atmospheric model is assumed. The 24-h ionization effect is computed for the sub-polar and polar regions, where it is expected to be the maximal effect of the planetary distribution on the Earth. Thus studied precipitation of energetic particles (GCR and SEP) is important and should be included in chemistry-climate models. Similar computations are performed for GLE 59 the so-called Bstille day event on 14 July 2000.

  11. Perturbation of the energy loss spectra for an accelerated electron beam due to the photo injector exit

    CERN Document Server

    Salah, W

    2003-01-01

    The influence of the photo-injector exit hall on the energy loss for an accelerated electron beam is investigated, by calculating the total energy transferred from the electrons to the wakefields, which are driven by the beam. The obtained energy loss is compared to those previously obtained for a 'pill-box' cavity. This comparison shows that the influence of this hall, in terms of energy loss, varies over the beam length. It is strongest in the middle of the beam and decreases towards both ends. In consequence of this perturbation, the center of the beam is displaced from its initial position during the first phase (t < 200 ps) where the exit aperture has no effect to a new equilibrium position which takes place at 200 < t < 250 ps. (author)

  12. Investigating ionisation cluster size distribution due to sub-1 keV electrons in view of Heisenberg's Uncertainty

    Science.gov (United States)

    Li, B.; Palmans, H.; Hao, L.; Nisbet, A.

    2015-09-01

    As the wavelengths of low energy electrons become comparable with the length scale of the mean ionisation step size, each event particle should be treated with care as the condition outlined in Heisenberg's uncertainty principle (HUP) should also be satisfied. Within this quantum-classical regime, spatial delocalisations of individual ionisation event sites that are generated outside the target region are calculated, and particular attention is given to the validity of using classical transport methods in simulations of nanodosimetric parameters such as mean cluster size, first and second moments, variance and cumulative frequency of ionisation cluster-size probability distributions. This paper presents the comparison between conventionally calculated nanodosimetric quantities and the ones where interacting particles are treated semi-classically with spatial uncertainties satisfied by HUP. The simulated primary charged particles are electrons of energies between 100 eV and 1 keV in DNA equivalent target aqueous water volumes using GEANT4-DNA.

  13. Inhibition of type III radio emissions due to the interaction between two electron beams: Observations and simulations

    OpenAIRE

    Briand, C; Henri, P.; Hoang, S

    2014-01-01

    We report the peculiar interaction of two type III bursts observed in the solar wind. As electronbeams propagating on the same magnetic field lines cross, a spectacular depletion of the type III radioemission is observed. We combine observations from the WAVES experiment on board the STEREO missiontogether with kinetic plasma simulations to study the extinction of type III radio emission resulting fromthe interaction between two electron beams. The remote observations enable to follow the ele...

  14. Climate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5

    Directory of Open Access Journals (Sweden)

    W.-C. Hsieh

    2013-03-01

    Full Text Available This study used Community Atmospheric Model 3.5 (CAM3.5 to investigate the effects of carbonaceous aerosols on climate. The simulations include control runs with carbonaceous aerosols and no carbon runs in which carbonaceous aerosols were removed. The Slab Ocean Model (SOM and the fixed Sea Surface Temperature (SST were used to examine effects of ocean boundary conditions. Throughout this study, climate response induced by aerosol forcing was mainly analyzed in the following three terms: (1 aerosol radiative effects under fixed SST, (2 effects of aerosol-induced SST feedbacks , and (3 total effects including effects of aerosol forcing and SST feedbacks. The change of SST induced by aerosols has large impacts on distribution of climate response, the magnitudes in response patterns such as temperature, precipitation, zonal winds, mean meridional circulation, radiative fluxes and cloud coverage are different between the SOM and fixed SST runs. Moreover, different spatial responses between the SOM and fixed SST runs can also be seen in some local areas. This implies the importance of SST feedbacks on simulated climate response. The aerosol dimming effects cause a cooling predicted at low layers near the surface in most of carbonaceous aerosol source regions. The temperature response shows a warming (cooling predicted in the north (south high latitudes, suggesting that aerosol forcing can cause climate change in regions far away from its origins. Our simulation results show that warming of the troposphere due to black carbon decreases rainfall in the tropics. This implies that black carbon has possibly strong influence on weakening of the tropical circulation. Most of these changes in precipitation are negatively correlated with changes of radiative fluxes at the top of model. The changes in radiative fluxes at top of model are physically consistent with the response patterns in cloud fields. On global average, low-level cloud coverage increases, mid

  15. Climate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5

    Directory of Open Access Journals (Sweden)

    W.-C. Hsieh

    2013-08-01

    Full Text Available This study used the Community Atmospheric Model 3.5 (CAM3.5 to investigate the effects of carbonaceous aerosols on climate. The simulations include control runs with 3 times the mass of carbonaceous aerosols as compared to the model's default carbonaceous aerosol mass, as well as no-carbon runs in which carbonaceous aerosols were removed. The slab ocean model (SOM and the fixed sea surface temperature (SST were used to examine effects of ocean boundary conditions. Throughout this study, climate response induced by aerosol forcing was mainly analyzed in the following three terms: (1 aerosol radiative effects under fixed SST, (2 effects of aerosol-induced SST feedbacks, and (3 total effects including effects of aerosol forcing and SST feedbacks. The change of SST induced by aerosols has large impacts on distribution of climate response; the magnitudes in response patterns such as temperature, precipitation, zonal winds, mean meridional circulation, radiative fluxes, and cloud coverage are different between the SOM and fixed SST runs. Moreover, different spatial responses between the SOM and fixed SST runs can also be seen in some local areas. This implies the importance of SST feedbacks on simulated climate response. The aerosol dimming effects cause a cooling predicted at low layers near the surface in most carbonaceous aerosol source regions. The temperature response shows a warming (cooling predicted in the north (south high latitudes, suggesting that aerosol forcing can cause climate change in regions far away from its origins. Our simulation results show that direct and semidirect radiative forcing due to carbonaceous aerosols decreases rainfall in the tropics. This implies that carbonaceous aerosols have possibly strong influence on weakening of the tropical circulation. Most changes in precipitation are negatively correlated with changes of radiative fluxes at the top of model. The changes in radiative fluxes at top of model are physically

  16. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China.

    Science.gov (United States)

    Wang, Dongfang; Zhou, Bin; Fu, Qingyan; Zhao, Qianbiao; Zhang, Qi; Chen, Jianmin; Yang, Xin; Duan, Yusen; Li, Juan

    2016-11-15

    High pollution episodes of PM2.5 and O3 were frequently observed at a rural site (N31.0935º, E120.978°) in eastern Yangtze River Delta (YRD) in summer. To study the impacts of photochemical reactions on secondary aerosol formation in this region, we performed real-time measurements of the mass concentration and composition of PM2.5, particle size distribution (13.6~736.5 nm), concentrations of gas pollutants including O3, SO2, NO2, CO, non-methane hydrocarbons (NMHC)), and nitrate radical in 2013. During the sampling period, the average concentration of PM2.5 was 76.1 (± 16.5) μg/m(3), in which secondary aerosol species including sulfate, nitrate, ammonium, and secondary organic aerosol (SOA) accounted for ~ 62%. Gas-phase oxidation of SO2 was mainly responsible for a fast increase of sulfate (at 1.70 μg/m(3)/h) in the morning. Photochemical production of nitric acid was intense during daytime, but particulate nitrate concentration was low in the afternoon due to high temperature. At night, nitrate was mainly formed through the hydrolysis of NO3 and/or N2O5. The correlations among NMHC, Ox (= O3 + NO2), and SOA suggested that a combination of high emission of hydrocarbons and active photochemical reactions led to the rapid formation of SOA. In addition, several new particle formation and fast growth events were observed despite high ambient aerosol loading. Since the onset of new particle events was accompanied by a rapid increase of H2SO4 and SOA, enhanced formation of sulfate and SOA driven by photochemical oxidation likely promoted the formation and growth of new particles. Together, our results demonstrated that strong atmospheric photochemical reactions enhanced secondary aerosols formation and led to the synchronous occurrence of high concentrations of PM2.5 and O3 in a regional scale. These findings are important for better understanding the air pollution in summer in YRD. PMID:27418517

  17. An economic analysis of the abatement of pollution due to flue gas stacks of industrial, electrical plants and of incinerators using electrical discharges, ozone and electron beam

    International Nuclear Information System (INIS)

    There are numerous of investigations, many reports and a lot of industrial applications for simultaneous reduction of SO2 and NOx from flue gas stack emission by electron beam induced plasma process. When ammonia is applied under electron beam bombardment, concentration decreases to zero, and it is also accompanied by salt formation, i.e. ammonium sulphate and ammonium nitrate. This efficient technology, requires high costs for investment and has been applied in only few countries until now (Japan, China, USA, Poland). There are a lot of small countries, consumers of cheap combustibles, which produce large quantities of atmospheric pollutants such as SO2 and NOx. For this reason there is a great interest for the implementation of cheaper technologies with a similar impact as electron beam processing. In this paper we have given a lot of experimental data for SO2 and NOx removal by means of electron beams, electrical discharge and ozone, both in stand alone and in hybrid systems and, also, a comparison with the results obtained by other laboratories.The applications of new technologies are presented with an Economic Analysis of the efficiency

  18. Can fractional quantum Hall effect be due to the formation of coherent wave structures in a 2D electron gas?

    Science.gov (United States)

    Mirza, Babur M.

    2016-05-01

    A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.

  19. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Highlights: ► Corrosive SRB strain accelerates cathodic reaction of iron by direct electron uptake. ► Hydrogenotrophic control strain does not influence the cathodic reaction. ► Deposited ferrous sulfides do not stimulate the cathodic reaction. ► Deposited ferrous sulfides mediate electrical contact between metal and cells. - Abstract: Microbially influenced iron corrosion by sulfate-reducing bacteria (SRB) is conventionally attributed to the chemical corrosiveness of H2S, facilitated abiotic H+-reduction at deposited FeS, and biological consumption of chemically formed (‘cathodic’) H2. However, recent studies with corrosive SRB indicated direct consumption of iron-derived electrons rather than of H2 as a crucial mechanism. Here, we conducted potentiodynamic measurements with iron electrodes colonized by corrosive SRB. They significantly stimulated the cathodic reaction, while non-corrosive yet H2-consuming control SRB had no effect. Inactivation of the colonizing bacteria significantly reduced current stimulation, thus confirming biological catalysis rather than an abiotic cathodic effect of FeS.

  20. Non-Maxwellian electron distribution functions due to self-generated turbulence in collisionless guide-field reconnection

    CERN Document Server

    Muñoz, P A

    2016-01-01

    Non-Maxwellian electron velocity space distribution functions (EVDF) are useful signatures of plasma conditions and non-local consequences of collisionless magnetic reconnection. In the past, the evolution of the EVDFs was investigated mainly for antiparallel or weak-guide-field reconnection. The shape of EVDFs is, however, not well known yet for oblique (or component-) reconnection in dependence on a finite guide magnetic field component perpendicular to the reconnection plane. In view of the multi-spacecraft mission MMS, we derive the non-Maxwellian features of EVDFs formed by collisionless magnetic reconnection starting from very weak ($b_g\\approx0$) up to very strong ($b_g=8$) guide-field strengths $b_g$, taking into account the feedback of the self-generated turbulence. For this sake, we carry out 2.5D fully-kinetic Particle-in-Cell (PiC) simulations using the ACRONYM code. We obtained anisotropic EVDFs and the distribution of electron beams propagating along the separatrices as well as in the exhaust re...

  1. Acceleration of relativistic electrons due to resonant interaction with oblique monochromatic whistler-mode waves generated in the ionosphere.

    Science.gov (United States)

    Kuzichev, Ilya; Shklyar, David

    2016-04-01

    One of the most challenging problems of the radiation belt studies is the problem of particles energization. Being related to the process of particle precipitation and posing a threat to scientific instruments on satellites, the problem of highly energetic particles in the radiation belts turns out to be very important. A lot of progress has been made in this field, but still some aspects of the energization process remain open. The main mechanism of particle energization in the radiation belts is the resonant interaction with different waves, mainly, in whistler frequency range. The problem of special interest is the resonant wave-particle interaction of the electrons of relativistic energies. Relativistic resonance condition provides some important features such as the so-called relativistic turning acceleration discovered by Omura et al. [1, 2]. This process appears to be a very efficient mechanism of acceleration in the case of interaction with the whistler-mode waves propagating along geomagnetic field lines. But some whistler-mode waves propagate obliquely to the magnetic field lines, and the efficiency of relativistic turning acceleration in this case is to be studied. In this report, we present the Hamiltonian theory of the resonant interaction of relativistic electrons with oblique monochromatic whistler-mode waves. We have shown that the presence of turning point requires a special treatment when one aims to derive the resonant Hamiltonian, and we have obtained two different resonant Hamiltonians: one to be applied far enough from the turning point, while another is valid in the vicinity of the turning point. We have performed numerical simulation of relativistic electron interaction with whistler-mode waves generated in the ionosphere by a monochromatic source. It could be, for example, a low-frequency transmitter. The wave-field distribution along unperturbed particle trajectory is calculated by means of geometrical optics. We show that the obliquity of

  2. THE IMPROVEMENT OF ELECTRON FIELD EMISSION FROM AMORPHOUS CARBON FILMS DUE TO HYDROGEN PLASMA CHEMICAL ANNEALING EFFECT

    Institute of Scientific and Technical Information of China (English)

    J. Xu; X.H. Huang; L. Wang; W. Li; K.J. Chen; J.B. Xu

    2001-01-01

    Hydrogenated amorphous carbon films were fabricated by using layer-by-layer deposi-tion method and hydrogen dilution method in a small d.c.-assisted plasma enhancedchemical vapor deposition system. It was found that the hydrogen plasma treatmentcould change the sp2/sp3 ratio to some extent by chemical etching. The improvementsof field emission characteristics were observed compared with that from conventionallydeposited a-C films, which can be attributed to the large field enhancement effect dueto the inhomogeneous distribution of nanometer scale sp2 clusters and the reductionof the surface emission barrier due to the hydrogen termination.

  3. Influence of complex impact of the picosecond electron beam and volume discharge in atmospheric-pressure air on the electronic properties of MCT epitaxial films surface

    Science.gov (United States)

    Grigoryev, Denis V.; Novikov, Vadim A.; Bezrodnyy, Dmitriy A.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    In the present report we studied the distribution of surface potential of the HgCdTe epitaxial films grown by molecular beam epitaxy after the impact of picosecond electron beam and volume discharge in atmospheric-pressure air. The surface potential distribution was studied by the Kelvin Force Probe Microscopy. The experimental data obtained for the variation of the contact potential difference (ΔCPD) between the V-defect and the main matrix of the epitaxial film. The investigation of the origin epitaxial films show that variation of the spatial distribution of surface potential in the V-defect region can be related to the variation of the material composition. The experimental data obtained for the irradiated samples show that the mean value of ΔCPD for the original surface differs from the one for the irradiated surface for 55 eV. At the same time the mean value of ΔCPD changes its sign indicating that the original surface of the epitaxial HgCdTe film predominantly contains the grains with increased cadmium content while after the irradiation the grains possess an increased content of mercury. Therefore, during the irradiation process a decrease of the mercury content in the near-surface region of the semiconductor takes place resulting in the alteration of the electrophysical properties in the films near-surface region.

  4. 600-T Magnetic Fields due to Cold Electron Flow in a simple Cu-Coil irradiated by High Power Laser pulses

    CERN Document Server

    Zhu, Baojun; Yuan, Dawei; Li, Yanfei; Li, Fang; Liao, Guoqian; Zhao, Jiarui; Zhong, Jiayong; Xue, Feibiao; Wei, Huigang; Zhang, Kai; Han, Bo; Pei, Xiaoxing; Liu, Chang; Zhang, Zhe; Wang, Weimin; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2015-01-01

    A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7x10^15 Wcm^-2. Theoretical analysis indicates that the magnetic field strength is proportional to laser intensity. Such a strong magnetic field offers a new experimental test bed to study laser-plasma physics, in particular, fast-ignition laser fusion research and laboratory astrophysics.

  5. Intercomparison of peroxy radical measurements obtained at atmospheric conditions by laser-induced fluorescence and electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Hofzumahaus

    2009-03-01

    Full Text Available Measurements of hydroperoxy radical (HO2 and organic peroxy radical (RO2 concentrations were performed by two different techniques in the atmospheric simulation chamber SAPHIR in Jülich, Germany. The first technique was the well-established Matrix Isolation Electron Spin Resonance (MIESR, which provides absolute measurements with a time resolution of 30 min and high accuracy (10%, 2 σ. The other technique, ROxLIF, has been newly developed. It is based on the selective chemical conversion of ROx radicals (HO2 and RO2 to OH, which is detected with high sensitivity by laser-induced fluorescence (LIF. ROxLIF is calibrated by quantitative photolysis of water vapor at 185 nm and provides ambient measurements at a temporal resolution of 1 min and accuracy of 20% (2 σ. The measurements of HO2 and RO2 obtained by the two techniques were compared for two types of atmospheric simulation experiments. In one experiment, HO2 and CH3O2 radicals were produced by photooxidation of methane in air at tropospheric conditions. In the second experiment, HO2 and C2H5O2 were produced by ozonolysis of 1-butene in air at dark conditions. The radical concentrations were within the range of 16 to 100 pptv for HO2 and 12 to 45 pptv for RO2. Good agreement was found in the comparison of the ROxLIF and MIESR measurements within their combined experimental uncertainties. Linear regressions to the combined data set yield slopes of 1.02±0.13 (1 σ for RO2 and 0.98±0.08 (1 σ for HO2 without significant offsets. The results confirm the calibration of the ROxLIF instrument and demonstrate that it can be applied with good accuracy for measurements of atmospheric peroxy radical concentrations.

  6. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  7. Measurement of the energy loss of an electron bunch passing in a chicane-type bunch compressor due to the coherent synchrotron radiation

    CERN Document Server

    Okuda, S; Yokoyama, K

    2000-01-01

    The energy loss of an electron beam due to the coherent synchrotron radiation in the components for beam transportation possibly degrades the quality of the beam. In this work the energy loss of an intense single-bunch electron beam passing through a chicane-type bunch compressor has been investigated. The single-bunch beams are being used for self-amplified spontaneous emission experiments in Osaka University. At a beam energy of 27 MeV and the charge of electrons in a bunch of 22 nC the peak shift on the energy spectrum of the beam by 1% and the energy loss of about 0.5% have been observed. In order to evaluate the energy of the coherent synchrotron radiation emitted in the bunch compressor a form factor of the electron bunch has been assumed, according to the results for the measurements of the time profile of the electron bunch with a streak camera and the spectrum of the coherent transition radiation.

  8. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  9. Particle-in-Cell Simulation for the Control of Electron Energy Distribution of Dielectric Barrier Discharges at Atmospheric Pressure

    Science.gov (United States)

    Bae, Hyo Won; Yel Lee, Jung; Lee, Ho-Jun; Lee, Hae June

    2011-10-01

    Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 1 MHz to 50 MHz and with a gap distance from 60 to 500 micrometers. The variation of control parameters such as the gap distance, the driving wave form, and the applied voltage results in the change in the electron energy distribution function (EEDF). Through the relation between the ionization mean free path and the gap size, a significant change of EEDFs is achievable with the decrease of gap distance. Therefore, it is possible to categorize the operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals. This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100670).

  10. Suprathermal electron energy spectrum and nonlocally affected plasma-wall interaction in helium/air micro-plasma at atmospheric pressure

    Science.gov (United States)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-10-01

    Details of ground-state and excited-state neutral atoms and molecules in an atmospheric-pressure micro-discharge plasma may be obtained by plasma electron spectroscopy (PLES), based on a wall probe. The presence and transport of energetic (suprathermal) electrons, having a nonlocal origin, are responsible for electrostatic charging of the plasma boundary surfaces to potentials many times that associated with the ambient electron kinetic energy. The energy-flux distribution function is shown to be controllable for applications involving analysis of composition and processes taking place in a multiphase (plasma-gas-solid), chemically reactive, interaction region.

  11. Electron heating enhancement due to plasma series resonance in a capacitively coupled RF discharge: Electrical modeling and comparison to experimental measurements

    Science.gov (United States)

    Cao, Minglu; Lu, Yijia; Cheng, Jia; Ji, Linhong

    2016-09-01

    The electron heating enhancement due to the self-excitation of the plasma series resonance in capacitively coupled plasmas is revisited by a combination of an equivalent circuit model and experiments. To improve the model accuracy, measured voltage waveforms at the powered electrode are used instead of prescribing a sinusoidal voltage supply in series with a bias capacitance. The results calculated from the electrical model are consistent with the experimental measurements performed by a Langmuir probe with verification of a microwave interferometer, at pressures of 0.2 and 0.3 Torr. High harmonics occurring in the discharge currents agree with observations in previous research. The nonlinear plasma series resonance effect is found to have a notable contribution to both ohmic and stochastic heating evaluated by the electron heating efficiencies.

  12. Changes in microstructural parameters of NB4D2 silk fibres due to electron irradiation: X-ray line profile analysis

    Indian Academy of Sciences (India)

    Sangappa; S Asha; P Parameswara; R Somashekar

    2011-12-01

    The present study is concerned with changes of microcrystalline parameters in NB4D2 (Bombyx mori) silk fibres, due to electron irradiation. The irradiation process was performed in air at room temperature using 8 MeV electron beam at different dose rates: 0, 25, 50 and 75 kGy, respectively. X-ray recording of these irradiated samples and the line profile analysis were carried out. The crystal imperfection parameters such as crystallite size $\\langle N \\rangle$, lattice strain (g in %) and surface weighted crystallite size ($D_{s}$) were computed and compared with other physical parameters in order to asertain the changes that have crept into these irradiated fibres. Exponential, lognormal and Reinhold functions for the column length distributions have been used for the determination of these parameters.

  13. Non-equilibrium vibrational and electron energy distributions functions in atmospheric nitrogen ns pulsed discharges and \\mus post-discharges: the role of electron molecule vibrational excitation scaling-laws

    CERN Document Server

    Colonna, Gianpiero; Celiberto, Roberto; Capitelli, Mario; Tennyson, Jonathan

    2015-01-01

    The formation of the electron energy distribution function in nanosecond atmospheric nitrogen discharges is investigated by means of self-consistent solution of the chemical kinetics and the Boltzmann equation for free electrons. The post-discharge phase is followed to few microseconds. The model is formulated in order to investigate the role of the cross section set, focusing on the vibrational-excitation by electron-impact through resonant channel. Four different cross section sets are considered, one based on internally consistent vibrational-excitation calculations which extend to the whole vibrational ladder, and the others obtained by applying commonly used scaling-laws.

  14. Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere

    International Nuclear Information System (INIS)

    Mercury is a hazardous environmental pollutant mobilized from natural sources, and anthropogenically contaminated and disturbed areas. Current methods to assess mobility and environmental impact are mainly based on field measurements, soil monitoring, and kinetic modelling. In order to understand in detail the extent to which different mineral sources can give rise to mercury release it is necessary to investigate the complexity at the microscopic level and the possible degradation/dissolution processes. In this work, we investigated the potential for mobilization of mercury structurally trapped in three relevant minerals occurring in hot spring environments and mining areas, namely, cinnabar (α-HgS), corderoite (α-Hg3S2Cl2), and mercuric chloride (HgCl2). Quantum chemical methods based on density functional theory as well as more sophisticated approaches are used to assess the possibility of a) direct photoreduction and formation of elemental Hg at the surface of the minerals, providing a path for ready release in the environment; and b) reductive dissolution of the minerals in the presence of solutions containing halogens. Furthermore, we study the use of TiO2 as a potential photocatalyst for decontamination of polluted waters (mainly Hg2+-containing species) and air (atmospheric Hg0). Our results partially explain the observed pathways of Hg mobilization from relevant minerals and the microscopic mechanisms behind photocatalytic removal of Hg-based pollutants. Possible sources of disagreement with observations are discussed and further improvements to our approach are suggested. - Highlights: • Mercury mobilization pathways from three Hg bearing minerals were studied. • Their electronic properties were analysed using quantum mechanical modelling. • Cinnabar and corderoite are not photodegradable, but mercuric chloride is. • The trend is reversed for dissolution induced by the presence of halogen couples. • Photocatalytic removal of Hg from air and

  15. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Barthelmie, Rebecca J.; Jensen, Leo E.;

    2012-01-01

    of power deficit is strongly dependent on the wind turbine spacing; as turbulence intensity increases, the power deficit decreases. The power deficit is determined for four different wind turbine spacing distances and for stability classified as very stable, stable and others (near neutral to very unstable......The wind turbine operational characteristics, power measurements and meteorological measurements from Horns Rev offshore wind farm have been identified, synchronized, quality screened and stored in a common database as 10 min statistical data. A number of flow cases have been identified to describe...... the flow inside the wind farm, and the power deficits along rows of wind turbines have been determined for different inflow directions and wind speed intervals. A method to classify the atmospheric stability based on the Bulk-Ri number has been implemented. Long-term stability conditions have been...

  16. An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere

    International Nuclear Information System (INIS)

    This study shows that the predominant degradation mechanism of Pt/Vulcan XC72 electrocatalysts strongly depends on the nature of the gas atmosphere and of the upper potential limit used in accelerated stress tests (ASTs). The morphological changes of Pt/Vulcan XC72 nanoparticles were studied by identical location transmission electron microscopy (IL-TEM), following accelerated stress tests in different potential ranges and under various gas atmospheres. X-ray photoelectron spectroscopy was used to probe changes in carbon surface chemistry. Whereas minor changes were detected under neutral atmosphere (Ar) and low potential limit conditions (0.05 2). With an increase of the upper potential limit to 1.23 V vs. RHE, the trends observed previously were maintained but 3D Ostwald ripening strongly overlapped with the three other degradation mechanisms, precluding any identification of the dominant mechanism

  17. ON THE POSSIBILITY OF SIGNIFICANT ELECTRON DEPLETION DUE TO NANOGRAIN CHARGING IN THE COMA OF COMET 67P/CHURYUMOV-GERASIMENKO NEAR PERIHELION

    Energy Technology Data Exchange (ETDEWEB)

    Vigren, E.; Eriksson, A. I.; Wahlund, J.-E. [Swedish Institute of Space physics, Uppsala (Sweden); Galand, M. [Department of Physics, Imperial College London, London (United Kingdom); Lavvas, P., E-mail: erik.vigren@irfu.se [Groupe de Spectrométrie Moléculaire et Atmosphérique, Université Reims Champagne-Ardenne, UMR 7331, F-51687 Reims (France)

    2015-01-10

    We approach the complicated phenomena of gas-dust interactions in a cometary ionosphere, focusing in particular on the possibility of significant depletion in electron number density due to grain charging. Our one-dimensional ionospheric model, accounting for grain charging processes, is applied to the subsolar direction and the diamagnetic cavity of 67P/Churyuomov-Gerasimenko, the target comet for the ESA Rosetta mission, at perihelion (∼1.25-1.30 AU). We argue on the one hand that grains with radii >100 nm are unlikely to significantly affect the overall ionospheric particle balance within this environment, at least for cometocentric distances >10 km. On the other hand, if nanograins with radii in the 1-3 nm range are ejected to the coma at a level of ∼1% with respect to the mass of the sublimated gas, a significant electron depletion is expected up to cometocentric distances of several tens of kilometers. We relate these results to the recent Cassini discoveries of very pronounced electron depletion compared with the positive ion population in the plume of Enceladus, which has been attributed to nanograin charging.

  18. Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgare and Vicia faba: Electron transport, CO 2 fixation and carboxylation capacity.

    Science.gov (United States)

    Lal, A; Ku, M S; Edwards, G E

    1996-07-01

    A C3 monocot, Hordeum vulgare and C3 dicot, Vicia faba, were studied to evaluate the mechanism of inhibition of photosynthesis due to water stress. The net rate of CO2 fixation (A) and transpiration (E) were measured by gas exchange, while the true rate of O2 evolution (J O2) was calculated from chlorophyll fluorescence analysis through the stress cycle (10 to 11 days). With the development of water stress, the decrease in A was more pronounced than the decrease in J O2 resulting in an increased ratio of Photosystem II activity per CO2 fixed which is indicative of an increase in photorespiration due to a decrease in supply of CO2 to Rubisco. Analyses of changes in the J O2 A ratios versus that of CO2 limited photosynthesis in well watered plants, and RuBP pool/RuBP binding sites on Rubisco and RuBP activity, indicate a decreased supply of CO2 to Rubisco under both mild and severe stress is primarily responsible for the decrease in CO2 fixation. In the early stages of stress, the decrease in C i (intercellular CO2) due to stomatal closure can account for the decrease in photosynthesis. Under more severe stress, CO2 supply to Rubisco, calculated from analysis of electron flow and CO2 exchange, continued to decrease. However, C i, calculated from analysis of transpiration and CO2 exchange, either remained constant or increased which may be due to either a decrease in mesophyll conductance or an overestimation of C i by this method due to patchiness in conductance of CO2 to the intercellular space. When plants were rewatered after photosynthesis had dropped to 10-30% of the original rate, both species showed near full recovery within two to four days. PMID:24271534

  19. Physical and statistical modeling of attenuation due to atmospheric hydrometeors on free-space optical links at 850 and 1550 nm

    Science.gov (United States)

    Grabner, Martin; Kvicera, Vaclav

    2012-10-01

    Atmospheric hydrometeors such as rain and fog may cause attenuation of an optical signal and degrade the performance of free-space optical (FSO) systems. For efficient design of the FSO links, attenuation characteristics must be predicted by sufficiently reliable models that have been tested on experimental data. A long term experiment on the FSO links operating at 850 and 1550 nm wavelengths is conducted in Prague. The path lengths are 100 and 853 m. Received power fluctuations on the FSO links and relevant meteorological quantities such as rain intensity and liquid water content of fog are measured simultaneously. The relationships between the physical parameters of hydrometeors and path attenuation are analyzed and compared with theoretical relations derived using the Mie scattering theory together with some natural assumptions about the physical properties of scattering particles such as droplet size distribution of different types of hydrometeors. Long term statistics of attenuation are obtained and availability performance of the experimental FSO links is assessed. The method for predicting attenuation statistics based on physical and statistical models is introduced and the errors of the proposed models with respect to measured data are analyzed. The models are compared with the existing empirical relationships derived from other FSO experiments and differences are discussed.

  20. Emission of greenhouse gases in the atmosphere of the Manaus city due to burning of fossil fuels; Emissao de gases poluentes na atmosfera urbana da cidade de Manaus devida a queima de combustiveis fosseis

    Energy Technology Data Exchange (ETDEWEB)

    Valois, I.M. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Fac. de Tecnologia], E-mail: ivalois@ufam.edu.br; Cartaxo, E.F. [Universidade Federal do Amazonas (NIEMA/UFAM), Manaus, AM (Brazil). Fac. de Tecnologia. Nucleo de Energia, Meio Ambiente e Agua], E-mail: ecartaxo@ufam.edu.br; Chaar, Jamal da Silva [Universidade Federal do Amazonas (ICE/UFAM), Manaus, AM (Brazil). Inst. de Ciencias Exatas

    2009-07-01

    This paper intends to think over the impacts of pollutants gases in the atmosphere of the city of Manaus, caused by the thermal, the main electricity source in the State of Amazonas. The focus of the study is the urban atmosphere where physical and chemical phenomenon accelerate the effects of increased concentration of some components and secondary pollutants, which are produced due to human activities. It is based on two studies: monitoring the exhaust gas applied at a factory in the district of Aparecida, located in the urban area, and monitoring conducted by the energy operating company, about the influence of exhaust gas around the district of Mauazinho, also in urban area. It is a preliminary research that seeks to demonstrate the inconsistency of some studies and the need to make progress in search for more efficient methods and techniques. This is an important step toward a policy of environmental management that will complement future studies about air pollution in the city. (author)

  1. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    International Nuclear Information System (INIS)

    The problem of the production of extended (∼1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2–0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (∼100 ns), maintains the electron density at a level ne = (3–5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (∼0.5 eV) and a long lifetime (∼1 ms), which are produced upon cessation of the laser pulse. (extreme light fields and their applications)

  2. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    Science.gov (United States)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.

  3. Bad news about an old poison. A case of nicotine poisoning due to both ingestion and injection of the content of an electronic cigarette refill

    Directory of Open Access Journals (Sweden)

    Gianfranco Cervellin

    2013-10-01

    Full Text Available There are increasing concerns about the escalating use of electronic cigarettes (e-cigarettes. In particular, smokers have been advised by important agencies such as the US Food and Drug Administration about the potential harm to the health of these products, being now considered as drug delivery devices. The leading issues supporting this statement include the repeated inhalation of propylene glycol that is used as a diluent in refills, accidental poisoning, as well as evidence that ecigarettes may promote continued smoking since their use may compromise quitting motivations. Some authors have minimized these risks, considering the potential advantages of these devices for public health. Here we describe the first case of nicotine poisoning due to both ingestion and intravenous injection of the content of an e-cigarette refill, incorrectly mixed with methadone, bottled in a generic vial.

  4. Electron emission due to highly charged ion impact on surfaces: a comparison between a conducting Au(111) and an insulating LiF(001) target

    International Nuclear Information System (INIS)

    Full text: Highly charged ions (HCI) carry a large amount of potential energy and are a promising tool for future nanostructuring efforts. Their interaction with metal surfaces, which leads to the formation of so-called 'hollow atoms', has been studied extensively over the past 15 years and is now well understood. Due to the dielectric response of insulator surfaces (less image charge acceleration, slow hole mobility) results for the interaction of HCI with insulator surfaces are difficult to predict by available theoretical models. We have therefore constructed an experimental setup which allows to investigate electron emission from both a conducting Au(111) and an insulating LiF(001) single-crystal target. As projectile ions we use HCI from the Heidelberg-EBIT, where xenon projectile charge states exceeding 50+ can be reached. The electron emission yields are studied at different impact velocities and ion impact angles. First experiments using xenon ions have already been performed and experiments with argon and uranium ions are planned for this summer. We will present and discuss the results from these experiments. (author)

  5. Radiation exposure due to cosmic rays and solar X-ray photons at various atmospheric heights in aviation range over India

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Bhattacharya, Arnab

    2016-07-01

    In this presentation we present our work on the continuous monitoring of radiation exposure in terms of effective dose rates, due to galactic cosmic rays (GCR) and solar X-rays at various altitudes within aviation range over India. As India belongs to equatorial region, there is negligible contribution from solar energetic particles (SEP). The calculation of cosmic ray counts as well as the solar X-ray photons are performed on the basis of the observation of various Dignity series balloon experiments on cosmic ray and solar high energy radiation studies, conducted by ICSP and Monte Carlo simulations performed with GEANT4 detector simulation software. The information on solar activity level from Geostationary Operational Environmental Satellite system (GOES) are employed in the calculations. A program, which is done entirely in MATLAB is employed to update regularly in a website, where we show images of dose rate (μSv) distribution over India at four different heights within the aviation range (updating at an interval of 30 minutes) and the approximate dose rates thats should be experienced by a pilot in an entire flight time between pairs of stations distributed all over India.

  6. Electrons

    International Nuclear Information System (INIS)

    Fast electrons are used to produce isotopes for studying the cooper metabolism: Cu-64 in a cyclotron and Cu-67 in a linear accelerator. Localized electrons are responsible for the chemical and physiological characteristics of the trace elements. Studied are I, Cu, Co, Zn, Mo, Mn, Fe, Se, Mg. The Cu/Mo and Cu/Zn interactions are investigated. The levels of molybdenum, sulfate and zinc in the food are analysed. The role of the electrons in free radicals is discussed. The protection action of peroxidases and super oxidases against electron dangerous effect on normal physiology is also considered. Calculation of radiation damage and radiation protection is made. (author)

  7. Quantitative energy-dispersive electron probe X-ray microanalysis for single-particle analysis and its application for characterizing atmospheric aerosol particles

    Indian Academy of Sciences (India)

    Shila Maskey; Chul-Un Ro

    2011-02-01

    An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique using an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such as C, N and O, as well as higher-Z elements that can be analysed by conventional ED-EPMA. The quantitative determination of low-Z elements (using full Monte Carlo simulations, from the electron impact to the X-ray detection) in individual particles has improved the applicability of single-particle analysis, especially in atmospheric environmental aerosol research; many environmentally important atmospheric particles, e.g. sulphates, nitrates, ammonium and carbonaceous particles, contain low-Z elements. To demonstrate its practical applicability, the application of the low-Z particle EPMA for the characterization of Asian Dust, urban and subway aerosol particles is shown herein. In addition, it is demonstrated that the Monte Carlo calculation can also be applied in a quantitative single-particle analysis using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectrometry (EDX), showing that the technique is useful and reliable for the characterization of submicron aerosol particles

  8. On the capability of in-situ exposure in an environmental scanning electron microscope for investigating the atmospheric corrosion of magnesium

    International Nuclear Information System (INIS)

    The feasibility of environmental scanning electron microscope (ESEM) in studying the atmospheric corrosion behavior of 99.97% Mg was investigated. For reference, ex-situ exposure was performed. A model system was designed by spraying few salt particles on the metal surface and further promoting the corrosion process using platinum (Pt) deposition in the form of 1×1×1 µm3 dots around the salt particles to create strong artificial cathodic sites. The results showed that the electron beam play a significant role in the corrosion process of scanned regions. This was attributed to the irradiation damage occurring on the metal surface during the ESEM in-situ experiment. After achieving to a reliable process route, in a successful attempt, the morphology and composition of the corrosion products formed in-situ in the ESEM were in agreement with those of the sample exposed ex-situ. - Highlights: • The feasibility of in-situ microscopy and atmospheric corrosion exposures of pure Mg in an ESEM are examined. • A model system was designed using NaCl particles on parts of the metal surface and promoting the corrosion process by depositing 1×1×1 µm3 Pt dots to create strong artificial cathodic sites. • The electron beam used for ESEM imaging affects the in-situ corrosion process. • A proper cleaning procedure for the sample and microscope chamber reducing carbon contamination makes the results from the ESEM in-situ exposures comparable to ex-situ exposures

  9. Theoretical simulation of the picosecond runaway-electron beam in coaxial diode filled with SF6 at atmospheric pressure

    Science.gov (United States)

    Kozyrev, Andrey; Kozhevnikov, Vasily; Lomaev, Mikhail; Sorokin, Dmitry; Semeniuk, Natalia; Tarasenko, Victor

    2016-05-01

    This paper presents detailed results of gas discharge theoretical simulation and the explanation of probabilistic mechanism of fast-electrons generation. Within the framework of a hybrid mathematical model, the hydrodynamic and the kinetic approaches are used simultaneously in order to describe the dynamics of different components of a low-temperature discharge plasma. The breakdown of a coaxial diode occurs in the form of a dense plasma region expanding from the cathode. On this background there is a formation of runaway electrons that are initiated by the ensemble of plasma electrons generated in the region of locally enhanced electric field within the front of the dense plasma. It is shown that the power spectrum of fast electrons in the discharge contains the group of electrons with the so-called “anomalous” energies. Comparison of the calculation results with the existent experimental data gives a good agreement for all major process parameters.

  10. Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2008-12-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy1 has been extended by processes that parameterize particle precipitation. Several types of particle precipitation that directly affect NOy and HOx concentrations in the middle atmosphere are accounted for and discussed in a series of papers. In the companion paper, the ECHAM5/MESSy1 solar proton event parameterization is discussed, while in the current paper we focus on low energy electrons (LEE that produce NOx in the upper atmosphere. For the flux of LEE NOx into the top of the model domain a novel technique which can be applied to most atmospheric chemistry general circulation models has been developed and is presented here. The technique is particularly useful for models with an upper boundary between the stratopause and mesopause and therefore cannot directly incorporate upper atmospheric NOx production. The additional NOx source parametrization is based on a measure of geomagnetic activity, the Ap index, which has been shown to be a good proxy for LEE NOx interannual variations. HALOE measurements of LEE NOx that has been transported into the stratosphere are used to develop a scaling function which yields a flux of NOx that is applied to the model top. We describe the implementation of the parameterization as the submodel SPACENOX in ECHAM5/MESSy1 and discuss the results from test simulations. The NOx enhancements and associated effects on ozone are shown to be in good agreement with independent measurements. Ap index data is available for almost one century, thus the parameterization is suitable for simulations of the recent climate.

  11. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol.

    Science.gov (United States)

    Jo, Sang-Hee; Kim, Ki-Hyun

    2016-01-15

    In this study, an experimental method for the collection and analysis of carbonyl compounds (CCs) released due to the use of electronic cigarettes (e-cigarettes or ECs) was developed and validated through a series of laboratory experiments. As part of this work, the conversion of CCs from a refill solution (e-solution) to aerosol also was investigated based on mass change tracking (MCT) approach. Aerosol samples generated from an e-cigarette were collected manually using 2,4-dinitrophenylhydrazine (DNPH) cartridges at a constant sampling (puffing) velocity of 1 L min(-1) with the following puff conditions: puff duration (2s), interpuff interval (10s), and puff number (5, 10, and 15 times). The MCT approach allowed us to improve the sampling of CCs through critical evaluation of the puff conditions in relation to the consumed quantities of refill solution. The emission concentrations of CCs remained constant when e-cigarettes were sampled at or above 10 puff. Upon aerosolization, the concentrations of formaldehyde and acetaldehyde increased 6.23- and 58.4-fold, respectively, relative to their concentrations in e-solution. Furthermore, a number of CCs were found to be present in the aerosol samples which were not detected in the initial e-solution (e.g., acetone, butyraldehyde, and o-tolualdehyde).

  12. On the capability of in-situ exposure in an environmental scanning electron microscope for investigating the atmospheric corrosion of magnesium.

    Science.gov (United States)

    Esmaily, M; Mortazavi, N; Shahabi-Navid, M; Svensson, J E; Johansson, L G; Halvarsson, M

    2015-06-01

    The feasibility of environmental scanning electron microscope (ESEM) in studying the atmospheric corrosion behavior of 99.97% Mg was investigated. For reference, ex-situ exposure was performed. A model system was designed by spraying few salt particles on the metal surface and further promoting the corrosion process using platinum (Pt) deposition in the form of 1×1×1 µm(3) dots around the salt particles to create strong artificial cathodic sites. The results showed that the electron beam play a significant role in the corrosion process of scanned regions. This was attributed to the irradiation damage occurring on the metal surface during the ESEM in-situ experiment. After achieving to a reliable process route, in a successful attempt, the morphology and composition of the corrosion products formed in-situ in the ESEM were in agreement with those of the sample exposed ex-situ. PMID:25731810

  13. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Stuart R., E-mail: s.thomas09@imperial.ac.uk, E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D., E-mail: s.thomas09@imperial.ac.uk, E-mail: thomas.anthopoulos@imperial.ac.uk [Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2BW (United Kingdom); Adamopoulos, George [Department of Engineering, Engineering Building, Lancaster University, Bailrigg, Lancaster LA1 4YR (United Kingdom); Sygellou, Labrini [Institute of Chemical Engineering and High Temperature Processes (ICEHT), Foundation of Research and Technology Hellas (FORTH), Stadiou Strasse Platani, P.O. Box 1414, Patras GR-265 04 (Greece); Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003 (Greece); Materials Science and Technology Department, University, of Crete, Heraklion 71003 (Greece); Pliatsikas, Nikos; Patsalas, Panos A. [Laboratory of Applied Physics, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece)

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450 °C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700 °C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ∼4.9 eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ∼2 cm{sup 2}/V s.

  14. On the way of calculating the atmospheric environmental damage due to the pollution in the coal-mining resource cities%煤炭资源型城市大气环境污染损失核算研究

    Institute of Scientific and Technical Information of China (English)

    冯思静; 马云东; 刘辉; 潘日芳

    2012-01-01

    The present article is inclined to introduce an improved method for calculating the atmospheric environmental damage due to the pollution in the coal-mining resource cities by taking Fuxin city as our case study. As to the methods for calculating environmental values in the environmental economics, it is of great necessity to mention the functional relationship among the physical quantity of loss, the value quantity of loss due to the pollution the coal production brings about to the environment. In order to calculate the economic loss caused by the atmospheric environmental pollution, we have prepared an equation and calculation method by joining the environmental value evaluation methods, such as human capital approach and the market value law, the economic loss caused by the atmospheric environmental pollution derived from the coal exploitation of the city in terms of currency. In order to analyze and evaluate the actualities of the atmospheric environmental quality loss and existing problems generated from coal mining quantitatively and qualitatively, this article put forward the calculation method by accounting the physical quantity and value quantity respectively. Such calculation can provide reference to the construction of ecological compensation and ecological regionaliza-tion. The calculation result of ours shows: the atmospheric environ-mental pollution loss caused by coal exploitation in the city in 2010 was about 1.266 billion Yuan, amounting to 80.09 Yuan loss for per metric ton coal, in which the cost of human health is thought of 65.63 % of the total loss, which is regarded as the biggest loss. Since the regions involved and evaluated are difficult to conform with the natural ecological environment remands, the population scale and socioeconomic development situation when they are evaluated with the end-results checking method, the accounting results of this article can only be treated as a reference to the upper limit. The uncertainty of the

  15. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals

    Science.gov (United States)

    Nakashima, Yuki; Heki, Kosuke; Takeo, Akiko; Cahyadi, Mokhamad N.; Aditiya, Arif; Yoshizawa, Kazunori

    2016-01-01

    Acoustic waves from volcanic eruptions are often observed as infrasound in near fields. Part of them propagate upward and disturb the ionosphere, and can be observed with Total Electron Content (TEC) data from Global Navigation Satellite System (GNSS) receivers. Here we report TEC variations after the 13 February 2014 Plinian eruption of the Kelud volcano, East Java, Indonesia, observed with regional GNSS networks. Significant disturbances in TEC were detected with six GNSS satellites, and wavelet analysis showed that harmonic oscillations started at ∼16:25 UT and continued for ∼2.5 h. The amplitude spectrum of the TEC time series showed peaks at 3.7 mHz, 4.8 mHz and 6.8 mHz. Long-wavelength standing waves with a wide range of wavelength trapped in the lower atmosphere are excited by the Plinian eruption. Amplitude spectra of the ground motion recorded by seismometers, however, had frequency components at discrete wave-periods. The condition for the resonant oscillations between the atmosphere and the solid Earth is satisfied only at these discrete wave-period and horizontal wavelength pairs, therefore efficient energy transfer from the atmospheric standing waves to the solid Earth Rayleigh waves occurred at discrete periods and resulted in the harmonic ground motion.

  16. Transmission electron microscopy on early-stage tin oxide film morphology grown by atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Nucleation and morphology development during the early stages of chemical vapor deposition (CVD) processes are believed to be of major importance for the overall film properties. Here, the authors have investigated the nucleation of tin oxide films, comparing different tin precursors (tin tetrachloride (TTC) and monobutyl tin trichloride (MBTC)) and focusing on the effect of methanol addition on the film morphology. Employing electron transparent silicon oxide membranes as substrates and combining transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis on the same set of samples, we describe a detailed picture of nucleation behavior and film growth during early stages of film formation. Our main conclusion is that methanol addition during deposition acts as surfactant, lowering the surface energy of the substrate and resulting in a higher nucleation grain density. Based on these results, we propose a film growth model based on surface energy to explain morphology differences in tin oxide films resulting from methanol addition.

  17. Three-Dimensional X-ray Observation of Atmospheric Biological Samples by Linear-Array Scanning-Electron Generation X-ray Microscope System

    Science.gov (United States)

    Ogura, Toshihiko

    2011-01-01

    Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si3N4 thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields. PMID:21731770

  18. Numerical studies of independent control of electron density and gas temperature via nonlinear coupling in dual-frequency atmospheric pressure dielectric barrier discharge plasmas

    Science.gov (United States)

    Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.

    2016-07-01

    Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.

  19. Three-dimensional X-ray observation of atmospheric biological samples by linear-array scanning-electron generation X-ray microscope system.

    Science.gov (United States)

    Ogura, Toshihiko

    2011-01-01

    Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si₃N₄ thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields.

  20. Three-dimensional X-ray observation of atmospheric biological samples by linear-array scanning-electron generation X-ray microscope system.

    Directory of Open Access Journals (Sweden)

    Toshihiko Ogura

    Full Text Available Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM, which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB and the thin film of the sample mount. We present herein a three-dimensional (3D X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD array. The specimens are placed under a CuZn-coated Si₃N₄ thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields.

  1. Variation in mechanical behavior due to different build directions of Titanium6Aluminum4Vanadium fabricated by electron beam additive manufacturing technology

    Science.gov (United States)

    Roy, Lalit

    Titanium has always been a metal of great interest since its discovery especially for critical applications because of its excellent mechanical properties such as light weight (almost half of that of the steel), low density (4.4 gm/cc) and high strength (almost similar to steel). It creates a stable and adherent oxide layer on its surface upon exposure to air or water which gives it a great resistance to corrosion and has made it a great choice for structures in severe corrosive environment and sea water. Its non-allergic property has made it suitable for biomedical application for manufacturing implants. Having a very high melting temperature, it has a very good potential for high temperature applications. But high production and processing cost has limited its application. Ti6Al4V is the most used titanium alloy for which it has acquired the title as `workhouse' of the Ti family. Additive layer Manufacturing (ALM) has brought revolution in manufacturing industries. Today, this additive manufacturing has developed into several methods and formed a family. This method fabricates a product by adding layer after layer as per the geometry given as input into the system. Though the conception was developed to fabricate prototypes and making tools initially, but its highly economic aspect i.e., very little waste material for less machining and comparatively lower production lead time, obviation of machine tools have drawn attention for its further development towards mass production. Electron Beam Melting (EBM) is the latest addition to ALM family developed by Arcam, ABRTM located in Sweden. The electron beam that is used as heat source melts metal powder to form layers. For this thesis work, three different types of specimens have been fabricated using EBM system. These specimens differ in regard of direction of layer addition. Mechanical properties such as ultimate tensile strength, elastic modulus and yield strength, have been measured and compared with standard data

  2. RECONSTRUCTION OF EXTERNAL DOSES TO OZYORSK RESIDENTS DUE TO ATMOSPHERIC RELEASES OF INERT RADIOACTIVE GASES FROM THE STACKS OF THE “MAYAK” PA REACTOR PLANT FROM 1948 TO 1989

    Energy Technology Data Exchange (ETDEWEB)

    Glagolenko, Y. V.; Drozhko, Evgeniy G.; Mokrov, Y.; Rovny, Sergey I.; Beregich, D. A.; Stukalov, Pavel M.; Ivanov, I. A.; Alexakhin, A. I.; Anspaugh, L. R.; Napier, Bruce A.

    2008-06-01

    The article provides the results of reconstruction of external doses to population due to atmospheric releases of inert radioactive gases of activation (41Ar) and fission origin (xenon and krypton isotopes) from the stacks of the “Mayak” PA industrial reactors from 1948 to 1989. Calculation of surface volumetric activities was performed using the RATCHET code. Dose estimate was obtained in a semi-infinite cloud approximation. It is demonstrated that more than 90% of external dose was accumulated from 1948 to 1956. It is established that, generally, the calculation results are in good agreement with archive instrument monitoring data on exposure dose rate and thermoluminescence dosimetry data. External effective doses to the residents of Ozyorsk obtained for different age groups of population with consideration of shielding properties of buildings and duration of time spent outdoors were estimated in the range from 16 to 23 mSv.

  3. Electron Density and Temperature Measurement by Stark Broadening in a Cold Argon Arc-Plasma Jet at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiuping; CHENG Cheng; MENG Yuedong

    2009-01-01

    Determination of both the electron density and temperature simultaneously in a cold argon arc-plasma jet by analyzing the Stark broadening of two different emission lines is presented.This method is based on the fact that the Stark broadening of different lines has a different dependence on the electron density and temperature.Therefore,a comparison of two or more line broadenings allows us to diagnose the electron density and temperature simultaneously.In this study we used the first two Balmer series hydrogen lines H_α and H_β for their large broadening width.For this purpose,a small amount of hydrogen was introduced into the discharge gas.The results of the Gigosos-Cardenoso computational model,considering more relevant processes for the hydrogen Balmer lines,is used to process the experimental data.With this method,we obtained reliable electron density and temperature,1.88 ×10 ~(15) cm~(-3 )and 13000 K,respectively.Possible sources of error were also analyzed.

  4. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung

    Science.gov (United States)

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J.

    2013-06-01

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  5. Correction for 'artificial' electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung.

    Science.gov (United States)

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J

    2013-06-21

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  6. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung

    International Nuclear Information System (INIS)

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (−1000 HU). Similarly, CBCT data in a plastic lung

  7. On the capability of in-situ exposure in an environmental scanning electron microscope for investigating the atmospheric corrosion of magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Esmaily, M., E-mail: mohsen.esmaily@chalmers.se [Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Mortazavi, N. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Shahabi-Navid, M.; Svensson, J.E.; Johansson, L.G. [Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Halvarsson, M. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden)

    2015-06-15

    The feasibility of environmental scanning electron microscope (ESEM) in studying the atmospheric corrosion behavior of 99.97% Mg was investigated. For reference, ex-situ exposure was performed. A model system was designed by spraying few salt particles on the metal surface and further promoting the corrosion process using platinum (Pt) deposition in the form of 1×1×1 µm{sup 3} dots around the salt particles to create strong artificial cathodic sites. The results showed that the electron beam play a significant role in the corrosion process of scanned regions. This was attributed to the irradiation damage occurring on the metal surface during the ESEM in-situ experiment. After achieving to a reliable process route, in a successful attempt, the morphology and composition of the corrosion products formed in-situ in the ESEM were in agreement with those of the sample exposed ex-situ. - Highlights: • The feasibility of in-situ microscopy and atmospheric corrosion exposures of pure Mg in an ESEM are examined. • A model system was designed using NaCl particles on parts of the metal surface and promoting the corrosion process by depositing 1×1×1 µm{sup 3} Pt dots to create strong artificial cathodic sites. • The electron beam used for ESEM imaging affects the in-situ corrosion process. • A proper cleaning procedure for the sample and microscope chamber reducing carbon contamination makes the results from the ESEM in-situ exposures comparable to ex-situ exposures.

  8. A study of the electron image due to ionizing events in a two-dimensional liquid argon TPC with a 24 cm drift gap

    Science.gov (United States)

    Bonetti, S.; Braggiotti, A.; Buckley, E.; Campanella, M.; Carugno, G.; Cecchet, G.; Cennini, P.; Centro, S.; Ciocio, A.; Cittolin, S.; Dainese, B.; Ferro-Luzzi, M.; Gasparini, F.; Gonidec, A.; Manfredi, P. F.; Meroni, E.; Muñoz, R.; Perreau, J.-M.; Pietropaolo, F.; Ptohos, F.; Ragusa, F.; Rossi, P.; Rubbia, C.; Schinzel, D.; Schmidt, W. F.; Seidl, W.

    1990-01-01

    We have tested a liquid argon time projection chamber with a novel wire configuration based on electrostatic focussing which allows the realization of a nondestructive detection of the electron image produced by ionizing events. The chamber was tested in a 5 GeV pion beam at the CERN proton synchrotron. The measured pulse shapes at both 200 V/cm and 500 V/cm were in very good agreement with the expected shapes, calculated taking into account the electron lifetime, the response of the electronics and the longitudinal diffusion of the electron cloud. The measured electron drift velocity was in good agreement with the results of other workers as well as with our previous measurements. We have also analysed a sample of events containing delta rays in order to study the behaviour of low-energy electrons in the liquid argon. We find that for electron energies greater than 5 MeV the measured energy spectrum agrees very well with the predicted spectrum after corrections for acceptance and energy loss, hence demonstrating the feasibility of recognizing low-energy electrons in liquid argon.

  9. Effect of electron irradiation and packaging atmosphere on the survival of Aeromonas hydrophila in minced poultry meat

    Energy Technology Data Exchange (ETDEWEB)

    Stecchini, M.L.; Sarais, I.; Del Torre, M. [Dipartimento di Scienze degli Alimenti, Udine (Italy); Fuochi, P.G. [Istituto FRAE-CNR, Bologna (Italy)

    1995-10-01

    Resistance to electron irradiation of Aeromonas hydrophila inoculated in minced poultry meat packed in presence of air or under vacuum was examined. Surviving bacteria were counted on starch ampicillin agar containing 100 {mu}g/ml of ampicillin. Radiation resistance, expressed as D{sub 10} values, was calculated from the survival curves and found to be 0.12 and 0.14 kGy in poultry meat packed in air or under vacuum respectively. Storage at 2{sup o}C of meat samples irradiated at 0.5 kGy further reduced the number of A. hydrophila. (Author).

  10. Effect of electron irradiation and packaging atmosphere on the survival of Aeromonas hydrophila in minced poultry meat

    International Nuclear Information System (INIS)

    Resistance to electron irradiation of Aeromonas hydrophila inoculated in minced poultry meat packed in presence of air or under vacuum was examined. Surviving bacteria were counted on starch ampicillin agar containing 100 μg/ml of ampicillin. Radiation resistance, expressed as D10 values, was calculated from the survival curves and found to be 0.12 and 0.14 kGy in poultry meat packed in air or under vacuum respectively. Storage at 2oC of meat samples irradiated at 0.5 kGy further reduced the number of A. hydrophila. (Author)

  11. Oxidation of metals and alloys in controlled atmospheres using in situ transmission electron microscopy and Auger spectrography

    Science.gov (United States)

    Rao, D. B.; Heinemann, K.; Douglass, D. L.

    1976-01-01

    Single-crystalline thin films of copper were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of .005 Torr in situ in a high-resolution electron microscope. The specimens were prepared by epitaxial vapor deposition onto polished 100 and 110 faces of rocksalt and mounted in a hot stage inside an ultra-high-vacuum specimen chamber of the microscope. Large amounts of sulfur, carbon, and oxygen were detected by Auger electron spectroscopy on the surface of the as-received films and were removed in situ by ion-sputter etching immediately prior to the oxidation. The nucleation and growth characteristics of Cu2O on Cu were studied. Results show that neither stacking faults nor dislocations are associated with the Cu2O nucleation sites. The growth of Cu2O nuclei is linear with time. The experimental findings, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving (a) the formation of a surface-charge layer, (b) oxygen saturation in the metal and (c) nucleation, followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.

  12. The electronic Space Weather upper atmosphere (eSWua project at INGV: advancements and state of the art

    Directory of Open Access Journals (Sweden)

    V. Romano

    2008-02-01

    Full Text Available The eSWua project is based on measurements performed by all the instruments installed by the upper atmosphere physics group of the Istituto Nazionale di Geofisica e Vulcanologia, Italy and on all the related studies. The aim is the realization of a hardware-software system to standardize historical and real-time observations for different instruments.

    An interactive Web site, supported by a well organized database, can be a powerful tool for the scientific and technological community in the field of telecommunications and space weather. The most common and useful database type for our purposes is the relational one, in which data are organized in tables for petabytes data archiving and the complete flexibility in data retrieving.

    The project started in June 2005 and will last till August 2007. In the first phase the major effort has been focused on the design of hardware and database architecture. The first two databases related to the DPS4 digisonde and GISTM measurements are complete concerning populating, tests and output procedures. Details on the structure and Web tools concerning these two databases are presented, as well as the general description of the project and technical features.

  13. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares I: Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    CERN Document Server

    Kowalski, Adam F; Daw, Adrian N; Cauzzi, Gianna; Carlsson, Mats

    2016-01-01

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from RHESSI. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from th...

  14. Electron spectroscopic analysis of the human lipid skin barrier: cold atmospheric plasma-induced changes in lipid composition.

    Science.gov (United States)

    Marschewski, Marcel; Hirschberg, Joanna; Omairi, Tarek; Höfft, Oliver; Viöl, Wolfgang; Emmert, Steffen; Maus-Friedrichs, Wolfgang

    2012-12-01

    The lipids of the stratum corneum comprise the most important components of the skin barrier. In patients with ichthyoses or atopic dermatitis, the composition of the skin barrier lipids is disturbed resulting in dry, scaly, itching erythematous skin. Using the latest X-Ray Photoelectron Spectroscopy (XPS) technology, we investigated the physiological skin lipid composition of human skin and the effects of cold atmospheric plasma treatment on the lipid composition. Skin lipids were stripped off forearms of six healthy volunteers using the cyanoacrylate glue technique, plasma treated or not and then subjected to detailed XPS analysis. We found that the human lipid skin barrier consisted of 84.4% carbon (+1.3 SEM%), 10.8% oxygen (+1.0 SEM%) and 4.8% nitrogen (+0.3 SEM%). The composition of physiological skin lipids was not different in males and females. Plasma treatment resulted in significant changes in skin barrier lipid stoichiometry. The total carbon amount was reduced to 76.7%, and the oxygen amount increased to 16.5%. There was also a slight increase in nitrogen to 6.8%. These changes could be attributed to reduced C-C bonds and increased C-O, C=O, C-N and N-C-O bonds. The moderate increase in nitrogen was caused by an increase in C-N and N-C-O bonds. Our results show for the first time that plasma treatment leads to considerable changes in the human skin lipid barrier. Our proof of principle investigations established the technical means to analyse, if plasma-induced skin lipid barrier changes may be beneficial in the treatment of ichthyotic or eczematous skin.

  15. Electron-like Fermi surface and in-plane anisotropy due to chain states in YBa2Cu3O7-δ superconductors

    Science.gov (United States)

    Das, Tanmoy

    2012-08-01

    We present magnetotransport calculations for YBa2Cu3O7-δ (YBCO) materials to show that the electron-like metallic chain state gives both the negative Hall effect and in-plane anisotropic large Nernst signal. We show that the inevitable presence of the metallic 1D CuO chain layer lying between the CuO2 bilayers in YBCO renders an electron-like Fermi surface in the doping range as wide as p=0.05 to overdoping. With underdoping, a pseudogap opening in the CuO2 state reduces its hole-carrier contribution, and, therefore, the net electron-like quasiparticles dominate the transport properties, and a negative Hall resistance commences. We also show that the observation of in-plane anisotropy in the Nernst signal—which was taken as a definite evidence of the electronic “nematic” pseudogap phase—is naturally explained by including the “quasiuniaxial” metallic chain state. Finally, we comment on how the chain state can also lead to electron-like quantum oscillations.

  16. Flare plasma dynamics obseved with the YOHKOH Bragg crystal spectrometer. III. Spectral signatures of electron-beam-heated atmospheres.

    Science.gov (United States)

    Marriska, John. T.

    1995-05-01

    Using numerical simulations of an electon-beam-heated solar flare, we investigate the observational consequences of variations in the electron beam total energy flux and the low-energy cut off value for models with both low and high initial densities. To do this we use the evolution of the physical parameters of the simulated flares to synthesize the time evolution of the spectrum in the wavelength region surrounding tha Ca xix resonance line. These spectra are then summed over a 9 s time interval to simulate typical spectra from the Yohkoh Bragg crystal spectometer and the first three moments are computed for comparison with observational results. This comparison shows that no single low or high initial density model satisfies the observed average behavior of the Ca xix resonance line. Low initial density models produce too large a blue shift velocity, while high initial density model have lines that are too narrow. Comparison of these models with the Yohkok data suggests that the key problem for models of the impulsive phase ofa solar flare is producing significant amounts of stationary hot plasma early in the flare.

  17. Variations of the electron density in the low and middle latitude ionosphere due to high-speed solar wind streams observed by the DEMETER satellite

    Science.gov (United States)

    Kim, H. E.; Lee, E.; Kim, K. H.; Lee, D. H.; Ryu, K.; Chae, J.; Parrot, M.

    2014-12-01

    Earth's ionosphere varies very dynamically according to the geomagnetic activities and solar irradiance. Recently it has been studied that the plasma and neutral densities in the thermosphere and ionosphere show periodic oscillations with respect to the solar wind speed and Kp index during the declining phase of the solar cycle. In this study, we investigate the relationship between the electron density and the solar wind speed during the declining phase of the solar cycle using the observation from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite at the altitude of 660 km. The electron density near the dip equator tends to increase with the solar wind speed from January to April, but there is no clear tendency in the other times. Also, the electron density shows good relationship with the solar wind speed at the magnetic longitudes from 240 to 300 degrees. However, there is poor relationship in the other longitudes. We will discuss the seasonal and longitudinal dependences of the electron density on the solar wind speed in the low and middle latitude ionosphere.

  18. Absorbed Dose Distributions in Small Copper Wire Insulation due to Multiple-Sided Irradiations by 0.4 MeV Electrons

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.; Pedersen, Walther Batsberg;

    1979-01-01

    When scanned electron beams are used to crosslink polymeric insulation of wire and cable, an important goal is to achieve optimum uniformity of absorbed dose distributions. Accurate measurements of dose distributions in a plastic dosimeter simulating a typical insulating material (polyethylene) s...

  19. The temperature dependence of the band gap shrinkage due to the electron-phonon interaction in Al{sub x}Ga{sub 1-x}As

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Niladri; Ghosh, Subhasis [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2006-02-08

    The photoluminescence spectrum of band edge transitions in Al{sub x}Ga{sub 1-x}As is studied as a function of temperature and electron concentration. The parameters that describe the temperature dependence redshift of the band edge transition energy are evaluated using different models. We find that a semi-empirical relation based on a phonon dispersion related spectral function leads to an excellent fit to the experimental data.

  20. Animal evolution and atmospheric pO2: is there a link between gradual animal adaptation to terrain elevation due to Ural orogeny and survival of subsequent hypoxic periods?

    Science.gov (United States)

    Kurbel, Sven

    2014-01-01

    Considering evolution of terrestrial animals as something happening only on flat continental plains seems wrong. Many mountains have arisen and disappeared over the geologic time scale, so in all periods some areas of high altitude existed, with reduced oxygen pressure (pO2) and increased aridity. During orogeny, animal species of the raising terrain can slowly adapt to reduced oxygen levels.This review proposes that animal evolution was often driven by atmospheric oxygen availability. Transitions of insect ancestors and amphibians out of water are here interpreted as events forced by the lack of oxygen in shallow and warm water during Devonian. Hyperoxia during early Carboniferous allowed giant insects to be predators of lowlands, forcing small amphibians to move to higher terrains, unsuitable to large insects due to reduced pO2. In arid mountainous habitats, ascended animals evolved in early reptiles with more efficient lungs and improved circulation. Animals with alveolar lungs became the mammalian ancestors, while those with respiratory duct lungs developed in archosaurs. In this interpretation, limb precursors of wings and pneumatised bones might have been adaptations for moving on steep slopes.Ural mountains have risen to an estimated height of 3000 m between 318 and 251 Mya. The earliest archosaurs have been found on the European Ural side, estimated 275 Myr old. It is proposed that Ural orogeny slowly elevated several highland habitats within the modern Ural region to heights above 2500 m. Since this process took near 60 Myr, animals in these habitats fully to adapted to hypoxia.The protracted P-Tr hypoxic extinction event killed many aquatic and terrestrial animals. Devastated lowland areas were repopulated by mammaliaformes that came down from mountainous areas. Archosaurs were better adapted to very low pO2, so they were forced to descend to the sea level later when the lack of oxygen became severe. During the Triassic period, when the relative content

  1. Infrared rovibrational spectroscopy of OH–C{sub 2}H{sub 2} in {sup 4}He nanodroplets: Parity splitting due to partially quenched electronic angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Douberly, Gary E., E-mail: douberly@uga.edu; Liang, Tao [Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 (United States); Raston, Paul L. [Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005 (Australia); Marshall, Mark D., E-mail: mdmarshall@amherst.edu [Department of Chemistry, Amherst College, Amherst, Massachusetts 01002-5000 (United States)

    2015-04-07

    The T-shaped OH–C{sub 2}H{sub 2} complex is formed in helium droplets via the sequential pick-up and solvation of the monomer fragments. Rovibrational spectra of the a-type OH stretch and b-type antisymmetric CH stretch vibrations contain resolved parity splitting that reveals the extent to which electronic angular momentum of the OH moiety is quenched upon complex formation. The energy difference between the spin-orbit coupled {sup 2}B{sub 1} (A″) and {sup 2}B{sub 2} (A′) electronic states is determined spectroscopically to be 216 cm{sup −1} in helium droplets, which is 13 cm{sup −1} larger than in the gas phase [Marshall et al., J. Chem. Phys. 121, 5845 (2004)]. The effect of the helium is rationalized as a difference in the solvation free energies of the two electronic states. This interpretation is motivated by the separation between the Q(3/2) and R(3/2) transitions in the infrared spectrum of the helium-solvated {sup 2}Π{sub 3/2} OH radical. Despite the expectation of a reduced rotational constant, the observed Q(3/2) to R(3/2) splitting is larger than in the gas phase by ≈0.3 cm{sup −1}. This observation can be accounted for quantitatively by assuming the energetic separation between {sup 2}Π{sub 3/2} and {sup 2}Π{sub 1/2} manifolds is increased by ≈40 cm{sup −1} upon helium solvation.

  2. Atmospheric correction of satellite data

    Science.gov (United States)

    Shmirko, Konstantin; Bobrikov, Alexey; Pavlov, Andrey

    2015-11-01

    Atmosphere responses for more than 90% of all radiation measured by satellite. Due to this, atmospheric correction plays an important role in separating water leaving radiance from the signal, evaluating concentration of various water pigments (chlorophyll-A, DOM, CDOM, etc). The elimination of atmospheric intrinsic radiance from remote sensing signal referred to as atmospheric correction.

  3. Changes of the Electrical and Optical Character of Polyimide Films Due to Exposure to High Energy GEO-like Electrons and the Chemistry that Drives it

    Science.gov (United States)

    Hoffmann, R.; Cooper, R.; Ferguson, D.

    As a result of the interaction between the spacecraft and its operational environment, the constituent materials begin to change. These changes are determined by a combination of: chemical reactions, contamination, and energy deposition. They can range in severity from negligible to total loss of the material. Virtually all properties of the material, the mechanical, optical/thermal, and electrical are altered in largely unknown ways from the pristine materials. This negatively impacts the ability of spacecraft operators to predict the behavior of a spacecraft as it ages its environment. For example, in the case of electrical conduction in polyimide, there is a three orders of magnitude decrease in the resistivity after only eight months of simulated GEO electron exposure. Optical changes in the material also dramatically impact the ability of ground based optical observations to identify and track both known and unknown spacecraft. We will be presenting work done within the Spacecraft Charging and Instrument Calibration Lab at AFRL/RVB to quantify the changes in total reflection, BRDF, and electrical conduction of aluminized polyimide film after simulated aging in a GEO-like electron environment. We correlate these data with the chemical structure of the film as determined by XPS and NMR. A deeper, predictive understanding of how materials change will not only increase the operational lifetime of space assets by providing more accurate data to operators, it will improve SSA by allowing ground based observers to more accurately deduce component materials and determine how long a spacecraft has been in orbit.

  4. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Schram, Daan C [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Iza, Felipe; Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Guns, Peter; Lauwers, Daniel; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Gonzalvo, Yolanda Aranda [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: p.j.bruggeman@tue.nl

    2010-02-15

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H{sub 2}O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J {<=} 7) are thermalized and representative for the gas temperature.

  5. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    International Nuclear Information System (INIS)

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H2O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J ≤ 7) are thermalized and representative for the gas temperature.

  6. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2016-02-01

    The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is

  7. Enhancement of electron correlation due to the molecular dimerization in organic superconductors β -(BDA-TTP )2X (X =I3, SbF6)

    Science.gov (United States)

    Aizawa, Hirohito; Kuroki, Kazuhiko; Yamada, Jun-ichi

    2015-10-01

    We perform a first-principles band calculation for quasi-two-dimensional organic superconductors β -(BDA -TTP) 2I3 and β -(BDA -TTP) 2SbF6. The first-principles band structures between the I3 and SbF6 salts are apparently different. We construct a tight-binding model for each material which accurately reproduces the first-principles band structure. The obtained transfer energies give the differences as follows: (i) larger dimerization in the I3 salt than the SbF6 salt, and (ii) different signs and directions of the interstacking transfer energies. To decompose the origin of the difference into the dimerization and the interstacking transfer energies, we adopt a simplified model by eliminating the dimerization effect and focus only on the difference caused by the interstacking transfer energies. From the analysis using the simplified model, we find that the difference of the band structure comes mainly from the strength of the dimerization. To compare the strength of the electron correlation having roots in the band structure, we calculate the physical properties originating from the effect of the electron correlation such as the spin susceptibility applying the two-particle self-consistent method. We find that the maximum value of the spin susceptibility for the I3 salt is larger than that of the SbF6 salt. Hypothetically decreasing the dimerization within the model of the I3 salt, the spin susceptibility takes almost the same value as that of the SbF6 salt for the same magnitude of the dimerization. We expect that the different ground state between the I3 and SbF6 salt mainly comes from the strength of the dimerization which is apparently masked in the band calculation along a particular k path.

  8. Magneto-thermoelectric effects in the two-dimensional electron gas of a HgTe quantum well due to THz laser heating by cyclotron resonance absorption

    Science.gov (United States)

    Pakmehr, Mehdi; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; McCombe, Bruce

    2015-03-01

    HgTe quantum wells (QWs) have shown a number of interesting phenomena over the past 20 years, most recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of 2D electrons in a 6.1 nm wide HgTe quantum well induced by cyclotron resonance absorption (B = 2 - 5 T) of a focused THz laser beam. We have estimated thermo-power coefficients by detailed analysis of the beam profile at the sample surface and the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. We obtain reasonable values of the magneto-thermopower coefficients. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost, and at the University of Wuerzburg by DARPA MESO Contract N6601-11-1-4105, by DFG Grant HA5893/4-1 within SPP 1666 and the Leibnitz Program, and the EU ERC-AG Program (Project 3-TOP.

  9. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic-Theater 2002. Spectacular Visualizations of our Blue Marble

    Science.gov (United States)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    Spectacular Visualizations of our Blue Marble The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC). See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nicola Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  10. Animal evolution and atmospheric pO2: is there a link between gradual animal adaptation to terrain elevation due to Ural orogeny and survival of subsequent hypoxic periods?

    OpenAIRE

    Kurbel, Sven

    2014-01-01

    Considering evolution of terrestrial animals as something happening only on flat continental plains seems wrong. Many mountains have arisen and disappeared over the geologic time scale, so in all periods some areas of high altitude existed, with reduced oxygen pressure (pO2) and increased aridity. During orogeny, animal species of the raising terrain can slowly adapt to reduced oxygen levels. This review proposes that animal evolution was often driven by atmospheric oxygen availability. Trans...

  11. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma; Modelisation de phenomenes de polarisation par des gaines rf et des faisceaux electroniques dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, E

    2005-07-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  12. Initial PVO Evidence of Electron Depletion Signatures Downstream of Venus

    Science.gov (United States)

    Intriligator, D. S.; Hartle, R. E.; Perez-de-Tejada, H.; Siscoe, G. L.

    1993-01-01

    This first analysis of Pioneer Venus Orbiter (PVO) plasma analyzer electron measurements obtained in early 1992 during the PVO entry phase of the mission indicates the presence downstream from the terminator of a depletion or "bite out" of energetic ionosheath electrons similar to that observed on Mariner 10. There is more than one possible explanation for this energetic electron depletion. If it is due to atmospheric scattering, the electrons traveling along draped magnetic flux tubes that thread through the Venus neutral atmosphere would lose energy from impact ionization with oxygen. The cross-section for such electron impact ionization of oxygen has a peak near 100 eV, and it remains high above this energy, so atmospheric loss could provide a natural process for electrons at these energies to be selectively removed. In this case, our results are consistent with the Kar et al. (1994) study of PVO atmospheric entry ion mass spectrometer data which indicates that electron impact plays a significant role in maintaining the nightside ionosphere. Although it is appealing to interpret the energetic electron depletion in terms of direct atmospheric scattering, alternatively it could result from strong draping which connects the depletion region magnetically to the weak downstream bow shock and thereby reduces the electron source strength.

  13. Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ∼0.5-μs front duration

    International Nuclear Information System (INIS)

    Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ∼0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap (Um ∼ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of Um behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ∼100 ps was detected. At voltages of ∼50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ∼2 ns was generated, whereas the FWHM of the X-ray pulse increased to ∼100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime

  14. Methodology for the accelerated simulation of the deterioration that by atmospheric corrosion appears in electronic equipment; Metodologia para la simulacion acelerada del deterioro que por corrosion atmosferica se presenta en equipo electronico

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Prado, A.; Schouwenaars, R.; Cerrud Sanchez, S.M. [Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2002-12-01

    The corrosion resistance of systems and electronic parts which are designed to work in atmospheric conditions have been tested for decades; some of these methods were the Cyclic Humidity Test, Field Tests and Salt Spray (Fog) Testing, the latter was one of the most popular methods. However, the salt spray test and most of the other existing methods do not show strong relationships with the real conditions of service. For this reason, it is necessary to develop appropriated methods and equipment for the accelerated simulation of real atmospheric corrosion phenomena. This article seeks to demonstrate the need to develop a test and the necessary equipment to reproduce the damage in electronic systems and equipment by atmospheric corrosion. [Spanish] Para la evaluacion de la resistencia a la corrosion de sistemas y equipo electronico que trabajaran bajo condiciones de deterioro generadas por el medio ambiente, se han aplicado una serie de ensayos, donde el mas popular es el de camara de niebla salina. Sin embargo, este y otros que se han elaborado para tal efecto no tienen ninguna relacion con las condiciones reales de servicio, por lo que es necesario un metodo de evaluacion que permita simular de forma acelerada los fenomenos de deterioro por efectos ambientales. Este articulo pretende demostrar la necesidad de desarrollar una prueba, que en forma acelerada, reproduzca el dano que sufre el material por efecto de la atmosfera; el cual se orienta a la evaluacion de equipo electrico y electronico.

  15. Global Change in the Upper Atmosphere

    Science.gov (United States)

    Qian, L.; Solomon, S. C.; Lastovicka, J.; Roble, R. G.

    2011-12-01

    Anthropogenic increases of greenhouse gases warm the troposphere but have a cooling effect in the middle and upper atmosphere. The steady increase of CO2 is the dominant cause of upper atmosphere trends. Long-term changes of other radiatively active trace gases such as CH4, O3, and H2O, long-term changes of geomagnetic and solar activity, and other possible drivers also play a role. Observational and model studies have confirmed that in the past several decades, global cooling has occurred in the mesosphere and thermosphere; the cooling and contraction of the upper atmosphere has lowered the ionosphere, increased electron density in the lower ionosphere, but slightly decreased electron density in the upper ionosphere. Limited observations have suggested long-term changes in the occurrence rate of major stratospheric warming, mesosphere and lower thermosphere dynamics, wave activities and turbulence in the mesosphere and lower thermosphere, and occurrence of noctilucent clouds or polar mesospheric clouds. However, possible long-term changes of these parameters remain to be open questions due to lack of measurements. We will review recent progress in observations and simulations of global change in the upper atmosphere, and discuss future investigations with a focus on how measurements by commercial reusable suborbital vehicles can help resolve the open questions.

  16. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  17. Thin layer a-Al{sub 2}O{sub 3}:C beta dosemeters for the assessment of current dose rate in teeth due to {sup 90}Sr intake and comparison with electron paramagnetic resonance dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, H.Y.; Semiochkina, N.; Shiskina, E.A.; Wieser, A.; El-Faramawy, N.A.; Degteva, M.O.; Jacob, P.; Ivanov, D.V

    2002-07-01

    The use of thin-layer a-Al{sub 2}O{sub 3}:C thermoluminescence detectors (TLDs) for the assessment of current beta dose rate in human teeth due to {sup 90}Sr intake is investigated. The teeth used in this study were collected from members of the Techa river population who were exposed to radiation as a result of releases of the Mayak plutonium production facilities (Southern Urals-Russia) between 1949 and 1956. The beta dose rates from different parts of the tooth (enamel, crown dentine, and root) were determined by storing the detectors over the samples in a shielded environment. The cumulative dose measured by electron paramagnetic resonance (EPR) in different dental tissues is found to be proportional to the current dose rate obtained from a-Al{sub 2}O{sub 3}:C thermoluminescence dosemeters. The retention of {sup 90}Sr in various parts of the teeth is discussed. (author)

  18. Photoabsorption in Ganymede’s atmosphere

    Science.gov (United States)

    Cessateur, Gaël; Lilensten, Jean; Barthélémy, Mathieu; Dudok de Wit, Thierry; Simon Wedlund, Cyril; Gronoff, Guillaume; Ménager, Hélène; Kretzschmar, Matthieu

    2012-03-01

    In the framework of future space missions to Ganymede, a pre-study of this satellite is a necessary step to constrain instrument performances according to the mission objectives. This work aims at characterizing the impact of the solar UV flux on Ganymede’s atmosphere and especially at deriving some key physical parameters that are measurable by an orbiter. Another objective is to test several models for reconstructing the solar flux in the Extreme-UV (EUV) in order to give recommendations for future space missions. Using a Beer-Lambert approach, we compute the primary production of excited and ionized states due to photoabsorption, neglecting the secondary production that is due to photoelectron impacts as well as to precipitated suprathermal electrons. Ions sputtered from the surface are also neglected. Computations are performed at the equator and close to the pole, in the same conditions as during the Galileo flyby. From the excitations, we compute the radiative relaxation leading to the atmospheric emissions. We also propose a simple chemical model to retrieve the stationary electron density. There are two main results: (i) the modelled electron density and the one measured by Galileo are in good agreement. The main atmospheric visible emission is the atomic oxygen red line at 630 nm, both in equatorial and in polar conditions, in spite of the different atmospheric compositions. This emission is measurable from space, especially for limb viewing conditions. The OH emission (continuum between 260 and 410 nm) is also probably measurable from space. (ii) The input EUV solar flux may be directly measured or reconstructed from only two passbands solar observing diodes with no degradation of the modelled response of the Ganymede’s atmosphere. With respect to these results, there are two main conclusions: (i) future missions to Ganymede should include the measurement of the red line as well as the measurement of OH emissions in order to constrain the atmospheric

  19. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control.

    Science.gov (United States)

    Cochems, P; Kirk, A T; Bunert, E; Runge, M; Goncalves, P; Zimmermann, S

    2015-06-01

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  20. Heterogeneous atmospheric chemistry

    Science.gov (United States)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  1. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  2. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  3. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  4. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  5. Reconstruction of energetic electron spectra in the upper atmosphere: balloon observations of auroral X-rays coordinated with measurements from the EISCAT radar

    International Nuclear Information System (INIS)

    Energetic electron precipitation in the auroral zone has been studied using coordinated auroral X-ray measurements from balloons, altitude profiles of the ionospheric electron density measured by the EISCAT radar above the balloons, and cosmic noise absorption data from the Scandinavian riometer network. The data were obtained during the Coordinated EISCAT and Balloon Observations (CEBO) campaign in August 1984. The energy spectral variations of both the X-ray fluxes and the primary precipitating electrons were examined for two precipitation events in the morning sector. As far as reasonably can be concluded from observations of magnetic activity in the auroral zone, and from the temporal development of the energy spectra, the two precipitation events can be interpreted in the frame of present models of energetic electron precipitation on the mordning side of the auroral zone. 96 refs., 70 figs., 11 tabs

  6. Atmospheric neutrinos and neutrino oscillations

    International Nuclear Information System (INIS)

    The results on the composition of atmospheric neutrinos interacting in underground detectors and on the rate of atmospheric muon neutrino interactions in the earth surrounding the detectors are reviewed. So far, systematic errors on the neutrino flux and on the electrons and muons neutrino interaction identifications are not yet reliable enough to prove that atmospheric neutrinos oscillate before being detected. (author) 22 refs., 5 figs

  7. Applications of theoretical methods in atmospheric science

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Goodsite, Michael E.

    2008-01-01

    Theoretical chemistry involves explaining chemical phenomenon using natural laws. The primary tool of theoretical chemistry is quantum chemistry, and the field may be divided into electronic structure calculations, reaction dynamics and statistical mechanics. These three all play a role...... in addressing an issue of primary concern: understanding photochemical reaction rates at the various conditions found in the atmosphere. Atmospheric science includes both atmospheric chemistry and atmospheric physics, meteorology, climatology and the study of extraterrestrial atmospheres....

  8. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    Science.gov (United States)

    Bassiri, Sassan; Hajj, George A.

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  9. On the use of the double floating probe method to infer the difference between the electron and the heavy particles temperatures in an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L., E-mail: prevosto@waycom.com.ar; Mancinelli, B. R. [Grupo de Descargas Eléctricas, Departamento Ingeniería Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, 2600 Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ingeniería Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, 2600 Venado Tuerto, Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2014-05-15

    Sweeping double probe measurements in an atmospheric pressure direct current vortex-stabilized plasma jet are reported (plasma conditions: 100 A discharge current, N{sub 2} gas flow rate of 25 Nl/min, thoriated tungsten rod-type cathode, copper anode with 5 mm inner diameter). The interpretation of the double probe characteristic was based on a generalization of the standard double floating probe formulae for non-uniform plasmas coupled to a non-equilibrium plasma composition model. Perturbations caused by the current to the probe together with collisional and thermal processes inside the probe perturbed region were taken into account. Radial values of the average electron and heavy particle temperatures as well as the electron density were obtained. The calculation of the temperature values did not require any specific assumption about a temperature relationship between different particle species. An electron temperature of 10 900 ± 900 K, a heavy particle temperature of 9300 ± 900 K, and an electron density of about 3.5 × 10{sup 22} m{sup −3} were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found toward the outer border of the plasma jet. These results showed good agreement with those previously reported by the authors by using a single probe technique. The calculations have shown that this method is particularly useful for studying spraying-type plasma torches operated at power levels of about 15 kW.

  10. Modification of spacecraft charging and the near-plasma environment caused by the interaction of an artificial electron beam with the earth's upper atmosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P. M.; Gilchrist, B.E.;

    1991-01-01

    V, it is shown that secondary electrons supply a significant contribution to the return current to the spacecraft and thereby reduce the spacecraft potential. Our numerical results are in good agreement with observations from the CHARGE-2 sounding rocket experiment.A more detailed study of the BAI as it relates...

  11. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    Science.gov (United States)

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  12. Exoplanetary Atmospheres

    CERN Document Server

    Madhusudhan, Nikku; Fortney, Jonathan; Barman, Travis

    2014-01-01

    The study of exoplanetary atmospheres is one of the most exciting and dynamic frontiers in astronomy. Over the past two decades ongoing surveys have revealed an astonishing diversity in the planetary masses, radii, temperatures, orbital parameters, and host stellar properties of exoplanetary systems. We are now moving into an era where we can begin to address fundamental questions concerning the diversity of exoplanetary compositions, atmospheric and interior processes, and formation histories, just as have been pursued for solar system planets over the past century. Exoplanetary atmospheres provide a direct means to address these questions via their observable spectral signatures. In the last decade, and particularly in the last five years, tremendous progress has been made in detecting atmospheric signatures of exoplanets through photometric and spectroscopic methods using a variety of space-borne and/or ground-based observational facilities. These observations are beginning to provide important constraints...

  13. Atmospheric composition

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  14. Nonthermal rotational distribution of CO/A 1Pi/ fragments produced by dissociative excitation of CO2 by electron impact. [in Mars atmosphere

    Science.gov (United States)

    Mumma, M. J.; Stone, E. J.; Zipf, E. C.

    1975-01-01

    Measurements were made of the rotational profiles of specific bands of the CO fourth-positive group (4PG). The CO 4PG bands were excited by electron impact dissociative excitation of CO2. The results are applicable to analysis of the Mariner observations of the CO 4PG in the dayglow of Mars. The results indicate that dissociative excitation of CO2 by electron impact leads to CO(A 1Pi) fragments with a rotational distribution that is highly nonthermal. The parent CO2 temperature was about 300 K in the experiment, while the fragment CO(A 1Pi) showed emission band profiles consistent with a rotational temperature greater than about 1500 K. Laboratory measurement of the reduced transmission of the hot bands by thermal CO appears to be the most direct way of determining the column density responsible for the CO(v',0) absorption of Mars.

  15. Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atmospheres

    CERN Document Server

    Gonzalez-Diaz, Diego; Borges, F I G; Camargo, M; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Esteve, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Goldschmidt, A; Gómez-Cadenas, J J; Gutiérrez, R M; Hauptman, J; Hernando Morata, J A; Herrera, D C; Irastorza, I G; Labarga, L; Laing, A; Liubarsky, I; Lopez-March, N; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Miller, T; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Muñoz Vidal, J; Nebot-Guinot, M; Nygren, D; Oliveira, C A B; Pérez, J; Pérez Aparicio, J L; Querol, M; Renner, J; Ripoll, L; Rodríguez, J; Santos, F P; dos Santos, J M F; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R; White, J T; Yahlali, N; Azevedo, C; Aznar, F; Calvet, D; Castel, J; Ferrer-Ribas, E; García, J A; Giomataris, I; Gómez, H; Iguaz, F J; Lagraba, A; Le Coguie, A; Mols, J P; Şahin, Ö; Rodríguez, A; Ruiz-Choliz, E; Segui, L; Tomás, A; Veenhof, R

    2015-01-01

    We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +-0.13 mm-sigma (longitudinal), 0.8 +-0.15 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent mixture. The TPC, that houses 1.1 kg of gas in its active volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8mm x 8mm x 1.2mm for approximately 10 cm/MeV-long electron tracks. This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the 0bbnu decay in 136Xe, specifically those based ...

  16. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  17. Apparatus and method for generating high density pulses of electrons

    International Nuclear Information System (INIS)

    An apparatus and method are described for the production of high density pulses of electrons using a laser energized emitter. Caesium atoms from a low pressure vapour atmosphere are absorbed on and migrate from a metallic target rapidly heated by a laser to a high temperature. Due to this heating time being short compared with the residence time of the caesium atoms adsorbed on the target surface, copious electrons are emitted which form a high current density pulse. (U.K.)

  18. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  19. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    CERN Document Server

    Helling, Ch; Rodriguez-Barrera, I M; Wood, Kenneth; Robertson, G B; Stark, C R

    2016-01-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with a rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field $\\gg B_{\\rm Earth}$, a chromosphere and aurorae might form as suggested by radio and X-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheri...

  20. Atmospheric Refraction

    CERN Document Server

    Nauenberg, Michael

    2016-01-01

    Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere which assumes that the temperature decreases at a constant lapse rate from sea level up to a height equal to eleven km, and that afterwards it remains constant. In this model, the temperature divided by the lapse rate determines the length scale in the calculations for altitudes less than this height. But daily balloon measurements across the U.S.A. reveal that in some cases the air temperature actually increases from sea level up to a height of about one km, and only after reaching a plateau, it decreases at an approximately constant lapse rate. Moreover, in three examples considered here, the temperature does not remain constant at eleven km , but continues to decreases to a minimum at about sixteen kilometers , and then increases at higher altitudes at a lower rate. Calculations of atmospheric refraction based on this atmospheric data is compared with the results of simplified models.

  1. Atmospheric Dispositifs

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2015-01-01

    as a spatial phenomenon, exploring a multiplicity of conditions that constitute their resonant origins – i.e. the production sites from and within they have emerged. The intention is also to argue that despite the fact that atmosphere as an aesthetic category has crystallised over the last few decades...

  2. 大气压介质阻挡放电中电子碰撞电离系数α的测定%Preliminary Measurement of Electron Impact Ionization Coefficient in Gases at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    冉俊霞; 罗海云; 梁卓; 王新新

    2012-01-01

    电子碰撞电离系数α是气体放电研究中的一个重要物理参数,但现有的α系数数值都是在低气压Townsend放电实验中得到的,它们不适用于大气压下气体放电。为了尝试解决这个问题,提出了一种大气压下α系数的光学测量方法,它借助介质阻挡电极结构,在某些大气压气体中产生瞬态或稳态Townsend放电,利用带像增强器高速数码相机的纳秒曝光功能,记录气隙中瞬态发光强度空间分布,并与Townsend放电对应的理论发光强度分布进行比较,根据两者的最佳拟合效果推导出α系数。该方法被用于测定大气压氮气α系数,结果表明其基本可行,但仍需继续加以完善。%Electron impact ionization coefficient a is one of the most important parameters used in the study of gas discharge. However, the a values usually determined in the experiments on Townsend discharge in gases at low pressure are not applicable to the gas discharges in atmospheric gases. Aiming at solving this problem, a method for determining the a values in the gases at atmospheric pressure was proposed. Dielectric barrier Townsend discharges were produced in some gases at atmospheric pressure. The distribution of the light intensity in the discharge gap was recorded by taking side-view photograph using an ICCD camera with an extremely short exposure time and compared with the theoretical distributions with different presumed ~. The a value was determined by the best fitting of the theoretical distribution to the experimental one. The method was proved to be applicable in the determination of a for nitrogen at atmospheric pressure.

  3. On-site and off-site atmospheric PBDEs in an electronic dismantling workshop in south China: gas-particle partitioning and human exposure assessment.

    Science.gov (United States)

    An, Taicheng; Zhang, Delin; Li, Guiying; Mai, Bixian; Fu, Jiamo

    2011-12-01

    Gas samples and total suspended particle during work and off work time were investigated on-site and off-site electronic waste dismantling workshop (I- and O-EWDW), then compared with plastic recycling workshop (PRW) and waste incineration plant (WIP). TSP concentrations and total PBDE were 0.36-2.21 mg/m(3) and 27-2975 ng/m(3) at different workshops, respectively. BDE-47, -99, and -209 were major ∑PBDE congeners at I-EWDW and WIP, while BDE-209 was only dominant congener in PRW and control sites during work time and all sites during off work time. The gas-particle partitioning result was well correlated with the subcooled liquid vapor pressure for all samples, except for WIP and I-EDWD, at park during work time, and residential area during off work time. The predicted urban curve fitted well with measured φ values at O-DEWD during work time, whereas it was slightly overestimated or underestimated for others. Exposure assessment revealed the highest exposure site was I-EDWD.

  4. Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM 2.5 at an electronic waste recycling site in southeast China

    Science.gov (United States)

    Deng, W. J.; Louie, P. K. K.; Liu, W. K.; Bi, X. H.; Fu, J. M.; Wong, M. H.

    Twenty-nine air samples of total suspended particles (TSP, particles less than 30-60 μm) and thirty samples of particles with aerodynamic diameter smaller than 2.5 μm (PM 2.5) were collected at Guiyu, an electronic waste (e-waste) recycling site in southeast China from 16 August 2004 to 17 September 2004. The results showed that mass concentrations contained in TSP and PM 2.5 were 124±44.1 and 62.12±20.5 μg m -3, respectively. The total sum of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) associated with TSP and PM 2.5 ranged from 40.0 to 347 and 22.7 to 263 ng m -3, respectively. Five-ring and six-ring PAHs accounted for 73% of total PAHs. The average concentration of benzo(a) pyrene was 2-6 times higher than in other Asian cities. Concentrations of Cr, Cu and Zn in PM 2.5 of Guiyu were 4-33 times higher than in other Asian countries. In general, there were significant correlations between concentrations of individual contaminants in TSP with PM 2.5 (i.e. PAHs, Cd, Cr, Cu, Pb, Zn, Mn except Ni and As). The high concentrations of both PAHs and heavy metals in air of Guiyu may impose a serious environmental and health concern. Cytotoxicity of the extract of TSP and PM 2.5 of ten 24 h samples collected against human promonocytic leukemia cell line U937 (ATCC 1593.2) was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity assay. The results showed that under the same concentrations of extract, PM 2.5 cytotoxicity was 2-4 times higher than TSP.

  5. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masayuki; Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  6. Studies of suprathermal emission due to cyclotron-electronic heating of the tokamak TCV plasma; Etudes du rayonnement suprathermique emis lors du chauffage cyclotronique electronique du plasma du tokamak TCV

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P

    2002-07-01

    Photo sensitization of wide band gap semiconductors is used in a wide range of application like silver halide photography and xerography. The development of a new type of solar cells, based on the sensitization of meso porous metal oxide films by panchromatic dyes, has triggered a lot of fundamental research on electron transfer dynamics. Upon excitation, the sensitizer transfers an electron in the conduction band of the semiconductor. Recombination of the charge separated state is prevented by the fast regeneration of the dye by an electron donor present in solution. Until recently, most of the work in this area has been focused on the competition between the recombination and the regeneration processes, which take place in the nanosecond to millisecond regime. With the development of solid-state femtosecond laser, the measurement of the dynamics of the first electron transfer step occurring in the solar cell has become possible . Electron injection from ruthenium(Il) poly pyridyl complexes into titanium dioxide has been found to occur with a poly exponential rate, with time constants ranging from < 100 fs up to > 10 ps. In spite of the lately acquired capacity to measure the dynamics of these reactions, the physical meaning of this poly exponential kinetics and the factors that can influence this process are still poorly understood. In this work, the development of a new femtosecond pump-probe spectrometer, intended to monitor the ultrafast dynamics of electron injection, is presented. The study of this process requires an excellent temporal resolution and a large wavelength tunability to be able to excite a great variety of dyes and to probe the different products of the reaction. These specifications were met using the latest progress made in optical parametric amplification, which allowed the construction of a versatile experimental set-up. The interfacing by computer of the different devices used during the experiments increase the ease of use of the set

  7. Atmospheric electricity and aerosol-cloud interactions in earth's atmosphere

    Science.gov (United States)

    Manninen, Hanna E.; Tammet, Hannes; Mäkelä, Antti; Haapalainen, Jussi; Mirme, Sander; Nieminen, Tuomo; Franchin, Alessandro; Petäjä, Tuukka; Kulmala, Markku; Hõrrak, Urmas

    2013-05-01

    Firstly, atmospheric ions play an important role in the fair weather electricity in Earth's atmosphere. Small ions, or charged molecular clusters, carry electric currents in the atmosphere. These small ions are continuously present, and their lifetime in lower atmosphere is about one minute. It's essential to find out a connection between the production rate of cluster ions, ion-ion recombination, and ion-aerosol attachment, and their ambient concentrations, in order to understand electrical properties of air. Secondly, atmospheric ions are important for Earth's climate, due to their potential role in secondary aerosol formation, which can lead to increased number of cloud condensation nuclei (CCN), which in turn can change the cloud properties. Our aim is to quantify the connections between these two important roles of air ions based on field observations.

  8. Measurement of the atmospheric νe flux in IceCube.

    Science.gov (United States)

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de Vries-Uiterweerd, G; de With, M; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Góra, D; Grant, D; Groß, A; Gurtner, M; Ha, C; Haj Ismail, A; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2013-04-12

    We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low-energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496±66(stat)±88(syst) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is consistent with models of atmospheric neutrinos in this energy range. This constitutes the first observation of electron neutrinos and neutral current interactions in a very large volume neutrino telescope optimized for the TeV energy range. PMID:25167245

  9. Detection techniques for tenuous planetary atmospheres

    Science.gov (United States)

    Hoenig, S. A.

    1972-01-01

    The research for the development of new types of detectors for analysis of planetary atmospheres is summarized. Topics discussed include: corona discharge humidity detector, surface catalysis and exo-electron emission, and analysis of soil samples by means of exo-electron emission. A report on the exo-electron emission during heterogeneous catalysis is included.

  10. History and modern applications of nano-composite materials carrying GA/cm2 current density due to a Bose-Einstein Condensate at room temperature produced by Focused Electron Beam Induced Processing for many extraordinary novel technical applications

    Science.gov (United States)

    Koops, Hans W. P.

    2015-12-01

    The discovery of Focused Electron Beam Induced Processing and early applications of this technology led to the possible use of a novel nanogranular material “Koops-GranMat®” using Pt/C and Au/C material. which carries at room temperature a current density > 50 times the current density which high TC superconductors can carry. The explanation for the characteristics of this novel material is given. This fact allows producing novel products for many applications using Dual Beam system having a gas supply and X.Y.T stream data programming and not using GDSII layout pattern control software. Novel products are possible for energy transportation. -distribution.-switching, photon-detection above 65 meV energy for very efficient energy harvesting, for bright field emission electron sources used for vacuum electronic devices like amplifiers for HF electronics, micro-tubes, 30 GHz to 6 THz switching amplifiers with signal to noise ratio >10(!), THz power sources up to 1 Watt, in combination with miniaturized vacuum pumps, vacuum gauges, IR to THz detectors, EUV- and X-Ray sources. Since focusing electron beam induced deposition works also at low energy, selfcloning multibeam-production machines for field emitter lamps, displays, multi-beam - lithography, - imaging, and - inspection, energy harvesting, and power distribution with switches controlling field-emitter arrays for KA of currents but with < 100 V switching voltage are possible. Finally the replacement of HTC superconductors and its applications by the Koops-GranMat® having Koops-Pairs at room temperature will allow the investigation devices similar to Josephson Junctions and its applications now called QUIDART (Quantum interference devices at Room Temperature). All these possibilities will support a revolution in the optical, electric, power, and electronic technology.

  11. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  12. Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

    Science.gov (United States)

    Oza, A. V.; Leblanc, F.; Berthelier, J. J.; Becker, J.; Coulomb, R.; Gilbert, P.; Hong, N. T.; Lee, S.; Vettier, L.

    2015-12-01

    The characterization of planetary exospheres today, relies on the development of a highly efficient ionization source, due to the scant neutral molecules (n atmospheres provide insight on to physical processes known to occur such as: space weathering, magneto-atmosphere interactions, as well as atmospheric escape mechanisms, all of which are being heavily investigated via current 3D Monte Carlo simulations (Turc et al. 2014, Leblanc et al. 2016 in prep) at LATMOS. Validation of these studies will rely on in-situ observations in the coming decades. Neutral detection strongly depends on electron-impact ionization which via conventional cathode-sources, such as thermal filaments (heated up to 2000 K), may only produce the target ionization essential for energy-measurements with large power consumption. Carbon nanotubes (CNTs) however are ideal low-power, cold cathodes, when subject to moderate electric fields (E ~ 1 MV / m). We present our current device, a small CNT chip, of emission area 15 mm2, emitting electrons that pass through an anode grid and subsequent electrostatic analyzer. The device currently extracts hundreds of µAmperes with applied external voltages ~ -150 Volts, approaching minimum power consumption plasma sputtering the icy regolith with heavy ions and electrons (keV < E < MeV), producing predominately molecular oxygen (Johnson et al. 2002).

  13. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters.

    Science.gov (United States)

    Portolés, Tania; Mol, Johannes G J; Sancho, Juan V; Hernández, Félix

    2014-04-25

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI)QTOF MS). The soft ionization promoted by the APCI source allows effective and wide-scope screening based on the investigation of the molecular ion and/or protonated molecule. This is in contrast to electron ionization (EI) where ionization typically results in extensive fragmentation, and diagnostic ions and/or spectra need to be known a priori to facilitate detection of the analytes in the raw data. Around 170 organic contaminants from different chemical families were initially investigated by both approaches, i.e. GC-(EI)TOF and GC-(APCI)QTOF, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and a notable number of pesticides and relevant metabolites. The new GC-(APCI)QTOF MS approach easily allowed widening the number of compounds investigated (85 additional compounds), with more pesticides, personal care products (UV filters, musks), polychloronaphthalenes (PCNs), antimicrobials, insect repellents, etc., most of them considered as emerging contaminants. Both GC-(EI)TOF and GC-(APCI)QTOF methodologies have been applied, evaluating their potential for a wide-scope screening in the environmental field. PMID:24674644

  14. Atmospheric Release Advisory Capability

    International Nuclear Information System (INIS)

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years

  15. Formation of the high-intensity microsecond flow of electrons in the channel of high pressure arc discharge

    CERN Document Server

    Volkolupov, Yu Ya; Kolyada, Y E; Fedun, V I; Onishchenko, I N

    2000-01-01

    The possibility of microsecond duration powerful electron flows formation in the channel of high current arc discharge at atmosphere pressure has been experimentally demonstrated. The flow of electrons is formed at applying the high voltage pulse to the plasma source after plasma ejection and the pressure decreasing. Because the acceleration by the electric field prevails over the friction force due to collisions the conditions for arising of running electrons are fulfilled.

  16. Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO_2

    OpenAIRE

    Chen, Yikai; Lewis, Nathan S.; Xiang, Chengxiang

    2015-01-01

    The operational constraints for a 6-electron/6-proton CO_2 reduction system that operates at the concentration of CO_2 in the current atmosphere (p_(CO_2) = 400 ppm) have been evaluated on a variety of scale lengths that span from laboratory scale to global scale. Due to the low concentration of CO_2 in the atmosphere, limitations due to mass transport of CO_2 from the tropopause have been evaluated through five different regions, each with different characteristic length scales: the troposph...

  17. Temporal evolution of an energetic electron population in an inhomogeneous medium: Application to solar hard X-ray bursts

    Science.gov (United States)

    Vilmer, N.; Mackinnon, A. L.; Trottet, G.

    1985-01-01

    Energetic electrons accelerated during solar flares can be studied through the hard X-ray emission they produce when interacting with the solar ambient atmosphere. In the case of the non thermal hard X-ray emission, the instanteous X-ray flux emitted at one point of the atmosphere is related to the instantaneous fast electron spectrum at that point. A hard X-ray source model then requires the understanding of the evolution in space and time of the fast particle distribution. The physical processes involved here are energy losses due to Coulomb collisions and pitch angle scattering due to both collisions and magnetic field gradients.

  18. Greening Electronics

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Søes Kokborg, Morten; Thomsen, Marianne

    Based on a literature review with focus on hazardous substances in waste electric and electronic equipment (WEEE) and numbers from a Danish treatment facility a flow analysis for specific substances has been conducted. Further, the accessible knowledge on human and environmental effects due...

  19. Optical electronics

    Science.gov (United States)

    Javan, A.

    1976-01-01

    The development of an optical diode consisting of a metal-dielectric-metal junction in which the high-speed electric conduction process occurs due to quantum mechanical electron tunneling across the dielectric barrier is briefly reviewed. Potential applications of the diode are discussed.

  20. The ratio between effective doses due to external exposure to electrons for tomographic and mathematical models; Razoes entre doses efetivas devido a exposicao externa de eletrons para modelos tomograficos e matematicos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fernando R.A. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil)]|[Faculdade Boa Viagem (FBV), Recife, PE (Brazil)]. E-mail: falima@cnen.gov.br; Kramer, Richard; Khoury, Helen J. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail: rkramer@uol.com.br; hjkhoury@globo.com; Vieira, Jose W. [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Recife, PE (Brazil)]. E-mail: jwvieira@br.inter.net; Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: hyotiyaz@ipen.br; Loureiro, Eduardo C.M. [Universidade de Pernambuco, Recife, PE (Brazil). Escola Politecnica (POLI/UPE)]. E-mail: eduloureiro@uol.com.br

    2005-07-01

    The development of new, sophisticated Monte Carlo codes, and of tomographic or voxel based human phantoms motivated the International Commission on Radiological Protection (ICRP) to call for a revision of traditional exposure models, which have been used in the past to calculate organ and tissue as well as effective dose coefficients for stylized MIRD5- type phantoms. This paper reports about calculations made with the recently developed tomographic MAX (Male Adult voXel) and FAX (Female Adult voXel) phantoms, as well as with the gender-specific MIRD5-type phantoms ADAM and EVA, coupled to the EGS4 and to the MCNP4C Monte Carlo code, for external whole-body irradiation with electrons. Effective doses for the tomographic and for the stylized exposure models will be compared separately as function of the replacement of the Monte Carlo code, of human tissue compositions, and of the stylized by the tomographic anatomy. The results indicate that for external exposures to electrons the introduction of voxel-based exposure models causes changes of the effective dose between +40% and - 60% depending on the energies and geometries considered compared to corresponding data of the MIRD5-type phantoms. (author)

  1. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event

    Science.gov (United States)

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  2. Positron production within our atmosphere

    Science.gov (United States)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  3. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    Science.gov (United States)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  4. Comment on “A study of vertical and in-plane electron mobility due to interface roughness scattering at low temperature in InAs-GaSb superlattices” [J. Appl. Phys. 114, 053712 (2013)

    Energy Technology Data Exchange (ETDEWEB)

    Szmulowicz, F., E-mail: Frank.Szmulowicz.ctr@wpafb.af.mil [University of Dayton Research Institute, 300 College Park Ave., Dayton, Ohio 45469-0072 (United States)

    2014-04-14

    The purpose of this comment is to point out that the paper by Safa, Asgari, and Faraone [J. Appl. Phys. 114, 053712 (2013)] (SAF) on electronic transport in superlattices contains a number of errors in physics and execution. By dealing with a finite number of periods and forcing the wave function to be zero at the upper and lower boundaries of the superlattice stack, SAF have turned the system into a quantum well for which the momentum along the growth axis is not a good quantum number, so that the bands in the growth direction are flat and the corresponding carrier velocities and vertical mobilities are zero. A number of other errors allow the authors to get nonzero results and to reach conclusions that qualitatively mirror those of Szmulowicz, Haugan, Elhamri, and Brown [Phys. Rev. B 84, 155307 (2011)].

  5. Comment on "A study of vertical and in-plane electron mobility due to interface roughness scattering at low temperature in InAs-GaSb superlattices" [J. Appl. Phys. 114, 053712 (2013)

    Science.gov (United States)

    Szmulowicz, F.

    2014-04-01

    The purpose of this comment is to point out that the paper by Safa, Asgari, and Faraone [J. Appl. Phys. 114, 053712 (2013)] (SAF) on electronic transport in superlattices contains a number of errors in physics and execution. By dealing with a finite number of periods and forcing the wave function to be zero at the upper and lower boundaries of the superlattice stack, SAF have turned the system into a quantum well for which the momentum along the growth axis is not a good quantum number, so that the bands in the growth direction are flat and the corresponding carrier velocities and vertical mobilities are zero. A number of other errors allow the authors to get nonzero results and to reach conclusions that qualitatively mirror those of Szmulowicz, Haugan, Elhamri, and Brown [Phys. Rev. B 84, 155307 (2011)].

  6. Onycholysis due to trauma

    Directory of Open Access Journals (Sweden)

    Patricia Chang

    2014-04-01

    Full Text Available Female patient, 35 years old who came to the private office due to discoloration of her left thumbnail and little pain since 1 month ago. Clinical examination shows nail disease on her left thumbnail with onycholysis and dyschromia, dermatoscopy showed white-yellowish discoloration (Fig. 1A, B. The rest of the clinical examination was normal. Patient use to using acrylic nails since 2 years ago and denied some trauma at the nail. The diagnosis of onycholysis due to trauma was done and recommended her not to use acrylic nail, maintain the nail short and avoid wetness.

  7. Ionization by Cosmic Rays in the Atmosphere of Titan

    Science.gov (United States)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.; Blattnig, S.

    2011-12-01

    In-situ measurements by Cassini-Huygens have shown the importance of ionizing particles (solar photons, magnetospheric electrons and protons, cosmics rays) on the atmosphere of Titan. Ionizing particles play an important role in the atmospheric chemistry of Titan and must therefore be accurately modeled to understand the contribution of the differing sources of ionization. To model the initial galactic cosmic ray environment, the Badwar-O'Neill cosmic ray spectrum model was adapted for use at Titan. The Aeroplanets model, an electron transport model for the study of airglow and aurora, was then coupled to the Planetocosmics model, a Monte-carlo cosmic ray transport and energy deposition model, to compute ion production from cosmic rays. In addition, the NAIRAS model, a cosmic ray irradiation model adapted for fast computations, was adopted to the Titan environment and, for the first time, used to compute an ionization profile on a planet other than Earth and compared to the Planetocosmics results. For the first time, the importance of high charge cosmic rays on the ionization of the Titan atmosphere was demonstrated. High charge cosmic rays were found to be especially important below an altitude of 400 km, contributing significantly to the total ionization. Specifically, between 200 km and 400 km, alpha and higher charge cosmic rays are responsible for 40% of the ionization. The increase due to high charge cosmic rays was found for both the Planetocosmics and NAIRAS models.

  8. Communications Blackout Prediction for Atmospheric Entry of Mars Science Laboratory

    Science.gov (United States)

    Morabito, David; Edquist, Karl

    2005-01-01

    When a supersonic spacecraft enters a planetary atmosphere with v >> v(sub sound), a shock layer forms in the front of the body. An ionized sheath of plasma develops around the spacecraft, which results from the ionization of the atmospheric constituents as they are compressed and heated by the shock or heated within the boundary layer next to the surface. When the electron density surrounding the spacecraft becomes sufficiently high, communications can be disrupted (attenuation/blackout). During Mars Science Laboratory's (MSL's) atmospheric entry there will likely be a communication outage due to charged particles on the order of 60 to 100 seconds using a UHF link frequency looking out the shoulders of the wake region to orbiting relay asset. A UHF link looking out the base region would experience a shorter duration blackout, about 35 seconds for the stressed trajectory and possibly no blackout for the nominal trajectory. There is very little likelihood of a communications outage using X-band (however, X-band is not currently planned to be used during peak electron density phase of EDL).

  9. Nightside Martian Ionosphere Produced by Electron Impact Ionization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-Teng; LI Lei

    2009-01-01

    Based on the Martian magnetic field model established by magnetohydrodynamics simulation,we determine the possible precipitation areas of the solar wind electron in the nightside Martian atmosphere,and analyze the electron impact ionization to estimate the height of the nightside Martian ionospheric peak and the electron density profile using the energy flux analysis method.The influences of the single electron energy,electron energy density and ionization efficiency on the altitude of the ionospheric peak and the electron density profile axe also investigated.Our results show that the solar wind electron moves along the V-shaped solar wind magnetic field lines,to precipitate into the Martian atmosphere.Due to the crustal magnetic field,the precipitation regions on the nightside are quite narrow and unstable.The impact ionization happens at the altitude of 130-500km,and the height of the ionospheric peak is around 170kin,with a peak electron density of 3.0×103 cm-3.The simulation results are consistent with the results from Mars 4/5 and Viking occultation measurements.

  10. Waves in vertically inhomogeneous dissipative atmosphere

    CERN Document Server

    Dmitrienko, I S

    2015-01-01

    A method of construction of solution for acoustic-gravity waves (AGW) above a wave source, taking dissipation throughout the atmosphere into account (Dissipative Solution above Source, DSAS), is proposed. The method is to combine three solutions for three parts of the atmosphere: an analytical solution for the upper isothermal part and numerical solutions for the real non-isothermal dissipative atmosphere in the middle part and for the real non-isothermal small dissipation atmosphere in the lower one. In this paper the method has been carried out for the atmosphere with thermal conductivity but without viscosity. The heights of strong dissipation and the total absorption index in the regions of weak and average dissipation are found. For internal gravity waves the results of test calculations for an isothermal atmosphere and calculations for a real non-isothermal atmosphere are shown in graphical form. An algorithm and appropriate code to calculate DSAS, taking dissipation due to finite thermal conductivity i...

  11. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  12. On monitoring the atmospheric greenhouse effect from space

    OpenAIRE

    Inamdar, A. K.; Ramanathan, V.

    2011-01-01

    We propose an analysis technique for monitoring the planetary greenhouse effect from space. 2 quantities are used as a measure of the atmospheric greenhouse effect: (1) Ga, which is the reduction in the clear sky outgoing longwave radiation (OLR) due to the atmosphere; it is the radiative heating of the surface-atmosphere column; (2) Ga*, which is the back radiation from the atmosphere to the surface; it is the radiative heating of the surface by the atmosphere. Ga is obtained from satellite ...

  13. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  14. Energy, atmospheric chemistry, and global climate

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  15. The atmospheric escape at Mars: complementing the scenario

    Science.gov (United States)

    Lilensten, Jean; Simon, Cyril; Barthélémy, Mathieu; Thissen, Roland; Ehrenreich, David; Gronoff, Guillaume; Witasse, Olivier

    2013-04-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly ener- getic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. This study assesses the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions.We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO++ for a simplified single constituent atmosphere of a 2 case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering ...), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished but complement the other processes and allow writing the scenario of the Mars escape. We show that the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible.When simulating the hot Jupiter HD209458b, the two processes cannot explain the measured escape flux of C+.

  16. Atmospheric chemistry: The return of ethane

    Science.gov (United States)

    Hakola, Hannele; Hellén, Heidi

    2016-07-01

    Ethane emissions can lead to ozone pollution. Measurements at 49 sites show that long-declining atmospheric ethane concentrations started rising in 2010 in the Northern Hemisphere, largely due to greater oil and gas production in the USA.

  17. Electrodynamical Coupling of Earth's Atmosphere and Ionosphere: An Overview

    Directory of Open Access Journals (Sweden)

    A. K. Singh

    2011-01-01

    Full Text Available Electrical processes occurring in the atmosphere couple the atmosphere and ionosphere, because both DC and AC effects operate at the speed of light. The electrostatic and electromagnetic field changes in global electric circuit arise from thunderstorm, lightning discharges, and optical emissions in the mesosphere. The precipitation of magnetospheric electrons affects higher latitudes. The radioactive elements emitted during the earthquakes affect electron density and conductivity in the lower atmosphere. In the present paper, we have briefly reviewed our present understanding of how these events play a key role in energy transfer from the lower atmosphere to the ionosphere, which ultimately results in the Earth's atmosphere-ionosphere coupling.

  18. Dications and thermal ions in planetary atmospheric escape

    Science.gov (United States)

    Lilensten, J.; Simon Wedlund, C.; Barthélémy, M.; Thissen, R.; Ehrenreich, D.; Gronoff, G.; Witasse, O.

    2013-01-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly energetic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. The goal of this study is to assess the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions. We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO2++ for a simplified single constituent atmosphere of a case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering, etc.), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished and even contribute only marginally to this loss. We show that with these two mechanisms, the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible. When simulating the hot Jupiter HD 209458 b, the two processes cannot explain the measured escape flux of C+. This study shows that the dications may constitute a source of the escape of planetary atmospheres which had not been taken into account until now. This source, although marginal, is not negligible. The influence of the photoionization is of course large, but cannot explain alone the loss of Mars

  19. Ambipolar Electric Field, Photoelectrons, and Their Role in Atmospheric Escape From Hot Jupiters

    Science.gov (United States)

    Cohen, O.; Glocer, A.

    2012-01-01

    Atmospheric mass loss from Hot Jupiters can be large due to the close proximity of these planets to their host star and the strong radiation the planetary atmosphere receives. On Earth, a major contribution to the acceleration of atmospheric ions comes from the vertical separation of ions and electrons, and the generation of the ambipolar electric field. This process, known as the "polar wind," is responsible for the transport of ionospheric constituents to Earth's magnetosphere, where they are well observed. The polar wind can also be enhanced by a relatively small fraction of super-thermal electrons (photoelectrons) generated by photoionization.We formulate a simplified calculation of the effect of the ambipolar electric field and the photoelectrons on the ion scale height in a generalized manner. We find that the ion scale height can be increased by a factor of 2-15 due to the polar wind effects. We also estimate a lower limit of an order of magnitude increase of the ion density and the atmospheric mass-loss rate when polar wind effects are included.

  20. The global atmospheric loading of dust aerosols

    Science.gov (United States)

    Kok, J. F.; Ridley, D. A.; Haustein, K.; Miller, R. L.; Zhao, C.

    2015-12-01

    Mineral dust is one of the most ubiquitous aerosols in the atmosphere, with important effects on human health and the climate system. But despite its importance, the global atmospheric loading of dust has remained uncertain, with model results spanning about a factor of five. Here we constrain the particle size-resolved atmospheric dust loading and global emission rate, using a novel theoretical framework that uses experimental constraints on the optical properties and size distribution of dust to eliminate climate model errors due to assumed dust properties. We find that most climate models underestimate the global atmospheric loading and emission rate of dust aerosols.

  1. Modeling of atmospheric and ionospheric disturbances from shallow seismic sources

    Science.gov (United States)

    Davies, John Bruce; Archambeau, Charles B.

    Earthquake sources, as well as contained underground explosions and volcanic explosions, initiate atmospheric waves at the air-ground interface which propagate upward and outward. The propagating atmospheric waves produced are of two types: a high-frequency acoustic wave and a low-frequency gravity wave with horizontal wavelength much longer than its vertical wavelength. Because of the exponential decrease of atmospheric density with height, the acoustic and particularly the gravity waves can grow to significant amplitude in the upper atmosphere, where they can affect the ionosphere causing changes in the distribution of neutral and charged particles. The coherent fluctuations of electron densities and ionization layer boundaries produced by these waves can be detected by electromagnetic sounding methods and hence the occurrence and character of the disturbances can be inferred. A particular application of interest is the detection and discrimination of underground and near surface chemical explosions in a nuclear test monitoring context. Specifically, identification of the different source types is enhanced by combining seismic detection methods with detection of the ionospheric disturbances caused by explosion and earthquake sources. In this study, numerical models of non-linear gravity controlled atmospheric disturbances produced by seismic sources near the surface of the Earth are investigated in order to obtain quantitative predictions that might be used in evaluating detection methods based on gravity wave excitation. Explicit numerical integration of the non-linear finite difference equations is used to simulate the transient flows produced in a three-dimensional ARDC atmosphere. Results from the simulations agree with many results from linear theory approximations and also show non-linear characteristics similar to important gravity wave observations. Electron density changes in the ionosphere are predicted with their spatial and temporal behavior found to

  2. Technical Due Diligence

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Varano, Mattia

    2011-01-01

    Technical Due Diligence (TDD) as an evaluation of the performance of constructed facilities has become an important new field of practice for consultants. Before the financial crisis started in autumn 2008 it represented the fastest growing activity in some consulting companies. TDD is mostly...... carried out for buyers or sellers involved in real estate transactions. It can also be part of mergers including real estate and other assets or part of facilities management outsourcing. This paper is based on a case study and an interview survey of companies involved in TDD consulting in Denmark......, the investigation of current practice also identifies examples of value adding practices, which can give the companies in question competitive advantages by differentiation and/or give input to improvements of the recommended practice guidelines....

  3. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  4. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    Science.gov (United States)

    Eshleman, V. R.; Haugstad, B. S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements.

  5. Dark-to-arc transition in field emission dominated atmospheric microdischarges

    Energy Technology Data Exchange (ETDEWEB)

    Tholeti, Siva Sashank [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Semnani, Abbas; Peroulis, Dimitrios [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Alexeenko, Alina A., E-mail: alexeenk@purdue.edu [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-08-15

    We study the voltage-current characteristics of gas discharges driven by field emission of electrons at the microscale. Particle-in-cell with Monte Carlo collision calculations are first verified by comparison with breakdown voltage measurements and then used to investigate atmospheric discharges in nitrogen at gaps from 1 to 10 μm. The results indicate the absence of the classical glow discharge regime because field electron emission replaces secondary electron emission as the discharge sustaining mechanism. Additionally, the onset of arcing is significantly delayed due to rarefied effects in electron transport. While field emission reduces the breakdown voltage, the power required to sustain an arc of the same density in microgaps is as much as 30% higher than at macroscale.

  6. Atmospheric neutrinos and discovery of neutrino oscillations.

    Science.gov (United States)

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  7. NOAA Electronic Navigational Charts (ENC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Coast Survey (OCS) has been involved in the development of a NOAA Electronic Navigational Chart (NOAA ENC) suite to support the marine transportation...

  8. Vessel Electronic Reporting System (VERS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The VERS system is composed of a database and other related applications which facilitate the reporting of electronically collected research data via Fisheries...

  9. Study of X-rays at the atmosphere of the South Atlantic Magnetic Anomaly

    International Nuclear Information System (INIS)

    A study of X-rays at the atmosphere of the South Atlantic Magnetic Anomaly is presented in this work, in which an analysis of all existing balloon measurements carried out at this region has been done. It is concluded that the X-ray flux due to electron precipitation depends strongly on geomagnetic activity, reaching at Sao Jose dos Campos a maximum doward flux of 10-2 photons/cm2.sec.KeV for 4g/cm2 and for the energy range of 30-150KeV. The related flux of precipitating electrons was computed by Monte Carlo method with values of about 500 electrons/cm2.sec and energy espectra of the type e-T/200. This electron flux is shown to represent the main ionization flux for the atmosphere at about 60 Km height. Furthermore, the atmospheric and diffuse components were determined at balloon altitudes (approximately 5g/cm2) of Sao Jose dos campos (λm = 110S) to be of the same order. (author)

  10. Atmospheric composition change: Ecosystems-Atmosphere interactions

    NARCIS (Netherlands)

    Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; Granier, C.; Neftel, A.; Isaksen, I.S.A.; Laj, P.; Maione, M.; Monks, P.S.; Burkhardt, J.; Daemmgen, U.; Neirynck, J.; Personne, E.; Wichink Kruit, R.J.; Butterbach-Bahl, K.; Flechard, C.; Tuovinen, J.P.; Coyle, M.; Gerosa, G.; Loubet, B.; Altimir, N.; Gruenhage, L.; Ammann, C.; Cieslik, S.; Paoletti, E.; Mikkelsen, T.N.; Ro-Poulsen, H.; Cellier, P.; Cape, J.N.; Horvath, L.; Loreto, F.; Niinemets, U.; Palmer, P.I.; Rinne, J.; Misztal, P.; Nemitz, E.; Nilsson, D.; Pryor, S.; Gallagher, M.W.; Vesala, T.; Skiba, U.; Brueggemann, N.; Zechmeister-Boltenstern, S.; Williams, J.; O'Dowd, C.; Facchini, M.C.; Leeuw, de G.; Flossman, A.; Chaumerliac, N.; Erisman, J.W.

    2009-01-01

    Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles i

  11. Terrestrial atmosphere, water and astrobiology

    OpenAIRE

    Coradini M.; Brack A.

    2010-01-01

    Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bon...

  12. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant...... development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion....

  13. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization promo

  14. Particle diffusion in atmospheres of CP stars

    OpenAIRE

    Aret, A.; Sapar, A.

    1998-01-01

    We give concisely the formulae governing diffusion of chemical elements and their isotopes in quiescent stellar atmospheres, due to electrostatic, gravitational and radiation fields and to impacts between particles. Isotope segregation of heavy elements due to light-induced drift is emphasized.

  15. Statistics in Atmospheric Science

    OpenAIRE

    Solow, Andrew R.

    2003-01-01

    This paper reviews the use of statistical methods in atmospheric science. The applications covered include the development, assessment and use of numerical physical models of the atmosphere and more empirical analysis unconnected to physical models.

  16. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  17. Atmospheric Lepton Fluxes

    CERN Document Server

    Gaisser, Thomas K

    2014-01-01

    This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric $\

  18. Mirador - Atmospheric Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Atmospheric Composition is focused on the composition of Earth's atmosphere in relation to climate prediction, solar effects,...

  19. Our shared atmosphere

    Science.gov (United States)

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  20. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  1. Satellite Anomalies Due to Environment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These events range from minor operational problems to permanent spacecraft failures. Australia, Canada, Germany, India, Japan, United Kingdom, and the United States...

  2. Archives of Atmospheric Lead Pollution

    Science.gov (United States)

    Weiss, Dominik; Shotyk, William; Kempf, Oliver

    Environmental archives such as peat bogs, sediments, corals, trees, polar ice, plant material from herbarium collections, and human tissue material have greatly helped to assess both ancient and recent atmospheric lead deposition and its sources on a regional and global scale. In Europe detectable atmospheric lead pollution began as early as 6000years ago due to enhanced soil dust and agricultural activities, as studies of peat bogs reveal. Increased lead emissions during ancient Greek and Roman times have been recorded and identified in many long-term archives such as lake sediments in Sweden, ice cores in Greenland, and peat bogs in Spain, Switzerland, the United Kingdom, and the Netherlands. For the period since the Industrial Revolution, other archives such as corals, trees, and herbarium collections provide similar chronologies of atmospheric lead pollution, with periods of enhanced lead deposition occurring at the turn of the century and since 1950. The main sources have been industry, including coal burning, ferrous and nonferrous smelting, and open waste incineration until c.1950 and leaded gasoline use since 1950. The greatest lead emissions to the atmosphere all over Europe occurred between 1950 and 1980 due to traffic exhaust. A marked drop in atmospheric lead fluxes found in most archives since the 1980s has been attributed to the phasing out of leaded gasoline. The isotope ratios of lead in the various archives show qualitatively similar temporal changes, for example, the immediate response to the introduction and phasing out of leaded gasoline. Isotope studies largely confirm source assessments based on lead emission inventories and allow the contributions of various anthropogenic sources to be calculated.

  3. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of un

  4. A change in the electro-physical properties of narrow-band CdHgTe solid solutions acted upon by a volume discharge induced by an avalanche electron beam in the air at atmospheric pressure

    Science.gov (United States)

    Voitsekhovskii, A. V.; Grigor'ev, D. V.; Korotaev, A. G.; Kokhanenko, A. P.; Tarasenko, V. F.; Shulepov, M. A.

    2012-03-01

    The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V-1·s-1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.

  5. Nonisothermal Pluto atmosphere models

    International Nuclear Information System (INIS)

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs

  6. The CIFIST 3D model atmosphere grid

    CERN Document Server

    Ludwig, H -G; Steffen, M; Freytag, B; Bonifacio, P

    2009-01-01

    Grids of stellar atmosphere models and associated synthetic spectra are numerical products which have a large impact in astronomy due to their ubiquitous application in the interpretation of radiation from individual stars and stellar populations. 3D model atmospheres are now on the verge of becoming generally available for a wide range of stellar atmospheric parameters. We report on efforts to develop a grid of 3D model atmospheres for late-type stars within the CIFIST Team at Paris Observatory. The substantial demands in computational and human labor for the model production and post-processing render this apparently mundane task a challenging logistic exercise. At the moment the CIFIST grid comprises 77 3D model atmospheres with emphasis on dwarfs of solar and sub-solar metallicities. While the model production is still ongoing, first applications are already worked upon by the CIFIST Team and collaborators.

  7. Would be the Atmosphere Chaotic?

    Directory of Open Access Journals (Sweden)

    Isimar de Azevedo Santos

    2013-07-01

    Full Text Available The atmosphere has often been considered “chaotic” when in fact the “chaos” is a manifestation of the models that simulate it, which do not include all the physical mechanisms that exist within it. A weather prediction cannot be perfectly verified after a few days of integration due to the inherent nonlinearity of the equations of the hydrodynamic models. The innovative ideas of Lorenz led to the use of the ensemble forecast, with clear improvements in the quality of the numerical weather prediction. The present study addresses the statement that “even with perfect models and perfect observations, the ‘chaotic’ nature of the atmosphere would impose a finite limit of about two weeks to the predictability of the weather” as the atmosphere is not necessarily “chaotic”, but the models used in the simulation of atmospheric processes are. We conclude, therefore, that potential exists for developments to increase the horizon of numerical weather prediction, starting with better models and observations.

  8. Acoustics in the Martian Atmosphere

    Science.gov (United States)

    Williams, J.-P.

    2000-10-01

    With the advent of the first attempt to deliver an acoustic microphone to the Martian surface aboard the failed Mars Polar Lander, there has been growing interests in the development of acoustic sensors to compliment scientific payloads on future spacecraft. Terrestrial scientist have been very successful in using infrasound (sound at frequencies below human detection, detect and monitor atmospheric phenomena related to weather, tornadoes, mountain waves, microbaroms, ionospheric and auroral disturbances, and meteror/fireballs, as well as anthropogenic sources such as aircraft and nuclear explosions. Sounds on Mars at the audible frequencies (20 Hz to 20 kHz) will be severely attenuated due to viscous relaxation and thermal diffusion (collectively referred to as classical attenuation) which will be much more severe in the colder, less dense Martian atmosphere. Molecular relaxation of carbon dioxide will also contribute to the sound absorption in the lower audible frequencies. Since classical attenuation increases as a function of the frequency squared, at low infrasonic frequencies ( < 10 Hz), classical attenuation becomes less significant and sound absorption in the Martian atmosphere becomes more similar to that of the terrestrial atmosphere for the same frequencies. At these longer wavelengths, geometric spreading will dominate as the source of attenuation as the acoustic energy is spread out over an ever increasing spherical wave front. This implies that infrasound (10 to 0.01 Hz) will be a useful frequency range for future acoustic sensors developed for scientific payloads delivered to the Martian surface.

  9. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  10. Possible atmospheric research with Aristoteles

    Science.gov (United States)

    Barlier, Francois

    1991-12-01

    Use of the Aristoteles mission in measuring atmospheric parameters is discussed. The total density of the thermosphere, the temperature of the stratosphere and the total electron count of the ionosphere are identified as three areas in which the Aristoteles mission could be of great use in carrying out research. Combining the accelerometer measurements yields the gravity tensor as well as the nongravitational acceleration acting upon the satellite. Ways in which the temperature of the stratosphere around the Earth, and the annual, seasonal and secular variations it goes through could be measured are discussed.

  11. Neutral atmosphere near the icy surface of Jupiter's moon Ganymede

    Science.gov (United States)

    Shematovich, V. I.

    2016-07-01

    The paper discusses the formation and dynamics of the rarefied gas envelope near the icy surface of Jupiter's moon Ganymede. Being the most massive icy moon, Ganymede can form a rarefied exosphere with a relatively dense near-surface layer. The main parent component of the gas shell is water vapor, which enters the atmosphere due to thermal degassing, nonthermal radiolysis, and other active processes and phenomena on the moon's icy surface. A numerical kinetic simulation is performed to investigate, at the molecular level, the formation, chemical evolution, and dynamics of the mainly H2O- and O2-dominant rarefied gas envelopes. The ionization processes in these rarefied gas envelopes are due to exposure to ultraviolet radiation from the Sun and the magnetospheric plasma. The chemical diversity of the icy moon's gas envelope is attributed to the primary action of ultraviolet solar photons and plasma electrons on the rarefied gas in the H2O- or O2-dominant atmosphere. The model is used to calculate the formation and development of the chemical diversity in the relatively dense near-surface envelope of Ganymede, where an important contribution comes from collisions between parent molecules and the products of their photolysis and radiolysis.

  12. Antropogen contamination of the earth atmosphere

    International Nuclear Information System (INIS)

    Among the antropogen contamination sources of the earth atmosphere the total beta activity of rain water, carbon 14 activity according to the annual rings of trees and the krypton 85 activity of the air were determined systematically for several years in Hungary. The data of aerial contamination due to atmospheric nuclear explosions and to the impact of nuclear facilities especially nuclear power plants and fuel reprocessing plants are discussed and demonstrated in graphs. (V.N.) 12 refs.; 7 figs

  13. Impact of Amazonian deforestation on atmospheric chemistry

    OpenAIRE

    Ganzeveld, L.N.; Lelieveld, J.

    2004-01-01

    A single-column chemistry and climate model has been used to study the impact of deforestation in the Amazon Basin on atmospheric chemistry. Over deforested areas, daytime ozone deposition generally decreases strongly except when surface wetness decreases through reduced precipitation, whereas nocturnal soil deposition increases. The isoprene and soil nitric oxide emissions decrease although nitrogen oxide release to the atmosphere increases due to reduced canopy deposition. Deforestation als...

  14. Upper Atmosphere Humidity Measurement with Drycap Sensor

    OpenAIRE

    Lehtola, Terhi Johanna

    2014-01-01

    Atmospheric water vapor is a significant greenhouse gas. To gain proper understanding of the impact of water vapor on the climate, atmospheric water vapor profiles should be measured with high precision and accuracy. Due to challenging environmental conditions including extremely low temperatures and humidity concentrations, few research grade instruments are capable of measuring humidity accurately in upper troposphere and stratosphere. Laborious utilization or inadequate resolution of the e...

  15. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the fields of power conversion devices and broadcasting/communication amplifiers, high power, high frequency and low losses are desirable. Further, for electronic elements in aerospace/aeronautical/geothermal surveys, etc., heat resistance to 500degC is required. Devices which respond to such hard specifications are called hard electronic devices. However, with Si which is at the core of the present electronics, the specifications cannot fully be fulfilled because of the restrictions arising from physical values. Accordingly, taking up new device materials/structures necessary to construct hard electronics, technologies to develop these to a level of IC were examined and studied. They are a technology to make devices/IC of new semiconductors such as SiC, diamond, etc. which can handle higher temperature, higher power and higher frequency than Si and also is possible of reducing losses, a technology to make devices of hard semiconducter materials such as a vacuum microelectronics technology using ultra-micro/high-luminance electronic emitter using negative electron affinity which diamond, etc. have, a technology to make devices of oxides which have various electric properties, etc. 321 refs., 194 figs., 8 tabs.

  16. The atmospheric extinction of light

    CERN Document Server

    Hughes, Stephen W; Powell, Sean; Carroll, Joshua

    2015-01-01

    An experiment is described that enables students to understand the properties of atmospheric extinction due to Rayleigh scattering. The experiment requires the use of red, green and blue lasers attached to a travelling microscope or similar device. The laser beams are passed through an artificial atmosphere, made from milky water, at varying depths, before impinging on either a light meter or a photodiode integral to a Picotech Dr. DAQ ADC. A plot of measured spectral intensity verses depth reveals the contribution Rayleigh scattering has to the extinction coefficient. For the experiment with the light meter, the extinction coefficients for red, green and blue light in the milky sample of water were 0.27, 0.36 and 0.47 cm^-1 respectively and 0.032, 0.037 and 0.092 cm^-1 for the Picotech Dr. DAQ ADC.

  17. The atmospheric extinction of light

    Science.gov (United States)

    Hughes, Stephen W.; Cowley, Michael; Powell, Sean; Carroll, Joshua

    2016-01-01

    An experiment is described that enables students to understand the properties of atmospheric extinction due to Rayleigh scattering. The experiment requires the use of red, green and blue lasers attached to a travelling microscope or similar device. The laser beams are passed through an artificial atmosphere, made from milky water, at varying depths, before impinging on either a light meter or a photodiode integral to a Picotech Dr. DAQ ADC. A plot of measured spectral intensity verses depth reveals the contribution Rayleigh scattering has to the extinction coefficient. For the experiment with the light meter, the extinction coefficients for red, green and blue light in the milky sample of water were 0.27, 0.36 and 0.47 cm-1 respectively and 0.032, 0.037 and 0.092 cm-1 for the Picotech Dr. DAQ ADC.

  18. Atmospheric Scintillation in Astronomical Photometry

    CERN Document Server

    Osborn, J; Dhillon, V S; Wilson, R W

    2015-01-01

    Scintillation noise due to the Earth's turbulent atmosphere can be a dominant noise source in high-precision astronomical photometry when observing bright targets from the ground. Here we describe the phenomenon of scintillation from its physical origins to its effect on photometry. We show that Young's (1967) scintillation-noise approximation used by many astronomers tends to underestimate the median scintillation noise at several major observatories around the world. We show that using median atmospheric optical turbulence profiles, which are now available for most sites, provides a better estimate of the expected scintillation noise and that real-time turbulence profiles can be used to precisely characterise the scintillation noise component of contemporaneous photometric measurements. This will enable a better understanding and calibration of photometric noise sources and the effectiveness of scintillation correction techniques. We also provide new equations for calculating scintillation noise, including ...

  19. Electronic Cigarettes

    Science.gov (United States)

    ... New FDA Regulations Text Size: A A A Electronic Cigarettes Electronic cigarettes (e-cigarettes) are battery operated products designed ... more about: The latest news and events about electronic cigarettes on this FDA page Electronic cigarette basics ...

  20. Simulating super earth atmospheres in the laboratory

    Science.gov (United States)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  1. Experiment for Investigation of Atmosphere-Magnetosphere Relationship at Mars

    Science.gov (United States)

    Vaisberg, O. L.; Koynash, G.; Shestakov, A.; Roman, Z.; Moiseenko, D.; Kirillov, A. S.; Chernouss, S.; Moiseev, P.; Shefov, N.; Semenov, A.; Rodionov, I.; Sosonkin, M.; Ivanov, Y.; Sinyavsky, I.; Sigernes, F.; Berthellier, J.; Leblanc, F.

    2013-12-01

    also on content of the atoms and molecules with provide 20-25 eV photoelectrons due to their ionization by solar 30.4 nm emission. Therefore the measurements of He emission will provide information on excitation mechanisms and altitude composition of Martian upper atmosphere. Observations of escaping ions through the flanks of the tail will be performed with spectrophotometer of emissions of O+, CO+, O2+ or CO2+ ions of that scatter solar light. With observations along the tail it is possible to use increased optical thickness and study the acceleration of these ions along the tail. This suite of 4 instruments uses one electronics box. Total estimated mass is about 1.7 kg. Instruments can be installed on satellite, rower or stationary platform. Satellite provides better coverage while rower or stationary platform gives opportunity to increase the signal to noise ratio through longer accumulation of the signal and register temporal variations of intensity, Instruments can be used for investigation of other planets, specifically the Venus. Prototypes of 4 instruments exist.

  2. The impact of energetic electron precipitation on mesospheric hydroxyl during a year of solar minimum

    Science.gov (United States)

    Zawedde, Annet Eva; Nesse Tyssøy, Hilde; Hibbins, Robert; Espy, Patrick J.; Ødegaard, Linn-Kristine Glesnes; Sandanger, Marit Irene; Stadsnes, Johan

    2016-06-01

    In 2008 a sequence of geomagnetic storms occurred triggered by high-speed solar wind streams from coronal holes. Improved estimates of precipitating fluxes of energetic electrons are derived from measurements on board the NOAA/POES 18 satellite using a new analysis technique. These fluxes are used to quantify the direct impact of energetic electron precipitation (EEP) during solar minimum on middle atmospheric hydroxyl (OH) measured from the Aura satellite. During winter, localized longitudinal density enhancements in the OH are observed over northern Russia and North America at corrected geomagnetic latitudes poleward of 55°. Although the northern Russia OH enhancement is closely associated with increased EEP at these longitudes, the strength and location of the North America enhancement appear to be unrelated to EEP. This OH density enhancement is likely due to vertical motion induced by atmospheric wave dynamics that transports air rich in atomic oxygen and atomic hydrogen downward into the middle atmosphere, where it plays a role in the formation of OH. In the Southern Hemisphere, localized enhancements of the OH density over West Antarctica can be explained by a combination of enhanced EEP due to the local minimum in Earth's magnetic field strength and atmospheric dynamics. Our findings suggest that even during solar minimum, there is substantial EEP-driven OH production. However, to quantify this effect, a detailed knowledge of where and when the precipitation occurs is required in the context of the background atmospheric dynamics.

  3. The energy spectrum of cosmic-ray electrons measured with H.E.S.S

    International Nuclear Information System (INIS)

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse γ rays from the Galactic plane. (orig.)

  4. The energy spectrum of cosmic-ray electrons measured with H.E.S.S.

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Kathrin

    2009-03-30

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse {gamma} rays from the Galactic plane. (orig.)

  5. Pluto's atmosphere near perihelion

    International Nuclear Information System (INIS)

    A recent stellar occultation has confirmed predictions that Pluto has an atmosphere which is sufficiently thick to uniformly envelope the planet and to extend far above the surface. Pluto's atmosphere consists of methane and perhaps other volatile gases at temperatures below their freezing points; it should regulate the surface temperature of its volatile ices to a globally uniform value. As Pluto approaches and passes through perihelion, a seasonal maximum in the atmospheric bulk and a corresponding minimum in the exposed volatile ice abundance is expected to occur. The lag in maximum atmospheric bulk relative to perihelion will be diagnostic of the surface thermal properties. An estimate of Pluto's atmospheric bulk may result if a global darkening (resulting from the disappearance of the seasonally deposited frosts) occurs before the time of maximum atmospheric bulk. The ice deposited shortly after perihelion may be diagnostic of the composition of Pluto's volatile reservoir

  6. Atmospheric Circulation of Exoplanets

    CERN Document Server

    Showman, Adam P; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric d...

  7. Ion Chemistry in Atmospheric and Astrophysical Plasmas

    Science.gov (United States)

    Dalgarno, A.; Fox, J. L.

    1994-01-01

    There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an

  8. The Electron

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, George

    1972-01-01

    Electrons are elementary particles of atoms that revolve around and outside the nucleus and have a negative charge. This booklet discusses how electrons relate to electricity, some applications of electrons, electrons as waves, electrons in atoms and solids, the electron microscope, among other things.

  9. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  10. Detection of Callisto's oxygen atmosphere with the Hubble Space Telescope

    Science.gov (United States)

    Cunningham, Nathaniel J.; Spencer, John R.; Feldman, Paul D.; Strobel, Darrell F.; France, Kevin; Osterman, Steven N.

    2015-07-01

    We report the result of a search for evidence of an O2-dominated atmosphere on Callisto, using the high far-ultraviolet sensitivity of the Hubble Space Telescope Cosmic Origins Spectrograph (COS). Observations of Callisto's leading/Jupiter-facing hemisphere show, for the first time, variable-strength atomic oxygen (O I) emissions with brightness up to 4.7 ± 0.7 Rayleighs for the O I 1304 Å triplet and 1.9 ± 0.4 Rayleighs for the O I 1356 Å doublet, averaged over the 2.5 arcsec. diameter COS aperture. Because the observations were made in Earth's shadow, and are brighter than expected emission from nighttime geocoronal airglow or other plausible sources, we are confident that they originate from Callisto or its immediate vicinity. In addition, COS's limited (∼1 arcsec) spatial resolution implies a 2σ detection of excess 1356 Å emission concentrated on the disk of Callisto itself, with brightness 3.2 ± 1.6 Rayleighs. The (O I 1356 Å)/(O I 1304 Å) emission ratio from Callisto's disk favors dissociative excitation of O2, suggesting that O2 is the dominant atmospheric component rather than other possible oxygen-bearing alternatives. Photoelectrons, rather than magnetospheric electrons, are the most likely source of the dissociative excitation. This detection yields an O2 column density of ∼4 × 1015 cm-2 on the leading/Jupiter facing hemisphere, which implies that Callisto's atmosphere is collisional and is the fourth-densest satellite atmosphere in the Solar System, in addition to being the second-densest O2-rich collisional atmosphere in the Solar System, after Earth. Longitudinal variations in published densities of ionospheric electrons suggest that O2 densities in Callisto's trailing hemisphere, which we did not observe, may be an order of magnitude greater. The aperture-filling emissions imply that there is also an extended corona of predominantly O I 1304 Å emission around Callisto, with observed strength of 1-4 Rayleighs, likely due to solar

  11. Measurement of atmospheric neutrino oscillations and matter effects with PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan; Euler, Sebastian; Krings, Kai; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    With IceCube's low-energy extension DeepCore the first significant effects of atmospheric neutrino oscillations have been observed. The planned ''Precision Icecube Next Generation Upgrade'' (PINGU) inside DeepCore will lower the energy threshold to a few GeV, where matter effects of neutrino oscillations have to be taken into account. The Mikheyev-Smirnov-Wolfenstein (MSW) effect modifies the mixing between flavor and mass eigenstates of the neutrinos, resulting in stronger oscillations. Furthermore, neutrinos when passing through the Earth core experience parametric enhancement due to multiple discontinuities in the electron density. In this talk the effects of matter oscillations and the capabilities to measure these effects with PINGU are investigated.

  12. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  13. MARCS model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Plez, B [GRAAL, CNRS, UMR5024, Universite Montpellier 2, F-34095 Montpellier, Cedex 5 (France) and Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden)], E-mail: bertrand.plez@graal.univ-montp2.fr

    2008-12-15

    In this review presented at the Symposium A Stellar Journey in Uppsala, June 2008, I give an account of the historical development of the MARCS code, and its premises from the first version published in 1975 to the 2008 grid. The primary driver for the development team who constantly strive to include the best possible physical data, is the science that can be done with the models. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in spectral energy distribution (SED) and model thermal stratification is estimated for different densities of wavelength sampling. The number of points used in the MARCS 2008 grid (108 000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus adequate to compute synthetic broadband photometry, but higher resolution spectra will be computed in the near future and published as well on the MARCS site (marcs.astro.uu.se). Test model calculations with TiO line opacity accounted for in scattering show significant cooling of the upper atmospheric layers of red giants. Rough estimates of radiative and collisional time scales for electronic transitions of TiO indicate that scattering may well be the dominant mechanism in these lines. However, models constructed with this hypothesis are incompatible with optical observations of TiO (Arcturus) or IR observations of OH (Betelgeuse), although they may succeed in explaining H{sub 2}O line observations. More work is needed in that direction.

  14. MARCS model atmospheres

    Science.gov (United States)

    Plez, B.

    2008-12-01

    In this review presented at the Symposium A Stellar Journey in Uppsala, June 2008, I give an account of the historical development of the MARCS code, and its premises from the first version published in 1975 to the 2008 grid. The primary driver for the development team who constantly strive to include the best possible physical data, is the science that can be done with the models. A few preliminary comparisons of M star model spectra to spectrophotometric observations are presented. Particular results related to opacity effects are discussed. The size of errors in spectral energy distribution (SED) and model thermal stratification is estimated for different densities of wavelength sampling. The number of points used in the MARCS 2008 grid (108 000) is large enough to ensure errors of only a few K in all models of the grid, except the optically very thin layers of metal-poor stars. Errors in SEDs may reach about 10% locally in the UV. The published sampled SEDs are thus adequate to compute synthetic broadband photometry, but higher resolution spectra will be computed in the near future and published as well on the MARCS site (marcs.astro.uu.se). Test model calculations with TiO line opacity accounted for in scattering show significant cooling of the upper atmospheric layers of red giants. Rough estimates of radiative and collisional time scales for electronic transitions of TiO indicate that scattering may well be the dominant mechanism in these lines. However, models constructed with this hypothesis are incompatible with optical observations of TiO (Arcturus) or IR observations of OH (Betelgeuse), although they may succeed in explaining H2O line observations. More work is needed in that direction.

  15. Simulation Experimental Study on Disturbance Voltage of the Sensor and the Intelligent Electronic Device due to Gas Insulated Substation Switching Operations%GIS设备开关操作对其传感器和智能组件端口骚扰电压的模拟试验研究

    Institute of Scientific and Technical Information of China (English)

    刘骁繁; 崔翔; 吴恒天; 雷林绪; 赵波; 赵鹏程; 焦重庆

    2015-01-01

    There is great concern on the electromagnetic compatibility problem of electronic equipments in an intelligent substation, due to the compact structure of gas insulated substation and the high degree of integration between the primary and electronic equipments. The very fast transient electromagnetic disturbance (VFTED) resulted from the GIS switching operation has potential impact on the electronic equipments by the electromagnetic coupling between the VFTED and the circuit of“sensor-cable-intelligent electronic device (IED)”. Due to the highly complexity of simulating the practical electromagnetic environment, measurement is the primary and dispensable approach to acquire the reliable electromagnetic disturbance data. A kind of simulation experimental method to measure the disturbance voltage on the ports of a sensor or an IED is proposed. This method has strong operability in the substation since it does not change the original sensors and IEDs. This method is applied to both the indoor 252 kV GIS experiment research platform and the 220 kV intelligent substation. The corresponding data are reported, and are analyzed in both time domain and frequency domain. The results show that, after the adoption of effective shielding and grounding technology, the electromagnetic disturbance due to GIS switching operations does not pose a serious threat to the normal operation of the sensors and IEDs in 220 kV GIS substations.%GIS变电站结构紧凑,因电子设备与一次设备高度融合,使得电子设备的电磁兼容问题显得尤为重要。GIS设备开关操作产生的特快速瞬态电磁过程主要由传感器–电缆–智能组件这段电路对电子设备产生电磁影响。针对变电站电磁环境的复杂性,且现场测量是获得传感器和智能组件端口电磁骚扰数据的主要手段,提出一种 GIS 设备传感器和智能组件端口瞬态电磁骚扰的模拟测试方法,该方法无需改变变电站原有的传感

  16. Environmental radon: solid earth-atmosphere transference

    International Nuclear Information System (INIS)

    The radon anomalies ant its descendants related with geophysical events are studied generally for to understand the involved mechanisms in the underground geochemistry. These anomalies were observed as a radioactivity level argumentation in the systems studied provoking a radioactivity transference from land toward human environment. In this work is presented an analysis of the contribution at local radioactivity level due to volcanic eruptions that they provoke a transference appreciable but intermittent and located of Radon to atmosphere and of that one due to soil-atmosphere transference that it occurs in continuous way in continent that it varies as function of meteorologic and geologic conditions. (Author)

  17. Erosion behaviour of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    CERN Document Server

    Franz, Robert; Hawranek, Gerhard; Polcik, Peter

    2015-01-01

    Al$_{x}$Cr$_{1-x}$ composite cathodes with Al contents of x = 0.75, 0.5 and 0.25 were exposed to cathodic arc plasmas in Ar, N$_2$ and O$_2$ atmospheres and their erosion behaviour was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by X-ray diffraction analysis. Cathode poisoning effects in the reactive N$_2$ and O$_2$ atmospheres were non-uniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded centre region of the cathodes.

  18. Franklin Lecture: Lightning in Planetary Atmospheres

    Science.gov (United States)

    Gurnett, D. A.

    2006-12-01

    A broad overview is given of lightning in planetary atmospheres. Searches for lightning using spacecraft-borne instrumentation have now been conducted at almost all of the planets in the solar system, the exceptions being Mercury, which has no appreciable atmosphere, and Pluto which has not yet been visited by a spacecraft. The techniques used include (1) imaging observations to detect optical flashes produced by lightning; (2) high-frequency radio measurements to detect the impulsive broadband radio bursts, called spherics, produced by lightning discharges; and (3) low-frequency plasma wave measurements to detect the whistling tones, called whistlers, produced by lightning. Using these techniques, lightning has been reported at five planets other than Earth. These are: Venus, Jupiter, Saturn, Uranus, and Neptune. Of these, the existence of lightning at Venus is doubtful, and the evidence of lightning at Neptune is at best marginal. Jupiter and Saturn have by far the most intense and well documented lightning activity. During the Voyager 1 flyby of Jupiter, whistlers and intense optical flashes, comparable to those from terrestrial superbolts, were observed by the plasma wave and optical imaging instruments. However, no impulsive high-frequency radio bursts were observed. Two factors may be responsible for the absence of high-frequency radio signals: (1) the very strong magnetic field of Jupiter, which blocks the escape of the extra-ordinary mode; and (2) the relatively high electron collision frequency in the ionosphere, which increases the absorption of radio waves. During the Voyager 1 and 2 flybys of Saturn many very strong high-frequency radio bursts, called Saturn Electrostatic Discharges (SEDs), were detected. Although the origin of these impulsive radio bursts was initially uncertain, strong evidence now exists that SEDs are produced by lightning. Recent optical imaging and radio measurements from the Cassini spacecraft clearly show that SEDs originate from

  19. CHARACTERIZATION OF ATMOSPHERIC AEROSOL:SINGLE PARTICLE ANALYSIS WITH SCANNING ELECTRON MICROSCOPE%用扫描电镜分析表征大气气溶胶单颗粒

    Institute of Scientific and Technical Information of China (English)

    刘咸德; 董树屏; 李玉武; FreddyAdams

    2003-01-01

    Scanning electron microscope-energy dispersive X-ray analysis system (SEM-EDX) is able to provide analytical data for each single particle. Hundreds of particles are usually analyzed for an aerosol sample. Both physical and chemical characterization can be performed in terms of particle size and particle class compositional data, respectively. Mineral dusts such as aluminosilicates and quartz particles as well as sea salt particles featured coarse fractions. Fine fractions were dominated by various sulfur-containing and carbonaceous particles.

  20. Modelling of OH production in cold atmospheric-pressure He–H2O plasma jets

    International Nuclear Information System (INIS)

    Results of the modelling of OH production in the plasma bullet mode of cold atmospheric-pressure He–H2O plasma jets are presented. It is shown that the dominant source of OH molecules is related to the Penning and charge transfer reactions of H2O molecules with excited and charged helium species produced by guided streamers (plasma bullets), in contrast to the case of He–H2O glow discharges where OH production is mainly due to the dissociation of H2O molecules by electron impact. (paper)

  1. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone

    International Nuclear Information System (INIS)

    Influence of atmospheric air plasma treatment on performance of nanoemulsion silicone softener on polyethylene terephthalate fibers was investigated by the use of fourier transform infrared spectroscopy (FTIR), bending lengths (BL), wrinkle recovery angles (WRA), fiber friction coefficient analysis (FFCA), moisture absorbency (MA), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Results indicated that the plasma pretreatment modifies the surface of fibers and increases the reactivity of substrate toward nanoemulsion silicone. Moisture regain and microscopic tests showed that the combination of plasma and silicone treatments on polyethylene terephthalate can decrease moisture absorption due to uniform coating of silicone emulsion on surface of fibers.

  2. Possible Nuclear Transmutation of Nitrogen in the Earth's Atmosphere

    Science.gov (United States)

    Fukuhara, Mikio

    2006-02-01

    An attempt to give a possible answer to a question why nitrogen exists so abundantly in Earth's atmosphere and how it was formed in Archean era (3.8-2.5 billion years ago) is presented. The nitrogen is postulated to be the result of an endothermic nuclear transmutation of carbon and oxygen nuclei confined in carbonate MgCO3 lattice of the mantle with an enhanced rate by attraction effect of catalysis of neutral pions, produced by electron emission: 12C + 16O - 2π0 → 2 14N. The excited electrons were generated by rapid fracture or sliding of carbonate crystals due to volcanic earthquake, and many of the neutrinos were derived from stars, mainly the young sun. The formation of nitrogen would continued for 1.3 billion years from 2.5 to 3.8 billion years in Archean era, until the active volcanism or storm of neutrinos ceased. The transformation is possible by the combined effects of the screening attraction of free electrons and thermal activation in deeper mantle. The possible nuclear transmutation rate of nitrogen atoms could be calculated as 2.3 × 106 atom/s.

  3. On classical meteor light curves and utilitarian model atmospheres

    Science.gov (United States)

    Beech, M.; Hargrove, M.

    2005-01-01

    We present a series of classical meteor light curve profiles based upon a set of simplified analytic atmospheric models. The model atmospheres specifically express the density variation as a power law in atmospheric height, and are derived under a variety of assumptions relating to the atmospheric temperature profile and the variation of the acceleration due to gravity. We find that the light curve profiles show only small differences with respect to any variation in the temperature profile and the geometry imposed upon the atmospheres.

  4. Designing Dynamic Atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2012-01-01

    This paper addresses the notion of atmospheres from a designerly perspective, and discusses temporal challenges facing interaction designers when acknowledging the dynamic character of it. As atmospheres are created in the relation between body, space, and time, a pragmatic approach seems useful...

  5. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...

  6. Update on Atmospheric Neutrinos

    CERN Document Server

    González-Garciá, M Concepción; Peres, O L G; Stanev, T; Valle, José W F

    1998-01-01

    We discuss the impact of recent experimental results on the determination of atmospheric neutrino oscillation parameters. We use all published results on atmospheric neutrinos, including the preliminary large statistics data of Super-Kamiokande. We re-analyze the data in terms of both $\

  7. Rayleigh scattering in the atmospheres of hot stars

    CERN Document Server

    Fišák, Jakub; Munzar, Dominik; Kubát, Jiří

    2016-01-01

    Rayleigh scattering is a result of an interaction of photons with bound electrons. Rayleigh scattering is mostly neglected in calculations of hot star model atmospheres because most of the hydrogen atoms are ionized and the heavier elements have a lower abundance than hydrogen. In atmospheres of some chemically peculiar stars, helium overabundant regions containing singly ionized helium are present and Rayleigh scattering can be a significant opacity source. We evaluate the contribution of Rayleigh scattering by neutral hydrogen and singly ionized helium in the atmospheres of hot stars with solar composition and in the atmospheres of helium overabundant stars. We computed several series of model atmospheres using the TLUSTY code and emergent fluxes using the SYNSPEC code. These models describe atmospheres of main sequence B-type stars with different helium abundance. We used an existing grid of models for atmospheres with solar chemical composition and we calculated an additional grid for helium-rich stars wi...

  8. Equipment selection for atmospheric drying

    International Nuclear Information System (INIS)

    Heavy water management is a major factor in deciding the economics of the PHWRs. Hence it is necessary to have an efficient recovery system, for the heavy water vapour escaping from various process systems and maintain a dry atmosphere in the recovery areas. While the basic objective of the atmospheric drying system is to maximize recovery and to minimize stack losses, it is equally important to optimally design the system with due consideration to operational and maintenance aspects. At present, heavy water vapour recovery in the existing Nuclear Power Plants (NPPs) is carried out by dryers of dual fixed bed design. While moving bed design could have some advantages, this has not been adopted so far because of the cumbersome mechanical design involved and special requirements for nuclear application. Developmental work done in this direction has resulted in compact alternative designs. In one of the designs, the change over from adsorption to regeneration is achieved by rotating the bed slowly. This concept is further refined in another alternative using a dessicant wheel. This paper contains brief equipment description of different designs; enumerates the design requirements of an atmospheric drying system for reactor building; describes steps for designing fixed bed type D2O vapour recovery system, and highlights advances in dryer technology. (author)

  9. Optical intensity interferometry through atmospheric turbulence

    Science.gov (United States)

    Tan, P. K.; Chan, A. H.; Kurtsiefer, C.

    2016-04-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  10. Optical Intensity Interferometry through Atmospheric Turbulence

    CERN Document Server

    Tan, Peng Kian; Kurtsiefer, Christian

    2015-01-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrowband spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photon detectors (APDs), the Solar $g^{(2)}(\\tau)$ signature was directly measured. We observe an averaged photon bunching signal of $g^{(2)}(\\tau) = 1.693 \\pm 0.003$ from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement scheme...

  11. Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E., E-mail: emilien.burger@cea.f [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); CEA, DSM, IRAMIS, SIS2M, Laboratoire, Archeomateriaux et revision de l' Alteration, UMR3299, F-91191 Gif-sur-Yvette (France); Fenart, M.; Perrin, S. [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Neff, D. [CEA, DSM, IRAMIS, SIS2M, Laboratoire, Archeomateriaux et revision de l' Alteration, UMR3299, F-91191 Gif-sur-Yvette (France); Dillmann, P. [CEA, DSM, IRAMIS, SIS2M, Laboratoire, Archeomateriaux et revision de l' Alteration, UMR3299, F-91191 Gif-sur-Yvette (France); LMC IRAMAT UMR5060 CNRS (France)

    2011-06-15

    Highlights: {yields} Corrosion mechanisms investigated by gold markers method coupled with microRaman imaging. {yields} Experimental highlighting of an important internal development of the rust layer. {yields} Microstructural evolution of the corrosion product layer during atmospheric treatment. {yields} Comparison with long-term corrosion layer microstructure. - Abstract: Iron corrosion under atmospheric conditions has been investigated by using the gold markers method. The corrosion experiments were performed in a climatic chamber with an accelerated treatment. The gold markers localization, carried out by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, revealed that the rust layer growth was essentially due to an internal development. Moreover, microRaman mappings allowed prediction of the mechanism of rust layer evolution during the ageing treatment. Finally these results were compared to samples corroded for several 100 years in order to extrapolate our observations to long term corrosion.

  12. Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion

    International Nuclear Information System (INIS)

    Highlights: → Corrosion mechanisms investigated by gold markers method coupled with microRaman imaging. → Experimental highlighting of an important internal development of the rust layer. → Microstructural evolution of the corrosion product layer during atmospheric treatment. → Comparison with long-term corrosion layer microstructure. - Abstract: Iron corrosion under atmospheric conditions has been investigated by using the gold markers method. The corrosion experiments were performed in a climatic chamber with an accelerated treatment. The gold markers localization, carried out by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, revealed that the rust layer growth was essentially due to an internal development. Moreover, microRaman mappings allowed prediction of the mechanism of rust layer evolution during the ageing treatment. Finally these results were compared to samples corroded for several 100 years in order to extrapolate our observations to long term corrosion.

  13. Experimental study of the atmospheric neutrino flux

    International Nuclear Information System (INIS)

    We have observed 277 fully contained events in the KAMIOKANDE detector. The number of electron-like single prong events is in good agreement with the predictions of a Monte Carlo calculation based on atmospheric neutrino interactions in the detector. On the other hand, the number of muon-like single prong events is 59 ± 7 %(statistical error) of the predicted number of the Monte Carlo calculation. We are unable to explain the data as the result of systematic detector effects or uncertainties in the atmospheric neutrino fluxes. (author)

  14. Reconciling dark matter, solar and atmospheric neutrinos

    CERN Document Server

    Peltoniemi, J T

    1993-01-01

    We present models that can reconcile the solar and atmospheric neutrino data with the existence of a hot dark matter component in the universe. This dark matter is a quasi-Dirac neutrino whose mass $m_{DM}$ arises at the one-loop level. The solar neutrino deficit is explained via nonadiabatic conversions of electron neutrino to a sterile neutrino and the atmospheric neutrino data via maximal muon neutrino to tau neutrino oscillations generated by higher order loop diagrams. For $m_{DM} \\sim 30$ eV the radiative neutrino decay can lead to photons that can ionize interstellar hydrogen. In one of the models one can have observable $\

  15. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  16. JPL Electronic Nose

    Science.gov (United States)

    Ryan, Margaret A.; Homer, Margie L.

    2009-01-01

    The JPL Electronic Nose (ENose) is a full-time, continuously operating event monitor designed to detect air contamination from spills and leaks in the crew habitat in the International Space Station. It fills the long-standing gap between onboard alarms and complex analytical instruments. ENose provides rapid, early identification and quantification of atmospheric changes caused by chemical species to which it has been trained. ENose can also be used to monitor cleanup processes after a leak or a spill.

  17. Electron-beam synthesis of fuel in the gas phase

    Science.gov (United States)

    Ponomarev, A. V.; Holodkova, E. M.; Ershov, B. G.

    2012-09-01

    Electron-beam synthesis of liquid fuel from gaseous alkanes was upgraded for formation of conventional and alternative fuel from biomass or pyrolysis oil. Bio-feedstock conversion algorithm includes two consecutive stages: (1) initial macromolecules' transformation to low-molecular-weight intermediates; (2) transformation of these intermediates to stable fuel in gaseous alkanes' atmosphere. Radicals originated from alkanes participate in alkylation/hydrogenation of biomass intermediates. Chemical fixation of gaseous alkanes is amplified in the presence of biomass derivatives due to suppression of gas regeneration reactions, higher molar mass of reagents and lower volatility of radiolytic intermediates.

  18. Electronic Prescribing

    Science.gov (United States)

    ... Do you prescribe electronically?” For more information about electronic prescribing, call 1-800-MEDICARE (1-800-633- ... to the pharmacy, and my prescription was ready. Electronic eRx Prescribing CMS Product No. 11382 Revised July ...

  19. Glacial atmospheric phosphorus deposition

    Science.gov (United States)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  20. Atmospheric pressure plasma jet applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  1. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  2. Marine atmospheric corrosion of carbon steels

    International Nuclear Information System (INIS)

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  3. Dust ablation in Pluto's atmosphere

    Science.gov (United States)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  4. Equilibrium and Disequilibrium Chemistry in Evolved Exoplanet Atmospheres

    Science.gov (United States)

    Hu, Renyu

    2015-12-01

    It has been found that sub-Neptune-sized planets, although not existing in our Solar System, are ubiquitous in our interstellar neighborhood. This revelation is profound because, due to their special sizes and proximity to their host stars, Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres. I will discuss helium-dominated atmospheres as one of the outcomes of extensive atmospheric evolution on warm Neptune- and sub-Neptune-sized exoplanets. Due to depleted hydrogen abundance, the dominant carbon and oxygen species may not be methane or water on these evolved planets. Equilibrium and disequilibrium chemistry models are used to compute the molecular compositions of the atmospheres and their spectral features. Applications to GJ 436 b and other Neptune- and sub-Neptune-sized exoplanets will be discussed. As the observations to obtain the spectra of these planets continue to flourish, we will have the opportunity to study unconventional atmospheric chemical processes and test atmosphere evolution theories

  5. Electron cooling

    Science.gov (United States)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  6. Magnetized neutron star atmospheres: beyond cool plasma approximation

    CERN Document Server

    Suleimanov, V F; Werner, K

    2012-01-01

    All the neutron star (NS) atmosphere models published so far have been calculated in the "cold plasma approximation", which neglects the relativistic effects in the radiative processes, such as cyclotron emission/absorption at harmonics of cyclotron frequency. Here we present new NS atmosphere models which include such effects. We calculate a set of models for effective temperatures T_eff =1-3 MK and magnetic fields B \\sim 10^{10}-10^{11} G, typical for the so-called central compact objects (CCOs) in supernova remnants, for which the electron cyclotron energy E_{c,e} and its first harmonics are in the observable soft X-ray range. Although the relativistic parameters, such as kT_eff /(m_e c^2) and E_{c,e} /(m_e c^2), are very small for CCOs, the relativistic effects substantially change the emergent spectra at the cyclotron resonances, E \\approx sE_{c,e} (s=1, 2,...). Although the cyclotron absorption features can form in a cold plasma due to the quantum oscillations of the free-free opacity, the shape and dep...

  7. Atmospheric Variations as observed by IceCube

    CERN Document Server

    Tilav, Serap; Kuwabara, Takao; Rocco, Dominick; Rothmaier, Florian; Simmons, Matt; Wissing, Henrike

    2010-01-01

    We have measured the correlation of rates in IceCube with long and short term variations in the South Pole atmosphere. The yearly temperature variation in the middle stratosphere (30-60 hPa) is highly correlated with the high energy muon rate observed deep in the ice, and causes a +/-10% seasonal modulation in the event rate. The counting rates of the surface detectors, which are due to secondary particles of relatively low energy (muons, electrons and photons), have a negative correlation with temperatures in the lower layers of the stratosphere (40-80 hPa), and are modulated at a level of +/-5%. The region of the atmosphere between pressure levels 20-120 hPa, where the first cosmic ray interactions occur and the produced pions/kaons interact or decay to muons, is the Antarctic ozone layer. The anticorrelation between surface and deep ice trigger rates reflects the properties of pion/kaon decay and interaction as the density of the stratospheric ozone layer changes. Therefore, IceCube closely probes the ozon...

  8. Nonlinear lumped circuit modeling of an atmospheric pressure rf discharge

    Science.gov (United States)

    Lapke, M.; Ziegler, D.; Mussenbrock, T.; Gans, T.; Schulz-von der Gathen, V.

    2006-10-01

    The subject of our modeling approach is a specifically modified version of the atmospheric pressure plasma jet (APPJ, originally proposed by Selwyn and coworkers^1) with reduced discharge volume, the micro atmospheric pressure plasma jet (μ-APPJ). The μ-APPJ is a homogeneous nonequilibrium discharge operated with Argon or Helium as the feedstock gas and a percentage volume admixture of a molecular gas (O2, H2, N2). The efficiency of the discharge is mainly due to the dissociated and activated molecules in the effluent that can be selected depending on the application. A variety of applications in surface treatment have already been demonstrated, e.g., in semiconductor technology, restoration and bio-medicine. In this contribution we present and analyze a nonlinear lumped circuit model of the μ-APPJ. We apply a two-scale formalism. The bulk is modeled by a generalized Ohm's law, whereas the sheath is described on a considerably higher level of mathematical sophistication. The main focus lies on the spectrum of the discharge current in order to support the characterization of the discharge via model-based diagnostics, i.e., the estimation of the spatially averaged electron density from the frequency of certain self-excitated collective resonance modes. J. Park et al., Appl. Phy. Lett. 76, 288 (2000)

  9. Physics of Atmospheric Electric Discharges in Gases: An Informal Introduction

    CERN Document Server

    Treumann, R A; Parrot, M

    2007-01-01

    A short account of the physics of electrical discharges in gases is given in view of its historical evolution and application to planetary atmospheres. As such it serves as an introduction to the articles on particular aspects of electric discharges contained in this book, in particular in the chapters on lightning and the violent discharges which in the recent two decades have been observed to take place in Earth's upper atmosphere. In addition of briefly reviewing the early history of gas discharge physics we discuss the main parameters affecting violent atmospheric discharges like collision frequency, mean free path and critical electric field strength. Any discharge current in the atmosphere is clearly carried only by electrons. Above the lower bound of the mesosphere the electrons must be considered magnetized with the conductivity becoming a tensor. Moreover, the collisional mean free path in the upper atmosphere becomes relatively large which lowers the critical electric field there and more easily ena...

  10. Students 'Weigh' Atmospheric Pollution.

    Science.gov (United States)

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  11. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  12. Middle atmospheric electrodynamics

    Science.gov (United States)

    Kelley, M. C.

    1983-01-01

    A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.

  13. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  14. Atmospheric release advisory capability

    International Nuclear Information System (INIS)

    The ARAC system (Atmospheric Release Advisory Capability) is described. The system is a collection of people, computers, computer models, topographic data and meteorological input data that together permits a calculation of, in a quasi-predictive sense, where effluent from an accident will migrate through the atmosphere, where it will be deposited on the ground, and what instantaneous and integrated dose an exposed individual would receive

  15. Atmospheric muons: experimental aspects

    CERN Document Server

    Cecchini, Stefano

    2012-01-01

    We present a review of atmospheric muon flux and energy spectrum measurements over almost six decades of muon momentum. Sea-level and underground/water/ice experiments are considered. Possible sources of systematic errors in the measurements are examinated. The characteristics of underground/water muons (muons in bundle, lateral distribution, energy spectrum) are discussed. The connection between the atmospheric muon and neutrino measurements are also reported.

  16. ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere

    International Nuclear Information System (INIS)

    There have been reports of challenges in designing platinum carbon (Pt/C) electrode catalysts for PEMFC. Pt/C electrode catalysts deactivate much faster on the cathode (in moisturized O2) than on the anode (in H2). To understand influences of moisture and oxygen on the deactivation of the Pt/C catalysts in proton-exchange-membrane fuel cells (PEMFCs), spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied with a high-speed CCD camera. Structural changes of the Pt/C electrode catalysts were dynamically recorded in moisturized nitrogen, oxygen and hydrogen. The mass spectrometry confirmed the moisture content (between 5 to 30 %) of nitrogen driving gas through a humidifier. Coalescence of platinum nanoparticles (D = 3.24 nm) was carefully evaluated in pure N2 and moisturized N2 atmosphere. The Pt/C showed considerable structural weakness in a moisturized N2 atmosphere. Comparable results obtained by AC-ETEM in different gas atmospheres also suggested ways to improve the oxygen reduction reaction (ORR). In this paper, the deactivation process due to moisture (hydroxylation) of carbon supports is discussed using for comparison the movement of platinum nanoparticles measured in moisturized nitrogen and pure nitrogen atmospheres

  17. Inhomogeneous cloud coverage through the Coulomb explosion of dust in substellar atmospheres

    CERN Document Server

    Stark, Craig R; Diver, Declan A

    2015-01-01

    Recent observations of brown dwarf spectroscopic variability in the infrared infer the presence of patchy cloud cover. This paper proposes a mechanism for producing inhomogeneous cloud coverage due to the depletion of cloud particles through the Coulomb explosion of dust in atmospheric plasma regions. Charged dust grains Coulomb-explode when the electrostatic stress of the grain exceeds its mechanical tensile stress, which results in grains below a critical radius $aatmospheres, the effect on the dust particle size distribution function, and the resulting radiative properties of the atmospheric regions. Our results show that for an atmospheric plasma region with an electron temperature of $T_{e}=10$~eV ($\\approx10^{5}$~K), the critical grain radius varies from $10^{-7}$ to $10^{-4}$~cm, depending on the grains' tensile strength. Higher critical radii up to $10^{-3}$~cm ...

  18. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-05-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  19. Conducting Due Diligence in China

    Institute of Scientific and Technical Information of China (English)

    CHRIS; DEVONSHIRE-ELLIS

    2008-01-01

    Ninety percent of problems when set- ting up business in China can be avoided by the deployment of due diligence at the front end of the investment planning.Here we point out some of the areas that can hinder a sensible approach to due diligence,the hidden risks and basic checks.The process does not have to be expensive. Land use rights These relate to the status of the land on which your Chinese partner has his prem-

  20. GREAT/SOFIA atmospheric calibration

    OpenAIRE

    Guan, Xin; Stutzki, Jürgen; Graf, Urs U.; Güsten, Rolf; Okada, Yoko; Torres, Miguel Angel Requena; Simon, Robert; Wiesemeyer, Helmut

    2012-01-01

    The GREAT observations need frequency-selective calibration across the passband for the residual atmospheric opacity at flight altitude. At these altitudes the atmospheric opacity has both narrow and broad spectral features. To determine the atmospheric transmission at high spectral resolution, GREAT compares the observed atmospheric emission with atmospheric model predictions, and therefore depends on the validity of the atmospheric models. We discusse the problems identified in this compari...

  1. Investigation of sounding rocket observations of field-aligned currents and electron temperature

    Science.gov (United States)

    Cohen, I. J.; Lessard, M.; Zettergren, M. D.; Moen, J.; Lynch, K. A.; Heavisides, J. M.

    2014-12-01

    Strangeway et al. [2005] and other authors have concluded that the establishment of the ambipolar field by the deposition of energy from soft electron precipitation is a significant driver of type-2 ion upflows. Likewise, Clemmons et al. [2008] and Zhang et al. [2012] proposed processes by which soft electron precipitation may play a role in heating neutrals and contribute to neutral upwelling. In both situations the thermal ionospheric electron population plays a crucial role in both generation of the ambipolar field and in collisional energy exchange with the atmosphere through a variety of processes. In this study we examine the dynamics of the electron population, specifically the temperature, in a slightly different context - focusing on the auroral downward current region (DCR). In many cases auroral DCRs may be depleted of plasma, which sets up interesting conditions involving thermoelectric heat fluxes (which flow upward - in the opposite direction from the current), adiabatic expansion due to the high (upward) speed of the electrons carrying the downward current, heat exchange from ions which have elevated temperatures due to frictional heating, and direct frictional heating of the electrons. A detailed understanding of the electron temperature in auroral DCRs is necessary to make quantitative statements about recombination, upflow, cavitation and a host of other processes relevant to ion outflow. In this study, we compare in situ rocket observations of electron temperature, density, and current densities with predictions from the Zettergren and Semeter [2012] model in an attempt to better understand the dynamics and relationships between these parameters in DCRs.

  2. Occultations for probing atmosphere and climate

    CERN Document Server

    Foelsche, Ulrich; Steiner, Andrea

    2004-01-01

    Use of occultation methodology for observing the Earth's atmosphere and climate has become so broad as to comprise solar, lunar, stellar, navigation and satellite­ crosslink occultation methods. The atmospheric parameters obtained extend from the fundamental variables temperature, density, pressure, water vapor, and ozone via a multitude of trace gas species to particulate species such as aerosols and cloud liquid water. Ionospheric electron density is sensed as well. The methods all share the key properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultation data are thus of high value in a wide range of fields including climate monitoring and research, atmospheric physics and chemistry, operational meteorology, and other fields such as space weather and planetary science. This wide area of variants and uses of the occultation method has led to a diversi­ fication of the occultation-related scientific community into a...

  3. Loss rates of Europa's tenuous atmosphere

    Science.gov (United States)

    Lucchetti, Alice; Plainaki, Christina; Cremonese, Gabriele; Milillo, Anna; Cassidy, Timothy; Jia, Xianzhe; Shematovich, Valery

    2016-10-01

    Loss processes in Europa's tenuous atmosphere are dominated by plasma-neutral interactions. Based on the updated data of the plasma conditions in the vicinity of Europa (Bagenal et al. 2015), we provide estimations of the atmosphere loss rates for the H2O, O2 and H2 populations. Due to the high variability of the plasma proprieties, we perform our investigation for three sample plasma environment cases identified by Bagenal et al. as hot/low density, cold/high density, and an intermediate case. The role of charge-exchange interactions between atmospheric neutrals and three different plasma populations, i.e. magnetospheric, pickup, and ionospheric ions, is examined in detail. Our assumptions related to the pickup and to the ionospheric populations are based on the model by Sittler et al. (2013). We find that O2-O2+ charge-exchange is the fastest loss process for the most abundant atmospheric species O2, though this loss process has been neglected in previous atmospheric models. Using both the revised O2 column density obtained from the EGEON model (Plainaki et al., 2013) and the current loss rate estimates, we find that the upper limit for the volume integrated loss rate due to O2-O2+ charge exchange is in the range (13-51)×1026 s-1, depending on the moon's orbital phase and illumination conditions. The results of the current study are relevant to the investigation of Europa's interaction with Jupiter's magnetospheric plasma.

  4. Atmospheric predictability revisited

    Directory of Open Access Journals (Sweden)

    Lizzie S. R. Froude

    2013-06-01

    Full Text Available This article examines the potential to improve numerical weather prediction (NWP by estimating upper and lower bounds on predictability by re-visiting the original study of Lorenz (1982 but applied to the most recent version of the European Centre for Medium Range Weather Forecasts (ECMWF forecast system, for both the deterministic and ensemble prediction systems (EPS. These bounds are contrasted with an older version of the same NWP system to see how they have changed with improvements to the NWP system. The computations were performed for the earlier seasons of DJF 1985/1986 and JJA 1986 and the later seasons of DJF 2010/2011 and JJA 2011 using the 500-hPa geopotential height field. Results indicate that for this field, we may be approaching the limit of deterministic forecasting so that further improvements might only be obtained by improving the initial state. The results also show that predictability calculations with earlier versions of the model may overestimate potential forecast skill, which may be due to insufficient internal variability in the model and because recent versions of the model are more realistic in representing the true atmospheric evolution. The same methodology is applied to the EPS to calculate upper and lower bounds of predictability of the ensemble mean forecast in order to explore how ensemble forecasting could extend the limits of the deterministic forecast. The results show that there is a large potential to improve the ensemble predictions, but for the increased predictability of the ensemble mean, there will be a trade-off in information as the forecasts will become increasingly smoothed with time. From around the 10-d forecast time, the ensemble mean begins to converge towards climatology. Until this point, the ensemble mean is able to predict the main features of the large-scale flow accurately and with high consistency from one forecast cycle to the next. By the 15-d forecast time, the ensemble mean has lost

  5. US-Total Electron Content Product (USTEC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Total Electron Content (US-TEC) product is designed to specify TEC over the Continental US (CONUS) in near real-time. The product uses a Kalman Filter data...

  6. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  7. Molecular Electronics

    OpenAIRE

    Heath, James R.

    2009-01-01

    Molecular electronics describes the field in which molecules are utilized as the active (switching, sensing, etc.) or passive (current rectifiers, surface passivants) elements in electronic devices. This review focuses on experimental aspects of molecular electronics that researchers have elucidated over the past decade or so and that relate to the fabrication of molecular electronic devices in which the molecular components are readily distinguished within the electronic properties of the de...

  8. Engineered phages for electronics.

    Science.gov (United States)

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications.

  9. Atomic and electronic structure of exfoliated black phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  10. Atomic and electronic structure of exfoliated black phosphorus

    International Nuclear Information System (INIS)

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO3 or H3PO3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time

  11. Solar activity impact on the Earth's upper atmosphere

    Science.gov (United States)

    Kutiev, Ivan; Tsagouri, Ioanna; Perrone, Loredana; Pancheva, Dora; Mukhtarov, Plamen; Mikhailov, Andrei; Lastovicka, Jan; Jakowski, Norbert; Buresova, Dalia; Blanch, Estefania; Andonov, Borislav; Altadill, David; Magdaleno, Sergio; Parisi, Mario; Miquel Torta, Joan

    2013-02-01

    The paper describes results of the studies devoted to the solar activity impact on the Earth's upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV) radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  12. Solar activity impact on the Earth’s upper atmosphere

    Directory of Open Access Journals (Sweden)

    Parisi Mario

    2013-02-01

    Full Text Available The paper describes results of the studies devoted to the solar activity impact on the Earth’s upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action. Aim: The aim of the paper is to represent results coming from different research groups in a unified form, aligning their specific topics into the general context of the subject. Methods: The methods used in the paper are based on data-driven analysis. Specific databases are used for spectrum analysis, empirical modeling, electron density profile reconstruction, and forecasting techniques. Results: Results are grouped in three sections: Medium- and long-term ionospheric response to the changes in solar and geomagnetic activity, storm-time ionospheric response to the solar and geomagnetic forcing, and modeling and forecasting techniques. Section 1 contains five subsections with results on 27-day response of low-latitude ionosphere to solar extreme-ultraviolet (EUV radiation, response to the recurrent geomagnetic storms, long-term trends in the upper atmosphere, latitudinal dependence of total electron content on EUV changes, and statistical analysis of ionospheric behavior during prolonged period of solar activity. Section 2 contains a study of ionospheric variations induced by recurrent CIR-driven storm, a case-study of polar cap absorption due to an intense CME, and a statistical study of geographic distribution of so-called E-layer dominated ionosphere. Section 3 comprises empirical models for describing and forecasting TEC, the F-layer critical frequency foF2, and the height of maximum plasma density. A study evaluates the usefulness of effective sunspot number in specifying the ionosphere state. An original method is presented, which retrieves the basic thermospheric parameters from ionospheric sounding data.

  13. Computational solution of atmospheric chemistry problems

    Science.gov (United States)

    Jafri, J.; Ake, R. L.

    1986-01-01

    Extensive studies were performed on problems of interest in atmospheric chemistry. In addition to several minor projects, four major projects were performed and described (theoretical studies of ground and low-lying excited states of ClO2; ground and excited state potential energy surfaces of the methyl peroxy radical; electronic states ot the FO radical; and theoretical studies S02 (H2O) (sub n)).

  14. Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge

    Institute of Scientific and Technical Information of China (English)

    Shang Wan-Li; Zhang Yuan-Tao; Wang De-Zhen; Sang Chao-Feng; Jiang shao-En; Yang Jia-Min; Liu shen-Ye; M.G.Kong

    2011-01-01

    This paper performs a numerical simulation of concentric-ring discharge structures within the scope of a two-dimensional diffusion-drift model at atmospheric pressure between two parallel circular electrodes covered with thin dielectric layers. With a relative high frequency the discharge structures present different appearances of ring structures within different radii in time due to the evolvement of the filaments. The spontaneous electron density distributions help understanding the formation and development of seff-organized discharge structures. During a cycle the electron avalanches are triggered by the electric field strengthened by the feeding voltage and the residual charged particles on the barrier surface deposited in the previous discharges. The accumulation of charges is shown to play a dominant role in the generation and annihilation of the discharge structures. Besides, the rings split and unify to bring and annihilate rings which form a new discharge structure.

  15. Reconstruction of Atmospheric Neutrinos in Antares

    CERN Document Server

    Heijboer, Aart

    2009-01-01

    In May 2008, the Antares neutrino telescope was completed at 2.5 km depth in the Mediterranean Sea; data taking has been going on since. A prerequisite for neutrino astronomy is an accurate reconstruction of the neutrino events, as well as a detailed understanding of the atmospheric muon and neutrino backgrounds. Several methods have been developed to confront the challenges of muon reconstruction in the sea water environment, which are posed by e.g. backgrounds due to radioactivity and bioluminescence. I will discuss the techniques that allowed Antares to confidently identify its first neutrino events, as well as recent results on the measurement of atmospheric neutrinos.

  16. Stroke due to Hematologic Aspects

    Institute of Scientific and Technical Information of China (English)

    刘泽霖

    2004-01-01

    @@ Stroke due to ‘cerebral vein thrombosis' (CVT) is commonly used to refer to thrombosis of the cerebral venous system, including either dural venous sinuses, or deep and superficial (cortical) cerebral veins. CVT are frightening events due to the severity of their clinical manifestations and their high mortality rate (up to 30% in some casereports).The clinical signs and symptoms of CVT are relatively nonspecific: they include headache, papilledema, vomiting,seizures, focal neurological deficits (motor or sensory) and impaired consciousness. CVT has long been considered as rare and mostly infection-related event; moreover, due to its nonspecific clinical manifestations, the diagnosis has been difficult, delayed and could often be made only post mortem.

  17. Atmospheric Laser Communication.

    Science.gov (United States)

    Fischer(, Kenneth W.; Witiw, Michael R.; Baars+, Jeffrey A.; Oke, T. R.

    2004-05-01

    Atmospheric laser communication, often referred to as free-space optics (FSO) or free-space laser (FSL) communication, is similar to fiber optic cable in terms of carrier wavelength and bandwidth capability, but data are transmitted directly through the atmosphere via laser beams over paths from a few meters to 4 km or longer. FSL uses lasers in the near-infrared spectrum, typically at wavelengths of 850 or 1550 nm. Given these wavelengths, atmospheric attenuation must be considered, and an adequate margin of optical power (dB) must exist to support high system availability (the percentage of time that an FSL link is in operation, typically 99.9%). A visual range of 100 m can attenuate a laser beam at a rate of nearly 130 dB km-1. For short links (rain, and snow frequently become issues. To address these issues, long-term climate data are analyzed to determine the frequency of occurrence of low visibilities and low-cloud ceilings. To estimate availability at a site of interest, adjustments to airport climate data are made to accommodate differences in altitude, geography, and the effects of the urban heat island. In sum, communication via FSL is a feasible alternative to fiber optic cable when atmospheric conditions are considered and properly analyzed.(Current affiliation: The Boeing Company, Seattle, Washington+Current affiliation: Department of Atmospheric Sciences, University of Washington, Seattle, Washington

  18. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2007-08-01

    Full Text Available Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP. Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes <68 km for all locations, above which WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  19. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    Science.gov (United States)

    Rodger, C. J.; Enell, C.-F.; Turunen, E.; Clilverd, M. A.; Thomson, N. R.; Verronen, P. T.

    2007-08-01

    Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP). Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR) and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC) model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  20. Long-term trends in the middle atmosphere dynamics at northern middle latitudes – one regime or two different regimes?

    Directory of Open Access Journals (Sweden)

    J. Lastovicka

    2010-02-01

    Full Text Available Due to increasing atmospheric concentration of greenhouse gases and changing stratospheric ozone concentration, both of anthropogenic origin, various quantities in the middle atmosphere reveal long-term changes and trends. Lastovicka and Krizan (2006 indicated possibility of change of trends in the dynamics in the northern midlatitude middle atmosphere as a whole in the 1990s. To search for such change of trends we use data on winds in the mesopause region, on total columnar ozone, on ozone laminae, on winds in the middle and lower stratosphere, and on peak electron density in the E region of the ionosphere. One group of quantities, the mesopause region wind-like trends, changes their trends around 1990, the other one, the total ozone-like trends, in the mid-1990s. Altogether they create a skeleton of scenario of the change of the middle atmosphere dynamics trends in the 1990s. Drivers of these changes appear to be different for the first group and for the second group. Tropospheric processes seem to play a role in the changes of trends in middle atmospheric dynamics.