WorldWideScience

Sample records for atmospheric control systems

  1. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    Science.gov (United States)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  2. Controlled atmosphere and temperature treatment system to disinfest fruit moth, Carposina sasakii (Lepidoptera: Carposinidae) on apples.

    Science.gov (United States)

    Son, Yerim; Chon, Ikjo; Neven, Lisa; Kim, Yonggyun

    2012-10-01

    Carposina sasakii Matsumura (Lepidoptera: Carposinidae) is a serious pest of apples and peaches in Korea and Japan. Because of its limited distribution, C. sasakii has been identified as a quarantine pest in several countries. The Controlled Atmosphere/Temperature Treatment System (CATTS) was tested as an alternative to methyl bromide fumigation to control C. sasakii in apples. The fifth instar was the most tolerant immature stage to a heat treatment of 44 degrees C for 20 min. When the apples infested with different stages of C. sasakii were treated under CATTS conditions (heating rate of 16 degrees C/h, chamber temperature of 46 degrees C, final core temperature of 44 degrees C under 1% O2/15% CO2 atmosphere), young larvae (first-fourth instars) did not survive after 40 min exposure, but the fifth instars required an exposure of at least 60 min to attain 100% mortality. A partial heat shock protein 90 (hsp90) was cloned and showed inducible expression in response to heat shock at 44 degrees C. CATTS suppressed transcription of the hsp90 gene. Apples did not show any appreciable loss of quality in relation to fruit firmness, sweetness, and decay after a 60 min CATTS treatment. These results suggest that CATTS can be applicable to control C. sasakii in apples.

  3. Laser system for remote sensing monitoring of air pollution and quality control of the atmosphere

    Directory of Open Access Journals (Sweden)

    Belić Ilija

    2012-01-01

    Full Text Available Monitoring of the atmosphere and determination of the types and amounts of pollutants is becoming more important issue in complex and global monitoring of the environment. On the geocomponent and geocomplex level problem of monitoring the environment is attracting the attention of the scientific experts of different profiles (chemists, physicists, geographers, biologists, meteorologists, both in the national and international projects. Because of the general characteristics of the Earth's atmosphere (Dynamically Ballanced Instability DBI and the potential contribution to climate change solutions air-pollution monitoring has become particularly important field of environmental research. Control of aerosol distribution over Europe is enabled by EARLINET systems (European Aerosol Lidar NETwork. Serbia’s inclusion into these European courses needs development of the device, the standardization of methods and direct activity in determining the type, quantity and location of aerosol. This paper is analyzing the first step in the study of air-pollution, which is consisted of the realization of a functional model of LIDAR remote sensing devices for the large particle pollutants.

  4. Performance of controlled atmosphere/heating block systems for assessing insect thermotolerance

    Science.gov (United States)

    Heated controlled atmosphere (CA) treatments have potential as alternatives to chemical fumigation for disinfesting postharvest stored products. To determine accurately the minimal thermal requirements to kill target insects over a wide range of temperatures and CA conditions, it is desirable to dev...

  5. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  6. Method and system for control of upstream flowfields of vehicle in supersonic or hypersonic atmospheric flight

    Science.gov (United States)

    Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)

    2012-01-01

    The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.

  7. Control of ROS and RNS productions in liquid in atmospheric pressure plasma-jet system

    Science.gov (United States)

    Uchida, Giichiro; Ito, Taiki; Takenaka, Kosuke; Ikeda, Junichiro; Setsuhara, Yuichi

    2016-09-01

    Non-thermal plasma jets are of current interest in biomedical applications such as wound disinfection and even treatment of cancer tumors. Beneficial therapeutic effects in medical applications are attributed to excited species of oxygen and nitrogen from air. However, to control the production of these species in the plasma jet is difficult because their production is strongly dependent on concentration of nitrogen and oxygen from ambient air into the plasma jet. In this study, we analyze the discharge characteristics and the ROS and RNS productions in liquid in low- and high-frequency plasma-jet systems. Our experiments demonstrated the marked effects of surrounding gas near the plasma jet on ROS and RNS productions in liquid. By controlling the surround gas, the O2 and N2 main plasma jets are selectively produced even in open air. We also show that the concentration ratio of NO2- to H2O2 in liquid is precisely tuned from 0 to 0.18 in deionized water by changing N2 gas ratio (N2 / (N2 +O2)) in the main discharge gas, where high NO2- ratio is obtained at N2 gas ratio at N2 / (N2 +O2) = 0 . 8 . The low-frequency plasma jet with controlled surrounding gas is an effective plasma source for ROS and RNS productions in liquid, and can be a useful tool for biomedical applications. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  8. A computer controlled mass spectrometer system for investigating the decomposition of non-metallic materials under atmospheric conditions

    Science.gov (United States)

    Thompson, J. M.

    1985-01-01

    A PDP 11/23 quadrupole mass spectrometer system was coupled to a nondiscriminating gas inlet system permitting gases at atmospheric pressure to be admitted into a high vacuum chamber containing the ion source of the mass spectrometer without separation of the gaseous components. The resolution of related software problems has resulted in a convenient computer-mass spectrometer system capable of generating masses, relative intensities and related data on the gaseous products resulting from the atmospheric thermal decomposition of nonmetallic materials.

  9. Technical Update: Johnson Space Center system using a solid electrolytic cell in a remote location to measure oxygen fugacities in CO/CO2 controlled-atmosphere furnaces

    Science.gov (United States)

    Jurewicz, A. J. G.; Williams, R. J.; Le, L.; Wagstaff, J.; Lofgren, G.; Lanier, A.; Carter, W.; Roshko, A.

    1993-01-01

    Details are given for the design and application of a (one atmosphere) redox-control system. This system differs from that given in NASA Technical Memorandum 58234 in that it uses a single solid-electrolytic cell in a remote location to measure the oxygen fugacities of multiple CO/CO2 controlled-atmosphere furnaces. This remote measurement extends the range of sample-furnace conditions that can be measured using a solid-electrolytic cell, and cuts costs by extending the life of the sensors and by minimizing the number of sensors in use. The system consists of a reference furnace and an exhaust-gas manifold. The reference furnace is designed according to the redox control system of NASA Technical Memorandum 58234, and any number of CO/CO2 controlled-atmosphere furnaces can be attached to the exhaust-gas manifold. Using the manifold, the exhaust gas from individual CO/CO2 controlled atmosphere furnaces can be diverted through the reference furnace, where a solid-electrolyte cell is used to read the ambient oxygen fugacity. The oxygen fugacity measured in the reference furnace can then be used to calculate the oxygen fugacity in the individual CO/CO2 controlled-atmosphere furnace. A BASIC computer program was developed to expedite this calculation.

  10. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems

    Institute of Scientific and Technical Information of China (English)

    FU; Shenglei; Howard; Ferris

    2006-01-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting.The shoot-to-root ratios were not significantly different between two CO2 levels.

  11. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    Science.gov (United States)

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.

  12. Atmospheric Optical Communication Systems.

    Science.gov (United States)

    1981-02-01

    Tnteral system noise due to dark current id is Oven by . 1d = 2qGrB"" (2-9) Dark current is due to detecor biasing in some instances, and in somue...8217 without extansive pro- gr-=:ing exer’ence. Although. the znodel is designed to be Lteracdve, slight mod-.- i~cadons winl ezw :&31 r~ing of the progrsm

  13. Atmospheric cloud physics thermal systems analysis

    Science.gov (United States)

    1977-01-01

    Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.

  14. Tropical Controls on the CO2 Atmospheric Growth Rate 2010-2011 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    Science.gov (United States)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Lee, M.; Menemenlis, D.; Gierach, M. M.; Brix, H.; Gurney, K. R.; Collatz, G. J.; Bousserez, N.; Henze, D. K.

    2014-12-01

    Interannual variations in the atmospheric growth rate of CO2 have been attributed to the tropical regions and the controls are correlated with temperature anomalies. We investigate the spatial drivers of the atmospheric growth rate and the processes controlling them over the exceptional period of 2010-2011. This period was marked by a marked shift from an El Nino to La Nina period resulting in historically high sea surface temperature anomalies in the tropical Atlantic leading to serious droughts in the Amazon. However, in 2011, unusual precipitation in Australia was linked to gross primary productivity anomalies in semi-arid regions. We use satellite observations of CO2, CO, and solar induced fluorescence assimilated into the NASA Carbon Monitoring System Project (CMS-Flux) to attribute the atmospheric growth rate to global, spatially resolved fluxes. This system is based upon observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2­-Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model. The system is used to compute regional tropical and extra-tropical fluxes and quantify the role of biomass burning and gross primary productivity in controlling those fluxes.

  15. Improved methodology for generating controlled test atmospheres.

    Science.gov (United States)

    Miller, R R; Letts, R L; Potts, W J; McKenna, M J

    1980-11-01

    Improved methodology has been developed for generating controlled test atmospheres. Vaporization of volatile liquids is accomplished in a 28 mm (O.D.) glass J-tube in conjunction with a compressed air flameless heat torch, a pressure-sensitive switch, and a positive displacement piston pump. The vaporization system has been very reliable with a variety of test materials in studies ranging from a few days to several months. The J-tube vaporization assembly minimizes the possibility of thermal decomposition of the test material and affords a better margin of safety when vaporizing potentially explosive materials.

  16. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  17. Climate change and climate systems influence and control the atmospheric dispersion of desert dust: implications for human health

    Science.gov (United States)

    Griffin, Dale W.; Ragaini, Richard C.

    2010-01-01

    The global dispersion of desert dust through Earth’s atmosphere is greatly influenced by temperature. Temporal analyses of ice core data have demonstrated that enhanced dust dispersion occurs during glacial events. This is due to an increase in ice cover, which results in an increase in drier terrestrial cover. A shorter temporal analysis of dust dispersion data over the last 40 years has demonstrated an increase in dust transport. Climate systems or events such as the North Atlantic Oscillation, the Indian Ocean subtropical High, Pacific Decadal Oscillation, and El Nino-Sothern Oscillation are known to influence global short-term dust dispersion occurrence and transport routes. Anthropogenic influences on dust transport include deforestation, harmful use of topsoil for agriculture as observed during the American Dust Bowl period, and the creation of dry seas (Aral Sea) and lakes (Lake Owens in California and Lake Chad in North Africa) through the diversion of source waters (for irrigation and drinking water supplies). Constituents of desert dust both from source regions (pathogenic microorganisms, organic and inorganic toxins) and those scavenged through atmospheric transport (i.e., industrial and agricultural emissions) are known to directly impact human and ecosystem health. This presentation will present a review of global scale dust storms and how these events can be both a detriment and benefit to various organisms in downwind environments.

  18. Current submarine atmosphere control technology.

    Science.gov (United States)

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application.

  19. Controlled atmosphere bench-scale calorimetry revisited

    OpenAIRE

    Brohez, Sylvain; Fourneau, C.; Marlair, Guy; Breulet, Hervé

    2007-01-01

    International audience; The standard Cone Calorimeter has been designed with an "open configuration", allowing for testing of specimens through use of freely driven room air for combustion. For testing specimens in oxygen depleted atmospheres or in fuel rich combustion a modified apparatus working under controlled atmosphere can be used. To our Knowledge there is very few publications describing the use of such modified cone calorimeters and providing data regarding the effect of ventilation ...

  20. Ocean versus atmosphere control on western European wintertime temperature variability

    Science.gov (United States)

    Yamamoto, Ayako; Palter, Jaime B.; Lozier, M. Susan; Bourqui, Michel S.; Leadbetter, Susan J.

    2015-12-01

    Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western European cities, using a Lagrangian atmospheric dispersion model driven with meteorological reanalysis data. The material time rate of change in potential temperature and the surface turbulent fluxes computed along the trajectory show a high degree of correlation, revealing a dominant control of ocean-atmosphere heat and moisture exchange in setting heat flux variability for atmospheric particles en route to western Europe. We conduct six idealised simulations in which one or more aspects of the climate system is held constant at climatological values and these idealised simulations are compared with a control simulation, in which all components of the climate system vary realistically. The results from these idealised simulations suggest that knowledge of atmospheric pathways is essential for reconstructing the interannual variability in heat flux and western European wintertime temperature, and that variability in these trajectories alone is sufficient to explain at least half of the internannual flux variability. Our idealised simulations also expose an important role for sea surface temperature in setting decadal scale variability of air-sea heat fluxes along the Lagrangian pathways. These results are consistent with previous studies showing that air-sea heat flux variability is driven by the atmosphere on interannual time scales over much of the North Atlantic, whereas the SST plays a leading role on longer time scales. Of particular interest is that the atmospheric control holds for the integrated fluxes along 10-day back trajectories from western Europe on an interannual time scale, despite that many of these trajectories pass over the Gulf Stream and its North Atlantic

  1. Design of Distributed Control System of Atmosphere Controlled Truck Based on CAN Bus%基于CAN总线的果蔬气调保鲜运输车分布式控制系统设计

    Institute of Scientific and Technical Information of China (English)

    王广海; 夏晶晶; 吕恩利; 陆华忠; 李鹏飞

    2016-01-01

    为实现果蔬气调保鲜运输车厢内环境的智能调控,减少电磁干扰对控制系统的影响,提高系统运行的稳定性,设计了基于CAN总线的果蔬气调保鲜运输车分布式控制系统,搭建了由1个主控制器节点和4个通讯节点构成的测试平台,分析了各节点的硬件电路和CAN总线通信协议,开展了CAN总线通讯试验,结果表明:控制系统CAN总线通讯良好,当系统通讯速率为100 kbps,数据包发送时间间隔为0.1 s的条件下,接收和发送数据丢包率均低于0.004%,错误率均为0%,系统运行稳定,可靠性强,实现了气调保鲜环境参数的智能调控。试验结果为果蔬冷链物流装备智能控制系统的设计提供参考。%To achieve the intelligent control of atmosphere environment inside the refrigerated compartment, reduce the impact of electromagnetic interference on the control system, and improve system stability, designed the distributed control system of atmosphere controlled truck based on CAN bus, set up the test platform by a host controller node and four communications nodes, analyzed each node's hardware and CAN bus communication protocol, carried out the CAN bus communication test. The results showed that:the CAN bus communication run well. The packet loss rate of receive and send data was less than 0.004%, and the error rate was 0% when setting the system communication speed to 100kbps, and the data packet transmission to every 0.1s. The system run stability and reliability, achieved the intelligent control of atmosphere environment. The test results provided a reference for the design of intelligent control system on fruits and vegetables cold chain equipment.

  2. International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

    Science.gov (United States)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.

  3. Microprocessor-controlled laser tracker for atmospheric sensing

    Science.gov (United States)

    Johnson, R. A.; Webster, C. R.; Menzies, R. T.

    1985-01-01

    An optical tracking system comprising a visible HeNe laser, an imaging detector, and a microprocessor-controlled mirror, has been designed to track a moving retroreflector located up to 500 m away from an atmospheric instrument and simultaneously direct spectrally tunable infrared laser radiation to the retroreflector for double-ended, long-path absorption measurements of atmospheric species. The tracker has been tested during the recent flight of a balloon-borne tunable diode laser absorption spectrometer which monitors the concentrations of stratospheric species within a volume defined by a 0.14-m-diameter retroreflector lowered 500 m below the instrument gondola.

  4. Atmospheric Cloud Physics Laboratory thermal control

    Science.gov (United States)

    Moses, J. L.; Fogal, G. L.; Scollon, T. R., Jr.

    1978-01-01

    The paper presents the development background and the present status of the Atmospheric Cloud Physics Laboratory (ACPL) thermal control capability. The ACPL, a Spacelab payload, is currently in the initial flight hardware development phase for a first flight scheduled in June 1981. The ACPL is intended as a facility for conducting a wide variety of cloud microphysics experimentation under zero gravity conditions. The cloud chambers, which are key elements of the ACPL, have stringent thermal requirements. Thus the expansion chamber inner walls must be uniform to within + or - 0.1 C during both steady-state and transient operation over a temperature range of +30 to -25 C. Design progression of the expansion chamber, from early in-house NASA-MSFC concepts (including test results of a prototype chamber) to a thermal control concept currently under development, is discussed.

  5. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  6. 49 CFR 193.2627 - Atmospheric corrosion control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive...

  7. Atmospheric oxygen concentration controls the size history of foraminifers

    Science.gov (United States)

    Payne, J.; Jost, A. B.; Ouyang, X.; Skotheim, J. M.; Wang, S. C.

    2010-12-01

    Body size correlates with numerous physiological traits and thus influences organism fitness. However, long-term controls on size evolution remain poorly understood because few datasets spans sufficiently long intervals. One proposed controlling factor is variation in atmospheric oxygen, which is widely argued to have influenced size evolution in numerous taxa, notably gigantism in arthropods during the late Paleozoic. In this study, we compiled a comprehensive genus- and species-level size database of foraminifers (marine protists) to enable an extensive analysis of factors influencing size evolution. Foraminifers are an ideal study group because they are present in all Phanerozoic periods and have been diverse and abundant in shallow-marine habitats since Devonian time. We observe significant correlation between foraminiferan size and atmospheric oxygen concentration in foraminifers as a whole and in half of the major subclades. Larger size is associated with higher oxygen concentrations, as predicted by simple physiological models based on changes in the ratio of surface area to volume. Because the oxygen content ocean waters is controlled in part by atmospheric pO2, we interpret the association between foraminiferan size and pO2 to result from a direct physiological effect of oxygen availability. Atmospheric oxygen concentration predicts foraminiferan size better than six other Phanerozoic time series (pCO2, sea level, number of named geological formations, δ18O, δ13C, 87Sr/86Sr), further suggesting the correlation between oxygen and size does not occur simply through some common geological cause that influences many aspects of Earth system history. These findings support the hypothesis that widespread Permo-Carboniferous gigantism was enabled by high pO2 and suggest that oxygen availability has been among the most important influences on size evolution through Phanerozoic time.

  8. Analytical Models of Exoplanetary Atmospheres: Atmospheric Dynamics via the Shallow Water System

    CERN Document Server

    Heng, Kevin

    2014-01-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical and spherical), rotation, magnetic tension and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag and magnetic drag) and magnetic tension are included. The global atmospheric structure is largely controlled by a single, key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag varies significantly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulatio...

  9. Analysis and control of nitriding and nitrocarburizing atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Sproge, L. [AGA AB Lidingo (Sweden); Midea, S.J. [AGA Gas, Inc., Cleveland, OH (United States)

    1995-12-31

    This paper is a summary of research on control parameters and the factors which influence formation of compound layers in the nitriding and ferritic nitrocarburizing processes. The major gas-exchange reactions, mass-transfer mechanisms, and their kinetics are discussed for both these processes. Carbon, nitrogen and oxygen activities are calculated as a function of atmosphere gas composition. These activities are compared to experimental values and the obtained microstructures are analyzed. Development of a control scheme for these processes has been hindered both by a fundamental understanding of the atmosphere kinetics and a reliable means of monitoring the atmosphere. However, today there are possibilities to control such an atmosphere by means of an oxygen probe, utilizing software to calculate the atmosphere activities based upon the incoming gas mixture, temperature, and probe millivolt signal.

  10. State of the art incubator for controlled atmosphere studies

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose

    1998-01-01

    A state of the art incubator for studies of the biological effect of controlled atmosphere was designed. Working conditions are all combinations of: Temperature (5 to 40°C), Humidity (25 to 98%), oxygen (0.1 to 30%) and nitrogen (0.1 to 50%). Several points were given specific considerations...... without interfering with the atmosphere inside the chamber....

  11. Atmospheric Profiling Snthetic observation System(APSOS) - a system for whole atmosphere, purpose and preliminary observation

    Science.gov (United States)

    Lu, Daren; Pan, Weilin; Wang, Yinan

    2016-07-01

    To understand the vertical coupling processes between the troposphere, stratosphere, mesosphere and lower thermosphere with high vertical resolution and temporal resolution, an observation system consisted of multi-lidars, a W-band Doppler radar, and a THz spectrometer has been developing starting from 2012. This system is developed to observer the multiple atmospheric parameters, include high clouds, aerosols, CO2, SO2, NO2, water vapor, ozone, atmospheric temperature and wind, sodium atomic layer, in different height ranges, with vertical resolution of tens to hundreds meters and temporal resolution of several to tens minutes. In addition, the simultaneous observation with high cloud radar will enhance the ability of quantitative retrieval of middle and upper atmospheric observation with combined retrieval of cloud micro-physical characteristics and other atmospheric parameters above the cloud layer. As the cirrus cloud occupied about 50% of earth coverage, this ability will increase the whole atmosphere observation ability obviously. During last 5 years. We have finished each unit of the system and have revealed their targets separately. Temperature profile has been observed from 30 to 110 km, ozone up to 50 km, etc. In spring of 2016, we will have preliminary integrated observation in Eastern China, the Huainan Observatory of the Institute of Atmospheric Physics, CAS. In the end of 2016, the system will be implemented at Yangbajing Cosmic Ray Observatory, CAS, near Lasa, Tibetan Plateau. Some preliminary results from Huainan observation will be presented in this presentation. This project is founded by NSFC.

  12. Coupled Human-Atmosphere-System Thinking

    Science.gov (United States)

    Schmale, Julia; Chabay, Ilan

    2014-05-01

    minimize atmospheric release, but rather only complies with either climate or air quality requirements. Nor do current narratives promote behavioral change for the overall reduction of emissions (e.g., you can drive your diesel SUV as long as it has a low fuel consumption). This divide and thinking has not only been manifested in policy and regulations and hence media coverage, but has also shaped the public's general perception of this issue. There is no public conceptual understanding regarding humanity's modification of the atmosphere through the continuously and simultaneously released substances by almost any kind of activity and resulting impacts. Here, we propose a conceptual framework that provides a new perspective on the coupled human-atmosphere-system. It makes tangible the inherent linkages between the socio-economic system, the atmospheric physico-chemical changes and impacts, and legal frameworks for sustainable transformations at all levels. To implement HAS-thinking in decision and policy making, both salient disciplinary and interdisciplinary research and comprehensive science-society interactions in the form of transdisciplinary research are necessary. Societal transformations for the sake of a healthy human-atmosphere relationship are highly context dependent and require discussions of normative and value-related issues, which can only be solved through co-designed solutions. We demonstrate the importance of HAS-thinking by examples of sustainable development in the Arctic and Himalayan countries.

  13. Satellite Formation Control Using Atmospheric Drag

    Science.gov (United States)

    2007-03-01

    all cases tested, and the eccentricity-minimizing control law was able to maintain the position within 4.17 feet. More recently, Wedekind considered...three different formations, in-plane, in-track, and circular, was considered. Wedekind achieved favorable results for these three formations when the...and Kluwer Academic Publishers, 2004. 23. Wedekind , James T. Characterizing and Controlling the Effects of Differential Drag on Satellite Formations

  14. Atmosphere Resource Recovery and Environmental Monitoring Trace Contaminant Control Through FY 2012

    Science.gov (United States)

    Perry, J. L.; Pruitt, M. W.; Wheeler, R. M.; Monje, O.

    2013-01-01

    Trace contaminant control has been a concern of spacecraft designers and operators from early in the progression of manned spaceflight. Significant technological advancement has occurred since the first designs were implemented in the 1960s, culminating in the trace contaminant control system currently in use aboard the International Space Station as part of the atmosphere revitalization system.

  15. Environmental control technology for atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M; Albanese, A S

    1980-01-01

    The impact of fossil fuel use in the United States on worldwide CO/sub 2/ emissions and the impact of increased coal utilization on CO/sub 2/ emission rates are assessed. The aspects of CO/sub 2/ control are discussed as well as the available CO/sub 2/ control points (CO/sub 2/ removal sites). Two control scenarios are evaluated, one based on the absorption of CO/sub 2/ contained in power plant flue gas by seawater; the other, based on absorption of CO/sub 2/ by MEA (Mono Ethanol Amine). Captured CO/sub 2/ is injected into the deep ocean in both cases. The analyses indicate that capture and disposal by seawater is energetically not feasible, whereas capture and disposal using MEA is a possibility. However, the economic penalities of CO/sub 2/ control are significant. The use of non-fossil energy sources, such as hydroelectric, nuclear or solar energy is considered as an alternative for limiting and controlling CO/sub 2/ emissions resulting from fossil energy usage.

  16. Quality-Controlled Underway Oceanographic and Meteorological Data from the Center for Ocean-Atmospheric Predictions Center (COAPS) - Shipboard Automated Meteorological and Oceanographic System (SAMOS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florida State University has been operating a data assembly center (DAC) to collect, quality evaluate, and distribute Shipboard Automated Meteorological and...

  17. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  18. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    Science.gov (United States)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  19. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  20. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  1. Atmospheric Pressure Plasma Based Flame Control and Diagnostics

    Science.gov (United States)

    2015-01-01

    TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Atmospheric Pressure Plasma Based Flame Control and Diagnostics 5a...to 10%)  Flame speed enhancement (>20%)  Extension of lean limit (factor of two)  Distributed ignition  Development of new diagnostics

  2. Tactical Atmospheric Modeling System-Real Time (TAMS-RT)

    Science.gov (United States)

    2016-06-07

    mesoscale model analysis and forecast fields as inputs. OBJECTIVES Support the NRL Tactical Atmospheric Modeling System- Real Time (TAMS-RT) installed in...SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Tactical Atmospheric Modeling System- Real Time (TAMS...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 1 Tactical Atmospheric Modeling System- Real

  3. Sensory profile of 'Douradao' peaches cold stored under controlled atmosphere

    OpenAIRE

    de Santana, LRR; Benedetti, BC; Sigrist, JMM

    2011-01-01

    The sensory quality of 'Douradao' peaches cold stored in three different conditions of controlled atmosphere (CA1, CA2, CA3 and Control) was studied. After 14, 21 and 28 days of cold storage, samples were withdrawn from CA and kept for 4 days in ambient air for ripening. The sensory profile of the peaches and the descriptive terminology were developed by methodology based on the Quantitative Descriptive Analysis (QDA). The panelists consensually defined the sensory descriptors, their respecti...

  4. Controllability of Quantum Systems

    CERN Document Server

    Schirmer, S G; Solomon, A I

    2003-01-01

    An overview and synthesis of results and criteria for open-loop controllability of Hamiltonian quantum systems obtained using Lie group and Lie algebra techniques is presented. Negative results for open-loop controllability of dissipative systems are discussed, and the superiority of closed-loop (feedback) control for quantum systems is established.

  5. Digital Optical Control System

    Science.gov (United States)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  6. Discrete Control Systems

    CERN Document Server

    Lee, Taeyoung; McClamroch, N Harris

    2007-01-01

    Discrete control systems, as considered here, refer to the control theory of discrete-time Lagrangian or Hamiltonian systems. These discrete-time models are based on a discrete variational principle, and are part of the broader field of geometric integration. Geometric integrators are numerical integration methods that preserve geometric properties of continuous systems, such as conservation of the symplectic form, momentum, and energy. They also guarantee that the discrete flow remains on the manifold on which the continuous system evolves, an important property in the case of rigid-body dynamics. In nonlinear control, one typically relies on differential geometric and dynamical systems techniques to prove properties such as stability, controllability, and optimality. More generally, the geometric structure of such systems plays a critical role in the nonlinear analysis of the corresponding control problems. Despite the critical role of geometry and mechanics in the analysis of nonlinear control systems, non...

  7. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  8. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  9. Quantification of protein-derived thiols during atmosphere-controlled brewing in laboratory scale

    DEFF Research Database (Denmark)

    Murmann, Anne Nordmark; Andersen, Preben; Mauch, Alexander;

    2016-01-01

    An atmosphere-controlled brewing system was built to study thiol oxidation during brewing in laboratory scale under conditions with limited oxygen exposure. Quantification of free and total thiols and protein showed that thiols were lost during wort boiling possibly owing to protein precipitation...

  10. Controllability in nonlinear systems

    Science.gov (United States)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  11. Motion control systems

    CERN Document Server

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  12. International arctic systems for observing the atmosphere

    DEFF Research Database (Denmark)

    Uttal, Taneil; Starkweather, Sandra; Drummond, James R.;

    2016-01-01

    IASOA activities and partnerships were initiated as a part of the 2007-2009 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the U.S., Canada, Russia, N...

  13. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  14. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  15. Step Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  16. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2......To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide...

  17. Computerized atmospheric trace contaminant control simulation for manned spacecraft

    Science.gov (United States)

    Perry, J. L.

    1993-01-01

    Buildup of atmospheric trace contaminants in enclosed volumes such as a spacecraft may lead to potentially serious health problems for the crew members. For this reason, active control methods must be implemented to minimize the concentration of atmospheric contaminants to levels that are considered safe for prolonged, continuous exposure. Designing hardware to accomplish this has traditionally required extensive testing to characterize and select appropriate control technologies. Data collected since the Apollo project can now be used in a computerized performance simulation to predict the performance and life of contamination control hardware to allow for initial technology screening, performance prediction, and operations and contingency studies to determine the most suitable hardware approach before specific design and testing activities begin. The program, written in FORTRAN 77, provides contaminant removal rate, total mass removed, and per pass efficiency for each control device for discrete time intervals. In addition, projected cabin concentration is provided. Input and output data are manipulated using commercial spreadsheet and data graphing software. These results can then be used in analyzing hardware design parameters such as sizing and flow rate, overall process performance and program economics. Test performance may also be predicted to aid test design.

  18. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  19. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Geoffrey [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)

    2016-06-30

    The use of small unmanned aircraft systems (sUAS) with miniature sensor systems for atmospheric research is an important capability to develop. The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) project, lead by Dr. Gijs de Boer of the Cooperative Institute for Research in Environmental Sciences (CIRES- a partnership of NOAA and CU-Boulder), is a significant milestone in realizing this new potential. This project has clearly demonstrated that the concept of sUAS utilization is valid, and miniature instrumentation can be used to further our understanding of the atmospheric boundary layer in the arctic.

  20. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  1. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  2. Controllability of Discontinuous Systems

    OpenAIRE

    Veliov, V. M.; Krastanov, M.

    1988-01-01

    This report presents an approach to the local controllability problem for a discontinuous system. The approach is based on a concept of tangent vector field to a generalized dynamic system, which makes possible the differential geometry tools to be applied in the discontinuous case. Sufficient controllability conditions are derived.

  3. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  4. Common Control System Vulnerability

    Energy Technology Data Exchange (ETDEWEB)

    Trent Nelson

    2005-12-01

    The Control Systems Security Program and other programs within the Idaho National Laboratory have discovered a vulnerability common to control systems in all sectors that allows an attacker to penetrate most control systems, spoof the operator, and gain full control of targeted system elements. This vulnerability has been identified on several systems that have been evaluated at INL, and in each case a 100% success rate of completing the attack paths that lead to full system compromise was observed. Since these systems are employed in multiple critical infrastructure sectors, this vulnerability is deemed common to control systems in all sectors. Modern control systems architectures can be considered analogous to today's information networks, and as such are usually approached by attackers using a common attack methodology to penetrate deeper and deeper into the network. This approach often is composed of several phases, including gaining access to the control network, reconnaissance, profiling of vulnerabilities, launching attacks, escalating privilege, maintaining access, and obscuring or removing information that indicates that an intruder was on the system. With irrefutable proof that an external attack can lead to a compromise of a computing resource on the organization's business local area network (LAN), access to the control network is usually considered the first phase in the attack plan. Once the attacker gains access to the control network through direct connections and/or the business LAN, the second phase of reconnaissance begins with traffic analysis within the control domain. Thus, the communications between the workstations and the field device controllers can be monitored and evaluated, allowing an attacker to capture, analyze, and evaluate the commands sent among the control equipment. Through manipulation of the communication protocols of control systems (a process generally referred to as ''reverse engineering''), an

  5. Drone Control System

    Science.gov (United States)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  6. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  7. Digital flight control systems

    Science.gov (United States)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  8. Control Oriented System Identification

    Science.gov (United States)

    1993-08-01

    The research goals for this grant were to obtain algorithms for control oriented system identification is to construct dynamical models of systems...and measured information. Algorithms for this type of nonlinear system identification have been given that produce models suitable for gain scheduled

  9. IGISOL control system modernization

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, J., E-mail: jukka.ae.koponen@jyu.fi; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  10. Load Control System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  11. ISTTOK control system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Carvalho, Bernardo B.

    2013-10-15

    Highlights: •ISTTOK fast controller. •All real-time diagnostic and actuators were integrated in the control platform. •100 μs control cycle under the MARTe framework. •The ISTTOK control system upgrade provides reliable operation with an improved operational space. -- Abstract: The ISTTOK tokamak (Ip = 4 kA, BT = 0.5 T, R = 0.46 m, a = 0.085 m) is one of the few tokamaks with regular alternate plasma current (AC) discharges scientific programme. In order to improve the discharge stability and to increase the number of AC discharge cycles a novel control system was developed. The controller acquires data from 50 analog-to-digital converter (ADC) channels of real-time diagnostics and measurements: tomography, Mirnov coils, interferometer, electric probes, sine and cosine probes, bolometer, current delivered by the power supplies, loop voltage and plasma current. The system has a control cycle of 100 μs during which it reads all the diagnostics connected to the advanced telecommunications computing architecture (ATCA) digitizers and sends the control reference to ISTTOK actuators. The controller algorithms are executed on an Intel{sup ®} Q8200 chip with 4 cores running at 2.33 GHz and connected to the I/O interfaces through an ATCA based environment. The real-time control system was programmed in C++ on top of the Multi-threaded Application Real-Time executor (MARTe). To extend the duration of the AC discharges and the plasma stability a new magnetising field power supply was commissioned and the horizontal and vertical field power supplies were also upgraded. The new system also features a user-friendly interface based on HyperText Markup Language (HTML) and Javascript to configure the controller parameters. This paper presents the ISTTOK control system and the consequent update of real-time diagnostics and actuators.

  12. Controlled Microdroplet Transport in an Atmospheric Pressure Microplasma

    CERN Document Server

    Maguire, P D; Kelsey, C P; Bingham, A; Montgomery, E P; Bennet, E D; Potts, H E; Rutherford, D; McDowell, D A; Diver, D A; Mariotti, D

    2015-01-01

    We report the controlled injection of near-isolated micron-sized liquid droplets into a low temperature He-Ne steady-state rf plasma at atmospheric pressure. The H2O droplet stream is constrained within a 2 mm diameter quartz tube. Imaging at the tube exit indicates a log-normal droplet size distribution with an initial count mean diameter of 15 micrometers falling to 13 micrometers with plasma exposure. The radial velocity profile is approximately parabolic indicating near laminar flow conditions with the majority of droplets travelling at >75% of the local gas speed and having a plasma transit time of < 100 microseconds. The maximum gas temperature, determined from nitrogen spectral lines, was below 400 K and the observed droplet size reduction implies additional factors beyond standard evaporation, including charge and surface chemistry effects. The successful demonstration of controlled microdroplet streams opens up possibilities for gas-phase microreactors and remote delivery of active species for pla...

  13. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-12-31

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  14. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-01-01

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  15. Control systems under attack?

    CERN Document Server

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  16. Control and Information Systems

    Directory of Open Access Journals (Sweden)

    Jiri Zahradnik

    2003-01-01

    Full Text Available The article deals with main tends of scientific research activities of Department of Control and Information Systems at the Faculty of Electrical Engineering of University of Zilina and its perspectives in this area.

  17. Reset Control Systems

    CERN Document Server

    Baños, Alfonso

    2012-01-01

    Reset Control Systems addresses the analysis for reset control treating both its basic form which requires only that the state of the controller be reinitialized to zero (the reset action) each time the tracking error crosses zero (the reset condition), and some useful variations of the reset action (partial reset with fixed or variable reset percentage) and of the reset condition (fixed or variable reset band and anticipative reset). The issues regarding reset control – concepts and motivation; analysis tools; and the application of design methodologies to real-world examples – are given comprehensive coverage. The text opens with an historical perspective which moves from the seminal work of the Clegg integrator and Horowitz FORE to more recent approaches based on impulsive/hybrid control systems and explains the motivation for reset compensation. Preliminary material dealing with notation, basic definitions and results, and with the definition of the control problem under study is also included. The fo...

  18. Tautological control systems

    CERN Document Server

    Lewis, Andrew D

    2014-01-01

    This brief presents a description of a new modelling framework for nonlinear/geometric control theory. The framework is intended to be—and shown to be—feedback-invariant. As such, Tautological Control Systems provides a platform for understanding fundamental structural problems in geometric control theory. Part of the novelty of the text stems from the variety of regularity classes, e.g., Lipschitz, finitely differentiable, smooth, real analytic, with which it deals in a comprehensive and unified manner. The treatment of the important real analytic class especially reflects recent work on real analytic topologies by the author. Applied mathematicians interested in nonlinear and geometric control theory will find this brief of interest as a starting point for work in which feedback invariance is important. Graduate students working in control theory may also find Tautological Control Systems to be a stimulating starting point for their research.

  19. Internal control system

    OpenAIRE

    Pavésková, Ivana

    2012-01-01

    Dissertation focuse on the internal control system in the enterprises, aims to map the control system by focusing on the purchasing department. I focused on the purchasing process, because with an increasing trends of outsourcing services and the increasing interconnectedness of enterprises increases the risk of fraud currently in the purchasing process. To the research was selected the sample of companies from the banking and non-banking environment, to which were sent a questionnaire focusi...

  20. Nonlinear Control Systems

    Science.gov (United States)

    2007-03-01

    IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear

  1. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    Science.gov (United States)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  2. Stability for basic system of equations of atmospheric motion

    Institute of Scientific and Technical Information of China (English)

    SHI Wei-hui; XU Ming; WANG Yue-peng

    2007-01-01

    The topological characteristics for the basic system of equations of atmospheric motion were analyzed with the help of method provided by stratification theory. It was proved that in the local rectangular coordinate system the basic system of equations of atmospheric motion is stable in infinitely differentiable function class. In the sense of local solution, the necessary and sufficient conditions by which the typical problem for determining solution is well posed were also given. Such problems as something about "speculating future from past" in atmospheric dynamics and how to amend the conditions for determining solution as well as the choice of underlying surface when involving the practical application were further discussed. It is also pointed out that under the usual conditions, three motion equations and continuity equation in the basic system of equations determine entirely the property of this system of equations.

  3. FABRIC QUALITY CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Özlem KISAOĞLU

    2006-02-01

    Full Text Available Woven fabric quality depends on yarn properties at first, then weaving preparation and weaving processes. Defect control of grey and finished fabric is done manually on the lighted tables or automatically. Fabrics can be controlled by the help of the image analysis method. In image system the image of fabrics can be digitized by video camera and after storing controlled by the various processing. Recently neural networks, fuzzy logic, best wavelet packet model on automatic fabric inspection are developed. In this study the advantages and disadvantages of manual and automatic, on-line fabric inspection systems are given comparatively.

  4. Controllability of delay systems with restrained controls

    Science.gov (United States)

    Chukwu, E. N.

    1979-01-01

    Using a geometric growth condition, both the function space and Euclidean controllability of a nonlinear delay system which has a compact and convex control set are characterized. This extends analogous results for ordinary differential systems, and it yields conditions under which perturbed nonlinear delay controllable systems are controllable.

  5. ACCESS Pointing Control System

    Science.gov (United States)

    Brugarolas, Paul; Alexander, James; Trauger, John; Moody, Dwight; Egerman, Robert; Vallone, Phillip; Elias, Jason; Hejal, Reem; Camelo, Vanessa; Bronowicki, Allen; O'Connor, David; Partrick, Richard; Orzechowski, Pawel; Spitter, Connie; Lillie, Chuck

    2010-01-01

    ACCESS (Actively-Corrected Coronograph for Exoplanet System Studies) was one of four medium-class exoplanet concepts selected for the NASA Astrophysics Strategic Mission Concept Study (ASMCS) program in 2008/2009. The ACCESS study evaluated four major coronograph concepts under a common space observatory. This paper describes the high precision pointing control system (PCS) baselined for this observatory.

  6. Physiological parameters controlling plant-atmosphere ammonia exchange

    Science.gov (United States)

    Schjoerring, Jan K.; Husted, Søren; Mattsson, Marie

    Recent advances in characterizing the influence of different physiological and environmental parameters on NH 3 exchange between plants and the atmosphere are presented. A central parameter in controlling the rate and direction of NH 3 fluxes is the NH 3 compensation point. It may vary from below 1 to over 20 nmol NH 3 mol -1 air. High compensation points seem to be a result of high tissue N status, rapid absorption of NH +4 from the root medium and/or low activity of glutamine synthetase, a key enzyme in NH +4 assimilation. These conditions cause the NH +4 concentration in leaf apoplast and leaf cells to increase. The NH 3 compensation point also depends on plant developmental stage with peaks in NH 3 emission related to leaf senescence and N remobilization. The leaf temperature has a profound influence on the NH 3 compensation point: an increase in temperature from 15 to 30°C may cause a plant to switch from being a strong sink for atmospheric NH 3 to being a significant NH 3 source. Stomatal conductance for NH 3 relative to that of water vapour increases with tissue N status and with leaf senescence. At a given leaf temperature, the NH 3 compensation point can be successfully predicted on basis of the pH and NH +4 concentration in the apoplast of the mesophyll cells.

  7. Overview of NASA's Environmental Control and Life Support Systems

    Science.gov (United States)

    Roman, Monserrate

    2009-01-01

    This viewgraph presentation reviews NASA's Environmental Control and Life Support Systems (ECLSS) on the International Space Station. A look inside of the International Space Station detailing ECLSS processes of controlling atmospheric pressure, conditioning the atmosphere, responding to emergency conditions, controlling internal carbon dioxide and contaminants and providing water are described. A detailed description of ISS Regenerative Environmental Control and Life Support System is also presented.

  8. The ISOLDE control system

    Science.gov (United States)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  9. Airborne experiment results for spaceborne atmospheric synchronous correction system

    Science.gov (United States)

    Cui, Wenyu; Yi, Weining; Du, Lili; Liu, Xiao

    2015-10-01

    The image quality of optical remote sensing satellite is affected by the atmosphere, thus the image needs to be corrected. Due to the spatial and temporal variability of atmospheric conditions, correction by using synchronous atmospheric parameters can effectively improve the remote sensing image quality. For this reason, a small light spaceborne instrument, the atmospheric synchronous correction device (airborne prototype), is developed by AIOFM of CAS(Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences). With this instrument, of which the detection mode is timing synchronization and spatial coverage, the atmospheric parameters consistent with the images to be corrected in time and space can be obtained, and then the correction is achieved by radiative transfer model. To verify the technical process and treatment effect of spaceborne atmospheric correction system, the first airborne experiment is designed and completed. The experiment is implemented by the "satellite-airborne-ground" synchronous measuring method. A high resolution(0.4 m) camera and the atmospheric correction device are equipped on the aircraft, which photograph the ground with the satellite observation over the top simultaneously. And aerosol optical depth (AOD) and columnar water vapor (CWV) in the imagery area are also acquired, which are used for the atmospheric correction for satellite and aerial images. Experimental results show that using the AOD and CWV of imagery area retrieved by the data obtained by the device to correct aviation and satellite images, can improve image definition and contrast by more than 30%, and increase MTF by more than 1 time, which means atmospheric correction for satellite images by using the data of spaceborne atmospheric synchronous correction device is accurate and effective.

  10. CNEOST Control Software System

    Science.gov (United States)

    Wang, X.; Zhao, H. B.; Xia, Y.; Lu, H.; Li, B.

    2015-03-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the message passing mechanism via WebSocket protocol, and improves its flexibility, expansibility, and scalability. The user interface with responsive web design realizes the remote operating under both desktop and mobile devices. The stable operating of software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  11. Robust lateral pulse jet control of an atmospheric rocket

    Science.gov (United States)

    Burchett, Bradley Thomas

    Uncontrolled direct fire rockets exhibit high impact point dispersion, even at relatively short range, and as such have been employed as area weapons on the battlefield. In order to reduce the dispersion of a direct fire rocket, feedback control is employed to fire short-duration solid rocket pulses mounted near the nose of the projectile and acting perpendicular to the projectile axis of symmetry. The feedback law is developed by first determining a piece wise linear model of the projectile swerving motion, subsequently using this linear model to predict the projectile impact point both with and without control, and using the results to command pulses at appropriate times to drive the impact point closer to the specified target. Candidate optimal control laws are formed using rules based on decision grids, and a global control strategy search algorithm. The global search control law proves to be prohibitively computationally expensive for on-line implementation. The performance of the baseline control law is found to be comparable to the rule based and global search optimal control laws. The control gains of the baseline control law are optimized in the presence of parametric plant uncertainty using a Monte Carlo simulation. Performance of the system in the presence of parametric plant uncertainty using the optimized gains is deemed comparable to performance of the baseline controller with no plant uncertainty. The level of uncertainty of several plant parameters is varied in order to compare robustness of the controller when optimized with uncertainty viz. without uncertainty.

  12. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    and isolation, remedial action decision, and reconfiguration. The integration of these modules in software were considered. The general methodology covered the analysis, design, and implementation of fault tolerant control systems on an overall level. Two detailed studies were presented, one on fault detection......, as for example a variable being zero, low or high. Examples were given that illustrate how such models can be established by simple means, and yet provide important information when combined into a complete system. A special achievement was a method to determine how control loops behave in case of faults......This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...

  13. The Atmospheric Monitoring system of the JEM-EUSO telescope

    CERN Document Server

    Toscano, S; Frías, M D Rodríguez

    2014-01-01

    The JEM-EUSO observatory on board of the International Space Station (ISS) is a proposed pioneering space mission devoted to the investigation of Ultra High Energy Cosmic Rays (UHECRs). Looking downward at the earth's atmosphere with a 60$^\\circ$ Field of View (FoV), the JEM-EUSO telescope will detect the fluorescence and Cherenkov UV emission from UHECR induced Extensive Air Showers (EAS) penetrating in the atmosphere. The capability of reconstructing the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring system of JEM-EUSO will continuously monitor the atmosphere at the location of the EAS candidates and between the EAS and the JEM-EUSO telescope. With an UV LIDAR and an Infrared (IR) Camera the system will monitor the cloud cover and retrieve the cloud top altitude with an accuracy of $\\sim$ 500 m and the optical depth profile of the atmosphere with an accuracy of $\\Delta\\tau \\leq$ 0.15 and a re...

  14. Controllability of nonlinear systems.

    Science.gov (United States)

    Sussmann, H. J.; Jurdjevic, V.

    1972-01-01

    Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-

  15. An Atmospheric Science Observing System Simulation Experiment (OSSE) Environment

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard; Qu, Zheng; Bowman, Kevin; Eldering, Annmarie

    2010-01-01

    An atmospheric sounding mission starts with a wide range of concept designs involving measurement technologies, observing platforms, and observation scenarios. Observing system simulation experiment (OSSE) is a technical approach to evaluate the relative merits of mission and instrument concepts. At Jet Propulsion Laboratory (JPL), the OSSE team has developed an OSSE environment that allows atmospheric scientists to systematically explore a wide range of mission and instrument concepts and formulate a science traceability matrix with a quantitative science impact analysis. The OSSE environment virtually creates a multi-platform atmospheric sounding testbed (MAST) by integrating atmospheric phenomena models, forward modeling methods, and inverse modeling methods. The MAST performs OSSEs in four loosely coupled processes, observation scenario exploration, measurement quality exploration, measurement quality evaluation, and science impact analysis.

  16. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  17. Optical controlled keyboard system

    Science.gov (United States)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej

    2011-06-01

    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  18. A high precision technique to correct for residual atmospheric dispersion in high-contrast imaging systems

    CERN Document Server

    Pathak, P; Jovanovic, N; Lozi, J; Martinache, F; Minowa, Y; Kudo, T; Takami, H; Hayano, Y; Narita, N

    2016-01-01

    Direct detection and spectroscopy of exoplanets requires high contrast imaging. For habitable exoplanets in particular, located at small angular separation from the host star, it is crucial to employ small inner working angle (IWA) coronagraphs that efficiently suppress starlight. These coronagraphs, in turn, require careful control of the wavefront which directly impacts their performance. For ground-based telescopes, atmospheric refraction is also an important factor, since it results in a smearing of the PSF, that can no longer be efficiently suppressed by the coronagraph. Traditionally, atmospheric refraction is compensated for by an atmospheric dispersion compensator (ADC). ADC control relies on an a priori model of the atmosphere whose parameters are solely based on the pointing of the telescope, which can result in imperfect compensation. For a high contrast instrument like the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which employs very small IWA coronagraphs, refraction-induced sm...

  19. Supervisory Control of Networked Control Systems

    Science.gov (United States)

    2006-01-15

    REPORT: January 15, 2006 Problem Statement: A networked control system is a control system whose feedback path is realized over a computer...theoretical bounds derived in [Ling03a]. 6. The feedback information in a networked control system is quantized due to the digital nature of

  20. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  1. Modified Atmosphere Packaging and Its Feasibility for Military Feeding Systems

    Science.gov (United States)

    1994-12-01

    modified atmosphere packaging (MAP) producers. These studies showed that a high barrier packaging is preferable for cooked meats . Initial gas analysis for...Strict Hazard Analysis Critical Control Point ( HACCP ) is needed for all MAP productions to limit microbial hazards. Sensory testing conducted on test...TYPES (3) ic. GAS MIXTURES (4) id. PACKAGING (4) le. FOOD SAFETY, SANITATION AND HAZARD ANALYSIS CRITICAL CONTROL POINTS ( HACCP ) (5) 2. REQUIREMENTS

  2. Lithosphere-Atmosphere-Ionosphere Coupling System

    Science.gov (United States)

    Kachakhidze, Manana; Kachakhidze, Nino; Kaladze, Tamaz

    2014-06-01

    Modern ground-based and satellite methods of viewing enables to reveal those multiple anomalous geophysical phenomena which become evident in the period preceding earthquake and are directly connected with the process of its preparation. Lately special attention is attributed to the electromagnetic emissions fixed during large earthquake, and has already been successfully detected in Japan, America and Europe. Unfortunately there is no electromagnetic emissions detection network in Georgia, but the offered work, based on experimental data of foreign researchers and electrodynamics, presents an important theory about the electromagnetic emissions generation fixed in the earthquake preparation period. The extremely interesting methodology of possible prediction of earthquake is created and all anomalous geophysical phenomena are interpreted which take place some months, days or hours before earthquake in the lithosphereatmosphere-ionosphere coupling system. Most interesting is the idea of the authors to consider the electromagnetic radiation as the main earthquake precursor for the purpose of earthquake prediction, because of its informative nature and to consider all other anomalous geophysical phenomena which accompany the process of earthquake preparation as earthquake indicators. The offered work is the completely novel approach in earthquake problem searching with the view of earthquake prediction. It can form the base for creation of principally new trend in seismology, to be called conditionally "Earthquake Predictology".

  3. Electric turbocompound control system

    Energy Technology Data Exchange (ETDEWEB)

    Algrain, Marcelo C. (Dunlap, IL)

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  4. Controllability of Complex Systems

    Science.gov (United States)

    Slotine, Jean-Jacques

    2013-03-01

    We review recent work on controllability of complex systems. We also discuss the interplay of our results with questions of synchronization, and point out key directions of future research. Work done in collaboration with Yang-Yu Liu, Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University and Center for Cancer Systems Biology, Dana-Farber Cancer Institute; and Albert-László Barabási, Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University; Center for Cancer Systems Biology, Dana-Farber Cancer Institute; and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School.

  5. Microprocessor control for standardized power control systems

    Science.gov (United States)

    Green, D. G.; Perry, E.

    1978-01-01

    The use of microcomputers in space-oriented power systems as a replacement for existing inflexible analog type controllers has been proposed. This study examines multiprocessor systems, various modularity concepts and presents a conceptualized power system incorporating a multiprocessor controller as well as preliminary results from a breadboard model of the proposed system.

  6. The ISOLDE control system

    Energy Technology Data Exchange (ETDEWEB)

    Deloose, I. (CERN, PS Division, CH-1211 Geneva 23 (Switzerland)); Pace, A. (CERN, PS Division, CH-1211 Geneva 23 (Switzerland))

    1994-12-15

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained. ((orig.))

  7. Cryogenic Control System

    Energy Technology Data Exchange (ETDEWEB)

    Goloborod' ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  8. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-09-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  9. A new atmospheric aerosol phase equilibrium model (UHAERO: organic systems

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2007-06-01

    Full Text Available In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

  10. Dynamitron control systems

    Science.gov (United States)

    Lisanti, Thomas F.

    2005-12-01

    The Dynamitron control system utilizes the latest personal computer technology in control circuitry and components. Both the DPC-2000 and newer Millennium series of control systems make use of their modular architecture in both software and hardware to keep up with customer and engineering demands. This also allows the main structure of the software to remain constant for the user while software drivers are easily changed as hardware demands are modified and improved. The system is presented as four units; the Remote I/O (Input/Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the accelerator. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. All process parameters are printed to a report at regular intervals during a process run for record keeping.

  11. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  12. Tube bundle system: for monitoring of coal mine atmosphere.

    Science.gov (United States)

    Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F

    2013-05-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.

  13. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    Science.gov (United States)

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  14. OXIDATION BEHAVIOR OF KOVAR ALLOY IN CONTROLLED ATMOSPHERE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Controlled oxidation experiments were performed on Kovar alloy by changing oxi-dation atmosphere, temperature, and exposure time to produce films with different oxide type and thickness. The results indicated that single Fe3O4 and single FeO were respectively obtained when Kovar alloy was oxidized in N2-2.31%H2O-0.95%H2 at 500℃ and in N2-2.31%H2O-O.5%H2 at 1000℃, and all kinetic curves followed linear relation; mixed oxides of FeO and Fe3O4 formed when Kovar was oxidized in N2-2.31%H2O at 1000℃, and parabolic kinetics were obeyed. Analysis of metal-lographic cross section of oxides indicated that oxygen diffusion inward through the oxide scale is responsible for intergranular oxide, which had formed beneath the oxide scales when the oxide products were mixed oxides of FeO and Fe3O4, and which did not occur when the oxide was single FeO or Fe3O4. The oxidation model was also established.

  15. Photochemical hazes in planetary atmospheres: solar system bodies and beyond

    Science.gov (United States)

    Imanaka, Hiroshi; Cruikshank, Dale P.; McKay, Christopher P.

    2015-11-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. An understanding of haze formation rates and plausible optical properties in a wide diversity of planetary atmospheres is required to interpret the current and future observations.Here, we focus on how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. We have conducted a series of cold plasma experiments to constrain the haze mass production rates from gas mixtures of various CH4/CO ratios diluted either in H2 or N2 atmosphere. The mass production rates in the N2-CH4-CO system are much greater than those in the H2-CH4-CO system. They are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed both in H2-CO and N2-CO systems without CH4 in the initial gas mixtures. The complex refractive indices were derived for haze samples from N2-CH4, H2-CH4, and H2-CO gas mixtures. These are the model atmospheres for Titan, Saturn, and exoplanets, respectively. The imaginary part of the complex refractive indices in the UV-Vis region are distinct among these samples, which can be utilized for modeling these planetary atmospheres.

  16. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  17. Digital control of diode laser for atmospheric spectroscopy

    Science.gov (United States)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  18. Framework of Distributed Coupled Atmosphere-Ocean-Wave Modeling System

    Institute of Scientific and Technical Information of China (English)

    WEN Yuanqiao; HUANG Liwen; DENG Jian; ZHANG Jinfeng; WANG Sisi; WANG Lijun

    2006-01-01

    In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed.The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.

  19. Nuclotron Control System

    Science.gov (United States)

    Volkov, V.; Gorchenko, V.; Kirichenko, A.; Kovalenko, A.; Kulikov, I.; Romanov, S.; Sveshnikov, B.; Vasilishin, B.

    1997-05-01

    The superconducting synchrotron named Nuclotron based on a miniature iron-shaped field SC-magnets was put into operation at the LHE JINR in 1993.The Nuclotron Control System (NCS) project,which is still under development,started in 1992 and has provided efficient support for the machine commissioning through all its phases.This paper presents the current status of the NCS. The control system architecture is hierarc- hical in nature and consists of two physical levels. High performance workstations,together with a general purpose server computers, are used at the top level.Workstations act as an operator consoles,while the servers provide massive disk data storage,printing utilities,a common database, program library and data exchange between Nuclotron and its experiments. The front-end level comprises as industrial com- puters equipped with I/O boards and data acquisition modules, as in- telligent CAMAC crate-controllers with embedded micro-PCs. NCS is distributed system,in which subsytems geographically separated by as much as 500 m.The total number of computers presently installed is 25. An Ethernet Local Area Network,which runs IPX/SPX and TCP/IP communi- cation protocols ,connects the console computers to the front-end le- vel and physicists workstations.

  20. Lifting Entry & Atmospheric Flight (LEAF) Applications at Solar System Bodies.

    Science.gov (United States)

    Lee, G.; Sen, B.; Polidan, R. S.

    2015-12-01

    Introduction: Northrop Grumman and L'Garde have continued the development of a hypersonic entry, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere. The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieve this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the "habitable layers" of Venus' atmosphere at night. Titan also offers an attractive operating environment, allowing LEAF designs that can target low, medium, or high altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  1. Control Systems for Platform Landings Cushioned by Air Bags

    Science.gov (United States)

    1987-07-01

    feedback control system (39) displayed behavior quite different from the other two controls. Many different pairs of values for Pi and P2 were found that...those of the paramameters. The control instructions, starting at line 23, are for the particular feedback control * " system studied in the report... feedback control system , see Equation (39) Pa Standard atmospheric pressure PC Critical (sonic) pressure in vent Q Dimensionless air-speed in vent q Air

  2. MIRADAS control system

    Science.gov (United States)

    Rosich Minguell, Josefina; Garzón Lopez, Francisco

    2012-09-01

    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.

  3. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  4. Entropy budget of the earth,atmosphere and ocean system

    Institute of Scientific and Technical Information of China (English)

    GAN Zijun; YAN Youfangand; QI Yiquan

    2004-01-01

    The energy budget in the system of the earth, atmosphere and ocean conforms to the first law of thermodynamics, namely the law of conservation of energy, and it is balanced when the system is in a steady-state condition. However, the entropy budget following the second law of thermodynamics is unbalanced. In this paper, we deduce the expressions of entropy flux and re-estimate the earth, atmosphere and ocean annual mean entropy budget with the updated climatologically global mean energy budget and the climatologically air-sea flux data. The calculated results show that the earth system obtains a net influx of negative entropy (-1179.3 mWm-2K-1) from its surroundings, and the atmosphere and the ocean systems obtain a net input of negative entropy at about -537.4 mWm-2K-1 and -555.6 mWm-2K-1, respectively. Calculations of the entropy budget can provide some guidance for further understanding the spatial-temporal change of the local entropy flux, and the entropy production resulting from all kinds of irreversible processes inside these systems.

  5. Storage of yerba maté in controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Sarah Lemos Cogo Prestes

    2014-04-01

    Full Text Available The aim of this study was to evaluate the effect of controlled atmosphere in the change of color, chlorophyll degradation and phenolic compounds concentration in yerba maté thickly ground (“cancheada” and thinly milled (“socada”. Yerba maté samples from the towns of Arvorezinha (RS - Brazil and São Mateus do Sul (PR - Brazil were stored in four levels of oxygen (1, 3, 6 and 20.9kPa of O2 and four levels of carbon dioxide (0, 3, 6 and 18kPa of CO2 and then were analyzed, after nine months of storage. According to the results, the O2 partial pressure reduction decreased the loss of green coloration, kept a higher content of chlorophylls and of total phenolic compounds. In relation to the different levels of CO2, a response as remarkable as O2 was not observed. The yerba maté that was thickly ground (“cancheada” presented a better storage potential than the one thinly milled (“socada” in the storage with O2 and with CO2. The 1kPa of O2 condition kept the yerba maté greener and with a higher content of chlorophylls and of total phenolic compounds after nine months of storage. The CO2 partial pressure kept the yerba maté coloration greener and with a higher content of chlorophylls and of total phenolic compounds, regardless of the level used, in the maté from both cultivation areas.

  6. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Michalski J.

    2015-06-01

    Full Text Available Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dissociated ammonia. The nitriding processes were accomplished in four series. The parameters selected in the particular processes were: process temperature (T, time (t, value of nitriding potential (KN, corresponding to known dissociation rate of the ammonia which dissociates during the nitriding process (α. Variable parameters were: nitrogen availability (mN2, composition of the ingoing atmosphere and flow rate of the ingoing atmosphere (FIn.

  7. Robust H∞ control for networked control systems

    Institute of Scientific and Technical Information of China (English)

    Ma Weiguo; Shao Cheng

    2008-01-01

    The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied.When data are transmitted over network,the stochastic data packet dropout process can be described by a two-state Markov chain.The networked control systems with stochastic network-induced delay and data packet dropout are modeled as a discrete time Markov jump linear system with two operation modes.The sufficient condition of robust H∞ control for networked control systems stabilized by state feedback controller is presented in terms of linear matrix inequality.The state feedback controller can be constructed via the solution of a set of linear matrix inequalities.An example is given to verify the effectiveness of the method proposed.

  8. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that...

  9. Model JC-1 Laser System for Monitoring Atmospheric Pollution,

    Science.gov (United States)

    2007-11-02

    differential absorption mode atmospheric pollution laser monitoring system, in which a phase locking technique and single board computer are used for...amplification 1 3. synchronous demodulation 2 4. phase locking amplification 2 5. single board computer 6. function logging Instrument 7. oscillator...were then fed into a DBJ-Z80 single - board computer to undergo a multiple averaging process before going through functional operation, and were logged

  10. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  11. An atmosphere monitoring system for the Sardinia radio telescope

    Science.gov (United States)

    Buffa, F.; Bolli, P.; Sanna, G.; Serra, G.

    2017-01-01

    The Sardinia radio telescope (SRT) is a new facility managed by the Italian National Institute for Astrophysics (INAF). SRT will detect the extremely faint radio wave signals emitted by astronomical objects in a wide frequency range from decimeter to millimeter wavelengths. Especially at high frequencies (>10 GHz), specific weather conditions and interactions between signal and atmospheric constituents (mainly water and oxygen molecules) affect the radio astronomic observation reducing the antenna performances. Thus, modern ground-based telescopes are usually equipped with systems able to examine in real-time several atmospheric parameters (opacity, integrated water vapor, etc.), and in some cases to forecast the weather conditions (wind, rain, snow, etc.), in order to ensure the antenna safety and support the schedule of the telescope observations. Here, we describe the atmosphere monitoring system (AMS) realized with the aim to improve the SRT operative efficiency. It consists of a network of different sensors such as radiometers, radiosondes, weather stations, GPS and some well-established weather models. After a validation of the scheme, we successfully tested the AMS in two real practical scenarios, comparing the AMS outcomes with those of independent techniques. In the first one we were able to detect an incoming storm front applying different techniques (GPS, radiometer and the weather forecast model), while in the last one we modeled the SRT antenna system temperature at 22 GHz processing the AMS data set.

  12. Synchrotron radiation lithography system in an atmospheric environment (invited)

    Science.gov (United States)

    Okada, K.; Kouno, E.; Nomura, E.; Suzuki, K.; Fujii, K.; Tanaka, Y.; Iwata, J.; Kawase, Y.

    1989-07-01

    The atmospheric environmental exposure system for synchrotron radiation (SR) lithography has been integrated using the Photon Factory storage ring (2.5 GeV). The system, composed of a highly reliable beamline, an SR extracting chamber and a prototype SR stepper, aims at attaining higher accuracy and throughput. Based on a fail-safe mechanism notion, a double-vacuum protection system, in which two sets of a fast closing valve and acoustic delay line are installed in the main beamline and branch beamline, respectively, has been organized. Vacuum breakdown tests indicated that any vacuum breakdown, a beryllium (Be) window rupture in the worst case, exerts little influence on the storage ring ultrahigh vacuum. The SR extracting chamber, equipped with a Be window and an extraction window, is filled with helium at atmospheric pressure. Particularly, the 50-μm-thick, 35-mm-diam Be window, vacuum-sealed by a Viton O-ring, was preliminarily employed and, so far, has operated successfully, giving a 25-mm square exposure area. In terms of practical availability and simplicity, the SR stepper in an atmospheric environment has been constructed. A novel differential mode linear Fresnel zone plate alignment method, which can detect an alignment error between a mask and a wafer during exposure, was developed.

  13. Development of Atmospheric Monitoring System for Auger North

    Science.gov (United States)

    Claus, John; Allen, Clint; Botts, Adam; Carande, Bryce; Calhoun, Mike; Emmert, Lucas; Hamilton, Levi; Heid, T. J.; Koop, John; Morgan, Sarah; Robinson, Shay; Sherman, John; Wiencke, Lawrence

    2009-10-01

    The Pierre Auger Northern Fluorescence Detector will measure air-showers over distances of 40 km. Vertical Aerosol profile of the atmosphere at the Pierre Auger Northern site will be measured using the side-scatter method over the 40 km baseline. An atmospheric monitoring telescope (AMT) will use a 3.5 m^2 mirror optimized for UV reflection to focus light from a laser onto a cluster of phototmultiplier tubes. The AMT has been built and final testing and modifications are being carried out before its installation later this year. A remotely programmed, 355 nm YAG laser with a final beam energy of 5 mJ is being used. The automation of the laser and the AMT is controlled via a single board computer (SBC). This talk will present an overview of this R&D program.

  14. Guaranteed cost control for networked control systems

    Institute of Scientific and Technical Information of China (English)

    Linbo XIE; Huajing FANG; Ying ZHENG

    2004-01-01

    The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.

  15. An analytical system enabling consistent and long-term measurement of atmospheric dimethyl sulfide

    Science.gov (United States)

    Jang, Sehyun; Park, Ki-Tae; Lee, Kitack; Suh, Young-Sang

    2016-06-01

    We describe here an analytical system capable of continuous measurement of atmospheric dimethylsulfide (DMS) at pptv levels. The system uses customized devices for detector calibration and for DMS trapping and desorption that are controlled using a data acquisition system (based on Visual Basic 6.0/C 6.0) designed to maximize the efficiency of DMS analysis in a highly sensitive pulsed flame photometric detector housed in a gas chromatograph. The fully integrated system, which can sample approximately 6 L of air during a 1-hr sampling, was used to measure the atmospheric DMS mixing ratio over the Atlantic sector of the Arctic Ocean over 3 full annual growth cycles of phytoplankton in 2010, 2014, and 2015, with minimal routine maintenance and interruptions. During the field campaigns, the measured atmospheric DMS mixing ratio varied over a considerable range, from <1.5 pptv to maximum levels of 298 pptv in 2010, 82 pptv in 2014, and 429 pptv in 2015. The operational period covering the 3 full annual growth cycles of phytoplankton showed that the system is suitable for uninterrupted measurement of atmospheric DMS mixing ratios in extreme environments. Moreover, the findings obtained using the system showed it to be useful in identifying ocean DMS source regions and changes in source strength.

  16. Evaluation of atmospheric density models and preliminary functional specifications for the Langley Atmospheric Information Retrieval System (LAIRS)

    Science.gov (United States)

    Lee, T.; Boland, D. F., Jr.

    1980-01-01

    This document presents the results of an extensive survey and comparative evaluation of current atmosphere and wind models for inclusion in the Langley Atmospheric Information Retrieval System (LAIRS). It includes recommended models for use in LAIRS, estimated accuracies for the recommended models, and functional specifications for the development of LAIRS.

  17. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    microscope, and since its invention by Ernst Ruska, the idea of imaging samples under gaseous atmospheres was envisioned. However, microscopes have traditionally been operated in high vacuum due to sensitive electron sources, sample contamination, and electron scattering off gas molecules resulting in loss...

  18. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... calendar years, but with intervals not exceeding 39 months Offshore At least once each calendar year, but... attention to pipe at soil-to-air interfaces, under thermal insulation, under disbonded coatings, at pipe supports, in splash zones, at deck penetrations, and in spans over water. (c) If atmospheric corrosion...

  19. Optically controlled welding system

    Science.gov (United States)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  20. Concept and System of Personification Control System

    Institute of Scientific and Technical Information of China (English)

    Bai,Fengshuang; Yin,Yixin; Tu,Xuyan; Zhang,Ying

    2006-01-01

    This paper provides the system and conception of the Personification Control System (PCS) on the basis of Intelligent Control System based on Artificial life (ICS/AL), Artificial Emotion, Humanoid Control, and Intelligent Control System based on Field bus. According to system science and deciding of organize of biology, the Pyramid System of PCS are created. Then Pyramid System of PCS which is made up of PCS1/H, PCS1/S, PCS1/O, PCS1/C and PCS1/G is described.

  1. Muscodor albus Volatiles Control Toxigenic Fungi under Controlled Atmosphere (CA Storage Conditions

    Directory of Open Access Journals (Sweden)

    Gordon Braun

    2012-11-01

    Full Text Available Muscodor albus, a biofumigant fungus, has the potential to control post-harvest pathogens in storage. It has been shown to produce over 20 volatile compounds with fungicidal, bactericidal and insecticidal properties. However, M. albus is a warm climate endophyte, and its biofumigant activity is significantly inhibited at temperatures below 5 °C. Conidia of seven mycotoxin producing fungi, Aspergillus carbonarius, A. flavus, A. niger, A. ochraceus, Penicillium verrucosum, Fusarium culmorum and F. graminearum, were killed or prevented from germinating by exposure to volatiles from 2 g M. albus-colonized rye grain per L of headspace in sealed glass jars for 24 h at 20 °C. Two major volatiles of M. albus, isobutyric acid (IBA and 2-methyl-1-butanol (2MB at 50 µL/L and 100 µL/L, respectively, gave differential control of the seven fungi when applied individually at 20 °C. When the fungi were exposed to both IBA and 2MB together, an average of 94% of the conidia were killed or suppressed. In a factorial experiment with controlled atmosphere storage (CA at 3 °C and 72 h exposure to four concentrations of IBA and 2MB combinations, 50 µL/L IBA plus 100 µL/L 2MB killed or suppressed germination of the conidia of all seven fungi. Controlled atmosphere had no significant effect on conidial viability or volatile efficacy. Major volatiles of M. albus may have significant potential to control plant pathogens in either ambient air or CA storage at temperatures below 5 °C. However, combinations of volatiles may be required to provide a broader spectrum of control than individual volatiles.

  2. Generic device controller for accelerator control systems

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    A new distributed intelligence control system has become operational at the AGS for transport, injection, and acceleration of heavy ions. A brief description of the functionality of the physical devices making up the system is given. An attempt has been made to integrate the devices for accelerator specific interfacing into a standard microprocessor system, namely, the Universal Device Controller (UDC). The main goals for such a generic device controller are to provide: local computing power; flexibility to configure; and real time event handling. The UDC assemblies and software are described. (LEW)

  3. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized controlcontrol with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  4. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... Research and Forecasting (WRF) Model with the thirdgeneration ocean wave modelSWAN. This study investigates mainly two issues: spatial resolution and the wind-wave interface parameter roughness length(z0). To study the impact of resolution, the nesting function for both WRF and SWAN is used, with spatial...... resolution ranging from 25km to 2km. Meanwhile, the atmospheric forcing data of dierent spatial resolution, with one about 100km (FNL) and the other about 38km (CFSR) are both used. In addition, bathymatry data of diferent resolutions (1arc-minute and 30arc-seconds) are used. We used three approaches...

  5. Atmospheric evaporation in super-Earth exoplanet systems

    Science.gov (United States)

    Moller, Spencer; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Poppenhaeger, Katja

    2017-01-01

    We investigate the influence of stellar activity on atmospheric heating and evaporation in four super-Earth exoplanets: HD 97658 b, GJ 1214 b, 55 Cnc e, and CoRoT-7 b. We use X-ray observations of the host stars to estimate planetary mass loss. We extracted net count rates from a soft band image, converted it to flux using PIMMS for a standard coronal model, calculated the intrinsic stellar luminosity, and estimated the current-epoch mass-loss rate and the integrated mass lost. Our aim is to determine under what circumstances current super-Earths will have experienced significant mass loss through atmospheric irradiation over the system lifetime. We hypothesize that closely-orbiting exoplanets receiving the greatest amount of high-energy stellar radiation will also tend to be sculpted into lower mass and more dense remnant cores.

  6. On Restructurable Control System Theory

    Science.gov (United States)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  7. Division 1137 property control system

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  8. CONTROLLABILITY OF IOTA-2-SYSTEMS

    NARCIS (Netherlands)

    FAGNANI, F; WILLEMS, JC

    1992-01-01

    This paper is devoted to an investigation of controllability and almost controllability of l2-systems. These concepts are defined in terms of the possibility of steering one system trajectory to another. It is proved that a controllable l2-system always has finite memory The main result on almost co

  9. Atmospheric Controls of Snow Accumulation on Glaciers and Ice Caps in High Asia

    Science.gov (United States)

    Scherer, D.; Curio, J.

    2015-12-01

    Snowfall is the major contributor to snow accumulation on glaciers and ice caps. Unfortunately, its quantification is rather difficult, both by observations and by numerical modelling. Field measurements of snowfall are generally problematic, and particularly inaccurate in mountainous regions. This holds true also for data from remote sensing systems like the TRMM. Numerical modelling of precipitation in general, and of snowfall in particular, is depending on parameterization of sub-grid processes occurring at a wide range of spatial scales. The scarcity of reliable observational data on snowfall required to test and validate the relevant parameterization schemes is one of the major obstacles for deepening our understanding of atmospheric controls of snow accumulation on glaciers and ice caps. In addition, the often made assumption that easy-to-measure snow accumulation equals snowfall is not valid in areas where other processes like snowdrift or avalanches cause snow deposition or erosion. Besides a general discussion of the above-mentioned problems, the presentation will focus on results obtained from a gridded atmospheric data set, i.e., the so-called High Asia Refined analysis (HAR), covering the study region by two nested domains of 30 km and 10 km grid spacing. Starting from autumn 2000, three-hourly (30 km) and hourly (10 km) data are available for a comprehensive set of atmospheric variables (see www.klima.tu-berlin.de/HAR). HAR data was used to analyse annual and seasonal patterns of precipitation and atmospheric water transport, as well as to drive numerical models for surface mass balance of glaciers and ice sheets. A new study, which is the main subject of this presentation, reveals specific regimes of dynamic controls of precipitation in different regions of High Asia. One of the striking results is that the analysis identified a specific regime that is able to explain some of the atmospheric controls behind the so-called Karakoram anomaly (glaciers in

  10. Detection of non-standard atmospheric effects in FSO systems

    Science.gov (United States)

    Wilfert, Otakar; Poliak, Juraj; Barcík, Peter; Arce-Diego, José L.; Fanjul-Vélez, Félix; Salas-García, Irene; Ortega Quijano, Noé

    2013-09-01

    Modern free-space optical (FSO) communication systems in many aspects overcome wire or radio communications. They offer a license-free operation and a large bandwidth. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. Thanks to the recent advancing development, these effects are more or less well understood and described. Goal driven research increased the link availability. Besides increasing the availability of data links it is necessary to focus on the accuracy and reliability of testing optical links. Research of the data optical links is focused on the transmission of a large amount of data whereas the testing FSO link is designed to achieve maximal resolution and sensitivity thus improving accuracy and repeatability of the atmospheric effects measurement. Given the fact that testing links are located in the measured media, they are themselves influenced by it. Phenomena such as the condensation on transceiver windows (rain, frost) and the deviation of the optical beam path caused by the wind are referred to as non-standard effects. Non-standard effects never occur independently; therefore we must always verify the cross-sensitivity of the testing link. In the paper we respond to an increasing number of articles dealing with influence of the atmosphere on the link but ignoring the cross-sensitivity of the testing link on other variables than tested. In conclusion, we carry out qualitative and quantitative analysis of self-identified non-standard effects.

  11. Networked control of microgrid system of systems

    Science.gov (United States)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  12. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    NARCIS (Netherlands)

    van der Meer, D.G.; Zeebe, R.; van Hinsbergen, D.J.J.; Sluijs, A.; Spakman, W.; Torsvik, T.H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean rid

  13. The servo control system of KDUST telescope

    Science.gov (United States)

    Jian, Zhang; Du, Fujia

    2014-07-01

    The KDUST telescope would be installed in Antarctic Dome A, where is extremely cold, high, dry, but have a very stable, calm atmosphere for astronomical observation. According to project requirement, the position following error should be less than 1''. To achieve project target, a direct drive method is used in the project. Normal PID control algorithm is used in controller. It can meet the target in the room temperature. But the following error increased too significantly in the cryogenic environment. In this paper, the expert PID algorithm is applied to control system. The control parameter can be adjusted by amplitude and variation of following error. Experiment proved that expert PID has an obvious advantage in both start-up and tracking process under different temperature. Moreover expert PID also can improve the stability of whole system.

  14. Modeling oxygenation of an ocean-atmosphere system during the Late Ordovician-Devonian

    Science.gov (United States)

    Ozaki, K.

    2013-12-01

    Throughout the Earth's history, the redox state of surface environments, biogeochemical cycles, and biological innovation/extinction have been intimately related. Therefore, understanding the long-term (over millions of years) evolution of the redox state of an ocean-atmosphere system and its controlling factors is one of the fundamental topics of Earth Sciences. In particular, Early Paleozoic is marked by the prominent biological evolution/diversification events (Cambrian explosion and Great Ordovician Biodiversification Event), implying the causal linkage between ocean oxygenation and biological innovation. On the other hand, multiple lines of evidence (such as black shale deposition, low C/S ratio of buried sediments, low molybdenum isotopic value, and iron speciation data) suggest that ocean interior had been kept in low oxygen condition until the Devonian. Dahl et al. (2010) PNAS found an increase in molybdenum isotopic value from ~1.4‰ to ~2.0‰ between ~440 Ma and ~390 Ma, implying the oceanic redox transition to a well-oxygenated condition. It was proposed that this ocean oxygenation event correlates with the diversification of vascular land plants; an enhanced burial of terrigenous organic matter increases the oxygen supply rate to an ocean-atmosphere system. Although this hypothesis for a causal linkage between the diversification of land plants and oxidation event of an ocean-atmosphere system is intriguing, it remains unclear whether the radiation of land plant is necessary to cause such redox transition. Because oxygen is most likely regulated by a combination of several feedbacks in the Earth system, it is essential to evaluate the impact of plant diversification on the oxygenation state of an ocean-atmosphere system by use of a numerical model in which C-N-P-O-S coupled biogeochemical cycles between ocean-atmosphere-sediment systems are take into account. In this study, the paleoredox history of an ocean-atmosphere system during the Paleozoic is

  15. System for controlling apnea

    Science.gov (United States)

    Holzrichter, John F

    2015-05-05

    An implanted stimulation device or air control device are activated by an external radar-like sensor for controlling apnea. The radar-like sensor senses the closure of the air flow cavity, and associated control circuitry signals (1) a stimulator to cause muscles to open the air passage way that is closing or closed or (2) an air control device to open the air passage way that is closing or closed.

  16. Oceanic contributions from tropical upwelling systems to atmospheric halogens

    Science.gov (United States)

    Ziska, Franziska; Hepach, Helmke; Stemmler, Irene; Quack, Birgit; Atlas, Elliot; Fuhlbrügge, Steffen; Bracher, Astrid; Tegtmeier, Susann; Krüger, Kirstin

    2014-05-01

    Short lived halogenated substances (halocarbons) from the oceans contribute to atmospheric halogens, where they are involved in ozone depletion and aerosol formation. Oceanic regions that are characterized by high biological activity are often associated with increased halocarbon abundance of e.g. bromoform (CHBr3) and dibromomethane (CH2Br2), representing the main contributors to atmospheric organic bromine. Apart from biological production, photochemical pathways play an important role in the formation of methyl iodide (CH3I), the most abundant organoiodine in the marine atmosphere. Recently, the contribution of biogenic diiodomethane (CH2I2) and chloroiodomethane (CH2ClI) to atmospheric organic iodine has been estimated to be similarly significant as CH3I. In the tropics, rapid uplift of surface air can transport these short-lived compounds into the upper troposphere and into the stratosphere. Oceanic upwelling systems off Mauritania, Peru and in the equatorial Atlantic might therefore potentially contribute large amounts of halocarbons to the stratosphere. Concentrations and emissions of iodo- and bromocarbons from several SOPRAN campaigns in different tropical upwelling systems, the Mauritanian and the equatorial upwelling in the Atlantic, as well as the Peruvian upwelling in the Pacific, will be presented. Processes contributing to halocarbon occurrence in the water column, as well as biological and physical factors influencing their emission into the atmosphere are investigated (Fuhlbrügge, et al. 2013; Hepach et al., 2013). We will present the relative contribution of the upwelling systems to global air-sea fluxes from different modelling studies. The data based bottom-up emissions from Ziska et al. (2013) will be compared to model simulated halocarbons. The model is a global three-dimensional ocean general circulation model with an ecosystem model and halocarbon module embedded (MPIOM/HAMOCC). It resolves CH3I and CHBr3 production, degradation, and

  17. Simulation of atmospheric turbulence for optical systems with extended sources.

    Science.gov (United States)

    Safari, Majid; Hranilovic, Steve

    2012-11-01

    In this paper, the method of random wave vectors for simulation of atmospheric turbulence is extended to 2D×2D space to provide spatial degrees of freedom at both input and output planes. The modified technique can thus simultaneously simulate the turbulence-induced log-amplitude and phase distortions for optical systems with extended sources either implemented as a single large aperture or multiple apertures. The reliability of our simulation technique is validated in different conditions and its application is briefly investigated in a multibeam free-space optical communication scenario.

  18. A lidar system for measuring atmospheric pressure and temperature profiles

    Science.gov (United States)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  19. Space Shuttle flight control system

    Science.gov (United States)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  20. Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica

    Directory of Open Access Journals (Sweden)

    S. L. Knuth

    2013-02-01

    Full Text Available In September 2009, a series of long-range unmanned aircraft system (UAS flights collected basic atmospheric data over the Terra Nova Bay polynya in Antarctica. Air temperature, wind, pressure, relative humidity, radiation, skin temperature, GPS, and operational aircraft data were collected and quality controlled for scientific use. The data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC for free access (doi:10.1594/USAP/0739464.

  1. Simplex-based wavefront control for the mitigation of dynamic distortions caused by atmospheric turbulence

    Science.gov (United States)

    Nikulin, Vladimir V.; Zhang, Dave

    2005-04-01

    Laser communication systems operating in the atmosphere require certain power and beam quality to establish and maintain a reliable communication link. Although such systems utilize the most advanced materials and technologies, their performance is adversely affected by optical turbulence, often posing a serious problem, even for short-range links. Atmospheric effects change optical properties of the propagation channel, causing signal fades, beam wander and scintillations. A common method of mitigating turbulence effects suggests dynamic wavefront control. In this paper the proposed technique is based on correction of the distorted beam using an electrically addressed programmable spatial light modulator (SLM). The phase profile that we impose on the distorted laser beam is described using Zernike formalism to calculate the wavefront OPD function. The Nelder-Mead simplex optimization algorithm is used as a correction procedure that provides fast results, required for real-time operation. In general, calculation of the required phase profile for an SLM with large number of pixels could be highly computationally intensive. Coupling modulator inputs to the first several Zernike coefficients allows significant reduction of the dimension of the optimization problem. The algorithm is tested in the simulation environment and its ability to compensate dynamic distortions is assessed. The results show that both dimension of the input space and the initial conditions affect the speed and convergence to a particular minimum. Recommendations for improving the system performance are also presented.

  2. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  3. Langley Atmospheric Information Retrieval System (LAIRS): System description and user's guide

    Science.gov (United States)

    Boland, D. E., Jr.; Lee, T.

    1982-01-01

    This document presents the user's guide, system description, and mathematical specifications for the Langley Atmospheric Information Retrieval System (LAIRS). It also includes a description of an optimal procedure for operational use of LAIRS. The primary objective of the LAIRS Program is to make it possible to obtain accurate estimates of atmospheric pressure, density, temperature, and winds along Shuttle reentry trajectories for use in postflight data reduction.

  4. The pilatus unmanned aircraft system for lower atmospheric research

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2015-11-01

    Full Text Available This paper presents details of the University of Colorado (CU Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  5. The Pilatus unmanned aircraft system for lower atmospheric research

    Science.gov (United States)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  6. Measurements by Mail: Satellite-Controlled Balloons for Making Real-Time Atmospheric Observations Anywhere on Earth

    Science.gov (United States)

    Voss, P. B.

    2008-12-01

    While most of the atmosphere is only a few tens of kilometers overhead, gaining access to this critical region of the earth system is notoriously difficult. Aircraft have been highly successful as atmospheric research platforms but their use can be limited by high costs, complex logistics, and need for ground-support infrastructure. While small Unmanned Aerial Systems (UAS) carry far fewer instruments, they promise to overcome some of these limitations, especially if regulatory and air safety issues can be resolved. Here we describe five years of development on a new type of unmanned platform that can be flown with far fewer restrictions than current UAS. This altitude-controlled balloon can be mailed to collaborators almost anywhere in the world, launched within hours, and flown remotely from our laboratory via satellite link. It can be commanded to perform soundings, track atmospheric layers, or navigate divergent wind fields over periods ranging from days to potentially weeks; meteorological and chemical observations from the balloon are processed on the ground and distributed via the internet in near real time. These controlled balloons have been used in several recent atmospheric research campaigns and are now providing new possibilities for long-distance collaboration, low-cost deployments, and research in previously inaccessible parts of the lower atmosphere.

  7. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments.

  8. The dependence of land-atmosphere interactions on atmospheric parametrizations in the JULES/UM modelling system

    Science.gov (United States)

    Johnson, Helen; Best, Martin

    2015-04-01

    It has been understood for a while now that atmospheric behaviour is affected by land surface processes, modelling this relationship however still presents challenges. Most numerical weather prediction (NWP) models couple an atmospheric model to a land surface model in order to forecast the weather and/or climate. The Global Land-Atmosphere Coupling Experiment (GLACE) demonstrated that soil moisture variability has considerable control over atmospheric behaviour, particularly impacting on precipitation and temperature variability. The study also suggested that differences in coupling strengths between models may be due to differences in atmospheric parametrizations. There have since been other studies which support this claim but it is not yet clear which parameters control the land-atmosphere coupling strength or indeed what it should be. In this study we investigate whether certain atmospheric parameters hold more control than others over model sensitivity to land surface changes. We focus on the interaction of the JULES (Joint UK Land Environment Simulator) land surface model with the Met Office Unified Model (UM) that is used for operational NWP and climate prediction. For computational efficiency we ran the UM at a single site using a single column model (SCM) rather than running a global model simulation. A site in the Sahel region of West Africa was chosen as this is an area that was identified by GLACE as being especially responsive to changes in soil moisture. JULES was run several times with various different initial soil moisture profiles to create an ensemble of surface sensible and latent heat fluxes that could be used to force a set of different SCM runs in order to simulate a range of different atmospheric conditions. Various atmospheric parameters in the SCM were then perturbed to create additional sets of SCM runs with different sensitivities to soil moisture changes. By analysing the difference in spread between the standard configuration and the

  9. ATEX explosive atmospheres : risk assessment, control and compliance

    CERN Document Server

    Jespen, Torben

    2016-01-01

    This book details how safety (i.e. the absence of unacceptable risks) is ensured in areas where potentially explosive atmospheres (ATEX) can arise. The book also offers readers essential information on how to comply with the newest (April 2016) EU legislation when the presence of ATEX cannot be avoided. By presenting general guidance on issues arising out of the EU ATEX legislation – especially on zone classification, explosion risk assessment, equipment categorization, Ex-marking and related technical/chemical aspects – the book provides equipment manufacturers, responsible employers, and others with the essential knowledge they need to be able to understand the different – and often complicated – aspects of ATEX and to implement the necessary safety precautions. As such, it represents a valuable resource for all those concerned with maintaining high levels of safety in ATEX environments.

  10. Marine biological controls on atmospheric CO2 and climate

    Science.gov (United States)

    Mcelroy, M. B.

    1983-01-01

    It is argued that the ocean is losing N gas faster than N is being returned to the ocean, and that replenishment of the N supply in the ocean usually occurs during ice ages. Available N from river and estruarine transport and from rainfall after formation by lightning are shown to be at a rate too low to compensate for the 10,000 yr oceanic lifetime of N. Ice sheets advance and transfer moraine N to the ocean, lower the sea levels, erode the ocean beds, promote greater biological productivity, and reduce CO2. Ice core samples have indicated a variability in the atmospheric N content that could be attributed to the ice age scenario.

  11. D0 Cryo System Control System Autodialer

    Energy Technology Data Exchange (ETDEWEB)

    Urbin, J.; /Fermilab

    1990-04-17

    The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.

  12. Control integral systems; Sistemas integrales de control

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Estrella [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Almost two third of the electric power generation in Mexico are obtained from hydrocarbons, for that reasons Comision Federal de Electricidad (CFE) dedicated special commitment in modernizing the operation of fossil fuel central stations. In attaining this objective the control systems play a fundamental roll, from them depend a good share of the reliability and the efficiency of the electric power generation process, as well as the extension of the equipment useful life. Since 1984 the Instituto de Investigaciones Electricas (IIE) has been working, upon the request of CFE, on the development of digital control systems. To date it has designed and implemented a logic control system for gas burners, which controls 32 burners of the Unit 4 boiler of the Generation Central of Valle de Mexico and two systems for distributed control for two combined cycle central stations, which are: Dos Bocas, Veracruz Combined cycle central, and Gomez Palacio, Durango combined cycle central. With these two developments the IIE enters the World tendency of implementing distributed control systems for the fossil fuel power central update [Espanol] Casi las dos terceras partes de la generacion electrica en Mexico se obtienen a partir de hidrocarburos, es por eso que la Comision Federal de Electricidad (CFE) puso especial empeno en modernizar la operacion de las centrales termoelectricas de combustibles fosiles. En el logro de este objetivo los sistemas de control desempenan un papel fundamental, de ellos depende una buena parte la confiabilidad y la eficiencia en el proceso de generacion de energia electrica, asi como la prolongacion de la vida util de los equipos. Desde 1984 el Instituto de Investigaciones Electricas (IIE) ha trabajado, a solicitud de la CFE, en el desarrollo de sistemas digitales de control. A la fecha se han disenado e implantado un sistema de control logico de quemadores de gas, el cual controla 32 quemadores de la caldera de la unidad 4 de la central de generacion

  13. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  14. Asynchronous control for networked systems

    CERN Document Server

    Rubio, Francisco; Bencomo, Sebastián

    2015-01-01

    This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...

  15. Optimal Control of Mechanical Systems

    OpenAIRE

    Vadim Azhmyakov

    2007-01-01

    In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some ...

  16. ON COMPLEX DYNAMIC CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENG Daizhan

    2003-01-01

    This paper presents some recent works on the control of dynamic systems, which have certain complex properties caused by singularity of the nonlinear structures, structure-varyings, or evolution process etc. First, we consider the structure singularity of nonlinear control systems. It was revealed that the focus of researches on nonlinear control theory is shifting from regular systems to singular systems. The singularity of nonlinear systems causes certain complexity. Secondly, the switched systems are considered. For such systems the complexity is caused by the structure varying. We show that the switched systems have significant characteristics of complex systems. Finally, we investigate the evolution systems. The evolution structure makes complexity, and itself is a proper model for complex systems.

  17. Approximate controllability of distributed systems by distributed controllers

    Directory of Open Access Journals (Sweden)

    Benzion Shklyar

    2005-04-01

    Full Text Available Approximate controllability problem for a linear distributed control system with possibly unbounded input operator, connected in a series to another distributed system without control is investigated. An initial state of the second distributed system is considered as a control parameter. Applications to control partial equations governed by hyperbolic controller, and to control delay systems governed by hereditary controller are considered.

  18. Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides numerical guidance and products in support of a wide range of Navy oceanographic and...

  19. System and Method for Providing Vertical Profile Measurements of Atmospheric Gases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A system and method for using an air collection device to collect a continuous air sample as the device descends through the atmosphere are provided. The air...

  20. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  1. Atmospheric controls on Puerto Rico precipitation using artificial neural networks

    Science.gov (United States)

    Ramseyer, Craig A.; Mote, Thomas L.

    2016-10-01

    The growing need for local climate change scenarios has given rise to a wide range of empirical climate downscaling techniques. One of the most critical decisions in these methodologies is the selection of appropriate predictor variables for the downscaled surface predictand. A systematic approach to selecting predictor variables should be employed to ensure that the most important variables are utilized for the study site where the climate change scenarios are being developed. Tropical study areas have been far less examined than mid- and high-latitudes in the climate downscaling literature. As a result, studies analyzing optimal predictor variables for tropics are limited. The objectives of this study include developing artificial neural networks for six sites around Puerto Rico to develop nonlinear functions between 37 atmospheric predictor variables and local rainfall. The relative importance of each predictor is analyzed to determine the most important inputs in the network. Randomized ANNs are produced to determine the statistical significance of the relative importance of each predictor variable. Lower tropospheric moisture and winds are shown to be the most important variables at all sites. Results show inter-site variability in u- and v-wind importance depending on the unique geographic situation of the site. Lower tropospheric moisture and winds are physically linked to variability in sea surface temperatures (SSTs) and the strength and position of the North Atlantic High Pressure cell (NAHP). The changes forced by anthropogenic climate change in regional SSTs and the NAHP will impact rainfall variability in Puerto Rico.

  2. Real-time SEM studies in controlled reactive atmospheres

    Science.gov (United States)

    Gallagher, B. D.; Garcia, A., III; Alonzo, J. R.

    1985-01-01

    A unique scanning electron accessory has been developed that allows the observation of specimens under partial pressures of any gas. The sample is placed in a metal support boat inside a special sample holder. The sample in the boat is imaged on a CRT and is simultaneously recorded on a videotape, allowing the reaction between the sample and the gas to be observed in real time. Sample changes can be seen continuously as the sample is being heated or cooled. This process allows the observation of material transformations such as phase changes as they happen. Temperatures as high as 1000 C have been used and are continuously monitored using a thermocouple with a digital display on the CRT and videotape. X-ray analyses can also be run before and after any reactions. In the study described here, thick-film screen-printing inks using molybdenum/tin compositions as a replacement for silver were developed to be used on terrestrial photovoltaic cells. Pieces were placed on the sample stage and heated in both O2 and H2 atmospheres. The results were used to determine the most effective frits to be used in the thick-film inks.

  3. Characterization of a dielectric barrier discharge in controlled atmosphere

    Science.gov (United States)

    Kogelheide, Friederike; Offerhaus, Björn; Bibinov, Nikita; Bracht, Vera; Smith, Ryan; Lackmann, Jan-Wilm; Awakowicz, Peter; Stapelmann, Katharina; Bimap Team; Aept Team

    2016-09-01

    Non-thermal atmospheric-pressure plasmas are advantageous for various biomedical applications as they make a contact- and painless therapy possible. Due to the potential medical relevance of such plasma sources further understanding of the chemical and physical impact on biological tissue regarding the efficacy and health-promoting effect is necessary. The knowledge of properties and effects offers the possibility to configure plasmas free of risk for humans. Therefore, tailoring the discharge chemistry in regard to resulting oxidative and nitrosative effects on biological tissue by adjusting different parameters is of growing interest. In order to ensure stable conditions for the characterization of the discharge, the used dielectric barrier discharge was mounted in a vessel. Absolutely calibrated optical emission spectroscopy was carried out to analyze the electron density and the reduced electric field. The rather oxygen-based discharge was tuned towards a more nitrogen-based discharge by adjusting several parameters as reactive nitrogen species are known to promote wound healing. Furthermore, the impact of an ozone-free discharge has to be studied. This work was funded by the German Research Foundation (DFG) with the packet grant PAK 816 `Plasma Cell Interaction in Dermatology'.

  4. PID Daylight Control System

    Directory of Open Access Journals (Sweden)

    Horaţiu Ştefan Grif

    2011-06-01

    Full Text Available The paper describes the implementation and the tuning of a digital PID controller used in a daylight control application. Due to the fact that the process is unknown, an experimental method, Ziegler-Nichols, for the tuning of the PID controller was used. The obtained PID parameters do not offer a good behavior of the ALCS. To improve the performances of the ALCS, supplementary tuning of the PID parameters, via step response analysis, was made. The step response acquiring and analysis may have an expensive time cost. To avoid the time cost the present paper offers an algorithm which guide the designer to chose, in a slight manner, not only a set but a set family of the PID parameters for which the ALCS has a good behavior. Also, the algorithm presents the way how the ALCS user can set his desired ALCS speed reaction to the daylight variations.

  5. Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies

    Science.gov (United States)

    Long, E.S.; Sweitzer, R.A.; Diefenbach, D.R.; Ben-David, M.

    2005-01-01

    Increased use of stable isotope analysis to examine food-web dynamics, migration, transfer of nutrients, and behavior will likely result in expansion of stable isotope studies investigating human-induced global changes. Recent elevation of atmospheric CO2 concentration, related primarily to fossil fuel combustion, has reduced atmospheric CO2 ??13C (13C/12C), and this change in isotopic baseline has, in turn, reduced plant and animal tissue ??13C of terrestrial and aquatic organisms. Such depletion in CO2 ??13C and its effects on tissue ??13C may introduce bias into ??13C investigations, and if this variation is not controlled, may confound interpretation of results obtained from tissue samples collected over a temporal span. To control for this source of variation, we used a high-precision record of atmospheric CO2 ??13C from ice cores and direct atmospheric measurements to model modern change in CO2 ??13C. From this model, we estimated a correction factor that controls for atmospheric change; this correction reduces bias associated with changes in atmospheric isotopic baseline and facilitates comparison of tissue ??13C collected over multiple years. To exemplify the importance of accounting for atmospheric CO2 ??13C depletion, we applied the correction to a dataset of collagen ??13C obtained from mountain lion (Puma concolor) bone samples collected in California between 1893 and 1995. Before correction, in three of four ecoregions collagen ??13C decreased significantly concurrent with depletion of atmospheric CO2 ??13C (n ??? 32, P ??? 0.01). Application of the correction to collagen ??13C data removed trends from regions demonstrating significant declines, and measurement error associated with the correction did not add substantial variation to adjusted estimates. Controlling for long-term atmospheric variation and correcting tissue samples for changes in isotopic baseline facilitate analysis of samples that span a large temporal range. ?? Springer-Verlag 2005.

  6. Communicating Networked Control Systems

    Science.gov (United States)

    2007-03-31

    Bahamas, pages 1010-1015. 64. Carmen Del Vecchio and I.C. Paschalidis, “Supply Contracts with Service Level Requirements”, Proceedings of the IFAC...control using Monte Carlo sensing,” Proc. IEEE International Conference on Robotics and Automation, pp. 3058-3063, 2005. 10. S.B. Andersson, A.A. Handzel, V...Analysis, Madrid Spain. 20. S. Andersson and D. Hristu-Varsakelis, “Language-based feedback control using Monte -Carlo sensing”, to be subm. To IEEE Int’l

  7. Optimal Management and Design of Energy Systems under Atmospheric Uncertainty

    Science.gov (United States)

    Anitescu, M.; Constantinescu, E. M.; Zavala, V.

    2010-12-01

    The generation and distpatch of electricity while maintaining high reliability levels are two of the most daunting engineering problems of the modern era. This was demonstrated by the Northeast blackout of August 2003, which resulted in the loss of 6.2 gigawatts that served more than 50 million people and which resulted in economic losses on the order of $10 billion. In addition, there exist strong socioeconomic pressures to improve the efficiency of the grid. The most prominent solution to this problem is a substantial increase in the use of renewable energy such as wind and solar. In turn, its uncertain availability—which is due to the intrinsic weather variability—will increase the likelihood of disruptions. In this endeavors of current and next-generation power systems, forecasting atmospheric conditions with uncertainty can and will play a central role, at both the demand and the generation ends. User demands are strongly correlated to physical conditions such as temperature, humidity, and solar radiation. The reason is that the ambient temperature and solar radiation dictate the amount of air conditioning and lighting needed in residential and commercial buildings. But these potential benefits would come at the expense of increased variability in the dynamics of both production and demand, which would become even more dependent on weather state and its uncertainty. One of the important challenges for energy in our time is how to harness these benefits while “keeping the lights on”—ensuring that the demand is satisfied at all times and that no blackout occurs while all energy sources are optimally used. If we are to meet this challenge, accounting for uncertainty in the atmospheric conditions is essential, since this will allow minimizing the effects of false positives: committing too little baseline power in anticipation of demand that is underestimated or renewable energy levels that fail to materialize. In this work we describe a framework for the

  8. Hybrid Systems: Computation and Control.

    Science.gov (United States)

    2007-11-02

    elbow) and a pinned first joint (shoul- der) (see Figure 2); it is termed an underactuated system since it is a mechanical system with fewer...Montreal, PQ, Canada, 1998. [10] M. W. Spong. Partial feedback linearization of underactuated mechanical systems . In Proceedings, IROS󈨢, pages 314-321...control mechanism and search for optimal combinations of control variables. Besides the nonlinear and hybrid nature of powertrain systems , hardware

  9. The CARMA Control System

    Science.gov (United States)

    Gwon, C.; Beard, A. D.; Daniel, P.; Hobbs, R.; Scott, S. L.; Kraybill, J. C.; Leitch, E.; Mehringer, D. M.; Plante, R.; Amarnath, N. S.; Pound, M. W.; Rauch, K. P.; Teuben, P. J.

    2004-07-01

    The Combined Array for Research in Millimeter-wave Astronomy (CARMA) will be the combination of the BIMA, OVRO, and SZA millimeter arrays. With first light scheduled for 2005, CARMA will be the first heterogeneous millimeter array, combining antennas varying from 3.5 m to 10.4 m in diameter. The controls for CARMA involve creating a uniform interface for all antennas. The antennas are grouped into five independently-controlled sub-arrays, which will be used for scientific observations, engineering, or maintenance. The sub-arrays are controlled by two components: the Sub-array Command Processor (SCP) and the Sub-array Tracker (SAT). While each sub-array has a dedicated SCP for handling command processing, a single SAT computes and distributes slowly varying parameters to the necessary sub-arrays. The sub-array interface uses CORBA distributed objects to physically separate the user interface from the array. This allows for stability in the core engine controlling the array while enabling flexibility in the user interface implementation.

  10. Electrochemically controlled supramolecular systems

    NARCIS (Netherlands)

    Nijhuis, Christian A.; Ravoo, Bart Jan; Huskens, Jurriaan; Reinhoudt, David N.

    2007-01-01

    Large and complex molecular structures can be assembled by supramolecular chemistry and self-organization. For practical purposes it is required that the assembly and disassembly of supramolecular complexes and materials can be directed and controlled by external stimuli in order to build, for insta

  11. Optimal adaptive control for a class of stochastic systems

    NARCIS (Netherlands)

    Bagchi, Arunabha; Chen, Han-Fu

    1997-01-01

    We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law w

  12. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Makowska, Małgorzata G., E-mail: malg@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000 (Denmark); European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Theil Kuhn, Luise; Cleemann, Lars N. [Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000 (Denmark); Lauridsen, Erik M. [Xnovo Technology ApS, Galoche Alle 15, Køge 4600 (Denmark); Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tremsin, Anton S. [Space Sciences Laboratory, University of California at Berkeley, Berkeley, California 94720 (United States); Grosse, Mirco [Institute for Applied Material Research, Karlsruhe Institute of Technology, Karlsruhe DE-76021 (Germany); Morgano, Manuel [Paul Scherrer Institut, Villigen PSI CH-5232 (Switzerland); Kabra, Saurabh [ISIS, Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom); Strobl, Markus [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  13. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park

    Science.gov (United States)

    Barr, Jordan G.; Engel, Vic; Fuentes, Jose D.; Zieman, Joseph C.; O'Halloran, Thomas L.; Smith, Thomas J.; Anderson, Gordon H.

    2010-01-01

    We report on net ecosystem production (NEP) and key environmental controls on net ecosystem exchange (NEE) of carbon dioxide (CO2) between a mangrove forest and the atmosphere in the coastal Florida Everglades. An eddy covariance system deployed above the canopy was used to determine NEE during January 2004 through August 2005. Maximum daytime NEE ranged from -20 to -25 μmol (CO2) m-2 s-1 between March and May. Respiration (Rd) was highly variable (2.81 ± 2.41 μmol (CO2) m-2 s-1), reaching peak values during the summer wet season. During the winter dry season, forest CO2 assimilation increased with the proportion of diffuse solar irradiance in response to greater radiative transfer in the forest canopy. Surface water salinity and tidal activity were also important controls on NEE. Daily light use efficiency was reduced at high (>34 parts per thousand (ppt)) compared to low (d by ~0.9 μmol (CO2) m-2 s-1 and nighttime Rd by ~0.5 μmol (CO2) m-2 s-1. The forest was a sink for atmospheric CO2, with an annual NEP of 1170 ± 127 g C m-2 during 2004. This unusually high NEP was attributed to year-round productivity and low ecosystem respiration which reached a maximum of only 3 g C m-2 d-1. Tidal export of dissolved inorganic carbon derived from belowground respiration likely lowered the estimates of mangrove forest respiration. These results suggest that carbon balance in mangrove coastal systems will change in response to variable salinity and inundation patterns, possibly resulting from secular sea level rise and climate change.

  14. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2008-01-01

    Emphasizes the physical and engineering aspects of the power system frequency control design problem while providing a conceptual understanding of frequency regulation and application of robust control techniques. This book summarizes the author's research outcomes, contributions and experiences with power system frequency regulation.

  15. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration.

    Science.gov (United States)

    Scott, Andrew C; Glasspool, Ian J

    2006-07-18

    By comparing Silurian through end Permian [approximately 250 million years (Myr)] charcoal abundance with contemporaneous macroecological changes in vegetation and climate we aim to demonstrate that long-term variations in fire occurrence and fire system diversification are related to fluctuations in Late Paleozoic atmospheric oxygen concentration. Charcoal, a proxy for fire, occurs in the fossil record from the Late Silurian (approximately 420 Myr) to the present. Its presence at any interval in the fossil record is already taken to constrain atmospheric oxygen within the range of 13% to 35% (the "fire window"). Herein, we observe that, as predicted, atmospheric oxygen levels rise from approximately 13% in the Late Devonian to approximately 30% in the Late Permian so, too, fires progressively occur in an increasing diversity of ecosystems. Sequentially, data of note include: the occurrence of charcoal in the Late Silurian/Early Devonian, indicating the burning of a diminutive, dominantly rhyniophytoid vegetation; an apparent paucity of charcoal in the Middle to Late Devonian that coincides with a predicted atmospheric oxygen low; and the subsequent diversification of fire systems throughout the remainder of the Late Paleozoic. First, fires become widespread during the Early Mississippian, they then become commonplace in mire systems in the Middle Mississippian; in the Pennsylvanian they are first recorded in upland settings and finally, based on coal petrology, become extremely important in many Permian mire settings. These trends conform well to changes in atmospheric oxygen concentration, as predicted by modeling, and indicate oxygen levels are a significant control on long-term fire occurrence.

  16. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  17. Controlled Atmosphere Treatment for Control of Grape mealybug, Pseudococcus maritimus (Ehrhorn) (Hemiptera: Pseudococcidae), on Harvested Table Grapes.

    Science.gov (United States)

    Controlled atmosphere (CA) treatments with ultralow oxygen (ULO) alone and in combinations with 50% carbon dioxide were studied to control grape mealybug, Pseudococcus maritimus (Ehrhorn) on harvested table grapes. Two ultralow oxygen levels, ˜30 ppm and <1 ppm, were tested in both ULO and ULO+50% ...

  18. Control principles of complex systems

    Science.gov (United States)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  19. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  20. Microprocessor control of photovoltaic systems

    Science.gov (United States)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    The present low power CMOS microprocessor controller for photovoltaic power systems possesses three programs, which are respectively intended for (1) conventional battery-charging systems with state-of-charge estimation and sequential shedding of subarrays and loads, (2) maximum power-controlled battery-charging systems, and (3) variable speed dc motor drives. Attention is presently given to the development of this terrestrial equipment for spacecraft use.

  1. Distributed Stepping Motor Control System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The beam diagnostic devices used at RIBLL are driven by stepper motors, which are controlled by I/O modules based on ISA-bus in an industrial computer. The disadvantages of such mode are that a large number of long cables are used and one computer to control is unsafe. We have developed a distributed stepping motor control system for the remote, local and centralized control of the stepping motors. RS-485 bus is used for the connection between the remote control unit and the local control units. The con...

  2. Aircraft control system

    Science.gov (United States)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  3. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  4. Modified atmospheric conditions controlling fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose

    1997-01-01

    2 level, relative humidity and temperature) and the composition of the cheese. All fungal species commonly found on cheese, starter cultures as well as contaminants, were examined.The most important factors influencing fungal growth are temperature, water activity of the medium and the carbon......Effective control of fungal growth on cheese under storage conditions is of great concern for the dairy industry. Therefore we designed a research project together with the Danish dairy industry on modelling fungal growth on cheese as affected by the combined effect of storage conditions (O2 and CO...... a competitive advantage over other fungi in moist conditions with high carbon dioxide levels, such as inside a roquefort cheese or in gas tight grain storage. The key to success in food packaging is to recognise the food ecosystem, as it enables us to identify which micro...

  5. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  6. Control Evaluation Information System Savings

    Directory of Open Access Journals (Sweden)

    Eddy Sutedjo

    2011-05-01

    Full Text Available The purpose of this research is to evaluate the control of information system savings in the banking and to identify the weaknesses and problem happened in those saving systems. Research method used are book studies by collecting data and information needed and field studies by interview, observation, questioner, and checklist using COBIT method as a standard to assess the information system control of the company. The expected result about the evaluation result that show in the problem happened and recommendation given as the evaluation report and to give a view about the control done by the company. Conclusion took from this research that this banking company has met standards although some weaknesses still exists in the system.Index Terms - Control Information System, Savings

  7. Emission control system

    Science.gov (United States)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  8. Development of a tiny tandem balloon system for atmospheric observation

    Science.gov (United States)

    Saito, Yoshitaka; Yamada, Kazuhiko; Fujiwara, Masatomo

    2016-07-01

    A tandem balloon system with a combination of a zero-pressure balloon on top and a super-pressure balloon on the bottom has a unique trajectory characteristic, with different flight altitudes between day and night and thus with ascending and descending motions at dawn and dusk, respectively. This characteristic provides a unique opportunity to explore the atmosphere, e.g., the upper tropospheric and lower stratospheric region with cross-tropopause measurements twice a day. We started development of a tiny tandem balloon system using a 10 m^{3} super-pressure balloon and a 100 m^{3} zero-pressure balloon, with a capability of carrying 3 kg of payload. One of the scientific targets is to measure water vapor, cloud particles, and temperature around the tropical tropopause which is the entry point of the stratospheric and mesospheric meridional circulation. For the data transfer, the iridium satellite communication module, SBD9603 is used. In this paper, the current status of the development will be reported.

  9. Traction Control System for Motorcycles

    Directory of Open Access Journals (Sweden)

    Massimo Conti

    2009-01-01

    Full Text Available Traction control is a widely used control system to increase stability and safety of four wheel vehicles. Automatic stability control is used in the BMW K1200R motorcycle and in motoGP competition, but not in other motorcycles. This paper presents an algorithm and a low-cost real-time hardware implementation for motorcycles. A prototype has been developed, applied on a commercial motorcycle, and tested in a real track. The control system that can be tuned by the driver during the race has been appreciated by the test driver.

  10. Commutated automatic gain control system

    Science.gov (United States)

    Yost, S. R.

    1982-01-01

    The commutated automatic gain control (AGC) system was designed and built for the prototype Loran-C receiver is discussed. The current version of the prototype receiver, the Mini L-80, was tested initially in 1980. The receiver uses a super jolt microcomputer to control a memory aided phase loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The AGC control adjusts the level of each station signal, such that the early portion of each envelope rise is about at the same amplitude in the receiver envelope detector.

  11. Acuity systems and control charting.

    Science.gov (United States)

    Shaha, S H

    1995-01-01

    The strengths of control charting and other statistical process control (SPC) tools have not previously been applied to acuity systems. Intermountain Health Care, Salt Lake City, Utah, developed a new acuity system that relies heavily upon control charting for an array of purposes, including immediate feedback to caregivers regarding decisions, ongoing feedback to managers regarding decision patterns, and longer-term feedback regarding trends and budget-relevant information. The use of control charts has eliminated the need for auditing acuity-based staffing and has maintained the reliability of classifications at levels above 95 percent. Implications for other novel applications are offered.

  12. Linux in Industrial Control Systems

    CERN Document Server

    Riesco, T

    2001-01-01

    Today the Linux operating system has become a real alternative for industrial control systems. Linux supports all layers in control systems starting with Real-Time or embedded systems for data acquisition, following with treatment, storage, communication and data adaptation, and finally, with supervision and user interfaces. In the last years the Linux development has grown being incorporated in several industrial systems demonstrating high performance, availability and stability for complex processes in chemical, automobile or petrol industries. In many of these industries Linux architectures have been tested and validated successfully. The new CERN policy supporting Linux, as well as the emergence of cheap and robust Linux solutions, motivates its implementation in our safety control and supervision systems in the near future.

  13. VARIABILITY OF ATMOSPHERIC CO2 OVER INDIA AND SURROUNDING OCEANS AND CONTROL BY SURFACE FLUXES

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2012-08-01

    Full Text Available In the present study, seasonal and inter-annual variability of atmospheric CO2 concentration over India and surrounding oceans during 2002–2010 derived from Atmospheric InfrarRed Sounder observation and their relation with the natural flux exchanges over terrestrial Indian and surrounding oceans were analyzed. The natural fluxes over the terrestrial Indian in the form of net primary productivity (NPP were simulated based on a terrestrial biosphere model governed by time varying climate parameters (solar radiation, air temperature, precipitation etc and satellite greenness index together with the land use land cover and soil attribute maps. The flux exchanges over the oceans around India (Tropical Indian Ocean: TIO were calculated based on a empirical model of CO2 gas dissolution in the oceanic water governed by time varying upper ocean parameters such as gradient of partial pressure of CO2 between ocean and atmosphere, winds, sea surface temperature and salinity. Comparison between the variability of atmospheric CO2 anomaly with the anomaly of surface fluxes over India and surrounding oceans suggests that biosphere uptake over India and oceanic uptake over the south Indian Ocean could play positive role on the control of seasonal variability of atmospheric carbon dioxide growth rate. On inter-annual scale, flux exchanges over the tropical north Indian Ocean could play positive role on the control of atmospheric carbon dioxide growth rate.

  14. Comparison of automatic control systems

    Science.gov (United States)

    Oppelt, W

    1941-01-01

    This report deals with a reciprocal comparison of an automatic pressure control, an automatic rpm control, an automatic temperature control, and an automatic directional control. It shows the difference between the "faultproof" regulator and the actual regulator which is subject to faults, and develops this difference as far as possible in a parallel manner with regard to the control systems under consideration. Such as analysis affords, particularly in its extension to the faults of the actual regulator, a deep insight into the mechanism of the regulator process.

  15. VA National Bed Control System

    Data.gov (United States)

    Department of Veterans Affairs — The VA National Bed Control System records the levels of operating, unavailable and authorized beds at each VAMC, and it tracks requests for changes in these levels....

  16. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  17. A novel microsatellite control system

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K.R.; Frigo, J.R.; Tilden, M.W.

    1998-02-01

    The authors are researching extremely simple yet quite capable analog pulse-coded neural networks for ``smaller-faster-cheaper`` spacecraft attitude and control systems. The will demonstrate a prototype microsatellite that uses their novel control method to autonomously stabilize itself in the ambient magnetic field and point itself at the brightest available light source. Though still in design infancy, the ``Nervous Net`` controllers described could allow for space missions not currently possible given conventional satellite hardware. Result, prospects and details are presented.

  18. Pump control system for windmills

    Science.gov (United States)

    Avery, Don E.

    1983-01-01

    A windmill control system having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  19. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2014-01-01

    This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi

  20. Contamination Control: a systems approach

    NARCIS (Netherlands)

    Donck, J.C.J. van der

    2010-01-01

    Contamination influences a wide variety of industrial processes. For complex systems, contamination control, the collective effort to control contamination to such a level that it guarantees or even improves process or product functionality, offers a way for finding workable solutions. Central in th

  1. Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica

    Directory of Open Access Journals (Sweden)

    S. L. Knuth

    2012-11-01

    Full Text Available In September 2009, a series of long-range unmanned aircraft system (UAS flights collected basic atmospheric data over the Terra Nova Bay polynya in Antarctica. Air temperature, wind, pressure, relative humidity, radiation, skin temperature, GPS, and operational aircraft data were collected and quality controlled for scientific use. The data has been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC for free access (doi:10.1594/USAP/0739464.

  2. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  3. A Topological Trigger System for Imaging Atmospheric-Cherenkov Telescopes

    CERN Document Server

    Schroedter, M; Byrum, K; Drake, G; Duke, C; Holder, J; Imran, A; Madhavan, A; Krennrich, F; Kreps, A; Smith, A

    2009-01-01

    A fast trigger system is being designed as a potential upgrade to VERITAS, or as the basis for a future array of imaging atmospheric-Cherenkov telescopes such as AGIS. The scientific goal is a reduction of the energy threshold by a factor of 2 over the current threshold of VERITAS of around 130 GeV. The trigger is being designed to suppress both accidentals from the night-sky background and cosmic rays. The trigger uses field-programmable gate arrays (FPGAs) so that it is adaptable to different observing modes and special physics triggers, e.g. pulsars. The trigger consists of three levels: The level 1 (L1.5) trigger operating on each telescope camera samples the discriminated pixels at a rate of 400 MHz and searches for nearest-neighbor coincidences. In L1.5, the received discriminated signals are delay-compensated with an accuracy of 0.078 ns, facilitating a short coincidence time-window between any nearest neighbor of 5 ns. The hit pixels are then sent to a second trigger level (L2) that parameterizes the ...

  4. Implementation of SLODAR atmospheric turbulence profiling to the ARGOS system

    Science.gov (United States)

    Mazzoni, Tommaso; Busoni, Lorenzo; Bonaglia, Marco; Esposito, Simone

    2014-08-01

    ARGOS is the Ground Layer Adaptive Optics system of the Large Binocular Telescope, it uses three Laser Guide Stars at 12 km altitude, generated by Rayleigh backscattered light of pulsed Nd:YAG lasers at 532nm. The wavefront distortion in the Ground Layer is measured by three Shack-Hartmann WFS, sampling with 15×15 subaperture the three LGS arranged on a single CCD with 8×8px per square subaperture. The SLOpe Detection And Ranging (SLODAR) is a method used to measure the turbulence profiles. Cross correlation of wavefronts gradient from multiple stars is used to estimate the relative strengths of turbulent layers at different altitudes. In the ARGOS case the LGS are arranged on a triangle inscribed in a 2 arcmin radius circle, so we expect an effective slopes correlation up to 5km altitude. We present here the results of a study aimed to implement the SLODAR method on ARGOS performed with the idl-based simulation code used to characterize the ARGOS performance. Simulation implements the atmospheric turbulence on different layers with variable strength, altitude and wind speed. The algorithm performance are evaluated comparing the input turbulence with the cross-correlation of the SH slopes acquired in open loop.

  5. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  6. Design of a digital adaptive control system for reentry vehicles.

    Science.gov (United States)

    Picon-Jimenez, J. L.; Montgomery, R. C.; Grigsby, L. L.

    1972-01-01

    The flying qualities of atmospheric reentry vehicles experience considerable variations due to the wide changes in flight conditions characteristic of reentry trajectories. A digital adaptive control system has been designed to modify the vehicle's dynamic characteristics and to provide desired flying qualities for all flight conditions. This adaptive control system consists of a finite-memory identifier which determines the vehicle's unknown parameters, and a gain computer which calculates feedback gains to satisfy flying quality requirements.

  7. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  8. Boundary layer control of rotating convection systems.

    Science.gov (United States)

    King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M

    2009-01-15

    Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.

  9. Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models

    Science.gov (United States)

    Song, Jiyun; Wang, Zhi-Hua

    2015-03-01

    We couple a single column model (SCM) to a cutting-edge single-layer urban canopy model (SLUCM) with realistic representation of urban hydrological processes. The land-surface transport of energy and moisture parametrized by the SLUCM provides lower boundary conditions to the overlying atmosphere. The coupled SLUCM-SCM model is tested against field measurements of sensible and latent heat fluxes in the surface layer, as well as vertical profiles of temperature and humidity in the mixed layer under convective conditions. The model is then used to simulate urban land-atmosphere interactions by changing urban geometry, surface albedo, vegetation fraction and aerodynamic roughness. Results show that changes of landscape characteristics have a significant impact on the growth of the boundary layer as well as on the distributions of temperature and humidity in the mixed layer. Overall, the proposed numerical framework provides a useful stand-alone modelling tool, with which the impact of urban land-surface conditions on the local hydrometeorology can be assessed via land-atmosphere interactions.

  10. Study on the Total Amount Control of Atmospheric Pollutant Based on GIS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To provide effective environmental management for total amount control of atmospheric pollutants. Methods An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shantou of Guangdong Province on the basis of an overall assessment of regional natural environment, social economic state of development, pollution sources and atmospheric environmental quality. Compared with actual monitoring results in a studied region, simulation values fell within the range of two times of error and were evenly distributed in the two sides of the monitored values. Predicted with the largest emission model method, the largest emission of sulfur dioxide would be 54 279.792 tons per year in 2010. Conclusion The mathematical model established and revised on the basis of GIS is more rational and suitable for the regional characteristics of total amount control of air pollutants.

  11. Balanced bridge feedback control system

    Science.gov (United States)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  12. Learning fuzzy logic control system

    Science.gov (United States)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  13. Chaos Control in Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Marcelo A. Savi

    2006-01-01

    Full Text Available Chaos has an intrinsically richness related to its structure and, because of that, there are benefits for a natural system of adopting chaotic regimes with their wide range of potential behaviors. Under this condition, the system may quickly react to some new situation, changing conditions and their response. Therefore, chaos and many regulatory mechanisms control the dynamics of living systems, conferring a great flexibility to the system. Inspired by nature, the idea that chaotic behavior may be controlled by small perturbations of some physical parameter is making this kind of behavior to be desirable in different applications. Mechanical systems constitute a class of system where it is possible to exploit these ideas. Chaos control usually involves two steps. In the first, unstable periodic orbits (UPOs that are embedded in the chaotic set are identified. After that, a control technique is employed in order to stabilize a desirable orbit. This contribution employs the close-return method to identify UPOs and a semi-continuous control method, which is built up on the OGY method, to stabilize some desirable UPO. As an application to a mechanical system, a nonlinear pendulum is considered and, based on parameters obtained from an experimental setup, analyses are carried out. Signals are generated by numerical integration of the mathematical model and two different situations are treated. Firstly, it is assumed that all state variables are available. After that, the analysis is done from scalar time series and therefore, it is important to evaluate the effect of state space reconstruction. Delay coordinates method and extended state observers are employed with this aim. Results show situations where these techniques may be used to control chaos in mechanical systems.

  14. The influence of controlled atmosphere and vacuum packaging upon chilled pork keeping quality.

    Science.gov (United States)

    Jeremiah, L E; Gibson, L L; Argnosa, G C

    1995-01-01

    A total of 48 pork loin section (1 kg) with normal inherent muscle quality were utilized to evaluate and compare the effects of a vacuum packaging system and a CO(2) controlled atmosphere packaging system on keeping quality of chilled pork stored at -1·5°C. Results indicated based upon appearance CO(2) packaged porl loin had a storage life of greated than 15 weeks and vacuum packaged pork loid had a storage life of slightly over 12 weeks. However, off-flavor development coinciding with lactic acid bacteria reaching maximum numbers presently restricts the actual storage life of pork loin stored at -1·5°C to 9 weeks in both packaging treatments. Therefore, if microbial contamination on the commercial product can be reduced significantly to prevent spoilage organisms, including lactics, from rapidly growing to maximum numbers, storage life of pork loin at -1·5°C can be extended sufficiently to accomodate all domestic and export applications using either vacuum or CO(2) packaging.

  15. Remote monitoring of electroencephalogram, electrocardiogram, and behavior during controlled atmosphere stunning in broilers: Implications for welfare

    NARCIS (Netherlands)

    Coenen, A.M.L.; Lankhaar, J.A.C.; Lowe, J.C.; McKeegan, D.

    2009-01-01

    This study examined the welfare implications of euthanizing broilers with 3 gas mixtures relevant to the commercial application of controlled atmosphere stunning (CAS). Birds were implanted/equipped with electrodes to measure brain activity (electroencephalogram, EEG) and heart rate. These signals w

  16. Integration of Fire Control, Flight Control and Propulsion Control Systems.

    Science.gov (United States)

    1983-08-01

    system, the answer was by a comprehensive programme of simulation and rig testing. ix In the only paper in the programme deailing with systems for civil ...be used otherwise. At one time there was an explosive growth in the application of automatic flight control to civil transport aircraft, culminating in...nombre at l’ampleur des 6quipesenta de maintenance extgrieurs a lavion, 11 faut s’efforcer I ce qua 1. mayan privil~gif pareattant lea 6changss

  17. An Integrated Atmospheric and Hydrological Based Malaria Epidemic Alert System

    Science.gov (United States)

    Asefi Najafabady, S.; Li, J.; Nair, U. S.; Welch, R. M.; Srivastava, A.; Nagpal, B. N.; Saxena, R.; Benedict, M. E.

    2005-05-01

    Malaria is a growing global threat, with increasing morbidity and mortality. In India there have been >40 epidemics in the last five years, in part due to abnormal meteorological conditions as well as the buildup of an immunologically naïve population. In most parts of India, periodic epidemics of malaria occur every five to seven years. Malaria epidemics are serious national/regional health emergencies, occurring with little or no warning where the public health system is unprepared to respond to the emerging problem. However, epidemic conditions develop over several weeks, theoretically allowing time for preventative action. The study area for the proposed research is located in Mewat, south of Delhi. It is estimated that 90% of the malaria burden is influenced by environmental factors, so that successful malaria intervention approaches must be adapted to local environmental conditions. Of particular importance are air and water temperature, relative humidity, soil moisture, and precipitation. Extreme climatic conditions prevail in Mewat, with uneven topography, 450mm average annual rainfall in 25 to 35 days, high temperature variability in different seasons, low relative humidity. Automated surface measurements are obtained for temperature, relative humidity, water temperature, precipitation and soil moisture. The Regional Atmospheric Modeling System (RAMS) is used to predict these variables over the spatial domain which are used in dynamic hydrological models to yield the parameters important to malaria transmission, including surface wetness, mean water table depth, percent surface saturation and total surface runoff. The locations of saturated surface regions associated with mosquito breeding sites near populated regions, along with water temperature, and then are used to determine larvae development and mosquito abundance. ASTER, LANDSAT and MODIS imagery are used to retrieve soil moisture, vegetation indices and land cover types. Pan-sharpened 1m spatial

  18. The CERN SPS Control System

    CERN Multimedia

    CERN Neyrac Films

    2012-01-01

    Part of the series of films produced by CERN about the SPS. Names, facts and credits added on the 1975 version by Bengt Sagnell, Meyrin, Oct 2012. The project leader for the SPS accelerator (with 400 staff) was John Adams - later Sir John. The group responsible for the design and installation of the control system was led by Michael Crowley-Milling. 00:02:14 Bernard Sutton00:02:48 Michael Crowley-Milling, Head of the Controls Group00:03:01 Designed in the Controls Group, this was probably the first use of touch screens in an industrial control system00:04:37 Louis Burnod, Section leader, Beam Instrumentation00:05:36 Claes Frisk, Computer technician 00:06:03 The system contained 24 Norsk Data NORD-10 16-bit mini computers with 16-64 kB of magnetic core memory and external hard disks of from 5MB to 256 MB in size00:06:23 Frank Beck, Section leader, Central Controls00:06:26 Véronique Frammery, Programmer 00:06:31 Hans-Karl Kuhn, Power Supply Controls00:07:55 Raymond Rausch, Control electronics00:10:23 Paul Acti...

  19. Daily atmospheric variability in the South American monsoon system

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, V. [Institute of Global Environment and Society (IGES), Center for Ocean-Land-Atmosphere Studies (COLA), Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic and Earth Sciences, Fairfax, VA (United States); Misra, Vasubandhu [Florida State University, Department of Meteorology and Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States)

    2011-08-15

    The space-time structure of the daily atmospheric variability in the South American monsoon system has been studied using multichannel singular spectrum analysis of daily outgoing longwave radiation. The three leading eigenmodes are found to have low-frequency variability while four other modes form higher frequency oscillations. The first mode has the same time variability as that of El Nino-Southern Oscillation (ENSO) and exhibits strong correlation with the Pacific sea surface temperature (SST). The second mode varies on a decadal time scale with significant correlation with the Atlantic SST suggesting an association with the Atlantic multidecadal oscillation (AMO). The third mode also has decadal variability but shows an association with the SST of the Pacific decadal oscillation (PDO). The fourth and fifth modes describe an oscillation that has a period of about 165 days and is associated with the North Atlantic oscillation (NAO). The sixth and seventh modes describe an intraseasonal oscillation with a period of 52 days which shows strong relation with the Madden-Julian oscillation. There exists an important difference in the variability of convection between Amazon River Basin (ARB) and central-east South America (CESA). Both regions have similar variations due to ENSO though with higher magnitude in ARB. The AMO-related mode has almost identical variations in the two regions, whereas the PDO-related mode has opposite variations. The interseasonal NAO-related mode also has variations of opposite sign with comparable magnitudes in the two regions. The intraseasonal variability over the CESA is robust while it is very weak over the ARB region. The relative contributions from the low-frequency modes mainly determine the interannual variability of the seasonal mean monsoon although the interseasonal oscillation may contribute in a subtle way during certain years. The intraseasonal variability does not seem to influence the interannual variability in either region

  20. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  1. Pyrgeometer Calibration for DOE-Atmospheric System Research Program Using NREL Method (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Stoffel, T.

    2010-03-15

    Presented at the DOE-Atmospheric System Research Program, Science Team Meeting, 15-19 March 2010, Bethesda, Maryland. The presentation: Pyrgeometer Calibration for DOE-Atmospheric System Research program using NREL Method - was presented by Ibrahim Reda and Tom Stoffel on March 15, 2010 at the 2010 ASR Science Team Meeting. March 15-19, 2010, Bethesda, Maryland.

  2. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... COMMISSION Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and... Guidance (LR-ISG), LR-ISG-2012-02, ``Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric... aging management programs (AMPs), aging management review (AMR) items, and definitions in NUREG-...

  3. Study of the control-equilibrium of control systems

    Institute of Scientific and Technical Information of China (English)

    Liu Qiaoge; Fu Mengyin; Sun Changsheng

    2008-01-01

    Not so much had been talked about equilibrium in control area.On the basis of the phenomenon of balance,the concept of control-equilibrium and control-equilibrium of a control system is proposed.According to this theory,a perfect control method should not only guarantee stability of the system,but also ensure the control-equilibrium of the system.To achieve the control-equilibrium,feed-forward control is required.

  4. Phase control of excitable systems

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, S; Seoane, J M; Marino, I P; Sanjuan, M A F [Nonlinear Dynamics and Chaos Group, Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Euzzor, S; Meucci, R; Arecchi, F T [CNR-Istituto Nazionale di Ottica Applicata, Largo E. Fermi, 6 50125 Firenze (Italy)], E-mail: samuel.zambrano@urjc.es, E-mail: jesus.seoane@urjc.es, E-mail: ines.perez@urjc.es

    2008-07-15

    Here we study how to control the dynamics of excitable systems by using the phase control technique. Excitable systems are relevant in neuronal dynamics and therefore this method might have important applications. We use the periodically driven FitzHugh-Nagumo (FHN) model, which displays both spiking and non-spiking behaviours in chaotic or periodic regimes. The phase control technique consists of applying a harmonic perturbation with a suitable phase {phi} that we adjust in search of different behaviours of the FHN dynamics. We compare our numerical results with experimental measurements performed on an electronic circuit and find good agreement between them. This method might be useful for a better understanding of excitable systems and different phenomena in neuronal dynamics.

  5. The CMS Detector Control System

    CERN Document Server

    Gomez-Reino Garrido, Robert

    2009-01-01

    The Compact Muon Solenoid (CMS) experiment at CERN is one of the Large Hadron Collider multi-purpose experiments. Its large subsystems size sum up to around 6 million Detector Control System (DCS) channels to be supervised. A cluster of ~100 servers is needed to provide the required processing resources. To cope with such a size a scalable approach has been chosen factorizing the DCS system as much as possible. CMS DCS has made a clear division between its computing resources and functionality by creating a computing framework allowing for plugging in functional components. DCS components are developed by the subsystems expert groups while the computing infrastructure is developed centrally. To ease the component development task, a framework based on PVSSII [1] has been developed by the CERN Joint Controls Project [2] (JCOP). This paper describes the current status of CMS Detector Control System, giving an overview of the DCS computing infrastructure, the integration of DCS subsystem functional components an...

  6. Power system dynamics and control

    CERN Document Server

    Kwatny, Harry G

    2016-01-01

    This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...

  7. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  8. Control synthesis of switched systems

    CERN Document Server

    Zhao, Xudong; Niu, Ben; Wu, Tingting

    2017-01-01

    This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on inte...

  9. Advanced Light Source control system

    Energy Technology Data Exchange (ETDEWEB)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  10. 14 CFR 27.395 - Control system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system. 27.395 Section 27.395... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 27.395 Control system. (a) The part of each control system from the pilot's controls to the control stops must...

  11. A horizontal mobile measuring system for atmospheric quantities

    Directory of Open Access Journals (Sweden)

    J. Hübner

    2014-05-01

    Full Text Available A fully automatic Horizontal Mobile Measuring System (HMMS for atmospheric quantities has been developed. The HMMS is based on the drive mechanism of a garden railway system and can be installed at any location and with any measuring track. In addition to meteorological quantities (temperature, humidity and short/long-wave down/upwelling radiation, HMMS also measures trace gas concentrations (carbon dioxide and ozone. While sufficient spatial resolution is a problem even for measurements on distributed towers, this could be easily achieved with the HMMS, which has been specifically developed to obtain higher information density about horizontal gradients in a heterogeneous forest ecosystem. There, horizontal gradients of meteorological quantities and trace gases could be immense, particularly at the transition from a dense forest to an open clearing, with large impact on meteorological parameters and exchange processes. Consequently, HMMS was firstly applied during EGER IOP3 project (ExchanGE processes in mountainous Regions – Intense Observation Period 3 in the Fichtelgebirge Mountains (SE Germany during summer 2011. At a constant 1 m above ground, the measuring track of the HMMS consisted of a straight line perpendicular to the forest edge, starting in the dense spruce forest and leading 75 m into an open clearing. Tags with bar codes, mounted every meter on the wooden substructure, allowed (a keeping the speed of the HMMS constant (approx. 0.5 m s−1 and (b operation of the HMMS in a continuous back and forth running mode. During EGER IOP3, HMMS was operational for almost 250 h. Results show that – due to considerably long response times (between 4 s and 20 s of commercial temperature, humidity and the radiation sensors – true spatial variations of the meteorological quantities could not be adequately captured (mainly at the forest edge. Corresponding dynamical (spatial errors of the measurement values were corrected on the basis of

  12. Control System of the Bepcii

    CERN Document Server

    Zhao, J; Kong, X C; Lei, G; Xu, S F; Le, Q

    2001-01-01

    Recently the Chinese Academy of Sciences has chosen BEPCII as the future development of the BEPC, i.e. upgrade of both the machine and detector. The luminosity of the machine is expected to increase to 1.0x1033cm-2s-1. The project will be started at the beginning of 2002 and finished with in 3-4 years. The BEPC control system was built in 1987 and upgraded in 1994. According to the design of the BEPCII, a double ring schema will be adopted and a number of new devices will be added in the system. The existing control system has to be upgraded. The BEPCII will be distributed architecture and developed by EPICS. We are going to apply the standard hardware interfaces and mature technologies in the system. A number of VME IOCs will be added in the system and the feildbus, PLCs will be used as device control for some kind of equipment. We will keep the existing system in use, such as CAMAC modules and PC front-ends, and merge it into EPICS system. Recently the development of the prototype is in progress. This paper...

  13. The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Buroker, L; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jansen, S; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Meyhandan, R; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Cabo, I Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Garcia, B Zamorano; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2012-01-01

    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10^17 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e.g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air show...

  14. Numerically controlled atmospheric-pressure plasma sacrificial oxidation using electrode arrays for improving silicon-on-insulator layer uniformity

    Science.gov (United States)

    Takei, Hiroyasu; Yoshinaga, Keinosuke; Matsuyama, Satoshi; Yamauchi, Kazuto; Sano, Yasuhisa

    2015-01-01

    Silicon-on-insulator (SOI) wafers are important semiconductor substrates in high-performance devices. In accordance with device miniaturization requirements, ultrathin and highly uniform top silicon layers (SOI layers) are required. A novel method involving numerically controlled (NC) atmospheric-pressure plasma sacrificial oxidation using an electrode array system was developed for the effective fabrication of an ultrathin SOI layer with extremely high uniformity. Spatial resolution and oxidation properties are the key factors controlling ultraprecision machining. The controllability of plasma oxidation and the oxidation properties of the resulting experimental electrode array system were examined. The results demonstrated that the method improved the thickness uniformity of the SOI layer over one-sixth of the area of an 8-in. wafer area.

  15. Controlling dynamics in diatomic systems

    Indian Academy of Sciences (India)

    Praveen Kumar; Harjinder Singh

    2007-09-01

    Controlling molecular energetics using laser pulses is exemplified for nuclear motion in two different diatomic systems. The problem of finding the optimized field for maximizing a desired quantum dynamical target is formulated using an iterative method. The method is applied for two diatomic systems, HF and OH. The power spectra of the fields and evolution of populations of different vibrational states during transitions are obtained.

  16. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data

  17. The QUIJOTE TGI control system

    Science.gov (United States)

    Gómez-Reñasco, M. F.; Martín, Y.; Aguiar-González, M.; Cozar, J.; González-Cobos, N.; Hoyland, R.; Núñez Cagical, M.; Pérez-de-Taoro, M. R.; Sánchez-de la Rosa, V.; Vega-Moreno, A.; Viera-Curbelo, T.

    2016-07-01

    The QUIJOTE-CMB experiment (Q-U-I JOint TEnerife CMB experiment) has been described in previous publications. In particular, the architecture of the MFI instrument control system, the first of the three QUIJOTE instruments, was presented in [1]. In this paper we describe the control system architecture, hardware, and software, of the second QUIJOTE instrument, the TGI (Thirty GHz Instrument), which has been in the process of commissioning for a few weeks now. It is a 30 pixel 26-36 GHz polarimeter array mounted at the focus of the second QUIJOTE telescope. The polarimeter design is based on the QUIET polarimeter scheme, implementing phase switches of 90° and 180° to generate four states of polarisation. The TGI control system acquires the scientific signal of the four channels for each of the 30 polarimeters, sampled at 160 kHz; it controls the commutation of the 30 x 4 phase switches at 16 kHz or 8 kHz; it performs the acquisition and monitoring of the health of the complete instrument, acquiring housekeeping from the various subsystems and also controls the different operational modes of the telescope. It finally, implements a queue system that permits automation of the observations by allowing the programming of several days of observations with the minimum of human intervention. The acquisition system is based on a PXI-RT host from NI, the commutations of the phase switches are performed by a PXI-FPGA subsystem and the telescope control is based on an EtherCAT bus from Beckhoff.

  18. Control of Unknown Chaotic Systems Based on Neural Predictive Control

    Institute of Scientific and Technical Information of China (English)

    LIDong-Mei; WANGZheng-Ou

    2003-01-01

    We introduce the predictive control into the control of chaotic system and propose a neural network control algorithm based on predictive control. The proposed control system stabilizes the chaotic motion in an unknown chaotic system onto the desired target trajectory. The proposed algorithm is simple and its convergence speed is much higher than existing similar algorithms. The control system can control hyperchaos. We analyze the stability of the control system and prove the convergence property of the neural controller. The theoretic derivation and simulations demonstrate the effectiveness of the algorithm.

  19. SMS BASED REMOTE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Reecha Ranjan Singh , Sangeeta Agrawal , Saurabh Kapoor ,S. Sharma

    2011-08-01

    Full Text Available A modern world contains varieties of electronic equipment and systems like: TV, security system, Hi-fi equipment, central heating systems, fire alarm systems, security alarm systems, lighting systems, SET Top Box, AC (Air Conditioner etc., we need to handle, ON/OFF or monitor these electrical devices remotely or to communicate with these but, if you are not at the home or that place and you want to communicate with these device. So the new technology for handled these devices remotely and for communication to required the GSM, mobile technology, SMS (short message service and some hardware resources. SMS based remote control for home appliances is beneficial for the human generation, because mobile is most recently used technology nowadays.

  20. TUNING OF GAUSSIAN STOCHASTIC-CONTROL SYSTEMS

    NARCIS (Netherlands)

    VANSCHUPPEN, JH

    1994-01-01

    A closed-loop system consisting of a control system and an adaptive controller will be called tuning for a specified control objective if the real system and the ideal system defined below achieve the same value for the control objective. The real system is the system consisting of the unknown contr

  1. Automatic control study of the icing research tunnel refrigeration system

    Science.gov (United States)

    Kieffer, Arthur W.; Soeder, Ronald H.

    1991-01-01

    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  2. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  3. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Hidetoshi, E-mail: hinishiy@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Koizumi, Mitsuru, E-mail: koizumi@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Ogawa, Koji, E-mail: kogawa@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Kitamura, Shinich, E-mail: kitamura@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Konyuba, Yuji, E-mail: ykonyuub@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Watanabe, Yoshiyuki, E-mail: watanabeyoshiy@pref.yamagata.jp [Yamagata Research Institute of Technology, 2-2-1, Matsuei, Yamagata 990-2473 (Japan); Ohbayashi, Norihiko, E-mail: n.ohbayashi@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Fukuda, Mitsunori, E-mail: nori@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Suga, Mitsuo, E-mail: msuga@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-4, Umezono, Tsukuba 305-8568 (Japan)

    2014-12-15

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control.

  4. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  5. Behavior of iodine in the atmosphere-soil-plant system

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Yasuyuki; Yoshida, Satoshi; Uchida, Shigeo [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Nakaminato Lab. Branch

    1996-12-31

    Levels and behavior of radioactive and stable iodine in the environment were studied to obtain parameter values for the assessment of {sup 129}I released from nuclear facilities. The deposition velocity (V{sub D}) of gaseous iodine from the atmosphere to rice grains (rough rice) was 0.00048 cm{sup 3} g{sup -1}s{sup -1} for CH{sub 3}I and 0.15 cm{sup 3} g{sup -1}s{sup -1} for I{sub 2}. The ratio of the iodine distribution in a grain exposed to CH{sub 3}I was as follows, rough rice : brown rice (hulled rice) : polished rice = 1.0 : 0.49 : 0.38. The distribution ratio in polished rice for CH{sub 3}I was about 20 times higher than that for I{sub 2}. The soil-solution distribution coefficient (K{sub d}) for both I{sup -} and IO{sub 3}{sup -} varied very widely, i.e. <0.1 to 8000 ml g{sup -1}. High values were found in soils having high concentrations of total organic carbon, active-Al and active-Fe (Al and Fe extracted by a mixture of oxalic acid and ammonium oxalate). Andosol, one of the most typical Japanese soils derived from deposits of volcanic ash, showed specifically high K{sub d} values. The soil-to-plant transfer factors (or concentration ratio) in the edible parts of crops were in the range 0.0002-0.016. The transfer factors for tomato, sweet potato, carrot, soybeans and rice were significantly lower than their leaf values. The value for rice (polished) was 0.002. Iodine was found to be evaporated from the soil-plant system as CH{sub 3}I. The emission of CH{sub 3}I from rice plants grown on flooded soil was much higher than that from oat plants grown on unflooded soil. The {sup 129}I levels in environmental samples collected in and around Tokai-mura, where a spent nuclear fuel reprocessing plant is located, have been determined by neutron activation analysis. The concentrations of {sup 129}I in surface soils ranged from <0.001 to 0.18 Bq kg{sup -1}. The {sup 129}I concentrations in forest soil tended to be higher than those in field soils. (Abstract Truncated)

  6. Center for Intelligent Control Systems

    Science.gov (United States)

    1992-12-01

    CENTER FOR INTELLIGENT CONTROL SYSTEMS Brown Umiversity Harvard University Marsachomtta Institute of Tecnology PUBLICATIONS LIST CICS Number Authors...Equivalence of the Auction Algorithm for 11/1/92 Assignment and die e-Relaxation (Preflow- Push ) Method for Min Cost Flow 26

  7. A Balloon-Borne Telescope System for Planetary Atmosphere and Plasma Studies

    Science.gov (United States)

    Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Kanazawa, T.; Shoji, Y.; Sawakami, T.; Takahashi, Y.; Hoshino, N.; Sato, T.; Sakanoi, T.

    2007-12-01

    A telescope floating in the polar stratosphere can continuously monitor planets for more than 24 hours. Thin, clear and stable air of the stratosphere makes it possible to observe planets in a condition free from cloud with fine seeing and high atmospheric transmittance. Moreover, a balloon-borne telescope system is less expensive compared with a huge terrestrial telescope or a direct planetary probe mission. Targets of a balloon-borne telescope system will extend over various atmospheric and plasma phenomena on almost all the planets, i.e., a sodium tail of Mercury, lightning, airglow and aurora in the atmospheres of Venus, Jupiter and Saturn, escaping atmospheres of the Earth-type planets, satellite-induced luminous events in the Jovian atmosphere, etc. The first target is global dynamics of the Venusian atmosphere by detecting cloud motion in UV and NIR imagery. A decoupling mechanism and a pair of control moment gyros (CMGs) are mounted at the top of the gondola. The decoupling mechanism isolates the gondola from a balloon and also transfers an excess angular momentum of the CMGs to the balloon. The attitude of the gondola is stabilized at a constant sun azimuthal angle so that a solar cell panel faces to the sun. A 300 mm F30 Schmidt-Cassegrain telescope is installed at the bottom of the gondola. DC/DC converters, a PC, a high voltage power supply for a piezo-electrically moving mirror and digital video recorders are contained in a sealed cell. The azimuthal angle is detected by a sun-sensor. A PC processes sensor output to control DC motors used in the decoupling mechanism and CMGs with an accuracy in azimuthal attitude of about 0.5 deg. The two-axis gimbal mount of the telescope is controlled by the same PC, guiding an object within a field-of-view of a guide telescope. Residual tracking error is detected by a position sensitive photomultiplier tube and corrected by the two-axis moving mirror installed in the optical system. The optical path is divided into

  8. The Control System Modeling Language

    CERN Document Server

    Zagar, K; Sekoranja, M; Tkacik, G; Vodovnik, A; Zagar, Klemen; Plesko, Mark; Sekoranja, Matej; Tkacik, Gasper; Vodovnik, Anze

    2001-01-01

    The well-known Unified Modeling Language (UML) describes software entities, such as interfaces, classes, operations and attributes, as well as relationships among them, e.g. inheritance, containment and dependency. The power of UML lies in Computer Aided Software Engineering (CASE) tools such as Rational Rose, which are also capable of generating software structures from visual object definitions and relations. UML also allows add-ons that define specific structures and patterns in order to steer and automate the design process. We have developed an add-on called Control System Modeling Language (CSML). It introduces entities and relationships that we know from control systems, such as "property" representing a single controllable point/channel, or an "event" specifying that a device is capable of notifying its clients through events. Entities can also possess CSML-specific characteristics, such as physical units and valid ranges for input parameters. CSML is independent of any specific language or technology...

  9. The ALMA Telescope Control System

    Science.gov (United States)

    Farris, A.; Marson, Ralph; Kern, Jeff

    2005-10-01

    The Atacama Large Millimeter Array (ALMA) is a joint project between North America, Europe and Japan. ALMA is an aperture synthesis radio telescope consisting of 50 12-meter antennas located at an elevation of 5,000 meters in Llano de Chajnantor, Chile. These antennas will operate at frequencies ranging from 31.3 GHz to 950 GHz. The antennas can be moved and placed in different configurations, with baselines between the antennas varying from 150 meters to 20 km. The 50 antennas are supplemented by sixteen additional ones, known as the ALMA Compact Array (ACA): 12 7-meter antennas and 4 12-meter antennas. The ALMA control system will consist of over 70 computers separated by distances of over 20 km. Two aspects of the system are apparent: its distributed nature and its need to accurately synchronize events across many computers separated by large distances. In this paper we describe key features of the architecture of the ALMA Control System, focusing on its properties as a distributed system and on the mechanisms employed to achieve its time synchronization goals. This control system is a distributed system that uses the ALMA Common Software (ACS) as a middleware system layered on top of CORBA. The architecture of the control system extensively employs the component/container model in ACS. In addition, the use of CORBA allows us to employ Java in the higher levels of the control system, leaving C++ to the lower time-critical levels. Python as a scripting language is used by astronomers, to craft standard observing programs, and engineers, in a testing and debugging mode. Key to the concept of an aperture synthesis telescope is a special purpose hardware system known as a correlator, responsible for making various delay model corrections and correlating the signals from the antennas. There are two correlators in ALMA, one for the array of 50 antennas and one for the ACA. This entire system operates under a control system that must synchronize events across the

  10. Respiration rate of Golden papaya stored under refrigeration and with different controlled atmospheres

    Directory of Open Access Journals (Sweden)

    Derliane Ribeiro Martins

    2014-10-01

    Full Text Available Knowledge of the respiration rate during the storage is important in the evaluation of the post-harvest tools that preserve fruit quality, and also for the provision of information for the development of new packages. This work aimed to evaluate the respiration rate of 'Golden' Carica papaya stored under refrigeration and controlled atmosphere conditions. The fruit was kept at 13 °C in controlled atmospheres comprising three levels of O2 (20.8 %, 6 %, 3 % with a minimum level of CO2 (0.1 %; and three levels of CO2 (0.1 %, 6 %, 12 % with the lowest level of O2 (3 %. Measurements were taken at intervals of 5 days during the 30 days of storage. The mass loss and the peel color of the fruits were identified at the end of the storage period. The fruit maintained under 'normal' atmosphere conditions (20.8 % O2 and 0.1 % CO2 increased its respiration rate after the 10th day, reaching after 30 days 4.3 times the initial value. After 30 days in 3 % O2, the respiration rate was 2.9 times less than in the normal atmosphere. The decrease in respiration rate minimized the mass loss in fruit stored at 3 % O2, but it was unaffected by increasing levels of CO2.

  11. Sensory Quality of Orange, Purple and Yellow Carrots Stored under Controlled Atmosphere

    Directory of Open Access Journals (Sweden)

    Marek GAJEWSKI

    2010-12-01

    Full Text Available The influence of long-term storage of carrot (Daucus carota L. roots under normal and controlled atmosphere (CA on their sensory quality and soluble solids content was investigated. Carrot cultivars of orange (‘Nebula’, purple-orange (‘Purple Haze’ and yellow (‘Mello Yello’ colour of the roots were stored for 6 months at 0-1oC, under controlled atmosphere (CA of gas composition 5% CO2+10% O2, 2% CO2+5% O2, 5% CO2+5% O2 and at normal atmosphere. Sensory quality was evaluated with quantitative descriptive analysis method. Roots of ‘Nebula’ showed the best overall quality under normal atmosphere, although CA resulted in higher firmness and crunchiness. Roots of ‘Purple Haze’ showed the best quality under 5% CO2+5% O2 or 5% CO2+10% O2. Storage in these CA variants resulted in higher sweetness, juiciness, crunchiness and firmness. Roots of ‘Mello Yello’ showed the smallest differences in quality under CA variants. Storage of carrots in CA did not result in off-flavour or off-odour. CA-stored roots showed higher soluble solids content.

  12. Atmospheric pCO2 control on speleothem stable carbon isotope compositions

    Science.gov (United States)

    Breecker, Daniel O.

    2017-01-01

    The stable carbon isotope compositions of C3 plants are controlled by the carbon isotope composition of atmospheric CO2 (δ13Ca) and by the stomatal response to water stress. These relationships permit the reconstruction of ancient environments and assessment of the water use efficiency of forests. It is currently debated whether the δ13C values of C3 plants are also controlled by atmospheric pCO2. Here I show that globally-averaged speleothem δ13C values closely track atmospheric pCO2 over the past 90 kyr. After accounting for other possible effects, this coupling is best explained by a C3 plant δ13C sensitivity of - 1.6 ± 0.3 ‰ / 100 ppmV CO2 during the Quaternary. This is consistent with 20th century European forest tree ring δ13C records, providing confidence in the result and suggesting that the modest pCO2-driven increase in water use efficiency determined for those ecosystems and simulated by land surface models accurately approximates the global average response. The δ13C signal from C3 plants is transferred to speleothems relatively rapidly. Thus, the effect of atmospheric pCO2 should be subtracted from new and existing speleothem δ13C records so that residual δ13C shifts can be interpreted in light of the other factors known to control spleleothem δ13C values. Furthermore, global average speleothem δ13C shifts may be used to develop a continuous radiometric chronology for Pleistocene atmospheric pCO2 fluctuations and, by correlation, ice core climate records.

  13. Lighting system with illuminance control

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination control system comprising a plurality of outdoor luminaries and a motorized service vehicle. Each luminaire comprises a controllable light source producing a light illuminance. The motorized service vehicle comprises a light sensor configured...... to detect the light illuminance generated by the controllable light source at the motorized service vehicle. The motorized service vehicle computes light illuminance data based on the detected light illuminance and transmits these to the outdoor luminaire through a wireless communication link or stores...... the light illuminance data on a data recording device of the motorized service vehicle. The outdoor luminaire receives may use the light illuminance data to set or adjust a light illuminance of the controllable light source....

  14. Feedback control of quantum system

    Institute of Scientific and Technical Information of China (English)

    DONG Dao-yi; CHEN Zong-hai; ZHANG Chen-bin; CHEN Chun-lin

    2006-01-01

    Feedback is a significant strategy for the control of quantum system.Information acquisition is the greatest difficulty in quantum feedback applications.After discussing several basic methods for information acquisition,we review three kinds of quantum feedback control strategies:quantum feedback control with measurement,coherent quantum feedback,and quantum feedback control based on cloning and recognition.The first feedback strategy can effectively acquire information,but it destroys the coherence in feedback loop.On the contrary,coherent quantum feedback does not destroy the coherence,but the capability of information acquisition is limited.However,the third feedback scheme gives a compromise between information acquisition and measurement disturbance.

  15. Atmospheric System Research Marine Low Clouds Workshop Report, January 27-29,2016

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wang, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wood, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-06-01

    Marine low clouds are a major determinant of the Earth?s albedo and are a major source of uncertainty in how the climate responds to changing greenhouse gas levels and anthropogenic aerosol. Marine low clouds are particularly difficult to simulate accurately in climate models, and their remote locations present a significant observational challenge. A complex set of interacting controlling processes determine the coverage, condensate loading, and microphysical and radiative properties of marine low clouds. Marine low clouds are sensitive to atmospheric aerosol in several ways. Interactions at microphysical scales involve changes in the concentration of cloud droplets and precipitation, which induce cloud dynamical impacts including changes in entrainment and mesoscale organization. Marine low clouds are also impacted by atmospheric heating changes due to absorbing aerosols. The response of marine low clouds to aerosol perturbations depends strongly upon the unperturbed aerosol-cloud state, which necessitates greater understanding of processes controlling the budget of aerosol in the marine boundary layer. Entrainment and precipitation mediate the response of low clouds to aerosols but these processes also play leading roles in controlling the aerosol budget. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) program are making major recent investments in observational data sets from fixed and mobile sites dominated by marine low clouds. This report provides specific action items for how these measurements can be used together with process modeling to make progress on understanding and quantifying the key cloud and aerosol controlling processes in the next 5-10 years. Measurements of aerosol composition and its variation with particle size are needed to advance a quantitative, process-level understanding of marine boundary-layer aerosol budget. Quantitative precipitation estimates

  16. Modelling on fuzzy control systems

    Institute of Scientific and Technical Information of China (English)

    LI; Hongxing(李洪兴); WANG; Jiayin(王加银); MIAO; Zhihong(苗志宏)

    2002-01-01

    A kind of modelling method for fuzzy control systems is first proposed here, which is calledmodelling method based on fuzzy inference (MMFI). It should be regarded as the third modelling method thatis different from two well-known modelling methods, that is, the first modelling method, mechanism modellingmethod (MMM), and the second modelling method, system identification modelling method (SlMM). Thismethod can, based on the interpolation mechanism on fuzzy logic system, transfer a group of fuzzy inferencerules describing a practice system into a kind of nonlinear differential equation with variable coefficients, calledHX equations, so that the mathematical model of the system can be obtained. This means that we solve thedifficult problem of how to get a model represented as differential equations on a complicated or fuzzy controlsystem.

  17. A High-precision Technique to Correct for Residual Atmospheric Dispersion in High-contrast Imaging Systems

    Science.gov (United States)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Takami, H.; Hayano, Y.; Narita, N.

    2016-12-01

    Direct detection and spectroscopy of exoplanets requires high-contrast imaging. For habitable exoplanets in particular, located at a small angular separation from the host star, it is crucial to employ small inner working angle (IWA) coronagraphs that efficiently suppress starlight. These coronagraphs, in turn, require careful control of the wavefront that directly impacts their performance. For ground-based telescopes, atmospheric refraction is also an important factor, since it results in a smearing of the point-spread function (PSF), that can no longer be efficiently suppressed by the coronagraph. Traditionally, atmospheric refraction is compensated for by an atmospheric dispersion compensator (ADC). ADC control relies on an a priori model of the atmosphere whose parameters are solely based on the pointing of the telescope, which can result in imperfect compensation. For a high-contrast instrument like the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which employs very small IWA coronagraphs, refraction-induced smearing of the PSF has to be less than 1 mas in the science band for optimum performance. In this paper, we present the first on-sky measurement and correction of residual atmospheric dispersion. Atmospheric dispersion is measured from the science image directly, using an adaptive grid of artificially introduced speckles as a diagnostic to feedback to the telescope’s ADC. With our current setup, we were able to reduce the initial residual atmospheric dispersion from 18.8 mas to 4.2 in broadband light (y- to H-band) and to 1.4 mas in the H-band only. This work is particularly relevant to the upcoming extremely large telescopes (ELTs) that will require fine control of their ADC to reach their full high-contrast imaging potential.

  18. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    Science.gov (United States)

    Fang, Jiabei; Yang, Xiu-Qun

    2016-09-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere

  19. Mathematical Control of Complex Systems 2013

    OpenAIRE

    Zidong Wang; Hamid Reza Karimi; Bo Shen; Jun Hu; Hongli Dong; Xiao He

    2014-01-01

    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest...

  20. Attitude Controller for the Atmospheric Entry of the Mars Science Laboratory

    Science.gov (United States)

    Brugarolas, Paul B.; San Martin, A. Miguel; Wong, Edward C.

    2008-01-01

    This paper describes the attitude controller for the atmospheric entry of the Mars Science Laboratory (MSL). The controller will command 8 RCS thrusters to control the 3- axis attitude of the entry capsule. The Entry Controller is formulated as three independent channels in the control frame, which is nominally aligned with the stability frame. Each channel has a feedfoward and a feedback path. The feedforward path enables fast response to large bank commands. The feedback path stabilizes the vehicle angle of attack and sideslip around its trim position, and tracks bank commands. The feedback path has a PD/D control structure with deadbands that minimizes fuel usage. The performance of this design is demonstrated via computer simulations.

  1. Cyber Incidents Involving Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Turk

    2005-10-01

    The Analysis Function of the US-CERT Control Systems Security Center (CSSC) at the Idaho National Laboratory (INL) has prepared this report to document cyber security incidents for use by the CSSC. The description and analysis of incidents reported herein support three CSSC tasks: establishing a business case; increasing security awareness and private and corporate participation related to enhanced cyber security of control systems; and providing informational material to support model development and prioritize activities for CSSC. The stated mission of CSSC is to reduce vulnerability of critical infrastructure to cyber attack on control systems. As stated in the Incident Management Tool Requirements (August 2005) ''Vulnerability reduction is promoted by risk analysis that tracks actual risk, emphasizes high risk, determines risk reduction as a function of countermeasures, tracks increase of risk due to external influence, and measures success of the vulnerability reduction program''. Process control and Supervisory Control and Data Acquisition (SCADA) systems, with their reliance on proprietary networks and hardware, have long been considered immune to the network attacks that have wreaked so much havoc on corporate information systems. New research indicates this confidence is misplaced--the move to open standards such as Ethernet, Transmission Control Protocol/Internet Protocol, and Web technologies is allowing hackers to take advantage of the control industry's unawareness. Much of the available information about cyber incidents represents a characterization as opposed to an analysis of events. The lack of good analyses reflects an overall weakness in reporting requirements as well as the fact that to date there have been very few serious cyber attacks on control systems. Most companies prefer not to share cyber attack incident data because of potential financial repercussions. Uniform reporting requirements will do much to make this

  2. Atmospheric emission characterization of a novel sludge drying and co-combustion system.

    Science.gov (United States)

    Lu, Shengyong; Yang, Liqin; Zhou, Fa; Wang, Fei; Yan, Jianhua; Li, Xiaodong; Chi, Yong; Cen, Kefa

    2013-10-01

    A novel system combining sludge drying and co-combustion with coal was applied in disposing sludge and its atmospheric emission characteristics were tested. The system was composed of a hollow blade paddle dryer, a thermal drying exhaust gas control system, a 75 tons/hr circulating fluidized bed and a flue gas cleaning system. The emissions of NH3, SO2, CH4 and some other pollutants released from thermal drying, and pollutants such as NOx, SO2 etc. discharged by the incinerator, were all tested. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in the flue gas from the incinerator were investigated as well. The results indicated that the concentrations of NOx and SO2 in the flue gas from the incinerator were 145 and 16 mg/m3, respectively. and the I-TEQ concentration of 2,3,7,8-substitued PCDD/Fs was 0.023 ng I-TEQ/Nm3. All these values were greatly lower than the emission standards of China. In addition, there was no obvious odor in the air around the sludge dryer. The results demonstrated that this drying and co-combustion system is efficient in controlling pollutants and is a feasible way for large-scale treatment of industrial sludge and sewage sludge.

  3. Multiagent voltage and reactive power control system

    Directory of Open Access Journals (Sweden)

    I. Arkhipov

    2014-12-01

    Full Text Available This paper is devoted to the research of multiagent voltage and reactive power control system development. The prototype of the system has been developed by R&D Center at FGC UES (Russia. The control system architecture is based on the innovative multiagent system theory application that leads to the achievement of several significant advantages (in comparison to traditional control systems implementation such as control system efficiency enhancement, control system survivability and cyber security.

  4. Encyclopedia of systems and control

    CERN Document Server

    Samad, Tariq

    2015-01-01

    The Encyclopedia of Systems and Control collects a broad range of short expository articles that describe the current state of the art in the central topics of control and systems engineering as well as in many of the related fields in which control is an enabling technology. The editors have assembled the most comprehensive reference possible, and this has been greatly facilitated by the publisher’s commitment continuously to publish updates to the articles as they become available in the future. Although control engineering is now a mature discipline, it remains an area in which there is a great deal of research activity, and as new developments in both theory and applications become available, they will be included in the online version of the encyclopedia. A carefully chosen team of leading authorities in the field has written the well over 200 articles that comprise the work. The topics range from basic principles of feedback in servomechanisms to advanced topics such as the control of Boolean networks...

  5. Properties of atmospheric humic-like substances – water system

    Directory of Open Access Journals (Sweden)

    G. Láng

    2008-02-01

    Full Text Available Urban-type PM2.5-fraction aerosol samples were collected and samples of pure atmospheric humic-like substances (HULIS were isolated from them. Atmospheric concentrations of organic carbon (OC, water soluble organic carbon (WSOC and HULIS were determined, and UV/Vis spectroscopic properties, solubility and conductivity of HULIS in aqueous samples were investigated. Mean atmospheric concentrations of OC and WSOC were 8.5 and 4.6 μg m−3, respectively. Hydrophilic WSOC accounted for 39% of WSOC, carbon in HULIS made up 47% of WSOC, and 14% of WSOC was retained on the separation column by irreversible adsorption. Average molecular mass and aromatic carbon abundance of HULIS were both estimated from molar absorptivity to be 556 Da and 12%, respectively. Both results are substantially smaller than for standard reference fulvic acids, which imply different mechanisms for the formation processes of atmospheric HULIS and aquatic or terrestrial humic matter. HULIS were found to be water soluble as ionic unimers with a saturation concentration of 2–3 g l−1. Their solubility increased again with total HULIS concentration being above approximately 4 g l−1, which was most likely explained by the formation of HULIS aggregates. Solubility increased linearly from approximately 5 up to 20 g l−1 of dissolved HULIS concentration. The ionic dissolution was confirmed by electrochemical conductivity in the investigated concentration interval. Limiting molar conductivity was extrapolated and this was utilized to determine the apparent dissociation degree of HULIS for different concentrations. The dissociation degree was further applied to derive the concentration dependence of the van't Hoff factor of HULIS. The van't Hoff factor decreased monotonically with HULIS concentration; the decrease was substantial for dilute solutions and the relationship became weak for rather concentrated solutions.

  6. Properties of atmospheric humic-like substances ─ water system

    Directory of Open Access Journals (Sweden)

    G. G. Láng

    2008-04-01

    Full Text Available Urban-type PM2.5-fraction aerosol samples were collected and samples of pure atmospheric humic-like substances (HULIS were isolated from them. Atmospheric concentrations of organic carbon (OC, water soluble organic carbon (WSOC and HULIS were determined, and UV/Vis spectroscopic properties, solubility and conductivity of HULIS in aqueous samples were investigated. Atmospheric concentrations of OC and WSOC were 8.5 and 4.6 μg m−3, respectively. Hydrophilic WSOC accounted for 39% of WSOC, carbon in HULIS made up 47% of WSOC, and 14% of WSOC was retained on the separation column by irreversible adsorption. Overall average molecular mass and aromatic carbon abundance of HULIS were estimated from molar absorptivity to be 556 Da and 12%, respectively. Both results are substantially smaller than for standard reference fulvic acids, which imply different mechanisms for the formation processes of atmospheric HULIS and aquatic or terrestrial humic matter. HULIS were found to be water soluble as ionic unimers with a saturation concentration of 2–3 g l−1. Their solubility increased again with total HULIS concentration being above approximately 4 g l−1, which was most likely explained by the formation of HULIS aggregates. Solubility increased linearly from approximately 5 up to 20 g l−1 of dissolved HULIS concentration. The ionic dissolution was confirmed by electrochemical conductivity in the investigated concentration interval. Limiting molar conductivity was extrapolated and this was utilized to determine the apparent dissociation degree of HULIS for different concentrations. The dissociation degree was further applied to derive the concentration dependence of the van't Hoff factor of HULIS. The van't Hoff factor decreased monotonically with HULIS concentration; the decrease was substantial for dilute solutions and the relationship became weak for rather concentrated solutions.

  7. Guidance and Control Architecture Design and Demonstration for Low Ballistic Coefficient Atmospheric Entry

    Science.gov (United States)

    Swei, Sean

    2014-01-01

    We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.

  8. Gaseous toroid around Saturn. [Saturnian ring system for atomic hydrogen trapping in Titan atmospheric model

    Science.gov (United States)

    Mcdonough, T. R.

    1974-01-01

    The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.

  9. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Baecker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Baeuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordiera, A.; Coutu, S.; Covault, C. E.; Creusota, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; de la Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Rio, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Tapia, I. Fajardo; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D. -H.; Kotera, K.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Martino, J. Rodriguez; Rojo, J. Rodriguez; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Varela, E.; VargasCardenas, B.; Vazquez, J. R.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Silva, M. Zimbres; Ziolkowski, M.; Martin, L.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude

  10. Planetary Probe Entry Atmosphere Estimation Using Synthetic Air Data System

    Science.gov (United States)

    Karlgaard, Chris; Schoenenberger, Mark

    2017-01-01

    This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with an assumed vehicle aerodynamic model. The approach utilizes the full navigation state of the vehicle (position, velocity, and attitude) to recast the vehicle aerodynamic model to be a function solely of the atmospheric state (density, pressure, and winds). Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a Kalman-Schmidt filter to estimate the atmospheric conditions. The new method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the new estimation algorithm are compared with results from a Flush Air Data Sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the new proposed estimation method provides estimates consistent with the air data measurements, without the use of pressure measurements. Implications for future missions such as the Mars 2020 entry capsule are described.

  11. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Science.gov (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-02-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  12. In-flight control and communication architecture of the GLORIA imaging limb sounder on atmospheric research aircraft

    Science.gov (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  13. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Directory of Open Access Journals (Sweden)

    E. Kretschmer

    2015-02-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA, a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  14. Microprocessor controlled portable TLD system

    Science.gov (United States)

    Apathy, I.; Deme, S.; Feher, I.

    1996-01-01

    An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station.

  15. Recent advances in the vertical coupling in the Atmosphere-Ionosphere System

    Science.gov (United States)

    Knížová, Petra Koucká; Georgieva, Katya; Ward, William; Yiğit, Erdal

    2015-12-01

    Welcome to this special issue of the Journal of Atmospheric and Solar-Terrestrial Physics, dedicated to the investigation of the coupling phenomena in the neutral Atmosphere-Ionosphere System. This special issue covers processes in the Atmosphere-Ionosphere System that significantly influence and/or rule the coupling within the regions. Earth's atmospheric regions are intricately coupled to one another via various dynamical, chemical, and electrodynamic processes. The coupling effects can be seen on the modulation of the waves from the lower to upper atmosphere as well as from low- to high-latitudes, electrodynamic and compositional changes, and plasma irregularities at different latitudinal regions around the globe due to the varying energy inputs. A special attention is paid to the Mesosphere-Lower Thermosphere region that represents a critical region in various coupling processes between the lower/middle atmosphere and the upper atmosphere/ionosphere since it forms physical processes filter and shape the flux of waves ascending through the mesosphere into the overlying thermosphere. Varying energy inputs from the Sun and from the lower atmosphere is one of the topics. Processes contributing to the vertical coupling in the atmosphere are discussed on theoretical basis and with respect to recent and long-term experimental measurements as well. Solar activity represents an important factor that directly or indirectly modulates the coupling processes.

  16. Introduction of the NWP Model Development Project at Korea Institute of Atmospheric Prediction Systems - KIAPS

    Science.gov (United States)

    Kim, Y.

    2012-12-01

    Korea Meteorological Administration (KMA) launched a 9-year project in 2011 to develop Korea's own global NWP system with the total funding of about 100 million US dollars. To lead the effort, Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded by KMA as a non-profit foundation. The project consists of three stages. We are in the middle of the first stage (2011-2013), which is to set up the Institute, recruit researchers, lay out plans for the research and development, and design the basic structure and explore/develop core NWP technologies. The second stage (2014-2016) aims at developing the modules for the dynamical core, physical parameterizations and data assimilation systems as well as the system framework and couplers to connect the modules in a systematic and efficient way, and eventually building a prototype NWP system. The third stage (2017-2019) is for evaluating the prototype system by selecting/improving modules, and refining/finalizing it for operational use at KMA as well as developing necessary post-processing systems. In 2012, we are designing key modules for the dynamical core by adopting existing and/or developing new cores, and developing the barographic model first and the baroclinic model later with code parallelization and optimization in mind. We are collecting various physical parameterization schemes, mostly developed by Korean scientists, and evaluating and improving them by using single-column and LES models, etc. We are designing control variables for variational data assimilation systems, constructing testbeds for observational data pre-processing systems, developing linear models for a barographic system, designing modules for cost function minimization. We are developing the module framework, which is flexible for prognostic and diagnostic variables, designing the I/O structure of the system, coupling modules for external systems, and also developing post-processing systems. At the meeting, we will present the

  17. Controls and Machine Protection Systems

    CERN Document Server

    Carrone, E

    2016-01-01

    Machine protection, as part of accelerator control systems, can be managed with a 'functional safety' approach, which takes into account product life cycle, processes, quality, industrial standards and cybersafety. This paper will discuss strategies to manage such complexity and the related risks, with particular attention to fail-safe design and safety integrity levels, software and hardware standards, testing, and verification philosophy. It will also discuss an implementation of a machine protection system at the SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS).

  18. Autonomous grain combine control system

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  19. Control of Unknown Chaotic Systems Based on Neural Predictive Control

    Institute of Scientific and Technical Information of China (English)

    LI Dong-Mei; WANG Zheng-Ou

    2003-01-01

    We introduce the predictive control into the control of chaotic system and propose a neural networkcontrol algorithm based on predictive control. The proposed control system stabilizes the chaotic motion in an unknownchaotic system onto the desired target trajectory. The proposed algorithm is simple and its convergence speed is muchhigher than existing similar algorithms. The control system can control hyperchaos. We analyze the stability of thecontrol system and prove the convergence property of the neural controller. The theoretic derivation and simulationsdemonstrate the effectiveness of the algorithm.

  20. System Identification and Robust Control

    DEFF Research Database (Denmark)

    Tøffner-Clausen, S.

    for mixed real and complex perturbation sets. A novel method, denoted m - K iteration, has been develop to solve the mixed m problem. A general feature of all robust control design methods is the need for specifying not only a nominal model but also some kind of quantification of the uncertainty is, however......, a non-trivial problem which to some extent has been neglected by the theoreticians of robust control. An uncertainty specification has simply been assumed given. One way of obtaining a perturbation model is by physical modelling. Application if the fundamental laws of thermodynamics, mechanics, physics...... estimate frequency domain uncertainty estimates may be obtained. In classical (i.e. Ljungian) system identification, model quality has been assessed under the structure of the model is assumed to be correct. This is, however, often an inadequate assumption in connection with control design. Recently...

  1. Learning System Center App Controller

    CERN Document Server

    Naeem, Nasir

    2015-01-01

    This book is intended for IT professionals working with Hyper-V, Azure cloud, VMM, and private cloud technologies who are looking for a quick way to get up and running with System Center 2012 R2 App Controller. To get the most out of this book, you should be familiar with Microsoft Hyper-V technology. Knowledge of Virtual Machine Manager is helpful but not mandatory.

  2. Control Systems for Logistics Performance

    OpenAIRE

    Virolainen, V.-M.

    1991-01-01

    This text is concerned with identifying and outlining the various aspects of logistics control and performance measurement process. The objective is to identify, based on available literature, methods and techniques which can be used to measure the performance of logistics. Logistics management is essentially a task of balancing between minimizing cost and ensuring availability objectives. Availability can be seen as the output of logistics system. On the input side, management is concer...

  3. Lyapunov control of quantum systems with impulsive control fields.

    Science.gov (United States)

    Yang, Wei; Sun, Jitao

    2013-01-01

    We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method.

  4. Generalized Proportional Integral Control for an Unmanned Quadrotor System

    Directory of Open Access Journals (Sweden)

    Antonio Fernández-Caballero

    2015-07-01

    Full Text Available In this article, a generalized proportional integral (GPI control approach is presented for regulation and trajectory tracking problems in a nonlinear, multivariable quadrotor system model. In the feedback control law, no asymptotic observers or time discretizations are needed in the feedback loop. The GPI controller guarantees the asymptotically and exponentially stable behaviour of the controlled quadrotor position and orientation, as well as the possibilities of carrying out trajectory tracking tasks. The simulation results presented in the paper show that the proposed method exhibits very good stabilization and tracking performance in the presence of atmospheric disturbances and noise measurements.

  5. Plug-and-Play Control – Modifying Control Systems Online

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2013-01-01

    Often, when new sensor or actuator hardware be- comes available for use in a control system, it is desirable to retain the existing control system and apply the new control capabilities in a gradual fashion rather than decommissioning the entire existing system and replacing it with an altogether...... new control system. However, this requires that the existing controller remains in action, and the new control law component is added to the existing system. This paper formally introduces the concept of Plug-and-Play control and proposes two different methods of introducing new control components...... in a smooth manner, providing stability guarantees during the transition phase as well as retaining the original control structure. The applicability of the methods is illustrated on two different practical example systems, a livestock stable climate control system and a laboratory-scale model of a district...

  6. Semantic Linkage of Control Systems

    Directory of Open Access Journals (Sweden)

    Rolf Andreas Rasenack

    2006-01-01

    Full Text Available Control systems are sets of interconnected hardware and software components which regulate the behaviour of processes. The software of modern control systems rises for some years by requirements regarding the flexibility and functionality. Thus the force of innovation grows on enterprises, since ever newer products in ever shorter time intervals must be made available. Associated hereby is the crucial shortening of the product life cycle, whose effects show up in reduced care of the software and the spares inventory. The aim, the concept presented here and developed in a modeling environment, is proved and ensures a minimum functionality of software components. Replacing software components of a control system verified for functionality by a framework at run-time and if necessary the software conditions will become adapted. Quintessential point of this implementation is the usage of an abstract syntax tree. Within its hierarchical structure meta information is attached to nodes and processed by the framework. With the development of the concept for semantic proving of software components the lifetime of software-based products is increased.

  7. Link Winds: A visual data analysis system and its application to the atmospheric ozone depletion problem

    Science.gov (United States)

    Jacobson, Allan S.; Berkin, Andrew L.

    1995-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration system resulting from a NASA Jet Propulsion Laboratory (JPL) program of research into the application of graphical methods for rapidly accessing, displaying, and analyzing large multi variate multidisciplinary data sets. Running under UNIX it is an integrated multi-application executing environment using a data-linking paradigm to dynamically interconnect and control multiple windows containing a variety of displays and manipulators. This paradigm, resulting in a system similar to a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but leads to a highly intuitive, easy-to-learn user interface. It provides great flexibility in rapidly interacting with large masses of complex data to detect trends, correlations, and anomalies. The system, containing an expanding suite of non-domain-specific applications, provides for the ingestion of a variety of data base formats and hard -copy output of all displays. Remote networked workstations running LinkWinds may be interconnected, providing a multiuser science environment (MUSE) for collaborative data exploration by a distributed science team. The system is being developed in close collaboration with investigators in a variety of science disciplines using both archived and real-time data. It is currently being used to support the Microwave Limb Sounder (MLS) in orbit aboard the Upper Atmosphere Research Satellite (UARS). This paper describes the application of LinkWinds to this data to rapidly detect features, such as the ozone hole configuration, and to analyze correlations between chemical constituents of the atmosphere.

  8. Atmospheric Pressure Low Temperature Plasma System for Additive Manufacturing

    Science.gov (United States)

    Burnette, Matthew; Staack, David

    2016-09-01

    There is growing interest in using plasmas for additive manufacturing, however these methods use high temperature plasmas to melt the material. We have developed a novel technique of additive manufacturing using a low temperature dielectric barrier discharge (DBD) jet. The jet is attached to the head of a 3D printer to allow for precise control of the plasma's location. Various methods are employed to deposit the material, including using a vaporized precursor or depositing a liquid precursor directly onto the substrate or into the plasma via a nebulizer. Various materials can be deposited including metals (copper using copper (II) acetylacetonate), polymers (PMMA using the liquid monomer), and various hydrocarbon compounds (using alcohols or a 100% methane DBD jet). The rastering pattern for the 3D printer was modified for plasma deposition, since it was originally designed for thermoplastic extrusion. The design constraints for fill pattern selection for the plasma printer are influenced by substrate heating, deposition area, and precursor consumption. Depositions onto pressure and/or temperature sensitive substrates can be easily achieved. Deposition rates range up to 0.08 cm3/hr using tris(2-methoxyethoxy)(vinyl)silane, however optimization can still be done on the system to improve the deposition rate. For example higher concentration of precursor can be combined with faster motion and higher discharge powers to increase the deposition rate without overheating the substrate.

  9. Research on Web Press Tension Control System

    Directory of Open Access Journals (Sweden)

    Chen Sheng Jiang

    2016-01-01

    Full Text Available Tension control of press is a key and difficult point of the whole machine control. The stand or fall of tension is directly related to the quality of the products. According to the characteristics of the web press tension control, this paper expounds the main factors influencing tension and the purpose of tension control, researches on the tension control principle of web tape, analyzes control rule and control circuit of tension control system, illustrates the advantages of PID control law adopted in the tension control system, and concludes the influencing factors of paper tape tension control system and the corresponding problems needed to solve in the control.

  10. Research of Liquid Level Control System

    Directory of Open Access Journals (Sweden)

    Dominykas Beištaras

    2015-07-01

    Full Text Available This paper presents liquid level control system model and analysis of dynamic characteristics. The system consists of scalar controlled induction motor drive, fuzzy logic controller, water tank and centrifugal pump. Simulink models of water tank, pump and controller are presented. The simulation of the system shows that the use of fuzzy logic controller reduces valve opening time and reservoir filling time.

  11. HTGR Resilient Control System Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-09-01

    A preeminent objective for corporate and government organizations is the protection of major investments, which is attained by achieving state awareness, a comprehensive understanding of security and safety, for critical infrastructures. Given the dependence of critical infrastructure on control systems for automation, the integrity of these systems and their ability to provide owner/operators a high degree of state awareness is essential in attaining a high degree of investment protection and public acceptance. Operators as well as government are therefore burdened to ensure they have a timely understanding of the status of their plant or all plants, respectively, to ensure efficient operations and investment and public protection. “This characterization is a significant objective that must consider many aspects of instrumentation, control, and intelligent systems in order to achieve the required result. These aspects include sensory, communication, analysis, decision, and human system interfaces necessary to achieve fusion of data and presentation of results that will provide an understanding of what issues are important and why.

  12. 49 CFR 193.2619 - Control systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control systems. 193.2619 Section 193.2619...: FEDERAL SAFETY STANDARDS Maintenance § 193.2619 Control systems. (a) Each control system must be properly adjusted to operate within design limits. (b) If a control system is out of service for 30 days or more,...

  13. 14 CFR 25.395 - Control system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system. 25.395 Section 25.395... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  14. Stochastic stabilization analysis of networked control systems

    Institute of Scientific and Technical Information of China (English)

    Ma Changlin; Fang Huajing

    2007-01-01

    Considering the stochastic delay problems existing in networked control systems, a new control mode is proposed for networked control systems whose delay is longer than a sampling period. Under the control mode, the mathematical model of such a system is established. A stochastic stabilization condition for the system is given. The maximum delay can be derived from the stabilization condition.

  15. Miniaturized In Situ Atmospheric Probe Sampling Inlet System for Uranus or Saturn Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized in situ atmospheric probe sampling inlet system for measuring chemical and isotopic composition of the...

  16. Microwave heating systems for atmospheric pressure: Nonequilibrium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guest, G.E.; Dandl, R.A. (AMPC, Inc., Carlsbad, CA (USA))

    1989-03-01

    Nonequilibrium plasma-chemical processing is attracting increasing interest because of the possibility of creating mixtures of active species that would not be available in thermal equilibrium. For significant throughput of reactants it would be advantageous to create nonequilibrium plasmas in large volumes of atmospheric-pressure mixtures of gases. Techniques for accomplishing this are very limited at present. Here they describe a novel microwave approach to creating nonequilibrium plasmas in large volumes of atmospheric-pressure gases using pulses of microwave radiation with very high peak power that are focused by quasi-optical techniques at one or more points in the interior of the reaction chamber. A new type of microwave source, the Plasma Electron Microwave Source (PEMS), is able to produce the require power levels by storing cw microwave power in a mirror-confined, relativistic-electron plasma and periodically transforming a fraction of that stored energy into intense microwave pulses. This approach avoids many of the limitations inherent in resonant cavity approaches and is expected to permit ultrahigh purity discharges to be produced.

  17. The control system of intelligent wheelchair

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>A control system of intelligent wheelchair based on spce061A and C8051 is introduced in this discourse.It also introduces the theory of the control system,and the design of hardware and software.The control system including the speech control system of SPCE061 and the keyboard control system of C8051.The movement including marching,countermarching,speedup,slowdown,turning left,turning right,uphill and downhill were realized.The speech control system control based on SPCE061A and C8051 is simple,a high ratio of capability to price.The system can be easily realized and enlarged.

  18. Exact Controllability for a Class of Nonlinear Evolution Control Systems

    Institute of Scientific and Technical Information of China (English)

    L¨u Yue; Li Yong

    2015-01-01

    In this paper, we study the exact controllability of the nonlinear control systems. The controllability results by using the monotone operator theory are es-tablished. No compactness assumptions are imposed in the main results.

  19. System for transporting an electron beam to the atmosphere for a gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.

    2016-06-01

    We report on the results of simulation of the gas flow in a gun with a plasma emitter and in the system for extracting the electron beam to the atmosphere, constructed on the basis of standard gasdynamic windows (GDWs). The design of the gun and GDWs is described. Calculations are performed for a pressure of about 10-3 Torr in the electron beam generation range. It is shown that the pressure drop to the atmospheric pressure in the system of electron beam extraction to the atmosphere can be ensured by two GDW stages evacuated by pumps with optimal performance.

  20. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products

    Directory of Open Access Journals (Sweden)

    Christina A. Mireles DeWitt

    2016-06-01

    Full Text Available This review aims at summarizing the findings of studies published over the past 15 years on the application of modified atmosphere (MA systems for shelf life extension of fish and fishery products. This review highlights the importance of CO2 in the preservation of seafood products, and underscores the benefits of combining MA technology with product storage in the superchilled temperature range. It is generally accepted that MA technology cannot improve product quality and should not be utilized as a substitute for good sanitation and strict temperature control. Benefits derived from application of MA, however, can significantly impact preservation of product quality and it subsequent shelf-life. For this reason, this review is the first of its kind to propose detailed handling and quality guidelines for fresh fish to realize the maximum benefit of MA technology.

  1. Atmospheric Mining in the Outer Solar System:. [Aerial Vehicle Reconnaissance and Exploration Options

    Science.gov (United States)

    Palaszewski, Bryan A.

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.

  2. Feedback control system for walking in man.

    Science.gov (United States)

    Petrofsky, J S; Phillips, C A; Heaton, H H

    1984-01-01

    A computer control stimulation system is described which has been successfully tested by allowing a paraplegic subject to stand and walk through closed loop control. This system is a Z80 microprocessor system with eight channels of analog to digital and 16 channels of digital to analog control. Programming is written in CPM and works quite successfully for maintaining lower body postural control in paraplegics. Further expansion of this system would enable a feedback control system for multidirectional walking in man.

  3. Development of Nitrogen-Hydrocarbon Atmospheric Carburizing and Process Control Methods

    Science.gov (United States)

    Wang, Xiaolan; Zurecki, Zbigniew; Sisson, Richard D.

    2013-07-01

    Atmospheric pressure carburizing and neutral carbon potential annealing in nitrogen containing small additions of hydrocarbon gases can offer cost and steel surface quality alternatives to the comparable, endothermic atmosphere, or vacuum operations. An experimental program was conducted for refining real-time process control methods in carburizing of AISI 8620 steel under N2-CH4, N2-C3H8 blends containing <5 vol.% of hydrocarbon gas at 900 and 930 °C. Multiple types of gas analyzers were used to monitor residual concentrations of H2, CO, CO2, H2O, O2, CH4, C3H8, and other hydrocarbons inside furnace. A modified shim stock technique was additionally evaluated for correlation with gas analysis and diffusional modeling using measured carbon mass flux values (g/cm2/s). Results of this evaluation work are presented.

  4. Role of sectoral and multi-pollutant emission control strategies in improving atmospheric visibility in the Yangtze River Delta, China.

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S; Gao, Yang; Dong, Xinyi; Zhuang, Guoshun; Lin, Yanfen

    2014-01-01

    The Community Multi-scale Air Quality modeling system is used to investigate the response of atmospheric visibility to the emission reduction from different sectors (i.e. industries, traffic and power plants) in the Yangtze River Delta, China. Visibility improvement from exclusive reduction of NOx or VOC emission was most inefficient. Sulfate and organic aerosol would rebound if NOx emission was exclusively reduced from any emission sector. The most efficient way to improve the atmospheric visibility was proven to be the multi-pollutant control strategies. Simultaneous emission reductions (20-50%) on NOx, VOC and PM from the industrial and mobile sectors could result in 0.3-1.0 km visibility improvement. And the emission controls on both NOx (85%) and SO2 (90%) from power plants gained the largest visibility improvement of up to 4.0 km among all the scenarios. The seasonal visibility improvement subject to emission controls was higher in summer while lower in the other seasons.

  5. Instrumentation, Control, and Intelligent Systems

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  6. Online Delay-Evaluation Control for Networked Control Systems

    Institute of Scientific and Technical Information of China (English)

    马向华; 魏震; 谢剑英

    2003-01-01

    This paper presented an evaluation approach of time delays for networked control systems (NCS). Animproved scheme based on optimal LQG control was designed to achieve desired performance despite the uncertaindelays in the system. The experimental results illustrate the effectiveness of the proposed control design and satis-factory performance of the closed-loop system.

  7. Operation of Fusion Reactors in One Atmosphere of Air Instead of Vacuum Systems

    Science.gov (United States)

    Roth, J. Reece

    2009-07-01

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  8. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  9. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing an aerotol...

  10. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  11. Towards a coupled ocean-wave-atmosphere four dimensional data assimilation system

    Science.gov (United States)

    Ngodock, Hans; Carrier, Matthew; Amerault, Clark; Campbell, Timothy; Holt, Teddy; Xu, Liang; Rowley, Clark

    2015-04-01

    Individual 4dvar systems have been developed at the Naval Research Laboratory (NRL) for the ocean model (Navy coastal ocean model, NCOM), the wave model (simulating waves in the nearshore, SWAN) and the atmospheric component of the coupled ocean-atmosphere mesoscale prediction system (COAMPS). Although the three models within COAPMS are coupled in the forward integration, the initialization of each model is done separately. The coupled system forecast is hindered, however, by the lack of a fully coupled and dynamically balanced ocean-atmosphere analysis. A recent work by Ngodock and Carrier (2013) has highlighted this shortcoming with the NCOM-4DVAR, showing that while the NCOM-4DVAR is able to adjust the ocean state properly, the resulting ocean forecast degrades quickly due to the fact that the atmospheric state has not also been adjusted relative to the ocean observations. Likewise, . Currently, the coupled model is initialized using separate analyses for the ocean and atmosphere that do not account for observations in the adjacent fluid. The lack of a coupled analysis produces shocks in the coupled model in the form of gravity waves that degrade the information gained through DA and increase the error in the coupled forecast. The goal of this presentation is to describe ongoing developments at NRL in building a fully coupled ocean-wave-atmosphere four-dimensional variational (4dvar) data assimilation system using the Earth System Modeling Framework (ESMF).

  12. Model predictive control for a thermostatic controlled system

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...

  13. HVAC control system for building automation

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. S.; Song, I. T.; Cho, S. W.; Cho, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The purpose of the project is to design and construction of the HVAC control system for building automation. The HVAC control system can accomplish the function which are the optimum operation condition and operation time, and the operation pattern analysis. Also, this control system can effectively manage energy saving, building environment control, facilities safety monitoring etc. The HVAC control system consisted of the central control and monitoring system (CCMS) and the direct digital controller (DDC). 1) CCMS: -Main Compute -Graphic Board -Printer -Console Desk -Intercom. 2) DDC : -IMC-M (System Control Unit Main Module) -IMC-1,2,3,4(System Control Unit Module). Following this report will be used important data for the design, construction, operation and maintenance of the HVAC control system. 12 refs., 6 figs., 9 tabs. (Author)

  14. Autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  15. 14 CFR 31.49 - Control systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control systems. 31.49 Section 31.49... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... and subsequent inadvertent operation. (b) Each control system and operating device must be...

  16. Atmospheric Transverse Coherence Length Measurement System for Laser Communications

    Science.gov (United States)

    1993-02-01

    1024 x 1024 x 2-bit graphic overlay * Hardware pan, scroll, zoom * Flicker -free 60 Hz non-interlaced display GENERAL DESCRIPTION * Input and Output...LUT’s The UDC-500 is an advanced high resolution dual * Using 82786 GPU Graphic Controller frame bit-mapped display controller featuring input video...with an Intel 82786 graphics coprocessor. 4. VR290 color monitor 5. LK201 keyboard 6. Sampo high resolution, 19-inch monochrome monitor. 7. A 904-nm

  17. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    Science.gov (United States)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  18. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic

    Science.gov (United States)

    Kasting, J. F.

    2015-12-01

    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  19. Research on Web Press Tension Control System

    OpenAIRE

    Chen Sheng Jiang; Zhang Chun Feng; Wang Zhong You; Li Qing Lin

    2016-01-01

    Tension control of press is a key and difficult point of the whole machine control. The stand or fall of tension is directly related to the quality of the products. According to the characteristics of the web press tension control, this paper expounds the main factors influencing tension and the purpose of tension control, researches on the tension control principle of web tape, analyzes control rule and control circuit of tension control system, illustrates the advantages of PID control law ...

  20. Biological control of botrytis cinerea growth on apples stored in modified atmospheres

    DEFF Research Database (Denmark)

    Dock, Lise Lotte; Nielsen, Per Væggemose; Floros, John D.

    1998-01-01

    was set according to a centralcomposite experimental design involving five levels of O2 (1 to 15%)and CO2 (0 to 15%). Control samples under ambient conditions were alsoincluded. Without the antagonist, measurements of mold colony diameterover time showed that O2 had no effect on the growth of B. cinerea...... by about 6days at low levels of CO2. However, at high CO2 levels, O2 had noeffect. The strongest antagonistic effect was observed under ambientconditions. Overall, results showed that high CO2 atmospheres can slowthe growth of B. cinerea and that Erwinia sp. was an effectiveantagonist against B. cinerea...

  1. Enhanced adhesion over aluminum solid substrates by controlled atmospheric plasma deposition of amine-rich primers.

    Science.gov (United States)

    Petersen, Julien; Fouquet, Thierry; Michel, Marc; Toniazzo, Valérie; Dinia, Aziz; Ruch, David; Bomfim, João A S

    2012-02-01

    Controlled chemical modification of aluminum surface is carried by atmospheric plasma polymerization of allylamine. The amine-rich coatings are characterized and tested for their behavior as adhesion promoter. The adhesion strength of aluminum-epoxy assemblies is shown to increase according to primary amino group content and coating thickness, which in turn can be regulated by plasma power parameters, allowing tailoring the coating chemical properties. The increase in adherence can be correlated to the total and primary amino group contents in the film, indicating covalent bonding of epoxy groups to the primer as the basis of the mechanical improvement.

  2. Networked Control System – A Survey

    Directory of Open Access Journals (Sweden)

    M. Brindha

    2013-07-01

    Full Text Available Networked Control System (NCS is a synthetic application which combines control science, computer science and network technology. It is a kind of feedback control systems wherein the control loops are closed through real time control network. NCS technology is applied in industry control system because of its simple structure, easy maintenance and high reliability. Networked control systems (NCSs have been gaining popularity with their high potential in widespread applications and becoming realizable with the rapid developments in computer, communication and control technologies. This paper reviews the development history of the NCS, and point out the field of further researches.

  3. A mobile polar atmospheric parameter measurement system:II. First atmospheric turbulence observation at Antarctic Taishan Station

    Institute of Scientific and Technical Information of China (English)

    TIAN Qiguo; JIANG Peng; WU Xiaoqing; JIN Xinmiao; LU Shan; JI Tuo; CHAI Bo; ZHANG Shaohua; ZHOU Hongyan

    2015-01-01

    This is the second paper of a series devoted to atmospheric optical turbulence Cn2 observation using a mobile polar atmospheric parameter measurement system. We present the initial results of Cn2 measurement at Antarctic Taishan Station using micro-thermal sensors and a three-dimensional sonic anemometer at height ~2.0 m above the snow surface. The site testing experiments were carried out during the 30th Chinese National Antarctic Research Expedition (CHINARE). We collected about 1 000 h of data between 30 December 2013 and 10 February 2014. The Cn2 curve exhibits clear daily structures, with two peaks around midnight and midday and two troughs around 7:30 and 17:00 local time (UTC+5). The mean Cn2 is 2.7×10−15 m−2/3 and the 25th and 75th percentiles of the Cn2 cumulative distribution are 9.6×10−16 m−2/3 and 6.2×10−15 m−2/3, respectively. Meteorological parameters such as temperature, relative humidity, wind speed, and air pressure are also presented.

  4. Output constrained IMC controllers in control systems of electromechanical actuators

    Institute of Scientific and Technical Information of China (English)

    Piotr M MARUSAK; Suwat KUNTANAPREEDA

    2015-01-01

    Electromechanical actuators are widely used in many industrial applications. There are usually some constraints existing in a designed system. This paper proposes a simple method to design constrained controllers for electromechanical actuators. The controllers merge the ideas exploited in internal model control and model predictive control. They are designed using the standard control system structure with unity negative feedback. The structure of the controllers is relatively simple as well as the design process. The output constraint handling mechanism is based on prediction of the control plant behavior many time steps ahead. The mechanism increases control performance and safety of the control plant. The benefits offered by the proposed controllers have been demonstrated in real-life experiments carried out in control systems of two electromechanical actuators:a DC motor and an electrohydraulic actuator.

  5. Description and verification of switched control systems

    Institute of Scientific and Technical Information of China (English)

    贺风华; 姚郁; 赵霞; 张猛

    2003-01-01

    A modeling framework has been constructed using the theory of hybrid control systems for the switched control systems (SCS) and it can be more effectively used to describe the behavior of the systems and to more easily realize the simulation of the closed loop SCS under the MATLAB environment. On the other hand, a hybrid automaton model is established to analyze and verify the switched control systems. The proposed method is illustrated by an example of switched inverted pendulum control system.

  6. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Science.gov (United States)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'C, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lahurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'Canovi'C, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargascárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-04-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

  7. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  8. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Bäcker, T; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Beatty, J J; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Clay, R W; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Tapia, I Fajardo; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Gascon, A; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Guzman, A; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Ruiz, C G Tavera; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; 10.1016/j.astropartphys.2011.12.002

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malarg\\"ue and averaged monthly models, the utility of the GDAS data is shown.

  9. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  10. Geoinformation modeling system for analysis of atmosphere pollution impact on vegetable biosystems using space images

    Science.gov (United States)

    Polichtchouk, Yuri; Ryukhko, Viatcheslav; Tokareva, Olga; Alexeeva, Mary

    2002-02-01

    Geoinformation modeling system structure for assessment of the environmental impact of atmospheric pollution on forest- swamp ecosystems of West Siberia is considered. Complex approach to the assessment of man-caused impact based on the combination of sanitary-hygienic and landscape-geochemical approaches is reported. Methodical problems of analysis of atmosphere pollution impact on vegetable biosystems using geoinformation systems and remote sensing data are developed. Landscape structure of oil production territories in southern part of West Siberia are determined on base of processing of space images from spaceborn Resource-O. Particularities of atmosphere pollution zones modeling caused by gas burning in torches in territories of oil fields are considered. For instance, a pollution zones were revealed modeling of contaminants dispersal in atmosphere by standard model. Polluted landscapes areas are calculated depending on oil production volume. It is shown calculated data is well approximated by polynomial models.

  11. Globalization and localization of Management Control Systems

    DEFF Research Database (Denmark)

    Toldbod, Thomas; Israelsen, Poul

    2014-01-01

    Through an empirical case study this article examines the operation of multiple management control systems as a package in a Danish manufacturing company. The analysis focuses on four different management control systems; cybernetic controls, planning controls, reward controls, and administrative...... controls, through the theoretical lens of globalization, localization, and glocalization. The analysis documents that these different management control systems are affected differently by the processes of globalization and localization, whereby some are universal throughout the organization and others...... have more particular characteristics. Specifically, this study finds that cybernetic controls and administrative controls are designed as global management control systems. Planning controls are glocal systems and reward & compensation controls assume local characteristics. The finding leads...

  12. CONTROLLABILITY OF DELAY DEGENERATE CONTROL SYSTEMS WITH INDEPENDENT SUBSYSTEMS

    Institute of Scientific and Technical Information of China (English)

    蒋威

    2003-01-01

    The controllability of delay degenerate differential control systems is discussed. Firstly, delay degenerate differential control system was transformed to be canonical form, and the connected terms were gotten rid of, had delay degenerate differential control systems with independent subsystems. For the general delay degenerate differnetial control systems, it was gotten that the necessary and sufficient condition of that they are controllable is that their reachable set is equal to the whole space For the delay degenerate differential control systems with independent subsystems, it was gotten that the necessary and sufficient conditions of that they are controllable are that their reachable sets are equal to their corresponding subspaces. Then some algebra criteria were gotten. Finally, an example was given to illustrate the main results.

  13. Evolving Systems and Adaptive Key Component Control

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  14. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...... to hinder surges and mechanical fractures. Experimental results verify the performance of the controllers....

  15. Application of numerical environment system to regional atmospheric radioactivity transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yamazawa, H.; Ohkura, T.; Iida, T. [Nagoya University, Department of Nuclear Engineering (Japan); Chino, M.; Nagai, H. [Japan Atomic Energy Research Institute (Japan)

    2003-07-01

    Main functions of the Numerical Environment System (NES), as a part of the Information Technology Based Laboratory (ITBL) project implemented by Japan Atomic Energy Research Institute, became available for test use purposes although the development of the system is still underway. This system consists of numerical models of meteorology and atmospheric dispersion, database necessary for model simulations, post- and pre-processors such as data conversion and visualization, and a suite of system software which provide the users with system functions through a web page access. The system utilizes calculation servers such as vector- and scalar-parallel processors for numerical model execution, a EWS which serves as a hub of the system. This system provides users in the field of nuclear emergency preparedness and atmospheric environment with easy-to-use functions of atmospheric dispersion simulations including input meteorological data preparation and visualization of simulation results. The performance of numerical models in the system was examined with observation data of long-range transported radon-222. The models in the system reproduced quite well temporal variations in the observed radon-222 concentrations in air which were caused by changes in the meteorological field in the synoptic scale. By applying the NES models in combination with the idea of backward-in-time atmospheric dispersion simulation, seasonal shift of source areas of radon-222 in the eastern Asian regions affecting the concentrations in Japan was quantitatively illustrated. (authors)

  16. Controllability for single-input mechanical control systems with dissipation

    Institute of Scientific and Technical Information of China (English)

    Jianling KANG; Hong WANG; Huawen YE

    2005-01-01

    Within the affine connection framework of Lagrangian control systems,based on the results of Sussmann on small-time locally controllability of single-input affine nonlinear control systems,the controllability results for mechanical control systems with single-input are extended to the case of the systems with isotropic damping,where the Lagrangian is the kinetic energy associated with a Riemannian metric.A sufficient condition of negative small-time locally controllability for the system is obtained.Then,it is demonstrated that such systems are small-time locally configuration controllable if and only if the dimension of the configuration manifold is one.Finally,two examples are given to illustrate the results.Lie bracketting of vector fields and the symmetric product show the advantages in the discussion.

  17. Non-linear controllers in ship tracking control system

    Institute of Scientific and Technical Information of China (English)

    LESZEK M

    2005-01-01

    The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.

  18. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  19. Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. Using the Fourier analysis, the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observa-tion zenith angle. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation solved by the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of the ocean and at-mosphere is coupled in PCOART. Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exactly numerical model, and the processing methods of the multi-scattering and polarization are correct. Also, validated with the standard problems of the radiative transfer in water, it is shown that PCOART can be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  20. Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method

    Institute of Scientific and Technical Information of China (English)

    HE XianQiang; PAN DeLu; BAI Yan; ZHU QianKun; GONG Fang

    2007-01-01

    A vector radiative transfer numerical model of the coupled ocean-atmosphere system is developed based on the matrix-operator method,which is named PCOART.Using the Fourier analysis,the vector radiative transfer equation (VRTE) is separated into a set of equations depending only on the observation zenith angle.Using the Gaussian-Quadrature method,VRTE is finally transferred into the matrix equation solved by the adding-doubling method.According to the reflective and refractive properties of the ocean-atmosphere interface,the vector radiative transfer numerical model of the ocean and atmosphere is coupled in PCOART.Compared with the exact Rayleigh scattering look-up tables of MODIS (Moderate-resolution Imaging Spectroradiometer),it is shown that PCOART is an exactly numerical model,and the processing methods of the multi-scattering and polarization are correct.Also,validated with the standard problems of the radiative transfer in water,it is shown that PCOART can be used to calculate the underwater radiative transfer problems.Therefore,PCOART is a useful tool for exactly calculating the vector radiative transfer of the coupled ocean-atmosphere system,which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  1. Overview of progress in quantum systems control

    Institute of Scientific and Technical Information of China (English)

    CONG Shuang; ZHENG Yisong; JI Beichen; DAI Yi

    2007-01-01

    The development of the theory on quantum systems control in the last 20 years is reviewed in detail.The research on the controllability of quantum systems is first introduced,then the study on the quantum open-loop control methods often used for controlling simple quantum systems is analyzed briefly.The learning control method and the feedback control method are mainly discussed for they are two important methods in quantum systems control and their advantages and disadvantages are presented.According to the trends in quantum systems control development,the paper predicts the future trends of its development and applications.A complete design procedure necessary for the quantum control system is presented.Finally,several vital problems hindering the advancement of quantum control are pointed out.

  2. Quantifying the effects of China's pollution control on atmospheric mercury emissions

    Science.gov (United States)

    Zhong, H.

    2014-12-01

    China has conducted series of air pollution control policies to reduce the pollutant emissions. Although not specifically for mercury (Hg), those policies are believed to have co-benefits on atmospheric Hg emission control. On the basis of field-tests data and updated information of energy conservation and emission control, we have developed multiple-year inventories of anthropogenic mercury emissions in China from 2005 to 2012. Three scenarios (scenario 0(S0), scenario 1(S1), scenario 2(S2)) with different emission controls and energy path are designed for prediction of the future Hg emissions for the country. In particular, comprehensive assessments has been conducted to evaluate the evolution of emission factors, recent emission trends, effects of control measures as well as the reliability of our results. The national total emissions of anthropogenic Hg are estimated to increase from 679.0 metric tons (t) in 2005 to 749.8 t in 2012, with the peak at 770.6 t in 2011. The annual growth rate of emissions can then be calculated at 2.1% during 2005-2011, much lower than that of energy consumption or economy of the country. Coal combustion, gold metallurgy and nonferrous metal smelting are the most significant Hg sources of anthropogenic origin, accounting together for 85% of national total emissions. Tightened air pollution controls in China should be important reasons for the smooth emission trends. Compared with 2005, 299 t Hg were reduced in 2010 from power plants, iron and steel smelting, nonferrous-smelting and cement production, benefiting from the improvement of control measures for those sectors. The speciation of Hg emissions is relatively stable for recent years, with the mass fractions of around 55%, 9% and 6% for Hg0, Hg2+ and Hgp respectively. Integrating the policy commitments on energy saving, different from the most conservative case S0, S2 shares the same energy path with S1, but includes more stringent emission control. Under those scenarios, we

  3. Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal

    Science.gov (United States)

    Chakraborty, S.; Sinha, N.; Chattopadhyay, R.; Sengupta, S.; Mohan, P. M.; Datye, A.

    2016-01-01

    Isotopic analysis of precipitation over the Andaman Island, Bay of Bengal was carried out for the year 2012 and 2013 in order to study the atmospheric controls on rainwater isotopic variations. The oxygen and hydrogen isotopic compositions are typical of the tropical marine sites but show significant variations depending on the ocean-atmosphere conditions; maximum depletion was observed during the tropical cyclones. The isotopic composition of rainwater seems to be controlled by the dynamical nature of the moisture rather than the individual rain events. Precipitation isotopes undergo systematic depletions in response to the organized convection occurring over a large area and are modulated by the integrated effect of convective activities. Precipitation isotopes appear to be linked with the monsoon intraseasonal variability in addition to synoptic scale fluctuations. During the early to mid monsoon the amount effect arose primarily due to rain re-evaporation but in the later phase it was driven by moisture convergence rather than evaporation. Amount effect had distinct characteristics in these two years, which appeared to be modulated by the intraseasonal variability of monsoon. It is shown that the variable nature of amount effect limits our ability to reconstruct the past-monsoon rainfall variability on annual to sub-annual time scale. PMID:26806683

  4. Controlling variables for the uptake of atmospheric carbonyl sulfide by soil

    Science.gov (United States)

    Kesselmeier, J.; Teusch, N.; Kuhn, U.

    1999-05-01

    Soil samples from arable land were investigated for their exchange of carbonyl sulfide (COS) with the atmosphere under controlled conditions using dynamic cuvettes in a climate chamber. The investigated soil type acted as a significant sink for the trace gas COS. Atmospheric COS mixing ratios, temperature, and soil water content were found to be the physicochemical parameters controlling the uptake. Emission was never observed under conditions representative of a natural environment. The observed compensation point (i.e., an ambient concentration where the consumption and production balance each other and the net flux is zero) for the uptake was about 53 parts per trillion. Uptake rates ranged between 1.5 and 10.3 pmol m-2 s-1. The consumption of COS by the soil sample depended on the physiological activity of the microorganisms in the soil, as indicated by a clear optimum temperature and by a drastic inhibition in the presence of the enzyme inhibitor 6-ethoxy-2-benzothiazole-2-sulfonamide (EZ), a specific inhibitor for carbonic anhydrase.

  5. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2005-01-28

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. The redesign and upgrade of the laboratory prototype was completed on schedule and it was assembled during the last period. Testing was begin during the first week of October. Initial results indicated that the dynamic range of the damping was less than predicted and that the maximum damping was also less than required. A number of possible explanations for these results were posited, and test equipment was acquired to evaluate the various hypotheses. Testing was just underway at the end of this period.

  6. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-29

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Phase II began on June 1, and the first month's effort were reported in the seventh quarterly report on the project.1 The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. The redesign and upgrade of the laboratory prototype was completed on schedule during this period, and assembly was complete at the end of this period. Testing will begin during the first week of October. This aspect of the project is thus approximately six weeks behind schedule. Design of the field prototype is progressing per schedule.

  7. Control System of the H~- Ion Source

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The control system is of primary importance to the accelerator operation. This paper presents a brief introduction to the new ion source control system. The research is to build a new H- ion source based on

  8. Control-based operating system design

    CERN Document Server

    Leva, Alberto; Papadopoulos, AV; Terraneo, F

    2013-01-01

    This book argues that computer operating system components should be conceived from the outset as controllers, synthesised and assessed in the system-theoretical world of dynamic models, and then realised as control algorithms.

  9. Consistent Design of Dependable Control Systems

    DEFF Research Database (Denmark)

    Blanke, M.

    1996-01-01

    Design of fault handling in control systems is discussed, and a method for consistent design is presented.......Design of fault handling in control systems is discussed, and a method for consistent design is presented....

  10. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  11. Thickness of the electron atmosphere in large nuclear systems

    Science.gov (United States)

    Pacheco, A. F.; Sañudo, J.

    1986-03-01

    Using the relativistic Thomas-Fermi model and the virial theorem it is found that the thickness of the electron skin outside a large nuclear system is given by S⋍6.73 n-1/3, n being the electron density inside the nucleus. On leave from Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.

  12. Artificial Intelligence Theory and Reconfigurable Control Systems.

    Science.gov (United States)

    1984-06-30

    IEEE Transactions on Automatic Control , Vol...AC-iS, No. 1, Feb 1970. 5. Sklansky, J., "Learning Systems for Automatic Control", IEEE = Transactions on Automatic Control , Vol...34A Gerfcale itellihoode Raio ,-. ~Aproc tohemesecio and Ca Suis nwEtimat eeion" (: Jump in-Linea & -,"Ŗ. Systems", IEEE Transactions on Automatic Control ,

  13. On the atmospheric chemistry of NO2 - O3 systems; a laboratory study.

    NARCIS (Netherlands)

    Verhees, P.W.C.

    1986-01-01

    In this dissertation a laboratory study dealing with the atmospheric chemistry of NO 2 -O 3 systems is described. Knowledge of this system is relevant for a better understanding of a number of air pollution problems, particularly th

  14. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    Science.gov (United States)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  15. 75 FR 59108 - Positive Train Control Systems

    Science.gov (United States)

    2010-09-27

    ... Federal Railroad Administration 49 CFR Part 236 RIN 2130-AC03 Positive Train Control Systems AGENCY..., and use of Positive Train Control (PTC) systems for railroads as mandated by the Rail Safety... installation and operation of Positive Train Control (PTC) systems. On January 15, 2010, FRA issued...

  16. 50 CFR 600.420 - Control system.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Control system. 600.420 Section 600.420..., DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Confidentiality of Statistics § 600.420 Control system. (a) The Assistant Administrator maintains a control system to protect the identity of submitters...

  17. 14 CFR 29.395 - Control system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system. 29.395 Section 29.395... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 29.395 Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The...

  18. Phase control system for SSRF linac

    Institute of Scientific and Technical Information of China (English)

    YIN Chongxian; YU Luyang; LIU Dekang

    2008-01-01

    The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The testing results for phase control system in 100MeV linac are discussed in detail.

  19. Switching Control System Based on Robust Model Reference Adaptive Control

    Institute of Scientific and Technical Information of China (English)

    HU Qiong; FEI Qing; MA Hongbin; WU Qinghe; GENG Qingbo

    2016-01-01

    For conventional adaptive control,time-varying parametric uncertainty and unmodeled dynamics are ticklish problems,which will lead to undesirable performance or even instability and nonrobust behavior,respectively.In this study,a class of discrete-time switched systems with unmodeled dynamics is taken into consideration.Moreover,nonlinear systems are here supposed to be approximated with the class of switched systems considered in this paper,and thereby switching control design is investigated for both switched systems and nonlinear systems to assure stability and performance.For robustness against unmodeled dynamics and uncertainty,robust model reference aclaptive control (RMRAC) law is developed as the basis of controller design for each individual subsystem in the switched systems or nonlinear systems.Meanwhile,two different switching laws are presented for switched systems and nonlinear systems,respectively.Thereby,the authors incorporate the corresponding switching law into the RMRAC law to construct two schemes of switching control respectively for the two kinds of controlled systems.Both closed-loop analyses and simulation examples are provided to illustrate the validity of the two proposed switching control schemes.Furthermore,as to the proposed scheme for nonlinear systems,its potential for practical application is demonstrated through simulations of longitudinal control for F-16 aircraft.

  20. Analysis of atmosphere influence on shipborne fire control radar efficacy%大气对舰载火控雷达效能的影响分析

    Institute of Scientific and Technical Information of China (English)

    杜娟; 朱华邦

    2012-01-01

    With the widespread application of shipborne BVR weapon system, the influence of shipborne fire control radar efficacy on weapon system is increasing obvious. And the atmosphere is one of the most important factors to influence the fire control radar range. Therefore, it is necessary to research the atmosphere influence on shipborne fire control radar efficacy. The paper studies the atmosphere influence on the electromagnetic energy from the electromagnetic attenuation and analyzes the atmosphere influence on the electromagnetic wave propagation path from the electromagnetic refraction.%随着舰载超视距武器系统的广泛应用,舰载火控雷达的效能对武器系统的影响越来越明显,大气是影响火控雷达作用距离的最主要原因之一,因此研究大气对舰载火控雷达效能的影响很有必要.该文从电磁衰减出发研究了大气对电磁波能量的影响;从电磁折射入手分析了大气对电磁波传播路径的影响.

  1. An Analog Trigger System for Atmospheric Cherenkov Telescopes

    CERN Document Server

    Barcelo, M; Bigas, O Blanch; Boix, J; Delgado, C; Herranz, D; Lopez-Coto, R; Martinez, G

    2013-01-01

    Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telescope camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanced versions of all components of the system have been produced and working prototypes have been tested, showing a performance that meets the original specifications. Finally, issues related to integrating the trigger system in a telescope camera and in the whole array will be dealt with.

  2. Implementation of the DIAC control system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dae-Sik; Jang, Doh-Yun; Jin, Jeong-Tae; Oh, Byung-Hoon [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    DIAC (Daejeon Ion Accelerator Complex) system was developed, and operated at JAEA of Japan by KEK team with a name of TRIAC (Tokai Radioactive Ion Accelerator Complex) during 2004 to 2010. The TRIAC control system was based on LabView and had two independent control units for ion source and accelerator. To be an efficient system, it is necessary to have an integrated control capability. And the control software, which had implemented by using LabView at TRIAC, will be changed with EPICS in order to give an effective beam service to the users. In this presentation, the old TRIAC control system is described, and a new control system for DIAC is discussed. The control system of DIAC is based on TRIAC. But it is gradually improved performance using EPICS toolkits and changing some digital interface hardware of it. Details of the control system will be demonstrated during the conference.

  3. Mars Entry Atmospheric Data System Trajectory Reconstruction Algorithms and Flight Results

    Science.gov (United States)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark; Shidner, Jeremy; Munk, Michelle

    2013-01-01

    The Mars Entry Atmospheric Data System is a part of the Mars Science Laboratory, Entry, Descent, and Landing Instrumentation project. These sensors are a system of seven pressure transducers linked to ports on the entry vehicle forebody to record the pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. Specifically, angle of attack, angle of sideslip, dynamic pressure, Mach number, and freestream atmospheric properties are reconstructed from the measured pressures. Such data allows for the aerodynamics to become decoupled from the assumed atmospheric properties, allowing for enhanced trajectory reconstruction and performance analysis as well as an aerodynamic reconstruction, which has not been possible in past Mars entry reconstructions. This paper provides details of the data processing algorithms that are utilized for this purpose. The data processing algorithms include two approaches that have commonly been utilized in past planetary entry trajectory reconstruction, and a new approach for this application that makes use of the pressure measurements. The paper describes assessments of data quality and preprocessing, and results of the flight data reduction from atmospheric entry, which occurred on August 5th, 2012.

  4. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    Directory of Open Access Journals (Sweden)

    N. Towles

    2015-07-01

    Full Text Available Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR model (Zeebe et al., 2009; Zeebe, 2012b, we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  5. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    Science.gov (United States)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  6. Underwater hydraulic shock shovel control system

    Institute of Scientific and Technical Information of China (English)

    LIU He-ping; LUO A-ni; XIAO Hai-yan

    2008-01-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel.This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems.A new type of control system's mathematical model was built and analyzed according to those principles.Since the initial control system's response time could not fulfill the design requirements,a PID controller was added to the control system.System response time was still slower than required,so a neural network was added to nonlinearly regulate the proportional element,integral element and derivative element coefficients of the PID controller.After these improvements to the control system,system parameters fulfilled the design requirements.The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can't satisfy a shovel's requirements,so advanced and normal control methods were combined to improve the control system,bringing good results.

  7. The 1-way on-line coupled atmospheric chemistry model system MECO(n – Part 1: The limited-area atmospheric chemistry model COSMO/MESSy

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2011-06-01

    Full Text Available The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO, maintained by the German weather service (DWD, is connected with the Modular Earth Submodel System (MESSy. This effort is undertaken in preparation of a~new, limited-area atmospheric chemistry model. This model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented. Previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the tracer transport characteristics of the new COSMO/MESSy model system, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  8. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2005-04-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  9. Building oceanographic and atmospheric observation networks by composition: unmanned vehicles, communication networks, and planning and execution control frameworks

    Science.gov (United States)

    Sousa, J. T.; Pinto, J.; Martins, R.; Costa, M.; Ferreira, F.; Gomes, R.

    2014-12-01

    The problem of developing mobile oceanographic and atmospheric observation networks (MOAO) with coordinated air and ocean vehicles is discussed in the framework of the communications and control software tool chain developed at Underwater Systems and Technologies Laboratory (LSTS) from Porto University. This is done with reference to field experiments to illustrate key capabilities and to assess future MOAO operations. First, the motivation for building MOAO by "composition" of air and ocean vehicles, communication networks, and planning and execution control frameworks is discussed - in networked vehicle systems information and commands are exchanged among multiple vehicles and operators, and the roles, relative positions, and dependencies of these vehicles and operators change during operations. Second, the planning and execution control framework developed at LSTS for multi-vehicle systems is discussed with reference to key concepts such as autonomy, mixed-initiative interactions, and layered organization. Third, the LSTS tool software tool chain is presented to show how to develop MOAO by composition. The tool chain comprises the Neptus command and control framework for mixed initiative interactions, the underlying IMC messaging protocol, and the DUNE on-board software. Fourth, selected LSTS operational deployments illustrate MOAO capability building. In 2012 we demonstrated the use of UAS to "ferry" data from UUVs located beyond line of sight (BLOS). In 2013 we demonstrated coordinated observations of coastal fronts with small UAS and UUVs, "bent" BLOS through the use of UAS as communication relays, and UAS tracking of juvenile hammer-head sharks. In 2014 we demonstrated UUV adaptive sampling with the closed loop controller of the UUV residing on a UAS; this was done with the help of a Wave Glider ASV with a communications gateway. The results from these experiments provide a background for assessing potential future UAS operations in a compositional MOAO.

  10. CONTROLLING HYPERCHAOS IN A NEW HYPERCHAOTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,the control strategies for a new hyperchaotic system is investiga-ted. Several kinds of feedback controllers are constructed,such as the linear,speed,nonlinear doubly-periodic function feedback controllers. These controllers are used to prevent the new hyperchaos becoming an unstable equilibrium. Finally,numerical simulations are used to verify the effectiveness of the proposed controllers.

  11. Fuzzy logic control and optimization system

    Science.gov (United States)

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  12. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    This thesis considered development of an autonomous control system for heating ventilation and air conditioning applications. By including auto-tuning, adaptation, diagnosis and supervision functions in the control system used in the HVAC industry will move the control of HVAC systems towards...... autonomous control. Together with better tuned controllers and more dedicated control it would be possible to decrease the energy consumption, save money and increase the indoor air climate. A flexible HVAC test system was designed and implemented. Standard components and sensors were used in the design...

  13. Influence of measurement and control of microaerobic gaseous atmospheres in methods for Campylobacter growth studies.

    Science.gov (United States)

    Macé, Sabrina; Haddad, Nabila; Zagorec, Monique; Tresse, Odile

    2015-12-01

    Campylobacter is the leading cause of bacterial enteritis in the world. For this reason, this pathogen is widely studied. As a microaerophilic and capnophilic microorganism, this foodborne pathogen requires an atmosphere with reduced oxygen (O2) and elevated carbon dioxide (CO2) concentrations for its optimal growth in vitro. According to the procedure for Campylobacter spp. isolation and cultivation from food products and environmental samples, European and American standards recommend gas proportions of 5% O2 and 10% CO2, complemented with nitrogen (N2). However, in the literature, the reported proportion of O2 for microaerobic growth conditions of Campylobacter spp. can range from 2.5% to 15% and the reason for this variation is usually not explained. The use of different gas generating systems and media to detect and to grow Campylobacter from foodstuff and the lack of information about gas producing systems are the main sources of the loss of consistancy between data. In this review, the relevance, strengths and weaknesses of these methods and their impact on Campylobacter biology are discussed. In conclusion the minimum information concerning microaerobic gaseous atmospheres are suggested in order to better harmonize data obtained from research studies for a better understanding of Campylobacter features.

  14. Predictive Approaches to Control of Complex Systems

    CERN Document Server

    Karer, Gorazd

    2013-01-01

    A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequ...

  15. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-11-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  16. Control of atmospheric CO_2 concentrations by 2050: A calculation on the emission rights of different countries

    Institute of Scientific and Technical Information of China (English)

    DING ZhongLi; DUAN XiaoNan; GE QuanSheng; ZHANG ZhiQiang

    2009-01-01

    This paper is to provide quantitative data on some critical issues in anticipation of the forthcoming international negotiations in Denmark on the control of atmospheric CO_2 concentrations. Instead of letting only a small number of countries dominate a few controversial dialogues about emissions re-ductions, a comprehensive global system must be established based on emissions allowances for different countries, to realize the long-term goal of controlling global atmospheric CO_2 concentrations.That a system rooted in "cumulative emissions per capita," the best conception of the "common but differentiated responsibilities" principle affirmed by the Kyoto Protocol according to fundamental standards of fairness and justice, was demonstrated. Based on calculations of various countries' cu-mulative emissions per capita, estimates of their cumulative emissions from 1900 to 2005, and their annual emissions allowances into the future (2006-2050), a 470 ppmv atmospheric CO_2 concentration target was set. According to the following four objective indicators-total emissions allowance from 1900 to 2050, actual emissions from 1900 to 2005, emissions levels in 2005, and the average growth rate of emissions from 1996 to 2005-all countries and regions whose population was more than 300000 in 2005 were divided into four main groups: countries with emissions deficits, countries and regions needing to reduce their gross emissions, countries and regions needing to reduce their emissions growth rates, and countries that can maintain the current emissions growth rates. Based on this pro-posal, most G8 countries by 2005 had already expended their 2050 emissions allowances. The accu-mulated financial value based on emissions has reached more than 5.5 trillion US dollars (20 dollars per ton of CO_2). Even if these countries could achieve their ambitious emissions reduction targets in the future, their per capita emissions from 2006 to 2050 would still be much higher than those of de

  17. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper is to provide quantitative data on some critical issues in anticipation of the forthcoming international negotiations in Denmark on the control of atmospheric CO2 concentrations. Instead of letting only a small number of countries dominate a few controversial dialogues about emissions reductions, a comprehensive global system must be established based on emissions allowances for different countries, to realize the long-term goal of controlling global atmospheric CO2 concentrations. That a system rooted in "cumulative emissions per capita," the best conception of the "common but differentiated responsibilities" principle affirmed by the Kyoto Protocol according to fundamental standards of fairness and justice, was demonstrated. Based on calculations of various countries’ cumulative emissions per capita, estimates of their cumulative emissions from 1900 to 2005, and their annual emissions allowances into the future (2006―2050), a 470 ppmv atmospheric CO2 concentration target was set. According to the following four objective indicators―total emissions allowance from 1900 to 2050, actual emissions from 1900 to 2005, emissions levels in 2005, and the average growth rate of emissions from 1996 to 2005―all countries and regions whose population was more than 300000 in 2005 were divided into four main groups: countries with emissions deficits, countries and regions needing to reduce their gross emissions, countries and regions needing to reduce their emissions growth rates, and countries that can maintain the current emissions growth rates. Based on this proposal, most G8 countries by 2005 had already expended their 2050 emissions allowances. The accu-mulated financial value based on emissions has reached more than 5.5 trillion US dollars (20 dollars per ton of CO2). Even if these countries could achieve their ambitious emissions reduction targets in the future, their per capita emissions from 2006 to 2050 would still be much higher than those of

  18. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    Science.gov (United States)

    Murphy, Kevin J.

    2011-01-01

    LANCE (Land, Atmosphere Near-Real-Time Capability for EOS) in 2009. LANCE consists of special processing elements, co-located with selected EOSDIS data centers and processing facilities. A primary goal of LANCE is to bring multiple near-real-time systems under one umbrella, offering commonality in data access, quality control, and latency. LANCE now processes and distributes data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Atmospheric Infrared Sounder (AIRS), Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E), Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) instruments within 3 hours of satellite observation. The Rapid Response System and the Fire Information for Resource Management System (FIRMS) capabilities will be incorporated into LANCE in 2011. LANCE maintains a central website to facilitate easy access to data and user services. LANCE products are extensively tested and compared with science products before being made available to users. Each element also plans to implement redundant network, power and server infrastructure to ensure high availability of data and services. Through the user registration system, users are informed of any data outages and when new products or services will be available for access. Building on a significant investment by NASA in developing science algorithms and products, LANCE creates products that have a demonstrated utility for applications requiring near-real-time data. From lower level data products such as calibrated geolocated radiances to higher-level products such as sea ice extent, snow cover, and cloud cover, users have integrated LANCE data into forecast models and decision support systems. The table above shows the current near-real-time product categories by instrument. The ESDIS Project continues to improve the LANCE system and use the experience gained through practice to seek adjustments to improve the quality and performance of the system. For example, an

  19. The drive system of the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope

    CERN Document Server

    Bretz, T; Wagner, R M; Sawallisch, P

    2008-01-01

    The MAGIC telescope is an imaging atmospheric Cherenkov telescope, designed to observe very high energy gamma-rays while achieving a low energy threshold. One of the key science goals is fast follow-up of the enigmatic and short lived gamma-ray bursts. The drive system for the telescope has to meet two basic demands: (1) During normal observations, the 72-ton telescope has to be positioned accurately, and has to track a given sky position with high precision at a typical rotational speed in the order of one revolution per day. (2) For successfully observing GRB prompt emission and afterglows, it has to be powerful enough to position to an arbitrary point on the sky within a few ten seconds and commence normal tracking immediately thereafter. To meet these requirements, the implementation and realization of the drive system relies strongly on standard industry components to ensure robustness and reliability. In this paper, we describe the mechanical setup, the drive control and the calibration of the pointing,...

  20. The cryogenic control system of BEPCII

    Science.gov (United States)

    Li, Gang; Wang, Ke-Xiang; Zhao, Ji-Jiu; Yue, Ke-Juan; Dai, Ming-Hui; Huang, Yi-Ling; Jiang, Bo

    2008-04-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron- Positron Collider Upgrade Project (BEPCII). The system consists of a Siemens PLC (S7-PLC, Programmable Logic Controller) for the compressor control, an Allen Bradley (AB) PLC for the cryogenic equipments, and the Experimental Physics and Industrial Control System (EPICS) that integrates the PLCs. The system fully automates the superconducting cryogenic control with process control, PID (Proportional-Integral-Differential) control loops, real-time data access and data storage, alarm handler and human machine interface. It is capable of automatic recovery as well. This paper describes the BEPCII cryogenic control system, data communication between S7-PLC and EPICS Input/Output Controllers (IOCs), and the integration of the flow control, the low level interlock, the AB-PLC, and EPICS.

  1. The cryogenic control system of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WANG Ke-Xiang; ZHAO Ji-Jiu; YUE Ke-Juan; DAI Ming-Sui; HUANG Yi-Ling; JIANG Bo

    2008-01-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron-Positron Collider Upgrade Project(BEPCⅡ).The system consists of a Siemens PLC(ST-PLC,Programmable Logic Controller)for the compressor control,an Allen Bradley(AB)PLC for the cryogenic equipments,and the Experimental Physics and Industrial Control System(EPICS)that integrates the PLCs.The system fully automates the superconducting cryogenic control with process control,PID(Proportional-Integral-Differential)control loops,real-time data access and data storage,alarm handler and human machine interface.It is capable of automatic recovery as well.This paper describes the BEPCⅡ cryogenic control system,data communication between ST-PLC and EPICS Input/Output Controllers(IOCs),and the integration of the flow control,the low level interlock,the AB-PLC,and EPICS.

  2. Control and estimation of piecewise affine systems

    CERN Document Server

    Xu, Jun

    2014-01-01

    As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are

  3. Control Systems and Number Theory

    Directory of Open Access Journals (Sweden)

    Fuhuo Li

    2012-01-01

    and PID-controllers are applied successfully in the EV control by J.-Y. Cao and B.-G. Cao 2006 and Cao et al. 2007, which we may unify in our framework. Finally, we mention some similarities between control theory and zeta-functions.

  4. System Optimization by Periodic Control.

    Science.gov (United States)

    1979-09-30

    extended re- sults are now contained in a single report [3] which will appear as a regular paper in the December, 1979 issue of the IEEE Transactions on Automatic Control . The...Test Revisited, " to appear in the IEEE Transactions on Automatic Control . 4. D. J. Lyons, "Improved Aircraft Cruise by Periodic Control," Ph. D

  5. Real time control engineering systems and automation

    CERN Document Server

    Ng, Tian Seng

    2016-01-01

    This book covers the two broad areas of the electronics and electrical aspects of control applications, highlighting the many different types of control systems of relevance to real-life control system design. The control techniques presented are state-of-the-art. In the electronics section, readers will find essential information on microprocessor, microcontroller, mechatronics and electronics control. The low-level assembly programming language performs basic input/output control techniques as well as controlling the stepper motor and PWM dc motor. In the electrical section, the book addresses the complete elevator PLC system design, neural network plant control, load flow analysis, and process control, as well as machine vision topics. Illustrative diagrams, circuits and programming examples and algorithms help to explain the details of the system function design. Readers will find a wealth of computer control and industrial automation practices and applications for modern industries, as well as the educat...

  6. Formation of oxygen complexes in controlled atmosphere at surface of doped glassy carbon

    Indian Academy of Sciences (India)

    Aleksandra A Perić-Grujić; Tatjana M Vasiljević; Olivera M Nešković; Miomir V Veljković; Zoran V Laušević; Mila D Laušević

    2006-10-01

    The effects of boron and phosphorus incorporation in phenolic resin precursor to the oxidation resistance of glassy carbon have been studied. In order to reveal the nature and composition of the oxygen complexes formed at the surface of doped glassy carbon, under controlled atmosphere, the surface of the samples was cleaned under vacuum up to 1273 K. Specific functional groups, subsequently formed under dry CO2 or O2 atmosphere on the surface of boron-doped and phosphorus-doped glassy carbon samples, were examined using the temperature-programmed desorption method combined with mass spectrometric analysis. Characterization of surface properties of undoped and doped samples has shown that in the presence of either boron or phosphorus heteroatoms, a lower amount of oxygen complexes formed after CO2 exposure, while, typically, higher amount of oxygen complexes formed after O2 exposure. It has been concluded that the surface of undoped glassy carbon has a greater affinity towards CO2, while in the presence of either boron or phosphorus heteroatoms, the glassy carbon surface affinity becomes greater towards O2, under experimental conditions.

  7. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  8. ON FEEDBACK CONTROL OF DELAYED CHAOTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    李丽香; 彭海朋; 卢辉斌; 关新平

    2001-01-01

    In this paper two different types of feedback control technique are discussed: the standard feedback control and the time-delay feedback control which have been successfully used in many control systems. In order to understand to what extent the two different types of control technique are useful in delayed chaotic systems, some analytic stabilization conditions for chaos control from the two types of control technique are derived based on Lyapunov stabilization arguments. Similarly, we discuss the tracking problem by applying the time-delay feedback control. Finally, numerical examples are provided.

  9. Deciphering the Hot Giant Atmospheres Orbiting Nearby Extrasolar Systems with JWST

    Science.gov (United States)

    Afrin Badhan, Mahmuda; Batalha, Natasha; Deming, Drake; Domagal-Goldman, Shawn; HEBRARD, Eric; Kopparapu, Ravi Kumar; Irwin, Patrick Gerard Joseph

    2016-10-01

    Unique and exotic planets give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our own planetary system in the context of the vastly different extrasolar systems that are being continually discovered by present space missions. With orbital separations that are less than one-tenth of the Mercury-Sun distance, these close-in planets provide us with valuable insights about the host stellar atmosphere and planetary atmospheres subjected to their enormous stellar insolation. Observed spectroscopic signatures reveal all spectrally active species in a planet, along with information about its thermal structure and dynamics, allowing us to characterize the planet's atmosphere. NASA's upcoming missions will give us the high-resolution spectra necessary to constrain the atmospheric properties with unprecedented accuracy. However, to interpret the observed signals from exoplanetary transit events with any certainty, we need reliable atmospheric retrieval tools that can model the expected observables adequately. In my work thus far, I have built a Markov Chain Monte Carlo (MCMC) convergence scheme, with an analytical radiative equilibrium formulation for the thermal structures, within the NEMESIS atmospheric modeling tool, to allow sufficient (and efficient) exploration of the parameter space. I also augmented the opacity tables to improve the speed and reliability of retrieval models. I then utilized this upgraded version to infer the pressure-temperature (P-T) structures and volume-mixing ratios (VMRs) of major gas species in hot Jupiter dayside atmospheres, from their emission spectra. I have employed a parameterized thermal structure to retrieve plausible P-T profiles, along with altitude-invariant VMRs. Here I show my retrieval results on published datasets of HD189733b, and compare them with both medium and high spectral resolution JWST/NIRSPEC simulations. In preparation for the upcoming JWST mission, my current work

  10. Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System

    Science.gov (United States)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra

    2008-01-01

    A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.

  11. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  12. System Identification Tools for Control Structure Interaction

    Science.gov (United States)

    1990-01-01

    DT! FILE COPY AL-TR-89-054 AD: 00 Final Report System Identification Tools for O for the period - September 1988 to Control Structure Interaction May...Classification) System Identification Tools for Control Structure Interaction (U) 12. PERSONAL AUTHOR(S) Kosut, Robert L.; Kabuli, Guntekin M. 13a. TYPE OF...identification, dynamics, 22 01 system identification , robustness, dynamic modeling, robust 22 02 control design, control design procedure 19. ABSTRACT

  13. World Calibration Center for SF6 - supporting the quality system of the global atmosphere observation

    Science.gov (United States)

    Lee, J.; Moon, D.; Min, D.; Yun, W.

    2012-10-01

    According to the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) Strategic Plan: 2008-2015 (WMO, 2009a) WMO/GAW pays attention to systematical improvement of the quality of observations at global or regional monitoring sites. To ensure the comparability and compatibility of the measurements worldwide it is essential to maintain a traceability chain to the primary standard in the different laboratories around the world as well as to establish a quality control system. Sulfur hexafluoride (SF6), is reported to be very rare in the atmosphere at the global averaged annual mole fraction of about 7 ppt, it is one of the greenhouse gases regulated by Kyoto protocol and is increasing at a rate of 0.22 ppt yr-1. Development of a working (or transfer) standard with very low concentration of SF6 requires expert technologies and several knowhow of gas metrology. In order to meet the Data Quality Objective (DQO), the KMA has cooperated with the Korea Research Institute of Standards and Science (KRISS), which is the National Metrology Institute in South Korea. So long as the Central Calibration Laboratory (CCL) for SF6 was established, the Korea Meteorological Administration (KMA) is now trying to take another step forward to systematically support GAW stations in improving their traceability and quality system for SF6, thereby making a contribution to the WMO/GAW. Through hosting the World Calibration Center for SF6, which is one of GAW facilities, KMA will contribute to harmonization of the global SF6 observations in the long run. This work performed to demonstrate some measurement results on SF6 which complies with the DQOs and is traceable to the WMO mole fraction scale for SF6. In order to produce a working standard which is traceable to the WMO scale, we developed highly precise method of a Gas Chromatography/Electron Capture Detector (GC/ECD) calibrated against the five cylinders (from NOAA, 2011) of the WMO scale. For all analysis the measurement

  14. World Calibration Center for SF6 – supporting the quality system of the global atmosphere observation

    Directory of Open Access Journals (Sweden)

    W. Yun

    2012-10-01

    Full Text Available According to the World Meteorological Organization (WMO Global Atmosphere Watch (GAW Strategic Plan: 2008–2015 (WMO, 2009a WMO/GAW pays attention to systematical improvement of the quality of observations at global or regional monitoring sites. To ensure the comparability and compatibility of the measurements worldwide it is essential to maintain a traceability chain to the primary standard in the different laboratories around the world as well as to establish a quality control system. Sulfur hexafluoride (SF6, is reported to be very rare in the atmosphere at the global averaged annual mole fraction of about 7 ppt, it is one of the greenhouse gases regulated by Kyoto protocol and is increasing at a rate of 0.22 ppt yr−1. Development of a working (or transfer standard with very low concentration of SF6 requires expert technologies and several knowhow of gas metrology. In order to meet the Data Quality Objective (DQO, the KMA has cooperated with the Korea Research Institute of Standards and Science (KRISS, which is the National Metrology Institute in South Korea. So long as the Central Calibration Laboratory (CCL for SF6 was established, the Korea Meteorological Administration (KMA is now trying to take another step forward to systematically support GAW stations in improving their traceability and quality system for SF6, thereby making a contribution to the WMO/GAW. Through hosting the World Calibration Center for SF6, which is one of GAW facilities, KMA will contribute to harmonization of the global SF6 observations in the long run. This work performed to demonstrate some measurement results on SF6 which complies with the DQOs and is traceable to the WMO mole fraction scale for SF6. In order to produce a working standard which is traceable to the WMO scale, we developed highly precise method of a Gas Chromatography/Electron Capture Detector (GC/ECD calibrated against the five cylinders (from NOAA, 2011 of the WMO scale. For all analysis the

  15. Intelligent control system of autonomous objects

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.; Brezitskaya, V. V.; Prohorovich, G. A.

    2017-02-01

    This paper presents an intelligent control system of autonomous objects as framework. The intelligent control framework includes two different layers: a reflexive layer and a reactive layer. The proposed multiagent adaptive fuzzy neuronet combines low-level reaction with high-level reasoning in an intelligent control framework. The formed as the multiagent adaptive fuzzy neuronet the intelligent control system on the base of autonomous object’s state, creates the effective control signal under random perturbations.

  16. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  17. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    Science.gov (United States)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  18. BER of subcarrier MPSK and MDPSK systems in atmospheric turbulence

    KAUST Repository

    Song, Xuegui

    2015-01-01

    Bit-error rate (BER) performance of subcarrier $M$-ary phase-shift keying (MPSK) and $M$-ary differential PSK (MDPSK) is analyzed for optical wireless communications over Gamma-Gamma and lognormal turbulence channels. We study the relation between the exact BER and the approximate BER, which is obtained by dividing the symbol-error rate by the number of bits per symbol, for subcarrier MPSK and MDPSK modulations. The asymptotic BER performance gap between the exact and the approximate BERs is quantified analytically through our asymptotic analyses. The accuracy of the approximate BER of both MPSK and MDPSK depends on the channel conditions. Under weak turbulence conditions, the approximate BER expression can be used to predict the system performance with high accuracy, while under strong turbulence conditions the approximate BER becomes inaccurate and can only serve as a loose lower bound of the exact BER. The asymptotic BER performance loss of MDPSK with respect to MPSK is also quantified analytically.

  19. Controlling factors of biosphere-atmosphere ammonia exchange at a semi-natural peatland site

    Science.gov (United States)

    Brummer, C.; Richter, U.; Smith, J. J.; Delorme, J. P.; Kutsch, W. L.

    2014-12-01

    Recent advancements in laser spectrometry offer new opportunities to investigate net biosphere-atmosphere exchange of ammonia. During a three month field campaign from February to May 2014, we tested the performance of a quantum cascade laser within an eddy-covariance setup. The laser was operated at a semi-natural peatland site that is surrounded by highly fertilized agricultural land and intensive livestock production (~1 km distance). Ammonia concentrations were highly variable between 2 and almost 100 ppb with an average value of 15 ppb. Different concentration patterns could be identified. The variability was closely linked to the timing of management practices and the prevailing local climate, particularly wind direction, temperature and surface wetness with the latter indicating higher non-stomatal uptake under wet conditions leading to decreased concentrations. Average ammonia fluxes were around -15 ng N m-2 s-1 at the beginning of the campaign in February and shifted towards a neutral average exchange regime of -1 to 0 ng N m-2 s-1 in April and May. Intriguingly, during the time of decreasing ammonia uptake, concentrations were considerably rising, which clearly indicated N saturation in the predominant vegetation such as bog heather, purple moor-grass, and cotton grass. The cumulative net uptake for the period of investigation was ~300 g N ha-1. This stresses the importance of a thorough method inter-comparison, e.g. with denuder systems in combination with dry deposition modeling. As previous results from the latter methods showed an annual uptake of ~9 kg N ha-1 for the same site, the implementation of adequate ammonia compensation point parameterizations become crucial in surface-atmosphere exchange schemes for bog vegetation. Through their high temporal resolution, robustness and continuous measurement mode, quantum cascade lasers will help assessing the effects of atmospheric N loads to vulnerable N-limited ecosystems such as peatlands.

  20. Modeling and Control of DC/DC Boost Converter using K-Factor Control for MPPT of Solar PV System

    DEFF Research Database (Denmark)

    Vangari, Adithya; Haribabu, Divyanagalakshmi; Sakamuri, Jayachandra N.

    2015-01-01

    This paper is focused on the design of a controller for the DC/DC boost converter using K factor control, which is based on modified PI control method, for maximum power point tracking (MPPT) of solar PV system. A mathematical model for boost converter based on small signal averaging approach...... is presented. Design of the passive elements of the boost converter as per the system specifications is also illustrated. The performance of the proposed K factor control method is verified with the simulations for MPPT on solar PV system at different atmospheric conditions. A new circuit based model for solar...... PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP...

  1. Test evaluation of potential heat shield contamination of an Outer Planet Probe's atmospheric sampling system

    Science.gov (United States)

    Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.

    1975-01-01

    An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.

  2. FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM

    Science.gov (United States)

    Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance

  3. Application of Improved Fuzzy Controller in Networked Control System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian; GUO Xi-jin; WANG Zhen; TIAN Xi-lan

    2006-01-01

    Aiming at the problem of network-induced delay and data dropout in networked control system, an improved fuzzy controller is proposed in this paper. Considering the great influence of a controller on the performance of control system, an improved controller with a second order fuzzy controller and network-induced delay compensator being added to the basic fuzzy controller is proposed to realize self-regulation on-line. For this type of controller, neither plant model nor measurement of network delay is required. So it is capable of automatically adjusting quantified factor, proportional factor, and integral factor according to the control system error and its derivative. The design makes full use of the advantages of quickness in operation and reduction of steady state error because of its integral function. The controller has a good control effect on time-delay and can keep a better performance by self-regulation on-line in the network with data dropout and interference. It is good in quickness, adaptability, and robustness, which is favorable for controlling the long time-delay system.

  4. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...... in all the investigations. The electrical properties of the Au microelectrodes were investigated using CAHT-SPM at various temperatures in air. The influences of the tip-sample force and of the size of the microelectrode on the electrical properties of the Au microelectrodes were also studied....... The impedance spectra of circular Au microelectrodes down to 8μm in diameter at different temperatures were successfully obtained. The CAHT-SPM presented in this paper is capable of obtaining topography images, conductivity images and impedance spectra in-situ in a temperature range from room temperature...

  5. A new test machine for measuring friction and wear in controlled atmospheres to 1200 C

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1991-01-01

    This paper describes a new high-temperature friction and wear test apparatus (tribometer). The tribometer can be used as a pin-on-disk or pin-on-ring configuration and is specially designed to measure the tribological properties of ceramics and high temperature metallic alloys from room temperature to 1200 C. Sliding mode can be selected to be either unidirectional at velocities up to 22 m/sec or oscillating at frequencies up to 4.6 Hz and amplitudes up to + or - 60 deg. The test atmosphere is established by a controlled flow rate of a purge gas. All components within the test chamber are compatible with oxidizing, inert or reducing gases.

  6. Linearizing Control of Induction Motor Based on Networked Control Systems

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.

  7. Development of an Accurate Urban Modeling System Using CAD/GIS Data for Atmosphere Environmental Simulation

    Institute of Scientific and Technical Information of China (English)

    Tomosato Takada; Kazuo Kashiyama

    2008-01-01

    This paper presents an urban modeling system using CAD/GIS data for atmosphere environ- mental simulation, such as wind flow and contaminant spread in urban area. The CAD data is used for the shape modeling for the high-storied buildings and civil structures with complicated shape since the data for that is not included in the 3D-GIS data accurately. The unstructured mesh based on the tetrahedron element is employed in order to express the urban structures with complicated shape accurately. It is difficult to un- derstand the quality of shape model and mesh by the conventional visualization technique. In this paper, the stereoscopic visualization using virtual reality (VR) technology is employed for the vedfication of the quality of shape model and mesh. The present system is applied to the atmosphere environmental simulation in ur- ban area and is shown to be an useful planning and design tool to investigate the atmosphere environmental problem.

  8. Form control in atmospheric pressure plasma processing of ground fused silica

    Science.gov (United States)

    Li, Duo; Wang, Bo; Xin, Qiang; Jin, Huiliang; Wang, Jun; Dong, Wenxia

    2014-08-01

    Atmospheric Pressure Plasma Processing (APPP) using inductively coupled plasma has demonstrated that it can achieve comparable removal rate on the optical surface of fused silica under the atmosphere pressure and has the advantage of inducing no sub-surface damage for its non-contact and chemical etching mechanism. APPP technology is a cost effective way, compared with traditional mechanical polishing, magnetorheological finishing and ion beam figuring. Thus, due to these advantages, this technology is being tested to fabricate large aperture optics of fused silica to help shorten the polishing time in optics fabrication chain. Now our group proposes to use inductively coupled plasma processing technology to fabricate ground surface of fused silica directly after the grinding stage. In this paper, form control method and several processing parameters are investigated to evaluate the removal efficiency and the surface quality, including the robustness of removal function, velocity control mode and tool path strategy. However, because of the high heat flux of inductively coupled plasma, the removal depth with time can be non-linear and the ground surface evolvement will be affected. The heat polishing phenomenon is founded. The value of surface roughness is reduced greatly, which is very helpful to reduce the time of follow-up mechanical polishing. Finally, conformal and deterministic polishing experiments are analyzed and discussed. The form error is less 3%, before and after the APPP, when 10μm depth of uniform removal is achieved on a 60×60mm ground fused silica. Also, a basin feature is fabricated to demonstrate the figuring capability and stability. Thus, APPP is a promising technology in processing the large aperture optics.

  9. Model-based control of networked systems

    CERN Document Server

    Garcia, Eloy; Montestruque, Luis A

    2014-01-01

    This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled.   The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control.   Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...

  10. Robust tuning of robot control systems

    Science.gov (United States)

    Minis, I.; Uebel, M.

    1992-01-01

    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.

  11. Response Based Emergency Control System for Power System Transient Stability

    Directory of Open Access Journals (Sweden)

    Huaiyuan Wang

    2015-11-01

    Full Text Available A transient stability control system for the electric power system composed of a prediction method and a control method is proposed based on trajectory information. This system, which is independent of system parameters and models, can detect the transient stability of the electric power system quickly and provide the control law when the system is unstable. Firstly, system instability is detected by the characteristic concave or convex shape of the trajectory. Secondly, the control method is proposed based on the analysis of the slope of the state plane trajectory when the power system is unstable. Two control objectives are provided according to the methods of acquiring the far end point: one is the minimal cost to restore the system to a stable state; the other one is the minimal cost to limit the maximum swing angle. The simulation indicates that the mentioned transient stability control system is efficient.

  12. Optimal Control of Switched Systems based on Bezier Control Points

    OpenAIRE

    FatemeGhomanjani; Mohammad HadiFarahi

    2012-01-01

    This paper presents a new approach for solving optimal control problems for switched systems. We focus on problems in which a pre-specified sequence of active subsystems is given. For such problems, we need to seek both the optimal switching instants and the optimal continuous inputs. A Bezier control points method is applied for solving an optimal control problem which is supervised by a switched dynamic system. Two steps of approximation exist here. First, the time interval is divided into ...

  13. Access control and personal identification systems

    CERN Document Server

    Bowers, Dan M

    1988-01-01

    Access Control and Personal Identification Systems provides an education in the field of access control and personal identification systems, which is essential in selecting the appropriate equipment, dealing intelligently with vendors in purchases of the equipment, and integrating the equipment into a total effective system. Access control devices and systems comprise an important part of almost every security system, but are seldom the sole source of security. In order for the goals of the total system to be met, the other portions of the security system must also be well planned and executed

  14. A Fuzzy Control Irrigation System For Cottonfield

    Science.gov (United States)

    Zhang, Jun; Zhao, Yandong; Wang, Yiming; Li, Jinping

    A fuzzy control irrigation system for cotton field is presented in this paper. The system is composed of host computer, slave computer controller, communication module, soil water sensors, valve controllers, and system software. A fuzzy control model is constructed to control the irrigation time and irrigation quantity for cotton filed. According to the water-required rules of different cotton growing periods, different irrigation strategies can be carried out automatically. This system had been used for precision irrigation of the cotton field in Langfang experimental farm of Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences in 2006. The results show that the fuzzy control irrigation system can improve cotton yield and save much water quantity than the irrigation system based on simple on-off control algorithm.

  15. Geometric Control of Patterned Linear Systems

    CERN Document Server

    Hamilton, Sarah C

    2012-01-01

    This monograph is aiming at researchers of systems control, especially those interested in multiagent systems, distributed and decentralized control, and structured systems. The book assumes no prior background in geometric control theory; however, a first year graduate course in linear control systems is desirable.  Since not all control researchers today are exposed to geometric control theory, the book also adopts a tutorial style by way of examples that illustrate the geometric and abstract algebra concepts used in linear geometric control. In addition, the matrix calculations required for the studied control synthesis problems of linear multivariable control are illustrated via a set of running design examples. As such, some of the design examples are of higher dimension than one may typically see in a text; this is so that all the geometric features of the design problem are illuminated.

  16. A new control system for ISOLTRAP

    CERN Document Server

    Beck, D; Brand, H; Herfurth, F; Schwarz, S

    2004-01-01

    A new LabVIEW-based control system for the ISOLTRAP facility at ISOLDE/CERN has been implemented by using the Control System (CS) framework which has been developed by DVEE/GSI during the last two years. CS is an object-oriented, multi-threaded, event-driven framework with Supervisory Control and Data Acquisition (SCADA) functionality. It allows one to implement distributed control systems by adding experiment specific add-ons. This paper gives an overview on the CS framework, describes the requirements for ISOLTRAP and reports on the implementation of the new control system.

  17. Atmospheric carbon dioxide and the long-term control of the Earth's climate

    Directory of Open Access Journals (Sweden)

    J. H. Carver

    Full Text Available A CO2-weathering model has been used to explore the possible evolution of the Earth's climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, "Megaclimates". Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents. Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth's temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing CO2

  18. Self-optimising control of sewer systems

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane Loft;

    The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flows and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems...... to design an optimising control strategy for a subcathcment area in Copenhagen....

  19. Automatic Control System for Neutron Laboratory Safety

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Xiao; ZHANG; Guo-guang; FENG; Shu-qiang; SU; Dan; YANG; Guo-zhao; ZHANG; Shuai

    2015-01-01

    In order to cooperate with the experiment of neutron generator,and realize the automatic control in the experiment,a set of automatic control system for the safety of the neutron laboratory is designed.The system block diagram is shown as Fig.1.Automatic control device is for processing switch signal,so PLC is selected as the core component

  20. Evolved Finite State Controller For Hybrid System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2009-01-01

    This paper presents an evolutionary methodology to automatically generate nite state automata (FSA) controllers to control hybrid systems. FSA controllers for a case study of two-tank system have been successfully obtained using the proposed evolutionary approach. Experimental results show...

  1. Effect of growth regulators on 'Brookfield' apple gas diffusion and metabolism under controlled atmosphere storage

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2014-05-01

    Full Text Available The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control, aminoethoxyvinylglycine (AVG, AVG + ethephon, AVG + naphthaleneacetic acid (NAA, ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS, AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

  2. Sensory profile of 'Douradão' peaches cold stored under controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Ligia Regina Radomille de Santana

    2011-03-01

    Full Text Available The sensory quality of 'Douradão' peaches cold stored in three different conditions of controlled atmosphere (CA1, CA2, CA3 and Control was studied. After 14, 21 and 28 days of cold storage, samples were withdrawn from CA and kept for 4 days in ambient air for ripening. The sensory profile of the peaches and the descriptive terminology were developed by methodology based on the Quantitative Descriptive Analysis (QDA. The panelists consensually defined the sensory descriptors, their respective reference materials and the descriptive evaluation ballot. Fourteen panelists were selected based on their discrimination capacity and reproducibility. Seven descriptors were generated showing similarities and differences between samples. The data were analyzed by ANOVA, Tukey test and Principal Component Analysis (PCA. Results showed significant differences in the sensory profiles of the peaches. The PCA showed that CA2 and CA3 treatments were more characterized by the fresh peach flavor, fresh peach appearance, juiciness and flesh firmness, and were effective in keeping the good quality of the 'Douradão' peaches during the 28 days of cold storage. The Control and CA1 treatments were characterized by the mealiness and were ineffective for quality maintenance of the fruits during cold storage.

  3. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  4. Filtering and control of wireless networked systems

    CERN Document Server

    Zhang, Dan; Yu, Li

    2017-01-01

    This self-contained book, written by leading experts, offers a cutting-edge, in-depth overview of the filtering and control of wireless networked systems. It addresses the energy constraint and filter/controller gain variation problems, and presents both the centralized and the distributed solutions. The first two chapters provide an introduction to networked control systems and basic information on system analysis. Chapters (3–6) then discuss the centralized filtering of wireless networked systems, presenting different approaches to deal with energy efficiency and filter/controller gain variation problems. The next part (chapters 7–10) explores the distributed filtering of wireless networked systems, addressing the main problems of energy constraint and filter gain variation. The final part (chapters 11–14) focuses on the distributed control of wireless networked systems. systems for communication and control applications, the bo...

  5. Jefferson Lab Data Acquisition Run Control System

    Energy Technology Data Exchange (ETDEWEB)

    Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin

    2004-10-01

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes.

  6. FIPA agent based network distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    D. Abbott; V. Gyurjyan; G. Heyes; E. Jastrzembski; C. Timmer; E. Wolin

    2003-03-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  7. Improving industrial process control systems security

    CERN Document Server

    Epting, U; CERN. Geneva. TS Department

    2004-01-01

    System providers are today creating process control systems based on remote connectivity using internet technology, effectively exposing these systems to the same threats as corporate computers. It is becoming increasingly difficult and costly to patch/maintain the technical infrastructure monitoring and control systems to remove these vulnerabilities. A strategy including risk assessment, security policy issues, service level agreements between the IT department and the controls engineering groups must be defined. In addition an increased awareness of IT security in the controls system engineering domain is needed. As consequence of these new factors the control system architectures have to take into account security requirements, that often have an impact on both operational aspects as well as on the project and maintenance cost. Manufacturers of industrial control system equipment do however also propose progressively security related solutions that can be used for our active projects. The paper discusses ...

  8. Improved control of delayed measured systems

    Science.gov (United States)

    Claussen, Jens Christian; Schuster, Heinz Georg

    2004-11-01

    In this paper, we address the question of how the control of delayed measured chaotic systems can be improved. Both unmodified Ott-Grebogi-Yorke control and difference control can be successfully applied only for a certain range of Lyapunov numbers depending on the delay time. We show that this limitation can be overcome by at least two classes of methods, namely, by rhythmic control and by the memory methods of linear predictive logging control and memory difference control.

  9. Control system for garbage disposition. Gomi shori seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, S.; Kaneko, H. (Fuji Electric Co. Ltd., Tokyo (Japan))

    1993-06-10

    This paper introduces the latest incinerator instrument control system (IICS), and pneumatic refuse transportation and optimal operation systems for incineration plants. Garbage disposition facilities have introduced discrete control systems and a centralized control system using computers, and structured an overall incineration plant control system containing incineration facilities, electric power generation facilities, and other facilities. The IICS comprises softwares packaging control functions required particularly for garbage disposition and a control system mounting the softwares. The optimal incineration plant operation system governs control data in each plant to execute efficient drives and operations mutually in various plants, and reflects the data to plant operation programs. The pneumatic refuse transportation system has large-diameter pipelines laid in a limited area to collect refuses pneumatically through refuse chutes installed in the area to transport them to a refuse collection center. 4 refs., 8 figs.

  10. Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.

  11. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    Science.gov (United States)

    Hollstein, André; Fischer, Jürgen

    2012-05-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  12. Flexible AC transmission systems modelling and control

    CERN Document Server

    Zhang, Xiao-Ping; Pal, Bikash

    2012-01-01

    The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and

  13. Software for Embedded Control Systems

    NARCIS (Netherlands)

    Broenink, Jan F.; Hilderink, Gerald H.; Jovanovic, Dusko S.

    2001-01-01

    The research of our team deals with the realization of control schemes on digital computers. As such the emphasis is on embedded control software implementation. Applications are in the field of mechatronic devices, using a mechatronic design approach (the integrated and optimal design of a mechanic

  14. Model assessment of atmospheric pollution control schemes for critical emission regions

    Science.gov (United States)

    Zhai, Shixian; An, Xingqin; Liu, Zhao; Sun, Zhaobin; Hou, Qing

    2016-01-01

    In recent years, the atmospheric environment in portions of China has become significantly degraded and the need for emission controls has become urgent. Because more international events are being planned, it is important to implement air quality assurance targeted at significant events held over specific periods of time. This study sets Yanqihu (YQH), Beijing, the location of the 2014 Beijing APEC (Asia-Pacific Economic Cooperation) summit, as the target region. By using the atmospheric inversion model FLEXPART, we determined the sensitive source zones that had the greatest impact on the air quality of the YQH region in November 2012. We then used the air-quality model Models-3/CMAQ and a high-resolution emissions inventory of the Beijing-Tianjian-Hebei region to establish emission reduction tests for the entire source area and for specific sensitive source zones. This was achieved by initiating emission reduction schemes at different ratios and different times. The results showed that initiating a moderate reduction of emissions days prior to a potential event is more beneficial to the air quality of Beijing than initiating a high-strength reduction campaign on the day of the event. The sensitive source zone of Beijing (BJ-Sens) accounts for 54.2% of the total source area of Beijing (BJ), but its reduction effect reaches 89%-100% of the total area, with a reduction efficiency 1.6-1.9 times greater than that of the entire area. The sensitive source zone of Huabei (HuaB-Sens.) only represents 17.6% of the total area of Huabei (HuaB), but its emission reduction effect reaches 59%-97% of the entire area, with a reduction efficiency 4.2-5.5 times greater than that of the total area. The earlier that emission reduction measures are implemented, the greater the effect they have on preventing the transmission of pollutants. In addition, expanding the controlling areas to sensitive provinces and cities around Beijing (HuaB-sens) can significantly accelerate the reduction

  15. Microprocessor systems for industrial process control

    Science.gov (United States)

    Lesh, F. H.

    1980-01-01

    Six computers operate synchronously and are interconnected by three independent data buses. Processors control one subsystem. Some can control buses to transfer data at 1 megabit per second. Every 2.5 msec each processor examines list of things to do during next interval. This spacecraft control system could be adapted for controlling complex industrial processes.

  16. Towards Fully Coupled Atmosphere-Hydrology Model Systems: Recent Developments and Performance Evaluation For Different Climate Regions

    Science.gov (United States)

    Kunstmann, Harald; Fersch, Benjamin; Rummler, Thomas; Wagner, Sven; Arnault, Joel; Senatore, Alfonso; Gochis, David

    2015-04-01

    Limitations in the adequate representation of terrestrial hydrologic processes controlling the land-atmosphere coupling are assumed to be a significant factor currently limiting prediction skills of regional atmospheric models. The necessity for more comprehensive process descriptions accounting for the interdependencies between water- and energy fluxes at the compartmental interfaces are driving recent developments in hydrometeorological modeling towards more sophisticated treatment of terrestrial hydrologic processes. It is particularly the lateral surface and subsurface water fluxes that are neglected in standard regional atmospheric models. Current developments in enhanced lateral hydrological process descriptions in the WRF model system will be presented. Based on WRF and WRF-Hydro, new modules and concepts for integrating the saturated zone by a 2-dim groundwater scheme and coupling approaches to the unsaturated zone will be presented. The fully coupled model system allows to model the complete regional water cycle, from the top of the atmosphere, via the boundary layer, the land surface, the unsaturated zone and the saturated zone till the flow in the river beds. With this increasing complexity, that also allows to describe the complex interaction of the regional water cycle on different spatial and temporal scales, the reliability and predictability of model simulations can only be shown, if performance is tested for a variety of hydrological variables for different climatological environments. We will show results of fully coupled simulations for the regions of sempiternal humid Southern Bavaria/Germany (rivers Isar and Ammer) and semiarid to subhumid Westafrica (river Sissilli). In both regions, in addition to streamflow measurements, also the validation of heat fluxes is possible via Eddy-Covariance stations within hydrometeorological testbeds. In the German Isar/Ammer region, e.g., we apply the extended WRF-Hydro modeling system in 3km atmospheric- grid

  17. Computer Aided Control System Design (CACSD)

    Science.gov (United States)

    Stoner, Frank T.

    1993-01-01

    The design of modern aerospace systems relies on the efficient utilization of computational resources and the availability of computational tools to provide accurate system modeling. This research focuses on the development of a computer aided control system design application which provides a full range of stability analysis and control design capabilities for aerospace vehicles.

  18. 76 FR 63899 - Positive Train Control Systems

    Science.gov (United States)

    2011-10-14

    ... Federal Railroad Administration 49 CFR Part 236 RIN 2130-AC27 Positive Train Control Systems AGENCY... meet certain risk-based criteria in order to avoid positive train control (PTC) system implementation... of 2008 requires the implementation of PTC systems. FRA is also extending the comment period for...

  19. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  20. New Asymmetric Fuzzy PID Control for Pneumatic Position Control System

    Institute of Scientific and Technical Information of China (English)

    薛阳; 彭光正; 范萌; 伍清河

    2004-01-01

    A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.

  1. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.; Bindner, H.; Lundsager, P. [Risoe National Lab., Roskilde (Denmark); Jannerup, O. [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  2. A System for Information Documentation and Control

    Science.gov (United States)

    Klinger, Dennis M.; Taggart, William M. Jr.

    1974-01-01

    Southeast Regional Data Center (SERDAC) has an operational Information Documentation and Control System that provides the documentation and control necessary for SERDAC to implement an organizational data base to support its many applications. (Author)

  3. Energy storage system control strategies for power distribution systems

    Directory of Open Access Journals (Sweden)

    Areewan Kajorndech

    2015-03-01

    Full Text Available Energy storage systems have been widely employed to attain several benefits, such as reliability improvement, stabilization of power systems connected with renewable energy resources, economic benefits and etc. To achieve the above objectives, the appropriate and effective control strategies for energy storage systems are needed to be developed. This research proposes energy storage system control strategies for power distribution systems equipped with a limited size of energy storage system in order to improve reliability and save energy costs by determining an optimal charging schedule of the energy storage system. Simulation results demonstrate the benefits of energy storage system applications under the different control strategies.

  4. Effect of Pollution Controls on Atmospheric PM2.5 Composition during Universiade in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Nitika Dewan

    2016-04-01

    Full Text Available The 16th Universiade, an international multi-sport event, was hosted in Shenzhen, China from 12 to 23 August 2011. During this time, officials instituted the Pearl River Delta action plan in order to enhance the air quality of Shenzhen. To determine the effect of these controls, the current study examined the trace elements, water-soluble ions, and stable lead isotopic ratios in atmospheric particulate matter (PM collected during the controlled (when the restrictions were in place and uncontrolled periods. Fine particles (PM2.5 were collected at two sampling sites in Shenzhen: “LG”—a residential building in the Longgang District, with significant point sources around it and “PU”—Peking University Shenzhen Graduate School in the Nanshan District, with no significant point sources. Results from this study showed a significant increase in the concentrations of elements during the uncontrolled periods. For instance, samples at the LG site showed (controlled to uncontrolled periods concentrations (in ng·m−3 of: Fe (152 to 290, As (3.65 to 8.38, Pb (9.52 to 70.8, and Zn (98.6 to 286. Similarly, samples at the PU site showed elemental concentrations (in ng·m−3 of: Fe (114 to 301, As (0.634 to 8.36, Pb (4.86 to 58.1, and Zn (29.5 to 259. Soluble Fe ranged from 7%–15% for the total measured Fe, indicating an urban source of Fe. Ambient PM2.5 collected at the PU site has an average 206Pb/204Pb ratio of 18.257 and 18.260 during controlled and uncontrolled periods, respectively. The LG site has an average 206Pb/204Pb ratio of 18.183 and 18.030 during controlled and uncontrolled periods, respectively. The 206Pb/204Pb ratios at the PU and the LG sites during the controlled and uncontrolled periods were similar, indicating a common Pb source. To characterize the sources of trace elements, principal component analysis was applied to the elements and ions. Although the relative importance of each component varied, the major sources for both

  5. National food control systems: lessons from Mauritius.

    Science.gov (United States)

    Neeliah, S A; Goburdhun, D; Neeliah, H

    2009-01-01

    Food control systems are being established or revamped in many countries because of problems occurring along the food chain and the obligations of governments towards the World Trade Organization. The main components of an ideal food control system are food legislation, administration, enforcement and supporting bodies like analytical services and consumer organizations. Mauritius introduced modern legal instruments in 1998 in an attempt to reinvigorate food control. This article describes the components of the Mauritian Food Control System (MFCS). An appraisal of these components is then made. The methodology comprised a literature review and in-depth interviews with key informants and stakeholders of the local food control system. Although much progress was made with the introduction of new food legislation in 1998, other components of the local system like enforcement and various supporting bodies did not receive appropriate support. Other countries could use the lessons drawn from the Mauritian experience while setting up or upgrading their food control systems.

  6. Analysis and control of underactuated mechanical systems

    CERN Document Server

    Choukchou-Braham, Amal; Djemaï, Mohamed; Busawon, Krishna

    2014-01-01

    This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen—chain, tree, and isolated vertex—and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. The text is illustrated with MATL...

  7. Robust control of linear descriptor systems

    CERN Document Server

    Feng, Yu

    2017-01-01

    This book develops original results regarding singular dynamic systems following two different paths. The first consists of generalizing results from classical state-space cases to linear descriptor systems, such as dilated linear matrix inequality (LMI) characterizations for descriptor systems and performance control under regulation constraints. The second is a new path, which considers descriptor systems as a powerful tool for conceiving new control laws, understanding and deciphering some controller’s architecture and even homogenizing different—existing—ways of obtaining some new and/or known results for state-space systems. The book also highlights the comprehensive control problem for descriptor systems as an example of using the descriptor framework in order to transform a non-standard control problem into a classic stabilization control problem. In another section, an accurate solution is derived for the sensitivity constrained linear optimal control also using the descriptor framework. The boo...

  8. Control of self-organizing nonlinear systems

    CERN Document Server

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  9. Modeling Control Situations in Power System Operations

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten; Singh, Sri Niwas

    2010-01-01

    Increased interconnection and loading of the power system along with deregulation has brought new challenges for electric power system operation, control and automation. Traditional power system models used in intelligent operation and control are highly dependent on the task purpose. Thus, a model...... for intelligent operation and control must represent system features, so that information from measurements can be related to possible system states and to control actions. These general modeling requirements are well understood, but it is, in general, difficult to translate them into a model because of the lack...... of explicit principles for model construction. This paper presents a work on using explicit means-ends model based reasoning about complex control situations which results in maintaining consistent perspectives and selecting appropriate control action for goal driven agents. An example of power system...

  10. Dressage, Control, and Enterprise Systems

    DEFF Research Database (Denmark)

    Gal, Uri; Berente, Nicholas; Yoo, Youngjin

    2010-01-01

    In 2004, National Aeronautics and Space Administration (NASA) implemented Full Cost, an activity-based accounting program through an agency-wide enterprise resource planning (ERP) implementation. We apply Foucault's notion of 'dressage' to highlight aspects of demonstrative control associated...

  11. Electronic system for optical shutter control

    Science.gov (United States)

    Viljoen, H. C.; Gaylord, T. K.

    1976-01-01

    The paper describes a precise and versatile electronic system for shutter control in light beam experiments. Digital and analog circuitry is used to provide automatic timing, exposure control, manual operation, and remote programmability. A block diagram of the system is presented and the individual circuits - the timer control circuit, the clock control circuit, the comparator circuit, the exposure (integrator) circuit, and the shutter drive circuit are discussed in detail and diagrams are provided.

  12. Frequency Transmission Control of Local Networked Control Systems Approach

    Directory of Open Access Journals (Sweden)

    O. Esquivel-Flores

    2012-08-01

    Full Text Available The use of Network Control Systems has been successful in the industry and therefore has opened several lines ofresearch. Control systems over a communication network include two important considerations, control andscheduling. Co-design strategies are focused on maintaining adequate control performance and maximize the level ofservice. Network scheduling is the main objective to resolve because through a balanced data load is possible tomaintain control performance in a desired level. This article reviews a scheduling strategy based on frequencytransition modeled as a linear subsystem, this control reconfigure on line the sensors’ periods. The case of study isthe control of a prototype helicopter and by numerical simulations it shows the effect of changing the transmissionfrequency.

  13. SST INTRASEASONAL OSCILLATION AND ATMOSPHERIC FORCING SYSTEM OF THE SOUTH CHINA SEA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This study used National Center for Environmental Prediction (NCEP) reanalysis data to confirm that the variance of sea surface temperature (SST) in the South China Sea (SCS) has pronounced intraseasonal oscillations characterized by quasi-standing waves; and was aimed to document how intraseasonal time scale SST formed and developed in the SCS. The results derived from the composite analysis indicated the existence of a local low-level atmospheric dynamic forcing system over the SCS. The main formation mechanism of SST intraseasonal oscillation is the low-level rotational atmospheric circulation forcing over the SCS on intraseasonal time scales and the solar radiation variations caused by cloud amount changes.

  14. Testing FSO WDM communication system in simulation software optiwave OptiSystem in different atmospheric environments

    Science.gov (United States)

    Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir

    2016-09-01

    In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.

  15. Resilient Control Systems: Next Generation Design Research

    Energy Technology Data Exchange (ETDEWEB)

    Craig Rieger

    2009-05-01

    Since digital control systems were introduced to the market more than 30 years ago, the operational efficiency and stability gained through their use have fueled our migration and ultimate dependence on them for the monitoring and control of critical infrastructure. While these systems have been designed for functionality and reliability, a hostile cyber environment and uncertainties in complex networks and human interactions have placed additional parameters on the design expectations for control systems.

  16. Introduction to control system performance measurements

    CERN Document Server

    Garner, K C

    1968-01-01

    Introduction to Control System Performance Measurements presents the methods of dynamic measurements, specifically as they apply to control system and component testing. This book provides an introduction to the concepts of statistical measurement methods.Organized into nine chapters, this book begins with an overview of the applications of automatic control systems that pervade almost every area of activity ranging from servomechanisms to electrical power distribution networks. This text then discusses the common measurement transducer functions. Other chapters consider the basic wave

  17. Plasma spraying system with distributed controlling

    Institute of Scientific and Technical Information of China (English)

    李春旭; 陈克选; 张成

    2003-01-01

    A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.

  18. Energy storage system control strategies for power distribution systems

    OpenAIRE

    Areewan Kajorndech; Dulpichet Rerkpreedapong

    2015-01-01

    Energy storage systems have been widely employed to attain several benefits, such as reliability improvement, stabilization of power systems connected with renewable energy resources, economic benefits and etc. To achieve the above objectives, the appropriate and effective control strategies for energy storage systems are needed to be developed. This research proposes energy storage system control strategies for power distribution systems equipped with a limited size of energy storage system ...

  19. Atmospheric electrification in dusty, reactive gases in the solar system and beyond

    CERN Document Server

    Helling, Ch; Honary, F; Diver, D A; Aplin, K; Dobbs-Dixon, I; Ebert, U; Inutsuka, S; Gordillo-Vazquez, F J; Littlefair, S

    2016-01-01

    Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons o...

  20. The evolution of the ISOLDE control system

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, O.C.; Catherall, R.; Deloose, I.; Evensen, A.H.M.; Gase, K.; Focker, G.J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H.L. [European Organization for Nuclear Research, Geneva (Switzerland); Drumm, P. [RAL, Chilton Didcot (United Kingdom); ISOLDE Collaboration

    1997-04-01

    The ISOLDE on-line mass separator facility is operating on a personal computer based control system since spring 1992. Front end computers accessing the hardware are controlled from consoles running Microsoft Windows through a novell NetWare4 local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface. (orig.). 12 refs.

  1. The evolution of the ISOLDE control system

    CERN Document Server

    Jonsson, O C; Deloose, I; Drumm, P V; Evensen, A H M; Gase, K; Focker, G J; Fowler, A B; Kugler, E; Lettry, Jacques; Olesen, G; Ravn, H L

    1997-01-01

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft WindowsTM through a Novell NetWare4TM local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  2. The evolution of the ISOLDE control system

    Science.gov (United States)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  3. Environmental Restoration Program Control Management System

    Energy Technology Data Exchange (ETDEWEB)

    Duke, R.T.

    1992-08-13

    Environmental Restoration managers need to demonstrate that their programs are under control. Unlike most industrial programs, the public is heavily involved in Environmental Restoration activities. The public is demanding that the country prove that real progress is being made towards cleaning up the environment. A Program Control Management System can fill this need. It provides a structure for planning, work authorization, data accumulation, data analysis and change control. But it takes time to implement a control system and the public is losing its patience. This paper describes critical items essential to the quick development and implementation of a successful control system.

  4. New Stereo Vision Digital Camera System for Simultaneous Measurement of Cloud Base Height and Atmospheric Visibility

    Science.gov (United States)

    Janeiro, F. M.; Carretas, F.; Palma, N.; Ramos, P. M.; Wagner, F.

    2013-12-01

    Clouds play an important role in many aspects of everyday life. They affect both the local weather as well as the global climate and are an important parameter on climate change studies. Cloud parameters are also important for weather prediction models which make use of actual measurements. It is thus important to have low-cost instrumentation that can be deployed in the field to measure those parameters. This kind of instruments should also be automated and robust since they may be deployed in remote places and be subject to adverse weather conditions. Although clouds are very important in environmental systems, they are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Under VFR there are strict limits on the height of the cloud base, cloud cover and atmospheric visibility that ensure the safety of the pilots and planes. Although there are instruments, available in the market, to measure those parameters, their relatively high cost makes them unavailable in many local aerodromes. In this work we present a new prototype which has been recently developed and deployed in a local aerodrome as proof of concept. It is composed by two digital cameras that capture photographs of the sky and allow the measurement of the cloud height from the parallax effect. The new developments consist on having a new geometry which allows the simultaneous measurement of cloud base height, wind speed at cloud base height and atmospheric visibility, which was not previously possible with only two cameras. The new orientation of the cameras comes at the cost of a more complex geometry to measure the cloud base height. The atmospheric visibility is calculated from the Lambert-Beer law after the measurement of the contrast between a set of dark objects and the background sky. The prototype includes the latest hardware developments that

  5. Simulation of rarefied gas flows in atmospheric pressure interfaces for mass spectrometry systems.

    Science.gov (United States)

    Garimella, Sandilya; Zhou, Xiaoyu; Ouyang, Zheng

    2013-12-01

    The understanding of the gas dynamics of the atmospheric pressure interface is very important for the development of mass spectrometry systems with high sensitivity. While the gas flows at high pressure (>1 Torr) and low pressure (pressure stage (1 to 10(-3) Torr) remains challenging. In this study, we used the direct simulation Monte Carlo (DMSC) method to develop the gas dynamic simulations for the continuous and discontinuous atmospheric pressure interfaces (API), with different focuses on the ion transfer by gas flows through a skimmer or directly from the atmospheric pressure to a vacuum stage, respectively. The impacts by the skimmer location in the continuous API and the temporal evolvement of the gas flow with a discontinuous API were characterized, which provide a solid base for the instrument design and performance improvement.

  6. Towards a full Atmospheric Calibration system for the Cherenkov Telescope Array

    CERN Document Server

    Doro, M; Blanch, O; Font, LL; Garrido, D; Lopez-Oramas, A

    2013-01-01

    The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision data extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.

  7. Mass-independent isotope effects in planetary atmospheres and the early solar system.

    Science.gov (United States)

    Thiemens, M H

    1999-01-15

    A class of isotope effects that alters isotope ratios on a mass-independent basis provides a tool for studying a wide range of processes in atmospheres of Earth and other planets as well as early processes in the solar nebula. The mechanism for the effect remains uncertain. Mass-independent isotopic compositions have been observed in O3, CO2, N2O, and CO in Earth's atmosphere and in carbonate from a martian meteorite, which suggests a role for mass-independent processes in the atmosphere of Mars. Observed mass-independent meteoritic oxygen and sulfur isotopic compositions may derive from chemical processes in the presolar nebula, and their distributions could provide insight into early solar system evolution.

  8. Nonlinear system compound inverse control method

    Institute of Scientific and Technical Information of China (English)

    Yan ZHANG; Zengqiang CHEN; Peng YANG; Zhuzhi YUAN

    2005-01-01

    A compound neural network is utilized to identify the dynamic nonlinear system.This network is composed of two parts: one is a linear neural network,and the other is a recurrent neural network.Based on the inverse theory a compound inverse control method is proposed.The controller has also two parts:a linear controller and a nonlinear neural network controller.The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated based on the Lyapunov theory.Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.

  9. Engines-only flight control system

    Science.gov (United States)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  10. The state of the atmosphere as inferred from the FGGE satellite observing systems during SOP-1

    Science.gov (United States)

    Halem, M.; Kalnay, E.; Baker, W. E.; Atlas, R.

    1981-01-01

    Data assimilation experiments were performed to test the influence of different elements of the satellite observing systems. Results from some of the experiments are presented. These findings show that the FGGE satellite systems are able to infer the three-dimensional motion field and improve the representation of the large-scale state of the atmosphere. Preliminary results of the forecast impact of the FGGE data sets are also presented.

  11. Simplified Atmospheric Dispersion Model andModel Based Real Field Estimation System ofAir Pollution

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The atmospheric dispersion model has been well developed and applied in pollution emergency and prediction. Based on thesophisticated air diffusion model, this paper proposes a simplified model and some optimization about meteorological andgeological conditions. The model is suitable for what is proposed as Real Field Monitor and Estimation system. The principle ofsimplified diffusion model and its optimization is studied. The design of Real Field Monitor system based on this model and itsfundamental implementations are introduced.

  12. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, G [University of Colorado, Boulder/CIRES; Argrow, B [University of Colorado; Bland, G [NASA - Goddard Space Flight Center - Wallops Flight Facility; Elston, J [University of Colorado, Boulder; Lawrence, D [University of Colorado; Maslanik, J [University of Colorado; Palo, S [University of Colorado; Tschudi, M [NCAR

    2015-12-01

    The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific information is through routine measurement of atmospheric conditions, particularly properties related to clouds, aerosols, and radiation. Improved understanding of these topics at high latitudes, in particular, has become very relevant because of observed decreases in ice and snow in polar regions.

  13. Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.; Brubaker, K.L.; Lee, J.L.

    1980-11-01

    The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized.

  14. Cattle, straw and systems control.

    NARCIS (Netherlands)

    Schiere, J.B.

    1995-01-01

    Straw is an important animal feed in many farming systems of the world. It can be fed in different ways, and for a variety of objectives. An analysis of the role of straw is therefore undertaken to explain the usefulness of straw feeding methods in different systems. Automatically this leads to the

  15. Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and Exploitation

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and power. Fusion fuels such as helium 3 (He-3) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and helium 4 (He-4) are produced. With these two additional gases, the potential exists for fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.

  16. Controllability of nonlinear degenerate parabolic cascade systems

    Directory of Open Access Journals (Sweden)

    Mamadou Birba

    2016-08-01

    Full Text Available This article studies of null controllability property of nonlinear coupled one dimensional degenerate parabolic equations. These equations form a cascade system, that is, the solution of the first equation acts as a control in the second equation and the control function acts only directly on the first equation. We prove positive null controllability results when the control and a coupling set have nonempty intersection.

  17. The MedAustron Accelerator Control System

    CERN Document Server

    Gutleber, J; Marchhart, M; Torcato de Matos, C; Dedic, J; Moser, R

    2011-01-01

    This paper presents the architecture and design of the MedAustron accelerator control system. This ion therapy and research facility is currently under construction in Wr. Neustadt, Austria. The accelerator and its control system are designed at CERN. This class of machine is characterized by rich sets of configuration data, real-time reconfiguration needs and high stability requirements. The machine is operated according to a pulse-to-pulse modulation scheme. Each beam cycle is described in terms of ion type, energy, beam dimensions, intensity and spill length. The control system is based on a multi-tier architecture with the aim to achieve a clear separation between front-end devices and their controllers. In-house developments cover a main timing system, a light-weight layer to standardize operation and communication of front-end controllers, fast and slow control of power converters and a procedure programming framework for automating high-level control and data analysis tasks.

  18. Longitudinal Control Strategy for Vehicle Adaptive Cruise Control Systems

    Institute of Scientific and Technical Information of China (English)

    WU Li-jun; LIU Zhao-du; MA Yue-feng

    2007-01-01

    A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented.The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance.Based on this,two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected.By switching among four control modes,the desired velocity profile is designed to deal with different running situations.A velocity controller,which includes a PID controller for throttle openness and a neural network controller for brake application,is developed to achieve the desired velocity profile.The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.

  19. Pilot control through the TAFCOS automatic flight control system

    Science.gov (United States)

    Wehrend, W. R., Jr.

    1979-01-01

    The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.

  20. Automobile active suspension system with fuzzy control

    Institute of Scientific and Technical Information of China (English)

    刘少军; 黄中华; 陈毅章

    2004-01-01

    A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.