WorldWideScience

Sample records for atmospheric co2 concentration

  1. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  2. CO2 background concentra-tion in the atmosphere over the Chinese mainland

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the long-term monitoring data on CO2 concentration, variation trend and characteristics of CO2 background concentration in the atmosphere over the Chinese mainland are analyzed. Results show that the increasing trend of CO2 background concentration in the atmosphere over the Chinese mainland has appeared during the period of 1991-2000. The average annual CO2 growth increment is 1.59 μL/L, and the average annual CO2 growth rate is 0.44%. Distinct seasonal variations of CO2 background concentration are observed, and the averaged amplitude of CO2 seasonal variations is 10.35 μL/L. Regional variation characteristics of CO2 background concentration in the atmosphere and possible impact of human activities on these variations over the Chinese mainland are discussed as well.

  3. Dynamics of global atmospheric CO2 concentration from 1850 to 2010: a linear approximation

    Science.gov (United States)

    Wang, W.; Nemani, R.

    2014-09-01

    The increase in anthropogenic CO2 emissions largely followed an exponential path between 1850 and 2010, and the corresponding increases in atmospheric CO2 concentration were almost constantly proportional to the emissions by the so-called "airborne fraction". These observations suggest that the dynamics of atmospheric CO2 concentration through this time period may be properly approximated as a linear system. We demonstrate this hypothesis by deriving a linear box-model to describe carbon exchanges between the atmosphere and the surface reservoirs under the influence of disturbances such as anthropogenic CO2 emissions and global temperature changes. We show that the box model accurately simulates the observed atmospheric CO2 concentrations and growth rates across interannual to multi-decadal time scales. The model also allows us to analytically examine the dynamics of such changes/variations, linking its characteristic disturbance-response functions to bio-geophysically meaningful parameters. In particular, our results suggest that the elevated atmospheric CO2 concentrations have significantly promoted the gross carbon uptake by the terrestrial biosphere. However, such "fertilization" effects are partially offset by enhanced carbon release from surface reservoirs promoted by warmer temperatures. The result of these interactions appears to be a decline in net efficiency in sequestering atmospheric CO2 by ∼30% since 1960s. We believe that the linear modeling framework outlined in this paper provides a convenient tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes.

  4. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.

  5. Comparison of CO2 fluxes estimated using atmospheric and oceanic inversions, and role of fluxes and their interannual variability in simulating atmospheric CO2 concentrations

    Science.gov (United States)

    Patra, P. K.; Mikaloff Fletcher, S. E.; Ishijima, K.; Maksyutov, S.; Nakazawa, T.

    2006-07-01

    We use a time-dependent inverse (TDI) model to estimate regional sources and sinks of atmospheric CO2 from 64 and then 22 regions based on atmospheric CO2 observations at 87 stations. The air-sea fluxes from the 64-region atmospheric-CO2 inversion are compared with fluxes from an analogous ocean inversion that uses ocean interior observations of dissolved inorganic carbon (DIC) and other tracers and an ocean general circulation model (OGCM). We find that, unlike previous atmospheric inversions, our flux estimates in the southern hemisphere are generally in good agreement with the results from the ocean inversion, which gives us added confidence in our flux estimates. In addition, a forward tracer transport model (TTM) is used to simulate the observed CO2 concentrations using (1) estimates of fossil fuel emissions and a priori estimates of the terrestrial and oceanic fluxes of CO2, and (2) two sets of TDI model corrected fluxes. The TTM simulations of TDI model corrected fluxes show improvements in fitting the observed interannual variability in growth rates and seasonal cycles in atmospheric CO2. Our analysis suggests that the use of interannually varying (IAV) meteorology and a larger observational network have helped to capture the regional representation and interannual variabilities in CO2 fluxes realistically.

  6. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO2 concentrations. Growth under a high concentration of CO2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO2. Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO2. Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO2-enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates.

  7. Intra-seasonal variability of atmospheric CO2 concentrations over India during summer monsoons

    Science.gov (United States)

    Ravi Kumar, K.; Valsala, Vinu; Tiwari, Yogesh K.; Revadekar, J. V.; Pillai, Prasanth; Chakraborty, Supriyo; Murtugudde, Raghu

    2016-10-01

    In a study based on a data assimilation product of the terrestrial biospheric fluxes of CO2 over India, the subcontinent was hypothesized to be an anomalous source (sink) of CO2 during the active (break) spells of rain in the summer monsoon from June to September (Valsala et al., 2013). We test this hypothesis here by investigating intraseasonal variability in the atmospheric CO2 concentrations over India by utilizing a combination of ground-based and satellite observations and model outputs. The results show that the atmospheric CO2 concentration also varies in synchrony with the active and break spells of rainfall with amplitude of ±2 ppm which is above the instrumental uncertainty of the present day techniques of atmospheric CO2 measurements. The result is also consistent with the signs of the Net Ecosystem Exchange (NEE) flux anomalies estimated in our earlier work. The study thus offers the first observational affirmation of the above hypothesis although the data gap in the satellite measurements during monsoon season and the limited ground-based stations over India still leaves some uncertainty in the robust assertion of the hypothesis. The study highlights the need to capture these subtle variabilities and their responses to climate variability and change since it has implications for inverse estimates of terrestrial CO2 fluxes.

  8. Future atmospheric CO2 concentration and environmental consequences for the feed market: a consequential LCA

    DEFF Research Database (Denmark)

    Saxe, Henrik; Hamelin, Lorie; Hinrichsen, Torben

    2014-01-01

    With the rising atmospheric carbon dioxide concentration [CO2], crops will assimilate more carbon. This will increase yields in terms of carbohydrates but dilute the content of protein and minerals in crops. This consequential life cycle assessment study modelled the environmental consequences...

  9. Future Atmospheric CO2 Concentration and Environmental Consequences for the Feed Market: a Consequential LCA

    DEFF Research Database (Denmark)

    Saxe, Henrik; Hamelin, Lorie; Hinrichsen, Torben

    2014-01-01

    With the rising atmospheric carbon dioxide concentration [CO2], crops will assimilate more carbon. This will increase yields in terms of carbohydrates but dilute the content of protein and minerals in crops. This consequential life cycle assessment study modelled the environmental consequences...

  10. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    Science.gov (United States)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  11. Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan.

    Science.gov (United States)

    Osada, Noriyuki; Onoda, Yusuke; Hikosaka, Kouki

    2010-09-01

    Long-term exposure to elevated CO2 concentration will affect the traits of wild plants in association with other environmental factors. We investigated multiple effects of atmospheric CO2 concentration, irradiance, and soil N availability on the leaf photosynthetic traits of a herbaceous species, Polygonum sachalinense, growing around natural CO2 springs in northern Japan. Atmospheric CO2 concentration and its interaction with irradiance and soil N availability affected several leaf traits. Leaf mass per unit area increased and N per mass decreased with increasing CO2 and irradiance. Leaf N per area increased with increasing soil N availability at higher CO2 concentrations. The photosynthetic rate under growth CO2 conditions increased with increasing irradiance and CO2, and with increasing soil N at higher CO2 concentrations. The maximal velocity of ribulose 1,5-bisphosphate carboxylation (V (cmax)) was affected by the interaction of CO2 and soil N, suggesting that down-regulation of photosynthesis at elevated CO2 was more evident at lower soil N availability. The ratio of the maximum rate of electron transport to V (cmax) (J (max)/V (cmax)) increased with increasing CO2, suggesting that the plants used N efficiently for photosynthesis at high CO2 concentrations by changes in N partitioning. To what extent elevated CO2 influenced plant traits depended on other environmental factors. As wild plants are subject to a wide range of light and nutrient availability, our results highlight the importance of these environmental factors when the effects of elevated CO2 on plants are evaluated.

  12. Analysis of influence of atmosphere extinction to Raman lidar monitoring CO2 concentration profile

    Institute of Scientific and Technical Information of China (English)

    Zhao Pei-Tao; Zhang Yin-Chao; Wang Lian; Zhao Yue-Feng; Su Jia; Fang Xin; Cao Kai-Fa; Xie Jun; Du Xiao-Yong

    2007-01-01

    Lidar (Light detection and ranging) system monitoring of the atmosphere is a novel and powerful technique tool. The Raman lidar is well established today as a leading research tool in the study of numerous important areas in the atmospheric sciences. In this paper, the principle of Raman lidar technique measurement CO2 concentration profile is presented and the errors caused by molecular and aerosol extinction for CO2 concentration profile measurement with Raman lidar are also presented. The standard atmosphere extinction profile and 'real-time' Hefei area extinction profile are used to conduct correction and the corresponding results are yielded. Simulation results with standard atmosphere mode correction indicate that the errors caused by molecule and aerosol extinction should be counted for the reason that they could reach about 8 ppm and 5 ppm respectively. The relative error caused by Hefei area extinction correction could reach about 6%. The errors caused by the two components extinction influence could produce significant changes for CO2 concentration profile and need to be counted in data processing which could improve the measurement accuracies.

  13. Modeling concentrations and fluxes of atmospheric CO2 in the North East Atlantic region

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2001-01-01

    As part of the Danish NEAREX project a three-dimensional Eulerian hemispheric air pollution model is used to study the transport and concentrations of atmospheric CO2 in the North East Atlantic region. The model domain covers the major part of the Northern Hemisphere and currently the model...... source types. Here the model setup and the used parameterizations will be described. The model is validated by comparing the results with atmospheric measurements from four monitoring stations in or close to the northern part of the North Atlantic. Some preliminary model results will be shown and shortly...... includes simple parameterizations of the main sinks and sources for atmospheric CO2. One of the objectives of the project is to study and maybe quantify the relative importance of the various sinks and source types and areas for this region. In order to do so the model has been run with differentiated...

  14. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Science.gov (United States)

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  15. Atmospheric CO2 concentration effects on rice water use and biomass production

    Science.gov (United States)

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C.; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  16. 大气CO_2变化与气候%Variations of Atmospheric CO2 Concentration and Global Climate

    Institute of Scientific and Technical Information of China (English)

    刘植; 刘秀铭; 李平原; 吕镔; 陈家胜; 陈渠; 郭雪莲

    2012-01-01

    在地质历史时期,地球的气候不断在变化,全球大气CO2浓度也在变化,二者之间是否存在一种响应—反馈作用,目前存在争议较大.本研究从地质时间尺度、千年以来和现代气候变化3个角度进行介绍,认为全球气候变化是多重时间尺度变化规律的叠加,从长时间尺度来看,全球平均温度和大气CO2水平均表现出整体降低的趋势.地质历史时期存在多次大气CO2浓度升高的时期,有时甚至可达现在大气CO2水平的十几倍.气候变化与大气CO2的关系非常复杂,高CO2时期并不全部对应于高温时期.千年以来的气候变化在全球各大洲均有温暖时期的出现,并且很多地方的重建结果表明中世纪暖期的全球平均温度要比现代的全球平均温度还高.但这一区间的温度变化和大气CO2水平在1850年之前没有明显的相关性.近百年的气候观测资料表明全球平均温度上升了0.74℃,但对于这种上升的理解目前还存在较大争议.是否确实是由于人类活动(主要是工业革命以来)导致了全球CO2水平增高,进而导致全球变暖,需要更多的证据来验证.%In geological history, the earth's climate changed regularly and constantly and the concen- tration of atmospheric CO2 ~dso changed over time, so scientists argue whether there were response- feedback effects between them. In this paper, global climate change is assumed to be a multiple time- scale change, various time scales including long time orbital-scale, thousand year time-scale and nearly hundred years are introduced and analyzed. For long time-scale, both average global tempera- ture and atmospheric CO2 level present a reduction trend. Many times during geological history, at- mospheric CO2 level rose, sometimes to as high as ten times of the present level. It is found that the high C02 level period was not always corresponding to the high temperature period. For thousand year time-scale, it is

  17. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    Science.gov (United States)

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  18. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Science.gov (United States)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  19. Effects of elevated atmospherical CO2 concentration and nitrogen fertilisation on priming effects in soils

    Science.gov (United States)

    Ohm, H.; Marschner, B.

    2009-04-01

    It is expected that the biomass production and thus the input of organic carbon to the soil will increase in response to elevated CO¬2 concentrations in the atmosphere. It remains unclear whether this will lead to a long term increased carbon pool, because only little is known about the stability of the additional carbon inputs. The soil samples were taken on an agricultural field at the experimental farm of the Federal Agricultural Research Centre (FAL) in Braunschweig, Germany. A Free-Air Carbon-dioxide Enrichment (FACE) system was installed here in May 2000. It consists of rings with 20 m diameter. Two rings were operated with CO2 enriched air (550 ppm), another two rings received ambient air (370 ppm). One half of each ring received the full amount of nitrogen fertiliser, the remainder received only half of this N-amount. The soil samples were taken after 6 years of operation and were incubated with 14C-labeled fructose and alanine for 21 days. Furthermore, combined additions with the respective substrate and ammonium nitrate or ammonium nitrate alone were conducted. The microbial biomass was determined after 2 and 21 days. In the untreated controls the SOC mineralisation amounted to 0.59 to 0.68%. The addition of fructose, fructose+NH4NO3, alanine and alanine+NH4NO3 to the different soil samples increased SOC mineralization and thus caused priming effects of different extents. For NH4NO3 no priming effects occurred. The addition of fructose induced positive priming effects in all samples. The lowest priming effect was observed in the sample ambient CO2+50% N (+50%), either with fructose alone or in combination with NH4NO3. The addition of alanine caused similar priming effects in the ambient CO2+100% N and the elevated CO2+100% N samples (+92.4 and +95.6%, respectively). Again, the lowest priming effect was observed in the sample ambient CO2+50% N. The microbial biomass showed a clear increase in the substrate treated samples compared to the controls. The

  20. Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro-and macro-algae

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Marine photosynthesis drives the oceanic biological CO2 pump to absorb CO2 from the atmosphere, which sinks more than one third of the industry-originated CO2 into the ocean. The increasing atmos-pheric CO2 and subsequent rise of pCO2 in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO3- concentration, affect photosynthetic CO2 fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO2-concentrating mechanisms (CCMs) to util-ize the large HCO3- pool in seawater, enriched CO2 up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photo-synthesis is not limited by CO2 in seawater, increased CO2 levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO2 levels, less light energy is required to drive CCM). Altered physiological performances under high-CO2 conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO2 oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO2 and other interacting environmental factors, and little has been documented so far to explain how physi-ology of marine primary producers performs in a high-CO2 and low-pH ocean.

  1. Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae

    Institute of Scientific and Technical Information of China (English)

    WU HongYan; ZOU DingHui; GAO KunShan

    2008-01-01

    Marine photosynthesis drives the oceanic biological CO2 pump to absorb CO2 from the atmosphere, which sinks more than one third of the industry-originated CO2 into the ocean. The increasing atmospheric CO2 and subsequent rise of pCO2 in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO3- concentration, affect photosynthetic CO2 fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO2-concentrating mechanisms (CCMs) to utilize the large HCO3- pool in seawater, enriched CO2 up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photosynthesis is not limited by CO2 in seawater, increased CO2 levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO2 levels, less light energy is required to drive CCM). Altered physiological performances under high-CO2 conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO2 oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO2 and other interacting environmental factors, and little has been documented so far to explain how physiology of marine primary producers performs in a high-CO2 and low-pH ocean.

  2. Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2015-10-01

    Full Text Available Selective catalytic reduction of NOx with NH3 (NH3-SCR has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this process generates high concentrations of CO2 in flue gas. Therefore, studies on the SCR process under concentrated CO2 atmosphere conditions are important for future SCR deployment in oxy-fuel combustion processes. In this work, Mn- and Ce-based catalysts using activated carbon as support were used to investigate the effect of CO2 on NO conversion. A N2 atmosphere was used for comparison. Different process conditions such as temperature, SO2 concentration, H2O content in the feed gas and space velocity were studied. Under Mn-Ce/AC conditions, the results suggested that Mn metal could reduce the inhibition effect of CO2 on the NO conversion, while Ce metal increased the inhibition effect of CO2. High space velocity also resulted in a reduction of CO2 inhibition on the NO conversion, although the overall performance of SCR was greatly reduced at high space velocity. Future investigations to design novel Mn-based catalysts are suggested to enhance the SCR performance under concentrated CO2 atmosphere conditions.

  3. Using a Tree Ring δ13C Annual Series to Reconstruct Atmospheric CO2 Concentration over the Past 300 Years

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xing-Yun; QIAN Jun-Long; WANG Jian; HE Qing-Yan; WANG Zu-Liang; CHEN Cheng-Zhong

    2006-01-01

    The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (CF-1, CF-2, and CF 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring ages. There was no obvious decreasing trend of the δ13C annual time series of CF-2 before 1835. However, from 1835 to 1982 the three tree ring δ13C annual series exhibited similar decreasing trends that were significantly (P ≤ 0.001) correlated. The distribution characteristics of a scatter diagram between estimated δ13C series of CF-2 from modeling and the atmospheric CO2 concentration extracted from the Law Dome ice core from 1840 to 1978 were analyzed and a curvilinear regression equation for reconstructing atmospheric CO2 concentration was established with R2 = 0.98.Also, a test of independent samples indicated that between 1685 and 1839 the reconstructed atmospheric CO2 concentration .using the δ13C series of CF-2 had a close relationship with the Law Dome and Siple ice cores, with a standard deviation of 1.98.The general increasing trend of the reconstructed atmospheric CO2 concentration closely reflected the long-term variation of atmospheric CO2 concentration recorded both before and after the Industrial Revolution. Between 1685 and 1840 the evaluated atmospheric CO2 concentration was stable, but after 1840 it exhibited a rapid increase. Given a longer δ13C annual time series of tree rings, it was feasible to rebuild a representative time series to describe the atmospheric CO2 concentration for an earlier period and for years that were not in the ice core record.

  4. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Science.gov (United States)

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  5. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration

    OpenAIRE

    Gregory, J; Dixon, K; Stouffer, R.; Weaver, A.; E. Driesschaert; Eby, M.; Fichefet, T.; Hasumi, H.; Hu, A.; J. Jungclaus; Kamenkovich, I.; A. Levermann; Montoya, M.; Murakami, S.; Nawrath , S.

    2005-01-01

    As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, desp...

  6. The counteracting effects of elevated atmospheric CO2 concentrations and drought episodes: Studies of enchytraeid communities in a dry heathland

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Krogh, Paul Henning; Linden, Leon;

    2010-01-01

    The potential impacts of interactions of multiple climate change factors in soil ecosystems have received little attention. Most studies have addressed effects of single factors such as increased temperature or atmospheric CO2 but little is known about how such environmental factors will interact....... In the present study we investigate the effects of in situ exposure to elevated atmospheric CO2 concentration, increased temperatures and prolonged drought episodes on field communities of Enchytraeidae (Oligochaeta) in a dry heathland (Brandbjerg, Denmark). Increased CO2 had a positive effect on enchytraeid...... biomass, whereas drought significantly reduced it. Elevated temperature did not result in any detectable effects. No interactions between the three factors were observed. Interestingly, the positive effect of increased CO2 and the negative effect of drought were cancelled out when applied in combination...

  7. Contribution of various carbon sources toward isoprene synthesis mediated by altered atmospheric CO2 concentrations

    Science.gov (United States)

    Trowbridge, A. M.; Asensio, D.; Eller, A. S.; Wilkinson, M. J.; Schnitzler, J.; Jackson, R. B.; Monson, R. K.

    2010-12-01

    Biogenically released isoprene is abundant in the troposphere, and has an essential function in determining atmospheric chemistry and important implications for plant metabolism. As a result, considerable effort has been made to understand the underlying mechanisms driving isoprene synthesis, particularly in the context of a rapidly changing environment. Recently, a number of studies have focused on the contribution of recently assimilated carbon as opposed to stored/alternative intracellular or extracellular carbon sources in the context of environmental stress. Results from these studies can offer clues about the importance of various carbon pools for isoprene production and elucidate the corresponding physiological changes that are responsible for these dynamic shifts in carbon allocation. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of the incorporation of recently assimilated photosynthate into isoprene emitted from poplar (Poplar x canescens) under sub-ambient, ambient, and elevated CO2 growth conditions. We also monitored the importance of pyruvate-derived carbon for isoprene biosynthesis and obtained a detailed account of where individual carbons are derived from by analyzing the ratio of the 3C subunit of isoprene (M41+) (a fragment which contains two carbons from pyruvate) to the ratio of the parent isoprene molecule (M69+). Dynamics in the M41+:M69+ ratio indicate that recently assimilated carbon is incorporated into the pyruvate carbon pool slowly across all CO2 treatments and is therefore accessible for isoprene synthesis at a slower rate when compared to substrates derived directly from photosynthesis. Analysis of the rates of change for individual masses indicated that the carbon pools in trees grown in sub-ambient CO2 (200 ppm) are labeled ~2 times faster than those of trees grown in ambient or elevated CO2. Analysis of the total isoprene emission rates between treatments

  8. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15.

    Science.gov (United States)

    Stuckert, Nicholas R; Yang, Ralph T

    2011-12-01

    CO(2) capture from the atmosphere and concentration by cyclic adsorption-desorption processes are studied for the first time. New high microporosity materials, zeolite types Li-LSX and K-LSX, are compared to zeolite NaX and amine-grafted SBA-15 with low amine content. Breakthrough performance showed low silica type X (LSX) to have the most promise for application in dry conditions and capable of high space velocities of at least 63,000 h(-1), with minimal spreading of the CO(2) breakthrough curve. Amine-grafted silica was the only adsorbent able to operate in wet conditions, but at a lower space velocity of 1500 h(-1), due to slower uptake rates. The results illustrate that the uptake rate is as important as the equilibrium adsorbed amount in determining the cyclic process performance. Li-LSX was found to have double the capacity of zeolite NaX at atmospheric conditions, also higher than all other reported zeolites. It is further demonstrated that by using a combined temperature and vacuum swing cycle, the CO(2) concentration in the desorption product is >90% for all adsorbents in pellet form. This is the first report of such high CO(2) product concentrations from a single cycle, using atmospheric air.

  9. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use

    Science.gov (United States)

    Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke; Coe, Michael T.; Costa, Marcos H.; Moorcroft, Paul

    2016-01-01

    The Amazon tropical evergreen forest is an important component of the global carbon budget. Its forest floristic composition, structure, and function are sensitive to changes in climate, atmospheric composition, and land use. In this study biomass and productivity simulated by three dynamic global vegetation models (Integrated Biosphere Simulator, Ecosystem Demography Biosphere Model, and Joint UK Land Environment Simulator) for the period 1970-2008 are compared with observations from forest plots (Rede Amazónica de Inventarios Forestales). The spatial variability in biomass and productivity simulated by the DGVMs is low in comparison to the field observations in part because of poor representation of the heterogeneity of vegetation traits within the models. We find that over the last four decades the CO2 fertilization effect dominates a long-term increase in simulated biomass in undisturbed Amazonian forests, while land use change in the south and southeastern Amazonia dominates a reduction in Amazon aboveground biomass, of similar magnitude to the CO2 biomass gain. Climate extremes exert a strong effect on the observed biomass on short time scales, but the models are incapable of reproducing the observed impacts of extreme drought on forest biomass. We find that future improvements in the accuracy of DGVM predictions will require improved representation of four key elements: (1) spatially variable plant traits, (2) soil and nutrients mediated processes, (3) extreme event mortality, and (4) sensitivity to climatic variability. Finally, continued long-term observations and ecosystem-scale experiments (e.g. Free-Air CO2 Enrichment experiments) are essential for a better understanding of the changing dynamics of tropical forests.

  10. Forecasting global atmospheric CO2

    Directory of Open Access Journals (Sweden)

    A. Agustí-Panareda

    2014-05-01

    Full Text Available A new global atmospheric carbon dioxide (CO2 real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF Integrated Forecasting System (IFS. One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 satellite retrievals, as they

  11. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    Science.gov (United States)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual

  12. Retrieval of Atmospheric CO2 Concentration above Clouds and Cloud Top Pressure from Airborne Lidar Measurements during ASCENDS Science Campaigns

    Science.gov (United States)

    Mao, J.; Ramanathan, A. K.; Rodriguez, M.; Allan, G. R.; Hasselbrack, W. E.; Abshire, J. B.; Riris, H.; Kawa, S. R.

    2014-12-01

    NASA Goddard is developing an integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric CO2 concentrations from space as a candidate for NASA's ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission. The approach uses pulsed lasers to measure both CO2 and O2 absorption simultaneously in the vertical path to the surface at a number of wavelengths across a CO2 line at 1572.335 nm and an O2 line doublet near 764.7 nm. Measurements of time-resolved laser backscatter profiles from the atmosphere allow the technique to estimate column CO2 and O2 number density and range to cloud tops in addition to those to the ground. This allows retrievals of CO2 column above clouds and cloud top pressure, and all-sky measurement capability from space. This additional information can be used to evaluate atmospheric transport processes and other remote sensing carbon data in the free atmosphere, improve carbon data assimilation in models and help global and regional carbon flux estimates. We show some preliminary results of this capability using airborne lidar measurements from the summers of 2011 and 2014 ASCENDS science campaigns. These show simultaneous retrievals of CO2 and O2 column densities for laser returns from low-level marine stratus clouds in the west coast of California. This demonstrates the supplemental capability of the future space carbon mission to measure CO2 above clouds, which is valuable particularly for the areas with persistent cloud covers, e.g, tropical ITCZ, west coasts of continents with marine layered clouds and southern ocean with highest occurrence of low-level clouds, where underneath carbon cycles are active but passive remote sensing techniques using the reflected short wave sunlight are unable to measure accurately due to cloud scattering effect. We exercise cloud top pressure retrieval from O2 absorption measurements during the flights over the low-level marine stratus cloud decks, which is one of

  13. Technical Note: Long-term memory effect in the atmospheric CO2 concentration at Mauna Loa

    Directory of Open Access Journals (Sweden)

    C. Varotsos

    2007-01-01

    Full Text Available The monthly mean values of the atmospheric carbon dioxide concentration derived from in-situ air samples collected at Mauna Loa Observatory, Hawaii, USA during 1958–2004 (the longest continuous record available in the world are analyzed by employing the detrended fluctuation analysis to detect scaling behavior in this time series. The main result is that the fluctuations of carbon dioxide concentrations exhibit long-range power-law correlations (long memory with lag times ranging from four months to eleven years, which correspond to 1/f noise. This result indicates that random perturbations in the carbon dioxide concentrations give rise to noise, characterized by a frequency spectrum following a power-law with exponent that approaches to one; the latter shows that the correlation times grow strongly. This feature is pointing out that a correctly rescaled subset of the original time series of the carbon dioxide concentrations resembles the original time series. Finally, the power-law relationship derived from the real measurements of the carbon dioxide concentrations could also serve as a tool to improve the confidence of the atmospheric chemistry-transport and global climate models.

  14. Technical Note: Long-term memory effect in the atmospheric CO2 concentration at Mauna Loa

    Directory of Open Access Journals (Sweden)

    M. Efstathiou

    2006-11-01

    Full Text Available The monthly mean values of the atmospheric carbon dioxide concentration derived from in-situ air samples collected at Mauna Loa Observatory, Hawaii, during 1958–2004 (the longest continuous record available in the world are analyzed by employing the detrended fluctuation analysis to detect scaling behavior in this time series. The main result is that the fluctuations of carbon dioxide concentrations exhibit long-range power-law correlations (long memory with lag times ranging from four months to eleven years, which correspond to 1/f noise. This result indicates that random perturbations in the carbon dioxide concentrations give rise to noise, characterized by a frequency spectrum following a power-law with exponent that approaches to one; the latter shows that the correlation times grow strongly. This feature is pointing out that a correctly rescaled subset of the original time series of the carbon dioxide concentrations resembles the original time series. Finally, the power-law relationship derived from the real measurements of the carbon dioxide concentrations could also serve as a tool to improve the confidence of the atmospheric chemistry-transport and global climate models.

  15. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    CERN Document Server

    Mavrodiev, S Cht; Vachev, B

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  16. Laser Sounder for Measuring Atmospheric CO2 Concentrations: Progress Toward Ascends

    Science.gov (United States)

    Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Sun, X.; Stephen, M. A.; Wilson, E.; Burris, J. F.; Mao, J.

    2008-01-01

    The next generation of space-based, active remote sensing instruments for measurement of tropospheric CO2 promises a capability to quantify global carbon sources and sinks at regional scales. Active (laser) methods will extend CO2 measurement coverage in time, space, and perhaps precision such that the underlying mechanisms for carbon exchange at the surface can be understood with .sufficient detail to confidently project the future of carbon-climate interaction and the influence of remediative policy actions. The recent Decadal Survey for Earth Science by the US National Research Council has recommended such a mission called the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) for launch in 2013-2016. We have been developing a laser technique for measurement of tropospheric CO2 for a number of years. Our immediate goal is to develop and demonstrate the method and instrument technology that will permit measurements of the CO2 column abundance over a horizontal path and from aircraft at the few-ppmv level. Our longer-term goal is to demonstrate the required capabilities of the technique, develop a space mission approach, and design the instrument for an ASCENDS-type mission. Our approach is to use a dual channel laser absorption spectrometer (i.e., differential absorption in altimeter mode), which continuously measures from a near-polar circular orbit. We use several co-aligned tunable fiber laser transmitters allowing simultaneous measurement of the absorption from a CO2 line in the 1570 nm band, O2 extinction in the oxygen A-band (near 765 nm), and aerosol backscatter in the same measurement path. We measure the energy of the laser echoes at nadir reflected from land and water surfaces, day and night. The lasers have spectral widths much narrower than the gas absorption lines and are turned on and off the selected CO2 and O2 lines at kHz rates. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of

  17. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    Science.gov (United States)

    Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.

    The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  18. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    Directory of Open Access Journals (Sweden)

    B. Kruijt

    1999-01-01

    Full Text Available The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2], temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong. Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  19. [Direct Observation on the Temporal and Spatial Patterns of the CO2 Concentration in the Atmospheric of Nanjing Urban Canyon in Summer].

    Science.gov (United States)

    Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui

    2015-07-01

    Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.

  20. Interactive effects of growth-limiting N supply and elevated atmospheric CO2 concentration on growth and carbon balance of Plantago major

    NARCIS (Netherlands)

    den Hertog, J; Stulen, G; Posthumus, F.S; Poorter, H

    1998-01-01

    To assess the interactions between concentration of atmospheric CO2 and N supply, the response of Plantago major ssp. pleiosperma Pilger to a doubling of the ambient CO2 concentration of 350 mu l l(-1) was investigated in a range of exponential rates of N addition. The relative growth rate (RGR) as

  1. Biomass production and carbohydrate content of Arabidopsis thaliana at atmospheric CO2 concentrations from 390 to 1680 mu l l(-1)

    NARCIS (Netherlands)

    Van der Kooij, TAW; De Kok, LJ; Stulen, I.

    1999-01-01

    The concentration dependency of the impact of elevated atmospheric CO2 concentrations on Arabidopsis thaliana L. was studied. Plants were exposed to nearly ambient (390), 560, 810, 1240 and 1680 mu l l(-1) CO2 during the vegetative growth phase for 8 days. Shoot biomass production and dry matter con

  2. Observation of vertcal CO2 concentration profiles in the lower-atmosphere using a compact direct detection 1.6 μm DIAL

    Science.gov (United States)

    Nagasawa, C.; Shibata, Y.; Abo, M.

    2015-12-01

    Knowledge of present carbon sources and sinks including their spatial profile and their variation in time is one of the essential informations for predicting future CO2 atmospheric concentration levels. Moewover, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, the CO2 concentration measurement techniques with high spatial and temporal resolution are required in the lower atmosphere. A differential absorption lidar (DIAL) is expected to measure atmospheric CO2 concentration profiles in the atmospheric boundary layer from a ground platform. We have succeeded to develop a compact direct detection 1.6 μm DIAL system for measuring CO2 concentration profiles in the lower atmosphere. This DIAL system consists of the optical parametric generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate and the receiving optics that included the near-infrared photomultiplier tube operating at the analog mode and the 25 cm telescope. We have succeeded in observing the daytime temporal change of vertical CO2 concentration profiles for the range from 0.25 to 2.5 km with integration time of 30 minutes and range resolution of 300 m. This compact direct detection CO2 DIAL is usefull for the estimation of CO2 flux. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  3. Control of atmospheric CO_2 concentrations by 2050: A calculation on the emission rights of different countries

    Institute of Scientific and Technical Information of China (English)

    DING ZhongLi; DUAN XiaoNan; GE QuanSheng; ZHANG ZhiQiang

    2009-01-01

    This paper is to provide quantitative data on some critical issues in anticipation of the forthcoming international negotiations in Denmark on the control of atmospheric CO_2 concentrations. Instead of letting only a small number of countries dominate a few controversial dialogues about emissions re-ductions, a comprehensive global system must be established based on emissions allowances for different countries, to realize the long-term goal of controlling global atmospheric CO_2 concentrations.That a system rooted in "cumulative emissions per capita," the best conception of the "common but differentiated responsibilities" principle affirmed by the Kyoto Protocol according to fundamental standards of fairness and justice, was demonstrated. Based on calculations of various countries' cu-mulative emissions per capita, estimates of their cumulative emissions from 1900 to 2005, and their annual emissions allowances into the future (2006-2050), a 470 ppmv atmospheric CO_2 concentration target was set. According to the following four objective indicators-total emissions allowance from 1900 to 2050, actual emissions from 1900 to 2005, emissions levels in 2005, and the average growth rate of emissions from 1996 to 2005-all countries and regions whose population was more than 300000 in 2005 were divided into four main groups: countries with emissions deficits, countries and regions needing to reduce their gross emissions, countries and regions needing to reduce their emissions growth rates, and countries that can maintain the current emissions growth rates. Based on this pro-posal, most G8 countries by 2005 had already expended their 2050 emissions allowances. The accu-mulated financial value based on emissions has reached more than 5.5 trillion US dollars (20 dollars per ton of CO_2). Even if these countries could achieve their ambitious emissions reduction targets in the future, their per capita emissions from 2006 to 2050 would still be much higher than those of de

  4. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper is to provide quantitative data on some critical issues in anticipation of the forthcoming international negotiations in Denmark on the control of atmospheric CO2 concentrations. Instead of letting only a small number of countries dominate a few controversial dialogues about emissions reductions, a comprehensive global system must be established based on emissions allowances for different countries, to realize the long-term goal of controlling global atmospheric CO2 concentrations. That a system rooted in "cumulative emissions per capita," the best conception of the "common but differentiated responsibilities" principle affirmed by the Kyoto Protocol according to fundamental standards of fairness and justice, was demonstrated. Based on calculations of various countries’ cumulative emissions per capita, estimates of their cumulative emissions from 1900 to 2005, and their annual emissions allowances into the future (2006―2050), a 470 ppmv atmospheric CO2 concentration target was set. According to the following four objective indicators―total emissions allowance from 1900 to 2050, actual emissions from 1900 to 2005, emissions levels in 2005, and the average growth rate of emissions from 1996 to 2005―all countries and regions whose population was more than 300000 in 2005 were divided into four main groups: countries with emissions deficits, countries and regions needing to reduce their gross emissions, countries and regions needing to reduce their emissions growth rates, and countries that can maintain the current emissions growth rates. Based on this proposal, most G8 countries by 2005 had already expended their 2050 emissions allowances. The accu-mulated financial value based on emissions has reached more than 5.5 trillion US dollars (20 dollars per ton of CO2). Even if these countries could achieve their ambitious emissions reduction targets in the future, their per capita emissions from 2006 to 2050 would still be much higher than those of

  5. Emission of CO2 by the transport sector and the impact on the atmospheric concentration in Sao Paulo, Brazil.

    Science.gov (United States)

    Andrade, M. D. F.; Kitazato, C.; Perez-Martinez, P.; Nogueira, T.

    2014-12-01

    The Metropolitan Area of São Paulo (MASP) is impacted by the emission of 7 million vehicles, being 85% light-duty vehicles (LDV), 3% heavy-duty diesel vehicles (HDV)s, and 12% motorcycles. About 55% of LDVs burn a mixture of 78% gasoline and 22% ethanol (gasohol), 4% use hydrous ethanol (95% ethanol and 5% water), 38% are flex-fuel vehicles that are capable of burning both gasohol and hydrous ethanol and 3% use diesel (diesel + 5% bio-diesel). The owners of the flex-fuel vehicles decide to use ethanol or gasohol depending on the market price of the fuel. Many environmental programs were implemented to reduce the emissions by the LDV and HDV traffic; the contribution from the industrial sector has been decreasing as the industries have moved away from MASP, due to the high taxes applied to the productive sector. Due to the large contribution of the transport sector to CO2, its contribution is important in a regional scale. The total emission is estimated in 15327 million tons per year of CO2eq (60% by LDV, 38% HDV and 2% motorcycles). Measurements of CO2 performed with a Picarro monitor based on WS-CRDS (wavelength-scanned cavity ringdown spectroscopy) for the years 2012-2013 were performed. The sampling site was on the University of Sao Paulo campus (22o34´S, 46o44´W), situated in the west area of the city, surrounded by important traffic roads. The average data showed two peaks, one in the morning and the other in the afternoon, both associated with the traffic. Correlation analysis was performed between the concentrations and the number of vehicles, as a proxy for the temporal variation of the CO2 emission. The highest concentration was 430 ppm at 8:00am, associated to the morning peak hour of vehicles and the stable condition of the atmosphere. The average concentration was 406 ±12 ppm, considering all measured data. According to official inventories from the Environmental Agency (CETESB), the emission of CO2 has increased 39% from 1990 to 2008, associated

  6. Estimation of background CO2 concentrations at the high alpine station Schneefernerhaus by atmospheric observations and inverse modelling

    Science.gov (United States)

    Giemsa, Esther; Jacobeit, Jucundus; Ries, Ludwig; Frank, Gabriele; Hachinger, Stephan; Meyer-Arnek, Julian

    2016-04-01

    In order to estimate the influence of Central European CO2 emissions, a new method to retrieve background concentrations based on statistics of radon-222 and backward trajectories is developed and applied to the CO2 observations at the alpine high-altitude research station Schneefernerhaus (2670 m a.s.l.). The reliable identification of baseline conditions is important for perceiving changes in time as well as in the sources and sinks of greenhouse gases and thereby assessing the efficiency of existing mitigation strategies. In the particular case of Central Europe, the analysis of background concentrations could add further insights on the question why background CO2 concentrations increased in the last few decades, despite a significant decrease in the reported emissions. Ongoing effort to define the baseline conditions has led to a variety of data selection techniques. In this diversity of data filtering concepts, a relatively recent data selection method effectively appropriates observations of radon-222 to reliably and unambiguously identify baseline air masses. Owing to its relatively constant emission rate from the ice-free land surface and its half-life of 3.8 days that is solely achieved through radioactive decay, the tropospheric background concentration of the inert radioactive gas is low and temporal variations caused by changes in atmospheric transport are precisely detectable. For defining the baseline air masses reaching the high alpine research station Schneefernerhaus, an objective analysis approach is applied to the two-hourly radon records. The CO2 values of days by the radon method associated with prevailing atmospheric background conditions result in the CO2 concentrations representing the least land influenced air masses. Additionally, three-dimensional back-trajectories were retrieved using the Lagrangian Particle Dispersion Model (LPDM) FLEXPART driven by analysis fields of the Global Forecast System (GFS) produced by the National Centers

  7. Spatial and Temporal Variability of CO2 and CH4 Concentrations in the Atmospheric Surface Layer over West Siberia

    Science.gov (United States)

    Belan, Boris D.; Machida, Toshinobu; Sasakawa, Motoki; Davydov, Denis K.; Fofonov, Alexander V.; Krasnov, Oleg A.; Maksyutov, Shamil; Arshinov, Mikhail Yu.

    2015-04-01

    The investigation of greenhouse gas behavior in the atmosphere plays a key role in predicting the global changes of Earth's climate. In this connection, of particular importance is the study of the distribution of sources/sinks of trace gases in the atmospheric surface layer over the different regions of the globe. In order to fill a gap in the data on greenhouse gas concentrations in Russia, National Institute for Environmental Studies (NIES, Japan) and Institute of Atmospheric Optics (IAO SB RAS, Russia) established a network for GHG monitoring (JR-STATION, Japan-Russia Siberian Tall Tower Inland Observation Network). Gas analyzers and meteorological sensors were mounted at radio relay towers located in different regions of West Siberia. The checking equipment was placed in containers at the tower base. In the containers, the climatic parameters optimal for gas analyzer operation were maintained. The work on the network development started in 2001. Since at each of the sites the measurement duration could be different, in this paper we present the data of the greenhouse gas monitoring for eight sites which give the primary idea on the spatial distribution and temporal dynamics of CO2 and CH4 in the atmospheric surface layer over West Siberia. The analysis of the data showed that the average increase in concentration of carbon dioxide by results of our measurements in this territory increases within 1.95 - 2.53 ppm/year, depending on the area. The analysis of long-term data testifies about existence of growth of concentration of methane within 3.2 - 7.2 ppb / year. The presence of a distributed network of the sites operating in the monitoring regime makes it possible not only to investigate the temporal dynamics of CO2 and CH4 at each site and to determine the spatial differences between the concentrations by comparing the data, but also to plot the distribution charts for different moments of time. This work was supported by the Global Environment Research

  8. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    Science.gov (United States)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  9. Transcriptome response to elevated atmospheric CO2 concentration in the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae

    Directory of Open Access Journals (Sweden)

    Wenjing Wu

    2016-10-01

    Full Text Available Background Carbon dioxide (CO2 is a pervasive chemical stimulus that plays a critical role in insect life, eliciting behavioral and physiological responses across different species. High CO2 concentration is a major feature of termite nests, which may be used as a cue for locating their nests. Termites also survive under an elevated CO2 concentration. However, the mechanism by which elevated CO2 concentration influences gene expression in termites is poorly understood. Methods To gain a better understanding of the molecular basis involved in the adaptation to CO2 concentration, a transcriptome of Coptotermes formosanus Shiraki was constructed to assemble the reference genes, followed by comparative transcriptomic analyses across different CO2 concentration (0.04%, 0.4%, 4% and 40% treatments. Results (1 Based on a high throughput sequencing platform, we obtained approximately 20 GB of clean data and revealed 189,421 unigenes, with a mean length and an N50 length of 629 bp and 974 bp, respectively. (2 The transcriptomic response of C. formosanus to elevated CO2 levels presented discontinuous changes. Comparative analysis of the transcriptomes revealed 2,936 genes regulated among 0.04%, 0.4%, 4% and 40% CO2 concentration treatments, 909 genes derived from termites and 2,027 from gut symbionts. Genes derived from termites appears selectively activated under 4% CO2 level. In 40% CO2 level, most of the down-regulated genes were derived from symbionts. (3 Through similarity searches to data from other species, a number of protein sequences putatively involved in chemosensory reception were identified and characterized in C. formosanus, including odorant receptors, gustatory receptors, ionotropic receptors, odorant binding proteins, and chemosensory proteins. Discussion We found that most genes associated with carbohydrate metabolism, energy metabolism, and genetic information processing were regulated under different CO2 concentrations. Results

  10. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings.

    Science.gov (United States)

    Kogawara, Satoshi; Norisada, Mariko; Tange, Takeshi; Yagi, Hisayoshi; Kojima, Katsumi

    2006-01-01

    We demonstrated that the inorganic phosphate (P(i)) requirement for growth of Japanese red pine (Pinus densiflora Sieb. & Zucc.) seedlings is increased by elevated CO(2) concentration ([CO(2)]) and that responses of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch to P(i) supply are also altered. To investigate the growth response of non-mycorrhizal seedlings to P(i) supply in elevated [CO(2)], non-mycorrhizal seedlings were grown for 73 days in ambient or elevated [CO(2)] (350 or 700 micromol mol(-1)) with nutrient solutions containing one of seven phosphate concentrations (0, 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mM). In ambient [CO(2)], the growth response to P(i) was saturated at about 0.1 mM P(i), whereas in elevated [CO(2)], the growth response to P(i) supply did not saturate, even at the highest P(i) supply (0.2 mM), indicating that the P(i) requirement is higher in elevated [CO(2)] than in ambient [CO(2)]. The increased requirement was due mainly to an altered shoot growth response to P(i) supply. The enhanced P(i) requirement in elevated [CO(2)] was not associated with a change in photosynthetic response to P(i) or a change in leaf phosphorus (P) status. We investigated the effect of P(i) supply (0.04, 0.08 and 0.20 mM) on the ectomycorrhizal fungus P. tinctorius in mycorrhizal seedlings grown in ambient or elevated [CO(2)]. Root ergosterol concentration (an indicator of fungal biomass) decreased with increasing P(i) supply in ambient [CO(2)], but the decrease was far less in elevated [CO(2)]. In ambient [CO(2)] the ratio of extramatrical mycelium to root biomass decreased with increasing P(i) supply but did not change in elevated [CO(2)]. We conclude that, because elevated [CO(2)] increased the P(i) requirement for shoot growth, the significance of the ectomycorrhizal association was also increased in elevated [CO(2)].

  11. Energyless CO2 Absorption, Generation, and Fixation Using Atmospheric CO2.

    Science.gov (United States)

    Inagaki, Fuyuhiko; Okada, Yasuhiko; Matsumoto, Chiaki; Yamada, Masayuki; Nakazawa, Kenta; Mukai, Chisato

    2016-01-01

    From an economic and ecological perspective, the efficient utilization of atmospheric CO2 as a carbon resource should be a much more important goal than reducing CO2 emissions. However, no strategy to harvest CO2 using atmospheric CO2 at room temperature currently exists, which is presumably due to the extremely low concentration of CO2 in ambient air (approximately 400 ppm=0.04 vol%). We discovered that monoethanolamine (MEA) and its derivatives efficiently absorbed atmospheric CO2 without requiring an energy source. We also found that the absorbed CO2 could be easily liberated with acid. Furthermore, a novel CO2 generator enabled us to synthesize a high value-added material (i.e., 2-oxazolidinone derivatives based on the metal catalyzed CO2-fixation at room temperature) from atmospheric CO2.

  12. [Effect of atmospheric CO2 concentration and nitrogen application level on absorption and transportation of nutrient elements in oilseed rape].

    Science.gov (United States)

    Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan

    2015-07-01

    Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application

  13. Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere

    OpenAIRE

    Xiang Gou; Chunfei Wu; Kai Zhang; Guoyou Xu; Meng Si; Yating Wang; Enyu Wang; Liansheng Liu; Jinxiang Wu

    2015-01-01

    Selective catalytic reduction of NOx with NH3 (NH3-SCR) has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this process generates high concentrations of CO2 in flue gas. Therefore, studies on the SCR process unde...

  14. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity

    NARCIS (Netherlands)

    Yin, X.

    2013-01-01

    Background - Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental resear

  15. 大气CO2浓度非均匀动态分布条件下的气候模拟%Climate simulation for dynamic heterogeneous distribution of atmospheric CO2 concentration

    Institute of Scientific and Technical Information of China (English)

    杨成荫; 王汉杰; 韩士杰; 赵苏璇

    2012-01-01

    利用现有大气本底站的大气CO2浓度观测信息,综合考虑不同经济区划与土地覆盖类型对应的CO2浓度差异及其季节变化规律,构建模式区域内以月为单位的网格化大气CO2浓度非均匀动态分布数据模型.由此数据模型驱动RegCM4-CLM3.5区域气候模式运行,对东亚区2000年3月-2009年2月之间的气候变化特征进行了模拟,进而对大气CO2浓度非均匀动态分布可能引起的区域气候效应进行了初步研究.结果表明:目前气候模式中CO2浓度的常态均匀分布假设可能将温室效应夸大了10%左右.对大气CO2浓度非均匀动态分布影响气温变化的可能机制进行研究表明:CO2的自身效应(改变大气透射率)并不是导致Exp2试验温度降低的主要原因.大气CO2浓度的变化影响了大气与植物胞间CO2分压差,陆地植被通过改变气孔阻力适应这种变化,气孔阻力的变化直接影响到植物与大气间水分的交换,这种作用一方面通过蒸发冷却改变环境温度,另一方面,蒸发水分改变了近地面层湿度,进而水汽扩散到空中影响低云的分布.冬季,植物处于非生长季,对大气CO2浓度变化响应微弱,湿度和低云变化不明显;夏季,植物生长旺盛,由CO2生理学强迫激发的云反馈效应强烈,其效果是使中低云趋于增加,进而减弱了到达对流层低层的太阳短波辐射,造成温室效应减弱.%Based on the baseline concentration data of atmospheric CO2 observed from the GAW stations, considering the heterogeneous distributional characteristics of CO2 concentration among different economic regions and land use types, this paper constitutes a dynamical heterogeneous atmospheric CO2 concentration data set that varies monthly within a regional climate model domain around China. By running the RegCM4-CLM3. 5 regional climate model with the dynamic heterogeneous CO2 concentration data set, the climate change characteristics of the East Asia

  16. Concentrations and δ13C values of atmospheric CO2 in a less-urbanized environment: Are they different from large metropolitan areas?

    Science.gov (United States)

    Childree, P.; FENG, W.; Thieme, D. M.

    2012-12-01

    The carbon isotope compositions (δ13C values) and CO2 concentrations were measured for seventy-four atmospheric samples collected in the city of Valdosta to evaluate the sources of CO2 input in a less developed urban environment. The results are compared to studies conducted in larger metropolitan areas to evaluate possible difference in sources and concentrations. Sixty-one of the samples were collected at four "outdoor" sites within a ~100 km2 area around the city, while thirteen "indoor" samples were collected in classrooms on the Valdosta State University campus, located north of downtown. Four sample collection trips were made from March to April of 2012. The samples were collected from 5 AM to 6 PM to encompass possible diurnal changes in atmospheric CO2. The thirteen indoor air samples had concentrations ranging from 429 to 681 ppmV with δ13C values ranging from -14.0 to -10.3 ‰. The sixty-one outdoor samples ranged from 397 to 539 ppmV with δ13C values ranging from -13.0 to -7.0 ‰. The higher outdoor CO2 concentrations (> 450 ppmV) correspond to lower δ13C values and are for samples collected during prolonged calm periods (wind speed Mexico) were carried into the region, which led to decreased CO2 levels and increased δ13C values. Therefore, the elevated CO2 readings likely reflected influx of locally produced CO2. On a diagram of δ13C vs.104/CO2 (Keeling plot), the domain occupied by the Valdosta samples is mostly located within the boundaries of two endmember mixing lines: 1) mixing between global atmospheric background and petroleum burning; 2) mixing between global atmospheric background and natural gas burning. Results are compared to those from a Dallas, Texas study that showed more contribution of CO2 from soil respiration and petroleum burning. This study suggests that even in a smaller urban area, fossil fuel consumptions are still the main source of the CO2 input. Furthermore, significant amounts of CO2 may be introduced into the

  17. CO2气调储藏对大米食用品质调控效应的研究%Effects of Controlled Atmospheres with High CO2 Concentrations on Eating Quality of Rice

    Institute of Scientific and Technical Information of China (English)

    杨维巧; 雷桂明; 刘霞; 李喜宏

    2012-01-01

    This paper investigated the effects of high CO2 atmosphere control condition on the insoluble amylase content and the quality of cooked rice. The sample named W45 from Tianjin was storaged at 10℃ and 30℃ separately for 6 months in gas-controlled chambers, which could quantitatively regulate the content of oxygen and carbon dioxide. The results showed that, under the condition of 10 ℃ and 8% O2, high-concentration CO2 could inhibit the increasing of insoluble amylase of rice, the effect of CO2 concentration was 20% > 10% > 2%, and the insoluble amylase content of rice, which storaged at 20% CO2 atmosphere control condition, increased by 9.39% compared to the initial value, the control (uninflated treatment) increased by 15.01% compared to the initial value. Under the storage condition of 30 X and 8% O2, there was no remarkable influence when high CO2 atmosphere charging at storage on insoluble amylase content At 10 X and 30 ℃ temperature storage conditions, the high CO2 treatment could effectively improve the cooking quality of rice, inhibit the heat water absorption rate of rice, increase the soluble solids content of rice water, the higher CO2 concentration the more obvious effects, and under the storage condition of 20% CO2 and 10 ℃, the heat water absorption rate of rice decreased by 12.71% compared to control, the soluble solids content of rice water increased by 24.56% compared to control.%以W45号大米为试材,定量控制储藏环境中的O2和CO2浓度,研究10℃和30℃条件下,高浓度CO2储藏6个月对大米不溶性直链淀粉含量及蒸煮品质的影响.结果表明:在低温10℃、O2浓度8%条件下,高浓度CO2可有效抑制大米不溶性直链淀粉含量的增加,CO2浓度作用效果20%>10%>2%,其中20%CO2气调储藏大米的不溶性直链淀粉含量与初始值相比仅增加了9.39%,显著低于对照(不充气处理);在高温30℃、O2浓度8%条件下,高浓度CO2调控大米不溶性直链

  18. Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombrotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum

    NARCIS (Netherlands)

    Van der Heijden, E; Jauhiainen, J; Silvola, J; Vasander, H; Kuiper, PJC

    2000-01-01

    The ombrotrophic Sphagnum balticum (Russ.) C. Jens. and the oligo-mesotrophic Sphagnum papillosum Lindb. were grown at ambient (360 mu l l(-1)) and at elevated (720 mu l l(-1)) atmospheric CO2 concentrations and at different nitrogen deposition rates, varying between 0 and 30kg N ha(-1) yr(-1), The

  19. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite

    Science.gov (United States)

    Gehler, Alexander; Gingerich, Philip D.; Pack, Andreas

    2016-07-01

    The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene-Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM.

  20. The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications.

    Science.gov (United States)

    Knauer, Jürgen; Zaehle, Sönke; Reichstein, Markus; Medlyn, Belinda E; Forkel, Matthias; Hagemann, Stefan; Werner, Christiane

    2017-03-01

    Ecosystem water-use efficiency (WUE) is an important metric linking the global land carbon and water cycles. Eddy covariance-based estimates of WUE in temperate/boreal forests have recently been found to show a strong and unexpected increase over the 1992-2010 period, which has been attributed to the effects of rising atmospheric CO2 concentrations on plant physiology. To test this hypothesis, we forced the observed trend in the process-based land surface model JSBACH by increasing the sensitivity of stomatal conductance (gs ) to atmospheric CO2 concentration. We compared the simulated continental discharge, evapotranspiration (ET), and the seasonal CO2 exchange with observations across the extratropical northern hemisphere. The increased simulated WUE led to substantial changes in surface hydrology at the continental scale, including a significant decrease in ET and a significant increase in continental runoff, both of which are inconsistent with large-scale observations. The simulated seasonal amplitude of atmospheric CO2 decreased over time, in contrast to the observed upward trend across ground-based measurement sites. Our results provide strong indications that the recent, large-scale WUE trend is considerably smaller than that estimated for these forest ecosystems. They emphasize the decreasing CO2 sensitivity of WUE with increasing scale, which affects the physiological interpretation of changes in ecosystem WUE.

  1. Effects of an Urban Park and Residential Area on the Atmospheric CO2 Concentration and Flux in Seoul, Korea

    Institute of Scientific and Technical Information of China (English)

    Moon-Soo PARK; Seung Jin JOO; Chang Seok LEE

    2013-01-01

    The CO2 concentrations and fluxes over an urban forest site (Namsan) and an urban residential region (Boramae) in Seoul,Korea,during the non-growing season (2-4 March 2011),the growing season (10-12 June 2011),and the late-growing season (22-24 September 2011) were analyzed.The CO2 concentrations of two sites showed nearly the same diurnal variation,with a maximum value occurring during the night and a minimum value occurring during daytime,as well as the same seasonal variation,with a maximum value during the non-growing season (early spring) and a minimum value during the growing season (summer).The CO2 flux over the urban forest did not show any typical diurnal variation during the non-growing season,but did show diurnal variation with a small positive value during the night and a large negative value during daytime in the growing and late-growing seasons due to photosynthesis in the urban forest.The CO2 flux over the urban residential region showed a positive daily mean value for all periods,with large values during the non-growing season and small values during the growing season,and it also showed diurnal variation with two maxima at 0600-1000 LST and 1800-2400 LST,and two minima at 0300-0600 LST and 1100-1500 LST,and was strongly correlated with the use of liquefied natural gas for cooking and heating by surrounding houses.

  2. Influence of atmospheric [CO2] on growth, carbon allocation and cost of plant tissues on leaf nitrogen concentration maintenance in nodulated Medicago sativa

    Science.gov (United States)

    Pereyra, Gabriela; Hartmann, Henrik; Ziegler, Waldemar; Michalzik, Beate; Gonzalez-Meler, Miquel; Trumbore, Susan

    2015-04-01

    Plant carbon (C) allocation and plant metabolic processes (i.e. photosynthesis and respiration) can be affected by changes in C availability, for example from changing atmospheric [CO2]. In nodulated plants, C availability may also influence nitrogen (N) fixation by bacteriods. But C allocation and N fixation are often studied independently and hence do not allow elucidating interactive effects. We investigated how different atmospheric [CO2] (Pleistocene: 170 ppm, ambient: 400 ppm and projected future: 700 ppm) influence plant growth, allocation to nodules, and the ratio of photosynthesis-to-respiration (R:A) as an indicator of C cost in Medicago sativa inoculated with Ensifer meliloti. M. sativa grew c. 38% more nodules at 400 ppm and 700 ppm than at 170 ppm. However, ratios of above- and belowground plant biomass to nodule biomass were constant over time and independent of atmospheric [CO2]. Total non-structural carbohydrate concentrations were not significantly different between plants grown at 400 and 700 ppm, but were four to five-fold higher than in 170 ppm plants. Leaf level N concentration was similar across treatments, but N-based photosynthetic rates were 82% and 93% higher in leaves of plants grown at 400 and 700 ppm, respectively, than plants grown at 170 ppm. In addition, leaf R:A was greater (48% or 55%) in plants grown at 170 ppm than plants grown at 400 and 700 ppm. Similarly, the greatest proportion of assimilated CO2 released by root respiration occurred in rhizobial plants growing at 170 ppm. Our results suggest that C limitation in nodulated Medicago sativa plants did not influence C allocation to nodule biomass but caused a proportionally greater allocation of C to belowground respiration, most likely to bacteriods. This suggests that N tissue concentration was maintained at low [CO2] by revving up bacteriod metabolism and at the expense of non-structural carbohydrate reserves.

  3. Searching for a Relationship Between Forest Water Use and Increasing Atmospheric CO2 Concentration with Long-Term Hydrologic Data from the Hubbard Brook Experimental Forest

    Energy Technology Data Exchange (ETDEWEB)

    Amthor, J.S.

    1998-11-01

    Increases in atmospheric C02 concentration from mid-1956 through mid-1997 were compared with hydrologic records from five forested, gaged watersheds in the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, U.S.A. The purpose of the comparison was to assess whether a relationship between increasing atmospheric CO2 concentration and whole-ecosystem evapotranspiration (ET) could be determined. The HBEF is particularly well suited to this type of study because of the length of the hydrologic record and the physical properties of the watersheds. This analysis is based on HBEF water years (which begin 1 June and end the following 31 May) rather than calendar years. Hydrologic records from individual watersheds used in this analysis ranged from 28 to 41 water years. During the full 41-water-year period, it is estimated that water-year mean atmospheric CO2 concentration increased more than 15% (from about 314 to 363 ppm). In one south-facing watershed (i.e., HBEF watershed 3), there was a statistically significant negative relationship between atmospheric C02 concentration and ET. This translated into a nearly 77 rnndyear reduction in ET as a result of a 50 ppm increase in atmospheric C02 concentration, a result of practical significance. Evapotranspiration from the other watersheds was also negatively related to atmospheric CO2 concentration, but with smaller (and statistically insignificant) magnitudes. Evapotranspiration from the three south-facing (but not the two north-facing) watersheds included in the analysis was "abnormally" low during the most recent 2 years (i.e., water years beginning in 1995 and 1996), and this affected the trends in ET. This recent and abrupt, reduction in ET deserves further analysis, most importantly by an extension of the hydrologic record through continued long-term monitoring in the HBEF (which is ongoing). If ET remains relatively low during the coming years in south-facing watersheds, studies of the physical and/or biological

  4. Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development.

    Science.gov (United States)

    Vanuytrecht, Eline; Thorburn, Peter J

    2017-01-30

    Elevated atmospheric CO2 concentrations ([CO2 ]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom-up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO2 ] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO2 ] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO2 responses within models should be prioritized.

  5. Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations

    Science.gov (United States)

    Schymanski, Stanislaus J.; Roderick, Michael L.; Sivapalan, Murugesu

    2015-01-01

    Vegetation has different adjustable properties for adaptation to its environment. Examples include stomatal conductance at short time scale (minutes), leaf area index and fine root distributions at longer time scales (days–months) and species composition and dominant growth forms at very long time scales (years–decades–centuries). As a result, the overall response of evapotranspiration to changes in environmental forcing may also change at different time scales. The vegetation optimality model simulates optimal adaptation to environmental conditions, based on the assumption that different vegetation properties are optimized to maximize the long-term net carbon profit, allowing for separation of different scales of adaptation, without the need for parametrization with observed responses. This paper discusses model simulations of vegetation responses to today's elevated atmospheric CO2 concentrations (eCO2) at different temporal scales and puts them in context with experimental evidence from free-air CO2 enrichment (FACE) experiments. Without any model tuning or calibration, the model reproduced general trends deduced from FACE experiments, but, contrary to the widespread expectation that eCO2 would generally decrease water use due to its leaf-scale effect on stomatal conductance, our results suggest that eCO2 may lead to unchanged or even increased vegetation water use in water-limited climates, accompanied by an increase in perennial vegetation cover. PMID:26019228

  6. Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations.

    Science.gov (United States)

    Schymanski, Stanislaus J; Roderick, Michael L; Sivapalan, Murugesu

    2015-05-27

    Vegetation has different adjustable properties for adaptation to its environment. Examples include stomatal conductance at short time scale (minutes), leaf area index and fine root distributions at longer time scales (days-months) and species composition and dominant growth forms at very long time scales (years-decades-centuries). As a result, the overall response of evapotranspiration to changes in environmental forcing may also change at different time scales. The vegetation optimality model simulates optimal adaptation to environmental conditions, based on the assumption that different vegetation properties are optimized to maximize the long-term net carbon profit, allowing for separation of different scales of adaptation, without the need for parametrization with observed responses. This paper discusses model simulations of vegetation responses to today's elevated atmospheric CO2 concentrations (eCO2) at different temporal scales and puts them in context with experimental evidence from free-air CO2 enrichment (FACE) experiments. Without any model tuning or calibration, the model reproduced general trends deduced from FACE experiments, but, contrary to the widespread expectation that eCO2 would generally decrease water use due to its leaf-scale effect on stomatal conductance, our results suggest that eCO2 may lead to unchanged or even increased vegetation water use in water-limited climates, accompanied by an increase in perennial vegetation cover.

  7. Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO2 concentration

    Science.gov (United States)

    Yoder, C.K.; Vivin, P.; DeFalco, L.A.; Seemann, J.R.; Nowak, R.S.

    2000-01-01

    Root growth and physiological responses to elevated CO2 were investigated for three important Mojave Desert grasses: the C3 perennial Achnatherum hymenoides, the C4 perennial Pleuraphis rigida and the C3 annual Bromus madritensis ssp. rubens. Seeds of each species were grown at ambient (360 μl l−1) or elevated (1000 μl l−1) CO2 in a glasshouse and harvested at three phenological stages: vegetative, anthesis and seed fill. Because P. rigida did not flower during the course of this study, harvests for this species represent three vegetative stages. Primary productivity was increased in both C3 grasses in response to elevated CO2 (40 and 19% for A. hymenoides and B. rubens, respectively), but root biomass increased only in the C3 perennial grass. Neither above-ground nor below-ground biomass of the C4 perennial grass was significantly affected by the CO2 treatment. Elevated CO2 did not significantly affect root surface area for any species. Total plant nitrogen was also not statistically different between CO2treatments for any species, indicating no enhanced uptake of N under elevated CO2. Physiological uptake capacities for NO3 and NH4 were not affected by the CO2 treatment during the second harvest; measurements were not made for the first harvest. However, at the third harvest uptake capacity was significantly decreased in response to elevated CO2 for at least one N form in each species. NO3 uptake rates were lower in A. hymenoides and P. rigida, and NH4 uptake rates were lower in B. rubens at elevated CO2. Nitrogen uptake on a whole root-system basis (NO3+NH4uptake capacity × root biomass) was influenced positively by elevated CO2 only for A. hymenoidesafter anthesis. These results suggest that elevated CO2 may result in a competitive advantage forA. hymenoides relative to species that do not increase root-system N uptake capacity. Root respiration measurements normalized to 20 °C were not significantly affected by the CO2treatment. However, specific root

  8. Sensitivity of simulated CO2 concentration to regridding of global fossil fuel CO2 emissions

    Directory of Open Access Journals (Sweden)

    X. Zhang

    2014-06-01

    Full Text Available Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Finite grid resolution can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. We test these mismatches by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are: (1 a commonly-used method that allocates emissions to gridcells with no attempt to ensure dynamical consistency with atmospheric transport; (2 an improved method that reallocates emissions to gridcells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 Tg C gridcell−1 yr−1 (−3.39 kg C m−2 yr−1 to +30.0 Tg C gridcell−1 yr−1 (+2.6 kg C m−2 yr−1 along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential

  9. [Research on On-Line Calibration Based Photoacoustic Spectrometry System for Monitoring the Concentration of CO2 in Atmosphere].

    Science.gov (United States)

    Zhang, Jian-feng; Pan, Sun-qiang; Lin, Xiao-lu; Hu, Peng-bing; Chen, Zhe-min

    2016-01-01

    Resonate frequency and cell constant of photoacoustic spectrum system are usually calibrated by using standard gas in laboratory, whereas the resonate frequency and cell constant will be changed in-situ, leading to measurement accuracy errors, caused by uncertainties of standard gas, differences between standard and measured gas components and changes in environmental condition, such as temperature and humidity. As to overcome the above problems, we have proposed an on-line atmospheric oxygen-based calibration technology for photoacoustic spectrum system and used in measurement of concentration of carbon dioxide in atmosphere. As the concentration of atmospheric oxygen is kept as constant as 20.96%, the on-line calibration for the photoacoustic spectrum system can be realized by detecting the swept-frequency and peak signal at 763.73 nm. The cell of the PAS has a cavity with length of 100 mm and an inner diameter of 6 mm, and worked in a first longitudinal resonant mode. The influence of environmental temperature and humidity, gas components on the photoacoustic cell's performance has been theoretically analyzed, and meanwhile the resonant frequencies and cell constants were calibrated and acquired respectively using standard gas, indoor air and outdoor air. Compared with calibrated gas analyzer, concentration of carbon dioxide is more accurate by using the resonant frequency and cell constant calculated by oxygen in tested air, of which the relative error is less than 1%, much smaller than that calculated by the standard gas in laboratory. The innovation of this paper is that using atmospheric oxygen as photoacoustic spectrum system's calibration gas effectively reduces the error caused by using standard gas and environmental condition changes, and thus improves the on-line measuring accuracy and reliability of the photoacoustic spectrum system.

  10. A role for atmospheric CO2 in preindustrial climate forcing

    NARCIS (Netherlands)

    Hoof, T.B. van; Wagner-Cremer, F.; Kürschner, W.M.; Visscher, H.

    2008-01-01

    Complementary to measurements in Antarctic ice cores, stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of preindustrial atmospheric CO2 concentration. CO2 trends based on leaf remains of Quercus robur (English oak) from the Netherlan

  11. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  12. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees.

    Science.gov (United States)

    Ziska, Lewis H; Pettis, Jeffery S; Edwards, Joan; Hancock, Jillian E; Tomecek, Martha B; Clark, Andrew; Dukes, Jeffrey S; Loladze, Irakli; Polley, H Wayne

    2016-04-13

    At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide, Ca However, whether Ca-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidago spp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g. Bombus spp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantified Ca-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most wide spread Solidago taxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842-2014 (i.e. a Ca from approx. 280 to 398 ppm). In addition, we conducted a 2 year in situtrial of S. Canadensis populations grown along a continuous Ca gradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases in Ca and reductions in pollen protein concentration (r(2)= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing as Ca continues to rise in the near term, i.e. to 500 ppm (r(2)= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasing Ca can reduce protein content of a floral pollen source widely used by North American bees.

  13. Trapping atmospheric CO2 with gold.

    Science.gov (United States)

    Collado, Alba; Gómez-Suárez, Adrián; Webb, Paul B; Kruger, Hedi; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2014-10-07

    The ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active. DFT calculations and kinetic experiments have been carried out.

  14. Long-term elevated atmospheric CO2 enhances forest productivity

    Science.gov (United States)

    Loecke, T. D.; Groffman, P. M.; Treseder, K. K.; LaDeau, S.

    2011-12-01

    Global atmospheric CO2 concentrations are increasing at historically unprecedented but ecologically gradual rates. The implications of this perturbation for carbon sequestration and feedback on global climate change are difficult to predict due in part to its gradual and largely uniform nature. We used long-term (>40 years) spatial gradients in atmospheric CO2 concentration, produced by spatially heterogeneous fossil fuel combustion along a rural to urban transect, to test the hypotheses that 1) rural to urban CO2 spatial gradients are useful analogs for gradual climate change and 2) higher atmospheric CO2 concentration promotes tree growth and C sequestration. Fossil fuel derived CO2 imparts a distinctive 14C isotopic signature on atmospheric CO2; as this CO2 is fixed into annual tree rings, a proxy for fossil fuel derived CO2 is preserved. Ten four-year tree ring segments were analyzed for α-cellulose 14C content by AMS from trees within 10 closed canopy forested sites in the Baltimore Maryland metropolitan area. Tree growth parameters were assessed by measuring the annual ring width change of 224 trees across the 10 sites. A hierarchical Bayesian model was constructed to determine the influence of CO2 concentration and other site and environmental factors on tree growth. Our proxy for historical CO2 concentrations indicates a detectable but diminishing spatial CO2 gradient across the rural to urban transect that ranged from a 5.6% gradient during the 1970s to a 1.4% gradient in recent years (2000-2008). This observation is consistent with urban deindustrialization and concurrent expansion of suburban development. As an analog for future atmospheric conditions, this spatial gradient is equivalent to a temporal gradient of ca. 15, 7.2, 9.8, 2.6 years of atmospheric CO2 rise during the past four decades. The CO2 spatial gradient had an overall positive effect on tree size adjusted ring width growth. Modeled air surface temperature differences among sites indicate

  15. Upconversion-based lidar measurements of atmospheric CO2

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Fix, Andreas; Wirth, Martin

    2016-01-01

    For the first time an upconversion based detection scheme is demonstrated for lidar measurements of atmospheric CO2-concentrations, with a hard target at a range of 3 km and atmospheric backscatter from a range of similar to 450 m. The pulsed signals at 1572 nm are upconverted to 635 nm, and dete......For the first time an upconversion based detection scheme is demonstrated for lidar measurements of atmospheric CO2-concentrations, with a hard target at a range of 3 km and atmospheric backscatter from a range of similar to 450 m. The pulsed signals at 1572 nm are upconverted to 635 nm...

  16. 从树轮纤维素δ13C序列看树木生长对大气 CO2浓度变化的响应%Response of CO2 Concentration Parameters and Water-Use Efficiency Derived from Tree-Ring δ13C Series to Atmospheric CO2 Increase

    Institute of Scientific and Technical Information of China (English)

    陈拓; 秦大河; 任贾文; 孙维贞; 李江风

    2001-01-01

    The well-documented increase in CO2 content of atmosphere since the beginning of industrialization has been variously attributed to the anthropogenic activities, such as agricultural explosion, global deforestation and enhanced fossil fuel combustion and so on. It was estimated that about one third of anthropogenic CO2 released to atmosphere was taken up by terrestrial plants. To evaluate how the land carbon reservoir has been acting as a sink to the anthropogenic CO2 input to atmosphere, it is important to study how plants in forests physiologically adjust to the changing atmospheric conditions. This has been studied intensively using controlled experiments, but it has been difficuh to scale short-term observations to long term ecosystem-level response. However, models of carbon discrimination during carbon fixation show that Cs plants are not passive recorders: carbon isotopic variations are subjected to strong physiological control through leaf gas exchange regulation. Therefore, records of carbon discrimination in tree-ring cellulose could be used to study past variations of the ecophysiology of trees in reaction to environmental variations, in addition to the reconstruction of past environments. In this paper, based on the tree-ring series from Zhaosu County of Xinjiang, the changes of the ratio of CO2 concentration in the intercellular space of leaves to that-on the atmosphere (Ci/Ca), CO2 concentration in the intercellular space of leaves (Ci) and plant water-use efficiency (A/g) derivec[ from carbon isotope chronology were analyzed for the past 240 a. The results show a relatively constant Ci/Ca value of 0. 52 during the whole period, suggesting a strategy of response of plants to increased atmospheric CO2 concentration. Significant increasing trends of Ci and A/g are also found, implying more carbon being fixed; Further analysis shows that their changes are related to atmospheric CO2 concentration, thus it is demonstrated that trees maybe take up the

  17. CO2 Impacts on the Martian Atmosphere

    Science.gov (United States)

    Kelley, Michael; Bauer, James; Bodewits, Dennis; Farnham, Tony; Stevenson, Rachel; Yelle, Roger

    2014-09-01

    The dynamically new comet C/2013 A1 (Siding Spring) will pass Mars at the extremely close distance of 140,000 km on 2014 Oct 19. This encounter is unique---a record close approach to a planet with spacecraft that can observe its passage---and currently, all 5 Mars orbiters have plans to observe the comet and/or its effects on the planet. Gas from the comet's coma is expected to collide with the Martian atmosphere, altering the abundances of some species and producing significant heating, inflating the upper atmosphere. We propose DDT observations with Spitzer/IRAC to measure the comet's CO2+CO coma (observing window Oct 30 - Nov 20), to use these measurements to derive the coma's CO2 density at Mars during the closest approach, and to aid the interpretation of any observed effects or changes in the Martian atmosphere.

  18. Real time and in situ determination of ammonia concentration in the atmosphere by intermodulated Stark resonant CO2 laser spectroscopy.

    NARCIS (Netherlands)

    Sauren, H.; Gerkema, E.; Bicanic, D.; Jalink, H.

    1993-01-01

    A concept of Intermodulated Photoacoustic Stark Spectroscopy (IMPASS) was used in an attempt to perform the interference-free field measurement of trace ammonia (3-40 ppbv) concentration levels in the air with a time resolution of 40 s.

  19. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  20. Monitoring Atmospheric CO2 From Space: Challenge & Approach

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang; Ismail, Syed

    2015-01-01

    Atmospheric CO2 is the key radiative forcing for the Earth's climate and may contribute a major part of the Earth's warming during the past 150 years. Advanced knowledge on the CO2 distributions and changes can lead considerable model improvements in predictions of the Earth's future climate. Large uncertainties in the predictions have been found for decades owing to limited CO2 observations. To obtain precise measurements of atmospheric CO2, certain challenges have to be overcome. For an example, global annual means of the CO2 are rather stable, but, have a very small increasing trend that is significant for multi-decadal long-term climate. At short time scales (a second to a few hours), regional and subcontinental gradients in the CO2 concentration are very small and only in an order of a few parts per million (ppm) compared to the mean atmospheric CO2 concentration of about 400 ppm, which requires atmospheric CO2 space monitoring systems with extremely high accuracy and precision (about 0.5 ppm or 0.125%) in spatiotemporal scales around 75 km and 10-s. It also requires a decadal-scale system stability. Furthermore, rapid changes in high latitude environments such as melting ice, snow and frozen soil, persistent thin cirrus clouds in Amazon and other tropical areas, and harsh weather conditions over Southern Ocean all increase difficulties in satellite atmospheric CO2 observations. Space lidar approaches using Integrated Path Differential Absorption (IPDA) technique are considered to be capable of obtaining precise CO2 measurements and, thus, have been proposed by various studies including the 2007 Decadal Survey (DS) of the U.S. National Research Council. This study considers to use the Intensity-Modulated Continuous-Wave (IM-CW) lidar to monitor global atmospheric CO2 distribution and variability from space. Development and demonstration of space lidar for atmospheric CO2 measurements have been made through joint adventure of NASA Langley Research Center and

  1. A 40-million-year history of atmospheric CO(2).

    Science.gov (United States)

    Zhang, Yi Ge; Pagani, Mark; Liu, Zhonghui; Bohaty, Steven M; Deconto, Robert

    2013-10-28

    The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 results. In this study, we present a pCO2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO2 record site are broadly consistent with previously published multi-site alkenone-CO2 results. However, new pCO2 estimates for the Middle Miocene are notably higher than published records, with average pCO2 concentrations in the range of 400-500 ppm. Our results are generally consistent with recent pCO2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17-14 million years ago, Ma), followed by a decline in CO2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ(18)O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27-23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO2 levels. Additionally, a large positive δ(18)O excursion near the Oligocene-Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the

  2. 1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations

    Directory of Open Access Journals (Sweden)

    Abdoul Khadre Traore

    2014-09-01

    Full Text Available Light and water use by vegetation at the ecosystem level, are key components for understanding the carbon and water cycles particularly in regions with high climate variability and dry climates such as Africa. The objective of this study is to examine recent trends over the last 30 years in Light Use Efficiency (LUE and inherent Water Use Efficiency (iWUE* for the major biomes of Africa, including their sensitivities to climate and CO2. LUE and iWUE* trends are analyzed using a combination of NOAA-AVHRR NDVI3g and fAPAR3g, and a data-driven model of monthly evapotranspiration and Gross Primary Productivity (based on flux tower measurements and remote sensing fAPAR, yet with no flux tower data in Africa and the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms process-based land surface model driven by variable CO2 and two different gridded climate fields. The iWUE* data product increases by 10%–20% per decade during the 1982–2010 period over the northern savannas (due to positive trend of vegetation productivity and the central African forest (due to positive trend of vapor pressure deficit. In contrast to the iWUE*, the LUE trends are not statistically significant. The process-based model simulations only show a positive linear trend in iWUE* and LUE over the central African forest. Additionally, factorial model simulations were conducted to attribute trends in iWUE and LUE to climate change and rising CO2 concentrations. We found that the increase of atmospheric CO2 by 52.8 ppm during the period of study explains 30%–50% of the increase in iWUE* and >90% of the LUE trend over the central African forest. The modeled iWUE* trend exhibits a high sensitivity to the climate forcing and environmental conditions, whereas the LUE trend has a smaller sensitivity to the selected climate forcing.

  3. [CO2-Concentrating Mechanism and Its Traits in Haloalkaliphilic Cyanobacteria].

    Science.gov (United States)

    Kupriyanova, E V; Samylina, O S

    2015-01-01

    Cyanobacteria are a group of oxygenic phototrophs existing for at least 3.5 Ga. Photosynthetic CO2 assimilation by cyanobacteria occurs via the Calvin cycle, with RuBisCO, its key enzyme, having very low affinity to CO2. This is due to the fact that atmospheric CO2 concentration in Archaean, when the photosynthetic apparatus evolved, was several orders higher than now. Later, in the epoch of Precambrian microbial communities, CO2 content in the atmosphere decreased drastically. Thus, present-day phototrophs, including cyanobacteria, require adaptive mechanisms for efficient photosynthesis. In cyanobacterial cells, this function is performed by the CO2-concentrating mechanism (CCM), which creates elevated CO2 concentrations in the vicinity of RuBisCO active centers, thus significantly increasing the rate of CO2 fixation in the Calvin cycle. CCM has been previously studied only for freshwater and marine cyanobacteria. We were the first to investigate CCM in haloalkaliphilic cyanobacteria from soda lakes. Extremophilic haloalkaliphilic cyanobacteria were shown to possess a well-developed CCM with the structure and functional principles similar to those of freshwater and marine strains. Analysis of available data suggests that regulation of the amount of inorganic carbon transported into the cell is probably the general CCM function under these conditions.

  4. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  5. Trend, seasonal and diurnal variations of atmospheric CO2 in Beijing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The concentration of atmospheric CO2 in Beijing increased rapidly at a mean growth rate of 3.7%@a?1 from 1993 to 1995. After displaying a peak of (409.7±25.9) ?mol@mol?1 in 1995, it decreased slowly. Both the almost stable anthropogenic CO2 source and increasing biotic CO2 sink contribute to the drop of CO2 concentration from 1995 to 2000. The seasonal variation of CO2 concentration exhibits a clear cycle with a maximum in winter, averaging (426.8±20.6) ?mol@mol?1, and a minimum in summer, averaging (369.1±6.1) ?mol@mol?1. The seasonal variation of CO2 concentration is mainly controlled by phenology. The mean diurnal variation of atmospheric CO2 concentration for a year in Beijing is highly clear: daily maximum CO2 concentration usually occurs at night, but daily minimum CO2 concentration does in the daytime, with a mean diurnal difference more than 34.7 ?mol@mol?1. It has been revealed that the interannual variations of atmospheric CO2 concentration in winter and autumn regulated the interannual trend of atmospheric CO2, whereas the interannual variation of CO2 concentration in summer affected the general tendency of atmospheric CO2 in a less degree.

  6. The carbon isotope composition of atmospheric CO 2 in Paris

    Science.gov (United States)

    Widory, David; Javoy, Marc

    2003-10-01

    One characteristic of air pollution in the urban environment is high CO 2 concentrations resulting from human activities. Determining the relative contributions of the different CO 2 sources can be addressed simply and elegantly by combining isotope and concentration measurements. Using this approach on atmospheric CO 2 samples collected in Paris, its suburbs and the open country provides fairly accurate conclusions. Our results show that air pollution within the first few metres above ground results basically from binary mixtures among which road traffic is the main contributor and, in particular, vehicles using unleaded gasoline (˜90% of the total). Heating sources, which account for 50% of the CO 2 input below the atmospheric inversion level, and vehicles using diesel contribute very little. Human respiration has a recognisable signature at street level under certain circumstances. The combined isotope and concentration analysis provides a sensitive tracer of local variations, even detecting the occasional prevalence of human respiration and the onset of actions in which natural gas is burnt. It also detects surprising inlets of 'clean air' (CO 2-wise) in the very centre of the city.

  7. Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS)

    Science.gov (United States)

    Kooijmans, Linda M. J.; Uitslag, Nelly A. M.; Zahniser, Mark S.; Nelson, David D.; Montzka, Stephen A.; Chen, Huilin

    2016-11-01

    Carbonyl sulfide (COS) has been suggested as a useful tracer for gross primary production as it is taken up by plants in a similar way as CO2. To explore and verify the application of this novel tracer, it is highly desired to develop the ability to perform continuous and high-precision in situ atmospheric measurements of COS and CO2. In this study we have tested a quantum cascade laser spectrometer (QCLS) for its suitability to obtain accurate and high-precision measurements of COS and CO2. The instrument is capable of simultaneously measuring COS, CO2, CO and H2O after including a weak CO absorption line in the extended wavelength range. An optimal background and calibration strategy was developed based on laboratory tests to ensure accurate field measurements. We have derived water vapor correction factors based on a set of laboratory experiments and found that for COS the interference associated with a water absorption line can dominate over the effect of dilution. This interference can be solved mathematically by fitting the COS spectral line separately from the H2O spectral line. Furthermore, we improved the temperature stability of the QCLS by isolating it in an enclosed box and actively cooling its electronics with the same thermoelectric chiller used to cool the laser. The QCLS was deployed at the Lutjewad atmospheric monitoring station (60 m; 6°21' E, 53°24' N; 1 m a.s.l.) in the Netherlands from July 2014 to April 2015. The QCLS measurements of independent working standards while deployed in the field showed a mean difference with the assigned cylinder value within 3.3 ppt COS, 0.05 ppm for CO2 and 1.7 ppb for CO over a period of 35 days. The different contributions to uncertainty in measurements of COS, CO2 and CO were summarized and the overall uncertainty was determined to be 7.5 ppt for COS, 0.23 ppm for CO2 and 3.3 ppb for CO for 1-minute data. A comparison of in situ QCLS measurements with those from concurrently filled flasks that were

  8. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?

    Science.gov (United States)

    This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration ([CO218 ]) on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thünen Institute in Braunschweig, Germany (Manderscheid et al. 2014). D...

  9. The effect of elevated atmospheric CO2 concentration on gross nitrogen and carbon dynamics in a permanent grassland: A field pulse-labeling study

    Science.gov (United States)

    Moser, Gerald; Gorenflo, André; Keidel, Lisa; Brenzinger, Kristof; Elias, Dafydd; McNamara, Niall; Maček, Irena; Vodnik, Dominik; Braker, Gesche; Schimmelpfennig, Sonja; Gerstner, Judith; Müller, Christoph

    2014-05-01

    To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understand the interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (> 14 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- was carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration have been quantified. Microbial analyses include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations. We quantified the contribution of mycorrhizae on N2O emissions and observed the phenological development of the mycorrhizae after the labeling.

  10. The Abundance of Atmospheric CO2 in Ocean Exoplanets: a Novel CO2 Deposition Mechanism

    Science.gov (United States)

    Levi, A.; Sasselov, D.; Podolak, M.

    2017-03-01

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO2, the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that, in a steady state, the abundance of CO2 in the atmosphere has two possible states. When wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO2 into the atmosphere to increase the greenhouse effect.

  11. Use of high-scale traffic modeling to estimate road vehicle emissions of CO2 and impact on the atmospheric concentration in São Paulo, Brazil.

    Science.gov (United States)

    Miranda, R. M.; Perez-Martinez, P.; Andrade, M. D. F.

    2015-12-01

    Adequate estimations of motor vehicle CO2 emission inventories at high spatial and temporal urban scales are needed to establish transport policy measures aim to reduce climate change impacts from global cities. The Metropolitan Region of São Paulo (MRSP) is impacted by the emission of 7 million vehicles (97% light-duty gasoline vehicles LDVs and 3% heavy-duty diesel vehicles HDVs) and several environmental programs were implemented to reduce the emissions. Inventories match site measurements and remote sensing and help to assess the real impact of road vehicle emissions on city's air quality. In this paper we presented a high-resolution vehicle-based inventory of motor CO2 emissions mapped at a scale of 100 m and 1 hour. We used origin and destination (O/D) transport area zone trips from the mobility survey of the São Paulo Transport Metropolitan Company (Metro), a road network of the region and traffic datasets from the São Paulo Transport Engineering Company (CET). The inventory was done individually for LDVs and HDVs for the years 2008 and 2013 and was complemented with air quality datasets from the State Environmental Company (CETESB), together with census data from the Brazilian Institute of Geography and Statistics (IBGE). Our inventory showed partial disagreement with the São Paulo State's GHG inventory, caused by the different approach used - bottom vs. top down - and characteristic spatial and temporal biases of the population inputs used (different emission factors). Higher concentrations became apparent near the road-network at the spatial scale used. The total emissions were estimated in 20,781 million tons per year of CO2eq (83.7% by LDVs and 16.3% HDVs). Temporal profiles - diurnal, weekly and monthly - in vehicle emission distributions were calculated using CET's traffic counts and surrogates of congestion. These profiles were compared with average road-site measurements of CO2 for the year 2013. Measurements showed two peaks associated to the

  12. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D [Oak Ridge National Laboratory (ORNL); Mills, R [Oak Ridge National Laboratory (ORNL); Gregg, J [University of Maryland; Blasing, T J [ORNL; Hoffman, F [Oak Ridge National Laboratory (ORNL); Andres, Robert Joseph [ORNL; Devries, M [Oak Ridge National Laboratory (ORNL); Zhu, Z [NASA Goddard Space Flight Center; Kawa, S [NASA Goddard Space Flight Center

    2008-01-01

    Monthly estimates of the global emissions of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO2 flux estimates are then used to model atmospheric CO2 concentrations using meteorological fields from the NASA GEOS-4 data assimilation system. We find that the use of monthly resolved fluxes makes a significant difference in the seasonal cycle of atmospheric CO2 in and near those regions where anthropogenic CO2 is released to the atmosphere. Local variations of 2-6 ppmv CO2 in the seasonal cycle amplitude are simulated; larger variations would be expected if smaller source-receptor distances could be more precisely specified using a more refined spatial resolution. We also find that in the midlatitudes near the sources, synoptic scale atmospheric circulations are important in the winter and that boundary layer venting and diurnal rectifier effects are more important in the summer. These findings have implications for inverse-modeling efforts that attempt to estimate surface source/sink regions especially when the surface sinks are colocated with regions of strong anthropogenic CO2 emissions.

  13. Analysis of Source and Concentration Variations of Atmospheric CO2 in East Asia in 1 994-201 0%1994-2010年东亚地区CO2浓度变化特征及成因分析

    Institute of Scientific and Technical Information of China (English)

    解淑艳; 王胜杰; 王瑞斌

    2014-01-01

    Based on observed atmospheric CO2 concentrations at 5 background stations in East Asia since 1 994,temporal and spatial variation characteristics and changesand impacts of the anthropogenic sourcesof atmospheric CO2 are analyzed.Results reveal that the annual average CO2 concentrations showed a clear upward trend,the concentration increased by 8.4% ~9.0% in 201 0 compared with 1 994.Monthly average CO2 concentrations exhibit strong seasonal variations.The higher values prefer to present in cold seasons such as winter and spring,while the lower values appear mostly in summer seasons in northern hemisphere.Reducing the fossil fuel consumption,increasing the forest coverage and improving the agricultural coverage will help reduce the mean CO2 concentration in the atmosphere.%在东亚地区选取5个大气本底观测站1994年以来观测的 CO2监测资料,分析了各站大气 CO2的时空变化特征,以及 CO2主要人为源的变化及其影响。结果表明,5个本底站大气 CO2年均值均呈明显升高趋势,2010年较1994年增长幅度为8.4%~9.0%;在北半球国家,CO2月均值有明显的季节变化,高值多出现在冬春等寒冷季节,低值多出现在夏季。减少化石燃料消耗量、增加森林覆盖率及农业覆盖率将对大气中 CO2有削减作用。

  14. The Abundance of Atmospheric CO2 in Ocean Exoplanets: A Novel CO2 Deposition Mechanism

    CERN Document Server

    Levi, Amit; Podolak, Morris

    2016-01-01

    We consider super-Earth sized planets which have a water mass fraction that is large enough to form an external mantle composed of high pressure water ice polymorphs and that lack a substantial H/He atmosphere. We consider such planets in their habitable zone so that their outermost condensed mantle is a global deep liquid ocean. For these ocean planets we investigate potential internal reservoirs of CO2; the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that in steady state the abundance of CO2 in the atmosphere has two possible states. When the wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is esta...

  15. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-02-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations.

  16. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification.

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations.

  17. Impacting factors and relationship between stomatal parameters and atmospheric CO2 concentration%气孔参数与大气CO2浓度的相关性及其影响因素

    Institute of Scientific and Technical Information of China (English)

    马清温; 李凤兰; 李承森

    2004-01-01

    通常认为气孔参数(气孔密度和气孔指数)和大气CO2浓度有负相关关系,但不是每种植物的气孔参数都与CO2浓度的变化有负相关关系,气孔参数对大气CO2浓度的显著反应也只在一定的CO2浓度范围内发生.大气CO2浓度是影响气孔参数变化的主要因素,同时温度、水分的供应和光照条件等其它环境因素也影响气孔参数.CO2浓度和光照条件主要影响气孔发生,而其它环境因素主要影响叶片表皮细胞的大小.气孔指数部分消除了表皮细胞大小带来的影响,用气孔指数指示大气CO2浓度比用气孔密度指示更为可靠.

  18. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2

    Science.gov (United States)

    Wenzel, Sabrina; Cox, Peter M.; Eyring, Veronika; Friedlingstein, Pierre

    2016-10-01

    Uncertainties in the response of vegetation to rising atmospheric CO2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO2 fertilization using observed changes in the amplitude of the atmospheric CO2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO2 seasonal cycle and the magnitude of CO2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO2 amplitude, these relationships lead to consistent emergent constraints on the CO2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.

  19. Effects of Controlled Atmospheres with High-O2 or High-CO2 Concentrations on Postharvest Physiology and Storability of "Napoleon" Sweet Cherry%高O2或高CO2浓度气调贮藏对"那翁"甜樱桃采后生理和贮藏性的影响

    Institute of Scientific and Technical Information of China (English)

    姜爱丽; 田世平; 徐勇

    2002-01-01

    Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O2 (70% O2+0% CO2) or high CO2 (5% O2+10% CO2), in modified atmosphere package (MAP, (13%-18%) O2+(2%-4%) CO2) and in air (control) at 1 ℃ to investigate the effects of different O2 and CO2 concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O2 concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO2 concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. "Napoleon" fruits stored in 5% O2+10% CO2 for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O2+ 0% CO2 and air, respectively.%研究了甜樱桃品种"那翁" ( Prunus avium L. cv. Napoleon)在1 ℃的高O2 浓度气调(CA-I: 70% O2+0% CO2)、高CO2 浓度气调 (CA-II: 5% O2+10% CO2)、自发气调 (modified atmosphere package, MAP) 和普通冷藏条件下果实生理、品质、耐藏性的变化.结果表明:与其他处理相比,高O2 浓度的气调可以抑制果实腐烂、减少果肉中乙醇含量,但果实的丙二醛(MDA)含量迅速上升、褐变严重.高CO2浓度的气调能有效抑制MDA含量上升的速率和多酚氧化酶(PPO)活性,保持果实硬度和维生素C含量,减少果实腐烂和褐变,延长贮藏寿命.不同处理对果实可溶性固形物含量的影响不大."那翁" 甜樱桃在5% O2+10% CO2气调中贮藏80 d能保持果实固有的风味品质.在MAP下, 70% O2+0% CO2和普通冷藏中的适宜贮藏期分别为40 d、20 d和30 d.

  20. CO2 Leakage Identification in Geosequestration Based on Real Time Correlation Analysis Between Atmospheric O2 and CO2

    Institute of Scientific and Technical Information of China (English)

    马登龙; 邓建强; 张早校

    2014-01-01

    The paper describes a method for monitoring CO2 leakage in geological carbon dioxide sequestration. A real time monitoring parameter, apparent leakage flux (ALF), is presented to monitor abnormal CO2 leakage, which can be calculated by atmospheric CO2 and O2 data. The computation shows that all ALF values are close to zero-line without the leakage. With a step change or linear perturbation of concentration to the initial CO2 concen-tration data with no leakage, ALF will deviate from background line. Perturbation tests prove that ALF method is sensitive to linear perturbation but insensitive to step change of concentration. An improved method is proposed based on real time analysis of surplus CO2 concentration in least square regression process, called apparent leakage flux from surplus analysis (ALFs), which is sensitive to both step perturbation and linear perturbations of concen-tration. ALF is capable of detecting concentration increase when the leakage occurs while ALFs is useful in all pe-riods of leakage. Both ALF and ALFs are potential approaches to monitor CO2 leakage in geosequestration project.

  1. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; Nehrir, Amin; Obland, Michael; Plant, James; Yang, Melissa

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  2. Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions

    Science.gov (United States)

    Zhang, X.; Gurney, K. R.; Rayner, P. J.; Baker, D. F.; Liu, Y.; Asefi-Najafabady, S.

    2014-12-01

    This study presents a sensitivity analysis of the impact of sub-annual fossil fuel CO2 emissions on simulated CO2 concentration using a global tracer transport model. Four sensitivity experiments were conducted to investigate the impact of three cyclic components (diurnal, weekly and monthly) and a complete cyclic component (the combination of the three) by comparing with a temporally "flat" fossil fuel CO2 emissions inventory. A complete exploration of these impacts is quantified at annual, seasonal, weekly and diurnal time scales of the CO2concentration for the surface, vertical profile and column-integral structure. Result shows an annual mean surface concentration difference varying from -1.35 ppm to 0.13 ppm at grid scale for the complete cyclic fossil fuel emissions, which is mainly driven by a large negative diurnal rectification and less positive seasonal rectification. The negative diurnal rectification is up to 1.45 ppm at grid scale and primarily due to the covariation of diurnal fossil fuel CO2 emissions and diurnal variations of vertical mixing. The positive seasonal rectification is up to 0.23 ppm at grid scale which is mainly driven by the monthly fossil fuel CO2emissions coupling with atmospheric transport. Both the diurnal and seasonal rectifier effects are indicated at local-to-regional scales with center at large source regions and extend to neighboring regions in mainly Northern Hemisphere. The diurnal fossil fuel CO2 emissions is found to significantly affect the simulated diurnal CO2 amplitude (up to 9.12 ppm at grid scale), which is primarily contributed by the minima concentration differences around local sunset time. Similarly, large impact on the seasonal CO2 amplitude (up to 6.11 ppm) is found at regional scale for the monthly fossil fuel emissions. An impact of diurnal fossil fuel CO2 emissions on simulated afternoon CO2 concentration is also identified by up to 1.13 ppm at local scales. The study demonstrates a large cyclic fossil fuel

  3. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) can affect the quantity and quality of plant tissues which will impact carbon (C) cycling and storage in plant/soil systems and the release of CO2 back to the atmosphere. Research is needed to quantify the effects of elevated CO2 on soil CO2 efflux to predi...

  4. Investigation into optimal CO2 concentration for CO2 capture from aluminium production

    OpenAIRE

    Mathisen, Anette; Sørensen, Henriette; Melaaen, Morten Christian; Müller, Gunn-Iren

    2013-01-01

    Capture of CO2 from aluminum production has been simulated using Aspen Plus and Aspen Hysys. The technology used for aluminum production is the Hall-Héroult and the current cell design necessitates that large amounts of false air is supplied to the cells. This results in a CO2 concentration in the process gas at around 1 vol%, which is considered uneconomical for CO2 capture. Therefore, the aim of this investigation is to evaluate the CO2 capture from aluminum production when the process g...

  5. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29...... the processes controlling the sources and sinks of atmospheric CO2. This PhD dissertation attempts to increase our understanding of the importance of accounting for high spatiotemporal variability in estimates of CO2 exchanges between the atmosphere and the surface. For this purpose, a mesoscale...... modelling system is constructed, centred around Denmark, based on an atmospheric transport model. In this study, the main areas of focus have been on improving the spatial surface representation, for both land and sea, and investigating the influence of the temporal resolution on the air–sea CO2 exchange...

  6. [Monitoring Atmospheric CO2 and delta(13)C (CO2) Background Levels at Shangdianzi Station in Beijing, China].

    Science.gov (United States)

    Xia, Ling-ju; Zhou, Ling-xi; Liu, Li-xin; Zhang, Gen

    2016-04-15

    The study presented time series of atmospheric CO2 concentrations from flask sampling at SDZ regional station in Beijing during 2007 and 2013, together with delta(13)CO2) values during 2009 and 2013. The "representative data" of CO2 and delta(13)C (CO2) were selected from the complete data for further analysis. Annual CO2 concentrations increased from 385.6 x 10(-6) in 2007 to 398.1 x 10(-6) in 2013, with an average growth rate of 2.0 x 10(-6) a(-1), while the delta(13)C values decreased from -8.38% per hundred in 2009 to -8.52% per hundred in 2013, with a mean growth rate of -0.03% per hundred x a(-1). The absolute increase of CO2 from 2007 to 2008 reached the lowest level during 2007 and 2013, possibly due to relatively less carbon emissions during the 2008 Olympic Games period. The peak-to-peak amplitudes of atmospheric CO2 and delta(13)C seasonal variations were 23. 9 x 10 -6 and 1. 03%o, respectively. The isotopic signatures of CO2 sources/sinks were also discussed in this study. The delta8 value for heating season I (Jan. 01-Mar. 14) was -21.30% per hundred, while -25.39% per hundred for heating season 11 (Nov. 15-Dec.31) , and for vegetative season (Mar. 15-Nov. 14) the delta(bio) value was estimated to be -21.28% per hundred, likely suggesting the significant impact of fossil fuel and corn straw combustions during winter heating season and biological activities during vegetative season.

  7. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

    Science.gov (United States)

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching

    2015-05-01

    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.

  8. Implications of "peak oil" for atmospheric CO2 and climate

    CERN Document Server

    Kharecha, P A

    2007-01-01

    Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

  9. Armazenamento da maçã cv. golden delicious em atmosfera controlada com altas concentrações de CO2 e ultra-baixas de O2 Controlled atmosphere storage of golden delicious apples with high CO2 and ulo concentrations

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    1998-06-01

    Full Text Available O trabalho foi desenvolvido com o objetivo de avaliar os efeitos de altas concentrações de CO2, e ultra-baixas de O2, sobre as qualidades fisico-químicas, distúrbios fisiológicos e podridões durante o armazenamento em atmosfera controlada (AC de maçãs da cv. 'Golden Delicious'. Os frutos foram armazenados nas temperaturas de -0,5°C e +0,5°C e umidade relativa do ar de 97%. As condições de AC foram 1.0% de O2, e 6.0% de CO2; 1,5% de O2, e 6,0% de CO2; 1,0% de O2, e 4,0% de CO2, 2.0% de O2, e 4.0% de CO2; 3,0% de O2, e 4,0% de CO2, Os parâmetros avaliados foram: firmeza da polpa, sólidos solúveis totais, acidez titulável, escaldadura, degenerescência interna e podridões. As avaliações foram realizadas em dois momentos: na abertura das câmaras (8,5 meses de armazenamento e após 14 dias (7 dias em armazenamento refrigerado e 7 dias em temperatura ambiente a 23°C. Em concentrações ultra-baixa de O2, (1% combinado com 4% de CO2, a maçã 'Golden Delicious' apresentou uma melhor manutenção das qualidades fisico-químicas após longo período de armazenamento sem apresentar sintomas de fermentação. Concentrações de 6% de CO2, com baixas de O2 na temperatura de +0,5°C, não causou danos aos frutos, porém na temperatura de -0,5"C houve degenerescência interna e escaldadura superficial, sendo a temperatura de +0,5°C mais indicada para a cv. Golden Delicious'.The experiment was conducted with the aim to evaluate the effects of the high CO2, and ultra-low O2, (ULO concentrations on the fruit quality and incidence of physiological disorders and rots during controlled atmosphere (CA storage of 'Golden Delicious'. Fruits were stored at-0.5°C and +0.5°C, with 97% relative humidity. The CA conditions were: 1.0% of O2, and 6.0% of CO2,.1.5% of O2, and 6.0% of CO2; 1.0% of O2, and 4.0% of CO2,; 2.0% of O2, and 4.0% of CO2,; 3.0% of O2, and 4.0% of CO2,. After 8.5 months of storage and 14 days after chamber opening (seven days of

  10. Dynamics of Soil Organic Carbon Under Uncertain Climate Change and Elevated Atmospheric CO2

    Institute of Scientific and Technical Information of China (English)

    LIN Zhong-Bing; ZHANG Ren-Duo

    2012-01-01

    Climate change and elevated atmospheric CO2 should affect the dynamics of soil organic carbon (SOC).SOC dynamics under uncertain patterns of climate warming and elevated atmospheric CO2 as well as with different soil erosion extents at Nelson Farm during 1998-2100 were simulated using stochastic modelling.Results based on numerous simulations showed that SOC decreased with elevated atmospheric temperature but increased with atmospheric CO2 concentration.Therefore,there was a counteract effect on SOC dynamics between climate warming and elevated CO2.For different soil erosion extents,warming 1 ℃ and elevated atmospheric CO2 resulted in SOC increase at least 15%,while warming 5 ℃ and elevated CO2 resulted in SOC decrease more than 29%.SOCpredictions with uncertainty assessment were conducted for different scenarios of soil erosion,climate change,and elevated CO2.Statistically,SOC decreased linearly with the probability.SOC also decreased with time and the degree of soil erosion.For example,in 2100 with a probability of 50%,SOC was 1617,1 167,and 892 g m-2,respectively,for no,minimum,and maximum soil erosion.Under climate warming 5 ℃ and elevated CO2,the soil carbon pools became a carbon source to the atmosphere (P > 95%).The results suggested that stochastic modelling could be a useful tool to predict future SOC dynamics under uncertain climate change and elevated CO2.

  11. Characteristics of CO2 concentrations and its variations at Longfengshan regional atmospheric background station in Northeast China%龙凤山区域大气本底站大气二氧化碳(CO2)浓度变化特征

    Institute of Scientific and Technical Information of China (English)

    吴艳玲; 宁尚军; 于大江; 宋庆利; 代鑫; 赵金荣

    2015-01-01

    The background CO2 concentrations were continuously measured at Longfengshan regional atmospheric background station by Cavity Ring Down Spectroscopy system from 2009 to 2011. The results showed that the diurnal cycle of hourly average CO2 concentration displayed with the lowest value occurred at about 13∶00—16∶00, when the intensity of the photosynthesis of vegetable and the vertical air dilution are the strongest. Because of the earliest time of sunrise in summer and the CO2 consumption by the photosynthesis of vegetable, the highest concentration of CO2 occurred at the 3∶00, which is much earlier than that (7∶00—9∶00) in other seasons. The daily amplitude was the highest ( 92 mg·L-1 ) in summer and the daily amplitudes in other seasons were less than 8 × 10-6 . The monthly mean of CO2 concentration reached a high value in December or January and the lowest one in summer. Due to the agricultural biomass burning, the second peak of the monthly mean CO2 occurred in May and October. The annual mean of CO2 is 711 ± 23 mg·L-1 in 2009 and 723 ± 25 mg·L-1 in 2011, with an increase rate of 0.89%/yr. In summer and winter, surface wind from the sector of E⁃ESE⁃SE⁃SSE apparently increased the CO2 concentrations and surface wind from the sector of W⁃WNW⁃NW greatly decreased the CO2 concentration. The absorption effect of CO2 by the forest surrounding the station can be estimated by a value of 61 mg·L-1 , which is up to 8.5% of the average level of CO2 in summer.%利用基于光腔衰荡光谱( CRDS)测量技术,于2009年1月至2011年12月在龙凤山区域大气本底站对大气中CO2进行了在线观测.龙凤山CO2浓度日最低值出现在13∶00—16∶00,此时植被光合作用对CO2的吸收作用以及大气垂直运动导致的稀释作用最强.春、秋和冬季CO2浓度日最高值出现在7∶00—9∶00,夏季日最高值出现在3∶00.夏季日高值出现的早,是由于夏季

  12. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  13. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    OpenAIRE

    2014-01-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 concentrations ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation. However, the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geo...

  14. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    Science.gov (United States)

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures.

  15. Decarbonization rate and the timing and magnitude of the CO2 concentration peak

    Science.gov (United States)

    Seshadri, Ashwin K.

    2016-11-01

    Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to be the major factor in the timing of maximum radiative forcing. Other forcers such as aerosols and non-CO2 greenhouse gases may also influence the timing of maximum radiative forcing. This paper approximates solutions to a linear model of atmospheric CO2 dynamics with four time-constants to identify factors governing the timing of its concentration peak. The most important emissions-related factor is the ratio between average rates at which emissions increase and decrease, which in turn is related to the rate at which the emissions intensity of CO2 is reduced. Rapid decarbonization of CO2 can not only limit global warming but also achieve an early CO2 concentration peak. The most important carbon cycle parameters are the long multi-century time-constant of atmospheric CO2, and the ratio of contributions to the impulse response function of atmospheric CO2 from the infinitely long lived and the multi-century contributions respectively. Reducing uncertainties in these parameters can reduce uncertainty in forecasts of the radiative forcing peak. A simple approximation for peak CO2 concentration, valid especially if decarbonization is slow, is developed. Peak concentration is approximated as a function of cumulative emissions and emissions at the time of the concentration peak. Furthermore peak concentration is directly proportional to cumulative CO2 emissions for a wide range of emissions scenarios. Therefore, limiting the peak CO2 concentration is equivalent to limiting cumulative emissions. These relationships need to be verified using more complex models of Earth system's carbon cycle.

  16. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    Science.gov (United States)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  17. Hazardous indoor CO2 concentrations in volcanic environments.

    Science.gov (United States)

    Viveiros, Fátima; Gaspar, João L; Ferreira, Teresa; Silva, Catarina

    2016-07-01

    Carbon dioxide is one of the main soil gases released silently and permanently in diffuse degassing areas, both in volcanic and non-volcanic zones. In the volcanic islands of the Azores (Portugal) several villages are located over diffuse degassing areas. Lethal indoor CO2 concentrations (higher than 10 vol %) were measured in a shelter located at Furnas village, inside the caldera of the quiescent Furnas Volcano (S. Miguel Island). Hazardous CO2 concentrations were detected not only underground, but also at the ground floor level. Multivariate regression analysis was applied to the CO2 and environmental time series recorded between April 2008 and March 2010 at Furnas village. The results show that about 30% of the indoor CO2 variation is explained by environmental variables, namely barometric pressure, soil water content and wind speed. The highest indoor CO2 concentrations were recorded during bad weather conditions, characterized by low barometric pressure together with rainfall periods and high wind speed. In addition to the spike-like changes observed on the CO2 time series, long-term oscillations were also identified and appeared to represent seasonal variations. In fact, indoor CO2 concentrations were higher during winter period when compared to the dry summer months. Considering the permanent emission of CO2 in various volcanic regions of the world, CO2 hazard maps are crucial and need to be accounted by the land-use planners and authorities.

  18. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw

    DEFF Research Database (Denmark)

    Frederiksen, Helle B.; Ronn, R.; Christensen, S.

    2001-01-01

    concentration in the recovered straw samples. After five months of decomposition, hyphal biomass was significantly lower in straw from plants grown at elevated CO2 (-30% and -13% in the fallow and wheat field, respectively). Bacterial biomass was not significantly affected by the CO2 induced changes...... in the litter quality, but the lower decomposition rate and fewer bacterial grazers in the straw from plants grown at elevated CO2 together indicate reduced microbial activity and turnover. Notwithstanding this, these data show that growth at elevated atmospheric CO2 concentration results in slower...

  19. Intermediate time scale response of atmospheric CO2 following prescribed fire in a longleaf pine forest

    Science.gov (United States)

    Viner, B.; Parker, M.; Maze, G.; Varnedoe, P.; Leclerc, M.; Starr, G.; Aubrey, D.; Zhang, G.; Duarte, H.

    2016-10-01

    Fire plays an essential role in maintaining the structure and function of longleaf pine ecosystems. While the effects of fire on carbon cycle have been measured in previous studies for short periods during a burn and for multiyear periods following the burn, information on how carbon cycle is influenced by such changes over the span of a few weeks to months has yet to be quantified. We have analyzed high-frequency measurements of CO2 concentration and flux, as well as associated micrometeorological variables, at three levels of the tall Aiken AmeriFlux tower during and after a prescribed burn. Measurements of the CO2 concentration and vertical fluxes were examined as well as calculated net ecosystem exchange (NEE) for periods prior to and after the burn. Large spikes in both CO2 concentration and CO2 flux during the fire and increases in atmospheric CO2 concentration and reduced CO2 flux were observed for several weeks following the burn, particularly below the forest canopy. Both CO2 measurements and NEE were found to return to their preburn states within 60-90 days following the burn when no statistical significance was found between preburn and postburn NEE. This study examines the micrometeorological conditions during a low-intensity prescribed burn and its short-term effects on local CO2 dynamics in a forested environment by identifying observable impacts on local measurements of atmospheric CO2 concentration and fluxes.

  20. Halloysite Nanotubes Capturing Isotope Selective Atmospheric CO2

    OpenAIRE

    Subhra Jana; Sankar Das; Chiranjit Ghosh; Abhijit Maity; Manik Pradhan

    2015-01-01

    With the aim to capture and subsequent selective trapping of CO2, a nanocomposite has been developed through selective modification of the outer surface of the halloysite nanotubes (HNTs) with an organosilane to make the nanocomposite a novel solid-phase adsorbent to adsorb CO2 from the atmosphere at standard ambient temperature and pressure. The preferential adsorption of three major abundant isotopes of CO2 (12C16O2, 13C16O2, and 12C16O18O) from the ambient air by amine functionalized HNTs ...

  1. Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model

    Indian Academy of Sciences (India)

    Srabanti Ballav; Prabir K Patra; Yousuke Sawa; Hidekazu Matsueda; Ahoro Adachi; Shigeru Onogi; Masayuki Takigawa; Utpal K De

    2016-02-01

    Simulation of carbon dioxide (CO2) at hourly/weekly intervals and fine vertical resolution at the continental or coastal sites is challenging because of coarse horizontal resolution of global transport models. Here the regional Weather Research and Forecasting (WRF) model coupled with atmospheric chemistry is adopted for simulating atmospheric CO2 (hereinafter WRF-CO2) in nonreactive chemical tracer mode. Model results at horizontal resolution of 27 × 27 km and 31 vertical levels are compared with hourly CO2 measurements from Tsukuba, Japan (36.05°N, 140.13°E) at tower heights of 25 and 200 m for the entire year 2002. Using the wind rose analysis, we find that the fossil fuel emission signal from the megacity Tokyo dominates the diurnal, synoptic and seasonal variations observed at Tsukuba. Contribution of terrestrial biosphere fluxes is of secondary importance for CO2 concentration variability. The phase of synoptic scale variability in CO2 at both heights are remarkably well simulated the observed data (correlation coefficient >0.70) for the entire year. The simulations of monthly mean diurnal cycles are in better agreement with the measurements at lower height compared to that at the upper height. The modelled vertical CO2 gradients are generally greater than the observed vertical gradient. Sensitivity studies show that the simulation of observed vertical gradient can be improved by increasing the number of vertical levels from 31 in the model WRF to 37 (4 below 200 m) and using the Mellor–Yamada–Janjic planetary boundary scheme. These results have large implications for improving transport model simulation of CO2 over the continental sites.

  2. Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches.

    Science.gov (United States)

    Cherubini, Francesco; Guest, Geoffrey; Strømman, Anders H

    2013-11-15

    Analyses of global warming impacts from forest bioenergy systems are usually conducted either at a single stand level or at a landscape level, yielding findings that are sometimes interpreted as contrasting. In this paper, we investigate and reconcile the scales at which environmental impact analyses of forest bioenergy systems are undertaken. Focusing on the changes caused in atmospheric CO2 concentration of forest bioenergy systems characterized by different initial states of the forest, we show the features of the analyses at different scales and depict the connections between them. Impacts on atmospheric CO2 concentration at a single stand level are computed through impulse response functions (IRF). Results at a landscape level are elaborated through direct application of IRFs to the emission profile, so to account for the fluxes from all the stands across time and space. Impacts from fossil CO2 emissions are used as a benchmark. At a landscape level, forest bioenergy causes an increase in atmospheric CO2 concentration for the first decades that is similar to the impact from fossil CO2, but then the dynamics clearly diverge because while the impact from fossil CO2 continues to rise that from bioenergy stabilizes at a certain level. These results perfectly align with those obtained at a single stand for which characterization factors have been developed. In the hypothetical case of a sudden cessation of emissions, the change caused in atmospheric CO2 concentration from biogenic CO2 emissions reverses within a couple of decades, while that caused by fossil CO2 emissions remains considerably higher for centuries. When counterfactual aspects like the additional sequestration that would have occurred in the forest if not harvested and the theoretical displacement of fossil CO2 are included in the analysis, results can widely differ, as the CO2 debt at a landscape level ranges from a few years to several centuries (depending on the underlying assumptions considered).

  3. Changes in calcification of coccoliths under stable atmospheric CO2

    Science.gov (United States)

    Berger, C.; Meier, K. J. S.; Kinkel, H.; Baumann, K.-H.

    2014-02-01

    The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural environments, a uniform response of the entire coccolithophore community has not been documented so far. Moreover, previous palaeo-studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system, and only few studies focus on the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and decreasing carbonate ion concentration, we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a north-south transect in the North Atlantic were analysed. During the Holocene, mean weight (and therefore calcification) of Noelaerhabdaceae (Emiliania huxleyi and Gephyrocapsa) coccoliths decreased at the Azores (Geofar KF 16) from around 7 to 6 pg, but increased at the Rockall Plateau (ODP site 980) from around 6 to 8 pg, and at the Vøring Plateau (MD08-3192) from 7 to 10 pg. The amplitude of average weight variability is within the range of glacial-interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are not

  4. CFD模拟气调库快速降氧过程O2和CO2浓度变化规律%Variation and distribution characteristics of O2, CO2 concentration in controlled atmosphere storage by CFD

    Institute of Scientific and Technical Information of China (English)

    周博; 南晓红; 文改黎

    2015-01-01

    O2和CO2浓度对果蔬的贮藏品质有着极大的影响,获得其在气调库内的变化和分布规律可以为气调库优化设计提供理论依据。该文以西安某苹果气调库为研究对象,采用k-ε紊流模型建立了气调库内气体流动、传热与传质的三维数学求解模型,并通过编写UDF程序获得苹果呼吸强度和冷风机送风口O2、CO2质量分数随库内气体组分浓度变化实时数据。经过对该气调库的快速降氧过程数值模拟获得库内O2和CO2浓度随时间变化的规律,并与试验数据呈现较好的一致性,相对偏差平均值为0.027。结果表明库内气体区O2浓度随时间呈指数衰减。该文的研究对象经过4.1 h,气体区O2浓度下降速度小于货物区,此时提高制氮机制氮体积分数会缩短降氧时间。气体区和货物区CO2浓度变化规律相似,升高速度逐渐变小。库内O2和CO2浓度分布在气体区比较均匀,在货物区则存在一定的梯度,货物区中心位置不利于果蔬的贮藏。该文研究对于获取实际气调库降氧时间及选择合理的制氮机,改进气调工艺具有重要参考价值。%Concentration of O2and CO2 has a great effect on storage quality of cold stored fruits or vegetables. Obtaining concentration variation and distribution characteristics of O2and CO2 concentration in a controlled atmosphere storage (CA storage) can provide theoretical basis for optimal design and operation of CA storages. Hence, a combination of CFD calculation and experimental study were carried out to study the complicated phenomenon of air flow, heat and mass transfer in CA storage. An unsteady, 3D (three-dimensional) global CFD model was established for a real CA storage for apples in Xian. The CFD model includes k-ε turbulent model and species transport model. The apple zone was regarded as porous medium zone. Air cooler was equipped in the storage. User-Defined-Function (UDF) programs were

  5. Where does CO2 in Antarctica cool the atmosphere ?

    Science.gov (United States)

    Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas

    2016-04-01

    In a recent study we have shown that for the high altitude plateau in Antarctica CO2 causes a surplus in infrared emission to space compared to what is emitted from the surface. This corresponds to a negative greenhouse effect, and is due to the fact that for this region the surface is typically colder than the atmosphere above, opposite to the rest of the world. As a consequence, for this region an increase in CO2 leads to an increase in the energy loss to space, leading to an increase in the negative greenhouse effect. We now studied in more detail the radiative effect of CO2 and compared the results with available measurements from Antarctica. H. Schmithüsen, J. Notholt, G. Köngig-Langlo, T, Jung. How increasing CO2 leads to an increased negative greenhouse effect in Antarctica. Geophysical Research Letters, in press, 2015. doi: 10.1002/2015GL066749.

  6. Experimental and modeling study of NO emission under high CO2 concentration

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental and numerical study of the NOx formation and reduction process in a designed coal combustion furnace under both traditional air atmosphere and O2/CO2 atmosphere was conducted, in an attempt to explore the chemistry mechanism of the experimentally observed NOx suppression under high CO2 concentration atmospheres. A simplified ‘chemically oriented’ approach, computational fluid dynamics (CFD)-chemical kinetics modeling method, was validated and used to model the experimental process. The high CO2 concentration’s chemical effect on NO reduction has been studied, and the differences in NOx reaction behaviors between O2/CO2 atmosphere and air atmosphere were analyzed by detailed chemical kinetic model. On the basis of investigations through elementary chemical reactions, it can be concluded that high CO2 concentration plays an important role on NOx conversion process during oxy-fuel combustion. Moreover, the dominant reaction steps and the most important reactions for NO conversion under different atmospheres were discussed. Under O2/CO2 atmosphere, the main active sequence for NO reaction includes: NO→N→N2, and the main active path for NO reaction under air atmosphere is through N2→N→NO.

  7. Water Loss from Terrestrial Planets with CO2-rich Atmospheres

    Science.gov (United States)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO2-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ~270 W m-2 (global mean) unlikely to lose more than one Earth ocean of H2O over their lifetimes unless they lose all their atmospheric N2/CO2 early on. Because of the variability of H2O delivery during accretion, our results suggest that many "Earth-like" exoplanets in the habitable zone may have ocean-covered surfaces, stable CO2/H2O-rich atmospheres, and high mean surface temperatures.

  8. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.

    Science.gov (United States)

    Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F

    2016-02-11

    No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.

  9. Climate change and CO2 removal from the atmosphere

    NARCIS (Netherlands)

    Schuiling, R.D.

    2014-01-01

    Several methods have been proposed in recent years to counteract climate change and ocean acidification by removing CO2 from the atmosphere (Carbon Dioxide Removal). The most versatile and widely applicable of these methods is enhanced weathering of olivine, which is capable of removing billions of

  10. ROOT-GROWTH AND FUNCTIONING UNDER ATMOSPHERIC CO2 ENRICHMENT

    NARCIS (Netherlands)

    STULEN, [No Value; DENHERTOG, J

    1993-01-01

    This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions

  11. Detection of CO2 leakage by the surface-soil CO2-concentration monitoring (SCM) system in a small scale CO2 release test

    Science.gov (United States)

    Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu

    2015-04-01

    Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2

  12. Thermal decomposition of dolomite under CO2-air atmosphere

    Science.gov (United States)

    Subagjo, Wulandari, Winny; Adinata, Pratitis Mega; Fajrin, Anita

    2017-01-01

    This paper reports a study on thermal decomposition of dolomite under CO2-air. Calcination was carried out non-isothermally by using thermogravimetry analysis-differential scanning calorimetry (TGA-DSC) with a heating rate of 10°C/minute in an air atmosphere as well as 10 vol% CO2 and 90 vol% air atmosphere from 25 to 950°C. In addition, a thermodynamic modeling was also carried out to simulate dolomite calcination in different level of CO2-air atmosphere by using FactSage® 7.0. The the main constituents of typical dolomite from Gresik, East Java include MgCO3 (magnesite), CaCO3 (calcite), Ca(OH)2, CaO, MgO, and less than 1% of metal impurities. Based on the kinetics analysis from TGA results, it is found that non-isothermal dolomite calcination in 10 vol% CO2 atmosphere is occurred in a two-stage reaction; the first stage is the decomposition of magnesite at 650-740 °C with activation energy of 161.23 kJ/mol, and the second stage is the decomposition of calcite at 775-820 °C with activation energy of 162.46 kJ/mol. The magnesite decomposition is found to follow nucleation reaction mechanism of Avrami Eroveyef (A3), while calcite decomposition follows second order chemical reaction equation. Thermodynamic modeling supports these kinetic analyses. The results of this research give insight to the kinetics of dolomite decomposition in CO2-air atmosphere.

  13. Algal constraints on the Cenozoic history of atmospheric CO2?

    Directory of Open Access Journals (Sweden)

    R. E. M. Rickaby

    2007-01-01

    Full Text Available An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO2. To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing an upper constraint on pCO2 over the Cenozoic based on the living geological record. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of first emergence of each morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.

  14. Atmospheric CO2 enrichment facilitates cation release from soil.

    Science.gov (United States)

    Cheng, L; Zhu, J; Chen, G; Zheng, X; Oh, N-H; Rufty, T W; Richter, D deB; Hu, S

    2010-03-01

    Atmospheric CO(2) enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO(2) enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO(2)-enhancement of cation release from soil in rice agricultural systems. Elevated CO(2) increased organic C allocation belowground and net H(+) excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe(2+) and Mn(2+) in soil solutions. Increased H(+), Fe(2+), and Mn(2+) promoted Ca(2+) and Mg(2+) release from soil cation exchange sites. These results indicate that over the short term, elevated CO(2) may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO(2)-induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems.

  15. Tropical epiphytes in a CO 2-rich atmosphere

    Science.gov (United States)

    Monteiro, José Alberto Fernandez; Zotz, Gerhard; Körner, Christian

    2009-01-01

    We tested the effect on epiphyte growth of a doubling of pre-industrial CO 2 concentration (280 vs. 560 ppm) combined with two light (three fold) and two nutrition (ten fold) treatments under close to natural humid conditions in daylight growth cabinets over 6 months. Across co-treatments and six species, elevated CO 2 increased relative growth rates by only 6% ( p = 0.03). Although the three C3 species, on average, grew 60% faster than the three CAM species, the two groups did not significantly differ in their CO 2 response. The two Orchidaceae, Bulbophyllum (CAM) and Oncidium (C3) showed no CO 2 response, and three out of four Bromeliaceae showed a positive one: Aechmea (CAM, +32% p = 0.08), Catopsis (C3, +11% p = 0.01) and Vriesea (C3, +4% p = 0.02). In contrast, the representative of the species-rich genus Tillandsia (CAM), which grew very well under experimental conditions, showed no stimulation. On average, high light increased growth by 21% and high nutrients by 10%. Interactions between CO 2, light and nutrient treatments (low vs. high) were inconsistent across species. CO 2 responsive taxa such as Catopsis, could accelerate tropical forest dynamics and increase branch breakage, but overall, the responses to doubling CO 2 of these epiphytes was relatively small and the responses were taxa specific.

  16. Stomatal proxy record of CO2 concentrations during the Last Termination demonstrates dynamic climate behaviour and an important role for CO2.

    Science.gov (United States)

    Steinthorsdottir, Margret; Wohlfarth, Barbara; Kylander, Malin E.; Blaauw, Maarten; Reimer, Paula J.

    2013-04-01

    We present a new stomatal proxy-based record of CO2 concentrations spanning Greenland Interstadial 1 (Allerød pollen zone, GI-1a to 1c), Greenland Stadial 1 (Younger Dryas pollen zone, GS-1) and the first part of the Holocene (Preboreal pollen zone). The calibrated atmospheric CO2 concentrations are based on Betula nana (dwarf birch) leaves from a fossil lake sedimentary sequence in south-eastern Sweden. The stomatal proxy method relies on the inverse relationship between stomatal density on plant leaves and atmospheric CO2 concentrations to reconstruct variations in past CO2 concentrations. The record presented here demonstrates that the overall pattern of CO2 evolution during this period was dynamic, with significant abrupt fluctuations in CO2 concentration when the climate moved from interstadial to stadial state and vice versa. The cooling at the GI-1/GS-1 transition was preceded by an abrupt warming, and the warming at the GS-1/Holocene transition was preceded by an abrupt cooling. This scenario is in contrast to CO2 records reconstructed from air bubbles trapped in ice, which indicate a gradual increase in concentrations, but largely in alignment with previously published stomatal proxy-based CO2 records. A new loss-on-ignition chemical record (used here as a proxy for temperature), from the same locality, lends independent support to the CO2 record.

  17. Effects of Atmospheric CO2 Enrichment on Soil CO2 Efflux in a Young Longleaf Pine System

    Directory of Open Access Journals (Sweden)

    G. Brett Runion

    2012-01-01

    Full Text Available The southeastern landscape is composed of agricultural and forest systems that can store carbon (C in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2 on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf pine savannahs are an ecologically and economically important, yet understudied, component of the southeastern landscape. We investigated the effects of ambient and elevated CO2 on soil CO2 efflux in a young longleaf pine system using a continuous monitoring system. A significant increase (26.5% in soil CO2 efflux across 90 days was observed under elevated CO2; this occurred for all weekly and daily averages except for two days when soil temperature was the lowest. Soil CO2 efflux was positively correlated with soil temperature with a trend towards increased efflux response to temperature under elevated CO2. Efflux was negatively correlated with soil moisture and was best represented using a quadratic relationship. Soil CO2 efflux was not correlated with root biomass. Our data indicate that, while elevated CO2 will increase feedback of CO2 to the atmosphere via soil efflux, terrestrial ecosystems will remain potential sinks for atmospheric CO2 due to greater biomass production and increased soil C sequestration.

  18. 亚高山林线优势种形态结构和竞争力对CO2浓度和温度升高的响应%Responses of morphological structure and competition capability of dominant plant species in subalpine timberline to elevated atmospheric CO2 concentration and air temperature

    Institute of Scientific and Technical Information of China (English)

    侯颖; 杨红超; 王开运

    2011-01-01

    By using enclosed-top chambers to simulate the future climate change, this paper studied the responses of the morphological structure and competition capability of subalpine dominant plant species ( Abies faxoniana, Deyeuxia scabrescen, Carex kansuensis, Fragaria orientali, and Cardamine tangutorum) to elevated atmospheric CO2 concentration and air temperature. After two years exposure, the crown volume, specific crown volume, specific leaf area, and specific root length of A. Faxoniana under elevated atmospheric CO2 concentration increased by 42% , 65% , 17% , and 19% , respectively. Under elevated air temperature, A. Faxoniana grew faster lengthways, its crown volume increased by 22% , and its root/shoot ratio and specific root length increased by 17%. The interaction of elevated atmospheric CO2 concentration and air temperature increased the crown volume, specific crown volume, specific leaf area, and specific root length of A. Faxoniana by 79% , 197% , 17% , and 18% , respectively. Under elevated atmospheric CO2 concentration, the D. Scabrescen had an increase of plant height, basal diameter, and leaf number per plant but a decrease of specific leaf area, whereas the C. Kansuensis, F. Orientali , and C. Tangutorum were in adverse. Under elevated air temperature, the root/shoot ratio of D. Scabrescen, C. Kansuensis, F. Orientali, and C. Tangutorum decreased, and the plant height and basal diameter of the herbs except C. Tangutorum also decreased. The interaction of elevated atmospheric CO2 concentration and air temperature increased the basal diameter and leaf number per plant of the four herbs, but decreased their specific leaf area and root/shoot ratio. In sum, both elevated atmospheric C02 concentration and elevated air temperature promoted the formation of A. Faxoniana crown, which was beneficial to the capture of resources and the enhancement of the competition ability per unit mass, but had definite negative effects on the morphological structure and

  19. Climate Sensitivity, Sea Level, and Atmospheric CO2

    CERN Document Server

    Hansen, James; Russell, Gary; Kharecha, Pushker

    2012-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Pleistocene climate oscillations imply a fast-feedback climate sensitivity 3 {\\pm} 1 {\\deg}C for 4 W/m2 CO2 forcing for the average of climate states between the Holocene and Last Glacial Maximum (LGM), the error estimate being large and partly subjective because of continuing uncertainty about LGM global surface climate. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity. Ice sheet response time is poorly defined, but we suggest that hysteresis and slow response in current ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding a strong increase in sensitivity when global temperature reaches early Cenozoic and higher levels, as increased water vapor eliminates the tropopause. It follows that...

  20. Water loss from terrestrial planets with CO2-rich atmospheres

    CERN Document Server

    Wordsworth, Robin

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on atmospheric composition (CO2 and N2 levels), planetary mass, and external parameters (stellar spectrum, orbital distance and impacts). From coupled 1D climate and escape modeling, we show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1 to 1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but XUV/UV luminosity decreases, this places strong limits on moist...

  1. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  2. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    Science.gov (United States)

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  3. Observations of Atmospheric Δ(14)CO2 at the Global and Regional Background Sites in China: Implication for Fossil Fuel CO2 Inputs.

    Science.gov (United States)

    Niu, Zhenchuan; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Lu, Xuefeng; Xiong, Xiaohu; Du, Hua; Fu, Yunchong

    2016-11-15

    Six months to more than one year of atmospheric Δ(14)CO2 were measured in 2014-2015 at one global background site in Waliguan (WLG) and four regional background sites at Shangdianzi (SDZ), Lin'an (LAN), Longfengshan (LFS) and Luhuitou (LHT), China. The objectives of the study are to document the Δ(14)CO2 levels at each site and to trace the variations in fossil fuel CO2 (CO2ff) inputs at regional background sites. Δ(14)CO2 at WLG varied from 7.1 ± 2.9‰ to 32.0 ± 3.2‰ (average 17.1 ± 6.8‰) in 2015, with high values generally in autumn/summer and low values in winter/spring. During the same period, Δ(14)CO2 values at the regional background sites were found to be significantly (p 0.05) seasonal differences in CO2ff concentrations for the regional sites. Regional sources contributed in part to the CO2ff inputs at LAN and SDZ, while local sources dominated the trend observed at LHT. These data provide a preliminary understanding of atmospheric Δ(14)CO2 and CO2ff inputs for a range of Chinese background sites.

  4. The BErkeley Atmospheric CO2 Observation Network: initial evaluation

    Science.gov (United States)

    Shusterman, Alexis A.; Teige, Virginia E.; Turner, Alexander J.; Newman, Catherine; Kim, Jinsol; Cohen, Ronald C.

    2016-10-01

    With the majority of the world population residing in urban areas, attempts to monitor and mitigate greenhouse gas emissions must necessarily center on cities. However, existing carbon dioxide observation networks are ill-equipped to resolve the specific intra-city emission phenomena targeted by regulation. Here we describe the design and implementation of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), a distributed CO2 monitoring instrument that utilizes low-cost technology to achieve unprecedented spatial density throughout and around the city of Oakland, California. We characterize the network in terms of four performance parameters - cost, reliability, precision, and systematic uncertainty - and find the BEACO2N approach to be sufficiently cost-effective and reliable while nonetheless providing high-quality atmospheric observations. First results from the initial installation successfully capture hourly, daily, and seasonal CO2 signals relevant to urban environments on spatial scales that cannot be accurately represented by atmospheric transport models alone, demonstrating the utility of high-resolution surface networks in urban greenhouse gas monitoring efforts.

  5. Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    Full Text Available BACKGROUND: The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques. PRINCIPAL FINDINGS: Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana ×P. tomentosa leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes. CONCLUSIONS: Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.

  6. Role of Southern Ocean stratification in glacial atmospheric CO2 reduction

    Science.gov (United States)

    Kobayashi, H.; Oka, A.

    2014-12-01

    Paleoclimate proxy data at the glacial period shows high salinity of more than 37.0 psu in the deep South Atlantic. At the same time, data also indicate that the residence time of the water mass was more than 3000 years. These data implies that the stratification by salinity was stronger in the deep Southern Ocean (SO) in the Last Glacial Maximum (LGM). Previous studies using Ocean General Circulation Model (OGCM) fail to explain the low glacial atmospheric carbon dioxide (CO2) concentration at LGM. The reproducibility of salinity and water mass age is considered insufficient in these OGCMs, which may in turn affect the reproducibility of the atmospheric CO2concentration. In coarse-resolution OGCMs, The deep water is formed by unrealistic open-ocean deep convection in the SO. Considering these facts, we guessed previous studies using OGCM underestimated the salinity and water mass age at LGM. This study investigate the role of the enhanced stratification in the glacial SO on the variation of atmospheric CO2 concentration by using OGCM. In order to reproduce the recorded salinity of the deep water, relaxation of salinity toward value of recorded data is introduced in our OGCM simulations. It was found that deep water formation in East Antarctica is required for explaining the high salinity in the South Atlantic. In contrast, it is difficult to explain the glacial water mass age, even if we assume the situation vertical mixing is very weak in the SO. Contrary to previous estimate, the high salinity of the deep SO resulted in increase of Antarctic Bottom water (AABW) flow and decrease the residence time of carbon in the deep ocean, which increased atmospheric CO2 concentration. On the other hand, the weakening of the vertical mixing in the SO contributed to increase the vertical gradient of dissolved inorganic carbon (DIC), which decreased atmospheric CO2 concentration. Adding the contribution of the enhanced stratification in the glacial SO, we obtained larger

  7. Biases in atmospheric CO2 estimates from correlated meteorology modeling errors

    Science.gov (United States)

    Miller, S. M.; Hayek, M. N.; Andrews, A. E.; Fung, I.; Liu, J.

    2015-03-01

    Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to characterize. In this paper, we leverage an ensemble of global meteorology model outputs combined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 boundary layer enhancements and quantify how that answer changes if we either include or remove error correlations or covariances. In a second case study, we investigate which meteorological conditions are associated with these CO2 biases. In the first case study, we estimate uncertainties of 0.5-7 ppm in monthly-averaged CO2 concentrations, depending upon location (95% confidence interval). These uncertainties correspond to 13-150% of the mean afternoon CO2 boundary layer enhancement at individual observation sites. When we remove error covariances, however, this range drops to 2-22%. Top-down studies that ignore these covariances could therefore underestimate the uncertainties and/or propagate transport errors into the flux estimate. In the second case study, we find that these month-long errors in atmospheric transport are anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions. In marine environments, by contrast, these errors are more strongly associated with weak zonal winds. Many errors, however, are not correlated with a single meteorological parameter, suggesting that a single meteorological proxy is

  8. Estimates of CO2 traffic emissions from mobile concentration measurements

    Science.gov (United States)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  9. The Dependence of Plant δ13C on Atmospheric pCO2

    Science.gov (United States)

    Jahren, H.; Schubert, B.

    2011-12-01

    Numerous studies on multicellular plants have reported increasing carbon isotope fractionation in leaf tissue with increasing concentrations of atmospheric carbon dioxide (pCO2), but the magnitude of the effect is highly variable (i.e., 0.62 to 2.7 % per 100 ppm CO2). The majority of these experiments tested only small differences in CO2 levels (Raphanus sativus plants grown under controlled light, water, and temperature conditions, and varying the pCO2 concentrations across a trajectory of 17 different pCO2 levels ranging from 370 to 4200 ppm. From this large dataset, we show that the carbon isotope discrimination [Δδ13C = (δ13CCO2 - δ13Cplant) / (1000 + δ13Cplant)] is indeed a function of pCO2, however, the relationship is hyperbolic, rather than linear, as is typically assumed. Across the small changes in pCO2 previously studied the response appears linear, however, our expanded dataset clearly shows that increases in Δδ13C level off at high pCO2, which is consistent with the ultimate control over fractionation being the activity of Rubisco as the concentration of pCO2 inside the leaf approaches the pCO2 level outside the leaf. The hyperbolic relationship we have quantified using published and new data is extremely robust (R2 = 0.90, n = 26, P < 0.0001), and evident in n-alkanes as well as bulk tissue, suggesting the potential for application to fossil plant materials in order to reconstruct pCO2 across critical intervals.

  10. Effects of Elevated Atmospheric CO(2) on Rhizosphere Soil Microbial Communities in a Mojave Desert Ecosystem.

    Science.gov (United States)

    Nguyen, L M; Buttner, M P; Cruz, P; Smith, S D; Robleto, E A

    2011-10-01

    The effects of elevated atmospheric carbon dioxide [CO(2)] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO(2)] using Free-Air CO(2) Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO(2)], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO(2)]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO(2)]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO(2)]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO(2)]. These results indicate that elevated [CO(2)] changes structure and representation of microorganisms associated with roots of desert plants.

  11. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  12. Advances on the Responses of Root Dynamics to Increased Atmospheric CO2 and Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Plant roots dynamics responses to elevated atmospheric CO2 concentration, increased temperature and changed precipitation can be a key link between plant growth and long-term changes in soil organic matter and ecosystem carbon balance. This paper reviews some experiments and hypotheses developed in this area, which mainly include plant fine roots growth, root turnover, root respiration and other root dynamics responses to elevated CO2 and global climate change. Some recent new methods of studying root systems were also discussed and summarized. It holds herein that the assemblage of information about root turnover patterns, root respiration and other dynamic responses to elevated atmospheric CO2 and global climatic change can help to better understand and explore some new research areas. In this paper, some research challenges in the plant root responses to the elevated CO2 and other environmental factors during global climate change were also demonstrated.

  13. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  14. On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column retrievals

    Directory of Open Access Journals (Sweden)

    F. Chevallier

    2015-04-01

    Full Text Available The extending archive of the Greenhouse Gases Observing SATellite (GOSAT measurements (now covering about six years allows increasingly robust statistics to be computed, that document the performance of the corresponding retrievals of the column-average dry air-mole fraction of CO2 (XCO2. Here, we compare a model simulation constrained by surface air-sample measurements with one of the GOSAT retrieval products (NASA's ACOS. The retrieval-minus-model differences result from various error sources, both in the retrievals and in the simulation: we discuss the plausibility of the origin of the major patterns. We find systematic retrieval errors over the dark surfaces of high-latitude lands and over African savannahs. More importantly, we also find a systematic over-fit of the GOSAT radiances by the retrievals over land for the high-gain detector mode, which is the usual observation mode. The over-fit is partially compensated by the retrieval bias-correction. These issues are likely common to other retrieval products and may explain some of the surprising and inconsistent CO2 atmospheric inversion results obtained with the existing GOSAT retrieval products. We suggest that reducing the observation weight in the retrieval schemes (for instance so that retrieval increments to the retrieval prior values are halved for the studied retrieval product would significantly improve the retrieval quality and reduce the need for (or at least reduce the complexity of ad-hoc retrieval bias correction. More generally, we demonstrate that atmospheric inversions cannot be rigorously optimal when assimilating XCO2 retrievals, even with averaging kernels.

  15. Effect of elevated atmospheric CO2 on carbon allocation patterns in Eriphorum vaginatum

    Science.gov (United States)

    Strom, L.

    2013-12-01

    Greenhouse gases of particular importance to the human induced greenhouse effect are, e.g., CO2 and CH4. Natural and agricultural wetlands together contribute with over 40 % of the annual atmospheric emissions of CH4 and are, therefore, considered to be the largest single contributor of this gas to the troposphere. There is a growing concern that increasing atmospheric concentrations of CO2 will stimulate CH4 production and emission from wetland ecosystems, resulting in feedback mechanisms that in future will increase the radiative forcing of these ecosystems. The aim of this study was to elucidate the effect of elevated atmospheric CO2 on fluxes of CO2 and CH4, biomass allocation patterns and amount of labile substrates (i.e. low molecular weight organic acids, OAs) for CH4 production in the root vicinity of Eriophorum vaginatum. Eriophorum cores and plants were collected at Fäjemyr, a temperate ombrotrophic bog situated in the south of Sweden. These were cultivated under controlled environmental conditions in an atmosphere of 390 or 800 ppm of CO2 (n=5 per treatment). After a one month development period gas fluxes were measured twice per week over one month using a Fourier Transform Infrared spectrometer (Gasmet Dx-4030) and OAs using a liquid chromatography-ionspray tandem mass spectrometry system (Dionex ICS-2500 and Applied Biosystems 2000 Q-Trap triple quadrupole MS). The results clearly show that elevated CO2 significantly affects all measured parts of the carbon cycle. Greenhouse gas fluxes were significantly (repeated measures test) higher under elevated CO2 conditions, NEE p leaves, roots and concentration of OAs around the roots of plants, p = 0.045, p = 0 = 0.045 and p = 0.045 respectively (Kruskal wallis 1-way anova). The study shows higher CH4 emissions under elevated CO2 and that this may be due to a priming effect, due to input of fresh labile-C via living roots and possibly higher biomass. However the concern that elevated atmospheric

  16. Atmospheric radon, CO2 and CH4 dynamics in an Australian coal seam gas field

    Science.gov (United States)

    Tait, D. R.; Santos, I. R.; Maher, D. T.

    2013-12-01

    Atmospheric radon (222Rn), carbon dioxide (CO2), and methane concentrations (CH4) as well as carbon stable isotope ratios (δ13C) were used to gain insight into atmospheric chemistry within an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). A˜3 fold increase in maximum 222Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average 222Rn concentrations and the number of gas wells within a 2 km to 4 km radius of the sampling sites (n = 5 stations; p gas field related to point sources (well heads, pipelines, etc.) and diffse soil sources due to changes in the soil structural and hydrological characteristics. A rapid qualitative assessment of CH4 and CO2 concentration, and carbon isotopes using a mobile cavity ring-down spectrometer system showed a widespread enrichment of both CH4 and CO2 within the production gas field. Concentrations of CH4 and CO2 were as high as 6.89 ppm and 541 ppm respectively compared average concentrations of 1.78 ppm (CH4) and 388 ppm (CO2) outside the gas field. The δ13C values showed distinct differences between areas inside and outside the production field with the δ13C value of the CH4 source within the field matching that of the methane in the CSG.

  17. [CO2 Budget and Atmospheric Rectification (COBRA) Over North America

    Science.gov (United States)

    2004-01-01

    The purpose of the CO2 Budget and Rectification Airborne (COBRA) study was to assess terrestrial sources and sinks of carbon dioxide using an air-borne study. The study was designed to address the measurement gap between plot-scale direct flux measurements and background hemispheric-scale constraints and to refine techniques for measuring terrestrial fluxes at regional to continental scales. The initial funded effort (reported on here) was to involve two air-borne campaigns over North America, one in summer and one in winter. Measurements for COBRA (given the acronym C02BAR in the initial proposal) were conducted from the University of North Dakota Citation 11, a twin-engine jet aircraft capable of profiling from the surface to 12 km and cruising for up to 4 hours and 175m/s. Onboard instrumentation measured concentrations of CO2, CO, and H2O, and meteorological parameters at high rates. In addition, two separate flask sampling systems collected discrete samples for laboratory analysis of CO2,CO, CH4, N2O, SF6, H2, 13CO2, C18O16O,O2/N2, and Ar/N2. The project involved a collaboration between a number of institutions, including (but not limited to) Harvard, NOAA-CMDL, the University of North Dakota, and Scripps.

  18. Root damage by insects reverses the effects of elevated atmospheric CO2 on Eucalypt seedlings.

    Directory of Open Access Journals (Sweden)

    Scott N Johnson

    Full Text Available Predicted increases in atmospheric carbon dioxide (CO2 are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2, with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2. Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.

  19. Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere

    Science.gov (United States)

    Barclay, Richard S.; Wing, Scott L.

    2016-04-01

    Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response of G. biloba to elevated pCO2, better counts and measurements of

  20. Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany

    Directory of Open Access Journals (Sweden)

    Jan F. Degener

    2015-07-01

    Full Text Available The quality and quantity of the influence that atmospheric CO2 has on cropgrowth is still a matter of debate. This study's aim is to estimate if CO2 will have an effect on biomass yields at all, to quantify and spatially locate the effects and to explore if an elevated photosynthesis rate or water-use-efficiency is predominantly responsible. This study uses a numerical carbon based crop model (BioSTAR to estimate biomass yields within theadministrative boundaries of Niedersachsen in Northern Germany. 10 crops are included (winter grains: wheat, barley,rye, triticale - early, medium, late maize variety - sunflower, sorghum, spring wheat, modeled annuallyfor the entire 21st century on 91,014 separate sites. Modeling was conducted twice, once with an annually adaptedCO2 concentration according to the SRES-A1B scenario and once with a fixed concentration of 390 ppm to separate the influence of CO2 from that of the other input variables.Rising CO2 concentrations will play a central role in keeping future yields of all crops above or aroundtoday's level. Differences in yields between modeling with fixed or adapted CO2 can be as high as60 % towards the century's end. Generally yields will increase when CO2 rises and decline whenit is kept constant. As C4-crops are equivalently affected it is presumed that anelevated efficiency in water use is the main responsible factor for all plants.

  1. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Saha, Saurav; Chakraborty, Debashis; Sehgal, Vinay K; Pal, Madan

    2015-11-15

    Experiments were conducted in open-top chambers to assess the effect of atmospheric CO2 enrichment (E-CO2) on the quality of grains in chickpea (Cicer arietinum L.) crop. Physical attributes of the grains was not affected, but the hydration and swelling capacities of the flour increased. Increase in carbohydrates and reduction in protein made the grains more carbonaceous (higher C:N) under E-CO2. Among other mineral nutrients, K, Ca and Zn concentrations decreased, while P, Mg, Cu, Fe, Mn and B concentrations did not change. The pH, bulk density and cooking time of chickpea flour remained unaffected, although the water absorption capacity of flour increased and oil absorption reduced. Results suggest that E-CO2 could affect the grain quality adversely and nutritional imbalance in grains of chickpea might occur.

  2. Changes in calcification of coccoliths under stable atmospheric CO2

    DEFF Research Database (Denmark)

    Berger, C.; Meier, K. J. S.; Kinkel, H.;

    2014-01-01

    The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural...... North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected...

  3. Implications of high amplitude atmospheric CO2 fluctuations on past millennium climate change

    Science.gov (United States)

    van Hoof, Thomas; Kouwenberg, Lenny; Wagner-Cremer, Friederike; Visscher, Henk

    2010-05-01

    Stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of pre-industrial atmospheric CO2 concentration complementary to measurements in Antarctic ice cores. Stomatal frequency based CO2 trends from the USA and NW European support the presence of significant CO2 variability during the first half of the last millennium (Kouwenberg et al., 2005; Wagner et al., 2004; van Hoof et al., 2008). The timing of the most significant perturbation in the stomata records (1200 AD) is in agreement with an observed CO2 fluctuation in the D47 Antarctic ice-core record (Barnola et al., 1995; van Hoof et al., 2005). The amplitude of the stomatal frequency based CO2 changes (> 34ppmv) exceeds the maximum amplitude of CO2 variability in the D47 ice core (Proceedings of the National Academy of Sciences of the USA, v. 105, no. 41, pp. 15815-15818 Wagner F., L.L.R. Kouwenberg, T.B. van Hoof and H. Visscher 2004. Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quartenary Science Reviews. V. 23, pp. 1947-1954

  4. Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2.

    Science.gov (United States)

    Mohan, Jacqueline E; Ziska, Lewis H; Schlesinger, William H; Thomas, Richard B; Sicher, Richard C; George, Kate; Clark, James S

    2006-06-13

    Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO(2)), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO(2). Rising CO(2) is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO(2) Enrichment experiment, we show that elevated atmospheric CO(2) in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO(2) growth stimulation exceeds that of most other woody species. Furthermore, high-CO(2) plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more "toxic" in the future, potentially affecting global forest dynamics and human health.

  5. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium.

    Science.gov (United States)

    Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L

    2005-05-01

    Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].

  6. CO2-3 concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii

    Science.gov (United States)

    Yates, K. K.; Halley, R. B.

    2006-01-01

    The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO32- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO32- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.003 to 0.23 g CaCO3 m-2 h-1 and dissolution ranged from -0.005 to -0.33 g CaCO3 m-2 h-1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO32- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO32- and pCO2. Threshold pCO2 and CO32- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3-- threshold value was 152±24 µmol kg-1, ranging from 113 to 184 µmol kg-1. Ambient seawater measurements of pCO2 and CO32- indicate that CO32- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

  7. CO2−3 concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii

    Directory of Open Access Journals (Sweden)

    R. B. Halley

    2006-01-01

    Full Text Available The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO32− to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO32− concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.003 to 0.23 g CaCO3 m−2 h−1 and dissolution ranged from −0.005 to −0.33 g CaCO3 m−2 h−1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO32− at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO32− and pCO2. Threshold pCO2 and CO32− values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3−- threshold value was 152±24 µmol kg-1, ranging from 113 to 184 µmol kg−1. Ambient seawater measurements of pCO2 and CO32− indicate that CO32− and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

  8. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    Science.gov (United States)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  9. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    Science.gov (United States)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2014-01-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 concentrations ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation. However, the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  10. Recent widespread tree growth decline despite increasing atmospheric CO2.

    Directory of Open Access Journals (Sweden)

    Lucas C R Silva

    Full Text Available BACKGROUND: The synergetic effects of recent rising atmospheric CO(2 and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. METHODOLOGY/PRINCIPAL FINDINGS: Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE and growth of two deciduous and two coniferous tree species along a 9 degrees latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment--BAI has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. CONCLUSIONS: Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.

  11. Rapid coupling of Antarctic temperature and atmospheric CO2 during deglaciation

    Directory of Open Access Journals (Sweden)

    T. D. van Ommen

    2012-02-01

    Full Text Available Antarctic ice cores provide clear evidence of a close coupling between variations in Antarctic temperature and the atmospheric concentration of CO2 during the glacial/interglacial cycles of the past 800 thousand years. Precise information on the relative timing of the temperature and CO2 changes can assist in refining our understanding of the physical processes involved in this coupling. Here, we focus on the last deglaciation, 19 000 to 11 000 years before present, during which CO2 concentrations increased by ~80 parts per million by volume and Antarctic temperature increased by ~10 °C. Utilising a recently developed proxy for regional Antarctic temperature, derived from five near-coastal ice cores, and two ice core CO2 records with high dating precision, we show that the increase in CO2 lagged the increase in regional Antarctic temperature by only 0–400 years. This new value for the lag, consistent for both CO2 records, implies a faster feedback between temperature and CO2 than the centennial to millennial-scale lags suggested by previous studies.

  12. Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions

    Science.gov (United States)

    Steinthorsdottir, Margret; Wohlfarth, Barbara; Kylander, Malin E.; Blaauw, Maarten; Reimer, Paula J.

    2013-05-01

    A new stomatal proxy-based record of CO2 concentrations ([CO2]), based on Betula nana (dwarf birch) leaves from the Hässeldala Port sedimentary sequence in south-eastern Sweden, is presented. The record is of high chronological resolution and spans most of Greenland Interstadial 1 (GI-1a to 1c, Allerød pollen zone), Greenland Stadial 1 (GS-1, Younger Dryas pollen zone) and the very beginning of the Holocene (Preboreal pollen zone). The record clearly demonstrates that i) [CO2] were significantly higher than usually reported for the Last Termination and ii) the overall pattern of CO2 evolution through the studied time period is fairly dynamic, with significant abrupt fluctuations in [CO2] when the climate moved from interstadial to stadial state and vice versa. A new loss-on-ignition chemical record (used here as a proxy for temperature) lends independent support to the Hässeldala Port [CO2] record. The large-amplitude fluctuations around the climate change transitions may indicate unstable climates and that “tipping-point” situations were involved in Last Termination climate evolution. The scenario presented here is in contrast to [CO2] records reconstructed from air bubbles trapped in ice, which indicate lower concentrations and a gradual, linear increase of [CO2] through time. The prevalent explanation for the main climate forcer during the Last Termination being ocean circulation patterns needs to re-examined, and a larger role for atmospheric [CO2] considered.

  13. VARIABILITY OF ATMOSPHERIC CO2 OVER INDIA AND SURROUNDING OCEANS AND CONTROL BY SURFACE FLUXES

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2012-08-01

    Full Text Available In the present study, seasonal and inter-annual variability of atmospheric CO2 concentration over India and surrounding oceans during 2002–2010 derived from Atmospheric InfrarRed Sounder observation and their relation with the natural flux exchanges over terrestrial Indian and surrounding oceans were analyzed. The natural fluxes over the terrestrial Indian in the form of net primary productivity (NPP were simulated based on a terrestrial biosphere model governed by time varying climate parameters (solar radiation, air temperature, precipitation etc and satellite greenness index together with the land use land cover and soil attribute maps. The flux exchanges over the oceans around India (Tropical Indian Ocean: TIO were calculated based on a empirical model of CO2 gas dissolution in the oceanic water governed by time varying upper ocean parameters such as gradient of partial pressure of CO2 between ocean and atmosphere, winds, sea surface temperature and salinity. Comparison between the variability of atmospheric CO2 anomaly with the anomaly of surface fluxes over India and surrounding oceans suggests that biosphere uptake over India and oceanic uptake over the south Indian Ocean could play positive role on the control of seasonal variability of atmospheric carbon dioxide growth rate. On inter-annual scale, flux exchanges over the tropical north Indian Ocean could play positive role on the control of atmospheric carbon dioxide growth rate.

  14. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    Science.gov (United States)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  15. Development of a mobile and high-precision atmospheric CO2 monitoring station

    Science.gov (United States)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  16. Effects of Temperature Rise and Increase in CO2 Concentration on Simulated Wheat Yields in Europe

    NARCIS (Netherlands)

    Nonhebel, Sanderine

    1996-01-01

    A crop-growth-simulation model based on SUCROS87 was used to study effects of temperature rise and increase of atmospheric CO2 concentration on wheat yields in several regions in Europe. The model simulated potential and water-limited crop production (growth with ample supply of nutrients and in the

  17. Recent advances in developing COS as a tracer of Biosphere-atmosphere exchange of CO2

    Science.gov (United States)

    Asaf, D.; Stimler, K.; Yakir, D.

    2012-04-01

    Potential use of COS as tracer of CO2 flux into vegetation, based on its co-diffusion with CO2 into leaves without outflux, stimulated research on COS-CO2 interactions. Atmospheric measurements by NOAA in recent years, across a global latitudinal transect, indicated a ratio of the seasonal drawdowns in COS and CO2 (normalized to their respective ambient concentrations) of about 6. We carried out leaf-scale gas exchange measurements of COS and CO2 in 22 plant species of deciduous, evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations (using mid IR laser spectroscopy). A narrow range in the normalized ratio of the net uptake rates of COS and CO2 (termed leaf relative uptake; LRU) was observed with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes, except under low light conditions when CO2, but not COS, metabolism is light limited. A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. We also report first eddy flux measurements of COS/CO2 at the ecosystem scales. Preliminarily results indicate a ratio of the COS flux, Fcos, to net ecosystem CO2 exchange, NEE, of 3-5 (termed ecosystem relative uptake; ERU). Combining measurements of COS and CO2 and the new information on their ratios at different scales should permit the direct estimation of gross CO2 uptake, GPP, by land ecosystems according to: GPP=NEE*ERU/LRU. In addition, we show that COS effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) stimulate stomatal conductance. It seems likely that the stomata are responding to H2S produced in the leaves from COS.

  18. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2

    DEFF Research Database (Denmark)

    Vestergard, Mette; Reinsch, Sabine; Bengtson, Per;

    2016-01-01

    accelerate the decomposition of soil organic C (SOC), a phenomenon termed ‘the priming effect’, and the priming effect is most pronounced at low soil N availability. Hence, we hypothesized that priming of SOC decomposition in response to labile C addition would increase in soil exposed to long-term elevated...... CO2 exposure. Further, we hypothesized that long-term warming would enhance SOC priming rates, whereas drought would decrease the priming response.We incubated soil from a long-term, full-factorial climate change field experiment, with the factors elevated atmospheric CO2 concentration, warming...... priming of SOC, and the priming response was higher in soil exposed to long-term elevated CO2 treatment. Drought tended to decrease the priming response, whereas long-term warming did not affect the level of priming significantly.We were also able to assess whether SOC-derived primed C in elevated CO2...

  19. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2

    Science.gov (United States)

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M.; Batke, Sven P.; Lawson, Tracy; McElwain, Jennifer C.

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency. PMID:27605929

  20. Potential effects of elevated atmospheric carbon dioxide (CO2) on coastal wetlands

    Science.gov (United States)

    McKee, Karen

    2006-01-01

    Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations.Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.

  1. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  2. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress

    Institute of Scientific and Technical Information of China (English)

    Tingqiang Li; Qi Tao; Zhenzhen Di; Fan Lu; Xiaoe Yang

    2015-01-01

    The combined effects of elevated CO2 and cadmi-um (Cd) on photosynthetic rate, chlorophyl fluorescence and Cd accumulation in hyperaccumulator Sedum alfredi Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 mL L?1) or elevated (800 mL L?1) CO2. Elevated CO2 significantly (P<0.05) increased Pn (105%–149%), Pnmax (38.8%–63.0%) and AQY (20.0%–34.8%) of S. alfredii in al the Cd treatments, but reduced chlorophyl concentra-tion, dark respiration and photorespiration. After 10 days growth in medium with 50 mM Cd under elevated CO2, PSII activities were significantly enhanced (P<0.05) with Pm, Fv/Fm, F(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredi grown under elevated CO2 was increased by 44.1%–48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredi due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredi .

  3. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza

    DEFF Research Database (Denmark)

    Rønn, R.; Gavito, M.; Larsen, J.

    2002-01-01

    Possible interactions between mycorrhiza, atmospheric CO2, free-living soil microorganisms and protozoa were investigated in pot experimental systems. Pea plants (Pisum sativum L. cv. Solara) were grown under ambient (360 mul l(-1)) or elevated (700 mul l(-1)) atmospheric CO2 concentration...... with or without the presence of the arbuscular mycorrhizal (AM) fungus Glomus caledonium. It was hypothesised that (1) the populations of free-living soil protozoa would increase as a response to elevated CO2, (2) the effect of elevated CO2 on protozoa would be moderated by the presence of mycorrhiza and (3......) the presence of arbuscular mycorrhiza would affect soil protozoan numbers regardless of atmospheric CO2. After 3 weeks growth there was no difference in bacterial numbers (direct counts) in soil, but the number of free-living bacterial-feeding protozoa was significantly higher under elevated CO2...

  4. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

    Science.gov (United States)

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-03-29

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  5. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    Science.gov (United States)

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco; SMS Science Team; Acton, Gary; Askin, Rosemary; Atkins, Clifford; Bassett, Kari; Beu, Alan; Blackstone, Brian; Browne, Gregory; Ceregato, Alessandro; Cody, Rosemary; Cornamusini, Gianluca; Corrado, Sveva; DeConto, Robert; Del Carlo, Paola; Di Vincenzo, Gianfranco; Dunbar, Gavin; Falk, Candice; Field, Brad; Fielding, Christopher; Florindo, Fabio; Frank, Tracy; Giorgetti, Giovanna; Grelle, Thomas; Gui, Zi; Handwerger, David; Hannah, Michael; Harwood, David M.; Hauptvogel, Dan; Hayden, Travis; Henrys, Stuart; Hoffmann, Stefan; Iacoviello, Francesco; Ishman, Scott; Jarrard, Richard; Johnson, Katherine; Jovane, Luigi; Judge, Shelley; Kominz, Michelle; Konfirst, Matthew; Krissek, Lawrence; Kuhn, Gerhard; Lacy, Laura; Levy, Richard; Maffioli, Paola; Magens, Diana; Marcano, Maria C.; Millan, Cristina; Mohr, Barbara; Montone, Paola; Mukasa, Samuel; Naish, Timothy; Niessen, Frank; Ohneiser, Christian; Olney, Mathew; Panter, Kurt; Passchier, Sandra; Patterson, Molly; Paulsen, Timothy; Pekar, Stephen; Pierdominici, Simona; Pollard, David; Raine, Ian; Reed, Joshua; Reichelt, Lucia; Riesselman, Christina; Rocchi, Sergio; Sagnotti, Leonardo; Sandroni, Sonia; Sangiorgi, Francesca; Schmitt, Douglas; Speece, Marvin; Storey, Bryan; Strada, Eleonora; Talarico, Franco; Taviani, Marco; Tuzzi, Eva; Verosub, Kenneth; von Eynatten, Hilmar; Warny, Sophie; Wilson, Gary; Wilson, Terry; Wonik, Thomas; Zattin, Massimiliano

    2016-03-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (˜280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (˜500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  6. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  7. Effect of CO2 on Atmospheric Corrosion of UNS G10190 Steel under Thin Electrolyte Film

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO2 has been studied in the lab using an atmospheric corrosion monitor(ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.

  8. Marine biological controls on atmospheric CO2 and climate

    Science.gov (United States)

    Mcelroy, M. B.

    1983-01-01

    It is argued that the ocean is losing N gas faster than N is being returned to the ocean, and that replenishment of the N supply in the ocean usually occurs during ice ages. Available N from river and estruarine transport and from rainfall after formation by lightning are shown to be at a rate too low to compensate for the 10,000 yr oceanic lifetime of N. Ice sheets advance and transfer moraine N to the ocean, lower the sea levels, erode the ocean beds, promote greater biological productivity, and reduce CO2. Ice core samples have indicated a variability in the atmospheric N content that could be attributed to the ice age scenario.

  9. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970

  10. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    Science.gov (United States)

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of

  11. Impact of oceanic circulation changes on the CO2 concentration during past interglacials

    Science.gov (United States)

    Bouttes, Nathaelle; Swingedouw, Didier; Crosta, Xavier; Fernanda Sanchez Goñi, Maria; Roche, Didier

    2016-04-01

    Interglacials before the Mid-Bruhnes Event (around 430 kyrs BP) were characterized by colder temperature in Antarctica, lower sea level and lower atmospheric CO2 compared to the more recent interglacials. Recent climate simulations have shown that the climate of the interglacials before and after the MBE can only be reproduced when taking into account changes in orbital parameters and atmospheric CO2 concentrations (Yin and Berger, 2010; Yin and Berger, 2012). Indeed, interglacial atmospheric CO2 concentrations were ~250 ppm and ~280 ppm prior and after the MBE, respectively. Yet, the cause for this change in atmospheric CO2 remains mainly unknown. climate simulations suggest that oceanic circulation was different during the interglacials due to the different climate states (Yin, 2013). The changes of oceanic circulation could have modified the carbon cycle: a more sluggish circulation would lead to greater carbon sequestration in the deep ocean and, subsequently, a decrease of atmospheric CO2. However, the impact of oceanic circulation changes on the carbon cycle during the interglacials of the last 800 kyrs has never been tested in coupled carbon-climate models. Here, we evaluate the role of ocean circulation changes on the carbon cycle during interglacials by using the intermediate complexity model iLOVECLIM (Goosse et al., 2010 ; Bouttes et al., 2015). This model includes a carbon cycle module on land and in the ocean and simulates carbon isotopes. The interglacial simulations are forced with orbital parameters, ice sheets and CO2 concentrations from data reconstructions. The model computes carbon fluxes between the reservoirs and an atmospheric CO2 that is distinct from the one used as a forcing. We will present simulations from this climate model for different interglacial periods of the last 800 000 years and use model-data comparison to analyse and evaluate the changes in the carbon cycle, including CO2. References Bouttes, N. et al. (2015), Geosci. Model

  12. Why CO2 cools the middle atmosphere - a consolidating model perspective

    Science.gov (United States)

    Goessling, Helge F.; Bathiany, Sebastian

    2016-08-01

    Complex models of the atmosphere show that increased carbon dioxide (CO2) concentrations, while warming the surface and troposphere, lead to lower temperatures in the stratosphere and mesosphere. This cooling, which is often referred to as "stratospheric cooling", is evident also in observations and considered to be one of the fingerprints of anthropogenic global warming. Although the responsible mechanisms have been identified, they have mostly been discussed heuristically, incompletely, or in combination with other effects such as ozone depletion, leaving the subject prone to misconceptions. Here we use a one-dimensional window-grey radiation model of the atmosphere to illustrate the physical essence of the mechanisms by which CO2 cools the stratosphere and mesosphere: (i) the blocking effect, associated with a cooling due to the fact that CO2 absorbs radiation at wavelengths where the atmosphere is already relatively opaque, and (ii) the indirect solar effect, associated with a cooling in places where an additional (solar) heating term is present (which on Earth is particularly the case in the upper parts of the ozone layer). By contrast, in the grey model without solar heating within the atmosphere, the cooling aloft is only a transient blocking phenomenon that is completely compensated as the surface attains its warmer equilibrium. Moreover, we quantify the relative contribution of these effects by simulating the response to an abrupt increase in CO2 (and chlorofluorocarbon) concentrations with an atmospheric general circulation model. We find that the two permanent effects contribute roughly equally to the CO2-induced cooling, with the indirect solar effect dominating around the stratopause and the blocking effect dominating otherwise.

  13. Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres

    CERN Document Server

    Segura, A; Kasting, J F; Crisp, D; Cohen, M

    2007-01-01

    Previous research has indicated that high amounts of ozone (O3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars.We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The ...

  14. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Osenberg, Craig W; Hungate, Bruce A

    2011-07-13

    Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated.

  15. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    Science.gov (United States)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological

  16. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Science.gov (United States)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  17. Atmospheric CO2 enrichment and drought stress modify root exudation of barley.

    Science.gov (United States)

    Calvo, Olga C; Franzaring, Jürgen; Schmid, Iris; Müller, Matthias; Brohon, Nolwenn; Fangmeier, Andreas

    2017-03-01

    Rising CO2 concentrations associated with drought stress is likely to influence not only aboveground growth, but also belowground plant processes. Little is known about root exudation being influenced by elements of climate change. Therefore, this study wanted to clarify whether barley root exudation responds to drought and CO2 enrichment and whether this reaction differs between an old and a recently released malting barley cultivar. Barley plants were grown in pots filled with sand in controlled climate chambers at ambient (380 ppm) or elevated (550 ppm) atmospheric [CO2 ] and a normal or reduced water supply. Root exudation patterns were examined at the stem elongation growth stage and when the inflorescences emerged. At both dates, root exudates were analyzed for different compounds such as total free amino acids, proline, potassium, and some phytohormones. Elevated [CO2 ] decreased the concentrations in root exudates of some compounds such as total free amino acids, proline, and abscisic acid. Moreover, reduced water supply increased proline, potassium, electric conductivity, and hormone concentrations. In general, the modern cultivar showed higher concentrations of proline and abscisic acid than the old one, but the cultivars responded differentially under elevated CO2 . Plant developmental stage had also an impact on the root exudation patterns of barley. Generally, we observed significant effects of CO2 enrichment, watering levels, and, to a lesser extent, cultivar on root exudation. However, we did not find any mitigation of the adverse effects of drought by elevated CO2 . Understanding the multitude of relationships within the rhizosphere is an important aspect that has to be taken into consideration in the context of crop performance and carbon balance under conditions of climate change.

  18. Atmospheric Variability of CO2 impact on space observation Requirements

    Science.gov (United States)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.

    2009-12-01

    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal

  19. Decarbonization and the time-delay between peak CO2 emissions and concentrations

    CERN Document Server

    Seshadri, Ashwin K

    2015-01-01

    Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to govern the timing of maximum radiative forcing. While dynamics of atmospheric CO2 is governed by multiple time-constants, we idealize this by a single time-constant to consider some of the factors describing the time-delay between peaks in CO2 emissions and concentrations. This time-delay can be understood as the time required to bring CO2 emissions down from its peak to a small value, and is governed by the rate of decarbonizaton of economic activity. This decarbonization rate affects how rapidly emissions decline after having achieved their peak, and a rapid decline in emissions is essential for limiting peak radiative forcing. Long-term mitigation goals for CO2 should therefore consider not only the timing of peak emissions, but also the rate of decarbonization. We discuss implications for mitigation of the fact that the emissions peak corresponds to small bu...

  20. Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation

    NARCIS (Netherlands)

    Brilman, D.W.F.; Garcia, Alba L.; Veneman, R.

    2013-01-01

    In this work, we propose, demonstrate and evaluate the concept of atmospheric CO2 capture for enhanced algae cultivation (and horticulture), as alternative to the application of flue gas derived CO2. A supported amine sorbent was prepared and able to capture CO2 at atmospheric conditions and releasi

  1. Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere.

    Science.gov (United States)

    Madhana Sekhar, Kalva; Rachapudi, Venkata Sreeharsha; Mudalkar, Shalini; Reddy, Attipalli Ramachandra

    2014-08-01

    Current study was undertaken to elucidate the responses of short rotation coppice (SRC) mulberry under elevated CO2 atmosphere (550μmolmol(-1)). Throughout the experimental period, elevated CO2 grown mulberry plants showed significant increase in light saturated photosynthetic rates (A') by increasing intercellular CO2 concentrations (Ci) despite reduced stomatal conductance (gs). Reduced gs was linked to decrease in transpiration (E) resulting in improved water use efficiency (WUE). There was a significant increase in carboxylation efficiency (CE) of Rubisco, apparent quantum efficiency (AQE), light and CO2 saturated photosynthetic rates (AMAX), photosynthetic nitrogen use efficiency (PNUE), chlorophyll a fluorescence characteristics (FV/FM and PIABS), starch and other carbohydrates in high CO2 grown plants which clearly demonstrate no photosynthetic acclimation in turn resulted marked increase in above and below ground biomass. Our results strongly suggest that short rotation forestry (<1year) with mulberry plantations should be effective to mitigate raising CO2 levels as well as for the production of renewable bio-energy.

  2. Stable isotope ratios of atmospheric CO_{2} and CH_{4} over Siberia measured at ZOTTO

    Science.gov (United States)

    Timokhina, Anastasiya; Prokushkin, Anatily; Lavric, Jost; Heimann, Martin

    2016-04-01

    The boreal and arctic zones of Siberia housing the large amounts of carbon stored in the living biomass of forests and wetlands, as well as in soils and specifically permafrost, play a crucial role in earth's global carbon cycle. The long-term studies of greenhouse gases (GHG) concentrations are important instruments to analyze the response of these systems to climate warming. In parallel to GHG observations, the measurements of their stable isotopic composition can provide useful information for distinguishing contribution of individual GHG source to their atmospheric variations, since each source has its own isotopic signature. In this study we report first results of laboratory analyses of the CO2 and CH4 concentrations, the stable isotope ratio of δ13C-CO2, δ18O-CO2, δ13C-CH4, δD-CH4 measured in one-liter glass flasks which were obtained from 301 height of ZOTTO (Zotino Tall Tower Observatory, near 60° N, 90° E, about 20 km west of the Yenisei River) during 2008 - 2013 and 2010 - 2013 for stable isotope composition of CO2 and CH4. The magnitudes of δ13C-CO2 and δ18O-CO2 in a seasonal cycle are -1.4±0.1‰ (-7.6 - -9.0‰) and -2.2±0.2‰ (-0.1 - -2.3‰), respectively. The δ13C-CO2 seasonal pattern opposes the CO2 concentrations, with a gradual enrichment in heavy isotope occurring during May - July, reflecting its discrimination in photosynthesis, and further depletion in August - September as photosynthetic activity decreases comparatively to ecosystem respiration. Relationship between the CO2 concentrations and respective δ13C-CO2 (Keeling plot) reveals isotopic source signature for growing season (May - September) -27.3±1.4‰ and -30.4±2.5‰ for winter (January - March). The behavior of δ18O-CO2 associated with both high photosynthetic rate in the June (enrichment of atmospheric CO2 by 18O as consequence of CO2 equilibrium with "heavy" leaf water) and respiratory activity of forest floor in June - October (depletion of respired CO2 by 18O

  3. Linking soil O2, CO2, and CH4 concentrations in a wetland soil

    DEFF Research Database (Denmark)

    Elberling, Bo; Jensen, Louise Askær; Jørgensen, Christian Juncher

    2011-01-01

    Oxygen (O2) availability and diffusivity in wetlands are controlling factors for the production and consumption of both carbon dioxide (CO2) and methane (CH4) in the subsoil and thereby potential emission of these greenhouse gases to the atmosphere. To examine the linkage between highresolution s...... plants tissue on soil gas dynamics and greenhouse gas emissions following marked changes in water level....... spatiotemporal trends in O2 availability and CH4/CO2 dynamics in situ, we compare high-resolution subsurface O2 concentrations, weekly measurements of subsurface CH4/CO2 concentrations and near continuous flux measurements of CO2 and CH4. Detailed 2-D distributions of O2 concentrations and depth-profiles of CO2...... and CH4 were measured in the laboratory during flooding of soil columns using a combination of planar O2 optodes and membrane inlet mass spectrometry. Microsensors were used to assess apparent diffusivity under both field and laboratory conditions. Gas concentration profiles were analyzed...

  4. A statistical analysis of three ensembles of crop model responses totemperature and CO2concentration

    DEFF Research Database (Denmark)

    Makowski, D; Asseng, S; Ewert, F.;

    2015-01-01

    Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data...... in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration...... levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without re-running the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical...

  5. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background.

    Science.gov (United States)

    Levin, Ingeborg; Hammer, Samuel; Kromer, Bernd; Meinhardt, Frank

    2008-03-01

    Monthly mean 14CO2 observations at two regional stations in Germany (Schauinsland observatory, Black Forest, and Heidelberg, upper Rhine valley) are compared with free tropospheric background measurements at the High Alpine Research Station Jungfraujoch (Swiss Alps) to estimate the regional fossil fuel CO2 surplus at the regional stations. The long-term mean fossil fuel CO2 surplus at Schauinsland is 1.31+/-0.09 ppm while it is 10.96+/-0.20 ppm in Heidelberg. No significant trend is observed at both sites over the last 20 years. Strong seasonal variations of the fossil fuel CO2 offsets indicate a strong seasonality of emissions but also of atmospheric dilution of ground level emissions by vertical mixing.

  6. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Science.gov (United States)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Rayner, P. J.; Enting, I.; Mulvaney, R.; Steele, L. P.; Langenfelds, R. L.; Sturges, W. T.; Curran, M. A. J.; Smith, A. M.

    2016-09-01

    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties.

  7. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

    Science.gov (United States)

    Basu, Sourish; Bharat Miller, John; Lehman, Scott

    2016-05-01

    National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in

  8. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2

    Science.gov (United States)

    Naik, Vaishali; Delire, Christine; Wuebbles, Donald J.

    2004-03-01

    Isoprenoids (isoprene and monoterpenes) are the most dominant class of biogenic volatile organic compounds (BVOCs) and have been shown to significantly affect global tropospheric chemistry and composition, climate, and the global carbon cycle. In this study we assess the sensitivity of biogenic isoprene and monoterpene emissions to combined and isolated fluctuations in observed global climate and atmospheric carbon dioxide (CO2) concentration during the period 1971-1990. We integrate surface emission algorithms within the framework of a dynamic global ecosystem model, the Integrated Biospheric Simulator (IBIS), to simulate biogenic fluxes of isoprenoids as a component of the climate-vegetation dynamics. IBIS predicts global land surface isoprene emissions of 454 Tg C and monoterpenes of 72 Tg C annually and captures the spatial and temporal patterns well. The combined fluctuations in climate and atmospheric CO2 during 1971-1990 caused significant interannual and seasonal variability in global biogenic isoprenoid fluxes that was somewhat related to the El Niño-Southern Oscillation. Furthermore, an increasing trend in the simulated emissions was seen during this period that is attributed partly to the warming trend and partly to CO2 fertilization effect. The isolated effect of increasing CO2 during this period was to steadily increase emissions as a result of increases in foliar biomass. These fluctuations in biogenic emissions could have significant impacts on regional and global atmospheric chemistry and the global carbon budget.

  9. Assumption Centred Modelling of Ecosystem Responses to CO2 at Six US Atmospheric CO2 Enrichment Experiments.

    Science.gov (United States)

    Walker, A. P.; De Kauwe, M. G.; Medlyn, B. E.; Zaehle, S.; Luus, K. A.; Ryan, E.; Xia, J.; Norby, R. J.

    2015-12-01

    Plant photosynthetic rates increase and stomatal apertures decrease in response to elevated atmospheric CO[2] (eCO2), increasing both plant carbon (C) availability and water use efficiency. These physiological responses to eCO2 are well characterised and understood, however the ecological effects of these responses as they cascade through a suite of plant and ecosystem processes are complex and subject to multiple interactions and feedbacks. Therefore the response of the terrestrial carbon sink to increasing atmospheric CO[2] remains the largest uncertainty in global C cycle modelling to date, and is a huge contributor to uncertainty in climate change projections. Phase 2 of the FACE Model-Data Synthesis (FACE-MDS) project synthesises ecosystem observations from five long-term Free-Air CO[2] Enrichment (FACE) experiments and one open top chamber (OTC) experiment to evaluate the assumptions of a suite of terrestrial ecosystem models. The experiments are: The evergreen needleleaf Duke Forest FACE (NC), the deciduous broadleaf Oak Ridge FACE (TN), the prairie heating and FACE (WY), and the Nevada desert FACE, and the evergreen scrub oak OTC (FL). An assumption centered approach is being used to analyse: the interaction between eCO2 and water limitation on plant productivity; the interaction between eCO2 and temperature on plant productivity; whether increased rates of soil decomposition observed in many eCO2 experiments can account for model deficiencies in N uptake shown during Phase 1 of the FACE-MDS; and tracing carbon through the ecosystem to identify the exact cause of changes in ecosystem C storage.

  10. Changes in coccolith calcification under stable atmospheric CO2

    Directory of Open Access Journals (Sweden)

    C. Bauke

    2013-06-01

    Full Text Available Coccolith calcification is known to respond to ocean acidification in culture experiments as well as in present and past oceans. Previous studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system but pay little attention to the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and carbonate ion concentration we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene with its predominantly stable carbonate system provides the conditions for such a comprehensive analysis. For a realistic analysis on changes in major components of Holocene coccolithophores, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a North–South transect in the North Atlantic were analysed. During the Holocene mean weight (and therefore calcification of Noelaerhabdaceae (E. huxleyi and Gephyrocapsa coccoliths decreases at the Azores (Geofar KF 16 from around 7 to 5.5 pg, but increases at the Rockall Plateau (ODP Site 980 from around 6 to 8 pg and at the Vøring Plateau (MD08-3192 from 7 to 10.5 pg. This amplitude of average weight variability is within the range of glacial/interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are partly due to variations in the coccolithophore assemblage, but also an effect of a change in calcification and/or morphotype variability within single species. Our results indicate that there is no single key factor responsible for the observed changes in coccolith weight. A major increase in coccolith

  11. Changes in coccolith calcification under stable atmospheric CO2

    Science.gov (United States)

    Bauke, C.; Meier, K. J. S.; Kinkel, H.; Baumann, K.-H.

    2013-06-01

    Coccolith calcification is known to respond to ocean acidification in culture experiments as well as in present and past oceans. Previous studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system but pay little attention to the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and carbonate ion concentration we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene with its predominantly stable carbonate system provides the conditions for such a comprehensive analysis. For a realistic analysis on changes in major components of Holocene coccolithophores, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a North-South transect in the North Atlantic were analysed. During the Holocene mean weight (and therefore calcification) of Noelaerhabdaceae (E. huxleyi and Gephyrocapsa) coccoliths decreases at the Azores (Geofar KF 16) from around 7 to 5.5 pg, but increases at the Rockall Plateau (ODP Site 980) from around 6 to 8 pg and at the Vøring Plateau (MD08-3192) from 7 to 10.5 pg. This amplitude of average weight variability is within the range of glacial/interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are partly due to variations in the coccolithophore assemblage, but also an effect of a change in calcification and/or morphotype variability within single species. Our results indicate that there is no single key factor responsible for the observed changes in coccolith weight. A major increase in coccolith weight occurs

  12. Impacts of Elevated Atmospheric CO2 and O3 on Paper Birch (Betula papyrifera: Reproductive Fitness

    Directory of Open Access Journals (Sweden)

    Joseph N. T. Darbah

    2007-01-01

    Full Text Available Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO3 and O3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment site in Rhinelander, WI. Elevated CO2 increased both male and female flower production, while elevated O3 increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO2 increased germination rate of birch by 110% compared to ambient CO2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination, while the opposite was true of elevated O3 (elevated O3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%. Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2 and O3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.

  13. Atmospheric CO2 and CH4 Measurement Network on Towers in Siberia

    Science.gov (United States)

    Shimoyama, K.; Machida, T.; Shinohara, A.; Maksyutov, S.; Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O.; Fedoseev, N.; Belan, B.; Belan, H.; Inoue, G.

    2006-12-01

    In order to estimate CO2 and CH4 fluxes at regional to sub-continental scale by an inverse model, a network of tall towers for atmospheric CO2 and CH4 measurements has been established over a region of thousand square kilometers in west Siberia. In-situ continuous measurements have been conducted at 6 stations: Berezorechka (56.17N, 84.33E) since 2002, Parabel (58.25N, 82.40E) and Igrim (63.20N, 64.48E) since 2004, Demyanskoe (59.78N, 70.87E) and Noyabrsk (63.43N, 76.76E) since 2005, and Yakutsk (62.83N, 129.35E) in east Siberia since 2005. Over next two years, installations of 4 more stations are planned. This study provides some results of observation from this network. Seasonal cycles of CO2 showed quite similar trends in growing season (May to September) among the west Siberian sites. The remarkable decrease of CO2 concentration occurred in early May and the seasonal minimum was observed between July and August. On the other hand, the short-term (from several days to week) variations in CO2 concentrations were quite different among the sites, particularly during the growing season. Rather large variation of more than 25 ppm within a week was observed during winter. The changes in CO2 concentrations at the nearby sites were almost identical. Monthly mean values of CO2 during the growing season were relatively higher at the northern sites than at southern sites. These observational results evidentially reflected the regional characteristics of CO2 flux variation, transportation, and mixing process. Daily cycles of CH4 in summer showed nocturnal increase and diurnal decrease which was due to emission of CH4 from wetland accumulated over night, and diurnal convective mixing. Relatively high concentrations of CH4 were observed in winter and summer. Because there is one of the world's vastest wetland in western Siberia, the peak of CH4 in summer implies the significant role of CH4 emissions from the west Siberian wetland to the atmosphere. On the other hand, an

  14. A test of sensitivity to convective transport in a global atmospheric CO2 simulation

    OpenAIRE

    Bian, H.; Kawa, S. R.; M. Chin; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2011-01-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. Global CO2 in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA's Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et...

  15. Carbon allocation changes: an adaptive response to variations in atmospheric CO2

    Science.gov (United States)

    Harrison, Sandy; Li, Guangqi; Prentice, Iain Colin

    2016-04-01

    Given the ubiquity of nutrient constraints on primary production, an optimal carbon allocation strategy is expected to increase total below-ground allocation (fine root production and turnover, allocation to mycorrhizae and carbon exudation to the rhizophere) as atmospheric CO2 concentration increases. Conversely, below-ground allocation should be reduced when atmospheric CO2 concentrations were low, as occurred during glacial times. Using a coupled generic primary production and tree-growth model, we quantify the changes in carbon allocation that are required to explain the apparent homoeostasis of tree radial growth during recent decades and between glacial and interglacial conditions. These results suggest a resolution of the apparent paradox of continuing terrestrial CO2 uptake (a consequence of CO2 fertilization) and the widespread lack of observed enhancement of stem growth in trees. Adaptive shifts in carbon allocation are thus a key feature that should to be accounted for in models to predict tree growth and future timber harvests, as well as in large-scale ecosystem and carbon cycle models.

  16. Target atmospheric CO2: Where should humanity aim?

    OpenAIRE

    Hansen, J.; Sato, M.; Kharecha, P.; Beerling, D.; Berner, R; Masson-Delmotte, V.; M. Pagani; Raymo, M.; Royer, D. L.; J. C. Zachos

    2008-01-01

    Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 450 +/- 100 ppm, a level that will be exceeded within decades, b...

  17. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    Science.gov (United States)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  18. 3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    CERN Document Server

    Forget, Francois; Millour, Ehouarn; Madeleine, Jean-Baptiste; Kerber, Laura; Leconte, Jeremy; Marcq, Emmanuel; Haberle, Robert M

    2012-01-01

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young sun and a CO2 atmosphere with pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored by using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet...

  19. Response of leaf litter decomposition to rises in atmospheric CO2 and temperature

    Science.gov (United States)

    Hammrich, A.; Flury, S.; Gessner, M. O.

    2007-05-01

    Atmospheric concentrations of CO2 have considerably increased in the last century and are expected to rise further. Elevated CO2 concentrations not only increase global temperature but also have potential to change plant litter quality, for example by increasing lignin content, changing C:N ratios and altering tannin contents. These chemical changes may interact with increased temperature to alter litter decomposition. To test whether changes in litter quality and warming affect decomposition, we conducted a field experiment with leaf litter collected from six species of mature deciduous trees exposed to either ambient or elevated CO2 levels. We used a set of 16 enclosures installed in four blocks in a freshwater marsh in a prealpine lake to test for the effects of CO2-mediated litter quality and temperature and the interaction of both factors. We measured leaf mass loss of the twelve litter types in control and heated enclosures (4 °C above ambient) and also in the open marsh. In contrast to expectations, species decomposing at low (oak and beech) and medium (hornbeam and maple) rates showed faster mass loss when leaves were grown under elevated CO2 conditions, whereas fast-decomposing species (cherry and basswood) showed no clear response. The accelerated decomposition of CO2-enriched litter could be due to higher amounts of nonstructural carbohydrates, which may have been either leached or readily degraded. Warming had a surprisingly small influence on mass loss of the tested litter species, and interactive effects were weak. These results suggest that direct and indirect effects of elevated CO2 levels on litter decomposition may not be readily predictable from first principles.

  20. Carbon-13 isotope composition of the mean CO2 source in the urban atmosphere of Krakow, southern Poland

    Science.gov (United States)

    Zimnoch, Miroslaw; Jasek, Alina; Rozanski, Kazimierz

    2014-05-01

    Quantification of carbon emissions in urbanized areas constitutes an important part of the current research on the global carbon cycle. As the carbon isotopic composition of atmospheric carbon dioxide can serve as a fingerprint of its origin, systematic observations of δ13CO2 and/or Δ14CO2, combined with atmospheric CO2mixing ratio measurements can be used to better constrain the urban sources of this gas. Nowadays, high precision optical analysers based on absorption of laser radiation in the cavity allow a real-time monitoring of atmospheric CO2 concentration and its 13CO2/12CO2 ratio, thus enabling better quantification of the contribution of different anthropogenic and natural sources of this gas to the local atmospheric CO2load. Here we present results of a 2-year study aimed at quantifying carbon isotopic signature of the mean CO2 source and its seasonal variability in the urban atmosphere of Krakow, southern Poland. The Picarro G2101-i CRDS isotopic analyser system for CO2and 13CO2/12CO2 mixing ratio measurements has been installed at the AGH University of Science and Technology campus in July 2011. Air inlet was located at the top of a 20m tower mounted on the roof of the faculty building (ca. 42m a.g.l.), close to the city centre. While temporal resolution of the analyser is equal 1s, a 2-minute moving average was used for calculations of δ13CO2 and CO2 mixing ratio to reduce measurement uncertainty. The measurements were calibrated against 2 NOAA (National Oceanic and Atmospheric Administration) primary standard tanks for CO2 mixing ratio and 1 JRAC (Jena Reference Air Cylinder) isotope primary standard for δ13C. A Keeling approach based on two-component mass and isotope balance was used to derive daily mean isotopic signatures of local CO2 from individual measurements of δ13CO2 and CO2 mixing ratios. The record covers a 2-year period, from July 2011 to July 2013. It shows a clear seasonal pattern, with less negative and less variable δ13CO2 values

  1. Impact of elevated CO2 on carbohydrate and ureide concentrations in soybean inoculated with different strains of Bradyrhizobium japonicum

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Annick; Prevost, Danielle; Juge, Christine; Chalifour, Francois-P.

    2011-07-15

    Over the past years, the CO2 concentration in the atmosphere has constantly increased and it is expected to continue; this climate change will lead to important impacts on the crops' productivity. The authors undertook a study to determine soybean's response to higher CO2 concentration and different strains of Bradyrhizobium japonicum. They observed that, under elevated CO2, additional photosynthates are produced and used for nodular growth and that ureides increased significantly in leaves but not much in nodules. The different strains resulted in different nodular yield and ureides concentration resulting in diverse responses to elevated CO2 concentration: the commercial strain showed a feedback inhibition of nodule activity while the indigenous strain 12NS14 with a better nodule activity had a positive feedback reaction with soybean growth. This study demonstrated that, under higher CO2 concentration, a better soybean production could be achieve with the strain 12NS14.

  2. Target atmospheric CO2: Where should humanity aim?

    CERN Document Server

    Hansen, J; Kharecha, P; Beerling, D; Masson-Delmotte, V; Pagani, M; Raymo, M; Royer, D L; Zachos, J C

    2008-01-01

    Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 425 +/- 75 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practice...

  3. Marginal Lands Gross Primary Production Dominate Atmospheric CO2 Interannual Variations

    Science.gov (United States)

    Ahlström, A.; Raupach, M. R.; Schurgers, G.; Arneth, A.; Jung, M.; Reichstein, M.; Smith, B.

    2014-12-01

    Since the 1960s terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, sequestering about one quarter of anthropogenic emissions in an average year. Variations in this land carbon sink are also responsible for most of the large interannual variability in atmospheric CO2 concentrations. While most evidence places the majority of the sink in highly productive forests and at high latitudes experiencing warmer and longer growing seasons, the location and the processes governing the interannual variations are still not well characterised. Here we evaluate the hypothesis that the long-term trend and the variability in the land CO2 sink are respectively dominated by geographically distinct regions: the sink by highly productive lands, mainly forests, and the variability by semi-arid or "marginal" lands where vegetation activity is strongly limited by water and therefore responds strongly to climate variability. Using novel analysis methods and data from both upscaled flux-tower measurements and a dynamic global vegetation model, we show that (1) the interannual variability in the terrestrial CO2 sink arises mainly from variability in terrestrial gross primary production (GPP); (2) most of the interannual variability in GPP arises in tropical and subtropical marginal lands, where negative anomalies are driven mainly by warm, dry conditions and positive anomalies by cool, wet conditions; (3) the variability in the GPP of high-latitude marginal lands (tundra and shrublands) is instead controlled by temperature and light, with warm bright conditions resulting in positive anomalies. The influence of ENSO (El Niño-Southern Oscillation) on the growth rate of atmospheric CO2 concentrations is mediated primarily through climatic effects on GPP in marginal lands, with opposite signs in subtropical and higher-latitude regions. Our results show that the land sink of CO2 (dominated by forests) and its interannual variability (dominated by marginal lands) are

  4. Activities of carboxylating enzymes in the CAM species Opuntia ficus-indica grown under current and elevated CO2 concentrations.

    Science.gov (United States)

    Israel, A A; Nobel, P S

    1994-06-01

    Responses of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase) to an elevated atmospheric CO2 concentration were determined along with net CO2 uptake rates for the Crassulacean acid metabolism species Opuntia ficus-indica growing in open-top chambers. During the spring 13 months after planting, total daily net CO2 uptake of basal and first-order daughter cladodes was 28% higher at 720 than at 360 μl CO2 l(-1). The enhancement, caused mainly by higher CO2 assimilation during the early part of the night, was also observed during late summer (5 months after planting) and the following winter. The activities of Rubisco and PEPCase measured in vitro were both lower at the elevated CO2 concentration, particularly under the more favorable growth conditions in the spring and late summer. Enzyme activity in second-order daughter cladodes increased with cladode age, becoming maximal at 6 to 10 days. The effect ofelevated CO2 on Rubisco and PEPCase activity declined with decreasing irradiance, especially for Rubisco. Throughout the 13-month observation period, O. ficus-indica thus showed increased CO2 uptake when the atmospheric CO2 concentration was doubled despite lower activities of both carboxylating enzymes.

  5. Seasonally varying contributions to urban CO2 in the Chicago, Illinois, USA region: Insights from a high-resolution CO2 concentration and δ13C record

    Directory of Open Access Journals (Sweden)

    Joel Moore

    2015-06-01

    Full Text Available Abstract Understanding urban carbon cycling is essential given that cities sustain 54% of the global population and contribute 70% of anthropogenic CO2 emissions. When combined with CO2 concentration measurements ([CO2], stable carbon isotope analyses (δ13C can differentiate sources of CO2, including ecosystem respiration and combustion of fossil fuels, such as petroleum and natural gas. In this study, we used a wavelength scanned-cavity ringdown spectrometer to collect ∼2x106 paired measurements for [CO2] and δ13C values in Evanston, IL for August 2011 through February 2012. Evanston is located immediately north of Chicago, IL, the third largest city in the United States. The measurements represent one of the longest records of urban [CO2] and δ13C values thus far reported. We also compiled local meteorological information, as well as complementary [CO2] and δ13C data for background sites in Park Falls, WI and Mauna Loa, HI. We use the dataset to examine how ecosystem processes, fossil fuel usage, wind speed, and wind direction control local atmospheric [CO2] and δ13C in a midcontinent urban setting on a seasonal to daily basis. On average, [CO2] and δ13C values in Evanston were 16–23 ppm higher and 0.97–1.13‰ lower than the background sites. While seasonal [CO2] and δ13C values generally followed broader northern hemisphere trends, the difference between Evanston and the background sites was larger in winter versus summer. Mixing calculations suggest that ecosystem respiration and petroleum combustion equally contributed CO2 in excess of background during the summer and that natural gas combustion contributed 80%–94% of the excess CO2 in winter. Wind speed and direction strongly influenced [CO2] and δ13C values on an hourly time scale. The highest [CO2] and lowest δ13C values occurred at wind speeds <3 m s−1 and when winds blew from the northwest, west, and south over densely populated neighborhoods.

  6. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate

    Science.gov (United States)

    Yang, Xiaojuan; Thornton, Peter E.; Ricciuto, Daniel M.; Hoffman, Forrest M.

    2016-07-01

    The effects of phosphorus (P) availability on carbon (C) cycling in the Amazon region are investigated using CLM-CNP. We demonstrate that the coupling of P dynamics reduces the simulated historical terrestrial C sink due to increasing atmospheric CO2 concentrations ([CO2]) by about 26%. Our exploratory simulations show that the response of tropical forest C cycling to increasing [CO2] depends on how elevated CO2 affects phosphatase enzyme production. The effects of warming are more complex, depending on the interactions between humidity, C, and nutrient dynamics. While a simulation with low humidity generally shows the reduction of net primary productivity (NPP), a second simulation with higher humidity suggests overall increases in NPP due to the dominant effects of reduced water stress and more nutrient availability. Our simulations point to the need for (1) new observations on how elevated [CO2] affects phosphatase enzyme production and (2) more tropical leaf-scale measurements under different temperature/humidity conditions with different soil P availability.

  7. Measuring atmospheric CO2 from space using Full Spectral Initiation (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    M. P. Barkley

    2006-01-01

    Full Text Available Satellite measurements of atmospheric CO2 concentrations are a rapidly evolving area of scientific research which can help reduce the uncertainties in the global carbon cycle fluxes and provide insight into surface sources and sinks. One of the emerging CO2 measurement techniques is a relatively new retrieval algorithm called Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS that has been developed by Buchwitz et al. (2000. This algorithm is designed to measure the total columns of CO2 (and other greenhouse gases through the application to spectral measurements in the near infrared (NIR, made by the SCIAMACHY instrument on-board ENVISAT. The algorithm itself is based on fitting the logarithm of a model reference spectrum and its derivatives to the logarithm of the ratio of a measured nadir radiance and solar irradiance spectrum. In this work, a detailed error assessment of this technique has been conducted and it has been found necessary to include suitable a priori information within the retrieval in order to minimize the errors on the retrieved CO2 columns. Hence, a more flexible implementation of the retrieval technique, called Full Spectral Initiation (FSI WFM-DOAS, has been developed which generates a reference spectrum for each individual SCIAMACHY observation using the estimated properties of the atmosphere and surface at the time of the measurement. Initial retrievals over Siberia during the summer of 2003 show that the measured CO2 columns are not biased from the input a priori data and that whilst the monthly averaged CO2 distributions contain a high degree of variability, they also contain interesting spatial features.

  8. CO2 flux estimation errors associated with moist atmospheric processes

    Directory of Open Access Journals (Sweden)

    S. Pawson

    2012-04-01

    Full Text Available Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between moist transport, satellite CO2 retrievals, and source/sink inversion has not yet been established. Here we examine the effect of moist processes on (1 synoptic CO2 transport by Version-4 and Version-5 NASA Goddard Earth Observing System Data Assimilation System (NASA-DAS meteorological analyses, and (2 source/sink inversion. We find that synoptic transport processes, such as fronts and dry/moist conveyors, feed off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to continental scale source/sink estimation errors of up to 0.25 PgC yr−1 in northern mid-latitudes. Second, moist processes are represented differently in GEOS-4 and GEOS-5, leading to differences in vertical CO2 gradients, moist poleward and dry equatorward CO2 transport, and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified, causing source/sink estimation errors of up to 0.55 PgC yr−1 in northern mid-latitudes. These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  9. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    Science.gov (United States)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  10. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    Science.gov (United States)

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-03-10

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO2, since the root FW reduction caused by excess B was less marked at the high CO2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO2 concentration, and from 38 to 51% at elevated CO2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO2.

  11. Elevated atmospheric CO2 triggers compensatory feeding by root herbivores on a C3 but not a C4 grass.

    Directory of Open Access Journals (Sweden)

    Scott N Johnson

    Full Text Available Predicted increases in atmospheric carbon dioxide (CO2 concentrations often reduce nutritional quality for herbivores by increasing the C:N ratio of plant tissue. This frequently triggers compensatory feeding by aboveground herbivores, whereby they consume more shoot material in an attempt to meet their nutritional needs. Little, however, is known about how root herbivores respond to such changes. Grasslands are particularly vulnerable to root herbivores, which can collectively exceed the mass of mammals grazing aboveground. Here we provide novel evidence for compensatory feeding by a grass root herbivore, Sericesthis nigrolineata, under elevated atmospheric CO2 (600 µmol mol(-1 on a C3 (Microlaena stipoides but not a C4 (Cymbopogon refractus grass species. At ambient CO2 (400 µmol mol(-1 M. stipoides roots were 44% higher in nitrogen (N and 7% lower in carbon (C concentrations than C. refractus, with insects performing better on M. stipoides. Elevated CO2 decreased N and increased C:N in M. stipoides roots, but had no impact on C. refractus roots. Root-feeders displayed compensatory feeding on M. stipoides at elevated CO2, consuming 118% more tissue than at ambient atmospheric CO2. Despite this, root feeder biomass remained depressed by 24%. These results suggest that compensatory feeding under elevated atmospheric CO2 may make some grass species particularly vulnerable to attack, potentially leading to future shifts in the community composition of grasslands.

  12. Atmospheric CO2 Amplification of Orbitally Forced Changes in the Hydrological Cycle in the Early Mesozoic

    Science.gov (United States)

    Olsen, P. E.; Schaller, M. F.; Kent, D. V.

    2015-12-01

    Models of increasing atmospheric CO2 predict an intensification of the hydrological cycle coupled with warming, possibly amplifying effects of orbitally-forced fluctuations. While there is some Pleistocene evidence of this, CO2 concentrations were much lower than projected for the future. For the potentially more relevant Early Mesozoic, with CO2 >1000 ppm, we observe that both the soil carbonate and stomatal proxies for CO2 strongly and positively correlate with climatic-precession variance in correlative continental and marine strata of both eastern North America and Europe with temporal correlation robustly supported by magneto-, astro-, and U-Pb zircon geochronology. Eastern North American lacustrine and paleosol strata are generally characterized by >3000 ppm CO2 over most of the Norian (228-207 Ma) dropping to ~1000-3000 ppm during the succeeding latest Norian to late Rhaetian (207 to 201.6 Ma) correlative with a dramatic drop in the amplitude of the response to orbital forcing. This is followed by an extraordinary doubling to nearly tripling of CO2 (~2000-5000 ppm) in the latest Rhaetian to Early Jurassic (201.6 to 200.6 Ma) and a concurrent profound increase in the amplitude of the apparent climatic-precession variance during the eruption of the massive Central Atlantic Magmatic Province. Decreasing CO2 (~1000-2000 ppm) afterward is tracked by decreasing amplitude in the orbitally-paced cyclicity. Likewise, in the UK, high amplitude cyclicity in the lacustrine to paralic Twyning Md. Fm. gives way upward into the paralic Blue Anchor and marine Rhaetian Westbury fms in which lithological cyclicity is muted. Again, the amplitude of the orbitially-paced lithological cyclicity dramatically increases into the paralic to marine late Rhaetian Lilstock Fm. and marine latest Rhaetian to Early Jurassic Blue Lias. Parallel and correlative transitions are seen in at least western Germany. The agreement between the continental eastern US and paralic to marine European

  13. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    the development of the new 2-micron pulsed IPDA lidar instrument, and presents the initial data for the airborne measurements of atmospheric CO2 concentration.

  14. Impact of oceanic circulation changes on atmospheric δ13CO2

    Science.gov (United States)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-12-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale and glacial/interglacial changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using two Earth system models of intermediate complexity we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW) and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW and AAIW are negatively correlated with changes in δ13CO2: namely strong oceanic ventilation decreases atmospheric δ13CO2. However, since large scale ocean circulation reorganizations also impact nutrient utilization and the Earth's climate the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the upwelling of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent.

  15. Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants.

    Science.gov (United States)

    Agüera, Eloísa; Ruano, David; Cabello, Purificación; de la Haba, Purificación

    2006-07-01

    Expression and activity of nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) were analysed in relation to the rate of CO(2) assimilation in cucumber (Cucumis sativus L.) leaves. Intact plants were exposed to different atmospheric CO(2) concentrations (100, 400 and 1200microLL(-1)) for 14 days. A correlation between the in vivo rates of net CO(2) assimilation and the atmospheric CO(2) concentrations was observed. Transpiration rate and stomatal conductance remained unaffected by CO(2) levels. The exposure of the cucumber plants to rising CO(2) concentrations led to a concomitant increase in the contents of starch and soluble sugars, and a decrease in the nitrate content in leaves. At very low CO(2), NR and GS expression decreased, in spite of high nitrate contents, whereas at normal and elevated CO(2) expression and activity were high although the nitrate content was very low. Thus, in cucumber, NR and GS expression appear to be dominated by sugar levels, rather than by nitrate contents.

  16. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2].

  17. Climate Sensitivity, Sea Level, and Atmospheric CO2

    OpenAIRE

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2012-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise paleoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity 3 +/- 1{\\deg}C for 4 W/m2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, bu...

  18. Atmospheric inversion for cost effective quantification of city CO2 emissions

    Science.gov (United States)

    Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.

    2015-11-01

    Cities, currently covering only a very small portion (market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to 70 stations, the inversion can meet this requirement. As for major sectoral CO2 emissions, the uncertainties in the inverted emissions using 70 stations are reduced significantly over that obtained using 10 stations by 32 % for commercial and residential buildings, by 33 % for

  19. Attitude toward the biological investigation for decreasing atmospheric CO2. Taiki CO2 wo sakugensuru seibutsuteki kenkyu taido

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Explanation is made of the bioprocess which aims at treating the atmospheric CO2. As a result of investigation by the Electric Power Research Institute (EPRI), it was judged that the direct CO2 removal from the flue gas of power station is costwise disadvantageous and that the biological method by CO2 fixation is economical. The following are projects supported by the EPRI: The seaweed fossilization of CO2 is a medium depth sea mechanism of having seaweeds absorb carbon and making it remain residually in the deepsea even after the plants die. Study is being made of oceanic seaweed cultivation field development, non-calcareous seaweed cultivation and spore collection. The cost is advantageously low. The cultivation of seaweeds and halophilous plants utilizes their photosynthesis to collect CO2. There are examples of studying the possibility of cultivating those plants through comparison with the land trees. The growth ratio of halophilous plants is being also studied together with the possibility that the carbon remains as a residue. The whiting is a phenomenon in which biodecomposed subsea matter becomes CaCO3. Covered with CaCO3, the ssaweeds are deposited. Investigation is being made on the seaweed morphology and condition for the occurrence of whiting. 1 ref., 2 figs., 1 tab.

  20. Stomatal response of Pinus sylvestriformis to elevated CO2 concentrations during the four years of exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-mei; HAN Shi-jie; LIU Ying; JIA Xia

    2005-01-01

    Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.

  1. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    H. A. Torbert

    2012-01-01

    Full Text Available Increasing global atmospheric carbon dioxide (CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C and nitrogen (N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L. Willd (Huisache. Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient, 690, and 980 μmol mol−1. Elevated CO2 increased both C and N inputs from plant growth which would result in higher soil C from litter fall, root turnover, and excretions. Results from the incubation indicated an initial (20 days decrease in N mineralization which resulted in no change in C mineralization. However, after 40 and 60 days, an increase in both C and N mineralization was observed. These increases would indicate that increases in soil C storage may not occur in grass ecosystems that are invaded with Acacia over the long term.

  2. Physiological characteristics of the primitive CO2 concentrating mechanism in PEPC transgenic rice

    Institute of Scientific and Technical Information of China (English)

    焦德茂; 匡廷云; 李霞; 戈巧英; 黄雪清; 郝乃斌; 白克智

    2003-01-01

    The relationship between carbon assimilation and high-level expression of the maize PEPC in PEPC transgenic rice was studied by comparison to that in the untransformed rice, japonica kitaake. Stomatal conductance and photosynthetic rates in PEPC transgenic rice were higher than those of untransformed rice, but the increase of stomatal conductance had no statistical correlation with that of photosynthetic rate. Under high levels of light intensity, the protein contents of PEPC and CA were increased significantly. Therefore the photosynthetic capacity was increased greatly (50%) with atmospheric CO2 supply. While CO2 release in leaf was reduced and the compensation point was lowered correspondingly under CO2 free conditions. Treatment of the rice with the PEPC-specific inhibitor DCDP showed that overexpression of PEPC and enhancement of carbon assimilation were related to the stability of Fv/Fm. Labeling with 14CO2 for 20 s showed more 14C was distributed to C4 primary photosynthate asperate in PEPC transgenic rice, suggesting that there exists a limiting C4 photosynthetic mechanism in leaves. These results suggest that the primitive CO2 concentrating mechanism found in rice could be reproduced through metabolic engineering, and shed light on the physiological basis for transgenic breeding with high photosynthetic efficiency.

  3. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    in terms of a detailed chemical kinetic mechanism for hydrocarbon oxidation. On the basis of results of the present study, it can be expected that oxy-fuel combustion will lead to strongly increased CO concentrations in the near-burner region. The CO2 present will compete with O-2 for atomic hydrogen......The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... and lead to formation of CO through the reaction CO2 + H reversible arrow CO + OH. Reactions of CO2 with hydrocarbon radicals may also contribute to CO formation. The most important steps are those of singlet and triplet CH2 with CO2, while other radicals such as CH3 and CH are less important for consuming...

  4. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-04-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  5. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  6. Regulation of CO2 Concentrating Mechanism in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Robert L. Burnap

    2015-01-01

    Full Text Available In this chapter, we mainly focus on the acclimation of cyanobacteria to the changing ambient CO2 and discuss mechanisms of inorganic carbon (Ci uptake, photorespiration, and the regulation among the metabolic fluxes involved in photoautotrophic, photomixotrophic and heterotrophic growth. The structural components for several of the transport and uptake mechanisms are described and the progress towards elucidating their regulation is discussed in the context of studies, which have documented metabolomic changes in response to changes in Ci availability. Genes for several of the transport and uptake mechanisms are regulated by transcriptional regulators that are in the LysR-transcriptional regulator family and are known to act in concert with small molecule effectors, which appear to be well-known metabolites. Signals that trigger changes in gene expression and enzyme activity correspond to specific “regulatory metabolites” whose concentrations depend on the ambient Ci availability. Finally, emerging evidence for an additional layer of regulatory complexity involving small non-coding RNAs is discussed.

  7. Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban CO2 emissions

    Science.gov (United States)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; Rao, Preeti; Ahmadov, Ravan; Deng, Aijun; Díaz-Isaac, Liza I.; Duren, Riley M.; Fischer, Marc L.; Gerbig, Christoph; Gurney, Kevin R.; Huang, Jianhua; Jeong, Seongeun; Li, Zhijin; Miller, Charles E.; O'Keeffe, Darragh; Patarasuk, Risa; Sander, Stanley P.; Song, Yang; Wong, Kam W.; Yung, Yuk L.

    2016-07-01

    Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land-atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as ˜ 1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May-June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a

  8. Data Analysis of a Pulsed 2-micron Coherent Differential Absorption Lidar For Atmospheric CO2 Measurements

    Science.gov (United States)

    Lu, J.; Yu, J.

    2013-12-01

    The study of climate change requires precise measurement of the production, migration, and sinking of greenhouse gases. Carbon Dioxide (CO2) is one of the principal greenhouse gases. NASA Langley Research Center (LARC) has developed a pulsed 2-micron coherent differential absorption lidar (DiAL) for CO2 measurement, operating on the R30 absorption line. On April 5, 2010, the lidar instrument transmitted alternating On-line and Off-line pulses from LARC into a residential area in Poquoson, Virginia; while a passive in-situ sensor measured the local CO2 concentration. This paper outlines a procedure to estimate CO2 concentration from atmospheric lidar return signal using the DiAL method; our calculation produced results in line with the in-situ measurement and matched the current state of DiAL instrument accuracy. Data from April 5 is part of a series of experiments validating the measurement accuracy and precision of this lidar. After a summative verification, a packaged lidar may be installed on research aircraft to perform CO2 studies at a great range of latitudes throughout the year, and to discover sources, sinks, and migration trends for this key greenhouse gas. The following procedure is used to estimate CO2 concentration from atmospheric lidar return using the DiAL method. First, MATLAB software developed at LARC sorts the lidar return into On-only and Off-only files containing pulses of only that type. The sorted pulses are reexamined for quality based on the center frequency, energy, and power - unsatisfactory pulses are removed. A 512-point Fast Fourier Transform (FFT) with 256-point shift is performed on each pulse to discretize the atmospheric return signal according to 63 distance 'bins'. Next, comparing decay rates of the On-line and Off-line atmospheric return intensity with distance yields the Differential Absorption Optical Slope (DAOD), which is proportional to the concentration of the desired gas. Then, in-situ meteorological data - pressure

  9. Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations.

    Science.gov (United States)

    Cabello, Juan; Morales, Marcia; Revah, Sergio

    2017-02-07

    The extensive microalgae diversity offers considerable versatility for a wide range of biotechnological applications in environmental and production processes. Microalgal cultivation is based on CO2 fixation via photosynthesis and, consequently, it is necessary to evaluate, in a short time and reliable way, the effect of the CO2 gas concentration on the consumption rate and establish the tolerance range of different strains and the amount of inorganic carbon that can be incorporated into biomass in order to establish the potential for industrial scale application. Dynamic experiments allow calculating the short-term microalgal photosynthetic activity of strains in photobioreactors. In this paper, the effect of step-changes in CO2 concentration fed to a 20L bubble column photobioreactor on the CO2 consumption rate of Scenedesmus obtusiusculus was evaluated at different operation times. The highest apparent CO2 consumption rate (336μmolm(-2)s(-1) and 5.6% of CO2) was 6530mgCO2gb(-1)d(-1) and it decreased to 222mgCO2gb(-1)d(-1) when biomass concentration increased of 0.5 to 3.1gbL(-1) and 5.6% of CO2 was fed. For low CO2 concentrations (CO2 consumption rates show that S. obtusiusculus was not limited by CO2 availability for concentrations above of 3.8%. The CO2 mass balance showed that 90% of the C-CO2 transferred was used for S. obtusiusculus growth.

  10. Change is in the air: impacts of the historical and predicted increase in atmospheric CO2 on pasture and prairie

    Science.gov (United States)

    The concentration of carbon dioxide (CO2) gas in the atmosphere has increased by almost 40% since the beginning of the Industrial Revolution and is predicted to reach double the pre-Industrial concentration within 50 years. By stimulating leaf photosynthesis and reducing stomatal conductance to wat...

  11. Lidar Measurements of Atmospheric CO2 From Regional to Global Scales

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Ismail, Syed; Kooi, Susan; Fan, Tai-Fang

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate and the knowledge on its distributions and variations influences predictions of the Earth's future climate. Large uncertainties in the predictions persist due to limited observations. This study uses the airborne Intensity-Modulated Continuous-Wave (IMCW) lidar developed at NASA Langley Research Center to measure regional atmospheric CO2 spatio-temporal variations. Further lidar development and demonstration will provide the capability of global atmospheric CO2 estimations from space, which will significantly advances our knowledge on atmospheric CO2 and reduce the uncertainties in the predictions of future climate. In this presentation, atmospheric CO2 column measurements from airborne flight campaigns and lidar system simulations for space missions will be discussed. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved. Data analysis also shows that airborne lidar CO2 column measurements over these surfaces agree well with in-situ measurements. Even when thin cirrus clouds present, consistent CO2 column measurements between clear and thin cirrus cloudy skies are obtained. Airborne flight campaigns have demonstrated that precise atmospheric column CO2 values can be measured from current IM-CW lidar systems, which will lead to use this airborne technique in monitoring CO2 sinks and sources in regional and continental scales as proposed by the NASA Atmospheric Carbon and Transport â€" America project. Furthermore, analyses of space CO2 measurements shows that applying the current IM-CW lidar technology and approach to space, the CO2 science goals of space missions will be achieved, and uncertainties in CO2 distributions and variations will be reduced.

  12. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    Science.gov (United States)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( global energy-related CO2, but they are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be further reduced by extending the network, e.g., from 10 to 70 stations, which is

  13. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    Science.gov (United States)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit.

  14. CO32- concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii

    Science.gov (United States)

    Yates, K.K.; Halley, R.B.

    2006-01-01

    The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how sea-water pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO 2 and CO32- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO32- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m-2 h-1 and dissolution ranged from -0.05 to -3.3 mmol CaCO3 m-2 h-1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO32- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO32- and pCO2. Threshold pCO2 and CO32- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654??195 ??atm and ranged from 467 to 1003 ??atm. The average CO32- threshold value was 152??24 ??mol kg-1, ranging from 113 to 184 ??mol kg-1. Ambient seawater measurements of pCO2 and CO32- indicate that CO32- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

  15. CO32- concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii

    Science.gov (United States)

    Yates, K. K.; Halley, R. B.

    2006-07-01

    The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO32- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO32- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m-2 h-1 and dissolution ranged from -0.05 to -3.3 mmol CaCO3 m-2 h-1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO32- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO32- and pCO2. Threshold pCO2 and CO32- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 μatm and ranged from 467 to 1003 μatm. The average CO32- threshold value was 152±24 μmol kg-1, ranging from 113 to 184 μmol kg-1. Ambient seawater measurements of pCO2 and CO32- indicate that CO32- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

  16. CO32− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii

    Directory of Open Access Journals (Sweden)

    K. K. Yates

    2006-01-01

    Full Text Available The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO32− to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO32− concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m−2 h−1 and dissolution ranged from –0.05 to –3.3 mmol CaCO3 m−2 h−1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO32− at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO32− and pCO2. Threshold pCO2 and CO32− values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 μatm and ranged from 467 to 1003 μatm. The average CO32− threshold value was 152±24 μmol kg−1, ranging from 113 to 184 μmol kg−1. Ambient seawater measurements of pCO2 and CO32− indicate that CO32− and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

  17. Potential maternal effects of elevated atmospheric CO2 on development and disease severity in a Mediterranean legume

    Directory of Open Access Journals (Sweden)

    José M. Grünzweig

    2011-07-01

    Full Text Available Global change can greatly affect plant populations both directly by influencing growing conditions and indirectly by maternal effects on development of offspring. More information is needed on transgenerational effects of global change on plants and on their interactions with pathogens. The current study assessed potential maternal effects of atmospheric CO2 enrichment on performance and disease susceptibility of first-generation offspring of the Mediterranean legume Onobrychis crista-galli. Mother plants were grown at three CO2 concentrations, and the study focused on their offspring that were raised under common ambient climate and CO2. In addition, progeny were exposed to natural infection by the fungal pathogen powdery mildew. In one out of three years, offspring of high-CO2 treatments (440 and 600 ppm had lower shoot biomass and reproductive output than offspring of low-CO2 treatment (280 ppm. Disease severity in a heavy-infection year was higher in high-CO2 than in low-CO2 offspring. However, some of the findings on maternal effects changed when the population was divided into two functionally diverging plant types distinguishable by flower color (pink, Type P; white Type W. Disease severity in a heavy-infection year was higher in high-CO2 than in low-CO2 progeny in the more disease-resistant (Type P, but not in the more susceptible plant type (Type W. In a low-infection year, maternal CO2 treatments did not differ in disease severity. Mother plants of Type P exposed to low CO2 produced larger seeds than all other combinations of CO2 and plant type, which might contribute to higher offspring performance. This study showed that elevated CO2 potentially exerts environmental maternal effects on performance of progeny and, notably, also on their susceptibility to natural infection by a pathogen. Maternal effects of global change might differently affect functionally divergent plant types, which could impact population fitness and alter plant

  18. A permafrost glacial hypothesis to explain atmospheric CO2 and the ice ages during the Pleistocene

    Directory of Open Access Journals (Sweden)

    R. Tarozo

    2010-10-01

    Full Text Available Over the past several 100 ka glacial-interglacial cycles, the concentration of atmospheric CO2 was closely coupled to global temperature, which indicates the importance of CO2 as a greenhouse gas. The reasons for changes in atmospheric CO2 have mainly been sought in the ocean, yet proxy evidence does not support the notion of increased oceanic carbon storage during glacials. Here we present results from the first permafrost loess sequence in Siberia spanning two glacial cycles (~240 ka, which reveal that permafrost soils repeatedly sequestered huge amounts of terrestrial carbon during glacial periods. This can be explained with permafrost favouring more intensive waterlogging conditions and better preservation of soil organic matter. Terrestrial carbon stored in permafrost soils was released upon warming and provided a powerful feedback mechanism for the glacial terminations. We outline a "permafrost glacial hypothesis" building on integrated annual insolation forcing, which readily explains the observed succession of the ice ages during the Pleistocene, including the mid-Pleistocene transition.

  19. Sensitivity of grapevine phenology to water availability, temperature and CO2 concentration

    Directory of Open Access Journals (Sweden)

    Johann Martínez-Lüscher

    2016-07-01

    Full Text Available In recent decades, mean global temperatures have increased in parallel with a sharp rise in atmospheric carbon dioxide (CO2 levels, with apparent implications for precipitation patterns. The aim of the present work is to assess the sensitivity of different phenological stages of grapevine to temperature and to study the influence of other factors related to climate change (water availability and CO2 concentration on this relationship. Grapevine phenological records from 9 plantings between 42.75°N and 46.03°N consisting of dates for budburst, flowering and fruit maturity were used. In addition, we used phenological data collected from two years of experiments with grapevine fruit-bearing cuttings with two grapevine varieties under two levels of water availability, two temperature regimes and two levels of CO2. Dormancy breaking and flowering were strongly dependent on spring temperature, while neither variation in temperature during the chilling period nor precipitation significantly affected budburst date. The time needed to reach fruit maturity diminished with increasing temperature and decreasing precipitation. Experiments under semi-controlled conditions revealed great sensitivity of berry development to both temperature and CO2. Water availability had significant interactions with both temperature and CO2; however, in general, water deficit delayed maturity when combined with other factors. Sensitivities to temperature and CO2 varied widely, but higher sensitivities appeared in the coolest year, particularly for the late ripening variety, ‘White Tempranillo’. The knowledge gained in whole plant physiology and multi stress approaches is crucial to predict the effects of climate change and to design mitigation and adaptation strategies allowing viticulture to cope with climate change.

  20. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.

    Science.gov (United States)

    Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna

    2008-10-01

    Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.

  1. H2O and CO2 exchange between a sphagnum mire ecosystem and the atmosphere

    Science.gov (United States)

    Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Novenko, Elena

    2013-04-01

    The modern climatic conditions are strongly influenced by both internal variability of climatic system, and various external natural and anthropogenic factors (IPCC 2007). Significant increase of concentration of greenhouse gases in the atmosphere and especially the growth of atmospheric CO2 due to human activity are considered as the main factors that are responsible for modern global warming and climate changes. A significant part of anthropogenic CO2 is absorbed from the atmosphere by land biota and especially by vegetation cover. However, it is still not completely clear what is the role of different land ecosystems and especially forests and mires in global cycles of H2O and CO2 and what is a sensitivity of these ecosystems to climate changes. Within the framework of this study the spatial and temporal variability of H2O and CO2 fluxes between a mire ecosystem and the atmosphere was described using results of the field measurements and modeling approach. For the study a mire ecosystem located in Tula region in European part of Russia was selected. The selected mire has karst origin, depth of peat float is 2.5-3.0 m (depth of depression is more than 10 meter), area is about 1 ha. The mire vegetation is characterized by sedge and sphagnum mosses cover. The mire is surrounded by broad-leaved forest of about 20 meter high. To describe the temporal and spatial patterns of H2O and CO2 fluxes within selected mire the chamber method was applied. The measurement were carried out along transect from mire edge to center from June to September of 2012. For measurements the transparent ventilated chambers combined with portable infrared CO2/H2O analyzer LI-840 (Li-Cor, USA) was used. To estimate the gross primary production and respiration of different type of vegetation within the mire the measurements were conducted both under actual light conditions and artificial shading. Results of the experimental studies showed that the maximal CO2 fluxes was observed in central

  2. Arctic sea ice and atmospheric circulation under the abrupt4xCO2 scenario

    Institute of Scientific and Technical Information of China (English)

    YU Xiaoyong; Annette Rinke; JI Duoying; CUI Xuefeng; John C Moore

    2014-01-01

    We analyze sea ice changes from eight different earth system models that have conducted experiment abrupt4xCO2 of the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to abrupt quadrupling of CO2 from preindustrial levels, Arctic temperatures dramatically rise by about 10°C—16°C in winter and the seasonal sea ice cycle and sea ice concentration are signiifcantly changed compared with the pre-industrial control simulations (piControl). Changes of Arctic sea ice concentration are spatially correlated with temperature patterns in all seasons and highest in autumn. Changes in sea ice are associated with changes in atmospheric circulation patterns at heights up to the jet stream. While the pattern of sea level pressure changes is generally similar to the surface air temperature change pattern, the wintertime 500 hPa circulation displays a positive Paciifc North America (PNA) anomaly under abrupt4xCO2-piControl. This large scale teleconnection may contribute to, or feedback on, the simulated sea ice cover change and is associated with an intensiifcation of the jet stream over East Asia and the north Paciifc in winter.

  3. Transcriptional and metabolic insights into the differential physiological responses of arabidopsis to optimal and supraoptimal atmospheric CO2.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available BACKGROUND: In tightly closed human habitats such as space stations, locations near volcano vents and closed culture vessels, atmospheric CO(2 concentration may be 10 to 20 times greater than Earth's current ambient levels. It is known that super-elevated (SE CO(2 (>1,200 µmol mol(-1 induces physiological responses different from that of moderately elevated CO(2 (up to 1,200 µmol mol(-1, but little is known about the molecular responses of plants to supra-optimal [CO(2]. METHODOLOGY/PRINCIPAL FINDINGS: To understand the underlying molecular causes for differential physiological responses, metabolite and transcript profiles were analyzed in aerial tissue of Arabidopsis plants, which were grown under ambient atmospheric CO(2 (400 µmol mol(-1, elevated CO(2 (1,200 µmol mol(-1 and SE CO(2 (4,000 µmol mol(-1, at two developmental stages early and late vegetative stage. Transcript and metabolite profiling revealed very different responses to elevated versus SE [CO(2]. The transcript profiles of SE CO(2 treated plants were closer to that of the control. Development stage had a clear effect on plant molecular response to elevated and SE [CO(2]. Photosynthetic acclimation in terms of down-regulation of photosynthetic gene expression was observed in response to elevated [CO(2], but not that of SE [CO(2] providing the first molecular evidence that there appears to be a fundamental disparity in the way plants respond to elevated and SE [CO(2]. Although starch accumulation was induced by both elevated and SE [CO(2], the increase was less at the late vegetative stage and accompanied by higher soluble sugar content suggesting an increased starch breakdown to meet sink strength resulting from the rapid growth demand. Furthermore, many of the elevated and SE CO(2-responsive genes found in the present study are also regulated by plant hormone and stress. CONCLUSIONS/SIGNIFICANCE: This study provides new insights into plant acclimation to elevated and SE [CO

  4. Responses of plant rhizosphere to atmospheric CO2 enrichment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Plant root growth is generally stimulated under elevated CO2. This will bring more carbon to the below-ground through root death and exudate. This potential increase in below-ground carbon sink may lead to changes in long-term soil sequestration and relationship between host plants and symbions. On the other hand, changes in litter components due to the changes in plant chemical composition may also affect soil processes, such as litter decomposition, soil organic matter sequestration and hetero-nutritional bacteria activities. These issues are discussed.

  5. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    Science.gov (United States)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    The abundance of the isotopologue 18O13C16O (Δ47) in atmospheric air is a promising new tracer for the atmospheric carbon cycle (Eiler and Schauble, 2004; Affek and Eiler, 2006; Affek et al., 2007). The large gross fluxes in CO2 between the atmosphere and biosphere are supposed to play a major role in controlling its abundance. Eiler and Schauble (2004) set up a box model describing the effect of air-leaf interaction on the abundance of 18O13C16O in atmospheric air. The main assumption is that the exchange between CO2 and water within the mesophyll cells will imprint a Δ47 value on the back-diffusing CO2 that reflects the leaf temperature. Additionally, kinetic effects due to CO2 diffusion into and out of the stomata are thought to play a role. We investigated the effect of photosynthesis on the residual CO2 under controlled conditions using a leaf chamber set-up to quantitatively test the model assumptions suggested by Eiler and Schauble (2004). We studied the effect of photosynthesis on the residual CO2 using two C3 and one C4 plant species: (i) sunflower (Helianthus annuus), a C3 species with a high leaf conductance for CO2 diffusion, (ii) ivy (Hedera hibernica), a C3 species with a low conductance, and (iii), maize (Zea mays), a species with the C4 photosynthetic pathway. We also investigated the effect of different light intensities (photosynthetic photon flux density of 200, 700 and 1800 μmol m2s-1), and thus, photosynthetic rate in sunflower and maize. A leaf was mounted in a cuvette with a transparent window and an adjustable light source. The air inside was thoroughly mixed, making the composition of the outgoing air equal to the air inside. A gas-mixing unit was attached at the entrance of the cuvette that mixed air with a high concentration of scrambled CO2 with a Δ47 value of 0 to 0.1‰ with CO2 free air to set the CO2 concentration of ingoing air at 500 ppm. The flow rate through the cuvette was adjusted to the photosynthetic activity of the leaf

  6. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiongwen; GAO Kunshan

    2003-01-01

    The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (Caext) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physiological response to different CO2 concentrations under either a low (30 μmol·m-2·s-1) or high (210 μmol·m-2·s-1) irradiance. The changes in CO2 concentrations (4-31 μmol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light regime. Caext was detected in the cells grown at 4 μmol/L CO2 but not at 31 and 12 μmol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photo- synthetic CO2 affinity (1/ K1/2(CO2)) of the cells decreased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of Caext activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the development of higher Caext activity and CO2 affinity under higher light level could sufficiently support the photosynthetic demand for CO2 even at low level of CO2.

  7. [Influence of elevated atmospheric CO2 on rhizosphere microbes and arbuscular mycorrhizae].

    Science.gov (United States)

    Chen, Jing; Chen, Xin; Tang, Jianjun

    2004-12-01

    The changes of microbial communities in rhizosphere and the formation of mycorrhizae play an important role in affecting the dynamics of plant communities and terrestrial ecosystems. This paper summarized and discussed the effects of elevated atmospheric CO2 on them. Under elevated atmospheric CO2, the carbohydrates accumulated in root systems increased, and the rhizospheric environment and its microbial communities as well as the formation of mycorrhizae changed. It is suggested that the researches in the future should be focused on the effects of rhizosphere microbes and arbuscular mycorrhizae on regulating the carbon dynamics of plant communities and terrestrial ecosystems under elevated atmospheric CO2.

  8. Effect of atmospheric CO 2 enrichment on rubisco content in herbaceous species from high and low altitude

    Science.gov (United States)

    Sage, Rowan F.; Schäppi, Bernd; Körner, Christian

    Atmospheric CO 2 enrichment reduces Rubisco content in many species grown in controlled environments; however, relatively few studies have examined CO 2 effects on Rubisco content of plants grown in their natural habitat. We examined the response of Rubisco content to atmospheric CO 2 enrichment (600-680 μmol mol -1 in place of ppm) in 5 herbaceous species growing in a low altitude grassland (550 m) near Basel, Switzerland, and 3 herbaceous species from Swiss alpine grassland at 2470 m. At low elevation, the dominant grass Bromus erectus and the subdominant dicot Sanquisorba minor exhibited 20% to 25% reduction of Rubisco content following high CO 2 exposure; no CO 2 effect was observed in the subdominants Carex flacca, Lotus corniculatus and Trifolium repens. At the Alpine site, the subdominant grass Poa alpina maintained 27% less Rubisco content when grown at high CO 2 while the co-dominant forb Leontodon helveticus had 19% less Rubisco in high CO 2. Rubisco content was unaffected in the tundra dominant Carex curvula. Because the degree of Rubisco modulation was similar between high and low elevation sites, it does not appear that differences in local partial pressure of CO 2 (altitude) or differences in stress in general induce different patterns of modulation of photosynthetic capacity in response to high CO 2. In addition, the degree of Rubisco reduction (<30%) was less than might be indicated by the low biomass response to CO 2 enrichment previously observed at these sites. Thus, plants in Swiss lowland and alpine grassland appear to maintain greater Rubisco concentration and photosynthetic capacity than whole plants can effectively exploit in terms of harvestable biomass.

  9. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    Science.gov (United States)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; Liu, Zhaoyan

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  10. ASSIMILATION, RESPIRATION AND ALLOCATION OF CARBON IN PLANTAGO MAJOR AS AFFECTED BY ATMOSPHERIC CO2 LEVELS - A CASE-STUDY

    NARCIS (Netherlands)

    DENHERTOG, J; STULEN, [No Value; LAMBERS, H

    1993-01-01

    The response of Plantago major ssp. pleiosperma plants, grown on nutrient solution in a climate chamber, to a doubling of the ambient atmospheric CO2 concentration was investigated. Total dry matter production was increased by 30 % after 3 weeks of exposure, due to a transient stimulation of the rel

  11. Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach for the Netherlands

    NARCIS (Netherlands)

    Kruijt, B.; Witte, J.P.M.; Jacobs, C.M.J.; Kroon, T.

    2008-01-01

    The extent to which climate change will affect evapotranspiration and water deficits is still uncertain. Temperature increase was recently shown to lead to enhanced drought in the Netherlands. In contrast, experimental evidence shows that elevated atmospheric CO2 concentrations tend to reduce stomat

  12. Interactive Effects of Drought Stresses and Elevated CO2 Concentration on Photochemistry Efficiency of Cucumber Seedlings

    Institute of Scientific and Technical Information of China (English)

    Qing-Ming Li; Bin-Bin Liu; Yang Wu; Zhi-Rong Zou

    2008-01-01

    To reveal and quantify the interactive effects of drought stresses and elevated CO2 concentration [CO2] on photochemistry efficiency of cucumber seedlings, the portable chlorophyll meter was used to measure the chlorophyll content, and the Imaging-PAM was used to image the chlorophyll fluorescence parameters and rapid light response curves (RLC) of leaves in two adjacent greenhouses. The results showed that chlorophyll content of leaves was reduced significantly with drought stress aggravated. Minimal fluorescence (Fo) was increased while maximal quantum yield of PSII (Fv/Fm) decreased significantly by severe drought stress. The significant decrease of effective quantum yield of PSll (Y(Ⅱ)) accompanied by the significant increase of quantum yield of regulated energy dissipation (Y(NPQ)) was observed under severe drought stress condition, but there was no change of quantum yield of nonregulated energy dissipation (Y(NO)). We detected that the coefficient of photochemical quenching (Qp) decreased, and non-photochemical quenching (NPQ) increased significantly under severe drought stress. Furthermore, we found that maximum apparent electron transport rate (ETRmax) and saturating photosynthetically active radiation (PPFDsat) decreased significantly with drought stress aggravated. However, elevated [CO2] significantly increased FvlFm, Qp and PPFDsat, and decreased NPQ under all water conditions, although there were no significant effects on chlorophyll content, Fo, Y(Ⅱ), Y(NPQ), Y(NO) and ETRmax. Therefore, it is concluded that CO2-fertilized greenhouses or elevated atmospheric [CO2] in the future could be favorable for cucumber growth and development, and beneficial to alleviate the negative effects of drought stresses to a certain extent.

  13. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics.

    Science.gov (United States)

    Drigo, Barbara; Kowalchuk, George A; Knapp, Brigitte A; Pijl, Agata S; Boschker, Henricus T S; van Veen, Johannes A

    2013-02-01

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by (13) C pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the (13) C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.

  14. Effects of elevated CO2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Increasing atmospheric CO2 concentration is generally expected to enhance photosynthesis and growth of agricultural C3 vegetable crops,and therefore results in an increase in crop yield.However,little is known about the combined effect of elevated CO2 and N species on plant growth and development.Two growth-chamber experiments were conducted to determine the effects of NH4+/NO3- ratio and elevated CO2 concentration on the physiological development and water use of tomato seedlings.Tomato was grown for 45 d in containers with nutrient solutions varying in NH4+/NO3- ratios and CO2 concentrations in growth chambers.Results showed that plant height,stem thickness,total dry weight,dry weight of the leaves,stems and roots,G value (total plant dry weight/seedling days),chlorophyll content,photosynthetic rate,leaf-level and whole plant-level water use efficiency and cumulative water consumption of tomato seedlings were increased with increasing proportion of NO3- in nutrient solutions in the elevated CO2 treatment.Plant biomass,plant height,stem thickness and photosynthetic rate were 67%,22%,24% and 55% higher at elevated CO2 concentration than at ambient CO2 concentration,depending on the values of NH4+/NO3- ratio.These results indicated that elevating CO2 concentration did not mitigate the adverse effects of 100% NH4+-N (in nutrient solution) on the tomato seedlings.At both CO2 levels,NH4+/NO3- ratios of nutrient solutions strongly influenced almost every measure of plant performance,and nitrate-fed plants attained a greater biomass production,as compared to ammonium-fed plants.These phenomena seem to be related to the coordinated regulation of photosynthetic rate and cumulative water consumption of tomato seedlings.

  15. Effects of elevated CO2 concentrations on soil microbial respiration and root/rhizosphere respiration in-forest soils

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The two main components of soil respiration,i.e.,root/rhizosphere and microbial respiration,respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter,respectively.To model the carbon cycle and predict the carbon source/sink of forest ecosystems,we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations.Root/rhizosphere and soil microbial respiration have been shown to increase,decrease and remain unchanged under elevated CO2 concentrations.A significantly positive relationship between root biomass and root/rhizosphere respiration has been found.Fine roots respond more strongly to elevated CO2 concentrations than coarse roots.Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations.Microbial biomass and activity are related or unrelated to rates of microbial respiration.Because substrate availability drives microbial metabolism in soils,it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production.Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration.

  16. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation.

    Science.gov (United States)

    Yung, Y L; Nair, H; Gerstell, M F

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  17. How does atmospheric elevated CO2 affect crop pests and their natural enemies? Case histories from China

    Institute of Scientific and Technical Information of China (English)

    Yu-Cheng Sun; Jin Yin; Fa-Jun Chen; Gang Wu; Feng Ge

    2011-01-01

    Global atmospheric CO2 concentrations have risen rapidly since the Industrial Revolution and are considered as a primary factor in climate change.The effects of elevated CO2 on herbivore insects were found to be primarily through the CO2-induced changes occurring in their host plants,which then possibly affect the intensity and frequency of pest outbreaks on crops.This paper reviews several ongoing research models using primary pests of crops (cotton bollworm,whitefly,aphids) and their natural enemies (ladybeetles,parasitoids) in China to examine insect responses to elevated CO2.It is generally indicated that elevated CO2 prolonged the development of cotton bollworm,Helicoverpa armigera,a chewing insect,by decreasing the foliar nitrogen of host plants.In contrast,the phloemsucking aphid and whitefly insects had species-specific responses to elevated CO2 because of complex interactions that occur in the phloem sieve elements of plants.Some aphid species,such as cotton aphid,Aphis gossypii and wheat aphid,Sitobion avenae,were considered to represent the only feeding guild to respond positively to elevated CO2 conditions.Although whitefly,Bemisia tabaci,a major vector of Tomato yellow leaf curl virus,had neutral response to elevated CO2,the plants became less vulnerable to the virus infection under elevated CO2.The predator and parasitoid response to elevated CO2 were frequently idiosyncratic.These documents from Chinese scientists suggested that elevated CO2 initially affects the crop plant and then cascades to a higher trophic level through the food chain to encompass herbivores (pests),their natural enemies,pathogens and underground nematodes,which disrupt the natural balance observed previously in agricultural ecosystems.

  18. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    Science.gov (United States)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  19. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  20. Controle de Rhyzopertha dominica pela atmosfera controlada com CO2, em trigo Control of Rhyzopertha dominica using a controlled atmosphere with CO2, in wheat

    Directory of Open Access Journals (Sweden)

    Rogério Amaro Gonçalves

    2000-01-01

    Full Text Available A utilização de gases inertes como fumigantes no controle de pragas é uma alternativa ao uso de fosfina. O objetivo deste trabalho foi avaliar a eficiência de uma atmosfera com CO2 no controle de Rhyzoperta dominica (Fabr. (Coleoptera: Bostrichidae em grãos de trigo armazenado. O trabalho constou de cinco concentrações de CO2 (0, 30 , 40, 50 e 60%, completadas com N2, três períodos de exposição (5, 10, 15 dias, três populações de R. dominica (Fabr. (Coleoptera: Bostrichidae (Campo Mourão, PR, Sete Lagoas, MG e Santa Rosa, RS e sete fases de desenvolvimento do inseto (ovo, larva de 1º, 2º, 3º e 4º ínstar, pupa e adulto com três repetições. As diferentes fases da R. dominica foram acondicionadas em tecido organza e levadas para câmaras de expurgo de 200 litros com 75% deste volume repletos de grãos. As câmaras foram vedadas com borracha de silicone para garantir a hermeticidade. Após a vedação das câmaras injetavam-se os gases contendo diferentes teores de CO2. Os resultados mostraram que todos os teores de CO2 causaram 100% de mortalidade de adultos das três populações nos três períodos de exposição utilizados. Em pupas a mortalidade atingiu 100% no teor de 60% de CO2 para as três populações no período de 15 dias de exposição; porém, todos os teores de CO2 utilizados no período de 15 dias de exposição causaram 100% de mortalidade das pupas da população de Santa Rosa. Para o adequado controle de larvas de diferentes ínstares são necessários teores de CO2 iguais ou acima de 50%. Nos períodos de 10 e 15 dias de exposição, todos os teores de CO2 causaram 100% de mortalidade dos ovos das três populações avaliadas.Controlled atmosphere with inert gases offers an alternative to phosphine use to control stored grain pests. The objective of this research was to test a controlled atmosphere with CO2 to control Rhyzoperta dominica, (Fabr. (Coleoptera: Bostrichidae, an important pest of stored wheat

  1. Variable conductivity and embolism in roots, trunks and branches of tree species growing under future atmospheric CO2 concentration (DUKE FACE site): impacts on whole-plant hydraulic performance and carbon assimilation

    Science.gov (United States)

    domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.

    2013-12-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.

  2. Near-pure vapor condensation in the Martian atmosphere: CO2 ice crystal growth

    OpenAIRE

    Listowski, Constantino; Määttänen, Anni; Riipinen, Ilona; Montmessin, Franck; Lefèvre, Franck

    2013-01-01

    International audience; A new approach is presented to model the condensational growth of carbon dioxide (CO2) ice crystals on Mars. These condensates form in very particular conditions. First, ~95% of the atmosphere is composed of CO2 so that near-pure vapor condensation takes place. Second, the atmosphere is rarefied, having dramatic consequences on the crystal growth. Indeed, the subsequently reduced efficiency of heat transport helps maintain a high temperature difference between the crys...

  3. Interaction between Medicago truncatula and Pseudomonas fluorescens: evaluation of costs and benefits across an elevated atmospheric CO(2.

    Directory of Open Access Journals (Sweden)

    Clémentine Lepinay

    Full Text Available Soil microorganisms play a key role in both plants nutrition and health. Their relation with plant varies from mutualism to parasitism, according to the balance of costs and benefits for the two partners of the interaction. These interactions involved the liberation of plant organic compounds via rhizodeposition. Modification of atmospheric CO(2 concentration may affect rhizodeposition and as a consequence trophic interactions that bind plants and microorganisms. Positive effect of elevated CO(2 on plants are rather well known but consequences for micoorganisms and their interactions with plants are still poorly understood. A gnotobiotic system has been developed to study the interaction between Medicago truncatula Jemalong J5 and the mutualistic bacteria Pseudomonas fluorescens strain C7R12 under two atmospheric CO(2 concentrations: ambient (365 ppm versus enriched (750 ppm. Costs and benefits for each partner have been determined over time by measuring plant development and growth, the C and N contents of the various plant parts and the density of the bacteria in rhizosphere compartments. Following the increase in CO(2, there was a beneficial effect of P. fluorescens C7R12 on development, vegetative growth, and C/N content of M. truncatula. Concerning plant reproduction, an early seed production was noticed in presence of the bacterial strain combined with increased atmospheric CO(2 conditions. Paradoxically, this transient increase in seed production was correlated with a decrease in bacterial density in the rhizosphere soil, revealing a cost of increased CO(2 for the bacterial strain. This shift of costs-benefits ratio disappeared later during the plant growth. In conclusion, the increase in CO(2 concentration modifies transiently the cost-benefit balance in favor of the plant. These results may be explained either by a competition between the two partners or a change in bacterial physiology. The ecosystem functioning depends on the

  4. Acetylene fuel from atmospheric CO2 on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  5. A test of sensitivity to convective transport in a global atmospheric CO2 simulation

    Science.gov (United States)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2006-11-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. Global CO2 in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA's Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  6. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  7. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    Science.gov (United States)

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; Williams, Christopher A.; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-11-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  8. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    Science.gov (United States)

    Howell, Fergus; Haywood, Alan; Pickering, Steven

    2016-04-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicates. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found in analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, a better understanding of the nature of mPWP Arctic sea ice would be highly beneficial in understanding proxy derived estimates of high latitude surface temperature change, and the ability of climate models to reproduce this. In GCM simulations, the mPWP is typically represented with fixed orbital forcing, usually identical to modern, and atmospheric CO2 concentrations of ˜ 400 ppm. However, orbital forcing varied over the ˜ 240,000 years of the mPWP, and it is likely that atmospheric CO2 varied as well. A previous study has suggested that the parameterisation of sea ice albedo in the HadCM3 GCM may not reflect the sea ice albedo for a warmer climate, where seasonal sea ice constitutes a greater proportion of the Arctic sea ice cover. These three factors, in isolation and combined, can greatly influence the simulation of Arctic sea ice cover and the degree of high latitude surface temperature warming. This paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by

  9. Forsterite Carbonation in Wet-scCO2: Dependence on Adsorbed Water Concentration

    Science.gov (United States)

    Loring, J.; Benezeth, P.; Qafoku, O.; Thompson, C.; Schaef, T.; Bonneville, A.; McGrail, P.; Felmy, A.; Rosso, K.

    2013-12-01

    Capturing and storing CO2 in basaltic formations is one of the most promising options for mitigating atmospheric CO2 emissions resulting from the burning of fossil fuels. These geologic reservoirs have high reactive potential for CO2-mineral trapping due to an abundance of divalent-cation containing silicates, such as forsterite (Mg2SiO4). Recent studies have shown that carbonation of these silicates under wet scCO2 conditions, e. g. encountered near a CO2 injection well, proceeds along a different pathway and is more effective than in CO2-saturated aqueous fluids. The presence of an adsorbed water film on the forsterite surface seems to be key to reactivity towards carbonation. In this study, we employed in situ high pressure IR spectroscopy to investigate the dependence of adsorbed water film thickness on forsterite carbonation chemistry. Post reaction ex situ SEM, TEM, TGA, XRD, and NMR measurements will also be discussed. Several IR titrations were performed of forsterite with water at 50 °C and 90 bar scCO2. Aliquots of water were titrated at 4-hour reaction-time increments. Once a desired total water concentration was reached, data were collected for about another 30 hours. One titration involved 10 additions, which corresponds to 6.8 monolayers of adsorbed water. Clearly, a carbonate was precipitating, and its spectral signature matched magnesite. Another titration involved 8 aliquots, or up to 4.4 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 4.4 monolayers showed an increase and then a plateau. We are currently unsure of the identity of the carbonate that precipitated, but it could be an amorphous anhydrous phase or magnesite crystals with dimensions of only several nanometers. A third titration only involved 3 additions, or up to 1.6 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 1.6 monolayers

  10. Using Mauna Loa Atmospheric CO2 Data in Large General Education Geoscience Courses

    Science.gov (United States)

    Richardson, R. M.; Kapp, J. L.

    2007-12-01

    We have been using the Mauna Loa atmospheric CO2 dataset (http://scrippsco2.ucsd.edu/data/in_situ_co2/monthly_mlo.csv) in a large (up to 300) General Education Geoscience course, primarily in small breakout groups (30 students). The exercise is designed to address quantitative literacy including percentages, slopes and linear trends, issues of data completeness and bias, quality of extrapolations, as well as implications for climate change. We are significantly revising the course, which serves 600 students a semester, with help from a curriculum grant. A major goal is to improve student learning by incorporating inquiry based activities in the large lecture setting. Lectures now incorporate several activities throughout a given class period, in which students are asked to use critical thinking skills such as interpreting patterns in data and graphs, analyzing a scientific hypothesis for its coherence with the scientific method, and answering higher order synthesis questions in both verbal and written form. This differs from our past format where class periods were dominated by lecture, with a single short activity done individually about every other lecture. To test the effectiveness of the new course format we will give students the same atmospheric CO2 exercise in the lecture setting that they were given previously in breakout groups. Students will work in small groups in lecture after receiving a short introduction to the exercise by the instructor. They will plot CO2 concentrations, make extrapolations, and interpret patterns in the data. We will compare scores on the exercise with previous semesters. We expect that students will do better having had more experience with interpreting scientific data and practicing higher order thinking skills. We also expect working in small groups will foster better learning through peer teaching and discussion. We will incorporate responses from students who took part in the exercises from current and previous semesters. We

  11. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  12. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Jensen, Anker Degn; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    was burned at 1573 K and 1673 K a faster conversion was found in N2 suggesting that the lower molecular diffusion coefficient of O2 in CO2 lowers the char conversion rate when external mass transfer influences combustion. The reaction of char with CO2 was not observed to have an influence on char conversion......The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments...... indicates that a shift from air to oxy-fuel combustion does not influence the devolatilization process significantly. Char combustion experiments yielded similar char conversion profiles when N2 was replaced with CO2 under conditions where combustion was primarily controlled by chemical kinetics. When char...

  13. Elevated atmospheric [CO2 ] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves.

    Science.gov (United States)

    Fitzgerald, Glenn J; Tausz, Michael; O'Leary, Garry; Mollah, Mahabubur R; Tausz-Posch, Sabine; Seneweera, Saman; Mock, Ivan; Löw, Markus; Partington, Debra L; McNeil, David; Norton, Robert M

    2016-06-01

    Wheat production will be impacted by increasing concentration of atmospheric CO2 [CO2 ], which is expected to rise from about 400 μmol mol(-1) in 2015 to 550 μmol mol(-1) by 2050. Changes to plant physiology and crop responses from elevated [CO2 ] (e[CO2 ]) are well documented for some environments, but field-level responses in dryland Mediterranean environments with terminal drought and heat waves are scarce. The Australian Grains Free Air CO2 Enrichment facility was established to compare wheat (Triticum aestivum) growth and yield under ambient (~370 μmol(-1) in 2007) and e[CO2 ] (550 μmol(-1) ) in semi-arid environments. Experiments were undertaken at two dryland sites (Horsham and Walpeup) across three years with two cultivars, two sowing times and two irrigation treatments. Mean yield stimulation due to e[CO2 ] was 24% at Horsham and 53% at Walpeup, with some treatment responses greater than 70%, depending on environment. Under supplemental irrigation, e[CO2 ] stimulated yields at Horsham by 37% compared to 13% under rainfed conditions, showing that water limited growth and yield response to e[CO2 ]. Heat wave effects were ameliorated under e[CO2 ] as shown by reductions of 31% and 54% in screenings and 10% and 12% larger kernels (Horsham and Walpeup). Greatest yield stimulations occurred in the e[CO2 ] late sowing and heat stressed treatments, when supplied with more water. There were no clear differences in cultivar response due to e[CO2 ]. Multiple regression showed that yield response to e[CO2 ] depended on temperatures and water availability before and after anthesis. Thus, timing of temperature and water and the crop's ability to translocate carbohydrates to the grain postanthesis were all important in determining the e[CO2 ] response. The large responses to e[CO2 ] under dryland conditions have not been previously reported and underscore the need for field level research to provide mechanistic understanding for adapting crops to a changing

  14. Phanerozoic atmospheric CO 2 change: evaluating geochemical and paleobiological approaches

    Science.gov (United States)

    Royer, Dana L.; Berner, Robert A.; Beerling, David J.

    2001-08-01

    . In addition, it assumes that there are no biological or temperature effects and that diagenetic alteration of the boron isotopic composition does not occur. A fifth CO 2 proxy, based on the redox chemistry of marine cerium, has several fundamental flaws and is not discussed in detail here.

  15. Development of new measuring technique using sound velocity for CO2 concentration in Cameroonian volcanic lakes

    Science.gov (United States)

    Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.

    2012-12-01

    1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes

  16. Climate sensitivity due to increased CO2: experiments with a coupled atmosphere and ocean general circulation model

    Science.gov (United States)

    Washington, Warren M.; Meehl, Gerald A.

    1989-06-01

    A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30° 50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models

  17. The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales

    Science.gov (United States)

    Lauderdale, Jonathan M.; Williams, Richard G.; Munday, David R.; Marshall, David P.

    2017-03-01

    The Southern Ocean plays a pivotal role in climate change by exchanging heat and carbon, and provides the primary window for the global deep ocean to communicate with the atmosphere. There has been a widespread focus on explaining atmospheric CO2 changes in terms of changes in wind forcing in the Southern Ocean. Here, we develop a dynamically-motivated metric, the residual upwelling, that measures the primary effect of Southern Ocean dynamics on atmospheric CO2 on centennial to millennial timescales by determining the communication with the deep ocean. The metric encapsulates the combined, net effect of winds and air-sea buoyancy forcing on both the upper and lower overturning cells, which have been invoked as explaining atmospheric CO2 changes for the present day and glacial-interglacial changes. The skill of the metric is assessed by employing suites of idealized ocean model experiments, including parameterized and explicitly simulated eddies, with online biogeochemistry and integrated for 10,000 years to equilibrium. Increased residual upwelling drives elevated atmospheric CO2 at a rate of typically 1-1.5 parts per million/106 m3 s-1 by enhancing the communication between the atmosphere and deep ocean. This metric can be used to interpret the long-term effect of Southern Ocean dynamics on the natural carbon cycle and atmospheric CO2, alongside other metrics, such as involving the proportion of preformed nutrients and the extent of sea ice cover.

  18. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    Science.gov (United States)

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  19. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2

    Science.gov (United States)

    Rezende, L. F. C.; Arenque, B. C.; Aidar, S. T.; Moura, M. S. B.; Von Randow, C.; Tourigny, E.; Menezes, R. S. C.; Ometto, J. P. H. B.

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  20. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2.

    Science.gov (United States)

    Rezende, L F C; Arenque, B C; Aidar, S T; Moura, M S B; Von Randow, C; Tourigny, E; Menezes, R S C; Ometto, J P H B

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  1. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    Science.gov (United States)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  2. 大气CO2浓度升高对香蕉光合作用及光合碳循环过程中叶氮分配的影响%Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of pho osynthetic carbon cycle in Musa paradisiaca

    Institute of Scientific and Technical Information of China (English)

    孙谷畴; 赵平; 曾小平; 彭少麟

    2001-01-01

    生长在高CC2浓度(700±56μl·L-1)1周的香蕉叶片,其光合速率(Pn,μmol·m-2·s1)为5.14±0.32,较生长在大气CO2浓度(356±301μl·L-1)的高22.1%,而生长在较高CO2浓度下8周,叶片Pn较生长在大气CO2浓度的低18.1%,表现香蕉叶片对较长期高CO2浓度的驯化和光合作用抑制.生长在高CO2浓度的香蕉叶片有较低光下呼吸速率(Rd),而不包括光下呼吸的CO2补偿点则变幅较小.最大羧化速率(Vcmax)和电子传递速率(J)分别较生长在大气CO2浓度的低30.5%和14.8%,根据气体交换速率计算的表观量子产率(α,molCO2·mol-1光量子),生长在较高CO2浓度下8周的叶片为0.014±0.01,而生长在大气CO2浓度下的为0.025±0.005.较高CO2浓度下叶片的表观量子产率降低44%.光能转换效率electrons·quanta-1)亦从0.203降低至0.136.生长在较高CO2浓度下香蕉叶片的叶氮在Rubicos分配系数(PR)、叶氮在生物力能学组分分配系数(PB)和叶氮在光捕组分的分配系数(PL)均较生长在大气CO2浓度低,表明在高CO2浓度下较长期生长(8周)的香蕉叶片多个光合过程受抑制,光合活性明显降低.

  3. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500 μmol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply.

  4. Effect of elevated ambient CO2 concentration on water use efficiency of Pinus sylvestriformis

    Institute of Scientific and Technical Information of China (English)

    Han Shijie; Zhang Junhui; Wang Chenrui; Zou Chunjing; Zhou Yumei; Wang Xiaochun

    1999-01-01

    Pinus sylvestriformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species ( 11-year old ) was studied on response to elevated CO2 concentration at 500± 100 μL· L-1 by directly injecting CO2 into the canopy under natural condition in 1998-1999. The results showed that the elevated CO2 concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated CO2 reduced the transpiration and enhances the water use efficiency (WUE) of plant.

  5. Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang

    2015-01-01

    Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of

  6. Atmospheric Fossil Fuel CO2 Traced by Δ(14)C in Beijing and Xiamen, China: Temporal Variations, Inland/Coastal Differences and Influencing Factors.

    Science.gov (United States)

    Niu, Zhenchuan; Zhou, Weijian; Wu, Shugang; Cheng, Peng; Lu, Xuefeng; Xiong, Xiaohu; Du, Hua; Fu, Yunchong; Wang, Gehui

    2016-06-07

    One year of atmospheric Δ(14)CO2 were observed in 2014 in the inland city of Beijing and coastal city of Xiamen, China, to trace temporal CO2ff variations and to determine the factors influencing them. The average CO2ff concentrations at the sampling sites in Beijing and Xiamen were 39.7 ± 36.1 ppm and 13.6 ± 12.3 ppm, respectively. These contributed 75.2 ± 14.6% and 59.1 ± 26.8% to their respective annual ΔCO2 offsets over background CO2 concentrations. Significantly (p < 0.05) high CO2ff values were observed in winter in Beijing. We did not find any significant differences in CO2ff values between weekdays and weekends. Diurnal CO2ff variations were plainly evident, with high values between midnight and 4:00, and during morning and afternoon rush hours. The sampling site in the inland city of Beijing displayed much higher CO2ff inputs and overall temporal variations than the site in the coastal city of Xiamen. The variations of CO2ff at both sites were controlled by a combination of emission sources, topography, and atmospheric dispersion. In particular, diurnal observations at the urban site in Beijing showed that CO2ff was easily accumulated under the southeast wind conditions.

  7. EXPLOSIVE ABSORPTION EFFECT OF POWER CO2 LASER BEAM IN ATMOSPHERE

    OpenAIRE

    Zakharov, V.; Shmelev, V.; Nesterenko, A.

    1991-01-01

    The interaction of a wide beam of intense 10.6 µm and 9.4 µm laser radiation with atmospheric CO2 is studied. The threshold spectroscopic effect of explosive absorption have been obtained. In this effect the absorption coefficient of the atmosphere increases sharply owing to strong self-heating ([MATH] 700-1000 K) of the beam channel.

  8. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    NARCIS (Netherlands)

    van der Meer, D.G.; Zeebe, R.; van Hinsbergen, D.J.J.; Sluijs, A.; Spakman, W.; Torsvik, T.H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean rid

  9. A possible new role for atmospheric 13CO2 in global models

    NARCIS (Netherlands)

    Miller, J. B.; Ballantyne, A.; Berry, J. A.; Peters, W.; Still, C.; Tans, P.; White, J.

    2008-01-01

    The promise of utilizing large-scale atmospheric δ13CO2 measurements to understand terrestrial processes has not been fully realized. Here, we will present recent progress in the use of measurements and simulations of atmospheric δ13C to better understand the signals of the biosphere contained withi

  10. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino

    NARCIS (Netherlands)

    Welp, Lisa R.; Keeling, Ralph F.; Meijer, Harro A. J.; Bollenbacher, Alane F.; Piper, Stephen C.; Yoshimura, Kei; Francey, Roger J.; Allison, Colin E.; Wahlen, Martin

    2011-01-01

    The stable isotope ratios of atmospheric CO2 (O-18/O-16 and C-13/C-12) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way(1). Interpreting the O-18/O-16 variabilit

  11. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Directory of Open Access Journals (Sweden)

    James B. Abshire

    2013-12-01

    Full Text Available We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5–6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2–3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6

  12. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Ralph [UCSD-SIO

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  13. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... production well. In this approach the salt concentrations at water production wells depending on different parameters are determined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical...... polynomial chaos expansion (aPC) [1]. The aPC is applied in this work to provide probabilities and risk values for salt concentrations at the water production well. Mixing in the aquifer has a key influence on the salt concentration at the well. Dispersion and diffusion are the relevant processes for mixing...

  14. CORRELATION BETWEEN CORAL CALCIFICATION TREND AND RISE IN ATMOSPHERIC CO2 CONCENTRATION AND GLOBAL WARMING IN LAST SEVERAL DECADES IN THE SOUTHERN SOUTH CHINA SEA%南海南部最近几十年珊瑚钙化趋势与大气CO2浓度升高和全球变暖的联系

    Institute of Scientific and Technical Information of China (English)

    苏瑞侠; 隋丹丹; 张叶春; 孙东怀; 郭峰; 徐玉芬; 张月宝; 李再军

    2012-01-01

    with lowest rainfall and cloud cover in April. Natural geographical conditions are suitable for reef coral living. Extension rate represents coral upward linear extension growth per year ( cm/a) , density represents coral skeletal quality per cm (g/cm) reflecting comprehensive environment quality; Calcification rate represents quality of calcium carbonate per cm and year ( g/cm2· a) excreted by coral, and calculated from the product of extension rate and density. In this study,the 3 growth parameters of the 11 Porites colonies were obtained along their main growth axes using digital X-radiography image of which the reative density is transferred to density with measured true density. The results show that their average extension rate is 0. 96±0. 05cm/a, increasing 10. 77% in the last 16 years with a rate of 0. 67%/a; The average density is 1. 17±0. 03g/cm3, decreasing 6. 92% with a rate of -0. 43%/a; The average calcification rate is 1. 13±0. 05g/cm2·a,,increasing 2. 69% with a rate of 0. 17%/a. Two coral species of P. lutea and P. lobata show slightly different variations in their 3 growth parameters. Standard diviation analysis indicate that density is less variable than extension and calcification rate for Porites, which reveal that increase in calcification rate is mainly induced by increase in extension rate. Our analysis summarize three vriational forms for the three growth parameters in 11 Porites colonies:1 ) A lot of corals assume increase in extension and calcification rate and decrease in density; 2) A few of corals assume increase in all of the 3 growth parameters; 3)A few of P. lobata colonies show decrease in all of the 3 growth parameters. Linear regression analysis indicates that increase or decrease in the 3 growth parameters correlates significantly with increase in both CO2 concentration and temperature. However, positive responses of extension and calcification rate and negative response of density are much stronger than their opposite

  15. Measurement of CO2 concentration at high-temperature based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Chen, Jiuying; Li, Chuanrong; Zhou, Mei; Liu, Jianguo; Kan, Ruifeng; Xu, Zhenyu

    2017-01-01

    A diode laser sensor based on absorption spectroscopy has been developed for sensitive measurement of CO2 concentration at high-temperature. Measurement of CO2 can provide information about the extent of combustion and mix in a combustor that may be used to improve fuel efficiency. Most methods of in-situ combustion measurement of CO2 use the spectroscopic parameters taken from database like HITEMP which is mainly derived from the theoretical calculation and remains a high degree of uncertainty in the spectroscopic parameters. A fiber-coupled diode laser system for measurement of CO2 in combustion environment by use of the high-temperature spectroscopic parameters which are obtained by experiment was proposed. Survey spectra of the R(50) line of CO2 at 5007.787 cm-1 were recorded at high-temperature and various pressures to determine line intensities. The line intensities form the theoretical foundation for future applications of this diode laser sensor system. Survey spectra of four test gas mixtures containing 5.01%CO2, 10.01%CO2, 20.08%CO2, and 49.82%CO2 were measured to verify the accuracy of the diode laser sensor system. The measured results indicate that this sensor can measure CO2 concentration with 2% uncertainty in high temperatures.

  16. Developing a passive trap for diffusive atmospheric 14CO2 sampling

    Science.gov (United States)

    Walker, Jennifer C.; Xu, Xiaomei; Fahrni, Simon M.; Lupascu, Massimo; Czimczik, Claudia I.

    2015-10-01

    14C-CO2 measurement is an unique tool to quantify source-based emissions of CO2 for both the urban and natural environments. Acquiring a sample that temporally integrates the atmospheric 14C-CO2 signature that allows for precise 14C analysis is often necessary, but can require complex sampling devices, which can be difficult to deploy and maintain, especially for multiple locations. Here we describe our progress in developing a diffusive atmospheric CO2 molecular sieve trap, which requires no power to operate. We present results from various cleaning procedures, and rigorously tested for blank and memory effects. Traps were tested in the environment along-side conventional sampling flasks for accuracy. Results show that blank and memory effects can be minimized with thorough cleaning and by avoiding overheating, and that diffusively collected air samples agree well with traditionally canister-sampled air.

  17. Mesozooplankton community development at elevated CO2 concentrations: results from a mesocosm experiment in an Arctic fjord

    Directory of Open Access Journals (Sweden)

    B. Niehoff

    2013-03-01

    Full Text Available The increasing CO2 concentration in the atmosphere caused by burning fossil fuels leads to increasing pCO2 and decreasing pH in the world ocean. These changes may have severe consequences for marine biota, especially in cold-water ecosystems due to higher solubility of CO2. However, studies on the response of mesozooplankton communities to elevated CO2 are still lacking. In order to test whether abundance and taxonomic composition change with pCO2, we have sampled nine mesocosms, which were deployed in Kongsfjorden, an Arctic fjord at Svalbard, and were adjusted to eight CO2 concentrations, initially ranging from 185 μatm to 1420 μatm. Vertical net hauls were taken weekly over about one month with an Apstein net (55 μm mesh size in all mesocosms and the surrounding fjord. In addition, sediment trap samples, taken every second day in the mesocosms, were analysed to account for losses due to vertical migration and mortality. The taxonomic analysis revealed that meroplanktonic larvae (Cirripedia, Polychaeta, Bivalvia, Gastropoda, and Decapoda dominated in the mesocosms while copepods (Calanus spp., Oithona similis, Acartia longiremis and Microsetella norvegica were found in lower abundances. In the fjord copepods prevailed for most of our study. With time, abundance and taxonomic composition developed similarly in all mesocosms and the pCO2 had no significant effect on the overall community structure. Also, we did not find significant relationships between the pCO2 level and the abundance of single taxa. Changes in heterogeneous communities are, however, difficult to detect, and the exposure to elevated pCO2 was relatively short. We therefore suggest that future mesocosm experiments should be run for longer periods.

  18. Response of seedlings growth of Pinus sylvestriformis to atmospheric CO2 enrichment in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    Han S hijie; Wang Chen rui; Zhang Junhui; Zou Chunjing; Zhou Yumei; Wang Xiaochun

    1999-01-01

    The biomass and ratio of root-shoot of Pinus sylvestriformis seedlings at CO2 concentration of 700 μL· L-1 and 500 μL· L-1 were measured using open-top chambers (OTCs) in Changbai Mountain during Jun.to Oct. in 1999. The results showed that doubling CO2 concentration was benefit to seedling growth of the species (500 μL· L-1 was better than 700 μL-L-1 ) and the biomass production was increased in both aboveground and underground parts of seedlings. Carbon transformation to roots was evident as rising of CO2 concentration.

  19. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems

    Institute of Scientific and Technical Information of China (English)

    FU; Shenglei; Howard; Ferris

    2006-01-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting.The shoot-to-root ratios were not significantly different between two CO2 levels.

  20. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    Science.gov (United States)

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.

  1. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    Science.gov (United States)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  2. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  3. Effect of elevated CO2 concentration on microalgal communities in Antarctic pack ice

    Science.gov (United States)

    Coad, Thomas; McMinn, Andrew; Nomura, Daiki; Martin, Andrew

    2016-09-01

    Increased anthropogenic CO2 emissions are causing changes to oceanic pH and CO2 concentrations that will impact many marine organisms, including microalgae. Phytoplankton taxa have shown mixed responses to these changes with some doing well while others have been adversely affected. Here, the photosynthetic response of sea-ice algal communities from Antarctic pack ice (brine and infiltration microbial communities) to a range of CO2 concentrations (400 ppm to 11,000 ppm in brine algae experiments, 400 ppm to 20,000 ppm in the infiltration ice algae experiment) was investigated. Incubations were conducted as part of the Sea-Ice Physics and Ecosystem Experiment II (SIPEX-2) voyage, in the austral spring (September-November), 2012. In the brine incubations, maximum quantum yield (Fv/Fm) and relative electron transfer rate (rETRmax) were highest at ambient and 0.049% (experiment 1) and 0.19% (experiment 2) CO2 concentrations, although, Fv/Fm was consistently between 0.53±0.10-0.68±0.01 across all treatments in both experiments. Highest rETRmax was exhibited by brine cultures exposed to ambient CO2 concentrations (60.15). In a third experiment infiltration ice algal communities were allowed to melt into seawater modified to simulate the changed pH and CO2 concentrations of future springtime ice-edge conditions. Ambient and 0.1% CO2 treatments had the highest growth rates and Fv/Fm values but only the highest CO2 concentration produced a significantly lower rETRmax. These experiments, conducted on natural Antarctic sea-ice algal communities, indicate a strong level of tolerance to elevated CO2 concentrations and suggest that these communities might not be adversely affected by predicted changes in CO2 concentration over the next century.

  4. Weathering by tree root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    Science.gov (United States)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2013-10-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation, but the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 ppm to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 ppm to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  5. Weathering by tree root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    Directory of Open Access Journals (Sweden)

    J. Quirk

    2013-10-01

    Full Text Available Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 ([CO2]a over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation, but the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 ppm to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM and ectomycorrhizal (EM fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 ppm to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  6. Atmospheric pCO2 control on speleothem stable carbon isotope compositions

    Science.gov (United States)

    Breecker, Daniel O.

    2017-01-01

    The stable carbon isotope compositions of C3 plants are controlled by the carbon isotope composition of atmospheric CO2 (δ13Ca) and by the stomatal response to water stress. These relationships permit the reconstruction of ancient environments and assessment of the water use efficiency of forests. It is currently debated whether the δ13C values of C3 plants are also controlled by atmospheric pCO2. Here I show that globally-averaged speleothem δ13C values closely track atmospheric pCO2 over the past 90 kyr. After accounting for other possible effects, this coupling is best explained by a C3 plant δ13C sensitivity of - 1.6 ± 0.3 ‰ / 100 ppmV CO2 during the Quaternary. This is consistent with 20th century European forest tree ring δ13C records, providing confidence in the result and suggesting that the modest pCO2-driven increase in water use efficiency determined for those ecosystems and simulated by land surface models accurately approximates the global average response. The δ13C signal from C3 plants is transferred to speleothems relatively rapidly. Thus, the effect of atmospheric pCO2 should be subtracted from new and existing speleothem δ13C records so that residual δ13C shifts can be interpreted in light of the other factors known to control spleleothem δ13C values. Furthermore, global average speleothem δ13C shifts may be used to develop a continuous radiometric chronology for Pleistocene atmospheric pCO2 fluctuations and, by correlation, ice core climate records.

  7. Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures.

    Science.gov (United States)

    Liao, Pei-Qin; Chen, Xun-Wei; Liu, Si-Yang; Li, Xu-Yu; Xu, Yan-Tong; Tang, Minni; Rui, Zebao; Ji, Hongbing; Zhang, Jie-Peng; Chen, Xiao-Ming

    2016-10-19

    Tremendous efforts have been devoted to increasing the CO2 capture performance of porous materials, especially for low CO2 concentration environments. Here, we report that hydrazine can be used as a diamine short enough to functionalize the small-pore metal-organic framework [Mg2(dobdc)] (H4dobdc = 2,5-dihydroxyl-1,4-benzenedicarboxylic acid). By virtue of the ultrahigh concentration of free amine groups (6.01 mmol g(-1) or 7.08 mmol cm(-3)) capable of reversible carbamic acid formation, the new material [Mg2(dobdc)(N2H4)1.8] achieves a series of new records for CO2 capture, such as single-component isotherm uptakes of 3.89 mmol g(-1) or 4.58 mmol cm(-3) at the atmospheric CO2 concentration of 0.4 mbar at 298 K and 1.04 mmol g(-1) or 1.22 mmol cm(-3) at 328 K, as well as more than a 4.2 mmol g(-1) or 4.9 mmol cm(-3) adsorption/desorption working capacity under dynamic mixed-gas conditions with CO2 concentrations similar to those in flue gases and ambient air.

  8. Diurnal and seasonal variations in stomatal conductance of rice at elevated atmospheric CO(2) under fully open-air conditions.

    Science.gov (United States)

    Shimono, Hiroyuki; Okada, Masumi; Inoue, Meguru; Nakamura, Hirofumi; Kobayashi, Kazuhiko; Hasegawa, Toshihiro

    2010-03-01

    Understanding of leaf stomatal responses to the atmospheric CO(2) concentration, [CO(2)], is essential for accurate prediction of plant water use under future climates. However, limited information is available for the diurnal and seasonal changes in stomatal conductance (g(s)) under elevated [CO(2)]. We examined the factors responsible for variations in g(s) under elevated [CO(2)] with three rice cultivars grown in an open-field environment under flooded conditions during two growing seasons (a total of 2140 individual measurements). Conductance of all cultivars was generally higher in the morning and around noon than in the afternoon, and elevated [CO(2)] decreased g(s) by up to 64% over the 2 years (significantly on 26 out of 38 measurement days), with a mean g(s) decrease of 23%. We plotted the g(s) variations against three parameters from the Ball-Berry model and two revised versions of the model, and all parameters explained the g(s) variations well at each [CO(2)] in the morning and around noon (R(2) > 0.68), but could not explain these variations in the afternoon (R(2) rice production.

  9. Online monitoring of dissolved CO2 and MEA concentrations: effect of solvent degradation on predictive accuracy

    NARCIS (Netherlands)

    Ham, L.V. van der; Eckeveld, A.C. van; Goetheer, E.L.V.

    2014-01-01

    Concentrations of dissolved CO2 and mono-ethanolamine (MEA) are two essential properties of common CO2 absorption processes. They can be predicted accurately and continuously using a combination of inline measurements and a multivariate model, also in the presence of various solvent degradation prod

  10. [Effects of elevated rhizosphere CO2 concentration on the photosynthetic characteristics, yield, and quality of muskmelon].

    Science.gov (United States)

    Liu, Yi-Ling; Sun, Zhou-Ping; Li, Tian-Lai; Gu, Feng-Ying; He, Yu

    2013-10-01

    By using aeroponics culture system, this paper studied the effects of elevated rhizosphere CO2 concentration on the leaf photosynthesis and the fruit yield and quality of muskmelon during its anthesis-fruiting period. In the fruit development period of muskmelon, as compared with those in the control (350 microL CO2 x L (-1)), the leaf chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and the maximal photochemical efficiency of PS II (Fv/Fm) in treatments 2500 and 5000 microL CO2 x L(-1) decreased to some extents, but the stomatal limitation value (Ls) increased significantly, and the variation amplitudes were larger in treatment 5000 microL CO2 x L(-1) than in treatment 2500 microL CO2 x L(-1). Under the effects of elevated rhizosphere CO2 concentration, the fruit yield per plant and the Vc and soluble sugar contents in fruits decreased markedly, while the fruit organic acid content was in adverse. It was suggested that when the rhizosphere CO2 concentration of muskmelon during its anthesis-fruiting period reached to 2500 microL x L(-1), the leaf photosynthesis and fruit development of muskmelon would be depressed obviously, which would result in the decrease of fruit yield and quality of muskmelon.

  11. Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration

    Science.gov (United States)

    Xie, Li-Yong; Lin, Er-Da; Zhao, Hong-Liang; Feng, Yong-Xiang

    2016-05-01

    The global atmospheric CO2 concentration is currently (2012) 393.1 μmol mol-1, an increase of approximately 42 % over pre-industrial levels. In order to understand the responses of metabolic enzymes to elevated CO2 concentrations, an experiment was conducted using the Free Air CO2 Enrichment (FACE )system. Two conventional japonica rice varieties ( Oryza sativa L. ssp. japonica) grown in North China, Songjing 9 and Daohuaxiang 2, were used in this study. The activities of ADPG pyrophosphorylase, soluble and granule-bound starch synthases, and soluble and granule-bound starch branching enzymes were measured in rice grains, and the effects of elevated CO2 on the amylose and protein contents of the grains were analyzed. The results showed that elevated CO2 levels significantly increased the activity of ADPG pyrophosphorylase at day 8, 24, and 40 after flower, with maximum increases of 56.67 % for Songjing 9 and 21.31 % for Daohuaxiang 2. Similarly, the activities of starch synthesis enzymes increased significantly from the day 24 after flower to the day 40 after flower, with maximum increases of 36.81 % for Songjing 9 and 66.67 % for Daohuaxiang 2 in soluble starch synthase (SSS), and 25.00 % for Songjing 9 and 36.44 % for Daohuaxiang 2 in granule-bound starch synthase (GBSS), respectively. The elevated CO2 concentration significantly increased the activity of soluble starch branching enzyme (SSBE) at day 16, 32, and 40 after flower, and also significantly increased the activity of granule-bound starch branching enzyme (GBSBE) at day 8, 32, and 40 after flower. The elevated CO2 concentration increased the peak values of enzyme activity, and the timing of the activity peaks for SSS and GBSBE were earlier in Songjing 9 than in Daohuaxiang 2. There were obvious differences in developmental stages between the two varieties of rice, which indicated that the elevated CO2 concentration increased enzyme activity expression and starch synthesis, affecting the final contents

  12. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2007-10-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  13. [On the analysis of CO2-exchange in bryophyllum : II. Inhibition of starch loss during the night in an atmosphere free from CO2].

    Science.gov (United States)

    Kluge, M

    1969-06-01

    Starch consumption during the dark period in detached phyllodia of Bryophyllum tubiflorum is inhibited, when the phyllodia are held in an atmosphere free from carbon dioxide during the night. This is true also in other succulent plants with Crassulacean acid metabolism=CAM (examined were Bryophyllum calycinum and Sedum morganianum). This effect seems to indicate that the role of starch in CAM is production of CO2 acceptors rather than production of carbon dioxide by respiration. If the CO2 acceptors are not used, starch consumption comes to an end.This hypothesis could also explain results of experiments in which phyllodia were held at different temperatures during the dark period, and net CO2 fixation, starch loss and malate gain were determined. At 10° CO2 uptake was at a maximum (the necessary supply of CO2 acceptors must have therefore been at a maximum, too). Under these conditions there was the greatest amount of starch consumption. At 23° C, CO2 uptake was clearly lowered, and this was also true for starch consumption. At 35° C net CO2 uptake was balanced by net CO2, output (no CO2 acceptors were needed in CO2 dark fixation). At this temperature no starch loss could be measured.

  14. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    N. Vinnichenko

    2007-02-01

    Full Text Available Satellite observations of atmospheric CO2 offer the potential to identify regional carbon surface sources and sinks and to investigate carbon cycle processes. The extent to which satellite measurements are useful however, depends on the near surface sensitivity of the chosen sensor. In this paper, the capability of the SCIAMACHY instrument on board ENVISAT, to observe lower tropospheric and surface CO2 variability is examined. To achieve this, atmospheric CO2 retrieved from SCIAMACHY near infrared (NIR spectral measurements, using the Full Spectral Initiation (FSI WFM-DOAS algorithm, is compared to in situ aircraft observations over Siberia and additionally to tower and surface CO2 data over Mongolia, Europe and North America. Preliminary validation of daily averaged SCIAMACHY/FSI CO2 against ground based Fourier Transform Spectrometer (FTS column measurements made at Park Falls, reveal a negative bias of about −2.0% for collocated measurements within ±1.0degree of the site. However, at this spatial threshold SCIAMACHY can only capture the variability of the FTS observations at monthly timescales. To observe day to day variability of the FTS observations, the collocation limits must be increased. Furthermore, comparisons to in-situ CO2 observations demonstrate that SCIAMACHY is capable of observing lower tropospheric variability on (at least monthly timescales. Out of seventeen time series comparisons, eleven have correlation coefficients of 0.7 or more, and have similar seasonal cycle amplitudes. Additional evidence of the near surface sensitivity of SCIAMACHY, is provided through the significant correlation of FSI derived CO2 with MODIS vegetation indices at over twenty selected locations in the United States. The SCIAMACHY/MODIS comparison reveals that at many of the sites, the amount of CO2 variability is coincident with the amount of vegetation activity. It is evident, from this analysis, that SCIAMACHY therefore has the potential to

  15. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    N. Vinnichenko

    2007-07-01

    Full Text Available Satellite observations of atmospheric CO2 offer the potential to identify regional carbon surface sources and sinks and to investigate carbon cycle processes. The extent to which satellite measurements are useful however, depends on the near surface sensitivity of the chosen sensor. In this paper, the capability of the SCIAMACHY instrument on board ENVISAT, to observe lower tropospheric and surface CO2 variability is examined. To achieve this, atmospheric CO2 retrieved from SCIAMACHY near infrared (NIR spectral measurements, using the Full Spectral Initiation (FSI WFM-DOAS algorithm, is compared to in-situ aircraft observations over Siberia and additionally to tower and surface CO2 data over Mongolia, Europe and North America. Preliminary validation of daily averaged SCIAMACHY/FSI CO2 against ground based Fourier Transform Spectrometer (FTS column measurements made at Park Falls, reveal a negative bias of about −2.0% for collocated measurements within ±1.0° of the site. However, at this spatial threshold SCIAMACHY can only capture the variability of the FTS observations at monthly timescales. To observe day to day variability of the FTS observations, the collocation limits must be increased. Furthermore, comparisons to in-situ CO2 observations demonstrate that SCIAMACHY is capable of observing a seasonal signal that is representative of lower tropospheric variability on (at least monthly timescales. Out of seventeen time series comparisons, eleven have correlation coefficients of 0.7 or more, and have similar seasonal cycle amplitudes. Additional evidence of the near surface sensitivity of SCIAMACHY, is provided through the significant correlation of FSI derived CO2 with MODIS vegetation indices at over twenty selected locations in the United States. The SCIAMACHY/MODIS comparison reveals that at many of the sites, the amount of CO2 variability is coincident with the amount of vegetation activity. The presented analysis suggests that

  16. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  17. Ocean-Atmosphere coupling and CO2 exchanges in the Southwestern Atlantic Ocean

    Science.gov (United States)

    Souza, R.; Pezzi, L. P.; Carmargo, R.; Acevedo, O. C.

    2013-05-01

    The establishment of the INTERCONF Program (Air-Sea Interactions at the Brazil-Malvinas Confluence Zone) in 2004 and subsequent developing of projects such as the SIMTECO (Integrated System for Monitoring the Weather, the Climate and the Ocean in the South of Brazil) and ACEx (Atlantic Ocean Carbon Experiment) from 2010 in Brazil brought to light the importance of understanding the impact of the Southwestern Atlantic Ocean's mesoscale variability on the modulation of the atmospheric boundary layer (ABL) at the synoptic scale. Recent results of all these projects showed that the ABL modulation, as well as the ocean-atmosphere turbulent (heat, momentum and CO2) fluxes are dependent on the behavior of the ocean's surface thermal gradients, especially those found in the Brazil-Malvinas Confluence Zone and at the southern coast off Brazil during the winter. As expected, when atmospheric large scale systems are not present over the study area, stronger heat fluxes are found over regions of higher sea surface temperature (SST) including over warm core eddies shed towards the subantarctic (cold) environment. In the coastal region off southern Brazil, the wintertime propagation of the Brazilian Costal Current (La Plata Plume) acts rising the chlorophyll concentration over the continental shelf as well as diminishing considerably the SST - hence producing prominent across-shore SST gradients towards the offshore region dominated by the Brazil Current waters. Owing to that, heat fluxes are directed towards the ocean in coastal waters that are also responsible for the carbon sinking off Brazil in wintertime. All this description is dependent on the synoptic atmospheric cycle and strongly perturbed when transient systems (cold fronts, subtropical cyclones) are present in the area. However, remote sensing data used here suggest that the average condition of the atmosphere directly responding to the ocean's mesoscale variability appears to imprint a signal that extends from the

  18. Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions.

    Science.gov (United States)

    Moroney, James V; Jungnick, Nadine; Dimario, Robert J; Longstreth, David J

    2013-11-01

    This review presents an overview of the two ways that cyanobacteria, algae, and plants have adapted to high O2 and low CO2 concentrations in the environment. First, the process of photorespiration enables photosynthetic organisms to recycle phosphoglycolate formed by the oxygenase reaction catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Second, there are a number of carbon concentrating mechanisms that increase the CO2 concentration around Rubisco which increases the carboxylase reaction enhancing CO2 fixation. This review also presents possibilities for the beneficial modification of these processes with the goal of improving future crop yields.

  19. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries.

    Science.gov (United States)

    Landry, Jean-Sébastien; Matthews, H Damon

    2016-12-19

    The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate-carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year-2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11-154), 47 (2-64), and 1129 (90-5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC-related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming-induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO2 between 2000 and 2300 for most estimates (by 4-8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO2 (by 1-9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO2 decreases under RCPs 4.5 and 8.5 (by 5-8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO2 .

  20. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    Science.gov (United States)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; Martin-Torres, F. J.; Zorzano, M.

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  1. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

    2015-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

  2. 荒漠生态系统对大气CO2浓度升高响应的干湿年差异%Difference of Desert Ecosystem Responses to Elevated Atmospheric CO2 Concentration between Dry and Wet Years

    Institute of Scientific and Technical Information of China (English)

    任会利; 李萍; 申卫军; 任海; 杨帆

    2006-01-01

    利用一个基于详细生理学过程的生态系统模型PALS-FT,通过模拟实验分析了美国亚利桑那州(Arizona)首府凤凰城(Phoenix)市西郊的Larrea tridentata荒漠生态系统在干湿年份(1988-2002年)对大气CO2浓度升高响应的差别.结果表明,生态系统地上净初级生产力(ANPP)和土壤有机质年累积速率(SOM)均随大气CO2浓度升高而呈非线性(湿年)或线性(正常年和干年)增加;所有年份的土壤N含量(Nsoil)则呈非线性显著下降.ANPP与SOM的绝对变化量总是湿年大于正常年和干年,相对变化量则与所分析的CO2处理水平有关;Nsoil的绝对变化量和相对变化量均为湿年大于正常年和干年.不同功能型的植物ANPP对大气CO2浓度升高的绝对变化量均为湿年大于正常年和干年;相对变化量则因具体植物功能型而异,灌木和亚灌木为干年大于正常年和湿年,一年生C3和C4草本均为湿年大于正常年和干年.因此,无论是生态系统水平还是植物功能型(或物种)水平,荒漠生态系统对未来大气CO2浓度升高的响应都将受降水格局的显著影响.

  3. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  4. Trace and low concentration co2 removal methods and apparatus utilizing metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-10

    In general, this disclosure describes techniques for removing trace and low concentration CO2 from fluids using SIFSIX-n-M MOFs, wherein n is at least two and M is a metal. In some embodiments, the metal is zinc or copper. Embodiments include devices comprising SIFSIX-n-M MOFs for removing CO2 from fluids. In particular, embodiments relate to devices and methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids, wherein CO2 concentration is trace. Methods utilizing SIFSIX-n-M MOFs for removing CO2 from fluids can occur in confined spaces. SIFSIX-n-M MOFs can comprise bidentate organic ligands. In a specific embodiment, SIFSIX-n-M MOFs comprise pyrazine or dipryidilacetylene ligands.

  5. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea-level

    Science.gov (United States)

    Mckee, Karen L.; Rogers, Kerrylee; Saintilan, Neil; Middleton, Beth A.

    2012-01-01

    Coastal salt marsh and mangrove ecosystems are particularly vulnerable to changes in atmospheric CO2 concentrations and associated climate and climate-induced changes. We provide a review of the literature detailing theoretical predictions and observed responses of coastal wetlands to a range of climate change stressors, including CO2, temperature, rainfall, and sea-level rise. This review incorporates a discussion of key processes controlling responses in different settings and thresholds of resilience derived from experimental and observational studies. We specifically consider the potential and observed effects on salt marsh and mangrove vegetation of changes in (1) elevated [CO2] on physiology, growth, and distribution; (2) temperature on distribution and diversity; (3) rainfall and salinity regimes on growth and competitive interactions; and (4) sea level on geomorphological, hydrological, and biological processes.

  6. The Berkeley Atmospheric CO2 Observation Network (BEACON): Measuring Greenhouse Gases and Criteria Pollutants within the Urban Dome

    Science.gov (United States)

    Teige, V. E.; Weichsel, K.; Hooker, A.; Wooldridge, P. J.; Cohen, R. C.

    2012-12-01

    Efforts to curb greenhouse gas emissions, while global in their impacts, often focus on local and regional scales for execution and are dependent on the actions of communities and individuals. Evaluating the effectiveness of local policies requires observations with much higher spatial resolution than are currently available---kilometer scale. The Berkeley Atmospheric CO2 Observation Network (BEACON):, launched at the end of 2011, aims to provide measurements of urban-scale concentrations of CO2, temperature, pressure, relative humidity, O3, CO, and NO2 with sufficient spatial and temporal resolution to characterize the sources of CO2 within cities. Our initial deployment in Oakland, California uses ~40 sensor packages at a roughly 2 km spacing throughout the city. We will present an initial analysis of the vertical gradients and other spatial patterns observed to date.

  7. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake

    Science.gov (United States)

    Stackhouse, Brandon T.; Vishnivetskaya, Tatiana A.; Layton, Alice; Chauhan, Archana; Pfiffner, Susan; Mykytczuk, Nadia C.; Sanders, Rebecca; Whyte, Lyle G.; Hedin, Lars; Saad, Nabil; Myneni, Satish; Onstott, Tullis C.

    2015-09-01

    Previous studies investigating organic-rich tundra have reported that increasing biodegradation of Arctic tundra soil organic carbon (SOC) under warming climate regimes will cause increasing CO2 and CH4 emissions. Organic-poor, mineral cryosols, which comprise 87% of Arctic tundra, are not as well characterized. This study examined biogeochemical processes of 1 m long intact mineral cryosol cores (1-6% SOC) collected in the Canadian high Arctic. Vertical profiles of gaseous and aqueous chemistry and microbial composition were related to surface CO2 and CH4 fluxes during a simulated spring/summer thaw under light versus dark and in situ versus water saturated treatments. CO2 fluxes attained 0.8 ± 0.4 mmol CO2 m-2 h-1 for in situ treatments, of which 85 ± 11% was produced by aerobic SOC oxidation, consistent with field observations and metagenomic analyses indicating aerobic heterotrophs were the dominant phylotypes. The Q10 values of CO2 emissions ranged from 2 to 4 over the course of thawing. CH4 degassing occurred during initial thaw; however, all cores were CH4 sinks at atmospheric concentration CH4. Atmospheric CH4 uptake rates ranged from -126 ± 77 to -207 ± 7 nmol CH4 m-2 h-1 with CH4 consumed between 0 and 35 cm depth. Metagenomic and gas chemistry analyses revealed that high-affinity Type II methanotrophic sequence abundance and activity were highest between 0 and 35 cm depth. Microbial sulfate reduction dominated the anaerobic processes, outcompeting methanogenesis for H2 and acetate. Fluxes, microbial community composition, and biogeochemical rates indicate that mineral cryosols of Axel Heiberg Island act as net CO2 sources and atmospheric CH4 sinks during summertime thaw under both in situ and water saturated states.

  8. Why are Nitrogen Concentrations in Plant Tissues Lower under Elevated CO2? A Critical Examination of the Hypotheses

    Institute of Scientific and Technical Information of China (English)

    Daniel R. Taub; Xianzhong Wang

    2008-01-01

    Plants grown under elevated atmospheric [CO2] typically have decreased tissue concentrations of N compared with plants grown under current ambient [CO2]. The physiological mechanisms responsible for this phenomenon have not been definitely established, although a considerable number of hypotheses have been advanced to account for it. In this review we discuss and critically evaluate these hypotheses. One contributing factor to the decreases in tissue N concentrations clearly is dilution of N by increased photosynthetic assimilation of C. In addition, studies on intact plants show strong evidence for a general decrease in the specific uptake rates (uptake per unit mass or length of root) of N by roots under elevated CO2. This decreased root uptake appears likely to be the result both of decreased N demand by shoots and of decreased ability of the soil-root system to supply N. The best-supported mechanism for decreased N supply is a decrease in transpiration-driven mass flow of N in soils due to decreased stomatal conductance at elevated CO2, although some evidence suggests that altered root system architecture may also play a role. There is also limited evidence suggesting that under elevated CO2, plants may exhibit increased rates of N loss through volatilization and/or root exudation, further contributing to lowering tissue N concentrations.

  9. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER

    Directory of Open Access Journals (Sweden)

    Michael Allen Lindon

    2014-09-01

    Full Text Available Dissociation of CO2 is investigated in an atmospheric pressure dielectric barrier discharge (DBD with a simple, zero dimensional (0-D chemical model and through experiment. The model predicts that the primary CO2 dissociation pathway within a DBD is electron impact dissociation and electron-vibrational excitation. The relaxation kinetics following dissociation are dominated by atomic oxygen chemistry. The experiments included investigating the energy efficiencies and dissociation rates of CO2 within a planar DBD, while the gas flow rate, voltage, gas composition, driving frequency, catalyst, and pulse modes were varied. Some of the VADER results include a maximum CO2 dissociation energy efficiency of 2.5 +/- 0.5%, a maximum CO$_2$ dissociation rate of 4 +/- 0.4*10^-6 mol CO2/s (5 +/- 0.5% percent dissociation, discovering that a resonant driving frequency of ~30 kHz, dependent on both applied voltage and breakdown voltage, is best for efficient CO2 dissociation and that TiO2, a photocatalyst, improved dissociation efficiencies by an average of 18% at driving frequencies above 5 kHz.

  10. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution

    Directory of Open Access Journals (Sweden)

    Eli eCarlisle

    2012-09-01

    Full Text Available Nitrogen (N is the most limiting nutrient for plant growth and primary productivity. Inorganic N is available to plants from the soil as ammonium (NH4+ and nitrate (NO3–. We studied how wheat grown hydroponically to senescence in controlled environmental chambers is affected by N form (NH4+ vs. NO3– and CO2 concentration (‘subambient’, ‘ambient’, and ‘elevated’ in terms of biomass, yield, and nutrient accumulation and partitioning. NH4+-grown wheat had the strongest response to CO2 concentration. Plants exposed to subambient and ambient CO2 concentrations typically had the greatest biomass and nutrient accumulation under both N forms. In general NH4+ plants had higher concentrations of total N, P, K, S, Ca, Zn, Fe, and Cu, while NO3– plants had higher concentrations of Mg, B, Mn, and NO3–-N. NH4+ plants contained amounts of phytate similar to NO3– plants but had higher bioavailable Zn, which could have ramifications for human health. NH4+ plants allocated more nutrients and biomass to aboveground tissues whereas NO3– plants allocated more nutrients to the roots. The two inorganic nitrogen forms influenced plant growth and nutrient status so distinctly that they should be treated separately. Moreover, plant growth and nutrient status varied in a non-linear manner with atmospheric CO2 concentration.

  11. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    Science.gov (United States)

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.

  12. A critique of Phanerozoic climatic models involving changes in the CO 2 content of the atmosphere

    Science.gov (United States)

    Boucot, A. J.; Gray, Jane

    2001-12-01

    Critical consideration of varied Phanerozoic climatic models, and comparison of them against Phanerozoic global climatic gradients revealed by a compilation of Cambrian through Miocene climatically sensitive sediments (evaporites, coals, tillites, lateritic soils, bauxites, calcretes, etc.) suggests that the previously postulated climatic models do not satisfactorily account for the geological information. Nor do many climatic conclusions based on botanical data stand up very well when examined critically. Although this account does not deal directly with global biogeographic information, another powerful source of climatic information, we have tried to incorporate such data into our thinking wherever possible, particularly in the earlier Paleozoic. In view of the excellent correlation between CO 2 present in Antarctic ice cores, going back some hundreds of thousands of years, and global climatic gradient, one wonders whether or not the commonly postulated Phanerozoic connection between atmospheric CO 2 and global climatic gradient is more coincidence than cause and effect. Many models have been proposed that attempt to determine atmospheric composition and global temperature through geological time, particularly for the Phanerozoic or significant portions of it. Many models assume a positive correlation between atmospheric CO 2 and surface temperature, thus viewing changes in atmospheric CO 2 as playing the critical role in regulating climate/temperature, but none agree on the levels of atmospheric CO 2 through time. Prior to the relatively recent interval of time in which atmospheric CO 2 is directly measurable, a variety of biological and geological proxies have been proposed to correlate with atmospheric CO 2 level or with pCO 2/temperature. Atmospheric models may be constructed for the Pre-Cenozoic but the difficulties of assessing variables in their construction are many and complex. None of the modelers have gathered enough biological and geological data to

  13. A possible mechanism of mineral responses to elevated atmospheric CO2 in rice grains

    Institute of Scientific and Technical Information of China (English)

    GUO Jia; ZHANG Ming-qian; WANG Xiao-wen; ZHANG Wei-jian

    2015-01-01

    Increasing attentions have been paid to mineral concentration decrease in miled rice grains caused by CO2 enrichment, but the mechanisms stil remain unclear. Therefore, mineral (Ca, Mg, Fe, Zn and Mn) translocation in plant-soil system with a FACE (Free-air CO2 enrichment) experiment were investigated in Eastern China after 4-yr operation. Results mainly showed that: (1) elevated CO2 signiifcantly increased the biomass of stem and panicle by 21.9 and 24.0%, respectively, but did not affect the leaf biomass. (2) Elevated CO2 signiifcantly increased the contents of Ca, Mg, Fe, Zn, and Mn in panicle by 61.2, 28.9, 87.0, 36.7, and 66.0%, respectively, and in stem by 13.2, 21.3, 47.2, 91.8, and 25.2%, respectively, but did not affect them in leaf. (3) Elevated CO2 had positive effects on the weight ratio of mineral/biomass in stem and panicle. Our results suggest that elevated CO2 can favor the translocation of Ca, Mg, Fe, Zn, and Mn from soil to stem and panicle. The CO2-led mineral decline in miled rice grains may mainly attribute to the CO2-led unbalanced stimulations on the translocations of minerals and carbohydrates from vegetative parts (e.g., leaf, stem, branch and husk) to the grains.

  14. A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts

    Science.gov (United States)

    Agustí-Panareda, Anna; Massart, Sébastien; Chevallier, Frédéric; Balsamo, Gianpaolo; Boussetta, Souhail; Dutra, Emanuel; Beljaars, Anton

    2016-08-01

    Forecasting atmospheric CO2 daily at the global scale with a good accuracy like it is done for the weather is a challenging task. However, it is also one of the key areas of development to bridge the gaps between weather, air quality and climate models. The challenge stems from the fact that atmospheric CO2 is largely controlled by the CO2 fluxes at the surface, which are difficult to constrain with observations. In particular, the biogenic fluxes simulated by land surface models show skill in detecting synoptic and regional-scale disturbances up to sub-seasonal time-scales, but they are subject to large seasonal and annual budget errors at global scale, usually requiring a posteriori adjustment. This paper presents a scheme to diagnose and mitigate model errors associated with biogenic fluxes within an atmospheric CO2 forecasting system. The scheme is an adaptive scaling procedure referred to as a biogenic flux adjustment scheme (BFAS), and it can be applied automatically in real time throughout the forecast. The BFAS method generally improves the continental budget of CO2 fluxes in the model by combining information from three sources: (1) retrospective fluxes estimated by a global flux inversion system, (2) land-use information, (3) simulated fluxes from the model. The method is shown to produce enhanced skill in the daily CO2 10-day forecasts without requiring continuous manual intervention. Therefore, it is particularly suitable for near-real-time CO2 analysis and forecasting systems.

  15. 一种拟南芥突变体对高浓度CO2反应的研究%Response of an Arabidopsis mutant to elevated CO2 concentration

    Institute of Scientific and Technical Information of China (English)

    郝林; 徐昕; 曹军

    2003-01-01

    The study on the response of a mutant and a wild-type of Arabidopsis to 660 μl·L-1 CO2 and ambient CO2 showed that under elevated CO2, the stomatal numbers of the mutant increased, while those of the wild-type de-creased. The chlorophyll content and NR (nitrate reductase) activity of the mutant increased, but those of the wild-type had no obvious response. The mutant was not reproductively mature after the continuous exposure to increased CO2 for five months. The results provided evidence of plant response to the changes of atmospheric CO2 concentration, and the clues to related studies on other plants.

  16. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  17. 流动沙丘不同深度CO2浓度差异研究%The Difference of CO2 Concentration with Different Depth of the Moving Dune

    Institute of Scientific and Technical Information of China (English)

    邵天杰; 赵景波; 董治宝

    2011-01-01

    the diurnal changes of dune CO2 concentration under different depths were measured by using of the infrared monitoring instrument and combined with simultaneous temperature data in minqin county. The results showed that the CO2 concentration of 2 m and 4 m depths was always greater than 1 m. There was a significant positive correlation between the CO2 concentration of moving dune and atmospheric temperature in the depth from lm to 4m.The CO2 cumulative concentration was greater in daytime than in nighttime, which was basically the change of temperature, but the change of the former was later than that of the latter, and led to the asynchronous changes between the CO2 concentration of moving dune and atmospheric temperature. The atmospheric temperature was the main factor of determining the change law of the dune CO2 concentration. In addition, the diurnal concentration of CO2 could be changed by the content of organic carbon, soil conditions, moisture, etc. So it has important scientific significance to research the reason of global warming and the destruction of vegetation on the impact of atmospheric CO2.%利用红外CO2分析仪对民勤流动沙丘不同深度CO2浓度变化特征进行了昼夜连续观测,同时结合同步温度资料,分析了不同深度沙丘CO2浓度变化特征,得出了1 m、2m和4m深度处的CO2浓度累积值依次增大;在1~4m深度范围内,流动沙丘CO2浓度和大气温度之间呈显著的线性正相关;流动沙丘CO2浓度白天高于夜间,这种变化与昼夜温度变化规律相一致,但由于沙丘厚度大,深层温度的升降相对于大气温度的升降具有滞后性,导致了两者具有不同步变化的现象.大气温度是决定流动沙丘CO2昼夜浓度变化规律的主要因素.此外,沙丘中有机碳含量,沙丘疏松状况、沙丘含水量等都会对CO2昼夜浓度变化有一定的影响.查明沙丘CO2浓度昼夜变化规律对研究全球变暖的原因以及植被破坏对大气中CO2

  18. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.

  19. Influence of CO2 Concentration on Adsorption Behavior of 99Tc in Clay Under Hypoxic Conditions

    Institute of Scientific and Technical Information of China (English)

    SONG; Zhi-xin; BAO; Liang-jin; JIANG; Tao; CHEN; Xi

    2013-01-01

    Under hypoxic conditions,using the Beishan groundwater the influence of the CO2 concentration on the adsorption behavior of 99Tc in the Longdong clay was studied by batch method.Meanwhile,the buffering effect of clay rocks on the pH value of aqueous solution at different CO2 concentrations was discussed.The adsorption behavior of 99Tc on clay at different initial pH values was also researched.

  20. Capability of Raman lidar for monitoring the variation of atmospheric CO2 profile

    Institute of Scientific and Technical Information of China (English)

    Zhao Pei-Tao; Zhang Yin-Chao; Wang Lian; Hu Shun-Xing; Su Jia; Cao Kai-Fa; Zhao Yue-Feng; Hu Huan-Ling

    2008-01-01

    Lidar (Light detection and ranging) has special capabilities for remote sensing of many different behaviours of the atmosphere.One of the techniques which show a great deal of promise for several applications is Raman scattering.The detecting capability,including maximum operation range and minimum detectable gas concentration is one of the most significant parameters for lidar remote sensing of pollutants.In this paper,based on the new method for evaluating the capabilities of a Raman lidar system,we present an evaluation of detecting capability of Raman lidar for monitoring atmospheric CO2 in Hefei.Numerical simulations about the influence of atmospheric conditions on lidar detecting capability were carried out,and a conclusion can be drawn that the maximum difference of the operation ranges caused by the weather conditions alone can reach about 0.4 to 0.5kin with a measuring precision within 30ppmv.The range of minimum detectable concentration caused by the weather conditions alone can reach about 20 to 35 ppmv in vertical direction for 20000 shots at a distance of 1 km on the assumption that other parameters are kept constant.The other corresponding parameters under different conditions are also given.The capability of Raman lidar operated in vertical direction was found to be superior to that operated in horizontal direction.During practical measurement with the Raman lidar whose hardware components were fixed,aerosol scattering extinction effect would be a significant factor that influenced the capability of Raman lidar.This work may be a valuable reference for lidar system designing,measurement accuracy improving and data processing.

  1. Glacial atmospheric CO2 decline in association with decrease of marine sedimentary phosphorus

    Institute of Scientific and Technical Information of China (English)

    WENG; Huanxin; ZHANG; Xingmao; WU; Nengyou; WANG; Ying; CHEN; Lihong; ZHONG; Hexian; QIN; Yachao

    2006-01-01

    The environmental and biogeochemical information extracted from the sediments collected from the northern shelf of the South China Sea shows that terrigenous inputs of phosphorus into the sea remained relatively constant, and the variation of phosphorus contents at different depths was caused by climatic and environmental changes. The findings also suggest that the vertical variation of phosphorus content was opposite to those of calcium carbonate and cadmium, and the functional correlation between CO2 and PO43? in seawater was given by calculating the chemical equilibrium, indicating that the accumulation of marine sedimentary phosphorus may have something to do with the variation of atmospheric CO2. The decreased phosphorus accumulation as well as the correspondingly-increased calcium carbonate content might be one of key factors causing glacial atmospheric CO2 decline.

  2. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    Science.gov (United States)

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  3. 低浓度 CO2捕集的吸收率测算%Absorption rate measurement and calculation of low-concentration CO2 capture technical

    Institute of Scientific and Technical Information of China (English)

    马超援

    2016-01-01

    The paper introduces low-concentration CO2 absorbinf methods,describes the measurement and calculation methods of low-concentra-tion CO2 capture technical and explores the elements of determininf absorbinf afent,which has certain meaninf for control indoor CO2 concentration.%介绍了常用的低浓度 CO2气体吸收方法,就低浓度 CO2捕集吸收率的测算方法进行了阐述,并探讨了确定吸收剂的要素,对室内 CO2浓度的控制有一定的意义。

  4. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    Science.gov (United States)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  5. Mechanisms for synoptic variations of atmospheric CO2 in North America, South America and Europe

    Directory of Open Access Journals (Sweden)

    I. T. Baker

    2008-12-01

    Full Text Available Synoptic variations of atmospheric CO2 produced by interactions between weather and surface fluxes are investigated mechanistically and quantitatively in midlatitude and tropical regions using continuous in-situ CO2 observations in North America, South America and Europe and forward chemical transport model simulations with the Parameterized Chemistry Transport Model. Frontal CO2 climatologies show consistently strong, characteristic frontal CO2 signals throughout the midlatitudes of North America and Europe. Transitions between synoptically identifiable CO2 air masses or transient spikes along the frontal boundary typically characterize these signals. One case study of a summer cold front shows CO2 gradients organizing with deformational flow along weather fronts, producing strong and spatially coherent variations. In order to differentiate physical and biological controls on synoptic variations in midlatitudes and a site in Amazonia, a boundary layer budget equation is constructed to break down boundary layer CO2 tendencies into components driven by advection, moist convection, and surface fluxes. This analysis suggests that, in midlatitudes, advection is dominant throughout the year and responsible for 60–70% of day-to-day variations on average, with moist convection contributing less than 5%. At a site in Amazonia, vertical mixing, in particular coupling between convective transport and surface CO2 flux, is most important, with advection responsible for 26% of variations, moist convection 32% and surface flux 42%. Transport model sensitivity experiments agree with budget analysis. These results imply the existence of a recharge-discharge mechanism in Amazonia important for controlling synoptic variations of boundary layer CO2, and that forward and inverse simulations should take care to represent moist convective transport. Due to the scarcity of tropical observations at the time of this study, results in Amazonia are not generalized for

  6. Declining Atmospheric pCO2 During the Late Miocene and Early Pliocene: New Insights from Paired Alkenone and Coccolith Stable Isotope Barometry

    Science.gov (United States)

    Phelps, S. R.; Polissar, P. J.; deMenocal, P. B.; Swann, J. P.; Guo, M. Y.; Stoll, H. M.

    2015-12-01

    The relationship between atmospheric CO2 concentrations and climate is broadly understood for the Cenozoic era: warmer periods are associated with higher atmospheric carbon dioxide. This understanding is supported by atmospheric samples of the past 800,000 years from ice cores, which suggest CO2 levels play a key role in regulating global climate on glacial interglacial timescales as well. In this context, the late Miocene poses a challenge: sea-surface temperatures indicate substantial global warmth, though existing data suggest atmospheric CO2 concentrations were lower than pre-industrial values. Recent work using the stable carbon and oxygen isotopic composition of coccolith calcite has demonstrated these organisms began actively diverting inorganic carbon away from calcification and to the site of photosynthesis during the late Miocene. This process occurs in culture experiments in response to low aqueous CO2 concentrations, and suggests decreasing atmospheric pCO2 values during the late Miocene. Here we present new data from ODP Site 806 in the western equatorial Pacific Ocean that supports declining atmospheric CO2 across the late Miocene. Carbon isotope values of coccolith calcite from Site 806 demonstrate carbon limitation and re-allocation of inorganic carbon to photosynthesis starting between ~8 and 6 Ma. The timing of this limitation at Site 806 precedes shifts at other ODP sites, reflecting the higher mixed layer temperature and resultant lower CO2 solubility at Site 806. New measurements of carbon isotope values from alkenones at Site 806 show an increase in photosynthetic carbon fractionation (ɛp) accompanied the carbon limitation evident from coccolith calcite stable isotope data. While higher ɛp is typically interpreted as higher CO2 concentrations, at Site 806, our data suggest it reflects enhancement of chloroplast CO2 from active carbon transport by the coccolithophore algae in response to lower CO2 concentrations. Our new data from ODP Site

  7. Contrasting CO2 concentration discharge dynamics in headwater streams: A multi-catchment comparison

    Science.gov (United States)

    Dinsmore, K. J.; Wallin, M. B.; Johnson, M. S.; Billett, M. F.; Bishop, K.; Pumpanen, J.; Ojala, A.

    2013-06-01

    CO2 concentrations are highly variable and strongly linked to discharge, but until recently, measurements have been largely restricted to low-frequency manual sampling. Using new in situ CO2 sensors, we present concurrent, high-frequency (data collected from five catchments across Canada, UK, and Fennoscandinavia to explore concentration-discharge dynamics; we also consider the relative importance of high flows to lateral aquatic CO2 export. The catchments encompassed a wide range of mean CO2 concentrations (0.73-3.05 mg C L-1) and hydrological flow regimes from flashy peatland streams to muted outflows within a Finnish lake system. In three of the catchments, CO2 concentrations displayed clear bimodal distributions indicating distinct CO2 sources. Concentration-discharge relationships were not consistent across sites with three of the catchments displaying a negative relationship and two catchments displaying a positive relationship. When individual high flow events were considered, we found a strong correlation between both the average magnitude of the hydrological and CO2 response peaks, and the average response lag times. An analysis of lateral CO2 export showed that in three of the catchments, the top 30% of flow (i.e., flow that was exceeded only 30% of the time) had the greatest influence on total annual load. This indicates that an increase in precipitation extremes (greater high-flow contributions) may have a greater influence on the flushing of CO2 from soils to surface waters than a long-term increase in mean annual precipitation, assuming source limitation does not occur.

  8. Effects of Atmospheric CO2 Enrichment, Applied Nitrogen and Soil Moisture on Dry Matter Accumulation and Nitrogen Uptake in Spring Wheat

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with two concentrations of atmospheric COz (350 and 700 μmol mol-1), two levels of soil moisture (well-watered and drought) and five rates of nitrogen fertilizer (0, 50, 100, 150, and 200 mg kg-1 soil) to study the atmospheric CO2 concentration effect on dry matter accumulation and N uptake of spring wheat. The effects of CO2 enrichment on the shoot and total mass depended largely on soil nitrogen level, and the shoot and total mass increased significantly in the moderate to high N treatments but did not increase significantly in the low N treatment. Enriched CO2concentration did not increase more shoot and total mass in the drought treatment than in the well-watered treatment. Thus, elevated CO2 did not ameliorate the depressive effects of drought and nitrogen stress. In addition, root mass decreased slightly and root/shoot ratio decreased significantly due to CO2 enrichment in no N treatment under well-watered condition. Enriched CO2 decreased shoot N content and shoot and total N uptake; but it reduced root N content and uptake slightly. Shoot critical N concentration was lower for spring wheat grown at 700 μmol mol-1 CO2 than at 350 μmol mol-1 CO2 in both well-watered and drought treatments. The critical N concentrations were 16 and 19 g kg-1 for the well-watered treatment and drought treatment at elevated CO2 and 21 and 26 g kg-1 at ambient CO2, respectively. The reductions in the movement of nutrients to the plant roots through mass flow due to the enhancement in WUE (water use efficiency) and the increase in N use efficiency at elevated CO2 could elucidate the reduction of shoot and root N concentrations.

  9. Stabilization of CO2 Atmospheres on Exoplanets around M Dwarf Stars

    CERN Document Server

    Gao, Peter; Robinson, Tyler D; Li, Cheng; Yung, Yuk L

    2015-01-01

    We investigate the chemical stability of CO2-dominated atmospheres of M dwarf terrestrial exoplanets using a 1-dimensional photochemical model. On planets orbiting Sun-like stars, the photolysis of CO2 by Far-UV (FUV) radiation is balanced by the reaction between CO and OH, the rate of which depends on H2O abundance. By comparison, planets orbiting M dwarf stars experience higher FUV radiation compared to planets orbiting Sun-like stars, and they are also likely to have low H2O abundance due to M dwarfs having a prolonged, high-luminosity pre-main sequence (Luger & Barnes 2015). We show that, for H2O-depleted planets around M dwarfs, a CO2-dominated atmosphere is stable to conversion to CO and O2 by relying on a catalytic cycle involving H2O2 photolysis. However, this cycle breaks down for planets with atmospheric hydrogen mixing ratios below ~1 ppm, resulting in ~40% of the atmospheric CO2 being converted to CO and O2 on a time scale of 1 Myr. The increased abundance of O2 also results in high O3 concent...

  10. N2O influence on isotopic measurements of atmospheric CO2

    NARCIS (Netherlands)

    Sirignano, C; Neubert, REM; Meijer, HAJ

    2004-01-01

    In spite of extensive efforts, even the most experienced laboratories dealing with isotopic measurements of atmospheric CO2 still suffer from poor inter-laboratory consistency. One of the complicating factors of these isotope measurements is the presence of N2O, giving rise to mass overlap in the is

  11. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I - Amino acids

    Science.gov (United States)

    Schlesinger, G.; Miller, S. L.

    1983-01-01

    The prebiotic synthesis of amino acids, HCN, H2CO, and NH3 using a spark discharge on various simulated primitive earth atmospheres at 25 C is investigated. Various mixtures of CH4, CO, CO2, N2, NH3, H2O, and H2 were utilized in different experiments. The yields of amino acids (1.2-4.7 percent based on the carbon) are found to be approximately independent of the H2/CH4 ratio and the presence of NH3, and a wide variety of amino acids are obtained. Glycine is found to be almost the only amino acid produced from CO and CO2 model atmospheres, with the maximum yield being about the same for the three carbon sources at high H2/carbon ratios,whereas CH4 is superior at low H2/carbon ratios. In addition, it is found that the directly synthesized NH3 together with the NH3 obtained from the hydrolysis of HCN, nitriles, and urea could have been a major source of ammonia in the atmosphere and oceans of the primitive earth. It is determined that prebiotic syntheses from HCN and H2CO to give products such as purines and sugars and some amino acids could have occurred in primitive atmospheres containing CO and CO2 provided the H2/CO and H2/CO2 ratios were greater than about 1.0.

  12. Soil type influences the sensitivity of nutrient dynamics to changes in atmospheric CO2

    Science.gov (United States)

    Numerous studies have indicated that increases in atmospheric CO2 have the potential to decrease nitrogen availability through the process of progressive nitrogen limitation (PNL). The timing and magnitude of PNL in field experiments is varied due to numerous ecosystem processes. Here we examined ...

  13. On the repetitive operation of a self-switched transversely excited atmosphere CO2 laser

    Indian Academy of Sciences (India)

    Pallavi Raote; Gautam Patil; J Padma Nilaya; D J Biswas

    2010-11-01

    The repetition rate capability of self-switched transversely excited atmosphere (TEA) CO2 laser was studied for different gas flow configurations. For an optimized gas flow configuration, repetitive operation was achieved at a much smaller gas replenishment factor between two successive pulses when compared with repetitive systems energized by conventional pulsers.

  14. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  15. Effect of urban parks on CO2 concentrations in Toluca, Mexico

    Science.gov (United States)

    Vieyra Gómez, J. A.; González Sosa, E.; Mastachi-Loza, C. A.; Cervantes, M.; Martínez Valdéz, H.

    2013-05-01

    Despite green areas are used for amusement, they have several benefits such as: microclimate regulation, groundwater recharge, noise abatement, oxygen production and CO2 capture. The last one has a notable importance, as CO2 is considered to be one of the most pollutant gases of the greenhouse effect. The city of Toluca, has a considerable urban growth. However, there are few studies aimed to assess the importance of the green areas in urban locations. About this, it is estimated than only 4m2/hab of vegetal coverage is found in big cities, which means a 50% deficit according to the international standards.The aim of this study was to assess the urban parks impact in Toluca, as regulators of CO2 means through measurements in autumn-winter seasonal period, 2012-2013.It was performed 20 measurements in 4 local parks (Urawa, Alameda, Municipal and Metropolitano), in order to evaluate the possible effect of urban parks on CO2 concentrations. Transects were made inside and outside the parks and the CO2 concentrations were registered by a portable quantifier (GMP343).The data analysis allowed the separation of the parks based on CO2 concentrations; however, it was perceived a decreasing of CO2 inside the parks (370ppm), between 10 and 40 ppm less than those areas with traffic and pedestrians (399 ppm).

  16. Study on the concentration variation of CO2 in the background area of Yangtze River Delta%长江三角洲背景地区CO2浓度变化特征研究

    Institute of Scientific and Technical Information of China (English)

    浦静姣; 徐宏辉; 顾骏强; 周凌晞; 方双喜

    2012-01-01

    Atmospheric CO2 concentration was continuously measured from January 2009 to December 2010 to study the effects of surface wind direction, surface wind speed and air mass transport on CO2 concentration at Lin'an regional atmospheric background station. The results revealed that the diurnal variation of atmospheric CO2 concentration showed the single-peak pattern at Lin'an regional background station. The diurnal concentration of CO2 varied from 9.5×10-6(VIV) to 44.3×10-6 (V/V), with the lowest value observed in the afternoon and the highest at dawn. The difference between maximum and minimum monthly mean CO2 concentrations was 10.1xl0-6(VIV), with the highest concentration observed in winter and spring and the lowest in summer. Study on the effects of surface wind direction, surface wind speed and air mass transport on CO2 concentration showed the dominant wind directions were NW-NNE in summer and NNE-ESE in winter, which could bring on higher CO2 concentration. The CO2 concentration turned lower with higher surface wind speed. The impact of long-range transport of air masses on CO2 concentration depended on the source strength of CO2 in the pathway.%通过分析2009年1月~2010年12月临安区域大气本底站在线观测获得的CO2浓度,研究地面风向、地面风速、气团输送等因素对长江三角洲背景地区CO2浓度的影响.结果表明,临安站CO2浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在9.5×10 6~44.3×10 6(V/V)之间;季节变化特征表现为冬春季高,夏季低,浓度年较差为10.1×10-6(V/V).通过分析地面风向、地面风速和气团输送等因素对临安站CO2浓度的影响表明,引起CO2浓度升高的地面风向夏季主要为NW~NNE,冬季主要为NNE-ESE;地面风速越大,CO2浓度越小;气团远距离输送的影响主要取决于气团途径区域的CO2排放情况.

  17. Glacial-Interglacial Atmospheric CO2 Change--The Glacial Burial Hypothesis

    Institute of Scientific and Technical Information of China (English)

    Ning ZENG

    2003-01-01

    Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to bethe missing link in the atmospheric CO2 change over the glacial-interglacial cycles. At glaciation, theadvancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer pe-riods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation over twoglacial-interglacial cycles using a synchronously coupled atmosphere-land-ocean carbon model forced byreconstructed climate change, it is found that there is a 547-Gt terrestrial carbon release from glacialmaximum to interglacial, resulting in a 60-Gt (about 30-ppmv) increase in the atmospheric CO2, with theremainder absorbed by the ocean in a scenario in which ocean acts as a passive buffer. This is in contrastto previous estimates of a land uptake at deglaciation. This carbon source originates from glacial burial,continental shelf, and other land areas in response to changes in ice cover, sea level, and climate. The inputof light isotope enriched terrestrial carbon causes atmospheric 513C to drop by about 0.3% at deglaciation,followed by a rapid rise towards a high interglacial value in response to oceanic warming and regrowthon land. Together with other ocean based mechanisms such as change in ocean temperature, the glacialburial hypothesis may offer a full explanation of the observed 80 100-ppmv atmospheric CO2 change.

  18. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2

    Science.gov (United States)

    Wan, Shiming; Clift, Peter D.; Zhao, Debo; Hovius, Niels; Munhoven, Guy; France-Lanord, Christian; Wang, Yinxi; Xiong, Zhifang; Huang, Jie; Yu, Zhaojie; Zhang, Jin; Ma, Wentao; Zhang, Guoliang; Li, Anchun; Li, Tiegang

    2017-03-01

    Atmospheric CO2 and global climate are closely coupled. Since 800 ka CO2 concentrations have been up to 50% higher during interglacial compared to glacial periods. Because of its dependence on temperature, humidity, and erosion rates, chemical weathering of exposed silicate minerals was suggested to have dampened these cyclic variations of atmospheric composition. Cooler and drier conditions and lower non-glacial erosion rates suppressed in situ chemical weathering rates during glacial periods. However, using systematic variations in major element geochemistry, Sr-Nd isotopes and clay mineral records from Ocean Drilling Program Sites 1143 and 1144 in the South China Sea spanning the last 1.1 Ma, we show that sediment deposited during glacial periods was more weathered than sediment delivered during interglacials. We attribute this to subaerial exposure and weathering of unconsolidated shelf sediments during glacial sealevel lowstands. Our estimates suggest that enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands can account for ∼9% of the carbon dioxide removed from the atmosphere during the glacial and thus represent a significant part of the observed glacial-interglacial variation of ∼80 ppmv. As a result, if similar magnitudes can be identified in other tropical shelf-slope systems, the effects of increased sediment exposure and subsequent silicate weathering during lowstands could have potentially enhanced the drawdown of atmospheric CO2 during cold stages of the Quaternary. This in turn would have caused an intensification of glacial cycles.

  19. The concentration and efflux of tree stem CO2 and the role of xylem sap flow

    Institute of Scientific and Technical Information of China (English)

    Ping ZHAO; Dirk H(O)LSCHER

    2009-01-01

    The accurate assessment of actual tree stem respiration and its relation with temperature plays a considerable role in investigating the forest carbon cycle.An increasing number of research reports have indicated that tree stem respiration determined with the commonlyapplied chamber gas exchange measuring system does not follow expectations regarding temperature relationships.theory that the respired CO2 in a tree stem would all diffuse outward into the atmosphere,However,it neglects partial CO2 that is dissolved in the xylem sap and is carried away by the transpirational stream.Scientists have started to realize that the respired CO2 measured with the chamber gas exchange method is only a portion of the total stem respiration (CO2 efflux),while the other portion,which is sometimes very substantial in quantity (thought to occupy maybe 15%-75% of the total stem respiration),is transported to the upper part of the stem and to the canopy by sap flow.This suggests that the CO2 produced by respiration is re-allocated within the stem.Accordingly,the change in CO2 efflux could be reflected in the rates of sap flow in addition to its dependence on temperature.Proper methods and instruments are required to quantify the internal and external CO2 fluxes in the trunk and their interaction with related environmental factors.

  20. Changes in atmospheric CO2 levels recorded by the isotopic signature of n-alkanes from plants

    Science.gov (United States)

    Machado, Karina Scurupa; Froehner, Sandro

    2017-01-01

    The isotopic signature of sedimentary organic matter acts as a tracer for past changes in the terrestrial and aquatic carbon cycles. The temporal variation in δ13C values of n-alkanes from plants was assigned as resulting from changes in atmospheric composition in the study area, due to both global and local influences. Two rises in atmospheric CO2 concentration were assigned from the variation in n-alkane δ13C values for the periods between 1600 and 1880 and from 1930 to the present. In the first period, the sources of excess CO2 were predominantly natural, mainly volcanism, while in the second period local anthropogenic emissions were the major reason.

  1. Modeling atmospheric transport of CO2 at High Resolution to estimate the potentialities of spaceborne observation to monitor anthropogenic emissions

    Science.gov (United States)

    Ciais, P.; Chimot, J.; Klonecki, A.; Prunet, P.; Vinuessa, J.; Nussli, C.; Breon, F.

    2010-12-01

    There is a crucial and urgent need to quantify and monitor anthropogenic fossil fuel emissions of CO2. Spaceborne measurements, such as those from GOSAT or the forthcoming OCO-2, or other space missions in preparation, could provide the necessary information, in particular over regions with few in-situ measurements of atmospheric concentration are too scarce. Contrarily to biogenic flux, anthropogenic emissions are highly heterogeneous in space with typical values that vary by several orders of magnitudes. A proper analysis of the impact of anthropogenic emissions on the atmospheric concentration of CO2 therefore requires a high spatial resolution, typically of a few km. Simulations of the transport of fossil CO2 plumes were performed with a resolution of 1 km over the main industrialized regions of France, and using other models of lower resolution to account for the influence of distant sources advected into the area of interest. The results clearly show the plumes from intense yet localized sources, such as urban areas or power plants, and how their structures vary with the meteorology (wind speed and direction). They also show that the plume from distant sources, such as the large emission from Northern Europe, may sometime mask the local plume, even from large cities like Paris or Lyon. These atmospheric transport simulations are then sampled according to cloud cover, spaceborne instrument sampling and typical errors, to analyze the information content of the remote sensing data and how they can improve the current knowledge on anthropogenic emissions.

  2. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles

    Science.gov (United States)

    Aster, Ellen M.; Wallace, Paul J.; Moore, Lowell R.; Watkins, James; Gazel, Esteban; Bodnar, Robert J.

    2016-09-01

    Melt inclusions record valuable information about pre-eruptive volatile concentrations of melts. However, a vapor bubble commonly forms in inclusions after trapping, and this decreases the dissolved CO2 concentration in the melt (glass) phase in the inclusion. To quantify CO2 loss to vapor bubbles, Raman spectroscopic analysis was used to determine the density of CO2 in bubbles in melt inclusions from two Cascade cinder cones near Mt. Lassen and two Mexican cinder cones (Jorullo, Parícutin). Using analyses of dissolved CO2 and H2O in the glass in the inclusions, the measured CO2 vapor densities were used to reconstruct the original dissolved CO2 contents of the melt inclusions at the time of trapping. Our results show that 30-90% of the CO2 in a melt inclusion is contained in the vapor bubble, values similar to those found in other recent studies. We developed a model for vapor bubble growth to show how post-entrapment bubbles form in melt inclusions as a result of cooling, crystallization, and eruptive quenching. The model allows us to predict the bubble volume fraction as a function of ΔT (the difference between the trapping temperature and eruptive temperature) and the amount of CO2 lost to a bubble. Comparison of the Raman and modeling methods shows highly variable agreement. For 10 of 17 inclusions, the two methods are within ± 550 ppm CO2 (avg. difference 290 ppm), equivalent to ±~300 bars uncertainty in estimated trapping pressure for restored inclusions. Discrepancies between the two methods occur for inclusions that have been strongly affected by post-entrapment diffusive H+ loss, because this process enhances bubble formation. For our dataset, restoring the CO2 lost to vapor bubbles increases inferred trapping pressures of the inclusions by 600 to as much as 4000 bars, highlighting the importance of accounting for vapor bubble formation in melt inclusion studies.

  3. Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    C. LeQuéré

    2008-03-01

    Full Text Available The potential impact of seawater acidification on the concentrations of dimethylsulfide (DMS and dimethylsulfoniopropionate (DMSP, and the activity of the enzyme DMSP-lyase was investigated during a pelagic ecosystem CO2 enrichment experiment (PeECE III in spring 2005. Natural phytoplankton blooms were studied for 24 days under present, double and triple partial pressures of CO2 (pCO2; pH=8.3, 8.0, 7.8 in triplicate 25 m3 enclosures. The results indicate similar DMSP concentrations and DMSP-lyase a