WorldWideScience

Sample records for atmospheric co2 concentration

  1. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  2. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that...

  3. Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution

    Directory of Open Access Journals (Sweden)

    Yingying Jing

    2014-11-01

    Full Text Available Satellite measurements of the spatiotemporal distributions of atmospheric CO2 concentrations are a key component for better understanding global carbon cycle characteristics. Currently, several satellite instruments such as the Greenhouse gases Observing SATellite (GOSAT, SCanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY, and Orbiting Carbon Observatory-2 can be used to measure CO2 column-averaged dry air mole fractions. However, because of cloud effects, a single satellite can only provide limited CO2 data, resulting in significant uncertainty in the characterization of the spatiotemporal distribution of atmospheric CO2 concentrations. In this study, a new physical data fusion technique is proposed to combine the GOSAT and SCIAMACHY measurements. On the basis of the fused dataset, a gap-filling method developed by modeling the spatial correlation structures of CO2 concentrations is presented with the goal of generating global land CO2 distribution maps with high spatiotemporal resolution. The results show that, compared with the single satellite dataset (i.e., GOSAT or SCIAMACHY, the global spatial coverage of the fused dataset is significantly increased (reaching up to approximately 20%, and the temporal resolution is improved by two or three times. The spatial coverage and monthly variations of the generated global CO2 distributions are also investigated. Comparisons with ground-based Total Carbon Column Observing Network (TCCON measurements reveal that CO2 distributions based on the gap-filling method show good agreement with TCCON records despite some biases. These results demonstrate that the fused dataset as well as the gap-filling method are rather effective to generate global CO2 distribution with high accuracies and high spatiotemporal resolution.

  4. A Global Perspective of Atmospheric CO2 Concentrations

    Science.gov (United States)

    Putman, William M.; Ott, Lesley; Darmenov, Anton; daSilva, Arlindo

    2016-01-01

    Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions.

  5. A simple empirical model estimating atmospheric CO2 background concentrations

    Science.gov (United States)

    Reuter, M.; Buchwitz, M.; Schneising, O.; Heymann, J.; Guerlet, S.; Cogan, A. J.; Bovensmann, H.; Burrows, J. P.

    2012-02-01

    A simple empirical CO2 model (SECM) is presented to estimate column-average dry-air mole fractions of atmospheric CO2 (XCO2) as well as mixing ratio profiles. SECM is based on a simple equation depending on 17 empirical parameters, latitude, and date. The empirical parameters have been determined by least squares fitting to NOAA's (National Oceanic and Atmospheric Administration) assimilation system CarbonTracker version 2010 (CT2010). Comparisons with TCCON (total column carbon observing network) FTS (Fourier transform spectrometer) measurements show that SECM XCO2 agrees quite well with reality. The synthetic XCO2 values have a standard error of 1.39 ppm and systematic station-to-station biases of 0.46 ppm. Typical column averaging kernels of the TCCON FTS, a SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY), and two GOSAT (Greenhouse gases Observing SATellite) XCO2 retrieval algorithms have been used to assess the smoothing error introduced by using SECM profiles instead of CT2010 profiles as a priori. The additional smoothing error amounts to 0.17 ppm for a typical SCIAMACHY averaging kernel and is most times much smaller for the other instruments (e.g. 0.05 ppm for a typical TCCON FTS averaging kernel). Therefore, SECM is well-suited to provide a priori information for state of the art ground-based (FTS) and satellite-based (GOSAT, SCIAMACHY) XCO2 retrievals. Other potential applications are: (i) quick check for obvious retrieval errors (by monitoring the difference to SECM), (ii) near real time processing systems (that cannot make use of models like CT2010 operated in delayed mode), (iii) "CO2 proxy" methods for XCH4 retrievals (as correction for the XCO2 background), (iv) observing system simulation experiments especially for future satellite missions.

  6. [Effects of nitrogen fertilization on wheat leaf photosynthesis under elevated atmospheric CO2 concentration].

    Science.gov (United States)

    Yu, Xian-feng; Zhang, Xu-cheng; Guo, Tian-wen; Yu, Jia

    2010-09-01

    In this paper, the effects of nitrogen (N) fertilization on the wheat leaf photosynthesis under long-term elevated atmospheric CO2 concentration (760 micromol x mol(-1)) was studied, based on the measurements of photosynthetic gas exchange parameters and light intensity-photosynthetic rate response curves at jointing stage. Under the long-term elevated atmospheric CO2 concentration, applying sufficient N could increase the wheat leaf photosynthetic rate (Pn), transpiration rate (Tr), and instantaneous water use efficiency (WUEi). Comparing with those under ambient atmospheric CO2 concentration, the Po and WUEi under the elevated atmospheric CO2 concentration increased, while the stomatal conductance (Gs) and intercellular CO2 concentration (Ci) decreased. With the increase of light flux intensity, the Pn and WUEi under the elevated atmospheric CO2 concentration were higher those under ambient atmospheric CO2 concentration, Gs was in adverse, while Ci and Tr had less change. At high fertilization rate of N, the Gs was linearly positively correlated with Pn, Tr, and WUEi, and the Gs and Ci had no correlation with each other under the elevated atmospheric CO2 concentration but negatively correlated under ambient atmospheric CO2 concentration. At low fertilization rate of N, the Gs had no correlations with Pn and WUEi but linearly positively correlated with Ci and Tr. It was suggested that under the elevated atmospheric CO2 concentration, the wheat leaf Pn at low N fertilization rate was limited by non-stomatal factor.

  7. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    Science.gov (United States)

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  8. Rising global atmospheric CO2 concentration and implications for crop productivity

    Science.gov (United States)

    There is incontestable evidence that the concentration of atmospheric CO2 is increasing. Regardless of the potential impact of this increase on climate change, CO2 will have a direct effect on plants since it is a primary input for growth. Herein, we discuss relative CO2 responses of C3 and C4 plant...

  9. CARVE: CH4, CO2, and CO Atmospheric Concentrations, CARVE Tower, Alaska, 2012-2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides hourly atmospheric concentrations of methane (CH4), carbon dioxide (CO2), and carbon monoxide (CO) as mole fractions, from January 2012 to...

  10. CARVE: Monthly Atmospheric CO2 Concentrations (2009-2013) and Modeled Fluxes, Alaska

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports monthly averages of atmospheric CO2 concentration from satellite and airborne observations between 2009 and 2013 and simulated present and...

  11. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  12. [Diurnal and seasonal variations of surface atmospheric CO2 concentration in the river estuarine marsh].

    Science.gov (United States)

    Zhang, Lin-Hai; Tong, Chuan; Zeng, Cong-Sheng

    2014-03-01

    Characteristics of diurnal and seasonal variations of surface atmospheric CO2 concentration were analyzed in the Minjiang River estuarine marsh from December 2011 to November 2012. The results revealed that both the diurnal and seasonal variation of surface atmospheric CO2 concentration showed single-peak patterns, with the valley in the daytime and the peak value at night for the diurnal variations, and the maxima in winter and minima in summer for the seasonal variation. Diurnal amplitude of CO2 concentration varied from 16.96 micromol x mol(-1) to 38.30 micromol x mol(-1). The seasonal averages of CO2 concentration in spring, summer, autumn and winter were (353.74 +/- 18.35), (327.28 +/- 8.58), (354.78 +/- 14.76) and (392.82 +/- 9.71) micromol x mol(-1), respectively, and the annual mean CO2 concentration was (357.16 +/- 26.89) micromol x mol(-1). The diurnal CO2 concentration of surface atmospheric was strongly negatively correlated with temperature, wind speed, photosynthetically active radiation and total solar radiation (P < 0.05). The diurnal concentration of CO2 was negatively related with tidal level in January, but significantly positively related in July.

  13. Land plants equilibrate O2 and CO2 concentrations in the atmosphere.

    Science.gov (United States)

    Igamberdiev, Abir U; Lea, Peter J

    2006-02-01

    The role of land plants in establishing our present day atmosphere is analysed. Before the evolution of land plants, photosynthesis by marine and fresh water organisms was not intensive enough to deplete CO(2) from the atmosphere, the concentration of which was more than the order of magnitude higher than present. With the appearance of land plants, the exudation of organic acids by roots, following respiratory and photorespiratory metabolism, led to phosphate weathering from rocks thus increasing aquatic productivity. Weathering also replaced silicates by carbonates, thus decreasing the atmospheric CO(2) concentration. As a result of both intensive photosynthesis and weathering, CO(2 )was depleted from the atmosphere down to low values approaching the compensation point of land plants. During the same time period, the atmospheric O(2) concentration increased to maximum levels about 300 million years ago (Permo-Carboniferous boundary), establishing an O(2)/CO(2) ratio above 1000. At this point, land plant productivity and weathering strongly decreased, exerting negative feedback on aquatic productivity. Increased CO(2) concentrations were triggered by asteroid impacts and volcanic activity and in the Mesozoic era could be related to the gymnosperm flora with lower metabolic and weathering rates. A high O(2)/CO(2) ratio is metabolically linked to the formation of citrate and oxalate, the main factors causing weathering, and to the production of reactive oxygen species, which triggered mutations and stimulated the evolution of land plants. The development of angiosperms resulted in a decrease in CO(2) concentration during the Cenozoic era, which finally led to the glacial-interglacial oscillations in the Pleistocene epoch. Photorespiration, the rate of which is directly related to the O(2)/CO(2) ratio, due to the dual function of Rubisco, may be an important mechanism in maintaining the limits of O(2) and CO(2) concentrations by restricting land plant productivity

  14. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration

    Science.gov (United States)

    Shimono, Hiroyuki; Bunce, James A.

    2009-01-01

    Background and Aims Nitrogen (N) is a major factor affecting yield gain of crops under elevated atmospheric carbon dioxide concentrations [CO2]. It is well established that elevated [CO2] increases root mass, but there are inconsistent reports on the effects on N uptake capacity per root mass. In the present study, it was hypothesized that the responses of N uptake capacity would change with the duration of exposure to elevated [CO2]. Methods The hypothesis was tested by measuring N uptake capacity in rice plants exposed to long-term and short-term [CO2] treatments at different growth stages in plants grown under non-limiting N conditions in hydroponic culture. Seasonal changes in photosynthesis rate and transpiration rate were also measured. Key Results In the long-term [CO2] study, leaf photosynthetic responses to intercellular CO2 concentration (Ci) were not affected by elevated [CO2] before the heading stage, but the initial slope in this response was decreased by elevated [CO2] at the grain-filling stage. Nitrate and ammonium uptake capacities per root dry weight were not affected by elevated [CO2] at panicle initiation, but thereafter they were reduced by elevated [CO2] by 31–41 % at the full heading and mid-ripening growth stages. In the short-term study (24 h exposures), elevated [CO2] enhanced nitrate and ammonium uptake capacities at the early vegetative growth stage, but elevated [CO2] decreased the uptake capacities at the mid-reproductive stage. Conclusions This study showed that N uptake capacity was downregulated under long-term exposure to elevated [CO2] and its response to elevated [CO2] varied greatly with growth stage. PMID:18952623

  16. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    Science.gov (United States)

    Ogle, Stephen M.; Davis, Kenneth; Lauvaux, Thomas; Schuh, Andrew; Cooley, Dan; West, Tristram O.; Heath, Linda S.; Miles, Natasha L.; Richardson, Scott; Breidt, F. Jay; Smith, James E.; McCarty, Jessica L.; Gurney, Kevin R.; Tans, Pieter; Denning, A. Scott

    2015-03-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO2 concentrations and inverse modeling to verify nationally-reported biogenic CO2 emissions. The biogenic CO2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of -408 ± 136 Tg CO2 for the entire study region, which was not statistically different from the biogenic flux of -478 ± 146 Tg CO2 that was estimated using the atmospheric CO2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC.

  17. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  18. Phenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 Concentration.

    Science.gov (United States)

    Kumagai, Etsushi; Aoki, Naohiro; Masuya, Yusuke; Shimono, Hiroyuki

    2015-11-01

    Selection for cultivars with superior responsiveness to elevated atmospheric CO2 concentrations (eCO2) is a powerful option for boosting crop productivity under future eCO2. However, neither criteria for eCO2 responsiveness nor prescreening methods have been established. The purpose of this study was to identify traits responsible for eCO2 responsiveness of soybean (Glycine max). We grew 12 Japanese and U.S. soybean cultivars that differed in their maturity group and determinacy under ambient CO2 and eCO2 for 2 years in temperature gradient chambers. CO2 elevation significantly increased seed yield per plant, and the magnitude varied widely among the cultivars (from 0% to 62%). The yield increase was best explained by increased aboveground biomass and pod number per plant. These results suggest that the plasticity of pod production under eCO2 results from biomass enhancement, and would therefore be a key factor in the yield response to eCO2, a resource-rich environment. To test this hypothesis, we grew the same cultivars at low planting density, a resource-rich environment that improved the light and nutrient supplies by minimizing competition. Low planting density significantly increased seed yield per plant, and the magnitude ranged from 5% to 105% among the cultivars owing to increased biomass and pod number per plant. The yield increase due to low-density planting was significantly positively correlated with the eCO2 response in both years. These results confirm our hypothesis and suggest that high plasticity of biomass and pod production at a low planting density reveals suitable parameters for breeding to maximize soybean yield under eCO2. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Future atmospheric CO2 concentration and environmental consequences for the feed market: a consequential LCA

    DEFF Research Database (Denmark)

    Saxe, Henrik; Hamelin, Lorie; Hinrichsen, Torben

    2014-01-01

    With the rising atmospheric carbon dioxide concentration [CO2], crops will assimilate more carbon. This will increase yields in terms of carbohydrates but dilute the content of protein and minerals in crops. This consequential life cycle assessment study modelled the environmental consequences...

  20. Rising atmospheric CO2 lowers food zinc, iron, and protein concentrations

    Science.gov (United States)

    Dietary deficiencies of zinc and iron are a major global public health problem. Most people who experience these deficiencies depend on agricultural crops for zinc and iron. In this context, the influence of rising concentrations of atmospheric CO2 on the availability of these nutrients from crops i...

  1. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    Science.gov (United States)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  2. Increasing atmospheric humidity and CO2 concentration alleviate forest hydraulic failure risk

    Science.gov (United States)

    Liu, Y.; Parolari, A.; Kumar, M.; Porporato, A. M.; Katul, G. G.

    2016-12-01

    Climate-induced forest mortality is being observed throughout the globe and has the potential to alter ecosystem services provided by forests. Recent studies suggest that forest mortality is expected to be exacerbated under climate change due to intensified water and heat stress. While few dispute the claim that the compound effect of reduced soil water and increased heat stress increases the probability of forest mortality, impacts of other aspects of climate change have not been explored. Specifically, the impacts of concurrent changes in atmospheric humidity and atmospheric CO2 concentration, which may influence stomatal kinetics in ways that allow plants to operate despite reduced plant hydraulic capacity, remain unaddressed. Here, the risk of hydraulic failure (HFR), one of the key factors contributing to forest mortality is investigated by setting up a dynamic soil-plant-atmospheric model. The coupled and isolated responses of HFR to changes in precipitation amount and seasonality, air temperature, atmospheric humidity, and atmospheric CO2 concentration are analyzed. By incorporating CMIP5 climate projections, the synthetic future responses of HFR for 13 forest biomes across the globe are examined. The results indicate that while HFR is predicted to increase under shifting precipitation patterns and elevated air temperature, the increasing risks may be partly compensated by increases in atmospheric humidity and CO2 concentration. The alleviating effects are likely to be more significant for broadleaf forests than those for needleleaf forests. Our findings suggest that contributions of atmospheric humidity and CO2 concentration on HFR, independently of other effects such as seed production, germination, spread, disease outbreak, and resource competition at the community level, may lead to lower risks of forest mortality than previously thought.

  3. Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan.

    Science.gov (United States)

    Osada, Noriyuki; Onoda, Yusuke; Hikosaka, Kouki

    2010-09-01

    Long-term exposure to elevated CO2 concentration will affect the traits of wild plants in association with other environmental factors. We investigated multiple effects of atmospheric CO2 concentration, irradiance, and soil N availability on the leaf photosynthetic traits of a herbaceous species, Polygonum sachalinense, growing around natural CO2 springs in northern Japan. Atmospheric CO2 concentration and its interaction with irradiance and soil N availability affected several leaf traits. Leaf mass per unit area increased and N per mass decreased with increasing CO2 and irradiance. Leaf N per area increased with increasing soil N availability at higher CO2 concentrations. The photosynthetic rate under growth CO2 conditions increased with increasing irradiance and CO2, and with increasing soil N at higher CO2 concentrations. The maximal velocity of ribulose 1,5-bisphosphate carboxylation (V (cmax)) was affected by the interaction of CO2 and soil N, suggesting that down-regulation of photosynthesis at elevated CO2 was more evident at lower soil N availability. The ratio of the maximum rate of electron transport to V (cmax) (J (max)/V (cmax)) increased with increasing CO2, suggesting that the plants used N efficiently for photosynthesis at high CO2 concentrations by changes in N partitioning. To what extent elevated CO2 influenced plant traits depended on other environmental factors. As wild plants are subject to a wide range of light and nutrient availability, our results highlight the importance of these environmental factors when the effects of elevated CO2 on plants are evaluated.

  4. Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk.

    Science.gov (United States)

    Liu, Yanlan; Parolari, Anthony J; Kumar, Mukesh; Huang, Cheng-Wei; Katul, Gabriel G; Porporato, Amilcare

    2017-09-12

    Climate-induced forest mortality is being increasingly observed throughout the globe. Alarmingly, it is expected to exacerbate under climate change due to shifting precipitation patterns and rising air temperature. However, the impact of concomitant changes in atmospheric humidity and CO2 concentration through their influence on stomatal kinetics remains a subject of debate and inquiry. By using a dynamic soil-plant-atmosphere model, mortality risks associated with hydraulic failure and stomatal closure for 13 temperate and tropical forest biomes across the globe are analyzed. The mortality risk is evaluated in response to both individual and combined changes in precipitation amounts and their seasonal distribution, mean air temperature, specific humidity, and atmospheric CO2 concentration. Model results show that the risk is predicted to significantly increase due to changes in precipitation and air temperature regime for the period 2050-2069. However, this increase may largely get alleviated by concurrent increases in atmospheric specific humidity and CO2 concentration. The increase in mortality risk is expected to be higher for needleleaf forests than for broadleaf forests, as a result of disparity in hydraulic traits. These findings will facilitate decisions about intervention and management of different forest types under changing climate.

  5. Phytochemical changes in leaves of subtropical grasses and fynbos shrubs at elevated atmospheric CO 2 concentrations

    Science.gov (United States)

    Hattas, D.; Stock, W. D.; Mabusela, W. T.; Green, I. R.

    2005-07-01

    The effects of elevated atmospheric CO 2 concentrations on plant polyphenolic, tannin, nitrogen, phosphorus and total nonstructural carbohydrate concentrations were investigated in leaves of subtropical grass and fynbos shrub species. The hypothesis tested was that carbon-based secondary compounds would increase when carbon gain is in excess of growth requirements. This premise was tested in two ecosystems involving plants with different photosynthetic mechanisms and growth strategies. The first ecosystem comprised grasses from a C 4-dominated, subtropical grassland, where three plots were subjected to three different free air CO 2 enrichment treatments, i.e., elevated (600 to 800 μmol mol -1), intermediate (400 μmol mol -1) and ambient atmospheric CO 2. One of the seven grass species, Alloteropsis semialata, had a C 3 photosynthetic pathway while the other grasses were all C 4. The second ecosystem was simulated in a microcosm experiment where three fynbos species were grown in open-top chambers at ambient and 700 μmol mol -1 atmospheric CO 2 in low nutrient acid sands typical of south western coastal and mountain fynbos ecosystems. Results showed that polyphenolics and tannins did not increase in the grass species under elevated CO 2 and only in Leucadendron laureolum among the fynbos species. Similarly, foliar nitrogen content of grasses was largely unaffected by elevated CO 2, and among the fynbos species, only L. laureolum and Leucadendron xanthoconus showed changes in foliar nitrogen content under elevated CO 2, but these were of different magnitude. The overall decrease in nitrogen and phosphorus and consequent increase in C:N and C:P ratio in both ecosystems, along with the increase in polyphenolics and tannins in L. laureolum in the fynbos ecosystem, may negatively affect forage quality and decomposition rates. It is concluded that fast growing grasses do not experience sink limitation and invest extra carbon into growth rather than polyphenolics and

  6. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  7. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains.

    Science.gov (United States)

    Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó

    2017-08-01

    Increasing atmospheric CO2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO2 (750 μmol mol(-1)) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO2. The results indicate that future environmental conditions, such as rising CO2 levels, may increase the threat of grain mycotoxin contamination.

  8. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Science.gov (United States)

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  9. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  10. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100.

    Science.gov (United States)

    Breecker, D O; Sharp, Z D; McFadden, L D

    2010-01-12

    Quantifying atmospheric CO(2) concentrations ([CO(2)](atm)) during Earth's ancient greenhouse episodes is essential for accurately predicting the response of future climate to elevated CO(2) levels. Empirical estimates of [CO(2)](atm) during Paleozoic and Mesozoic greenhouse climates are based primarily on the carbon isotope composition of calcium carbonate in fossil soils. We report that greenhouse [CO(2)](atm) have been significantly overestimated because previously assumed soil CO(2) concentrations during carbonate formation are too high. More accurate [CO(2)](atm), resulting from better constraints on soil CO(2), indicate that large (1,000s of ppmV) fluctuations in [CO(2)](atm) did not characterize ancient climates and that past greenhouse climates were accompanied by concentrations similar to those projected for A.D. 2100.

  11. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Science.gov (United States)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  12. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    Science.gov (United States)

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  13. The polar ocean and glacial cycles in atmospheric CO(2) concentration.

    Science.gov (United States)

    Sigman, Daniel M; Hain, Mathis P; Haug, Gerald H

    2010-07-01

    Global climate and the atmospheric partial pressure of carbon dioxide () are correlated over recent glacial cycles, with lower during ice ages, but the causes of the changes are unknown. The modern Southern Ocean releases deeply sequestered CO(2) to the atmosphere. Growing evidence suggests that the Southern Ocean CO(2) 'leak' was stemmed during ice ages, increasing ocean CO(2) storage. Such a change would also have made the global ocean more alkaline, driving additional ocean CO(2) uptake. This explanation for lower ice-age , if correct, has much to teach us about the controls on current ocean processes.

  14. Can seasonal and interannual variation in landscape CO2 fluxes be detected by atmospheric observations of CO2 concentrations made at a tall tower?

    Science.gov (United States)

    Smallman, T. L.; Williams, M.; Moncrieff, J. B.

    2013-08-01

    The Weather Research and Forecasting (WRF) meteorological model has been coupled to the Soil Plant Atmosphere (SPA) terrestrial ecosystem model, hereafter known as WRF-SPA. SPA generates realistic land-atmosphere exchanges through fully coupled hydrological, carbon and energy cycles. Here we have used WRF-SPA to investigate regional scale observations of atmospheric CO2 concentrations made over a multi-annual period from a tall tower in Scotland. WRF-SPA realistically models both seasonal and daily cycles, predicting CO2 at the tall tower (R2 = 0.67, RMSE = 3.5 ppm, bias = 0.58 ppm), indicating realistic transport, and appropriate source sink distribution and magnitude of CO2 exchange. We have highlighted a consistent post harvest increase in model-observation residuals in atmospheric CO2 concentrations. This increase in model-observation residuals post harvest is likely related to a lack of an appropriate representation of uncultivated components (~ 36% of agricultural holding in Scotland) of agricultural land (e.g., hedgerows and forest patches) which continue to photosynthesise after the crop has been harvested. Through the use of ecosystem specific CO2 tracers we have shown that tall tower observations here do not detect a representative fraction of Scotland's ecosystem CO2 uptake. Cropland CO2 uptake is the dominant ecosystem signal detected at the tall tower, consistent with the dominance of cropland in the area surrounding the tower. However cropland is over-represented in the atmospheric CO2 concentrations simulated to be at the tall tower, relative to the simulated surface cropland CO2 uptake. Observations made at the tall tower were able to detect seasonal variation in ecosystem CO2 uptake, however a majority of variation was only detected for croplands. We have found evidence that interannual variation in weather has a greater impact than interannual variation of the simulated land surface CO2 exchange on tall tower observations for the simulated years

  15. Stability of a NDIR analyser for CO2 at atmospheric concentration.

    Science.gov (United States)

    Sega, Michela; Amico Di Meane, Elena; Plassa, Margherita

    2002-09-01

    Carbon dioxide monitoring is significant in the environmental field since this gas plays an important role in the greenhouse effect. In order to determine CO2 concentration and to develop simulation models, it is necessary to carry out measurements which are accurate and comparable in time and space, i.e. SI-traceable. Non-dispersive infrared (NDIR) analysers are employed for CO2 measurements, as they are precise and stable. In order to achieve traceability, such instruments have to be characterized and calibrated. At the Istituto di Metrologia "G. Colonnetti"--CNR, a procedure for calibrating NDIR analysers for CO2 at atmospheric level was developed, which enables to calculate a correction for the analyser output. In addition, a complete uncertainty analysis was carried out and a correct traceability chain was established. The goal of the present work is the study of the stability of a NDIR analyser by repeating calibrations during three years and comparing the correction curves obtained to identify a proper re-calibration interval for such analysers. The investigated instrument has good repeatability and reproducibility, hence satisfactory stability during time, as shown by the short-term and long-term compatibility of calibration curves.

  16. NACP MCI: Tower Atmospheric CO2 Concentrations, Upper Midwest Region, USA, 2007-2009

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides high precision and high accuracy atmospheric CO2 data from seven instrumented communication towers located in the U.S. Upper Midwest. The...

  17. ACT-America: L2 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides atmospheric carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ozone (O3) concentrations collected during airborne campaigns...

  18. CARVE: L2 Atmospheric CO2, CO and CH4 Concentrations, Harvard CRDS, Alaska, 2012-2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides atmospheric carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) concentrations from airborne campaigns over the Alaskan and Canadian...

  19. CARVE: L2 Merged Atmospheric CO2, CO, O3 and CH4 Concentrations, Alaska, 2012-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides atmospheric carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), ozone (O3), and water vapor (H2O) concentrations from airborne...

  20. CARVE: L2 Atmospheric CO2, CO and CH4 Concentrations, NOAA CRDS, Alaska, 2012-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides atmospheric carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and water vapor (H2O) concentrations from airborne campaigns over the...

  1. [Effects of atmospheric CO2 concentration enhancement and nitrogen application rate on wheat grain yield and quality].

    Science.gov (United States)

    Cui, Hao; Shi, Zu-liang; Cai, Jian; Jiang, Dong; Cao, Wei-xing; Dai, Ting-bo

    2011-04-01

    FACE platform was applied to study the effects of elevated atmospheric CO2 concentration on wheat grain yield and quality under two nitrogen (N) application rates. Elevated atmospheric CO2 concentration and applying N increased the grain yield, spike number, grain number per spike, and biomass significantly, but elevated CO2 concentration had no significant effects on harvest index (HI). Under elevated CO2 concentration, there was a significant decrease in the protein, gliadin, gluteinin, and glutein contents of the grain and the sedimentation value of the flour, and a significant increase in the starch and its components contents of the grain; under N application, an inverse was observed. The dough stability time and the dough viscosity characteristics, such as peak viscosity, final viscosity, and setback value, increased significantly under elevated CO2 concentration and high N application rate. The interaction of atmospheric CO2 concentration and N application rate had significantly positive effects on wheat grain yield and biomass, but less effect on grain quality. Therefore, with elevated atmospheric CO2 concentration in the future, maintaining a higher N application level would benefit wheat grain yield and paste characteristics, and mitigate the decline of grain quality.

  2. [Characteristics of atmospheric CO2 concentration and variation of carbon source & sink at Lin'an regional background station].

    Science.gov (United States)

    Pu, Jing-Jiao; Xu, Hong-Hui; Kang, Li-Li; Ma, Qian-Li

    2011-08-01

    Characteristics of Atmospheric CO2 concentration obtained by Flask measurements were analyzed at Lin'an regional background station from August 2006 to July 2009. According to the simulation results of carbon tracking model, the impact of carbon sources and sinks on CO2 concentration was evaluated in Yangtze River Delta. The results revealed that atmospheric CO2 concentrations at Lin'an regional background station were between 368.3 x 10(-6) and 414.8 x 10(-6). The CO2 concentration varied as seasons change, with maximum in winter and minimum in summer; the annual difference was about 20.5 x 10(-6). The long-term trend of CO2 concentration showed rapid growth year by year; the average growth rate was about 3.2 x 10(-6)/a. CO2 flux of Yangtze River Delta was mainly contributed by fossil fuel burning, terrestrial biosphere exchange and ocean exchange, while the contribution of fire emission was small. CO2 flux from fossil fuel burning played an important role in carbon source; terrestrial biosphere and ocean were important carbon sinks in this area. Seasonal variations of CO2 concentration at Lin'an regional background station were consistent with CO2 fluxes from fossil fuel burning and terrestrial biosphere exchange.

  3. [Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters].

    Science.gov (United States)

    Hao, Xing-yu; Han, Xue; Li, Ping; Yang, Hong-bin; Lin, Er-da

    2011-10-01

    By using free air CO2 enrichment (FACE) system, a pot experiment under field condition was conducted to study the effects of elevated CO2 concentration (550 +/- 60 micromol mol(-1)) on the leaf photosynthesis and chlorophyll fluorescence parameters of mung bean. Comparing with the control (CO2 concentration averagely 389 +/- 40 micromol mol(-1)), elevated CO2 concentration increased the leaf intercellular CO2 concentration (Ci) and net photosynthesis rate (P(n)) at flowering and pod growth stage by 9.8% and 11.7%, decreased the stomatic conductance (G(s)) and transpiration rate (T(r)) by 32.0% and 24.6%, respectively, and increased the water use efficiency (WUE) by 83.5%. Elevated CO2 concentration had lesser effects on the minimal fluorescence (F0), maximal fluorescence (F(m)), variable fluorescence (F(v)), ratio of variable fluorescence to minimal fluorescence (F(v)/F0), and ratio of variable fluorescence to maximal fluorescence (F(v)/F(m)) at bud stage, but increased the F0 at pod filling stage by 19.1% and decreased the Fm, F(v), F(v)/F0, and F(v)/F(m) by 9.0%, 14.3%, 25.8% , and 6.2%, respectively. These results suggested that elevated CO2 concentration could damage the structure of leaf photosystem II and consequently decrease the leaf photosynthetic capacity in the late growth phase of mung bean.

  4. Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event

    Science.gov (United States)

    Marchal, O.; Stocker, T. F.; Joos, F.; Indermühle, A.; Blunier, T.; Tschumi, J.

    The Younger Dryas (YD, dated between 12.7-11.6 ky BP in the GRIP ice core, Central Greenland) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but controversial hypothesis to explain the cooling is a reduction of the Atlantic thermohaline circulation (THC) and associated northward heat flux as triggered by glacial meltwater. Recently, a CH4-based synchronization of GRIP δ18O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmospheric CO2 (COatm2) rose steadily during the YD, suggesting a minor influence of the THC on COatm2 at that time. Here we show that the COatm2 change in a zonally averaged, circulation-biogeochemistry ocean model when THC is collapsed by freshwater flux anomaly is consistent with the Byrd record. Cooling in the North Atlantic has a small effect on COatm2 in this model, because it is spatially limited and compensated by far-field changes such as a warming in the Southern Ocean. The modelled Southern Ocean warming is in agreement with the anti-phase evolution of isotopic temperature records from GRIP (Northern Hemisphere) and from Byrd and Vostok (East Antarctica) during the YD. δ13C depletion and PO4 enrichment are predicted at depth in the North Atlantic, but not in the Southern Ocean. This could explain a part of the controversy about the intensity of the THC during the YD. Potential weaknesses in our interpretation of the Byrd CO2 record in terms of THC changes are discussed.

  5. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration.

    Science.gov (United States)

    Drake, John E; Macdonald, Catriona A; Tjoelker, Mark G; Crous, Kristine Y; Gimeno, Teresa E; Singh, Brajesh K; Reich, Peter B; Anderson, Ian C; Ellsworth, David S

    2016-01-01

    Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2 ) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short-term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil ) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2 ) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light-saturated photosynthesis of canopy leaves (Asat ) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2 . The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research. © 2015 John Wiley & Sons Ltd.

  6. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla

    Science.gov (United States)

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition. PMID:28182638

  7. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Science.gov (United States)

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  8. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration

    Science.gov (United States)

    Choudhury, B. J.

    1988-01-01

    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  9. A reduced order model to analytically infer atmospheric CO2 concentration from stomatal and climate data

    Science.gov (United States)

    Konrad, Wilfried; Katul, Gabriel; Roth-Nebelsick, Anita; Grein, Michaela

    2017-06-01

    To address questions related to the acceleration or deceleration of the global hydrological cycle or links between the carbon and water cycles over land, reliable data for past climatic conditions based on proxies are required. In particular, the reconstruction of palaeoatmospheric CO2 content (Ca) is needed to assist the separation of natural from anthropogenic Ca variability and to explore phase relations between Ca and air temperature Ta time series. Both Ta and Ca are needed to fingerprint anthropogenic signatures in vapor pressure deficit, a major driver used to explain acceleration or deceleration phases in the global hydrological cycle. Current approaches to Ca reconstruction rely on a robust inverse correlation between measured stomatal density in leaves (ν) of many plant taxa and Ca. There are two methods that exploit this correlation: The first uses calibration curves obtained from extant species assumed to represent the fossil taxa, thereby restricting the suitable taxa to those existing today. The second is a hybrid eco-hydrological/physiological approach that determines Ca with the aid of systems of equations based on quasi-instantaneous leaf-gas exchange theories and fossil stomatal data collected along with other measured leaf anatomical traits and parameters. In this contribution, a reduced order model (ROM) is proposed that derives Ca from a single equation incorporating the aforementioned stomatal data, basic climate (e.g. temperature), estimated biochemical parameters of assimilation and isotope data. The usage of the ROM is then illustrated by applying it to isotopic and anatomical measurements from three extant species. The ROM derivation is based on a balance between the biochemical demand and atmospheric supply of CO2 that leads to an explicit expression linking stomatal conductance to internal CO2 concentration (Ci) and Ca. The resulting expression of stomatal conductance from the carbon economy of the leaf is then equated to another

  10. Modeling atmospheric CO2 concentration profiles and fluxes above sloping terrain at a boreal site

    Directory of Open Access Journals (Sweden)

    T. Aalto

    2006-01-01

    Full Text Available CO2 fluxes and concentrations were simulated in the planetary boundary layer above subarctic hilly terrain using a three dimensional model. The model solves the transport equations in the local scale and includes a vegetation sub-model. A WMO/GAW background concentration measurement site and an ecosystem flux measurement site are located inside the modeled region at a hilltop and above a mixed boreal forest, respectively. According to model results, the concentration measurement at the hill site was representative for continental background. However, this was not the case for the whole model domain. Concentration at few meters above active vegetation represented mainly local variation. Local variation became inseparable from the regional signal at about 60-100 m above ground. Flow over hills changed profiles of environmental variables and height of inversion layer, however CO2 profiles were more affected by upwind land use than topography. The hill site was above boundary layer during night and inside boundary layer during daytime. The CO2 input from model lateral boundaries dominated in both cases. Daily variation in the CO2 assimilation rate was clearly seen in the CO2 profiles. Concentration difference between the hill site and the forest site was about 5ppm during afternoon according to both model and measurements. The average modeled flux to the whole model region was about 40% of measured and modeled local flux at the forest site.

  11. Modelling the response of wheat canopy assimilation to atmospheric CO2 concentrations.

    NARCIS (Netherlands)

    Rodriguez, D.; Ewert, F.; Goudriaan, J.; Manderscheid, R.; Burkart, S.; Weigel, H.J.

    2001-01-01

    The predictive capacity of two simulation models with different degrees of complexity for the calculation of assimilate production, was tested at different time scales, using a data set of wheat grown in an open-top-chamber experiment at two CO2 concentrations. Observed values of net canopy

  12. The counteracting effects of elevated atmospheric CO2 concentrations and drought episodes: Studies of enchytraeid communities in a dry heathland

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Krogh, Paul Henning; Linden, Leon

    2010-01-01

    The potential impacts of interactions of multiple climate change factors in soil ecosystems have received little attention. Most studies have addressed effects of single factors such as increased temperature or atmospheric CO2 but little is known about how such environmental factors will interact....... In the present study we investigate the effects of in situ exposure to elevated atmospheric CO2 concentration, increased temperatures and prolonged drought episodes on field communities of Enchytraeidae (Oligochaeta) in a dry heathland (Brandbjerg, Denmark). Increased CO2 had a positive effect on enchytraeid...... biomass, whereas drought significantly reduced it. Elevated temperature did not result in any detectable effects. No interactions between the three factors were observed. Interestingly, the positive effect of increased CO2 and the negative effect of drought were cancelled out when applied in combination...

  13. Laser Sounder Approach for Measuring Atmospheric CO2 Concentrations for the ASCENDS Mission

    Science.gov (United States)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Sun, X.; Wilson, E.; Stephen, M. A.; Weaver, C.

    2008-12-01

    Accurate measurements of tropospheric CO2 abundances with global-coverage and monthly temporal resolution are needed to quantify processes that regulate CO2 exchange with the land and oceans. To meet this need, the 2007 Decadal Survey for Earth Science by the US National Research Council recommended a laser-based CO2 measuring mission called ASCENDS. In July 2008 NASA convened a science definition workshop for ASCENDS, which helped better define the mission and measurement requirements. We have been developing a technique for the remote measurement of tropospheric CO2 concentrations from aircraft and spacecraft. Our immediate goal is to develop and demonstrate the lidar technique and technology that will permit measurements of the CO2 column abundance over horizontal paths and from aircraft at the few-ppmv level. Our longer-term goal is to demonstrate the capabilities of the technique and instrument design needed for an ASCENDS-type mission. Our approach uses the 1570-nm band and a dual channel laser absorption spectrometer (ie DIAL used in altimeter mode). It uses several tunable fiber laser transmitters allowing simultaneous measurement of the absorption from a CO2 absorption line in the 1570 nm band, O2 extinction in the oxygen A-band, and surface height and aerosol backscatter in the same path. It directs the narrow co-aligned laser beams toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. The lasers are tuned on and off the sides of CO2 line and an O2 line (near 765 nm) at kHz rates. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on and off line signals via the DIAL technique. We use pulsed laser signals and time gating to isolate the laser echo signals from the

  14. Forecasting global atmospheric CO2

    Science.gov (United States)

    Agustí-Panareda, A.; Massart, S.; Chevallier, F.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Ciais, P.; Deutscher, N. M.; Engelen, R.; Jones, L.; Kivi, R.; Paris, J.-D.; Peuch, V.-H.; Sherlock, V.; Vermeulen, A. T.; Wennberg, P. O.; Wunch, D.

    2014-11-01

    A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and

  15. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations.

    Science.gov (United States)

    Beleggia, Romina; Fragasso, Mariagiovanna; Miglietta, Franco; Cattivelli, Luigi; Menga, Valeria; Nigro, Franca; Pecchioni, Nicola; Fares, Clara

    2018-03-01

    The concentrations of 10 minerals were investigated in the grain of 12 durum wheat genotypes grown under free air CO2 enrichment conditions, and in four of their derived pasta samples, using inductively coupled plasma mass spectrometry. Compared to ambient CO2 (400ppm; AMB), under elevated CO2 (570ppm; ELE), the micro-element and macro-element contents showed strong and significant decreases in the grain: Mn, -28.3%; Fe, -26.7%; Zn, -21.9%; Mg, -22.7%; Mo, -40.4%; K, -22.4%; and Ca, -19.5%. These variations defined the 12 genotypes as sensitive or non-sensitive to ELE. The pasta samples under AMB and ELE showed decreased mineral contents compared to the grain. Nevertheless, the contributions of the pasta to the recommended daily allowances remained relevant, also for the micro-elements under ELE conditions (range, from 18% of the recommended daily allowance for Zn, to 70% for Mn and Mo). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    Amy M Trowbridge

    Full Text Available Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13CO(2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens trees grown and measured at different atmospheric CO(2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+, which represents, in part, substrate derived from pyruvate, and M69(+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP. Trees grown under sub-ambient CO(2 (190 ppmv had rates of isoprene emission and rates of labeling of M41(+ and M69(+ that were nearly twice those observed in trees grown under elevated CO(2 (590 ppmv. However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2.

  17. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use

    Science.gov (United States)

    de Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke; Coe, Michael T.; Costa, Marcos H.; Moorcroft, Paul

    2016-01-01

    The Amazon tropical evergreen forest is an important component of the global carbon budget. Its forest floristic composition, structure, and function are sensitive to changes in climate, atmospheric composition, and land use. In this study biomass and productivity simulated by three dynamic global vegetation models (Integrated Biosphere Simulator, Ecosystem Demography Biosphere Model, and Joint UK Land Environment Simulator) for the period 1970-2008 are compared with observations from forest plots (Rede Amazónica de Inventarios Forestales). The spatial variability in biomass and productivity simulated by the DGVMs is low in comparison to the field observations in part because of poor representation of the heterogeneity of vegetation traits within the models. We find that over the last four decades the CO2 fertilization effect dominates a long-term increase in simulated biomass in undisturbed Amazonian forests, while land use change in the south and southeastern Amazonia dominates a reduction in Amazon aboveground biomass, of similar magnitude to the CO2 biomass gain. Climate extremes exert a strong effect on the observed biomass on short time scales, but the models are incapable of reproducing the observed impacts of extreme drought on forest biomass. We find that future improvements in the accuracy of DGVM predictions will require improved representation of four key elements: (1) spatially variable plant traits, (2) soil and nutrients mediated processes, (3) extreme event mortality, and (4) sensitivity to climatic variability. Finally, continued long-term observations and ecosystem-scale experiments (e.g. Free-Air CO2 Enrichment experiments) are essential for a better understanding of the changing dynamics of tropical forests.

  18. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    Science.gov (United States)

    Stephen M Ogle; Kenneth Davis; Thomas Lauvaux; Andrew Schuh; Dan Cooley; Tristram O West; Linda S Heath; Natasha L Miles; Scott Richardson; F Jay Breidt; James E Smith; Jessica L McCarty; Kevin R Gurney; Pieter Tans; A Scott. Denning

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country's contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated...

  19. Atmospheric CO2 concentration impacts on maize yield performance under dry conditions: do crop model simulate it right ?

    Science.gov (United States)

    Durand, Jean-Louis; Delusca, Kénel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Jochaim Weigel, Hans; Ruane, Alex C.; Rosenzweig, Cynthia; Jones, Jim; Ahuja, Laj; Anapalli, Saseendran; Basso, Bruno; Baron, Christian; Bertuzzi, Patrick; Biernath, Christian; Deryng, Delphine; Ewert, Frank; Gaiser, Thomas; Gayler, Sebastian; Heinlein, Florian; Kersebaum, Kurt Christian; Kim, Soo-Hyung; Müller, Christoph; Nendel, Claas; Olioso, Albert; Priesack, Eckhart; Ramirez-Villegas, Julian; Ripoche, Dominique; Rötter, Reimund; Seidel, Sabine; Srivastava, Amit; Tao, Fulu; Timlin, Dennis; Twine, Tracy; Wang, Enli; Webber, Heidi; Zhao, Shigan

    2017-04-01

    In most regions of the world, maize yields are at risk of be reduced due to rising temperatures and reduced water availability. Rising temperature tends to reduce the length of the growth cycle and the amount of intercepted solar energy. Water deficits reduce the leaf area expansion, photosynthesis and sometimes, with an even more pronounced impact, severely reduce the efficiency of kernel set. In maize, the major consequence of atmospheric CO2 concentration ([CO2]) is the stomatal closure-induced reduction of leaf transpiration rate, which tends to mitigate those negative impacts. Indeed FACE studies report significant positive responses to CO2 of maize yields (and other C4 crops) under dry conditions only. Given the projections by climatologists (typically doubling of [CO2] by the end of this century) projected impacts must take that climate variable into account. However, several studies show a large incertitude in estimating the impact of increasing [CO2] on maize remains using the main crop models. The aim of this work was to compare the simulations of different models using input data from a FACE experiment conducted in Braunschweig during 2 years under limiting and non-limiting water conditions. Twenty modelling groups using different maize models were given the same instructions and input data. Following calibration of cultivar parameters under non-limiting water conditions and under ambient [CO2] treatments of both years, simulations were undertaken for the other treatments: High [ CO2 ] (550 ppm) 2007 and 2008 in both irrigation regimes, and DRY AMBIENT 2007 and 2008. Only under severe water deficits did models simulate an increase in yield for CO2 enrichment, which was associated with higher harvest index and, for those models which simulated it, higher grain number. However, the CO2 enhancement under water deficit simulated by the 20 models was 20 % at most and 10 % on average only, i.e. twice less than observed in that experiment. As in the experiment

  20. Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change

    Science.gov (United States)

    Scheffer, Marten; Brovkin, Victor; Cox, Peter M.

    2006-05-01

    There is good evidence that higher global temperatures will promote a rise of greenhouse gas levels, implying a positive feedback which will increase the effect of anthropogenic emissions on global temperatures. However, the magnitude of this effect predicted by the available models remains highly uncertain, due to the accumulation of uncertainties in the processes thought to be involved. Here we present an alternative way of estimating the magnitude of the feedback effect based on reconstructed past changes. Linking this information with the mid-range Intergovernmental Panel on Climate Change estimation of the greenhouse gas effect on temperature we suggest that the feedback of global temperature on atmospheric CO2 will promote warming by an extra 15-78% on a century-scale. This estimate may be conservative as we did not account for synergistic effects of likely temperature moderated increase in other greenhouse gases. Our semi-empirical approach independently supports process based simulations suggesting that feedback may cause a considerable boost in warming.

  1. Technical Note: Long-term memory effect in the atmospheric CO2 concentration at Mauna Loa

    Directory of Open Access Journals (Sweden)

    C. Varotsos

    2007-01-01

    Full Text Available The monthly mean values of the atmospheric carbon dioxide concentration derived from in-situ air samples collected at Mauna Loa Observatory, Hawaii, USA during 1958–2004 (the longest continuous record available in the world are analyzed by employing the detrended fluctuation analysis to detect scaling behavior in this time series. The main result is that the fluctuations of carbon dioxide concentrations exhibit long-range power-law correlations (long memory with lag times ranging from four months to eleven years, which correspond to 1/f noise. This result indicates that random perturbations in the carbon dioxide concentrations give rise to noise, characterized by a frequency spectrum following a power-law with exponent that approaches to one; the latter shows that the correlation times grow strongly. This feature is pointing out that a correctly rescaled subset of the original time series of the carbon dioxide concentrations resembles the original time series. Finally, the power-law relationship derived from the real measurements of the carbon dioxide concentrations could also serve as a tool to improve the confidence of the atmospheric chemistry-transport and global climate models.

  2. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    OpenAIRE

    Mavrodiev, S. Cht.; Pekevski, L.; Vachev, B.

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  3. Laser Sounder for Measuring Atmospheric CO2 Concentrations: Progress Toward Ascends

    Science.gov (United States)

    Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Sun, X.; Stephen, M. A.; Wilson, E.; Burris, J. F.; Mao, J.

    2008-01-01

    The next generation of space-based, active remote sensing instruments for measurement of tropospheric CO2 promises a capability to quantify global carbon sources and sinks at regional scales. Active (laser) methods will extend CO2 measurement coverage in time, space, and perhaps precision such that the underlying mechanisms for carbon exchange at the surface can be understood with .sufficient detail to confidently project the future of carbon-climate interaction and the influence of remediative policy actions. The recent Decadal Survey for Earth Science by the US National Research Council has recommended such a mission called the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) for launch in 2013-2016. We have been developing a laser technique for measurement of tropospheric CO2 for a number of years. Our immediate goal is to develop and demonstrate the method and instrument technology that will permit measurements of the CO2 column abundance over a horizontal path and from aircraft at the few-ppmv level. Our longer-term goal is to demonstrate the required capabilities of the technique, develop a space mission approach, and design the instrument for an ASCENDS-type mission. Our approach is to use a dual channel laser absorption spectrometer (i.e., differential absorption in altimeter mode), which continuously measures from a near-polar circular orbit. We use several co-aligned tunable fiber laser transmitters allowing simultaneous measurement of the absorption from a CO2 line in the 1570 nm band, O2 extinction in the oxygen A-band (near 765 nm), and aerosol backscatter in the same measurement path. We measure the energy of the laser echoes at nadir reflected from land and water surfaces, day and night. The lasers have spectral widths much narrower than the gas absorption lines and are turned on and off the selected CO2 and O2 lines at kHz rates. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of

  4. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    Directory of Open Access Journals (Sweden)

    B. Kruijt

    1999-01-01

    Full Text Available The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2], temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong. Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  5. Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century

    Energy Technology Data Exchange (ETDEWEB)

    Franks, Peter J [University of Sydney, Australia; Adams, Mark A [University of Sydney, Australia; Amthor, Jeffrey S. [U.S. Department of Energy; Barbour, Margaret M [University of Sydney, Australia; Berry, Joseph A [Carnegie Institution of Washington; Ellsworth, David [ORNL; Farquhar, Graham D [Australian National University, Canberra, Australia; Ghannoum, Oula [University of Western Sydney, Australia; Lloyd, Jon [James Cook University; McDowell, Nathan [ORNL; Norby, Richard J [ORNL; Tissue, David Thomas [ORNL; Von Caemmerer, Susanne [Australian National University, Canberra, Australia

    2013-01-01

    The rate of CO2 assimilation by plants is directly influenced by the concentration of CO2 in the atmosphere, ca. In response to a short-term change in ca, plants adjust stomatal conductance to CO2 and water vapour to maximise carbon gain in terms of the amount of water lost. This is one of several fundamental feedback processes between plants and their environment that govern the exchange of water for carbon. As an environmental variable, ca further has a unique global and historic significance. Although relatively stable and uniform in the short term, global ca has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive data sets and numerous models to develop an integrated, multi-scale assessment of the impact of changing ca on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling atmospheric CO2 concentration is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that moves towards maximising the rate of return, in the form of carbon, for the water and nitrogen resources invested in the process of carbon assimilation. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing ca can be described by simple equations rooted in the formulation of more commonly studied short-term responses.

  6. Passive CO2 concentration in higher plants.

    Science.gov (United States)

    Sage, Rowan F; Khoshravesh, Roxana

    2016-06-01

    Photorespiratory limitations on C3 photosynthesis are substantial in warm, low CO2 conditions. To compensate, certain plants evolved mechanisms to actively concentrate CO2 around Rubisco using ATP-supported CO2 pumps such as C4 photosynthesis. Plants can also passively accumulate CO2 without additional ATP expenditure by localizing the release of photorespired and respired CO2 around Rubisco that is diffusively isolated from peripheral air spaces. Passive accumulation of photorespired CO2 occurs when glycine decarboxylase is localized to vascular sheath cells in what is termed C2 photosynthesis, and through forming sheaths of chloroplasts around the periphery of mesophyll cells. The peripheral sheaths require photorespired CO2 to re-enter chloroplasts where it can be refixed. Passive accumulation of respiratory CO2 is common in organs such as stems, fruits and flowers, due to abundant heterotrophic tissues and high diffusive resistance along the organ periphery. Chloroplasts within these organs are able to exploit this high CO2 to reduce photorespiration. CO2 concentration can also be enhanced passively by channeling respired CO2 from roots and rhizomes into photosynthetic cells of stems and leaves via lacunae, aerenchyma and the xylem stream. Through passive CO2 concentration, C3 species likely improved their carbon economy and maintained fitness during episodes of low atmospheric CO2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Direct Observation on the Temporal and Spatial Patterns of the CO2 Concentration in the Atmospheric of Nanjing Urban Canyon in Summer].

    Science.gov (United States)

    Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui

    2015-07-01

    Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.

  8. Assessment of cultivated and wild, weedy rice lines to concurrent changes in CO2 concentration and air temperature: Determining traits for enhanced seed yield with increasing atmospheric CO2

    Science.gov (United States)

    Although a number of studies have examined intra-specific variability in growth and yield to projected atmospheric CO2 concentration, [CO2], none have compared the relative responses of cultivated and wild, weedy crop lines. We quantified the growth and seed yield response for three cultivated ("44...

  9. Interactive effects of growth-limiting N supply and elevated atmospheric CO2 concentration on growth and carbon balance of Plantago major

    NARCIS (Netherlands)

    den Hertog, J; Stulen, G; Posthumus, F.S; Poorter, H

    To assess the interactions between concentration of atmospheric CO2 and N supply, the response of Plantago major ssp. pleiosperma Pilger to a doubling of the ambient CO2 concentration of 350 mu l l(-1) was investigated in a range of exponential rates of N addition. The relative growth rate (RGR) as

  10. Simultaneous Measurements of CO2 Concentration and Temperature profiles using 1.6 μm DIAL in the Lower-Atmosphere

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. The barometric formula can derive atmospheric pressure of each altitude using atmospheric pressure of ground level at the lidar site. Comparison of atmospheric pressure prlofiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan are consisted within 0.2 % below 3 km altitude. So, we have developed a 1.6 μm CO2 DIAL system for simultaneous measurements of the CO2 concentration and temperature profiles in the lower-atmosphere. Laser beams of three wavelengths around a CO2 absorption spectrum is transmitted alternately to the atmosphere. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration and temperature, which measured by these DIAL techniques. We have acheived vertical CO2 concentration and temperature profile from 0.5 to 2.0 km altitude by this DIAL system. In the next step, we will use this high accuracy CO2 concentration profile and back-trajectory analysis for the behavior analysis of the CO2 mass. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  11. CARVE: L2 Atmospheric CO2, CO, and CH4 Concentrations, CARVE Tower, Alaska, 2011-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides atmospheric methane (CH4), carbon dioxide (CO2), and carbon monoxide (CO) dry air mole fractions and water vapor mole fractions (H2O) from...

  12. Emission of CO2 by the transport sector and the impact on the atmospheric concentration in Sao Paulo, Brazil.

    Science.gov (United States)

    Andrade, M. D. F.; Kitazato, C.; Perez-Martinez, P.; Nogueira, T.

    2014-12-01

    The Metropolitan Area of São Paulo (MASP) is impacted by the emission of 7 million vehicles, being 85% light-duty vehicles (LDV), 3% heavy-duty diesel vehicles (HDV)s, and 12% motorcycles. About 55% of LDVs burn a mixture of 78% gasoline and 22% ethanol (gasohol), 4% use hydrous ethanol (95% ethanol and 5% water), 38% are flex-fuel vehicles that are capable of burning both gasohol and hydrous ethanol and 3% use diesel (diesel + 5% bio-diesel). The owners of the flex-fuel vehicles decide to use ethanol or gasohol depending on the market price of the fuel. Many environmental programs were implemented to reduce the emissions by the LDV and HDV traffic; the contribution from the industrial sector has been decreasing as the industries have moved away from MASP, due to the high taxes applied to the productive sector. Due to the large contribution of the transport sector to CO2, its contribution is important in a regional scale. The total emission is estimated in 15327 million tons per year of CO2eq (60% by LDV, 38% HDV and 2% motorcycles). Measurements of CO2 performed with a Picarro monitor based on WS-CRDS (wavelength-scanned cavity ringdown spectroscopy) for the years 2012-2013 were performed. The sampling site was on the University of Sao Paulo campus (22o34´S, 46o44´W), situated in the west area of the city, surrounded by important traffic roads. The average data showed two peaks, one in the morning and the other in the afternoon, both associated with the traffic. Correlation analysis was performed between the concentrations and the number of vehicles, as a proxy for the temporal variation of the CO2 emission. The highest concentration was 430 ppm at 8:00am, associated to the morning peak hour of vehicles and the stable condition of the atmosphere. The average concentration was 406 ±12 ppm, considering all measured data. According to official inventories from the Environmental Agency (CETESB), the emission of CO2 has increased 39% from 1990 to 2008, associated

  13. 1.6 μm DIAL Measurement and Back Trajectory Analysis of CO2 Concentration Profiles in the Lower-Atmosphere

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In addition to the ground level CO2 network, vertical CO2 concentration profiles also play an important role for the estimation of the carbon budget and global warming in the inversion method. Especially, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, vertical CO2 concentration profiles with high spatial and temporal resolution in the lower atmosphere have been conducted by a differential absorption lidar (DIAL). We have observed several vertical profiles of CO2 concentrations for nighttime and daytime from 0.25 to 2.5 km altitude with range resolution of 300 m and integration time of 1 hour. In order to extract information on the origin of the CO2 masses, one day back trajectories were calculated by using a three dimensional (3-D) atmospheric transport model. In many cases, CO2 low concentration layers of over 1.5km altitude were flown by westerly winds from the forest. In another case, high concentration layers of CO2 were flown from the urban areas. As the spectra of absorption lines of any molecules are influenced basically by the temperature in the atmosphere, laser beams of three wavelengths around a CO2 absorption spectrum are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature profiles. Moreover, a few processing algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. For computation of trajectories and drawing their figures, the JRA-25 data provided by the cooperative research project for the JRA-25 long-term reanalysis of the Japan Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI) and the NIPR trajectory model (Tomikawa and Sato, 2005; http://firp-nitram.nipr.ac.jp) were used. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and

  14. [Effects of elevated atmospheric CO2 concentration and nitrogen addition on the growth of Calamagrostis angustifolia in Sanjiang Plain freshwater marsh].

    Science.gov (United States)

    Zhao, Guang-Ying; Liu, Jing-Shuang; Wang, Yang

    2011-06-01

    By using open top chamber, an experiment with two levels of atmospheric CO2 concentration (350 and 700 micromol x mol(-1)) and three levels of nitrogen supply (0, 5, and 15 g N x m(-2)) was conducted to investigate the effects of elevated atmospheric CO2 and nitrogen supply on the growth of Calamagrostis angustifolia in the freshwater marsh of Sanjiang Plain. Under elevated atmospheric CO2 concentration, the phenophase of C. angustifolia advanced. Jointing stage was advanced by 1-2 d, and maturity stage was advanced by 3 d. Elevated atmospheric CO2 promoted the tillering of C. angustifolia, with the increment of tiller number under 0, 5, and 15 g x m(-2) of nitrogen supply being 8.2% (P 0.05), respectively. Elevated atmospheric CO2 also promoted the aboveground biomass at jointing and heading stages, the increment being 12.4% and 20.9% (P CO2 concentration depended on nitrogen supply level. Under sufficient nitrogen supply, the promotion effect of elevated atmospheric CO2 concentration on the biomass of C. angustifolia was higher.

  15. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen

    Science.gov (United States)

    Mark E. Kubiske; Donald R. Zak; Kurt S. Pregitzer; Yu Takeuchi

    2002-01-01

    We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic...

  16. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    Science.gov (United States)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  17. Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene

    Directory of Open Access Journals (Sweden)

    G. Schurgers

    2006-01-01

    Full Text Available A complex earth system model (atmosphere and ocean general circulation models, ocean biogeochemistry and terrestrial biosphere was used to perform transient simulations of two interglacial sections (Eemian, 128–113 ky B.P., and Holocene, 9 ky B.P.–present. The changes in terrestrial carbon storage during these interglacials were studied with respect to changes in the earth's orbit. The effects of different climate factors on changes in carbon storage were studied in offline experiments in which the vegetation model was forced only with temperature, hydrological parameters, radiation, or CO2 concentration from the transient runs. The largest anomalies in terrestrial carbon storage were caused by temperature changes. However, the increase in storage due to forest expansion and increased photosynthesis in the high latitudes was nearly balanced by the decrease due to increased respiration. Large positive effects on carbon storage were caused by an enhanced monsoon circulation in the subtropics between 128 and 121 ky B.P. and between 9 and 6 ky B.P., and by increases in incoming radiation during summer for 45° to 70° N compared to a control simulation with present-day insolation. Compared to this control simulation, the net effect of these changes was a positive carbon storage anomaly in the terrestrial biosphere of about 200 Pg C for 125 ky B.P. and 7 ky B.P., and a negative anomaly around 150 Pg C for 116 ky B.P. Although the net increases for Eemian and Holocene were rather similar, the magnitudes of the processes causing these effects were different. The decrease in terrestrial carbon storage during the experiments was the main driver of an increase in atmospheric CO2 concentration during both the Eemian and the Holocene.

  18. Transcriptome response to elevated atmospheric CO2 concentration in the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae).

    Science.gov (United States)

    Wu, Wenjing; Li, Zhiqiang; Zhang, Shijun; Ke, Yunling; Hou, Yahui

    2016-01-01

    Carbon dioxide (CO2) is a pervasive chemical stimulus that plays a critical role in insect life, eliciting behavioral and physiological responses across different species. High CO2 concentration is a major feature of termite nests, which may be used as a cue for locating their nests. Termites also survive under an elevated CO2 concentration. However, the mechanism by which elevated CO2 concentration influences gene expression in termites is poorly understood. To gain a better understanding of the molecular basis involved in the adaptation to CO2 concentration, a transcriptome of Coptotermes formosanus Shiraki was constructed to assemble the reference genes, followed by comparative transcriptomic analyses across different CO2 concentration (0.04%, 0.4%, 4% and 40%) treatments. (1) Based on a high throughput sequencing platform, we obtained approximately 20 GB of clean data and revealed 189,421 unigenes, with a mean length and an N50 length of 629 bp and 974 bp, respectively. (2) The transcriptomic response of C. formosanus to elevated CO2 levels presented discontinuous changes. Comparative analysis of the transcriptomes revealed 2,936 genes regulated among 0.04%, 0.4%, 4% and 40% CO2 concentration treatments, 909 genes derived from termites and 2,027 from gut symbionts. Genes derived from termites appears selectively activated under 4% CO2 level. In 40% CO2 level, most of the down-regulated genes were derived from symbionts. (3) Through similarity searches to data from other species, a number of protein sequences putatively involved in chemosensory reception were identified and characterized in C. formosanus, including odorant receptors, gustatory receptors, ionotropic receptors, odorant binding proteins, and chemosensory proteins. We found that most genes associated with carbohydrate metabolism, energy metabolism, and genetic information processing were regulated under different CO2 concentrations. Results suggested that termites adapt to ∼4% CO2 level and their

  19. The effect of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw.

    Science.gov (United States)

    He, Xiangyu; Wu, Yanping; Cai, Min; Mu, Chunlong; Luo, Weihong; Cheng, Yanfen; Zhu, Weiyun

    2015-01-01

    This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw. The field experiment was carried out from November 2012 to June 2013 at Changshu (31°32'93″N, 120°41'88″E) agro-ecological experimental station. A total of three treatments were set. The concentration of CO2 was increased to 500 μmol/mol in the first treatment (CO2 group). The temperature was increased by 2 °C in the second treatment (TEM group) and the concentration of CO2 and temperature were both increased in the third treatment (CO2 + TEM group). The mean temperature and concentration of CO2 in control group were 10.5 °C and 413 μmol/mol. At harvesting, the wheat straws were collected and analyzed for chemical composition and in vitro digestibility. Results showed that dry matter was significantly increased in all three treatments. Ether extracts and neutral detergent fiber were significantly increased in TEM and CO2 + TEM groups. Crude protein was significantly decreased in CO2 + TEM group. In vitro digestibility analysis of wheat straw revealed that gas production was significantly decreased in CO2 and CO2 + TEM groups. Methane production was significantly decreased in TEM and CO2 + TEM groups. Ammonia nitrogen and microbial crude protein were significantly decreased in all three treatments. Total volatile fatty acids were significantly decreased in CO2 and CO2 + TEM groups. In conclusion, the chemical composition of the wheat straw was affected by temperature and CO2 and the in vitro digestibility of wheat straw was reduced, especially in the combined treatment of temperature and CO2.

  20. [Effect of atmospheric CO2 concentration and nitrogen application level on absorption and transportation of nutrient elements in oilseed rape].

    Science.gov (United States)

    Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan

    2015-07-01

    Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application

  1. Competition between cheatgrass and bluebunch wheatgrass is altered by temperature, resource availability, and atmospheric CO2 concentration.

    Science.gov (United States)

    Larson, Christian D; Lehnhoff, Erik A; Noffsinger, Chance; Rew, Lisa J

    2017-12-22

    Global change drivers (elevated atmospheric CO2, rising surface temperatures, and changes in resource availability) have significant consequences for global plant communities. In the northern sagebrush steppe of North America, the invasive annual grass Bromus tectorum (cheatgrass) is expected to benefit from projected warmer and drier conditions, as well as increased CO2 and nutrient availability. In growth chambers, we addressed this expectation using two replacement series experiments designed to test competition between B. tectorum and the native perennial bunchgrass Pseudoroegneria spicata. In the first experiment, we tested the effects of elevated temperature, decreased water and increased nutrient availability, on competition between the two species. In the second, we tested the effects of elevated atmospheric CO2 and decreased water availability on the competitive dynamic. In both experiments, under all conditions, P. spicata suppressed B. tectorum, though, in experiment one, warmer and drier conditions and elevated nutrient availability increased B. tectorum's competitiveness. In experiment two, when grown in monoculture, both species responded positively to elevated CO2. However, when grown in competition, elevated CO2 increased P. spicata's suppressive effect, and the combination of dry soil conditions and elevated CO2 enhanced this effect. Our findings demonstrate that B. tectorum competitiveness with P. spicata responds differently to global change drivers; thus, future conditions are unlikely to facilitate B. tectorum invasion into established P. spicata communities of the northern sagebrush steppe. However, disturbance (e.g., fire) to these communities, and the associated increase in soil nutrients, elevates the risk of B. tectorum invasion.

  2. Development of Compact 1.6 μm DIAL System for Measurement of Lower-Atmospheric CO2 Concentration Distribution

    Science.gov (United States)

    Nagasawa, C.; Shibata, Y.; Abo, M.

    2014-12-01

    For the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, the CO2 concentration measurement techniques with high spatial and temporal resolution are required in the lower atmosphere. We had developed the differential absorption lidar (DIAL) system to achieve high accurate measurements of vertical CO2 profiles and the vertical distribution of CO2 concentration from 2 km to 7 km altitude has been observed1. In order to measure the CO2 concentration distribution in the lower altitude, the dynamic range of the photon counter and the output power of transmitter of the CO2 DIAL have improved. We develope the compact 1.6 μm CO2 DIAL with the high-speed photon counter (10 GHz) and the small power transmitter to perform high-precision measurements of CO2 concentration profiles in the lower atmosphere. This compact mobile DIAL system has a 2 mJ OPG transmitter and a 25 cm coaxial telescope for measurements of limitted range. As the transmitter beam of this DIAL system is able to scan from -4 degree to 52 degree with elevation angle, the vertical distribution of lower CO2 concentration as well as the horizontal distribution from short range can be measured with high precision. The compact DIAL was conducted test observations and achieved successfully measurements of CO2 concentration profiles for the range from 0.25 to 3 km with integration time of 30 minutes and range resolution of 300 m. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. REFERENCES Y. Shibata, C. Nagasawa, M. Abo, Proc. SPIE 8894, 889406 (2013); doi: 10.1117/12.2029359

  3. Finlay-Wilkinson's regression coefficient as a pre-screening criterion for yield responsiveness to elevated atmospheric CO2 concentration in crops.

    Science.gov (United States)

    Kumagai, Etsushi; Homma, Koki; Kuroda, Eiki; Shimono, Hiroyuki

    2016-11-01

    The rising atmospheric CO2 concentration ([CO2 ]) can increase crop productivity, but there are likely to be intraspecific variations in the response. To meet future world food demand, screening for genotypes with high [CO2 ] responsiveness will be a useful option, but there is no criterion for high [CO2 ] responsiveness. We hypothesized that the Finlay-Wilkinson regression coefficient (RC) (for the relationship between a genotype's yield versus the mean yield of all genotypes in a specific environment) could serve as a pre-screening criterion for identifying genotypes that respond strongly to elevated [CO2 ]. We collected datasets on the yield of 6 rice and 10 soybean genotypes along environmental gradients and compared their responsiveness to elevated [CO2 ] based on the regression coefficients (i.e. the increases of yield per 100 µmol mol(-1) [CO2 ]) identified in previous reports. We found significant positive correlations between the RCs and the responsiveness of yield to elevated [CO2 ] in both rice and soybean. This result raises the possibility that the coefficient of the Finlay-Wilkinson relationship could be used as a pre-screening criterion for [CO2 ] responsiveness. © 2016 Scandinavian Plant Physiology Society.

  4. Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombrotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum

    NARCIS (Netherlands)

    Van der Heijden, E; Jauhiainen, J; Silvola, J; Vasander, H; Kuiper, PJC

    2000-01-01

    The ombrotrophic Sphagnum balticum (Russ.) C. Jens. and the oligo-mesotrophic Sphagnum papillosum Lindb. were grown at ambient (360 mu l l(-1)) and at elevated (720 mu l l(-1)) atmospheric CO2 concentrations and at different nitrogen deposition rates, varying between 0 and 30kg N ha(-1) yr(-1), The

  5. Response of the rhizosphere prokaryotic community of barley (Hordeum vulgare L.) to elevated atmospheric CO2 concentration in open-top chambers.

    Science.gov (United States)

    Szoboszlay, Márton; Näther, Astrid; Mitterbauer, Esther; Bender, Jürgen; Weigel, Hans-Joachim; Tebbe, Christoph C

    2017-08-01

    The effect of elevated atmospheric CO2 concentration [CO2 ] on the diversity and composition of the prokaryotic community inhabiting the rhizosphere of winter barley (Hordeum vulgare L.) was investigated in a field experiment, using open-top chambers. Rhizosphere samples were collected at anthesis (flowering stage) from six chambers with ambient [CO2 ] (approximately 400 ppm) and six chambers with elevated [CO2 ] (700 ppm). The V4 region of the 16S rRNA gene was PCR-amplified from the extracted DNA and sequenced on an Illumina MiSeq instrument. Above-ground plant biomass was not affected by elevated [CO2 ] at anthesis, but plants exposed to elevated [CO2 ] had significantly higher grain yield. The composition of the rhizosphere prokaryotic communities was very similar under ambient and elevated [CO2 ]. The dominant taxa were Bacteroidetes, Actinobacteria, Alpha-, Gamma-, and Betaproteobacteria. Elevated [CO2 ] resulted in lower prokaryotic diversity in the rhizosphere, but did not cause a significant difference in community structure. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite.

    Science.gov (United States)

    Gehler, Alexander; Gingerich, Philip D; Pack, Andreas

    2016-07-12

    The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene-Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM.

  7. Weak hydrothermal carbonation of the Ongeluk volcanics: evidence for low CO2 concentrations in seawater and atmosphere during the Paleoproterozoic global glaciation

    Science.gov (United States)

    Shibuya, Takazo; Komiya, Tsuyoshi; Takai, Ken; Maruyama, Shigenori; Russell, Michael J.

    2017-12-01

    It was previously revealed that the total CO2 concentration in seawater decreased during the Late Archean. In this paper, to assess the secular change of total CO2 concentration in seawater, we focused on the Paleoproterozoic era when the Earth experienced its first recorded global glaciation. The 2.4 Ga Ongeluk Formation outcrops in the Kaapvaal Craton, South Africa. The formation consists mainly of submarine volcanic rocks that have erupted during the global glaciation. The undeformed lavas are mostly carbonate-free but contain rare disseminated calcites. The carbon isotope ratio of the disseminated calcite (δ13Ccc vs. VPDB) ranges from - 31.9 to - 13.2 ‰. The relatively low δ13Ccc values clearly indicate that the carbonation was partially contributed by 13C-depleted CO2 derived from decomposition of organic matter beneath the seafloor. The absence of δ13Ccc higher than - 13.2‰ is consistent with the exceptionally 13C-depleted CO2 in the Ongeluk seawater during glaciation. The results suggest that carbonation occurred during subseafloor hydrothermal circulation just after the eruption of the lavas. Previously, it was reported that the carbonate content in the uppermost subseafloor crust decreased from 3.2 to 2.6 Ga, indicating a decrease in total CO2 concentration in seawater during that time. However, the average CO2 (as carbonate) content in the Ongeluk lavas (< 0.001 wt%) is much lower than those of 2.6 Ga representatives and even of modern equivalents. This finding suggests that the total CO2 concentration in seawater further decreased during the period between 2.6 and 2.4 Ga. Thus, the very low content of carbonate in the Ongeluk lavas is probable evidence for the extremely low CO2 concentration in seawater during the global glaciation. Considering that the carbonate content of the subseafloor crusts also shows a good correlation with independently estimated atmospheric pCO2 levels through the Earth history, it seem highly likely that the low

  8. The response of ecosystem water-use efficiency to rising atmospheric CO2concentrations: sensitivity and large-scale biogeochemical implications.

    Science.gov (United States)

    Knauer, Jürgen; Zaehle, Sönke; Reichstein, Markus; Medlyn, Belinda E; Forkel, Matthias; Hagemann, Stefan; Werner, Christiane

    2017-03-01

    Ecosystem water-use efficiency (WUE) is an important metric linking the global land carbon and water cycles. Eddy covariance-based estimates of WUE in temperate/boreal forests have recently been found to show a strong and unexpected increase over the 1992-2010 period, which has been attributed to the effects of rising atmospheric CO 2 concentrations on plant physiology. To test this hypothesis, we forced the observed trend in the process-based land surface model JSBACH by increasing the sensitivity of stomatal conductance (g s ) to atmospheric CO 2 concentration. We compared the simulated continental discharge, evapotranspiration (ET), and the seasonal CO 2 exchange with observations across the extratropical northern hemisphere. The increased simulated WUE led to substantial changes in surface hydrology at the continental scale, including a significant decrease in ET and a significant increase in continental runoff, both of which are inconsistent with large-scale observations. The simulated seasonal amplitude of atmospheric CO 2 decreased over time, in contrast to the observed upward trend across ground-based measurement sites. Our results provide strong indications that the recent, large-scale WUE trend is considerably smaller than that estimated for these forest ecosystems. They emphasize the decreasing CO 2 sensitivity of WUE with increasing scale, which affects the physiological interpretation of changes in ecosystem WUE. © 2016 Max Planck Institute for Biogeochemistry New Phytologist © 2016 New Phytologist Trust.

  9. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  10. Searching for a Relationship Between Forest Water Use and Increasing Atmospheric CO2 Concentration with Long-Term Hydrologic Data from the Hubbard Brook Experimental Forest

    Energy Technology Data Exchange (ETDEWEB)

    Amthor, J.S.

    1998-11-01

    Increases in atmospheric C02 concentration from mid-1956 through mid-1997 were compared with hydrologic records from five forested, gaged watersheds in the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, U.S.A. The purpose of the comparison was to assess whether a relationship between increasing atmospheric CO2 concentration and whole-ecosystem evapotranspiration (ET) could be determined. The HBEF is particularly well suited to this type of study because of the length of the hydrologic record and the physical properties of the watersheds. This analysis is based on HBEF water years (which begin 1 June and end the following 31 May) rather than calendar years. Hydrologic records from individual watersheds used in this analysis ranged from 28 to 41 water years. During the full 41-water-year period, it is estimated that water-year mean atmospheric CO2 concentration increased more than 15% (from about 314 to 363 ppm). In one south-facing watershed (i.e., HBEF watershed 3), there was a statistically significant negative relationship between atmospheric C02 concentration and ET. This translated into a nearly 77 rnndyear reduction in ET as a result of a 50 ppm increase in atmospheric C02 concentration, a result of practical significance. Evapotranspiration from the other watersheds was also negatively related to atmospheric CO2 concentration, but with smaller (and statistically insignificant) magnitudes. Evapotranspiration from the three south-facing (but not the two north-facing) watersheds included in the analysis was "abnormally" low during the most recent 2 years (i.e., water years beginning in 1995 and 1996), and this affected the trends in ET. This recent and abrupt, reduction in ET deserves further analysis, most importantly by an extension of the hydrologic record through continued long-term monitoring in the HBEF (which is ongoing). If ET remains relatively low during the coming years in south-facing watersheds, studies of the physical and/or biological

  11. Influence of atmospheric [CO2] on growth, carbon allocation and cost of plant tissues on leaf nitrogen concentration maintenance in nodulated Medicago sativa

    Science.gov (United States)

    Pereyra, Gabriela; Hartmann, Henrik; Ziegler, Waldemar; Michalzik, Beate; Gonzalez-Meler, Miquel; Trumbore, Susan

    2015-04-01

    Plant carbon (C) allocation and plant metabolic processes (i.e. photosynthesis and respiration) can be affected by changes in C availability, for example from changing atmospheric [CO2]. In nodulated plants, C availability may also influence nitrogen (N) fixation by bacteriods. But C allocation and N fixation are often studied independently and hence do not allow elucidating interactive effects. We investigated how different atmospheric [CO2] (Pleistocene: 170 ppm, ambient: 400 ppm and projected future: 700 ppm) influence plant growth, allocation to nodules, and the ratio of photosynthesis-to-respiration (R:A) as an indicator of C cost in Medicago sativa inoculated with Ensifer meliloti. M. sativa grew c. 38% more nodules at 400 ppm and 700 ppm than at 170 ppm. However, ratios of above- and belowground plant biomass to nodule biomass were constant over time and independent of atmospheric [CO2]. Total non-structural carbohydrate concentrations were not significantly different between plants grown at 400 and 700 ppm, but were four to five-fold higher than in 170 ppm plants. Leaf level N concentration was similar across treatments, but N-based photosynthetic rates were 82% and 93% higher in leaves of plants grown at 400 and 700 ppm, respectively, than plants grown at 170 ppm. In addition, leaf R:A was greater (48% or 55%) in plants grown at 170 ppm than plants grown at 400 and 700 ppm. Similarly, the greatest proportion of assimilated CO2 released by root respiration occurred in rhizobial plants growing at 170 ppm. Our results suggest that C limitation in nodulated Medicago sativa plants did not influence C allocation to nodule biomass but caused a proportionally greater allocation of C to belowground respiration, most likely to bacteriods. This suggests that N tissue concentration was maintained at low [CO2] by revving up bacteriod metabolism and at the expense of non-structural carbohydrate reserves.

  12. Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development.

    Science.gov (United States)

    Vanuytrecht, Eline; Thorburn, Peter J

    2017-05-01

    Elevated atmospheric CO2 concentrations ([CO2 ]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom-up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO2 ] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO2 ] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO2 responses within models should be prioritized. © 2017 John Wiley & Sons Ltd.

  13. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Lewis H Ziska

    Full Text Available Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2 from an early 20(th century concentration (300 µmol mol(-1 to current (400 µmol mol(-1 and projected, mid-21(st century (600 µmol mol(-1 values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.

  14. Photocatalytic Reduction of Low Concentration of CO2.

    Science.gov (United States)

    Nakajima, Takuya; Tamaki, Yusuke; Ueno, Kazuki; Kato, Eishiro; Nishikawa, Tetsuya; Ohkubo, Kei; Yamazaki, Yasuomi; Morimoto, Tatsuki; Ishitani, Osamu

    2016-10-05

    A novel molecular photocatalytic system with not only high reduction ability of CO2 but also high capture ability of CO2 has been developed using a Ru(II)-Re(I) dinuclear complex as a photocatalyst. By using this photocatalytic system, CO2 of 10% concentration could be selectively converted to CO with almost same photocatalysis to that under a pure CO2 atmosphere (TONCO > 1000, ΦCO > 0.4). Even 0.5% concentration of CO2 was reduced with 60% initial efficiency of CO formation by using the same system compared to that using pure CO2 (TONCO > 200). The Re(I) catalyst unit in the photocatalyst can efficiently capture CO2, which proceeds CO2 insertion to the Re-O bond, and then reduce the captured CO2 by using an electron supplied from the photochemically reduced Ru photosensitizer unit.

  15. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  16. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  17. [Influence of elevated atmospheric CO2 concentration on photosynthesis and leaf nitrogen partition in process of photosynthetic carbon cycle in Musa paradisiaca].

    Science.gov (United States)

    Sun, G; Zhao, P; Zeng, X; Peng, S

    2001-06-01

    The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.

  18. A role for atmospheric CO2 in preindustrial climate forcing

    NARCIS (Netherlands)

    Hoof, T.B. van; Wagner-Cremer, F.; Kürschner, W.M.; Visscher, H.

    2008-01-01

    Complementary to measurements in Antarctic ice cores, stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of preindustrial atmospheric CO2 concentration. CO2 trends based on leaf remains of Quercus robur (English oak) from the

  19. Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L.

    Science.gov (United States)

    Geissler, Nicole; Hussin, Sayed; Koyro, Hans-Werner

    2009-01-01

    This study investigated the interaction of NaCl-salinity and elevated atmospheric CO2 concentration on gas exchange, leaf pigment composition, and leaf ultrastructure of the potential cash crop halophyte Aster tripolium. The plants were irrigated with five different salinity levels (0, 25, 50, 75, 100% seawater salinity) under ambient and elevated (520 ppm) CO2. Under saline conditions (ambient CO2) stomatal and mesophyll resistance increased, leading to a significant decrease in photosynthesis and water use efficiency (WUE) and to an increase in oxidative stress. The latter was indicated by dilations of the thylakoid membranes and an increase in superoxide dismutase (SOD) activity. Oxidative stress could be counteracted by thicker epidermal cell walls of the leaves, a thicker cuticle, a reduced chlorophyll content, an increase in the chlorophyll a/b ratio and a transient decline of the photosynthetic efficiency. Elevated CO2 led to a significant increase in photosynthesis and WUE. The improved water and energy supply was used to increase the investment in mechanisms reducing water loss and oxidative stress (thicker cell walls and cuticles, a higher chlorophyll and carotenoid content, higher SOD activity), resulting in more intact thylakoids. As these mechanisms can improve survival under salinity, A. tripolium seems to be a promising cash crop halophyte which can help in desalinizing and reclaiming degraded land. PMID:19036838

  20. Decadal changes in atmospheric CO 2 concentration and δ 13C over two seas and two oceans: Italy to New Zealand

    Science.gov (United States)

    Longinelli, Antonio; Lenaz, Renzo; Ori, Carlo; Langone, Leonardo; Selmo, Enricomaria; Giglio, Federico

    2010-11-01

    Continuous measurements of the CO 2 concentration were repeatedly carried out from 1996 to 2007 between Italy and New Zealand by means of a Siemens Ultramat 5E analyzer assembled for shipboard use. Along the ship routes discrete air samples were collected from 1998 to 2005 using four-litre Pyrex flasks. The δ 13C of the CO 2 from the flask air samples was measured according to well-established techniques. The decadal changes of these two variables can now be evaluated from these results. Large variations of the CO 2 concentration were normally recorded in the Mediterranean and the Red Sea. Completely different trends of the CO 2 concentration were observed in the Red Sea (30° N to about 13° N) between 2007 (a marked southward decrease) and 2005 and 2003 when a marked southward increase is apparent, at least between 23° and 13° N. A further difference among different expeditions is related to the decrease or increase of the CO 2 concentration in the Gulf of Aden. The backward trajectories of the air masses help to explain, at least partially, these differences. In the Indian Ocean and Southern Ocean a decrease of a few ppmv of the CO 2 concentration takes place from Cape Guardafui (Northern Somaliland) to southern New Zealand, particularly during 2005 and 2007. The yearly rate of increase of the CO 2 concentration between 1996 and 2007 for the Indian Ocean is of about 1.9 ppmv yr -1, in excellent agreement with the NOAA/CMDL measurements carried out during the same period at Mahé Isld. (Indian Ocean) and Cape Grim (Tasmania). The δ 13C results obtained from the CO 2 of flask samples collected in the Mediterranean show the effect of anthropogenic emissions, though this is considerably smaller than expected. This inconsistency may be related to the large terrestrial biospheric sink of CO 2 in the Northern Hemisphere. The results obtained from the Red Sea are quite variable through time and space, particularly in its southern section; their interpretation is not

  1. Electrochemical CO2 concentration for the Space Station Program

    Science.gov (United States)

    Lance, N.; Schwartz, M.; Boyda, R. B.

    1985-01-01

    Under the sponsorship of NASA, Electrochemical Carbon Dioxide (CO2) Concentration EDC technology has been developed that removes CO2 continuously or cyclically from low CO2 partial pressure (400 Pa) atmospheres with the performance and operating characteristics required for Space Station applications. The most recent advancement of this technology is the development of an advanced preprototype subsystem, the CS-3A, to remove the metabolic CO2 produced by three persons from the projected Space Station atmosphere. This paper provides an overview of EDC technology, shows how it is ideally suited for Space Station application, and presents technology enhancements that will be demonstrated by the CS-3A subsystem development program.

  2. Accelerating carbon uptake in the Northern Hemisphere: evidence from the interhemispheric difference of atmospheric CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Yuxuan Wang

    2013-11-01

    Full Text Available Previous studies have indicated that the regression slope between the interhemispheric difference (IHD of CO2 mixing ratios and fossil fuel (FF CO2 emissions was rather constant at about 0.5 ppm/Pg C yr−1 during 1957–2003. In this study, we found that the average regression slopes between the IHD of CO2 mixing ratios and IHD of FF emissions for 16 sites in the Northern Hemisphere (NH decreased from 0.69±0.12 ppm/Pg C yr−1 during 1982–1991 to 0.37±0.06 ppm/Pg C yr−1 during 1996–2008 (IHD of CO2 defined as the differences between each site and the South Pole, SPO. The largest difference was found in summer and autumn. The change in the spatial distribution of FF emissions driven by fast increasing Asian emissions may explain the slope change at three sites located north of 60°N but not at the other sites. A 30-yr SF6 simulation with time-varying meteorology and constant emissions suggests no significant difference in the decadal average and seasonal variation of interhemispheric exchange time (τ ex between the two periods. Based on the hemispheric net carbon fluxes derived from a two-box model, we attributed 75% of the regression slope decrease at NH sites south of 60°N to the acceleration of net carbon sink increase in the NH and 25% to the weakening of net carbon sink increase in the SH during 1996–2008. The growth rate of net carbon sink in the NH has increased by a factor of about three from 0.028±0.023 [mean±2σ] Pg C yr−2 during 1982–1991 to 0.093±0.033 Pg C yr−2 during 1996–2008, exceeding the percentage increase in the growth rate of IHD of FF emissions between the two periods (45%. The growth rate of net carbon sink in the SH has reduced 62% from 0.058±0.018 Pg C yr−2 during 1982–1991 to 0.022±0.012 Pg C yr−2 during 1996–2008.

  3. Zinc depolarized electrochemical CO2 concentration

    Science.gov (United States)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.

    1975-01-01

    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  4. Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO 2 concentrations

    Science.gov (United States)

    Herzschuh, Ulrike; Ni, Jian; Birks, H. John B.; Böhner, Jürgen

    2011-07-01

    Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO 2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0°N; 97.2°E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97°N; 90.3°E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by ˜150-180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously 'natural' Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO 2 concentration changes, at least on glacial-interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO 2 concentrations of 375 (present-day), 260 (early Holocene), and

  5. Upconversion-based lidar measurements of atmospheric CO2

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Fix, Andreas; Wirth, Martin

    2016-01-01

    For the first time an upconversion based detection scheme is demonstrated for lidar measurements of atmospheric CO2-concentrations, with a hard target at a range of 3 km and atmospheric backscatter from a range of similar to 450 m. The pulsed signals at 1572 nm are upconverted to 635 nm...

  6. Feedbacks and the coevolution of plants and atmospheric CO2.

    Science.gov (United States)

    Beerling, David J; Berner, Robert A

    2005-02-01

    The coupled evolution of land plants, CO2, and climate over the last half billion years has maintained atmospheric CO2 concentrations within finite limits, indicating the involvement of a complex network of geophysiological feedbacks. But insight into this important regulatory network is extremely limited. Here we present a systems analysis of the physiological and geochemical processes involved, identifying new positive and negative feedbacks between plants and CO2 on geological time scales. Positive feedbacks accelerated falling CO2 concentrations during the evolution and diversification of terrestrial ecosystems in the Paleozoic and enhanced rising CO2 concentrations across the Triassic-Jurassic boundary during flood basalt eruptions. The existence of positive feedbacks reveals the unexpected destabilizing influence of the biota in climate regulation that led to environmental modifications accelerating rates of terrestrial plant and animal evolution in the Paleozoic.

  7. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  8. [Data processing and QA/QC of atmosphere CO2 and CH4 concentrations by a method of GC-FID in-situ measurement at Waliguan station].

    Science.gov (United States)

    Zhang, Fang; Zhou, Ling-Xi; Liu, Li-Xin; Fang, Shuang-Xi; Yao, Bo; Xu, Lin; Zhang, Xiao-Chun; Masarie, Kenneth A; Conway, Thomas J; Worthy, Douglas E J; Ernst, Michele

    2010-10-01

    To strengthen scientific management and sharing of greenhouse gas data obtained from atmospheric background stations in China, it is important to ensure the standardization of observations and establish the data treatment and quality control procedure so as to maintain consistency in atmospheric carbon dioxide (CO2) and methane (CH4) measurements from different background stations. An automated gas chromatographic system (Hewlett Packard 5890GC employing flame ionization detection) for in situ measurements of atmospheric CO2 and CH4 has been developed since 1994 at the China Global Atmosphere Watch Baseline Observatory at Mt. Waliguan, in Qinhai. In this study, processing and quality control flow of CO2 and CH4 data acquired by HP ChemStation are discussed in detail, including raw data acquisition, data merge, time series inspection, operator flag, principal investigator flag, and the comparison of the GC measurement with the flask method. Atmosphere CO2 and CH4 mixing ratios were separated as background and non-background data using a robust local regression method, approximately 72% and 44% observed values had been filtered as background data for CO2 and CH4, respectively. Comparison of the CO1 and CH, in situ data to the flask sampling data were in good agreement, the relative deviations are within +/- 0.5% for CO2 and for CH4. The data has been assimilated into global database (Globalview-CO2, Globalview-CH4), submitted to the World Data Centre for Greenhouse Gases (WDCGG), and applied to World Meteorological Organization (WMO) Greenhouse Gas Bulletin and assessment reports of the United Nations Intergovernmental Panel on Climate Change (IPCC).

  9. 1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations

    Directory of Open Access Journals (Sweden)

    Abdoul Khadre Traore

    2014-09-01

    Full Text Available Light and water use by vegetation at the ecosystem level, are key components for understanding the carbon and water cycles particularly in regions with high climate variability and dry climates such as Africa. The objective of this study is to examine recent trends over the last 30 years in Light Use Efficiency (LUE and inherent Water Use Efficiency (iWUE* for the major biomes of Africa, including their sensitivities to climate and CO2. LUE and iWUE* trends are analyzed using a combination of NOAA-AVHRR NDVI3g and fAPAR3g, and a data-driven model of monthly evapotranspiration and Gross Primary Productivity (based on flux tower measurements and remote sensing fAPAR, yet with no flux tower data in Africa and the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms process-based land surface model driven by variable CO2 and two different gridded climate fields. The iWUE* data product increases by 10%–20% per decade during the 1982–2010 period over the northern savannas (due to positive trend of vegetation productivity and the central African forest (due to positive trend of vapor pressure deficit. In contrast to the iWUE*, the LUE trends are not statistically significant. The process-based model simulations only show a positive linear trend in iWUE* and LUE over the central African forest. Additionally, factorial model simulations were conducted to attribute trends in iWUE and LUE to climate change and rising CO2 concentrations. We found that the increase of atmospheric CO2 by 52.8 ppm during the period of study explains 30%–50% of the increase in iWUE* and >90% of the LUE trend over the central African forest. The modeled iWUE* trend exhibits a high sensitivity to the climate forcing and environmental conditions, whereas the LUE trend has a smaller sensitivity to the selected climate forcing.

  10. Integration of the electrochemical depolorized CO2 concentrator with the Bosch CO2 reduction subsystem

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.

    1976-01-01

    Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).

  11. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  12. [CO2-Concentrating Mechanism and Its Traits in Haloalkaliphilic Cyanobacteria].

    Science.gov (United States)

    Kupriyanova, E V; Samylina, O S

    2015-01-01

    Cyanobacteria are a group of oxygenic phototrophs existing for at least 3.5 Ga. Photosynthetic CO2 assimilation by cyanobacteria occurs via the Calvin cycle, with RuBisCO, its key enzyme, having very low affinity to CO2. This is due to the fact that atmospheric CO2 concentration in Archaean, when the photosynthetic apparatus evolved, was several orders higher than now. Later, in the epoch of Precambrian microbial communities, CO2 content in the atmosphere decreased drastically. Thus, present-day phototrophs, including cyanobacteria, require adaptive mechanisms for efficient photosynthesis. In cyanobacterial cells, this function is performed by the CO2-concentrating mechanism (CCM), which creates elevated CO2 concentrations in the vicinity of RuBisCO active centers, thus significantly increasing the rate of CO2 fixation in the Calvin cycle. CCM has been previously studied only for freshwater and marine cyanobacteria. We were the first to investigate CCM in haloalkaliphilic cyanobacteria from soda lakes. Extremophilic haloalkaliphilic cyanobacteria were shown to possess a well-developed CCM with the structure and functional principles similar to those of freshwater and marine strains. Analysis of available data suggests that regulation of the amount of inorganic carbon transported into the cell is probably the general CCM function under these conditions.

  13. The possible evolution and future of CO2-concentrating mechanisms.

    Science.gov (United States)

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?

    Science.gov (United States)

    This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration ([CO218 ]) on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thünen Institute in Braunschweig, Germany (Manderscheid et al. 2014). D...

  15. Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system.

    Science.gov (United States)

    Yang, Bo; Chen, Zhaozhi; Zhang, Man; Zhang, Heng; Zhang, Xuhui; Pan, Genxing; Zou, Jianwen; Xiong, Zhengqin

    2015-06-01

    The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE+T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE+T and T treatments, respectively, at the 7 cm depth during the rice season (pCO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem (p<0.05). Copyright © 2015. Published by Elsevier B.V.

  16. The Abundance of Atmospheric CO2 in Ocean Exoplanets: a Novel CO2 Deposition Mechanism

    Science.gov (United States)

    Levi, A.; Sasselov, D.; Podolak, M.

    2017-03-01

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO2, the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that, in a steady state, the abundance of CO2 in the atmosphere has two possible states. When wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO2 into the atmosphere to increase the greenhouse effect.

  17. Interactions between temperature and intercellular CO2 concentration in controlling leaf isoprene emission rates

    National Research Council Canada - National Science Library

    Monson, Russell K; Neice, Amberly A; Trahan, Nicole A; Shiach, Ian; McCorkel, Joel T; Moore, David J.P

    2016-01-01

    .... Evidence exists from a limited set of past observations that isoprene emission rate (I s ) decreases as a function of increasing atmospheric CO 2 concentration, and that increased temperature suppresses the CO 2 effect...

  18. Use of high-scale traffic modeling to estimate road vehicle emissions of CO2 and impact on the atmospheric concentration in São Paulo, Brazil.

    Science.gov (United States)

    Miranda, R. M.; Perez-Martinez, P.; Andrade, M. D. F.

    2015-12-01

    Adequate estimations of motor vehicle CO2 emission inventories at high spatial and temporal urban scales are needed to establish transport policy measures aim to reduce climate change impacts from global cities. The Metropolitan Region of São Paulo (MRSP) is impacted by the emission of 7 million vehicles (97% light-duty gasoline vehicles LDVs and 3% heavy-duty diesel vehicles HDVs) and several environmental programs were implemented to reduce the emissions. Inventories match site measurements and remote sensing and help to assess the real impact of road vehicle emissions on city's air quality. In this paper we presented a high-resolution vehicle-based inventory of motor CO2 emissions mapped at a scale of 100 m and 1 hour. We used origin and destination (O/D) transport area zone trips from the mobility survey of the São Paulo Transport Metropolitan Company (Metro), a road network of the region and traffic datasets from the São Paulo Transport Engineering Company (CET). The inventory was done individually for LDVs and HDVs for the years 2008 and 2013 and was complemented with air quality datasets from the State Environmental Company (CETESB), together with census data from the Brazilian Institute of Geography and Statistics (IBGE). Our inventory showed partial disagreement with the São Paulo State's GHG inventory, caused by the different approach used - bottom vs. top down - and characteristic spatial and temporal biases of the population inputs used (different emission factors). Higher concentrations became apparent near the road-network at the spatial scale used. The total emissions were estimated in 20,781 million tons per year of CO2eq (83.7% by LDVs and 16.3% HDVs). Temporal profiles - diurnal, weekly and monthly - in vehicle emission distributions were calculated using CET's traffic counts and surrogates of congestion. These profiles were compared with average road-site measurements of CO2 for the year 2013. Measurements showed two peaks associated to the

  19. Agroecosystem productivity in a warmer and CO2 enriched atmosphere

    Science.gov (United States)

    Bernacchi, Carl; Köhler, Iris; Ort, Donald; Long, Steven; Clemente, Thomas

    2017-04-01

    A number of in-field manipulative experiments have been conducted that address the response of key ecosystem services of major agronomic species to rising CO2. Global warming, however, is inextricably linked to rising greenhouse gases in general, of which CO2 is the most dominant. Therefore, agroecosystem functioning in future conditions requires an understanding of plant responses to both rising CO2 and increased temperatures. Few in-field manipulative experiments have been conducted that supplement both heating and CO2 above background concentrations. Here, the results of six years of experimentation using a coupled Free Air CO2 Enrichment (FACE) technology with variable output infrared heating arrays are reported. The manipulative experiment increased temperatures (+ 3.5˚ C) and CO2 (+ 200 μmol mol-1) above background levels for on two major agronomic crop species grown throughout the world, Zea mays (maize) and Glycine max (soybean). The first phase of this research addresses the response of plant physiological parameters to growth in elevated CO2 and warmer temperatures for maize and soybean grown in an open-air manipulative experiment. The results show that any increase in ecosystem productivity associated with rising CO2 is either similar or is offset by growth at higher temperatures, inconsistent with the perceived benefits of higher CO2 plus warmer temperatures on agroecosystem productivity. The second phase of this research addresses the opportunity to genetically modify soybean to allow for improved productivity under high CO2 and warmer temperatures by increasing a key photosynthetic carbon reduction cycle enzyme, SPBase. The results from this research demonstrates that manipulation of the photosynthetic pathway can lead to higher productivity in high CO2 and temperature relative to the wild-type control soybean. Overall, this research advances the understanding of the physiological responses of two major crops, and the impact on ecosystem services

  20. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D [Oak Ridge National Laboratory (ORNL); Mills, R [Oak Ridge National Laboratory (ORNL); Gregg, J [University of Maryland; Blasing, T J [ORNL; Hoffman, F [Oak Ridge National Laboratory (ORNL); Andres, Robert Joseph [ORNL; Devries, M [Oak Ridge National Laboratory (ORNL); Zhu, Z [NASA Goddard Space Flight Center; Kawa, S [NASA Goddard Space Flight Center

    2008-01-01

    Monthly estimates of the global emissions of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO2 flux estimates are then used to model atmospheric CO2 concentrations using meteorological fields from the NASA GEOS-4 data assimilation system. We find that the use of monthly resolved fluxes makes a significant difference in the seasonal cycle of atmospheric CO2 in and near those regions where anthropogenic CO2 is released to the atmosphere. Local variations of 2-6 ppmv CO2 in the seasonal cycle amplitude are simulated; larger variations would be expected if smaller source-receptor distances could be more precisely specified using a more refined spatial resolution. We also find that in the midlatitudes near the sources, synoptic scale atmospheric circulations are important in the winter and that boundary layer venting and diurnal rectifier effects are more important in the summer. These findings have implications for inverse-modeling efforts that attempt to estimate surface source/sink regions especially when the surface sinks are colocated with regions of strong anthropogenic CO2 emissions.

  1. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  2. Photoassimilation, Assimilate Translocation and Plasmodesmal Biogenesis in the Source Leaves of Arabidopsis thaliana Grown Under an Increased Atmospheric CO2 Concentration

    Science.gov (United States)

    Duan, Zhongrui; Homma, Ayumi; Kobayashi, Megumi; Nagata, Noriko; Kaneko, Yasuko; Fujiki, Yuki; Nishida, Ikuo

    2014-01-01

    Using 18-day-old Arabidopsis thaliana seedlings grown under increased (780 p.p.m., experimental plants) or ambient (390 p.p.m., control plants) CO2 conditions, we evaluated 14CO2 photoassimilation in and translocation from representative source leaves. The total 14CO2 photoassimilation amounts increased in the third leaves of the experimental plants in comparison with that found for the third leaves of the control plants, but the rates were comparable for the first leaves of the two groups. In contrast, translocation of labeled assimilates doubled in the first leaves of the experimental group, whereas translocation was, at best, passively enhanced even though photoassimilation increased in their third leaves. The transcript levels of the companion cell-specific sucrose:H+ symporter gene SUC2 were not significantly affected in the two groups of plants, whereas those of the sucrose effluxer gene SWEET12 and the sieve element-targeted sucrose:H+ symporter gene SUT4 were up-regulated in the experimental plants, suggesting up-regulation of SUT4-dependent apoplastic phloem loading. Compared with SUC2, SUT4 is a minor component that is expressed in companion cells but functions in sieve elements after transfer through plasmodesmata. The number of aniline blue-stained spots for plasmodesma-associated callose in the midrib wall increased in the first leaf of the experimental plants but was comparable in the third leaf between the experimental and control plants. These results suggest that A. thaliana responds to greater than normal concentrations of CO2 differentially in the first and third leaves in regards to photoassimilation, assimilate translocation and plasmodesmal biogenesis. PMID:24406629

  3. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2

    OpenAIRE

    Wenzel, Sabrina; Cox, Peter M.; Eyring, Veronika; Friedlingstein, Pierre

    2016-01-01

    Uncertainties in the response of vegetation to rising atmospheric CO2 concentrations1,2 contribute to the large spread in projections of future climate change3,4. Climate–carbon cycle models generally agree that elevated atmospheric CO2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO2 concentrations in model studies5–7...

  4. Atmospheric measurement of point source fossil fuel CO2 emissions

    Science.gov (United States)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  5. A usage of CO2 hydrate: convenient method to increase CO2 concentration in culturing algae.

    Science.gov (United States)

    Nakano, Sho; Chang, Kwang-Hyeon; Shijima, Atsushi; Miyamoto, Hiroyuki; Sato, Yukio; Noto, Yuji; Ha, Jin-Yong; Sakamoto, Masaki

    2014-11-01

    The addition of CO2 to algal culture systems can increase algal biomass effectively. Generally, gas bubbling is used to increase CO2 levels in culture systems; however, it is difficult to quantitatively operate to control the concentration using this method. In this study, we tested the usability of CO2 hydrate for phytoplankton culture. Specifically, green algae Pseudokirchneriella subcapitata were cultured in COMBO medium that contained dissolved CO2 hydrate, after which its effects were evaluated. The experiment was conducted according to a general bioassay procedure (OECD TG201). CO2 promoted algae growth effectively (about 2-fold relative to the control), and the decrease in pH due to dissolution of the CO2 in water recovered soon because of photosynthesis. Since the CO2 hydrate method can control a CO2 concentration easily and quantitatively, it is expected to be useful in future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  7. Atmospheric measurement of point source fossil CO2 emissions

    Science.gov (United States)

    Turnbull, J. C.; Keller, E. D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2014-05-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m above ground level. We also determined the surface CO2ff content averaged over several weeks from the 14C content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~ one week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14C sampling strategies.

  8. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  9. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; hide

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  10. CO2 leakage monitoring and analysis to understand the variation of CO2 concentration in vadose zone by natural effects

    Science.gov (United States)

    Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun

    2017-04-01

    Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  11. The effect of subambient to elevated atmospheric CO2 concentration on vascular function in Helianthus annuus: Implications for plant response to climate change

    Science.gov (United States)

    Plant gas-exchange is regulated by stomata, which co-ordinate leaf-level water loss with xylem transport. Stomatal opening responds to internal levels of CO2 in the leaf but changing CO2 can also lead to changes in stomatal density that influence transpiration. Given that stomatal conductance increa...

  12. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...... the processes controlling the sources and sinks of atmospheric CO2. This PhD dissertation attempts to increase our understanding of the importance of accounting for high spatiotemporal variability in estimates of CO2 exchanges between the atmosphere and the surface. For this purpose, a mesoscale...

  13. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

    Science.gov (United States)

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching

    2015-05-01

    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Investigation into Optimal CO2 Concentration for CO2 Capture from Aluminium Production

    OpenAIRE

    Mathisen, Anette; Sørensen, Henriette; Melaaen, Morten; Müller, Gunn-Iren

    2013-01-01

    Capture of CO2 from aluminum production has been simulated using Aspen Plus and Aspen Hysys. The technology used for aluminum production is the Hall-Héroult and the current cell design necessitates that large amounts of false air is supplied to the cells. This results in a CO2 concentration in the process gas at around 1 vol%, which is considered uneconomical for CO2 capture. Therefore, the aim of this investigation is to evaluate the CO2 capture from aluminum production when the process gas ...

  15. Implications of "peak oil" for atmospheric CO2 and climate

    CERN Document Server

    Kharecha, P A

    2007-01-01

    Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

  16. Modulation of plant immunity by atmospheric CO2

    NARCIS (Netherlands)

    Zhou, Y.

    2016-01-01

    The continuously increasing CO2 levels in the atmosphere is considered to be core among climate changes and is expected to affect plant diseases in the future, posing a new challenge for future strategies in plant protection. In this thesis we explore signaling mechanisms underlying atmospheric

  17. BOREAS TE-5 CO2 Concentration and Stable Isotope Composition

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This data set contains measurements of the concentration and stable carbon (C-13/C-12 and oxygen (O-18/O-16) isotope ratios of atmospheric CO2 in air samples collected at different heights within forest canopies. The data were collected to determine the influence of photosynthesis and respiration by the forest ecosystems on the concentration and stable isotope ratio of atmospheric CO2 These measurements were collected at the SSA during each 1994 IFC at OJP, OBS, and OA sites. Measurements were also collected at the NSA during each 1994 IFC at the OJP, T6R5S TE UBS, and T2Q6A TE OA sites. The stable isotope ratios are expressed using standard delta notation and in units of per mil. The isotope ratios are expressed relative to the international standard, PDB, for both carbon and oxygen samples. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  18. Armazenamento da maçã cv. golden delicious em atmosfera controlada com altas concentrações de CO2 e ultra-baixas de O2 Controlled atmosphere storage of golden delicious apples with high CO2 and ulo concentrations

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    1998-06-01

    Full Text Available O trabalho foi desenvolvido com o objetivo de avaliar os efeitos de altas concentrações de CO2, e ultra-baixas de O2, sobre as qualidades fisico-químicas, distúrbios fisiológicos e podridões durante o armazenamento em atmosfera controlada (AC de maçãs da cv. 'Golden Delicious'. Os frutos foram armazenados nas temperaturas de -0,5°C e +0,5°C e umidade relativa do ar de 97%. As condições de AC foram 1.0% de O2, e 6.0% de CO2; 1,5% de O2, e 6,0% de CO2; 1,0% de O2, e 4,0% de CO2, 2.0% de O2, e 4.0% de CO2; 3,0% de O2, e 4,0% de CO2, Os parâmetros avaliados foram: firmeza da polpa, sólidos solúveis totais, acidez titulável, escaldadura, degenerescência interna e podridões. As avaliações foram realizadas em dois momentos: na abertura das câmaras (8,5 meses de armazenamento e após 14 dias (7 dias em armazenamento refrigerado e 7 dias em temperatura ambiente a 23°C. Em concentrações ultra-baixa de O2, (1% combinado com 4% de CO2, a maçã 'Golden Delicious' apresentou uma melhor manutenção das qualidades fisico-químicas após longo período de armazenamento sem apresentar sintomas de fermentação. Concentrações de 6% de CO2, com baixas de O2 na temperatura de +0,5°C, não causou danos aos frutos, porém na temperatura de -0,5"C houve degenerescência interna e escaldadura superficial, sendo a temperatura de +0,5°C mais indicada para a cv. Golden Delicious'.The experiment was conducted with the aim to evaluate the effects of the high CO2, and ultra-low O2, (ULO concentrations on the fruit quality and incidence of physiological disorders and rots during controlled atmosphere (CA storage of 'Golden Delicious'. Fruits were stored at-0.5°C and +0.5°C, with 97% relative humidity. The CA conditions were: 1.0% of O2, and 6.0% of CO2,.1.5% of O2, and 6.0% of CO2; 1.0% of O2, and 4.0% of CO2,; 2.0% of O2, and 4.0% of CO2,; 3.0% of O2, and 4.0% of CO2,. After 8.5 months of storage and 14 days after chamber opening (seven days of

  19. Increasing stomatal conductance in response to rising atmospheric CO2.

    Science.gov (United States)

    Purcell, C; Batke, S P; Yiotis, C; Caballero, R; Soh, W K; Murray, M; McElwain, J C

    2018-01-31

    Studies have indicated that plant stomatal conductance (gs) decreases in response to elevated atmospheric CO2, a phenomenon of significance for the global hydrological cycle. However, gs increases across certain CO2 ranges have been predicted by optimization models. The aim of this work was to demonstrate that under certain environmental conditions, gs can increase in response to elevated CO2. Using (1) an extensive, up-to-date synthesis of gs responses in free air CO2 enrichment (FACE)experiments, (2) in situ measurements across four biomes showing dynamic gs responses to a CO2 rise of ~50 ppm (characterizing the change in this greenhouse gas over the past three decades) and (3) a photosynthesis-stomatal conductance model, it is demonstrated that gs can in some cases increase in response to increasing atmospheric CO2. Field observations are corroborated by an extensive synthesis of gs responses in FACE experiments showing that 11.8 % of gs responses under experimentally elevated CO2 are positive. They are further supported by a strong data-model fit (r2 = 0.607) using a stomatal optimization model applied to the field gs dataset. A parameter space identified in the Farquhar-Ball-Berry photosynthesis-stomatal conductance model confirms field observations of increasing gs under elevated CO2 in hot dry conditions. Contrary to the general assumption, positive gs responses to elevated CO2, although relatively rare, are a feature of woody taxa adapted to warm, low-humidity conditions, and this response is also demonstrated in global simulations using the Community Land Model (CLM4). The results contradict the over-simplistic notion that global vegetation always responds with decreasing gs to elevated CO2, a finding that has important implications for predicting future vegetation feedbacks on the hydrological cycle at the regional level.

  20. Phloem function: A key to understanding and manipulating plant responses to rising atmospheric [CO2]?

    Science.gov (United States)

    Increasing atmospheric carbon dioxide concentration ([CO2]) directly stimulates photosynthesis and reduces stomatal conductance in C3 plants. Both of these physiological effects have the potential to alter phloem function at elevated [CO2]. Recent research has clearly established that photosynthetic...

  1. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    Science.gov (United States)

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Detection of CO2 leaks from carbon capture and storage sites to the atmosphere with combined CO2 and O2 measurements

    Science.gov (United States)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-04-01

    One of the main issues in carbon capture and storage (CCS) is the possibility of leakage of CO2 from the storage reservoir to the atmosphere, both from a public health and a climate change combat perspective. Detecting these leaks in the atmosphere is difficult due to the rapid mixing of the emitted CO2 with the surrounding air masses and the high natural variability of the atmospheric CO2 concentration. Instead of measuring only the CO2 concentration of the atmosphere, its isotopes or chemical tracers that are released together with the CO2, our method uses O2 measurements in addition to CO2 measurements to detect a leak from a CCS site. CO2 and O2 are coupled in most processes on earth. In photosynthesis, plants take up CO2 and release O2 at the same time. In respiration and fossil fuel burning, O2 is consumed while CO2 is released. In case of a leak from a CCS site, however, there is no relationship between CO2 and O2. A CO2 leak can therefore be distinguished from other sources of CO2 by looking at the atmospheric CO2-O2 ratio. A natural increase of the CO2 concentration is accompanied by a drop in the O2 concentration, while an increase in the CO2 concentration caused by a leak from a CCS site does not have any effect on the O2 concentration. To demonstrate this leak detection strategy we designed and built a transportable CO2 and O2 measurement system, that is capable of measuring the relatively minute (ppm's variations on a 21% concentration) changes in the O2 concentration. The system comprises of three cases that contain the instrumentation and gas handling equipment, the gas cylinders used as reference and calibration gases and a drying system, respectively. Air is pumped to the system from an air inlet that is placed in a small tower in the field. At the conference, we will demonstrate the success of leak detection with our system by showing measurements of several CO2 release experiments, where CO2 was released at a small distance from the air inlet of

  3. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    Science.gov (United States)

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  4. Analysis of Factors Controlling Interannual Variations in Atmospheric CO2 During 1997-2004

    Science.gov (United States)

    Kasibhatla, P.; Li, Q.; Randerson, J.; van der Werf, G.; Giglio, L.; Collatz, J.; Miller, J.; Conway, T.; Novelli, P.

    2005-12-01

    Measurements of surface atmospheric CO2 concentrations show that atmospheric CO2 growth rates vary significantly from year to year. Understanding the driving mechanisms of these interannual growth rate variations is important in terms of predicting future levels of atmospheric CO2. In this study, we investigate the relative contributions of interannual variations in terrestrial net primary production, heterotrophic respiration, and fire emissions to interannual variations in atmospheric CO2 during the 1997-2004 period. The geographical and temporal distribution of C fluxes associated with each of these processes is first derived using an updated version of the CASA biogeochemical cycle model that uses multiple satellite datasets as constraints. The CASA fluxes are then used to drive an atmospheric chemical transport model to calculate the resulting atmospheric CO2 concentration anomalies arising from each process. Finally, an inverse modeling methodology using atmospheric CO2 measurements from the NOAA/CMDL network, as well as atmospheric CO measurements from the same network as an additional constraint on fire C emissions, is applied to derive optimal estimates of the geographical and temporal distribution of C flux anomalies associated with each process.

  5. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw

    DEFF Research Database (Denmark)

    Frederiksen, Helle B.; Ronn, R.; Christensen, S.

    2001-01-01

    Straw from wheat plants grown at ambient and elevated atmospheric CO2 concentrations was placed in litterbags in a grass fallow field and a wheat field. The CO2 treatment induced an increase in straw concentration of ash-free dry mass from 84% to 93% and a decrease in nitrogen concentration from ...... decomposition of wheat straw, but the effect is probably of minor importance compared to the effect of varying crops, agricultural practise or changing land use....

  6. Atmospheric Fossil Fuel CO2 Tracing By 14C In Some Chinese Cities

    Science.gov (United States)

    Zhou, W.; Niu, Z.; Zhu, Y., Sr.

    2016-12-01

    CO2 plays an important role in global climate as a primary greenhouse gas in the atmosphere. Moreover, it has been shown that more than 70% of global fossil fuel CO2 (CO2ff) emissions are concentrated in urban areas (Duren and Miller, 2012). Our study focuses on atmospheric CO2ff concentrations in 15 Chinese cities using accelerator mass spectrometer (AMS) to measure 14C. Our objectives are: (1) to document atmospheric CO2ff concentrations in a variety of urban environments, (2) to differentiate the spatial-temporal variations in CO2ff among these cities, and (3) to ascertain the factors that control the observed variations. For about two years (winter 2014 to winter 2016), the CO2ff concentrations we observed from all sites varied from 5.1±4.5 ppm to 65.8±39.0 ppm. We observed that inland cities display much higher CO2ff concentrations and overall temporal variations than coastal cities in winter, and that northern cities have higher CO2ff concentrations than those of southern cities in winter. For inland cities relatively high CO2ff values are observed in winter and low values in summer; while seasonal variations are not distinct in the coastal cities. No significant (p > 0.05) differences in CO2ff values are found between weekdays and weekends as was shown previously in Xi'an (Zhou et al., 2014). Diurnal CO2ff variations are plainly evident, with high values between midnight and 4:00 am, and during morning and afternoon rush hours (Niu et al., 2016). The high CO2ff concentrations in northern inland cities in winter results mainly from the substantial consumption of fossil fuels for heating. The high CO2ff concentrations seen in diurnal measurements result mainly from variations in atmospheric dispersion, and from vehicle emissions related to traffic flows. The inter-annual variations in CO2ff in cities could provide a useful reference for local governments to develop policy around the effect of energy conservation and emission reduction strategies.

  7. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    Science.gov (United States)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  8. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Yorio, N. C.; Sager, J. C.

    1999-01-01

    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  9. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Science.gov (United States)

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun

    2015-01-01

    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  10. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Directory of Open Access Journals (Sweden)

    Yuqing Wang

    Full Text Available The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  11. ROOT-GROWTH AND FUNCTIONING UNDER ATMOSPHERIC CO2 ENRICHMENT

    NARCIS (Netherlands)

    STULEN, [No Value; DENHERTOG, J

    This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions

  12. Climate change and CO2 removal from the atmosphere

    NARCIS (Netherlands)

    Schuiling, R.D.

    2014-01-01

    Several methods have been proposed in recent years to counteract climate change and ocean acidification by removing CO2 from the atmosphere (Carbon Dioxide Removal). The most versatile and widely applicable of these methods is enhanced weathering of olivine, which is capable of removing billions of

  13. Effects of Elevated CO2 Concentration on Photosynthesis and Respiration of Populus Deltodies

    Science.gov (United States)

    Anderson, Angela M.

    1998-01-01

    To determine how increased atmospheric CO2 will affect the physiology of cottonwood trees, cuttings of the cloned Populus deltodies [cottonwood] were grown in open-top chambers containing ambient or elevated CO2 concentration. The control treatment was maintained at ambient Biosphere 2 atmospheric CO2 (c. 450 +/- 50 micro l/l), and elevated CO2 treatment was maintained at approximately double ambient Biosphere 2 atmospheric CO2 (c. 1000 +/- 50 micro l/l). The effects of elevated CO2 on leaf photosynthesis, and stomatal conductance were measured. The cottonwoods exposed to CO2 enrichment showed no significant indication of photosynthetic down-regulation. There was no significant difference in the maximum assimilation rate between the treatment and the control (P less than 0.24). The CO2 enriched treatment showed a decreased stomatal conductance of 15% (P less than 0.03). The elevated CO2 concentrated atmosphere had an effect on the respiration rates of the plants; the compensation point of the treatment was on average 13% higher than the control (P less than 0.01).

  14. Thermal decomposition of dolomite under CO2-air atmosphere

    Science.gov (United States)

    Subagjo, Wulandari, Winny; Adinata, Pratitis Mega; Fajrin, Anita

    2017-01-01

    This paper reports a study on thermal decomposition of dolomite under CO2-air. Calcination was carried out non-isothermally by using thermogravimetry analysis-differential scanning calorimetry (TGA-DSC) with a heating rate of 10°C/minute in an air atmosphere as well as 10 vol% CO2 and 90 vol% air atmosphere from 25 to 950°C. In addition, a thermodynamic modeling was also carried out to simulate dolomite calcination in different level of CO2-air atmosphere by using FactSage® 7.0. The the main constituents of typical dolomite from Gresik, East Java include MgCO3 (magnesite), CaCO3 (calcite), Ca(OH)2, CaO, MgO, and less than 1% of metal impurities. Based on the kinetics analysis from TGA results, it is found that non-isothermal dolomite calcination in 10 vol% CO2 atmosphere is occurred in a two-stage reaction; the first stage is the decomposition of magnesite at 650-740 °C with activation energy of 161.23 kJ/mol, and the second stage is the decomposition of calcite at 775-820 °C with activation energy of 162.46 kJ/mol. The magnesite decomposition is found to follow nucleation reaction mechanism of Avrami Eroveyef (A3), while calcite decomposition follows second order chemical reaction equation. Thermodynamic modeling supports these kinetic analyses. The results of this research give insight to the kinetics of dolomite decomposition in CO2-air atmosphere.

  15. Phosphorus supply drives nonlinear responses of cottonwood (Populus deltoides) to increases in CO2 concentration from glacial to future concentrations.

    Science.gov (United States)

    Lewis, James D; Ward, Joy K; Tissue, David T

    2010-07-01

    *Despite the importance of nutrient availability in determining plant responses to climate change, few studies have addressed the interactive effects of phosphorus (P) supply and rising atmospheric CO(2) concentration ([CO(2)]) from glacial to modern and future concentrations on tree seedling growth. *The objective of our study was to examine interactive effects across a range of P supply (six concentrations from 0.004 to 0.5 mM) and [CO(2)] (200 (glacial), 350 (modern) and 700 (future) ppm) on growth, dry mass allocation, and light-saturated photosynthesis (A(sat)) in Populus deltoides (cottonwood) seedlings grown in well-watered conditions. *Increasing [CO(2)] from glacial to modern concentrations increased growth by 25% across P treatments, reflecting reduced [CO(2)] limitations to photosynthesis and increased A(sat). Conversely, the growth response to future [CO(2)] was very sensitive to P supply. Future [CO(2)] increased growth by 80% in the highest P supply but only by 7% in the lowest P supply, reflecting P limitations to A(sat), leaf area and leaf area ratio (LAR), compared with modern [CO(2)]. *Our results suggest that future [CO(2)] will minimally increase cottonwood growth in low-P soils, but in high-P soils may stimulate production to a greater extent than predicted based on responses to past increases in [CO(2)]. Our results indicate that the capacity for [CO(2)] stimulation of cottonwood growth does not decline as [CO(2)] rises from glacial to future concentrations.

  16. Atmospheric CO2 enrichment facilitates cation release from soil.

    Science.gov (United States)

    Cheng, L; Zhu, J; Chen, G; Zheng, X; Oh, N-H; Rufty, T W; Richter, D deB; Hu, S

    2010-03-01

    Atmospheric CO(2) enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO(2) enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO(2)-enhancement of cation release from soil in rice agricultural systems. Elevated CO(2) increased organic C allocation belowground and net H(+) excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe(2+) and Mn(2+) in soil solutions. Increased H(+), Fe(2+), and Mn(2+) promoted Ca(2+) and Mg(2+) release from soil cation exchange sites. These results indicate that over the short term, elevated CO(2) may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO(2)-induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems.

  17. Tropical epiphytes in a CO 2-rich atmosphere

    Science.gov (United States)

    Monteiro, José Alberto Fernandez; Zotz, Gerhard; Körner, Christian

    2009-01-01

    We tested the effect on epiphyte growth of a doubling of pre-industrial CO 2 concentration (280 vs. 560 ppm) combined with two light (three fold) and two nutrition (ten fold) treatments under close to natural humid conditions in daylight growth cabinets over 6 months. Across co-treatments and six species, elevated CO 2 increased relative growth rates by only 6% ( p = 0.03). Although the three C3 species, on average, grew 60% faster than the three CAM species, the two groups did not significantly differ in their CO 2 response. The two Orchidaceae, Bulbophyllum (CAM) and Oncidium (C3) showed no CO 2 response, and three out of four Bromeliaceae showed a positive one: Aechmea (CAM, +32% p = 0.08), Catopsis (C3, +11% p = 0.01) and Vriesea (C3, +4% p = 0.02). In contrast, the representative of the species-rich genus Tillandsia (CAM), which grew very well under experimental conditions, showed no stimulation. On average, high light increased growth by 21% and high nutrients by 10%. Interactions between CO 2, light and nutrient treatments (low vs. high) were inconsistent across species. CO 2 responsive taxa such as Catopsis, could accelerate tropical forest dynamics and increase branch breakage, but overall, the responses to doubling CO 2 of these epiphytes was relatively small and the responses were taxa specific.

  18. Modification of land-atmosphere interactions by CO2 effects

    Science.gov (United States)

    Lemordant, Leo; Gentine, Pierre

    2017-04-01

    Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.

  19. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    G. Brett Runion; John R. Butnor; S. A. Prior; R. J. Mitchell; H. H. Rogers

    2012-01-01

    The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf...

  20. Atmospheric CO2 capture for the artificial photosynthetic system

    Directory of Open Access Journals (Sweden)

    Nogalska Adrianna

    2017-01-01

    Full Text Available The scope of these studies is to evaluate the ambient CO2 capture abilities of the membrane contactor system in the same conditions as leaves works during photosynthesis, such as ambient temperature, pressure and low CO2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane was made by phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of the membrane and absorbent solution was evaluated, in order to exclude wetting issues. The prepared membranes were introduced in a cross flow module and used as contactor between the CO2 and the potassium hydroxide solution, as absorbing media. The influence of the membrane thickness, absorbent stirring rate and absorption time, on CO2 capture were evaluated. The results show that the efficiency of our CO2 capture system is similar to stomatal carbon dioxide assimilation rate.

  1. Atmospheric CO2 capture for the artificial photosynthetic system

    Science.gov (United States)

    Nogalska, Adrianna; Zukowska, Adrianna; Garcia-Valls, Ricard

    2017-11-01

    The scope of these studies is to evaluate the ambient CO2 capture abilities of the membrane contactor system in the same conditions as leaves works during photosynthesis, such as ambient temperature, pressure and low CO2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane was made by phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of the membrane and absorbent solution was evaluated, in order to exclude wetting issues. The prepared membranes were introduced in a cross flow module and used as contactor between the CO2 and the potassium hydroxide solution, as absorbing media. The influence of the membrane thickness, absorbent stirring rate and absorption time, on CO2 capture were evaluated. The results show that the efficiency of our CO2 capture system is similar to stomatal carbon dioxide assimilation rate.

  2. The BErkeley Atmospheric CO2 Observation Network: initial evaluation

    Science.gov (United States)

    Shusterman, Alexis A.; Teige, Virginia E.; Turner, Alexander J.; Newman, Catherine; Kim, Jinsol; Cohen, Ronald C.

    2016-10-01

    With the majority of the world population residing in urban areas, attempts to monitor and mitigate greenhouse gas emissions must necessarily center on cities. However, existing carbon dioxide observation networks are ill-equipped to resolve the specific intra-city emission phenomena targeted by regulation. Here we describe the design and implementation of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), a distributed CO2 monitoring instrument that utilizes low-cost technology to achieve unprecedented spatial density throughout and around the city of Oakland, California. We characterize the network in terms of four performance parameters - cost, reliability, precision, and systematic uncertainty - and find the BEACO2N approach to be sufficiently cost-effective and reliable while nonetheless providing high-quality atmospheric observations. First results from the initial installation successfully capture hourly, daily, and seasonal CO2 signals relevant to urban environments on spatial scales that cannot be accurately represented by atmospheric transport models alone, demonstrating the utility of high-resolution surface networks in urban greenhouse gas monitoring efforts.

  3. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    Science.gov (United States)

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  4. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    Science.gov (United States)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  5. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  6. Performance degradation of double-perovskite PrBaCo2O5+δ oxygen electrode in CO2 containing atmospheres

    Science.gov (United States)

    Zhu, Lin; Wei, Bo; Lü, Zhe; Feng, Jiebing; Xu, Lingling; Gao, Hong; Zhang, Yaohui; Huang, Xiqiang

    2017-09-01

    The electrochemical performance and microstructure stability of PrBaCo2O5+δ (PBCO) cathode are investigated in CO2-containing atmospheres for solid oxide fuel cells (SOFCs). Electrochemical impedance spectra results confirm obvious performance degradation of the PBCO cathodes in the presence of CO2 impurity, especially in high CO2 concentration condition. Microstructure and structural analyses reveal the formation of insulating BaCO3 nanoparticles at the PBCO surface, which is considered as the primary reason for the loss of electrode activity. This study highlights the important role of surface segregated BaO species in determining the activity and long-time stability of PBCO electrode.

  7. Distribution of atmospheric aerosols and CO2 lidar backscatter simulation

    Science.gov (United States)

    Kent, G. S.; Wang, P. H.; Deepak, A.; Farrukh, U. O.

    1985-01-01

    Development of a Global Wind Measurement Satellite System (WINDSAT) (NOAA, 1981) requires a knowledge of the global characteristics of the free tropospheric and lower stratospheric aerosol. In particular, there is a need to document the behavior of the aerosol backscattering function, at CO2 laser wavelengths, beta sub CO2, as a function of space and time. There is, however, a relative lack of data for the free troposphere, particularly over the remoter regions of the globe, as compared with that for the boundary layer and the stratosphere. Moreover, because of variations in concentration that occur as a function of space and time, large data sets are required to obtain meaningful averages. A recent study by Kent et al. (1985) uses three distinct tropospheric aerosol data sets in order to obtain an improved global model of the general aerosol characteristics, including variation of beta sub CO2 with latitude, season, and altitude. The more important findings are summarized.

  8. On the causes of trends in the seasonal amplitude of atmospheric CO2.

    Science.gov (United States)

    Piao, Shilong; Liu, Zhuo; Wang, Yilong; Ciais, Philippe; Yao, Yitong; Peng, Shushi; Chevallier, Frédéric; Friedlingstein, Pierre; Janssens, Ivan A; Peñuelas, Josep; Sitch, Stephen; Wang, Tao

    2018-02-01

    No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO 2 in the northern latitudes. In this study, we used atmospheric CO 2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO 2 . We found significant (p 50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi-model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO 2 concentration (eCO 2 ) and climate change are dominant drivers of the increase in AMP P -T and AMP T -P in the high latitudes. At the Barrow station, the observed increase of AMP P -T and AMP T -P over the last 33 years is explained by eCO 2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO 2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO 2 during carbon uptake period. Air-sea CO 2 fluxes (10% for AMP P -T and 11% for AMP T -P ) and the impacts of land-use change (marginally significant 3% for AMP P -T and 4% for AMP T -P ) also contributed to the CO 2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle. © 2017 John Wiley & Sons Ltd.

  9. Scrutinizing the carbon cycle and CO2 residence time in the atmosphere

    Science.gov (United States)

    Harde, Hermann

    2017-05-01

    Climate scientists presume that the carbon cycle has come out of balance due to the increasing anthropogenic emissions from fossil fuel combustion and land use change. This is made responsible for the rapidly increasing atmospheric CO2 concentrations over recent years, and it is estimated that the removal of the additional emissions from the atmosphere will take a few hundred thousand years. Since this goes along with an increasing greenhouse effect and a further global warming, a better understanding of the carbon cycle is of great importance for all future climate change predictions. We have critically scrutinized this cycle and present an alternative concept, for which the uptake of CO2 by natural sinks scales proportional with the CO2 concentration. In addition, we consider temperature dependent natural emission and absorption rates, by which the paleoclimatic CO2 variations and the actual CO2 growth rate can well be explained. The anthropogenic contribution to the actual CO2 concentration is found to be 4.3%, its fraction to the CO2 increase over the Industrial Era is 15% and the average residence time 4 years.

  10. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field].

    Science.gov (United States)

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua

    2015-01-01

    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  11. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; hide

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  12. Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    Full Text Available BACKGROUND: The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques. PRINCIPAL FINDINGS: Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana ×P. tomentosa leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes. CONCLUSIONS: Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.

  13. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumplant species. The μ-value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i

  14. [CO2 Budget and Atmospheric Rectification (COBRA) Over North America

    Science.gov (United States)

    2004-01-01

    The purpose of the CO2 Budget and Rectification Airborne (COBRA) study was to assess terrestrial sources and sinks of carbon dioxide using an air-borne study. The study was designed to address the measurement gap between plot-scale direct flux measurements and background hemispheric-scale constraints and to refine techniques for measuring terrestrial fluxes at regional to continental scales. The initial funded effort (reported on here) was to involve two air-borne campaigns over North America, one in summer and one in winter. Measurements for COBRA (given the acronym C02BAR in the initial proposal) were conducted from the University of North Dakota Citation 11, a twin-engine jet aircraft capable of profiling from the surface to 12 km and cruising for up to 4 hours and 175m/s. Onboard instrumentation measured concentrations of CO2, CO, and H2O, and meteorological parameters at high rates. In addition, two separate flask sampling systems collected discrete samples for laboratory analysis of CO2,CO, CH4, N2O, SF6, H2, 13CO2, C18O16O,O2/N2, and Ar/N2. The project involved a collaboration between a number of institutions, including (but not limited to) Harvard, NOAA-CMDL, the University of North Dakota, and Scripps.

  15. Changes in calcification of coccoliths under stable atmospheric CO2

    DEFF Research Database (Denmark)

    Berger, C.; Meier, K. J. S.; Kinkel, H.

    2014-01-01

    The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural...... North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected...

  16. A global coupled Eulerian-Lagrangian model and 1 × 1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations

    Directory of Open Access Journals (Sweden)

    R. Toumi

    2012-02-01

    Full Text Available We designed a method to simulate atmospheric CO2 concentrations at several continuous observation sites around the globe using surface fluxes at a very high spatial resolution. The simulations presented in this study were performed using the Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA, comprising a Lagrangian particle dispersion model coupled to a global atmospheric tracer transport model with prescribed global surface CO2 flux maps at a 1 × 1 km resolution. The surface fluxes used in the simulations were prepared by assembling the individual components of terrestrial, oceanic and fossil fuel CO2 fluxes. This experimental setup (i.e. a transport model running at a medium resolution, coupled to a high-resolution Lagrangian particle dispersion model together with global surface fluxes at a very high resolution, which was designed to represent high-frequency variations in atmospheric CO2 concentration, has not been reported at a global scale previously. Two sensitivity experiments were performed: (a using the global transport model without coupling to the Lagrangian dispersion model, and (b using the coupled model with a reduced resolution of surface fluxes, in order to evaluate the performance of Eulerian-Lagrangian coupling and the role of high-resolution fluxes in simulating high-frequency variations in atmospheric CO2 concentrations. A correlation analysis between observed and simulated atmospheric CO2 concentrations at selected locations revealed that the inclusion of both Eulerian-Lagrangian coupling and high-resolution fluxes improves the high-frequency simulations of the model. The results highlight the potential of a coupled Eulerian-Lagrangian model in simulating high-frequency atmospheric CO2 concentrations at many locations worldwide. The model performs well in representing observations of atmospheric CO2 concentrations at high spatial and temporal resolutions, especially for coastal sites and sites located close to

  17. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere.

    Science.gov (United States)

    Rogers, H H; Runion, G B; Krupa, S V

    1994-01-01

    Empirical records provide incontestable evidence of global changes: foremost among these changes is the rising concentration of CO(2) in the earth's atmosphere. Plant growth is nearly always stimulated by elevation of CO(2). Photosynthesis increases, more plant biomass accumulates per unit of water consumed, and economic yield is enhanced. The profitable use of supplemental CO(2) over years of greenhouse practice points to the value of CO(2) for plant production. Plant responses to CO(2) are known to interact with other environmental factors, e.g. light, temperature, soil water, and humidity. Important stresses including drought, temperature, salinity, and air pollution have been shown to be ameliorated when CO(2) levels are elevated. In the agricultural context, the growing season has been shortened for some crops with the application of more CO(2); less water use has generally, but not always, been observed and is under further study; experimental studies have shown that economic yield for most crops increases by about 33% for a doubling of ambient CO(2) concentration. However, there are some reports of negligible or negative effects. Plant species respond differently to CO(2) enrichment, therefore, clearly competitive shifts within natural communities could occur. Though of less importance in managed agro-ecosystems, competition between crops and weeds could also be altered. Tissue composition can vary as CO(2) increases (e.g. higher C: N ratios) leading to changes in herbivory, but tests of crop products (consumed by man) from elevated CO(2) experiments have generally not revealed significant differences in their quality. However, any CO(2)-induced change in plant chemical or structural make-up could lead to alterations in the plant's interaction with any number of environmental factors-physicochemical or biological. Host-pathogen relationships, defense against physical stressors, and the capacity to overcome resource shortages could be impacted by rises in CO

  18. Estimates of CO2 traffic emissions from mobile concentration measurements

    Science.gov (United States)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  19. Development of a mobile and high-precision atmospheric CO2 monitoring station

    Science.gov (United States)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  20. Atmospheric remote sensing via optically pumped CO2 laser

    Science.gov (United States)

    Shutov, Anton; Shutova, Mariia; Goltsov, Alexander; Sokolov, Alexei; Scully, Marlan

    2017-04-01

    With the growing global warming problem atmospheric remote sensing, especially remote detection of CO2 levels, has become a hot topic nowadays. Here we discuss an idea on how CO2 gas in air can be turned into a laser medium. This type of CO2 laser is pumped via Raman vibrational mode excitation of the nitrogen present in air. We propose an experiment to implement this type of a laser, where vibrational excitation of nitrogen is produced by a pair of Raman-resonant laser pulses. We quantify the efficiency of the Raman excitation process by observing cascaded Raman sideband generation. When excitation of the first vibrational state takes place in some portion of nitrogen molecules, it is accompanied by generation of multiple Stokes and anti-Stokes sideband. Following the excitation of the vibrations in nitrogen, carbon dioxide molecules become excited due to collisions and lasing takes place as in a conventional carbon dioxide laser. The work is funded by:NSF(PHY1307153,CHE1609608),Office of Naval Research(Award N00014-16-1-3054,N00014-16-1-2578),Robert A.Welch Foundation(Grant A-1261,A-1547).AS,MS thank the Herman F.Heep and Minnie Belle Heep TAMU Endowed Fund held by the TAMU Found.

  1. Methanogenic Community Was Stable in Two Contrasting Freshwater Marshes Exposed to Elevated Atmospheric CO2.

    Science.gov (United States)

    Lin, Yongxin; Liu, Deyan; Yuan, Junji; Ye, Guiping; Ding, Weixin

    2017-01-01

    The effects of elevated atmospheric CO2 concentration on soil microbial communities have been previously recorded. However, limited information is available regarding the response of methanogenic communities to elevated CO2 in freshwater marshes. Using high-throughput sequencing and real-time quantitative PCR, we compared the abundance and community structure of methanogens in different compartments (bulk soil, rhizosphere soil, and roots) of Calamagrostis angustifolia and Carex lasiocarpa growing marshes under ambient (380 ppm) and elevated CO2 (700 ppm) atmospheres. C. lasiocarpa rhizosphere was a hotspot for potential methane production, based on the 10-fold higher abundance of the mcrA genes per dry weight. The two marshes and their compartments were occupied by different methanogenic communities. In the C. lasiocarpa marsh, archaeal family Methanobacteriaceae, Rice Cluster II, and Methanosaetaceae co-dominated in the bulk soil, while Methanobacteriaceae was the exclusively dominant methanogen in the rhizosphere soil and roots. Families Methanosarcinaceae and Methanocellaceae dominated in the bulk soil of C. angustifolia marsh. Conversely, Methanosarcinaceae and Methanocellaceae together with Methanobacteriaceae dominated in the rhizosphere soil and roots, respectively, in the C. angustifolia marsh. Elevated atmospheric CO2 increased plant photosynthesis and belowground biomass of C. lasiocarpa and C. angustifolia marshes. However, it did not significantly change the abundance (based on mcrA qPCR), diversity, or community structure (based on high-throughput sequencing) of methanogens in any of the compartments, irrespective of plant type. Our findings suggest that the population and species of the dominant methanogens had weak responses to elevated atmospheric CO2. However, minor changes in specific methanogenic taxa occurred under elevated atmospheric CO2. Despite minor changes, methanogenic communities in different compartments of two contrasting freshwater

  2. Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany

    Directory of Open Access Journals (Sweden)

    Jan F. Degener

    2015-07-01

    Full Text Available The quality and quantity of the influence that atmospheric CO2 has on cropgrowth is still a matter of debate. This study's aim is to estimate if CO2 will have an effect on biomass yields at all, to quantify and spatially locate the effects and to explore if an elevated photosynthesis rate or water-use-efficiency is predominantly responsible. This study uses a numerical carbon based crop model (BioSTAR to estimate biomass yields within theadministrative boundaries of Niedersachsen in Northern Germany. 10 crops are included (winter grains: wheat, barley,rye, triticale - early, medium, late maize variety - sunflower, sorghum, spring wheat, modeled annuallyfor the entire 21st century on 91,014 separate sites. Modeling was conducted twice, once with an annually adaptedCO2 concentration according to the SRES-A1B scenario and once with a fixed concentration of 390 ppm to separate the influence of CO2 from that of the other input variables.Rising CO2 concentrations will play a central role in keeping future yields of all crops above or aroundtoday's level. Differences in yields between modeling with fixed or adapted CO2 can be as high as60 % towards the century's end. Generally yields will increase when CO2 rises and decline whenit is kept constant. As C4-crops are equivalently affected it is presumed that anelevated efficiency in water use is the main responsible factor for all plants.

  3. Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere

    Science.gov (United States)

    Barclay, Richard S.; Wing, Scott L.

    2016-04-01

    Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response of G. biloba to elevated pCO2, better counts and measurements of

  4. Organic chemistry in a CO2 rich early Earth atmosphere

    Science.gov (United States)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  5. TransCom satellite intercomparison experiment: construction of a bias corrected atmospheric CO2 climatology

    NARCIS (Netherlands)

    Saito, R.; Houweling, S.; Patra, P. K.; Belikov, D.; Lokupitiya, R.; Niwa, Y.; Chevallier, F.; Saeki, T.; Maksyutov, S.

    2011-01-01

    A model-based three-dimensional (3-D) climatology of atmospheric CO2 concentrations has been constructed for the analysis of satellite observations, as a priori information in retrieval calculations, and for preliminary evaluation of remote sensing products. The locations of ground-based instruments

  6. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.

    Science.gov (United States)

    Clement, Romain; Jensen, Erik; Prioretti, Laura; Maberly, Stephen C; Gontero, Brigitte

    2017-06-01

    The presence of CO2-concentrating mechanisms (CCMs) is believed to be one of the characteristics that allows diatoms to thrive in many environments and to be major contributors to global productivity. Here, the type of CCM and the responses to variable CO2 concentration were studied in marine and freshwater diatoms. At 400 ppm, there was a large diversity in physiological and biochemical mechanisms among the species. While Phaeodactylum tricornutum mainly used HCO3-, Thalassiosira pseudonana mainly used CO2. Carbonic anhydrase was an important component of the CCM in all species and C4 metabolism was absent, even with T. weissflogii. For all species, at 20 000 ppm, the affinity for dissolved inorganic carbon was lower than at 400 ppm CO2 and the reliance on CO2 was higher. Despite the difference in availability of inorganic carbon in marine and fresh waters, there were only small differences in CCMs between species from the two environments, and Navicula pelliculosa behaved similarly when grown in the two environments. The results suggest that species-specific differences are great, and more important than environmental differences in determining the nature and effectiveness of the CCM in diatoms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Atmospheric CO2 supersaturation in the Martian polar nights: Role of large-scale atmospheric waves

    Science.gov (United States)

    Noguchi, K.; Kuroda, T.; Tellmann, S.; Pätzold, M.

    2017-09-01

    This study aims at investigating the role of large-scale atmospheric waves (stationary waves and transient waves) on CO2 supersaturation at northern winter high latitudes on Mars. A distinct longitudinal dependence of CO2 supersaturation was observed at high altitude levels (around 100 Pa), where a wavenumber 2 stationary wave lowered the background temperature. However, the stationary wave alone was not sufficient to cause CO2 supersaturation. We found that additional temperature disturbances caused by transient waves, namely, superposition of both waves, had a significant role in CO2 supersaturation.

  8. Research of CO2 concentration in naturally ventilated lecture room

    Science.gov (United States)

    Laska, Marta; Dudkiewicz, Edyta

    2017-11-01

    Naturally ventilated buildings especially dedicated for educational purposes need to be design to achieve required level of thermal comfort and indoor air quality. It is crucial in terms of both: health and productivity of the room users. Higher requirements of indoor environment are important due to the level of students concentration, their ability to acquire new knowledge and willingness to interact with the lecturer. The article presents the results of experimental study and surveys undertaken in naturally ventilated lecture room. The data is analysed in terms of CO2 concentration and its possible influence on users. Furthermore the outcome of the research is compared with the CO2 concentration models available in the literature.

  9. Low atmospheric CO(2) levels during the Permo- Carboniferous glaciation inferred from fossil lycopsids.

    Science.gov (United States)

    Beerling, D J

    2002-10-01

    Earth history was punctuated during the Permo-Carboniferous [300-250 million years (Myr) ago] by the longest and most severe glaciation of the entire Phanerozoic Eon. But significant uncertainty surrounds the concentration of CO(2) in the atmosphere through this time interval and therefore its role in the evolution of this major prePleistocene glaciation. Here, I derive 24 Late Paleozoic CO(2) estimates from the fossil cuticle record of arborsecent lycopsids of the equatorial Carboniferous and Permian swamp communities. Quantitative calibration of Late Carboniferous (330-300 Myr ago) and Permian (270-260 Myr ago) lycopsid stomatal indices yield average atmospheric CO(2) concentrations of 344 ppm and 313 ppm, respectively. The reconstructions show a high degree of self-consistency and a degree of precision an order of magnitude greater than other approaches. Low CO(2) levels during the Permo-Carboniferous glaciation are in agreement with glaciological evidence for the presence of continental ice and coupled models of climate and ice-sheet growth on Pangea. Moreover, the Permian data indicate atmospheric CO(2) levels were low 260 Myr ago, by which time continental deglaciation was already underway. Positive biotic feedbacks on climate, and geotectonic events, therefore are implicated as mechanisms underlying deglaciation.

  10. Low atmospheric CO2 levels during the Permo- Carboniferous glaciation inferred from fossil lycopsids

    Science.gov (United States)

    Beerling, D. J.

    2002-01-01

    Earth history was punctuated during the Permo-Carboniferous [300–250 million years (Myr) ago] by the longest and most severe glaciation of the entire Phanerozoic Eon. But significant uncertainty surrounds the concentration of CO2 in the atmosphere through this time interval and therefore its role in the evolution of this major prePleistocene glaciation. Here, I derive 24 Late Paleozoic CO2 estimates from the fossil cuticle record of arborsecent lycopsids of the equatorial Carboniferous and Permian swamp communities. Quantitative calibration of Late Carboniferous (330–300 Myr ago) and Permian (270–260 Myr ago) lycopsid stomatal indices yield average atmospheric CO2 concentrations of 344 ppm and 313 ppm, respectively. The reconstructions show a high degree of self-consistency and a degree of precision an order of magnitude greater than other approaches. Low CO2 levels during the Permo-Carboniferous glaciation are in agreement with glaciological evidence for the presence of continental ice and coupled models of climate and ice-sheet growth on Pangea. Moreover, the Permian data indicate atmospheric CO2 levels were low 260 Myr ago, by which time continental deglaciation was already underway. Positive biotic feedbacks on climate, and geotectonic events, therefore are implicated as mechanisms underlying deglaciation. PMID:12235372

  11. [Effects of elevated CO2 concentration on the quality of agricultural products: a review].

    Science.gov (United States)

    Chai, Ru-shan; Niu, Yao-fang; Zhu, Li-qing; Wang, Huan; Zhang, Yong-song

    2011-10-01

    The increasing concentration of atmospheric CO2 and the nutritional quality of human diets are the two important issues we are facing. At present, the atmospheric CO2 concentration is about 380 micromol mol(-1), and to be reached 550 micromol mol(-1) by 2050. A great deal of researches indicated that the quality of agricultural products is not only determined by inherited genes, but also affected by the crop growth environmental conditions. This paper summarized the common methods adopted at home and abroad for studying the effects of CO2 enrichment on the quality of agricultural products, and reviewed the research advances in evaluating the effects of elevated CO2 on the quality of rice, wheat, soybean, and vegetables. Many experimental results showed that elevated CO2 concentration causes a decrease of protein content in the grains of staple food crops and an overall decreasing trend of trace elements contents in the crops, but improves the quality of vegetable products to some extent. Some issues and future directions regarding the effects of elevated CO2 concentration on the quality of agricultural products were also discussed, based on the present status of related researches.

  12. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2).

    Science.gov (United States)

    Drigo, Barbara; van Veen, Johannes A; Kowalchuk, George A

    2009-10-01

    Soil community responses to increased atmospheric CO(2) concentrations are expected to occur mostly through interactions with changing vegetation patterns and plant physiology. To gain insight into the effects of elevated atmospheric CO(2) on the composition and functioning of microbial communities in the rhizosphere, Carex arenaria (a non-mycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown under defined atmospheric conditions with either ambient (350 p.p.m.) or elevated (700 p.p.m.) CO(2) concentrations. PCR-DGGE (PCR-denaturing gradient gel electrophoresis) and quantitative-PCR were carried out to analyze, respectively, the structure and abundance of the communities of actinomycetes, Fusarium spp., Trichoderma spp., Pseudomonas spp., Burkholderia spp. and Bacillus spp. Responses of specific functional groups, such as phloroglucinol, phenazine and pyrrolnitrin producers, were also examined by quantitative-PCR, and HPLC (high performance liquid chromatography) was employed to assess changes in exuded sugars in the rhizosphere. Multivariate analysis of group-specific community profiles showed disparate responses to elevated CO(2) for the different bacterial and fungal groups examined, and these responses were dependent on plant type and soil nutrient availability. Within the bacterial community, the genera Burkholderia and Pseudomonas, typically known as successful rhizosphere colonizers, were significantly influenced by elevated CO(2), whereas the genus Bacillus and actinomycetes, typically more dominant in bulk soil, were not. Total sugar concentrations in the rhizosphere also increased in both plants in response to elevated CO(2). The abundances of phloroglucinol-, phenazine- and pyrrolnitrin-producing bacterial communities were also influenced by elevated CO(2), as was the abundance of the fungal genera Fusarium and Trichoderma.

  13. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Science.gov (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  14. Recent advances in developing COS as a tracer of Biosphere-atmosphere exchange of CO2

    Science.gov (United States)

    Asaf, D.; Stimler, K.; Yakir, D.

    2012-04-01

    Potential use of COS as tracer of CO2 flux into vegetation, based on its co-diffusion with CO2 into leaves without outflux, stimulated research on COS-CO2 interactions. Atmospheric measurements by NOAA in recent years, across a global latitudinal transect, indicated a ratio of the seasonal drawdowns in COS and CO2 (normalized to their respective ambient concentrations) of about 6. We carried out leaf-scale gas exchange measurements of COS and CO2 in 22 plant species of deciduous, evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations (using mid IR laser spectroscopy). A narrow range in the normalized ratio of the net uptake rates of COS and CO2 (termed leaf relative uptake; LRU) was observed with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes, except under low light conditions when CO2, but not COS, metabolism is light limited. A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. We also report first eddy flux measurements of COS/CO2 at the ecosystem scales. Preliminarily results indicate a ratio of the COS flux, Fcos, to net ecosystem CO2 exchange, NEE, of 3-5 (termed ecosystem relative uptake; ERU). Combining measurements of COS and CO2 and the new information on their ratios at different scales should permit the direct estimation of gross CO2 uptake, GPP, by land ecosystems according to: GPP=NEE*ERU/LRU. In addition, we show that COS effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) stimulate stomatal conductance. It seems likely that the stomata are responding to H2S produced in the leaves from COS.

  15. Reservoir timescales for anthropogenic CO2 in the atmosphere

    Science.gov (United States)

    O'Neill, B C; Gaffin, S R; Tubiello, F N; Oppenheimer, M

    1994-11-01

    Non-steady state timescales are complicated and their application to specific geophysical systems requires a common theoretical foundation. We first extend reservoir theory by quantifying the difference between turnover time and transit time (or residence time) for time-dependent systems under any mixing conditions. We explicitly demonstrate the errors which result from assuming these timescales are equal, which is only true at steady state. We also derive a new response function which allows the calculation of age distributions and timescales for well-mixed reservoirs away from steady state, and differentiate between timescales based on gross and net fluxes. These theoretical results are particularly important to tracer-calibrated "box models" currently used to study the carbon cycle, which usually approximate reservoirs as well-mixed. We then apply the results to the important case of anthropogenic CO2 in the atmosphere, since timescales describing its behavior are commonly used but ambiguously defined. All relevant timescales, including lifetime, transit time, and adjustment time, are precisely defined and calculated from data and models. Apparent discrepancies between the current, empirically determined turnover time of 30-60 years and longer model-derived estimates of expected lifetime and adjustment time are explained within this theoretical framework. We also discuss the results in light of policy issues related to global warming, in particular since any comparisons of the "lifetimes" of different greenhouse gases (CO2, CH4, N2O, CFC's etc.) must use a consistent definition to be meaningful.

  16. CO2 sensing at atmospheric pressure using fiber Fabry-Perot interferometer

    Science.gov (United States)

    Ma, Wenwen; He, Yelu; Zhao, Yangfan; Shen, Shilei; Wang, Ruohui; Qiao, Xueguang

    2017-05-01

    A Fabry-Perot interferometer (FPI) for CO2 gas sensing at atmospheric pressure is proposed and experimentally demonstrated. The gas sensing material is poly(ethyleneimine) (PEI)/poly(vinylalcohol) (PVA) compound, which exhibits reversible refrative index change upon absorption and release of CO2 gas molecules. The FPI is fabricated by coating a PEI/P VA film with a thickness of 15μm film at the end face of a single-mode fiber (SMF). A well-confined interference spectrum with fringe contrast of 19.5 dB and free spectra range (FSR) of 33.15 nm is obtained. The proposed FPI sensor is sensitive to the CO2 gas concentration change, and a sensitivity of 0.2833nm/PCT is obtained. The FPI sensor provides a solution in the development of low-cost and compact gas sensors for CO2 leakage monitoring.

  17. Potential effects of elevated atmospheric carbon dioxide (CO2) on coastal wetlands

    Science.gov (United States)

    McKee, Karen

    2006-01-01

    Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations.Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.

  18. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2

    Science.gov (United States)

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M.; Batke, Sven P.; Lawson, Tracy; McElwain, Jennifer C.

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency. PMID:27605929

  19. Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2.

    Directory of Open Access Journals (Sweden)

    Caroline Elliott-Kingston

    2016-08-01

    Full Text Available (1 One strategy for plants to optimise stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. (2 We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers and angiosperms under controlled ambient conditions (380ppm CO2; 20.9% O2. (3 The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group or life strategy. (4 Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimise water use efficiency.

  20. Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations

    Directory of Open Access Journals (Sweden)

    M. Satoh

    2011-12-01

    Full Text Available Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2 is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL, covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006–2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. In summer season, differences in latitudinal gradients by the fluxes are comparable to or greater than model-model differences even in the free troposphere. This result suggests that active summer vertical transport sufficiently ventilates flux signals up to the free troposphere and the models could use those for inferring surface CO2 fluxes.

  1. N2O influence on isotopic measurements of atmospheric CO2.

    Science.gov (United States)

    Sirignano, Carmina; Neubert, Rolf E M; Meijer, Harro A J

    2004-01-01

    In spite of extensive efforts, even the most experienced laboratories dealing with isotopic measurements of atmospheric CO2 still suffer from poor inter-laboratory consistency. One of the complicating factors of these isotope measurements is the presence of N2O, giving rise to mass overlap in the isotope ratio mass spectrometer (IRMS). The aim of the experiment reported here has been twofold: first, the re-establishment of the correction for 'mechanical' interference of N2O in the IRMS, along with its variability and drift, and the best way to quantitatively determine the correction factors. Second, an investigation into secondary effects, i.e. the influence of N2O admitted with the CO2 sample on the "cross contamination" between sample and (pure CO2) working gas. To make the suspected effects better detectable, isotopically enriched CO2 gas with different concentrations of N2O has been measured for the first time. No evidence of secondary effects was observed, from which we conclude that N2O is not a major player in the inter-laboratory consistency problems. Still, we also found that the determination of the 'mechanical' N2O correction needs to be very carefully determined for each individual IRMS, and should be periodically re-determined. We show that the determination of the correction should be performed using CO2/N2O mixtures with concentration ratios around that of the atmosphere, as the extrapolation from pure gas end member behaviour will give erroneous results due to non-linearities. For our IRMS, a VG SIRA series II, we find a correction of 0.23 per thousand for delta45CO2 and 0.30 per thousand for delta46CO2 of atmospheric samples, (with 0.85 per thousand mixing ratio). This implies that the relative ionisation efficiency (E) value associated with this machine is 0.75. Copyright 2004 John Wiley & Sons, Ltd.

  2. The paper trail of the 13C of atmospheric CO2 since the industrial revolution period

    Science.gov (United States)

    Yakir, Dan

    2011-07-01

    The 13C concentration in atmospheric CO2 has been declining over the past 150 years as large quantities of 13C-depleted CO2 from fossil fuel burning are added to the atmosphere. Deforestation and other land use changes have also contributed to the trend. Looking at the 13C variations in the atmosphere and in annual growth rings of trees allows us to estimate CO2 uptake by land plants and the ocean, and assess the response of plants to climate. Here I show that the effects of the declining 13C trend in atmospheric CO2 are recorded in the isotopic composition of paper used in the printing industry, which provides a well-organized archive and integrated material derived from trees' cellulose. 13C analyses of paper from two European and two American publications showed, on average, a - 1.65 ± 1.00‰ trend between 1880 and 2000, compared with - 1.45 and - 1.57‰ for air and tree-ring analyses, respectively. The greater decrease in plant-derived 13C in the paper we tested than in the air is consistent with predicted global-scale increases in plant intrinsic water-use efficiency over the 20th century. Distinct deviations from the atmospheric trend were observed in both European and American publications immediately following the World War II period.

  3. INTERSPECIFIC VARIATION IN THE GROWTH-RESPONSE OF PLANTS TO AN ELEVATED AMBIENT CO2 CONCENTRATION

    NARCIS (Netherlands)

    POORTER, H

    The effect of a doubling in the atmospheric CO2 concentration on the growth of vegetative whole plants was investigated. In a compilation of literature sources, the growth stimulation of 156 plant species was found to be on average 37%. This enhancement is small compared to what could be expected on

  4. Effects of Temperature Rise and Increase in CO2 Concentration on Simulated Wheat Yields in Europe

    NARCIS (Netherlands)

    Nonhebel, Sanderine

    1996-01-01

    A crop-growth-simulation model based on SUCROS87 was used to study effects of temperature rise and increase of atmospheric CO2 concentration on wheat yields in several regions in Europe. The model simulated potential and water-limited crop production (growth with ample supply of nutrients and in the

  5. A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration

    Science.gov (United States)

    Ensembles of process-based crop models are now commonly used to simulate crop growth and development for climate scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of de...

  6. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Atmospheric CO2 concentration will likely exceed 500 uL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA. Whether increased abundance translates to increased inflorescence production is poorly understood, and is important ...

  7. Enhanced terrestrial carbon uptake: global drivers and implications for the growth rate of atmospheric CO2.

    Science.gov (United States)

    Keenan, Trevor F.; Prentice, Colin; Canadell, Josep; Williams, Christopher; Han, Wang; Riley, William; Zhu, Qing; Koven, Charlie; Chambers, Jeff

    2017-04-01

    In this presentation we will focus on using decadal changes in the global carbon cycle to better understand how ecosystems respond to changes in CO2 concentration, temperature, and water and nutrient availability. Using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple process-based global vegetation models, we examine the causes and consequences of the long-term changes in the terrestrial carbon sink. We show that over the past century the sink has been greatly enhanced, largely due to the effect of elevated CO2 on photosynthesis dominating over warming induced increases in respiration. We also examine the relative roles of greening, water and nutrients, along with individual events such as El Nino. We show that a slowdown in the rate of warming over land since the start of the 21st century likely led to a large increase in the sink, and that this increase was sufficient to lead to a pause in the growth rate of atmospheric CO2. We also show that the recent El Nino resulted in the highest growth rate of atmospheric CO2 ever recorded. Our results provide evidence of the relative roles of CO2 fertilization and warming induced respiration in the global carbon cycle, along with an examination of the impact of climate extremes.

  8. Atmospheric CO2 variations on millennial-scale during MIS 6

    Science.gov (United States)

    Shin, Jinhwa; Grilli, Roberto; Chappellaz, Jérôme; Teste, Grégory; Nehrbass-Ahles, Christoph; Schmidely, Loïc; Schmitt, Jochen; Stocker, Thomas; Fischer, Hubertus

    2017-04-01

    Understanding natural carbon cycle / climate feedbacks on various time scales is highly important for predicting future climate changes. Paleoclimate records of Antarctic temperatures, relative sea level and foraminiferal isotope and pollen records in sediment cores from the Portuguese margin have shown climate variations on millennial time scale over the Marine Isotope Stage 6 (MIS 6; from approximately 135 to 190 kyr BP). These proxy data suggested iceberg calving in the North Atlantic result in cooling in the Northern hemisphere and warming in Antarctica by changes in the Atlantic Meridional Overturning Circulation, which is explained by a bipolar see-saw trend in the ocean (Margari et al., 2010). Atmospheric CO2 reconstruction from Antarctic ice cores can provide key information on how atmospheric CO2 concentrations are linked to millennial-scale climate changes. However, existing CO2 records cannot be used to address this relationship because of the lack of suitable temporal resolution. In this work, we will present a new CO2 record with an improved time resolution, obtained from the Dome C ice core (75˚ 06'S, 123˚ 24'E) spanning the MIS 6 period, using dry extraction methods. We will examine millennial-scale features in atmospheric CO2, and their possible links with other proxies covering MIS 6. Margari, V., Skinner, L. C., Tzedakis, P. C., Ganopolski, A., Vautravers, M., and Shackleton, N. J.: The nature of millennial scale climate variability during the past two glacial periods, Nat.Geosci., 3, 127-131, 2010.

  9. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    Science.gov (United States)

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of

  10. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    Science.gov (United States)

    Zeng, Ning; Zhao, Fang; Collatz, George J.; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-01

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 +/- 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in 1961

  11. A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2increase

    NARCIS (Netherlands)

    Wagner, F.; Below, R.; Klerk, P. de; Dilcher, D.L.; Joosten, H.; Kürschner, W.M.; Visscher, H.

    1996-01-01

    Carbon dioxide (CO2) has been increasing in atmospheric concentration since the Industrial Revolution. A decreasing number of stomata on leaves of land plants still provides the only morphological evidence that this man-made increase has already affected the biosphere. The current rate of CO2

  12. Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event

    NARCIS (Netherlands)

    Wagner, F.; Aaby, B.; Visscher, H.

    2002-01-01

    By applying the inverse relation between numbers of leaf stomata and atmospheric CO2 concentration, stomatal frequency analysis of fossil birch leaves from lake deposits in Denmark reveals a century-scale CO2 change during the prominent Holocene cooling event that occurred in the North Atlantic

  13. Paleozoic Atmospheric CO2: Importance of Solar Radiation and Plant Evolution.

    Science.gov (United States)

    Berner, R A

    1993-07-02

    Changes in solar radiation, as it affects the rate of weathering of silicates on the continents, and other changes involving weathering and the degassing of carbon dioxide (CO(2)) have been included in a long-term carbon-cycle model. These additions to the model show that the major controls on CO(2) concentrations during the Paleozoic era were solar and biological, and not tectonic, in origin. The model predictions agree with independent estimates of a large mid-Paleozoic (400 to 320 million years ago) drop in CO(2) concentrations, which led to large-scale glaciation. This agreement indicates that variations in the atmospheric greenhouse effect were important in global climate change during the distant geologic past.

  14. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress.

    Science.gov (United States)

    Li, Tingqiang; Tao, Qi; Di, Zhenzhen; Lu, Fan; Yang, Xiaoe

    2015-07-01

    The combined effects of elevated CO2 and cadmium (Cd) on photosynthetic rate, chlorophyll fluorescence and Cd accumulation in hyperaccumulator Sedum alfredii Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 µL L(-1)) or elevated (800 µL L(-1)) CO2 . Elevated CO2 significantly (P < 0.05) increased Pn (105%-149%), Pnmax (38.8%-63.0%) and AQY (20.0%-34.8%) of S. alfredii in all the Cd treatments, but reduced chlorophyll concentration, dark respiration and photorespiration. After 10 days growth in medium with 50 µM Cd under elevated CO2 , PSII activities were significantly enhanced (P < 0.05) with Pm, Fv/Fm, Φ(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredii grown under elevated CO2 was increased by 44.1%-48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredii due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredii. © 2014 Institute of Botany, Chinese Academy of Sciences.

  15. [Photosynthetic characteristics of Bothriochloa ischaemum under drought stress and elevated CO2 concentration].

    Science.gov (United States)

    Zhang, Chang-Sheng; Liu, Guo-Bin; Xue, Sha; Ji, Zhi-Qing; Zhang, Chao

    2012-11-01

    A pot experiment was conducted to study the variations of the photo-physiological characteristics of native bluestem (Bothriochloa ischaemum) in loess hilly-gully region under different soil moisture condition (80% and 40% field capacity) and different atmospheric CO2 concentration (375 micromol x m(-2) x s(-1) and 750 micromol x m(-2) x s(-1). The results showed that drought stress decreased the maximum photosynthetic rate (Pn max), apparent quantum efficiency (AQE), stomatal conductance (ga), transpiration rate (Tx), maximum photochemical efficiency (F/Fm), potential photochemical efficiency (Fv/Fo), and photosynthetic pigments contents, and increased the malondialdehyde (MDA) and proline (Pro) contents. Under sufficient moisture condition, elevated CO2 concentration didn't change the P n max and the, MDA and Pro contents significantly; under drought stress, elevated CO2 improved the maximal fluorescence (Fm), Fv/Fm, Fv/Fo, photosynthetic pigments contents, and AQE, and the Pn max under elevated CO2 was increased significantly by 23.3%, and the MDA and Pro contents were decreased significantly, as compared with those under ambient CO2 concentration. All the results suggested that elevated CO2 concentration had definite compensation effect on the photosynthetic reduction of B. ischaemum induced by drought stress, and alleviated the damage of drought stress on B. ischaemum.

  16. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Osenberg, Craig W; Hungate, Bruce A

    2011-07-13

    Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated. ©2011 Macmillan Publishers Limited. All rights reserved

  17. Drought × CO2 interactions in trees: a test of the low-intercellular CO2 concentration (Ci ) mechanism.

    Science.gov (United States)

    Kelly, Jeff W G; Duursma, Remko A; Atwell, Brian J; Tissue, David T; Medlyn, Belinda E

    2016-03-01

    Models of tree responses to climate typically project that elevated atmospheric CO2 concentration (eCa ) will reduce drought impacts on forests. We tested one of the mechanisms underlying this interaction, the 'low Ci effect', in which stomatal closure in drought conditions reduces the intercellular CO2 concentration (Ci ), resulting in a larger relative enhancement of photosynthesis with eCa , and, consequently, a larger relative biomass response. We grew two Eucalyptus species of contrasting drought tolerance at ambient and elevated Ca for 6-9 months in large pots maintained at 50% (drought) and 100% field capacity. Droughted plants did not have significantly lower Ci than well-watered plants, which we attributed to long-term changes in leaf area. Hence, there should not have been an interaction between eCa and water availability on biomass, and we did not detect one. The xeric species did have higher Ci than the mesic species, indicating lower water-use efficiency, but both species exhibited similar responses of photosynthesis and biomass to eCa , owing to compensatory differences in the photosynthetic response to Ci . Our results demonstrate that long-term acclimation to drought, and coordination among species traits may be important for predicting plant responses to eCa under low water availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Atmospheric inversion for cost effective quantification of city CO2 emissions

    Science.gov (United States)

    Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.

    2015-11-01

    Cities, currently covering only a very small portion (land surface, directly release to the atmosphere about 44 % of global energy-related CO2, and are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by Monitoring, Reporting and Verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times

  19. The impact of elevated CO2 concentrations on soil microbial community, soil organic matter storage and nutrient cycling at a natural CO2 vent in NW Bohemia

    Science.gov (United States)

    Nowak, Martin; Beulig, Felix; von Fischer, Joe; Muhr, Jan; Kuesel, Kirsten; Trumbore, Susan

    2014-05-01

    Natural CO2 vents or 'mofettes' are diffusive or advective exhalations of geogenic CO2 from soils. These structures occur at several places worldwide and in most cases they are linked to volcanic activity. Characteristic for mofette soils are high CO2 concentrations of up to more than 90% as well as a lack of oxygen, low pH values and reducing conditions. Mofette soils usually are considered to be sites of carbon accumulation, which is not only due to the absence of oxygen, but might also result from lower plant litter quality due to CO2 fertilization of CO2 influenced plants and reduced availability of N and P for the decomposer community. Furthermore, fermentation processes and the formation of reduced elements by anoxic decomposition might fuel chemo-lithoautotrophic or mixotrophic microbial CO2 uptake, a process which might have important ecological functions by closing internal element cycles, formation of trace gasses as well as by re-cycling and storing of carbon. Several studies of microbial community structure revealed a shift towards CO2 utilizing prokaryotes in moffete soils compared to a reference site. Here, we use combined stable and radiocarbon isotope data from mofette soils in NW Bohemia to quantify the contribution of geogenic CO2 to soil organic carbon formation within mofette soils, either resulting from plant litter or from microbial CO2 uptake. This is possible because the geogenic CO2 has a distinct isotopic signature (δ13C = -2 o Δ14C = -1000 ) that is very different from the isotopic signature of atmospheric CO2. First results show that mofette soils have a high Corg content (20 to 40 %) compared to a reference site (2 to 20 %) and soil organic matter is enriched in 13C as well as depleted in 14C. This indicates that geogenic CO2 is re-fixed and stored as SOM. In order to quantify microbial contribution to CO2 fixation and SOM storage, microbial CO2 uptake rates were determined by incubating mofette soils with 13CO2 labelled gas. The

  20. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    Science.gov (United States)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological

  1. Atmospheric CO2 enrichment and drought stress modify root exudation of barley.

    Science.gov (United States)

    Calvo, Olga C; Franzaring, Jürgen; Schmid, Iris; Müller, Matthias; Brohon, Nolwenn; Fangmeier, Andreas

    2017-03-01

    Rising CO2 concentrations associated with drought stress is likely to influence not only aboveground growth, but also belowground plant processes. Little is known about root exudation being influenced by elements of climate change. Therefore, this study wanted to clarify whether barley root exudation responds to drought and CO2 enrichment and whether this reaction differs between an old and a recently released malting barley cultivar. Barley plants were grown in pots filled with sand in controlled climate chambers at ambient (380 ppm) or elevated (550 ppm) atmospheric [CO2 ] and a normal or reduced water supply. Root exudation patterns were examined at the stem elongation growth stage and when the inflorescences emerged. At both dates, root exudates were analyzed for different compounds such as total free amino acids, proline, potassium, and some phytohormones. Elevated [CO2 ] decreased the concentrations in root exudates of some compounds such as total free amino acids, proline, and abscisic acid. Moreover, reduced water supply increased proline, potassium, electric conductivity, and hormone concentrations. In general, the modern cultivar showed higher concentrations of proline and abscisic acid than the old one, but the cultivars responded differentially under elevated CO2 . Plant developmental stage had also an impact on the root exudation patterns of barley. Generally, we observed significant effects of CO2 enrichment, watering levels, and, to a lesser extent, cultivar on root exudation. However, we did not find any mitigation of the adverse effects of drought by elevated CO2 . Understanding the multitude of relationships within the rhizosphere is an important aspect that has to be taken into consideration in the context of crop performance and carbon balance under conditions of climate change. © 2016 John Wiley & Sons Ltd.

  2. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Directory of Open Access Journals (Sweden)

    N. Chandra

    2016-05-01

    Full Text Available About 70 % of the anthropogenic carbon dioxide (CO2 is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm during the autumn (SON season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic

  3. Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation

    NARCIS (Netherlands)

    Brilman, Derk Willem Frederik; Garcia Alba, Laura; Veneman, Rens

    2013-01-01

    In this work, we propose, demonstrate and evaluate the concept of atmospheric CO2 capture for enhanced algae cultivation (and horticulture), as alternative to the application of flue gas derived CO2. A supported amine sorbent was prepared and able to capture CO2 at atmospheric conditions and

  4. [Study on the change of dune CO2 concentration in the autumn at Minqin in Tengger desert].

    Science.gov (United States)

    Shao, Tian-Jie; Zhao, Jing-Bo; Yu, Ke-Ke; Dong, Zhi-Bao

    2010-12-01

    In order to find out the CO2 concentration of the desert area, the influence of it on the CO2 in the atmosphere and the role that it played on the global carbon cycle, the research team utilized in September 2009 infrared CO2 monitor to observe the CO2 concentration of the 12 drill holes day and night in Minqin desert area in the Tengger desert. The difference of various observation spots' CO2 concentration of the desert area in the Tengger desert area is relatively big. The CO2 concentration at night is low but high in the daytime and the CO2 concentration at each observation spot changes from 310 x 10(-6) to 2 630 x 10(-6). The CO2 concentration is also obviously different in depth and the CO2 concentration at different depths in order of size is as follows: 4 m(3m) > 2 m > 1m. Compared with Xi' an area where is in the temperate and semi-humid region, the CO2 concentration of the desert area in Tengger desert is very low. The diurnal variation of CO2 concentration of the desert area in Tengger desert is obvious, and from the day 09:00 am to 09:00 am the next day, the CO2 concentrations at different depths which rang from 1 m to 4 m present the regularity that it changes from low to high, and then from high to low. The diurnal variation in temperature is the main reason that causes the change of the CO2 concentration in the sand layer, both of which have the positive correlation. The sand layer's CO2 concentration with higher water content is obviously higher than that with lower water content. The moisture content of sand layer is the main factor of the CO2 concentration. The CO2 concentration above 4m in the desert area is higher than that above the surface, which maybe indicates that the CO2 from the highest desert area is also the resource of CO2 in the atmosphere.

  5. Sensitive indicators of Stipa bungeana response to precipitation under ambient and elevated CO2 concentration

    Science.gov (United States)

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu

    2017-09-01

    Precipitation is a primary environmental factor in the semiarid grasslands of northern China. With increased concentrations of atmospheric greenhouse gases, precipitation regimes will change, and high-impact weather events may be more common. Currently, many ecophysiological indicators are known to reflect drought conditions, but these indicators vary greatly among species, and few studies focus on the applicability of these drought indicators under high CO2 conditions. In this study, five precipitation levels (- 30%, - 15%, control, + 15%, and + 30%) were used to simulate the effects of precipitation change on 18 ecophysiological characteristics in Stipa bungeana, including leaf area, plant height, leaf nitrogen (N), and chlorophyll content, among others. Two levels of CO2 concentration (ambient, 390 ppm; 550 ppm) were used to simulate the effects of elevated CO2 on these drought indicators. Using gray relational analysis and phenotypic plasticity analysis, we found that total leaf area or leaf number (morphology), leaf water potential or leaf water content (physiology), and aboveground biomass better reflected the water status of S. bungeana under ambient and elevated CO2 than the 13 other analyzed variables. The sensitivity of drought indicators changed under the elevated CO2 condition. By quantifying the relationship between precipitation and the five most sensitive indicators, we found that the thresholds of precipitation decreased under elevated CO2 concentration. These results will be useful for objective monitoring and assessment of the occurrence and development of drought events in S. bungeana grasslands.

  6. Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere.

    Science.gov (United States)

    Madhana Sekhar, Kalva; Rachapudi, Venkata Sreeharsha; Mudalkar, Shalini; Reddy, Attipalli Ramachandra

    2014-08-01

    Current study was undertaken to elucidate the responses of short rotation coppice (SRC) mulberry under elevated CO2 atmosphere (550μmolmol(-1)). Throughout the experimental period, elevated CO2 grown mulberry plants showed significant increase in light saturated photosynthetic rates (A') by increasing intercellular CO2 concentrations (Ci) despite reduced stomatal conductance (gs). Reduced gs was linked to decrease in transpiration (E) resulting in improved water use efficiency (WUE). There was a significant increase in carboxylation efficiency (CE) of Rubisco, apparent quantum efficiency (AQE), light and CO2 saturated photosynthetic rates (AMAX), photosynthetic nitrogen use efficiency (PNUE), chlorophyll a fluorescence characteristics (FV/FM and PIABS), starch and other carbohydrates in high CO2 grown plants which clearly demonstrate no photosynthetic acclimation in turn resulted marked increase in above and below ground biomass. Our results strongly suggest that short rotation forestry (<1year) with mulberry plantations should be effective to mitigate raising CO2 levels as well as for the production of renewable bio-energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Plant growth and leaf-spot severity on eucalypt at different CO2 concentrations in the air

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Oliveira da Silva

    2014-03-01

    Full Text Available The objective of this work was to evaluate the effects of increased air-CO2 concentration on plant growth and on leaf-spot caused by Cylindrocladium candelabrum in Eucalyptus urophylla. Seedlings were cultivated for 30 days at 451, 645, 904, and 1,147 µmol mol-1 CO2 ; then, they were inoculated with the pathogen and kept under the same conditions for seven days. Increased CO2 concentration increased plant height and shoot dry matter mass, and decreased disease incidence and severity. Stem diameter was not affected by the treatments. Increased concentrations of atmospheric CO2 favorably affect eucalypt growth and reduce leaf-spot severity.

  8. Assumption Centred Modelling of Ecosystem Responses to CO2 at Six US Atmospheric CO2 Enrichment Experiments.

    Science.gov (United States)

    Walker, A. P.; De Kauwe, M. G.; Medlyn, B. E.; Zaehle, S.; Luus, K. A.; Ryan, E.; Xia, J.; Norby, R. J.

    2015-12-01

    Plant photosynthetic rates increase and stomatal apertures decrease in response to elevated atmospheric CO[2] (eCO2), increasing both plant carbon (C) availability and water use efficiency. These physiological responses to eCO2 are well characterised and understood, however the ecological effects of these responses as they cascade through a suite of plant and ecosystem processes are complex and subject to multiple interactions and feedbacks. Therefore the response of the terrestrial carbon sink to increasing atmospheric CO[2] remains the largest uncertainty in global C cycle modelling to date, and is a huge contributor to uncertainty in climate change projections. Phase 2 of the FACE Model-Data Synthesis (FACE-MDS) project synthesises ecosystem observations from five long-term Free-Air CO[2] Enrichment (FACE) experiments and one open top chamber (OTC) experiment to evaluate the assumptions of a suite of terrestrial ecosystem models. The experiments are: The evergreen needleleaf Duke Forest FACE (NC), the deciduous broadleaf Oak Ridge FACE (TN), the prairie heating and FACE (WY), and the Nevada desert FACE, and the evergreen scrub oak OTC (FL). An assumption centered approach is being used to analyse: the interaction between eCO2 and water limitation on plant productivity; the interaction between eCO2 and temperature on plant productivity; whether increased rates of soil decomposition observed in many eCO2 experiments can account for model deficiencies in N uptake shown during Phase 1 of the FACE-MDS; and tracing carbon through the ecosystem to identify the exact cause of changes in ecosystem C storage.

  9. Impact of atmospheric CO2 rise on chemical weathering of the continental surfaces

    Science.gov (United States)

    Godderis, Y.; Roelandt, C.; Beaulieu, E.; Kaplan, J. O.; Schott, J.

    2009-04-01

    Continental weathering consumes atmospheric CO2. Recent analysis of field data has shown that this flux is rapidly reacting to ongoing climate (ref 1) and land use changes (ref 2), displaying an increase of up to 40 % over a few decades. Weathering processes are thus a potentially important component of the present day global carbon cycle. We developed numerical model describing continental weathering reactions based on laboratory kinetic laws and coupled to numerical model of the productivity of the biosphere (B-WITCH)(ref 3,4). This model is able to simulate the chemical composition of streams for both small and large continental watersheds. In this model, we emphasized the role of land plants in controlling belowground hydrological fluxes and decreasing the pH of percolating water through root respiration, both of which heavily impact weathering rates. Both climate change and increasing atmospheric CO2 concentrations affect the productivity and biogeography of the terrestrial biosphere through direct climate effects and CO2 fertilization. With our weathering model coupled to a dynamic global vegetation model, we have the capability to explore the impact of CO2 and climate change on rock weathering. With regards to CO2 fertilization, we calculate that the overall weathering rate may potentially rise by 20 % when CO2 increases up to 8 times the present day pressure for a large tropical watershed (Orinoco). This change is driven by a decrease in evapotranspiration when CO2 rises, and thus by an increase in the weathering profile drainage. We extend our sensitivity tests to the fertilization effect to 20 sites all over the world under various climatic, biospheric and lithologic conditions, and the results will be discussed. ref 1: Gislason et al., EPSL, 277, 213-222, 2008 ref 2: Raymond et al.,Nature, 451, 449-452, 2008 ref 3: Godd

  10. Target atmospheric CO2: Where should humanity aim?

    CERN Document Server

    Hansen, J; Kharecha, P; Beerling, D; Masson-Delmotte, V; Pagani, M; Raymo, M; Royer, D L; Zachos, J C

    2008-01-01

    Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 425 +/- 75 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practice...

  11. Effects of explicit atmospheric convection at high CO2.

    Science.gov (United States)

    Arnold, Nathan P; Branson, Mark; Burt, Melissa A; Abbot, Dorian S; Kuang, Zhiming; Randall, David A; Tziperman, Eli

    2014-07-29

    The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare preindustrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a "superparameterized" model in which convection is explicitly simulated with a cloud-permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, wintertime Arctic convection, and enhanced Madden-Julian oscillation (MJO) activity. Superparameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the MJO.

  12. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    Science.gov (United States)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  13. Marginal Lands Gross Primary Production Dominate Atmospheric CO2 Interannual Variations

    Science.gov (United States)

    Ahlström, A.; Raupach, M. R.; Schurgers, G.; Arneth, A.; Jung, M.; Reichstein, M.; Smith, B.

    2014-12-01

    Since the 1960s terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, sequestering about one quarter of anthropogenic emissions in an average year. Variations in this land carbon sink are also responsible for most of the large interannual variability in atmospheric CO2 concentrations. While most evidence places the majority of the sink in highly productive forests and at high latitudes experiencing warmer and longer growing seasons, the location and the processes governing the interannual variations are still not well characterised. Here we evaluate the hypothesis that the long-term trend and the variability in the land CO2 sink are respectively dominated by geographically distinct regions: the sink by highly productive lands, mainly forests, and the variability by semi-arid or "marginal" lands where vegetation activity is strongly limited by water and therefore responds strongly to climate variability. Using novel analysis methods and data from both upscaled flux-tower measurements and a dynamic global vegetation model, we show that (1) the interannual variability in the terrestrial CO2 sink arises mainly from variability in terrestrial gross primary production (GPP); (2) most of the interannual variability in GPP arises in tropical and subtropical marginal lands, where negative anomalies are driven mainly by warm, dry conditions and positive anomalies by cool, wet conditions; (3) the variability in the GPP of high-latitude marginal lands (tundra and shrublands) is instead controlled by temperature and light, with warm bright conditions resulting in positive anomalies. The influence of ENSO (El Niño-Southern Oscillation) on the growth rate of atmospheric CO2 concentrations is mediated primarily through climatic effects on GPP in marginal lands, with opposite signs in subtropical and higher-latitude regions. Our results show that the land sink of CO2 (dominated by forests) and its interannual variability (dominated by marginal lands) are

  14. Designing an oscillating CO2 concentration experiment for field chambers

    Science.gov (United States)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  15. Designing an oscillating CO2 concentration experiment for fild chambers

    Science.gov (United States)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  16. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  17. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  18. Effects of elevated temperature and CO2 concentration on photosynthesis of the alpine plants in Zoige Plateau, China

    Science.gov (United States)

    Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie

    2017-04-01

    Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants

  19. Measuring atmospheric CO2 from space using Full Spectral Initiation (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    M. P. Barkley

    2006-01-01

    Full Text Available Satellite measurements of atmospheric CO2 concentrations are a rapidly evolving area of scientific research which can help reduce the uncertainties in the global carbon cycle fluxes and provide insight into surface sources and sinks. One of the emerging CO2 measurement techniques is a relatively new retrieval algorithm called Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS that has been developed by Buchwitz et al. (2000. This algorithm is designed to measure the total columns of CO2 (and other greenhouse gases through the application to spectral measurements in the near infrared (NIR, made by the SCIAMACHY instrument on-board ENVISAT. The algorithm itself is based on fitting the logarithm of a model reference spectrum and its derivatives to the logarithm of the ratio of a measured nadir radiance and solar irradiance spectrum. In this work, a detailed error assessment of this technique has been conducted and it has been found necessary to include suitable a priori information within the retrieval in order to minimize the errors on the retrieved CO2 columns. Hence, a more flexible implementation of the retrieval technique, called Full Spectral Initiation (FSI WFM-DOAS, has been developed which generates a reference spectrum for each individual SCIAMACHY observation using the estimated properties of the atmosphere and surface at the time of the measurement. Initial retrievals over Siberia during the summer of 2003 show that the measured CO2 columns are not biased from the input a priori data and that whilst the monthly averaged CO2 distributions contain a high degree of variability, they also contain interesting spatial features.

  20. Effects of salinity and short-term elevated atmospheric CO2on the chemical equilibrium between CO2fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Hussin, Sayed; Geissler, Nicole; El-Far, Mervat M M; Koyro, Hans-Werner

    2017-09-01

    The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO 2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m -3 NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m -3  NaCl while C50 was between 50 and 100 mol m -3  NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (A net ) at high salinity treatment, leading consequently to a disequilibrium between CO 2 -assimilation and electron transport rates (indicated by enhanced ETR max /A gross ratio). Elevated atmospheric CO 2 enhanced CO 2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO 2 concentration (indicated by enhanced C i /C a ). The priority for Stevia under elevated atmospheric CO 2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETR max /A gross ). The results imply that elevated CO 2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Faster turnover of new soil carbon inputs under increased atmospheric CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Osenberg, Craig W; Terrer, César; Carrillo, Yolima; Dijkstra, Feike A; Heath, James; Nie, Ming; Pendall, Elise; Phillips, Richard P; Hungate, Bruce A

    2017-10-01

    Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO2 concentrations may be smaller than previously assumed. © 2017 John Wiley & Sons Ltd.

  2. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    Science.gov (United States)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  3. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    the development of the new 2-micron pulsed IPDA lidar instrument, and presents the initial data for the airborne measurements of atmospheric CO2 concentration.

  4. High Arctic Forests During the Middle Eocene Supported by ~400 ppm Atmospheric CO2

    Science.gov (United States)

    Maxbauer, D. P.; Royer, D. L.; LePage, B. A.

    2013-12-01

    Fossils from Paleogene High Arctic deposits provide some of the clearest evidence for greenhouse climates and offer the potential to improve our understanding of Earth system dynamics in a largely ice-free world. One of the most well-known and exquisitely-preserved middle Eocene (47.9-37.8 Myrs ago) polar forest sites, Napartulik, crops out on eastern Axel Heiberg Island (80 °N), Nunavut, Canada. An abundance of data from Napartulik suggest mean annual temperatures of up to 30 °C warmer than today and atmospheric water loads 2× above current levels. Despite this wealth of paleontological and paleoclimatological data, there are currently no direct constraints on atmospheric CO2 levels for Napartulik or any other polar forest site. Here we apply a new plant gas-exchange model to Metasequoia (dawn redwood) leaves to reconstruct atmospheric CO2 from six fossil forests at Napartulik. Individual reconstructions vary between 405-489 ppm with a site mean of 437 ppm (337-564 ppm at 95% confidence). These estimates represent the first direct constraints on CO2 for polar fossil forests and suggest that the temperate conditions present at Napartulik during the middle Eocene were maintained under CO2 concentrations ~1.6× above pre-industrial levels. Our results strongly support the case that long-term climate sensitivity to CO2 in the past was sometimes high, even during largely ice-free periods, highlighting the need to better understand the climate forcing and feedback mechanisms responsible for this amplification.

  5. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry

    Science.gov (United States)

    Brovkin, Victor; Ganopolski, Andrey; Archer, David; Rahmstorf, Stefan

    2007-12-01

    We use an Earth system model of intermediate complexity, CLIMBER-2, to investigate what recent improvements in the representation of the physics and biology of the glacial ocean imply for the atmospheric concentration. The coupled atmosphere-ocean model under the glacial boundary conditions is able to reproduce the deep, salty, stagnant water mass inferred from Antarctic deep pore water data and the changing temperature of the entire deep ocean. When carbonate compensation is included in the model, we find a CO2 drawdown of 43 ppmv associated mainly with the shoaling of the Atlantic thermohaline circulation and an increased fraction of water masses of southern origin in the deep Atlantic. Fertilizing the Atlantic and Indian sectors of the Southern Ocean north of the polar front leads to a further drawdown of 37 ppmv. Other changes to the glacial carbon cycle include a decrease in the amount of carbon stored in the terrestrial biosphere (540 Pg C), which increases atmospheric CO2 by 15 ppmv, and a change in ocean salinity resulting from a drop in sea level, which elevates CO2 by another 12 ppmv. A decrease in shallow water CaCO3 deposition draws down CO2 by 12 ppmv. In total, the model is able to explain more than two thirds (65 ppmv) of the glacial to interglacial CO2 change, based only on mechanisms that are clearly documented in the proxy data. A good match between simulated and reconstructed distribution of δ13C changes in the deep Atlantic suggests that the model captures the mechanisms of reorganization of biogeochemistry in the Atlantic Ocean reasonably well. Additional, poorly constrained mechanisms to explain the rest of the observed drawdown include changes in the organic carbon:CaCO3 ratio of sediment rain reaching the seafloor, iron fertilization in the subantarctic Pacific Ocean, and changes in terrestrial weathering.

  6. Elevated atmospheric CO2 triggers compensatory feeding by root herbivores on a C3 but not a C4 grass.

    Directory of Open Access Journals (Sweden)

    Scott N Johnson

    Full Text Available Predicted increases in atmospheric carbon dioxide (CO2 concentrations often reduce nutritional quality for herbivores by increasing the C:N ratio of plant tissue. This frequently triggers compensatory feeding by aboveground herbivores, whereby they consume more shoot material in an attempt to meet their nutritional needs. Little, however, is known about how root herbivores respond to such changes. Grasslands are particularly vulnerable to root herbivores, which can collectively exceed the mass of mammals grazing aboveground. Here we provide novel evidence for compensatory feeding by a grass root herbivore, Sericesthis nigrolineata, under elevated atmospheric CO2 (600 µmol mol(-1 on a C3 (Microlaena stipoides but not a C4 (Cymbopogon refractus grass species. At ambient CO2 (400 µmol mol(-1 M. stipoides roots were 44% higher in nitrogen (N and 7% lower in carbon (C concentrations than C. refractus, with insects performing better on M. stipoides. Elevated CO2 decreased N and increased C:N in M. stipoides roots, but had no impact on C. refractus roots. Root-feeders displayed compensatory feeding on M. stipoides at elevated CO2, consuming 118% more tissue than at ambient atmospheric CO2. Despite this, root feeder biomass remained depressed by 24%. These results suggest that compensatory feeding under elevated atmospheric CO2 may make some grass species particularly vulnerable to attack, potentially leading to future shifts in the community composition of grasslands.

  7. Attitude toward the biological investigation for decreasing atmospheric CO2. Taiki CO2 wo sakugensuru seibutsuteki kenkyu taido

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Explanation is made of the bioprocess which aims at treating the atmospheric CO2. As a result of investigation by the Electric Power Research Institute (EPRI), it was judged that the direct CO2 removal from the flue gas of power station is costwise disadvantageous and that the biological method by CO2 fixation is economical. The following are projects supported by the EPRI: The seaweed fossilization of CO2 is a medium depth sea mechanism of having seaweeds absorb carbon and making it remain residually in the deepsea even after the plants die. Study is being made of oceanic seaweed cultivation field development, non-calcareous seaweed cultivation and spore collection. The cost is advantageously low. The cultivation of seaweeds and halophilous plants utilizes their photosynthesis to collect CO2. There are examples of studying the possibility of cultivating those plants through comparison with the land trees. The growth ratio of halophilous plants is being also studied together with the possibility that the carbon remains as a residue. The whiting is a phenomenon in which biodecomposed subsea matter becomes CaCO3. Covered with CaCO3, the ssaweeds are deposited. Investigation is being made on the seaweed morphology and condition for the occurrence of whiting. 1 ref., 2 figs., 1 tab.

  8. Computational fluid dynamics study on two-phase CO2 dispersion in a neutral atmosphere

    NARCIS (Netherlands)

    Trijssenaar, I.J.M.; Spruijt, M.P.N.; Hulsbosch, C.E.C.

    2011-01-01

    Abstract: A large release of Carbon Dioxide (CO2) is modelled with Computational Fluid Dynamics (CFD), (Fluent v12.1). Special attention is given to the modelling of a neutral atmospheric boundary layer (ABL) with gravity. Both the presence of non-vapour CO2 and the high density of CO2 require that

  9. Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Lindberg, Daniel; Hupa, Mikko

    2016-10-01

    Gasification of sugarcane vinasse in CO2 and the release of ash-forming matters in CO2 and N2 atmospheres were investigated using a differential scanning calorimetry and thermogravimetric analyzer (DSC-TGA) at temperatures between 600 and 800°C. The results showed that pyrolysis is the main mechanism for the release of the organics from vinasse. Release of ash-forming matters in the vinasse is the main cause for vinasse char weight losses in the TGA above 700°C. The losses are higher in N2 than in CO2, and increase considerably with temperature. CO2 gasification also consumes the carbon in the vinasse chars while suppressing alkali release. Alkali release was also significant due to volatilization of KCl and reduction of alkali sulfate and carbonate by carbon. The DSC measured thermal events during heating up in N2 atmosphere that correspond to predicted melting temperatures of alkali salts in the char. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The BErkeley Atmospheric CO2 Observation Network: design, calibration, and initial evaluation of a high-density CO2 surface network

    Science.gov (United States)

    Shusterman, A.; Teige, V.; Turner, A. J.; Newman, C.; Kim, J.; Cohen, R. C.

    2016-12-01

    Conventionally, ground-based carbon dioxide monitoring efforts rely on a small handful of costly instruments scattered thinly across large domains. While well characterizing total integrated emissions originating from a given metropolitan area, such approaches are ill suited to resolve the heterogeneous patterns of urban CO2 sources occurring within the domain, despite the fact that these sources are often regulated individually and independently of the regional total. To better observe said heterogeneities, we present the BErkeley Atmospheric CO2 Observation Network (BEACO2N), an ensemble of 28 moderate-cost CO2 and air quality sensing "nodes" distributed across and around the city of Oakland, California at 2 km intervals, constituting what is, to our knowledge, the highest density CO2 monitoring network to date. We evaluate the network on the basis of four performance parameters (cost, reliability, precision, and bias) and derive various post hoc mathematical treatments to compensate for the deleterious effects of meteorological variability, temporal drift, and uncharacterized atemporal biases on the sensor data. We find our approach to dependably provide observations of sufficient quality to faithfully represent intra-city phenomena while nonetheless remaining cost-competitive with sparser networks of more expensive instruments. Furthermore, preliminary analyses of the first three years of observations reveal small scale variability in CO2 concentrations that cannot be accurately captured by current mesoscale modeling techniques, reinforcing the importance of such high resolution top-down observational methodologies to our understanding of urban CO2 on the actual scales of emission and regulation.

  11. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor.

    Science.gov (United States)

    Hauck, J; Völker, C

    2015-03-16

    The Southern Ocean is a key region for global carbon uptake and is characterized by a strong seasonality with the annual CO2 uptake being mediated by biological carbon drawdown in summer. Here we show that the contribution of biology to CO2 uptake will become even more important until 2100. This is the case even if biological production remains unaltered and can be explained by the decreasing buffer capacity of the ocean as its carbon content increases. The same amount of biological carbon drawdown leads to a more than twice as large reduction in CO2(aq) concentration and hence to a larger CO2 gradient between ocean and atmosphere that drives the gas exchange. While the winter uptake south of 44°S changes little, the summer uptake increases largely and is responsible for the annual mean response. The combination of decreasing buffer capacity and strong seasonality of biological carbon drawdown introduces a strong and increasing seasonality in the anthropogenic carbon uptake. Decrease of buffer capacity leads to stronger summer CO2 uptake in the futureBiology will contribute more to future CO2 uptake in Southern OceanSeasonality affects anthropogenic carbon uptake strongly.

  12. A proposed potential role for increasing atmospheric CO2 as a promoter of weight gain and obesity

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Sjödin, Anders Mikael; Astrup, A

    2012-01-01

    Human obesity has evolved into a global epidemic. Interestingly, a similar trend has been observed in many animal species, although diet composition, food availability and physical activity have essentially remained unchanged. This suggests a common factor-potentially an environmental factor...... affecting all species. Coinciding with the increase in obesity, atmospheric CO2 concentration has increased more than 40%. Furthermore, in modern societies, we spend more time indoors, where CO2 often reaches even higher concentrations. Increased CO2 concentration in inhaled air decreases the pH of blood......, which in turn spills over to cerebrospinal fluids. Nerve cells in the hypothalamus that regulate appetite and wakefulness have been shown to be extremely sensitive to pH, doubling their activity if pH decreases by 0.1 units. We hypothesize that an increased acidic load from atmospheric CO2 may...

  13. NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S

    2008-09-22

    A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

  14. Seasonally varying contributions to urban CO2 in the Chicago, Illinois, USA region: Insights from a high-resolution CO2 concentration and δ13C record

    Directory of Open Access Journals (Sweden)

    Joel Moore

    2015-06-01

    Full Text Available Abstract Understanding urban carbon cycling is essential given that cities sustain 54% of the global population and contribute 70% of anthropogenic CO2 emissions. When combined with CO2 concentration measurements ([CO2], stable carbon isotope analyses (δ13C can differentiate sources of CO2, including ecosystem respiration and combustion of fossil fuels, such as petroleum and natural gas. In this study, we used a wavelength scanned-cavity ringdown spectrometer to collect ∼2x106 paired measurements for [CO2] and δ13C values in Evanston, IL for August 2011 through February 2012. Evanston is located immediately north of Chicago, IL, the third largest city in the United States. The measurements represent one of the longest records of urban [CO2] and δ13C values thus far reported. We also compiled local meteorological information, as well as complementary [CO2] and δ13C data for background sites in Park Falls, WI and Mauna Loa, HI. We use the dataset to examine how ecosystem processes, fossil fuel usage, wind speed, and wind direction control local atmospheric [CO2] and δ13C in a midcontinent urban setting on a seasonal to daily basis. On average, [CO2] and δ13C values in Evanston were 16–23 ppm higher and 0.97–1.13‰ lower than the background sites. While seasonal [CO2] and δ13C values generally followed broader northern hemisphere trends, the difference between Evanston and the background sites was larger in winter versus summer. Mixing calculations suggest that ecosystem respiration and petroleum combustion equally contributed CO2 in excess of background during the summer and that natural gas combustion contributed 80%–94% of the excess CO2 in winter. Wind speed and direction strongly influenced [CO2] and δ13C values on an hourly time scale. The highest [CO2] and lowest δ13C values occurred at wind speeds <3 m s−1 and when winds blew from the northwest, west, and south over densely populated neighborhoods.

  15. Influence of Elevated CO2 on the Carbonyl Sulfide (OCS, COS) Exchange between Plants, Soils and the Atmosphere

    Science.gov (United States)

    Bunk, R.; Behrendt, T.; Yi, Z.; Andreae, M. O.; Kesselmeier, J.

    2016-12-01

    Carbonyl sulfide (OCS) is a sulfur-containing trace gas with an atmospheric concentration of about 500 ppt. As it has some impact on the tropospheric greenhouse effect as well as on the stratospheric cooling effect by aerosols, its biogeochemical cycling if of high interest. Furthermore, in view of the close similarities between the assimilation of CO2 and OCS, terrestrial vegetation is regarded as the main global sink for OCS. Within this context, there is an increasing interest to use OCS as a proxy for CO2 to study ecosystem or global CO2 fluxes, exploiting the parallels between CO2 and OCS uptake by plants. However, the exchange of OCS between an ecosystem and the atmosphere does not only depend on vegetation but also on soils. We investigated the exchange processes between soils and the atmosphere and report on the impact of high but realistic CO2 concentrations on soil/atmosphere exchange and its relation to the soil water content. Not only competitive inhibition (same enzymes for CO2 and OCS uptake) but an influence on OCS production could be found. We compare these environmental effects on soils with the exchange processes between plants and the atmosphere demonstrating similar effects reaching from competitive inhibition to production of OCS.

  16. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic.

    Science.gov (United States)

    Mazankova, V; Torokova, L; Krcma, F; Mason, N J; Matejcik, S

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  17. [Effects of elevated CO2 concentration on physiological characters of three dwarf ornamental bamboo species].

    Science.gov (United States)

    Zhuang, Ming-Hao; Chen, Shuang-Lin; Li, Ying-Chun; Guo, Zi-Wu; Yang, Qing-Ping

    2013-09-01

    By using open-top chambers (OTCs) to simulate the scenes of elevated CO2 concentrations [500 micromol x mol(-1) (T1) and 700 micromol x mol(-1) (T2)], and taking ambient atmospheric CO2 concentration as the control (CK), this paper studied the effects of elevated CO2 concentration on the lipid peroxidation and anti-oxidation enzyme system in Indocalamus decorus, Pleioblastus kongosanensis, and Sasa glabra leaves. After 103 days treatment, the O2(-)* and MDA contents, relative electron conduction, and soluble sugar content in the three dwarf ornamental bamboo species leaves in T1 had no obvious change, but the activities of anti-oxidation enzymes (SOD, POD, CAT, and APX) changed to a certain extent. In T2, the MDA content and relative electron conduction had no obvious change, but the O2(-)* and soluble sugar contents and the anti-oxidation enzymes activities changed obviously. The adaptation capacity of the three bamboo species to elevated CO2 concentration was in the order of I. decorus > P. kongosanensis > S. glabra.

  18. Emissions of volatile organic compounds from hybrid poplar depend on CO2 concentration and genotype

    Science.gov (United States)

    Eller, A. S.; de Gouw, J. A.; Monson, R. K.

    2010-12-01

    Hybrid poplar is a fast-growing tree species that is likely to be an important source of biomass for the production of cellulose-based biofuels and may influence regional atmospheric chemistry through the emission of volatile organic compounds (VOCs). We used proton-transfer reaction mass spectrometry to measure VOC emissions from the leaves of four different hybrid poplar genotypes grown under ambient (400 ppm) and elevated (650 ppm) carbon dioxide concentration (CO2). The purpose of this experiment was to determine whether VOC emissions are different among genotypes and whether these emissions are likely to change as atmospheric CO2 rises. Methanol and isoprene made up over 90% of the VOC emissions and were strongly dependent on leaf age, with young leaves producing primarily methanol and switching to isoprene production as they matured. Monoterpene emissions were small, but tended to be higher in young leaves. Plants grown under elevated CO2 emitted smaller quantities of both methanol and isoprene, but the magnitude of the effect was dependent on genotype. Isoprene emission rates from mature leaves dropped from ~35 to ~28 nmol m-2 s-1 when plants were grown under elevated CO2. Emissions from individuals grown under ambient CO2 varied more based on genotype than those grown under elevated CO2, which means that we might expect smaller differences between genotypes in the future. Genotype and CO2 also affected how much carbon (C) individuals allocated to the production of VOCs. The emission rate of C from VOCs was 0.5 - 2% of the rate at which C was assimilated via net photosynthesis. The % C emitted was strongly related to genotype; clones from crosses between Populus deltoides and P. trichocarpa (T x D) allocated a greater % of their C to VOC emissions than clones from crosses of P. deltoids and P. nigra (D x N). Individuals from all four genotypes allocated a smaller % of their C to the emission of VOCs when they were grown under elevated CO2. These results

  19. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    Science.gov (United States)

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO2, since the root FW reduction caused by excess B was less marked at the high CO2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO2 concentration, and from 38 to 51% at elevated CO2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO2.

  20. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    Science.gov (United States)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    Cities currently covering only a very small portion ( land surface directly release to the atmosphere about 44 % of global energy-related CO2, but they are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by the monitoring, reporting, and verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we analyze the potential of a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. This monitoring tool is configured for the quantification of the total and sectoral CO2 emissions in the Paris metropolitan area (˜ 12 million inhabitants and 11.4 TgC emitted in 2010) during the month of January 2011. Its performances are evaluated in terms of uncertainty reduction based on observing system simulation experiments (OSSEs). They are analyzed as a function of the number of sampling sites (measuring at 25 m a.g.l.) and as a function of the network design. The instruments presently used to measure CO2 concentrations at research stations are expensive (typically ˜ EUR 50 k per sensor), which has limited the few current pilot city networks to around 10 sites. Larger theoretical networks are studied here to assess the potential benefit of hypothetical operational lower-cost sensors. The setup of our inversion system is based on a number of diagnostics and assumptions from previous city-scale inversion experiences with real data. We find that, given our assumptions underlying the configuration of the OSSEs, with 10 stations only the uncertainty for the total city CO2 emission during 1 month is significantly reduced by the inversion by ˜ 42 %. It can be further reduced by

  1. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Feng

    2016-07-01

    Full Text Available Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2 emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA megacity area. The Weather Research and Forecasting (WRF-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010. Our results show no significant difference between moderate-resolution (4 km and high-resolution (1.3 km simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution and Hestia-LA (1.3 km resolution fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of

  2. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  4. An overview of how rubisco and carbohydrate metabolism may be regulated at elevated atmospheric [CO2] and temperature

    Directory of Open Access Journals (Sweden)

    G. BOWES

    2008-12-01

    Full Text Available Although atmospheric CO2 concentration ([C02] has been up to 16-fold higher than at present, the past several million years have seen atypically low values. Thus, modern-day plants are adapted to cope with a low [CO2]/[O2] ratio. The present [CO2] does not saturate C3 photosynthesis, so its doubling produces an "efficiency effect", but it is not always fully realized. Acclimation to high [C02] during growth can down-regulate photosynthesis, presumably to optimize carbon acquisition and utilization. A primary factor in acclimation is a reduction in rubisco. Two crops, rice and soybean, were used to study this phenomenon. Rice photosynthesis and growth peaked at 500 mmol mol-1, whereas soybean responded up to 990 mmol mol-1 . Rubisco concentration declined under CO2-enrichment and increasing temperatures, more so in rice than soybean. The rubisco kcat of rice was unaffected by growth [CO2]or temperature, but that from soybean was increased by both. In rice the capacity to handle carbohydrate, as measured by sucrose phosphate synthase activity was up-regulated by CO2 -enrichment, but not by temperature. Leaf carbohydrates were increased by [CO2], but decreased by higher temperatures, starch more so than sucrose. Even though C3 species differ in response to [CO2]and temperature, CO2 -enrichment can moderate adverse effects of temperature extremes.;

  5. Lidar Measurements of Atmospheric CO2 From Regional to Global Scales

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Ismail, Syed; Kooi, Susan; hide

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate and the knowledge on its distributions and variations influences predictions of the Earth's future climate. Large uncertainties in the predictions persist due to limited observations. This study uses the airborne Intensity-Modulated Continuous-Wave (IMCW) lidar developed at NASA Langley Research Center to measure regional atmospheric CO2 spatio-temporal variations. Further lidar development and demonstration will provide the capability of global atmospheric CO2 estimations from space, which will significantly advances our knowledge on atmospheric CO2 and reduce the uncertainties in the predictions of future climate. In this presentation, atmospheric CO2 column measurements from airborne flight campaigns and lidar system simulations for space missions will be discussed. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved. Data analysis also shows that airborne lidar CO2 column measurements over these surfaces agree well with in-situ measurements. Even when thin cirrus clouds present, consistent CO2 column measurements between clear and thin cirrus cloudy skies are obtained. Airborne flight campaigns have demonstrated that precise atmospheric column CO2 values can be measured from current IM-CW lidar systems, which will lead to use this airborne technique in monitoring CO2 sinks and sources in regional and continental scales as proposed by the NASA Atmospheric Carbon and Transport â€" America project. Furthermore, analyses of space CO2 measurements shows that applying the current IM-CW lidar technology and approach to space, the CO2 science goals of space missions will be achieved, and uncertainties in CO2 distributions and variations will be reduced.

  6. Autotrophic and heterotrophic soil respiration determined with trenching, soil CO2 fluxes and 13CO2/12CO2 concentration gradients in a boreal forest ecosystem

    Science.gov (United States)

    Pumpanen, Jukka; Shurpali, Narasinha; Kulmala, Liisa; Kolari, Pasi; Heinonsalo, Jussi

    2017-04-01

    Soil CO2 efflux forms a substantial part of the ecosystem carbon balance, and it can contribute more than half of the annual ecosystem respiration. Recently assimilated carbon which has been fixed in photosynthesis during the previous days plays an important role in soil CO2 efflux, and its contribution is seasonally variable. Moreover, the recently assimilated C has been shown to stimulate the decomposition of recalcitrant C in soil and increase the mineralization of nitrogen, the most important macronutrient limiting gross primary productivity (GPP) in boreal ecosystems. Podzolic soils, typical in boreal zone, have distinctive layers with different biological and chemical properties. The biological activity in different soil layers has large seasonal variation due to vertical gradient in temperature, soil organic matter and root biomass. Thus, the source of CO2 and its components have a vertical gradient which is seasonally variable. The contribution of recently assimilated C and its seasonal as well as spatial variation in soil are difficult to assess without disturbing the system. The most common method of partitioning soil respiration into its components is trenching which entails the roots being cut or girdling where the flow of carbohydrates from the canopy to roots has been isolated by cutting of the phloem. Other methods for determining the contribution of autotrophic (Ra) and heterotrophic (Rh) respiration components in soil CO2 efflux are pulse labelling with 13CO2 or 14CO2 or the natural abundance of 13C and/or 14C isotopes. Also differences in seasonal and short-term temperature response of soil respiration have been used to separate Ra and Rh. We compared the seasonal variation in Ra and Rh using the trenching method and differences between seasonal and short-term temperature responses of soil respiration. I addition, we estimated the vertical variation in soil biological activity using soil CO2 concentration and the natural abundance of 13C and 12C

  7. Atmospheric CO2 modeling at the regional scale: an intercomparison of 5 meso-scale atmospheric models

    Directory of Open Access Journals (Sweden)

    G. Pérez-Landa

    2007-12-01

    Full Text Available Atmospheric CO2 modeling in interaction with the surface fluxes, at the regional scale is developed within the frame of the European project CarboEurope-IP and its Regional Experiment component. In this context, five meso-scale meteorological models at 2 km resolution participate in an intercomparison exercise. Using a common experimental protocol that imposes a large number of rules, two days of the CarboEurope Regional Experiment Strategy (CERES campaign are simulated. A systematic evaluation of the models is done in confrontation with the observations, using statistical tools and direct comparisons. Thus, temperature and relative humidity at 2 m, wind direction, surface energy and CO2 fluxes, vertical profiles of potential temperature as well as in-situ CO2 concentrations comparisons between observations and simulations are examined. These comparisons reveal a cold bias in the simulated temperature at 2 m, the latent heat flux is often underestimated. Nevertheless, the CO2 concentrations heterogeneities are well captured by most of the models. This intercomparison exercise shows also the models ability to represent the meteorology and carbon cycling at the synoptic and regional scale in the boundary layer, but also points out some of the major shortcomings of the models.

  8. Adaptation of the Cyanobacterium Anabaena variabilis to Low CO2 Concentration in Their Environment 1

    Science.gov (United States)

    Marcus, Yehouda; Harel, Eitan; Kaplan, Aaron

    1983-01-01

    The rate of adaptation of high CO2 (5% v/v CO2 in air)-grown Anabaena to a low level of CO2 (0.05% v/v in air) was determined as a function of O2 concentration. Exposure of cells to low (2.6%) O2 concentration resulted in an extended lag in the adaptation to low CO2 concentration. The rate of adaptation following the lag was not affected by the concentration of O2. The length of the lag period is markedly affected by the O2/CO2 concentration ratio, indicating that the signal for adaptation to low CO2 may be related to the relative rate of ribulose-1,5-bisphosphate carboxylase/oxygenase activities, rather than to CO2 concentration proper. This suggestion is supported by the observed accumulation of phosphoglycolate following transfer of cells from high to low CO2 concentration. PMID:16662790

  9. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were 6 km.

  10. Bias assessment of lower and middle tropospheric CO2 concentrations of GOSAT/TANSO-FTS TIR version 1 product

    Science.gov (United States)

    Saitoh, Naoko; Kimoto, Shuhei; Sugimura, Ryo; Imasu, Ryoichi; Shiomi, Kei; Kuze, Akihiko; Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Matsueda, Hidekazu

    2017-10-01

    CO2 observations in the free troposphere can be useful for constraining CO2 source and sink estimates at the surface since they represent CO2 concentrations away from point source emissions. The thermal infrared (TIR) band of the Thermal and Near Infrared Sensor for Carbon Observation (TANSO) Fourier transform spectrometer (FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) has been observing global CO2 concentrations in the free troposphere for about 8 years and thus could provide a dataset with which to evaluate the vertical transport of CO2 from the surface to the upper atmosphere. This study evaluated biases in the TIR version 1 (V1) CO2 product in the lower troposphere (LT) and the middle troposphere (MT) (736-287 hPa), on the basis of comparisons with CO2 profiles obtained over airports using Continuous CO2 Measuring Equipment (CME) in the Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL) project. Bias-correction values are presented for TIR CO2 data for each pressure layer in the LT and MT regions during each season and in each latitude band: 40-20° S, 20° S-20° N, 20-40° N, and 40-60° N. TIR V1 CO2 data had consistent negative biases of 1-1.5 % compared with CME CO2 data in the LT and MT regions, with the largest negative biases at 541-398 hPa, partly due to the use of 10 µm CO2 absorption band in conjunction with 15 and 9 µm absorption bands in the V1 retrieval algorithm. Global comparisons between TIR CO2 data to which the bias-correction values were applied and CO2 data simulated by a transport model based on the Nonhydrostatic ICosahedral Atmospheric Model (NICAM-TM) confirmed the validity of the bias-correction values evaluated over airports in limited areas. In low latitudes in the upper MT region (398-287 hPa), however, TIR CO2 data in northern summer were overcorrected by these bias-correction values; this is because the bias-correction values were determined using comparisons mainly over airports in

  11. Bias assessment of lower and middle tropospheric CO2 concentrations of GOSAT/TANSO-FTS TIR version 1 product

    Directory of Open Access Journals (Sweden)

    N. Saitoh

    2017-10-01

    Full Text Available CO2 observations in the free troposphere can be useful for constraining CO2 source and sink estimates at the surface since they represent CO2 concentrations away from point source emissions. The thermal infrared (TIR band of the Thermal and Near Infrared Sensor for Carbon Observation (TANSO Fourier transform spectrometer (FTS on board the Greenhouse Gases Observing Satellite (GOSAT has been observing global CO2 concentrations in the free troposphere for about 8 years and thus could provide a dataset with which to evaluate the vertical transport of CO2 from the surface to the upper atmosphere. This study evaluated biases in the TIR version 1 (V1 CO2 product in the lower troposphere (LT and the middle troposphere (MT (736–287 hPa, on the basis of comparisons with CO2 profiles obtained over airports using Continuous CO2 Measuring Equipment (CME in the Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL project. Bias-correction values are presented for TIR CO2 data for each pressure layer in the LT and MT regions during each season and in each latitude band: 40–20° S, 20° S–20° N, 20–40° N, and 40–60° N. TIR V1 CO2 data had consistent negative biases of 1–1.5 % compared with CME CO2 data in the LT and MT regions, with the largest negative biases at 541–398 hPa, partly due to the use of 10 µm CO2 absorption band in conjunction with 15 and 9 µm absorption bands in the V1 retrieval algorithm. Global comparisons between TIR CO2 data to which the bias-correction values were applied and CO2 data simulated by a transport model based on the Nonhydrostatic ICosahedral Atmospheric Model (NICAM-TM confirmed the validity of the bias-correction values evaluated over airports in limited areas. In low latitudes in the upper MT region (398–287 hPa, however, TIR CO2 data in northern summer were overcorrected by these bias-correction values; this is because the bias-correction values were determined

  12. Potential maternal effects of elevated atmospheric CO2 on development and disease severity in a Mediterranean legume

    Directory of Open Access Journals (Sweden)

    José M. Grünzweig

    2011-07-01

    Full Text Available Global change can greatly affect plant populations both directly by influencing growing conditions and indirectly by maternal effects on development of offspring. More information is needed on transgenerational effects of global change on plants and on their interactions with pathogens. The current study assessed potential maternal effects of atmospheric CO2 enrichment on performance and disease susceptibility of first-generation offspring of the Mediterranean legume Onobrychis crista-galli. Mother plants were grown at three CO2 concentrations, and the study focused on their offspring that were raised under common ambient climate and CO2. In addition, progeny were exposed to natural infection by the fungal pathogen powdery mildew. In one out of three years, offspring of high-CO2 treatments (440 and 600 ppm had lower shoot biomass and reproductive output than offspring of low-CO2 treatment (280 ppm. Disease severity in a heavy-infection year was higher in high-CO2 than in low-CO2 offspring. However, some of the findings on maternal effects changed when the population was divided into two functionally diverging plant types distinguishable by flower color (pink, Type P; white Type W. Disease severity in a heavy-infection year was higher in high-CO2 than in low-CO2 progeny in the more disease-resistant (Type P, but not in the more susceptible plant type (Type W. In a low-infection year, maternal CO2 treatments did not differ in disease severity. Mother plants of Type P exposed to low CO2 produced larger seeds than all other combinations of CO2 and plant type, which might contribute to higher offspring performance. This study showed that elevated CO2 potentially exerts environmental maternal effects on performance of progeny and, notably, also on their susceptibility to natural infection by a pathogen. Maternal effects of global change might differently affect functionally divergent plant types, which could impact population fitness and alter plant

  13. H2O and CO2 exchange between a sphagnum mire ecosystem and the atmosphere

    Science.gov (United States)

    Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Novenko, Elena

    2013-04-01

    The modern climatic conditions are strongly influenced by both internal variability of climatic system, and various external natural and anthropogenic factors (IPCC 2007). Significant increase of concentration of greenhouse gases in the atmosphere and especially the growth of atmospheric CO2 due to human activity are considered as the main factors that are responsible for modern global warming and climate changes. A significant part of anthropogenic CO2 is absorbed from the atmosphere by land biota and especially by vegetation cover. However, it is still not completely clear what is the role of different land ecosystems and especially forests and mires in global cycles of H2O and CO2 and what is a sensitivity of these ecosystems to climate changes. Within the framework of this study the spatial and temporal variability of H2O and CO2 fluxes between a mire ecosystem and the atmosphere was described using results of the field measurements and modeling approach. For the study a mire ecosystem located in Tula region in European part of Russia was selected. The selected mire has karst origin, depth of peat float is 2.5-3.0 m (depth of depression is more than 10 meter), area is about 1 ha. The mire vegetation is characterized by sedge and sphagnum mosses cover. The mire is surrounded by broad-leaved forest of about 20 meter high. To describe the temporal and spatial patterns of H2O and CO2 fluxes within selected mire the chamber method was applied. The measurement were carried out along transect from mire edge to center from June to September of 2012. For measurements the transparent ventilated chambers combined with portable infrared CO2/H2O analyzer LI-840 (Li-Cor, USA) was used. To estimate the gross primary production and respiration of different type of vegetation within the mire the measurements were conducted both under actual light conditions and artificial shading. Results of the experimental studies showed that the maximal CO2 fluxes was observed in central

  14. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2.

    Science.gov (United States)

    McNeil, Ben I; Matear, Richard J

    2008-12-02

    Southern Ocean acidification via anthropogenic CO(2) uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO(3)(2-)) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO(3)(2-) and pH. Our analysis shows an intense wintertime minimum in CO(3)(2-) south of the Antarctic Polar Front and when combined with anthropogenic CO(2) uptake is likely to induce aragonite undersaturation when atmospheric CO(2) levels reach approximately 450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification.

  15. Effect of CO2 Concentration on Glycine and Serine Formation during Photorespiration 1

    Science.gov (United States)

    Snyder, F. W.; Tolbert, N. E.

    1974-01-01

    Amount and products of photosynthesis during 10 minutes were measured at different 14CO2 concentrations in air. With tobacco (Nicotiana tabacum L. cv. Maryland Mammoth) leaves the percentage of 14C in glycine plus serine was highest (42%) at 0.005% CO2, and decreased with increasing CO2 concentration to 7% of the total at 1% CO2 in air. However, above 0.03% CO2 the total amount of 14C incorporated into the glycine and serine pool was about constant. At 0.005% or 0.03% CO2 the percentage and amount of 14C in sucrose was small but increased greatly at higher CO2 levels as sucrose accumulated as an end product. Relatively similar data were obtained with sugar beet (Beta vulgaris L. cv. US H20) leaves. The results suggest that photorespiration at high CO2 concentration is not inhibited but that CO2 loss from it becomes less significant. PMID:16658736

  16. Silicate dissolution boosts the CO2 concentrations in subduction fluids.

    Science.gov (United States)

    Tumiati, S; Tiraboschi, C; Sverjensky, D A; Pettke, T; Recchia, S; Ulmer, P; Miozzi, F; Poli, S

    2017-09-20

    Estimates of dissolved CO2 in subduction-zone fluids are based on thermodynamic models, relying on a very sparse experimental data base. Here, we present experimental data at 1-3 GPa, 800 °C, and ∆FMQ ≈ -0.5 for the volatiles and solute contents of graphite-saturated fluids in the systems COH, SiO2-COH ( + quartz/coesite) and MgO-SiO2-COH ( + forsterite and enstatite). The CO2 content of fluids interacting with silicates exceeds the amounts measured in the pure COH system by up to 30 mol%, as a consequence of a decrease in water activity probably associated with the formation of organic complexes containing Si-O-C and Si-O-Mg bonds. The interaction of deep aqueous fluids with silicates is a novel mechanism for controlling the composition of subduction COH fluids, promoting the deep CO2 transfer from the slab-mantle interface to the overlying mantle wedge, in particular where fluids are stable over melts.Current estimates of dissolved CO2 in subduction-zone fluids based on thermodynamic models rely on a very sparse experimental data base. Here, the authors show that experimental graphite-saturated COH fluids interacting with silicates at 1-3 GPa and 800 °C display unpredictably high CO2 contents.

  17. The Role of CO2 Clouds on the Stability of the Early Mars Atmosphere Against Collapse

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Steakley, Kathryn; Murphy, Jim; Kling, Alexandre

    2017-10-01

    The early Mars atmosphere was likely significantly more massive than it is today, given the growing body of evidence that liquid water flowed on the surface early in the planet’s history. Although the CO2 inventory was likely larger in the past, there is much we still do not understand about the state of that CO2. As surface pressure increases, the temperature at which CO2 condenses also increases, making it more likely that CO2 ice would form and persist on the surface when the atmospheric mass increases. An atmosphere that is stable against collapse must contain enough energy, distributed globally, to prohibit the formation of permanents CO2 ice reservoirs that lead to collapse. The presence of the “faint young sun” compounds this issue. Previous global climate model (GCM) investigations show that atmospheres within specific ranges of obliquities and atmospheric masses are stable against collapse. We use the NASA Ames Mars GCM to expand on these works by focusing specifically on the role of CO2 clouds in atmospheric stability. Two end member simulations are executed, one that includes CO2 cloud formation and one that does not. The simulation that explicitly includes CO2 clouds is stable, while the simulation without CO2 clouds collapses into permanent surface CO2 reservoirs. In both cases, significant atmospheric condensation is occurring in the atmosphere throughout the year. In the case without CO2 clouds, all atmospheric condensation (even if it occurs at altitude) leads directly to the accumulation of surface ice, whereas in the case with CO2 clouds, there is a finite settling timescale for the cloud particles. Depending on this timescale and the local conditions, the cloud particles could stay aloft or sublimate as they fall toward the surface. Thus, the striking difference between these two cases illustrates the important role of CO2 clouds. We plan to conduct and present further simulations to better understand how atmospheric stability depends on

  18. Interactions Between Temperature and Intercellular CO2 Concentration in Controlling Leaf Isoprene Emission Rates

    Science.gov (United States)

    Monson, Russell K.; Neice, Amberly A.; Trahan, Nicole A.; Shiach, Ian; McCorkel, Joel T.; Moore, David J. P.

    2016-01-01

    Plant isoprene emissions have been linked to several reaction pathways involved in atmospheric photochemistry. Evidence exists from a limited set of past observations that isoprene emission rate (I(sub s)) decreases as a function of increasing atmospheric CO2 concentration, and that increased temperature suppresses the CO2 effect. We studied interactions between intercellular CO2 concentration (C(sub I)) and temperature as they affect I(sub s) in field-grown hybrid poplar trees in one of the warmest climates on earth - the Sonoran Desert of the southwestern United States. We observed an unexpected midsummer down regulation of I(sub s) despite the persistence of relatively high temperatures. High temperature suppression of the I(sub s):C(sub I) relation occurred at all times during the growing season, but sensitivity of I(sub s) to increased C(sub I) was greatest during the midsummer period when I(subs) was lowest. We interpret the seasonal down regulation of I(sub s) and increased sensitivity of I(sub s) to C(sub I) as being caused by weather changes associated with the onset of a regional monsoon system. Our observations on the temperature suppression of the I(sub s):C(sub I) relation are best explained by the existence of a small pool of chloroplastic inorganic phosphate, balanced by several large, connected metabolic fluxes, which together, determine the C(sub I) and temperature dependencies of phosphoenolpyruvate import into the chloroplast.

  19. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    Science.gov (United States)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. CO32− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii

    Directory of Open Access Journals (Sweden)

    K. K. Yates

    2006-01-01

    Full Text Available The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO32− to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO32− concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m−2 h−1 and dissolution ranged from –0.05 to –3.3 mmol CaCO3 m−2 h−1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO32− at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO32− and pCO2. Threshold pCO2 and CO32− values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 μatm and ranged from 467 to 1003 μatm. The average CO32− threshold value was 152±24 μmol kg−1, ranging from 113 to 184 μmol kg−1. Ambient seawater measurements of pCO2 and CO32− indicate that CO32− and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

  1. Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO(2) enrichment.

    Science.gov (United States)

    Hättenschwiler, Stephan; Zumbrunn, Thomas

    2006-02-01

    Populations of the annual hemiparasites Melampyrum pratense L. and Melampyrum sylvaticum L. were studied at the treeline in the Swiss Alps after 3 years of in situ CO(2) enrichment. The total density of Melampyrum doubled to an average of 44 individuals per square meter at elevated CO(2) compared to ambient CO(2). In response to elevated CO(2), the height of the more abundant and more evenly distributed M. pratense increased by 20%, the number of seeds per fruit by 21%, and the total seed dry mass per fruit by 27%, but the individual seed size did not change. These results suggest that rising atmospheric CO(2) may stimulate the reproductive output and increase the abundance of Melampyrum in the alpine treeline ecotone. Because hemiparasites can have important effects on community dynamics and ecosystem processes, notably the N cycle, changing Melampyrum abundance may potentially influence the functioning of alpine ecosystems in a future CO(2)-rich atmosphere.

  2. [Influence of elevated atmospheric CO2 on rhizosphere microbes and arbuscular mycorrhizae].

    Science.gov (United States)

    Chen, Jing; Chen, Xin; Tang, Jianjun

    2004-12-01

    The changes of microbial communities in rhizosphere and the formation of mycorrhizae play an important role in affecting the dynamics of plant communities and terrestrial ecosystems. This paper summarized and discussed the effects of elevated atmospheric CO2 on them. Under elevated atmospheric CO2, the carbohydrates accumulated in root systems increased, and the rhizospheric environment and its microbial communities as well as the formation of mycorrhizae changed. It is suggested that the researches in the future should be focused on the effects of rhizosphere microbes and arbuscular mycorrhizae on regulating the carbon dynamics of plant communities and terrestrial ecosystems under elevated atmospheric CO2.

  3. Sensitivity of grapevine phenology to water availability, temperature and CO2 concentration

    Directory of Open Access Journals (Sweden)

    Johann Martínez-Lüscher

    2016-07-01

    Full Text Available In recent decades, mean global temperatures have increased in parallel with a sharp rise in atmospheric carbon dioxide (CO2 levels, with apparent implications for precipitation patterns. The aim of the present work is to assess the sensitivity of different phenological stages of grapevine to temperature and to study the influence of other factors related to climate change (water availability and CO2 concentration on this relationship. Grapevine phenological records from 9 plantings between 42.75°N and 46.03°N consisting of dates for budburst, flowering and fruit maturity were used. In addition, we used phenological data collected from two years of experiments with grapevine fruit-bearing cuttings with two grapevine varieties under two levels of water availability, two temperature regimes and two levels of CO2. Dormancy breaking and flowering were strongly dependent on spring temperature, while neither variation in temperature during the chilling period nor precipitation significantly affected budburst date. The time needed to reach fruit maturity diminished with increasing temperature and decreasing precipitation. Experiments under semi-controlled conditions revealed great sensitivity of berry development to both temperature and CO2. Water availability had significant interactions with both temperature and CO2; however, in general, water deficit delayed maturity when combined with other factors. Sensitivities to temperature and CO2 varied widely, but higher sensitivities appeared in the coolest year, particularly for the late ripening variety, ‘White Tempranillo’. The knowledge gained in whole plant physiology and multi stress approaches is crucial to predict the effects of climate change and to design mitigation and adaptation strategies allowing viticulture to cope with climate change.

  4. Is late Quaternary climate change governed by self-sustained oscillations in atmospheric CO2?

    Science.gov (United States)

    Wallmann, Klaus

    2014-05-01

    A simple earth system model is developed to simulate global carbon and phosphorus cycling over the late Quaternary. It is focused on the geological cycling of C and P via continental weathering, volcanic and metamorphic degassing, hydrothermal processes and burial at the seabed. A simple ocean model is embedded in this geological model where the global ocean is represented by surface water, thermocline and deep water boxes. Concentrations of dissolved phosphorus, dissolved inorganic carbon, and total alkalinity are calculated for each box. The partial pressure of CO2 in the atmosphere (pCO2A) is determined by exchange processes with the surface ocean and the continents. It serves as key prognostic model variable and is assumed to govern surface temperatures and global sea-level. The model is formulated as autonomous system, in which the governing equations have no explicit time-dependence. For certain parameter values, the model does not converge towards a steady-state but develops stable self-sustained oscillations. These free oscillations feature pCO2A minima and maxima consistent with the ice-core record when vertical mixing in the ocean is allowed to vary in response to pCO2A-controlled temperature change. A stable 100-kyr cycle with a rapid transition from glacial to interglacial conditions is obtained when additional non-linear equations are applied to calculate deep ocean mixing, iron fertilization and the depth of organic matter degradation as function of pCO2A-controlled surface temperature. The δ13C value of carbon in the ocean/atmosphere system calculated in these model runs is consistent with the benthic δ13C record. However, the simulated 13C depletion in the glacial ocean is not driven by the decline in terrestrial carbon stocks but by sea-level change controlling the rates of organic carbon burial and weathering at continental margins. The pCO2A- and δ13C oscillations develop without any form of external Milankovitch forcing. They are induced and

  5. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    OpenAIRE

    Han Zhang; Long Cao

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scen...

  6. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    Science.gov (United States)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    The abundance of the isotopologue 18O13C16O (Δ47) in atmospheric air is a promising new tracer for the atmospheric carbon cycle (Eiler and Schauble, 2004; Affek and Eiler, 2006; Affek et al., 2007). The large gross fluxes in CO2 between the atmosphere and biosphere are supposed to play a major role in controlling its abundance. Eiler and Schauble (2004) set up a box model describing the effect of air-leaf interaction on the abundance of 18O13C16O in atmospheric air. The main assumption is that the exchange between CO2 and water within the mesophyll cells will imprint a Δ47 value on the back-diffusing CO2 that reflects the leaf temperature. Additionally, kinetic effects due to CO2 diffusion into and out of the stomata are thought to play a role. We investigated the effect of photosynthesis on the residual CO2 under controlled conditions using a leaf chamber set-up to quantitatively test the model assumptions suggested by Eiler and Schauble (2004). We studied the effect of photosynthesis on the residual CO2 using two C3 and one C4 plant species: (i) sunflower (Helianthus annuus), a C3 species with a high leaf conductance for CO2 diffusion, (ii) ivy (Hedera hibernica), a C3 species with a low conductance, and (iii), maize (Zea mays), a species with the C4 photosynthetic pathway. We also investigated the effect of different light intensities (photosynthetic photon flux density of 200, 700 and 1800 μmol m2s-1), and thus, photosynthetic rate in sunflower and maize. A leaf was mounted in a cuvette with a transparent window and an adjustable light source. The air inside was thoroughly mixed, making the composition of the outgoing air equal to the air inside. A gas-mixing unit was attached at the entrance of the cuvette that mixed air with a high concentration of scrambled CO2 with a Δ47 value of 0 to 0.1‰ with CO2 free air to set the CO2 concentration of ingoing air at 500 ppm. The flow rate through the cuvette was adjusted to the photosynthetic activity of the leaf

  7. Atmospheric CO2 at Waliguan station in China: Transport climatology, temporal patterns and source-sink region representativeness

    Science.gov (United States)

    Cheng, Siyang; An, Xingqin; Zhou, Lingxi; Tans, Pieter P.; Jacobson, Andy

    2017-06-01

    In order to explore where the source and sink have the greatest impact on CO2 background concentration at Waliguan (WLG) station, a statistical method is here proposed to calculate the representative source-sink region. The key to this method is to find the best footprint threshold, and the study is carried out in four parts. Firstly, transport climatology, expressed by total monthly footprint, was simulated by FLEXPART on a 7-day time scale. Surface CO2 emissions in Eurasia frequently transported to WLG station. WLG station was mainly influenced by the westerlies in winter and partly controlled by the Southeast Asian monsoon in summer. Secondly, CO2 concentrations, simulated by CT2015, were processed and analyzed through data quality control, screening, fitting and comparing. CO2 concentrations displayed obvious seasonal variation, with the maximum and minimum concentration appearing in April and August, respectively. The correlation of CO2 fitting background concentrations was R2 = 0.91 between simulation and observation. The temporal patterns were mainly correlated with CO2 exchange of biosphere-atmosphere, human activities and air transport. Thirdly, for the monthly CO2 fitting background concentrations from CT2015, a best footprint threshold was found based on correlation analysis and numerical iteration using the data of footprints and emissions. The grid cells where monthly footprints were greater than the best footprint threshold were the best threshold area corresponding to representative source-sink region. The representative source-sink region of maximum CO2 concentration in April was primarily located in Qinghai province, but the minimum CO2 concentration in August was mainly influenced by emissions in a wider region. Finally, we briefly presented the CO2 source-sink characteristics in the best threshold area. Generally, the best threshold area was a carbon sink. The major source and sink were relatively weak owing to less human activities and

  8. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    Science.gov (United States)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; hide

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  9. Effects of elevated atmospheric CO2 and N fertilization on bahiagrass root distribution

    Science.gov (United States)

    The effects of elevated atmospheric CO2 on pasture systems remain understudied in the Southeastern US. A 10-year study of bahiagrass (Paspalum notatum Flüggé) response to elevated CO2 was established in 2005 using open top field chambers on a Blanton loamy sand (loamy siliceous, thermic, Grossarenic...

  10. Atmospheric CO2 and O3 alter competition for soil nitrogen in developing forests

    Science.gov (United States)

    Donald R. Zak; Mark E. Kubiske; Kurt S. Pregitzer; Andrew J. Burton

    2012-01-01

    Plant growth responses to rising atmospheric CO2 and O3 vary among genotypes and between species, which could plausibly influence the strength of competitive interactions for soil N. Ascribable to the size-symmetric nature of belowground competition, we reasoned that differential growth responses to CO2...

  11. Impacts of elevated atmospheric CO2 and O3 on Paper Birch (Betula papyrifera): reproductive fitness

    Science.gov (United States)

    Joseph N.T. Darbah; Mark E. Kubiske; Neil Nelson; Elina Oksanen; Elina Vaapavuori; David F. Karnosky

    2007-01-01

    Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO2 and O3 for paper birch...

  12. Acetylene fuel from atmospheric CO2 on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  13. Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO2and varying N availability

    Science.gov (United States)

    John S. King; Kurt S. Pregitzer; Donald R. Zak; Mark E. Kubiske; Jennifer A. Ashby; William E. Holmes

    2001-01-01

    It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future....

  14. ASSIMILATION, RESPIRATION AND ALLOCATION OF CARBON IN PLANTAGO MAJOR AS AFFECTED BY ATMOSPHERIC CO2 LEVELS - A CASE-STUDY

    NARCIS (Netherlands)

    DENHERTOG, J; STULEN, [No Value; LAMBERS, H

    The response of Plantago major ssp. pleiosperma plants, grown on nutrient solution in a climate chamber, to a doubling of the ambient atmospheric CO2 concentration was investigated. Total dry matter production was increased by 30 % after 3 weeks of exposure, due to a transient stimulation of the

  15. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Kawa, S. Randy; Sun, Xiaoli; Chen, Jeffrey; Stephen, Mark A.; Collatz, G. James; Mao, Jianping; Allan, Graham

    2007-01-01

    Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570

  16. Will rising atmospheric CO2affect leaf litter quality and in situ decomposition rates in native plant communities?

    Science.gov (United States)

    Hirschel, G; Körner, C; Arnone Iii, J A

    1997-04-01

    Though field data for naturally senesced leaf litter are rare, it is commonly assumed that rising atmospheric CO 2 concentrations will reduce leaf litter quality and decomposition rates in terrestrial ecosystems and that this will lead to decreased rates of nutrient cycling and increased carbon sequestration in native ecosystems. We generally found that the quality of␣naturally senesced leaf litter (i.e. concentrations of C, N and lignin; C:N, lignin:N) of a variety of native plant species produced in alpine, temperate and tropical communities maintained at elevated CO 2 (600-680 μl l -1 ) was not significantly different from that produced in similar communities maintained at current ambient CO 2 concentrations (340-355 μl l -1 ). When this litter was allowed to decompose in situ in a humid tropical forest in Panama (Cecropia peltata, Elettaria cardamomum, and Ficus benjamina, 130 days exposure) and in a lowland temperate calcareous grassland in Switzerland (Carex flacca and a graminoid species mixture; 261 days exposure), decomposition rates of litter produced under ambient and elevated CO 2 did not differ significantly. The one exception to this pattern occurred in the high alpine sedge, Carex curvula, growing in the Swiss Alps. Decomposition of litter produced in situ under elevated CO 2 was significantly slower than that of litter produced under ambient CO 2 (14% vs. 21% of the initial litter mass had decomposed over a 61-day exposure period, respectively). Overall, our results indicate that relatively little or no change in leaf litter quality can be expected in plant communities growing under soil fertilities common in many native ecosystems as atmospheric CO 2 concentrations continue to rise. Even in situations where small reductions in litter quality do occur, these may not necessarily lead to significantly slower rates of decomposition. Hence in many native species in situ litter decomposition rates, and the time course of decomposition, may

  17. Development of a low cost and low power consumption system for monitoring CO_{2} soil concentration in volcanic areas.

    Science.gov (United States)

    Awadallah Estévez, Shadia; Moure-García, David; Torres-González, Pedro; Acosta Sánchez, Leopoldo; Domínguez Cerdeña, Itahiza

    2017-04-01

    Volatiles dissolved in magma are released as gases when pressure or stress conditions change. H2O, CO2, SO2 and H2S are the most abundant gases involved in volcanic processes. Emission rates are related to changes in the volcanic activity. Therefore, in order to predict possible eruptive events, periodic measurements of CO2 concentrations from the soil should be carried out. In the last years, CO2 monitoring has been widespread for many reasons. A direct relationship between changes in volcanic activity and variations in concentration, diffuse flux and isotope ratios of this gas, have been observed prior to some eruptions or unrest processes. All these factors have pointed out the fact that CO2 emission data are crucial in volcanic monitoring programs. In addition, relevant instrumentation development has also taken place: improved accuracy, cost reduction and portability. Considering this, we propose a low cost and a low power consumption system for measuring CO2 concentration in the soil based on Arduino. Through a perforated pick-axe buried at a certain depth, gas samples are periodically taken with the aid of a piston. These samples are injected through a pneumatic circuit in the spectrometer, which measures the CO2 concentration. Simultaneously, the system records the following meteorological parameters: atmospheric pressure, precipitation, relative humidity and air and soil temperature. These parameters are used to correct their possible influence in the CO2 soil concentration. Data are locally stored (SD card) and transmitted via GPRS or WIFI to a data analysis center.

  18. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    Science.gov (United States)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  19. TransCom 3: Seasonal CO2 Flux Estimates from Atmospheric Inversions (Level 2)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides model outputs and seasonal mean CO2 fluxes from the Atmospheric Carbon Cycle Inversion Intercomparison (TransCom 3), Level 2...

  20. South African carbon observations: CO2 measurements for land, atmosphere and ocean

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2017-11-01

    Full Text Available Monitoring of atmospheric CO2 and other greenhouse gases (GHGs) has been identified as a priority by international agencies, such as the United Nations Framework Convention on Climate Change and government departments that are interested...

  1. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics.

    Science.gov (United States)

    Drigo, Barbara; Kowalchuk, George A; Knapp, Brigitte A; Pijl, Agata S; Boschker, Henricus T S; van Veen, Johannes A

    2013-02-01

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by (13) C pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the (13) C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes

  2. Atmospheric Collapse on Early Mars: The Role of CO2 Clouds

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Steakley, K. E.; Murphy, J. R.; Kling, A.

    2017-01-01

    The abundance of evidence that liquid water flowed on the surface early in Mars' history strongly implies that the early Martian atmosphere was significantly more massive than it is today. While it seems clear that the total CO2 inventory was likely substantially larger in the past, the fundamental question about the physical state of that CO2 is not completely understood. Because the temperature at which CO2 condenses increases with surface pressure, surface CO2 ice is more likely to form and persist as the atmospheric mass increases. For the atmosphere to remain stable against collapse, there must be enough energy, distributed planet wide, to stave off the formation of permanent CO2 caps that leads to atmospheric collapse. The presence of a "faint young sun" that was likely about 25 percent less luminous 3.8 billion years ago than the sun today makes this even more difficult. Several physical processes play a role in the ultimate stability of a CO2 atmosphere. The system is regulated by the energy balance between solar insolation, the radiative effects of the atmosphere and its constituents, atmospheric heat transport, heat exchange between the surface and the atmosphere, and latent heating/cooling. Specific considerations in this balance for a given orbital obliquity/eccentricity and atmospheric mass are the albedo of the caps, the dust content of the atmosphere, and the presence of water and/or CO2 clouds. Forget et al. show that, for Mars' current obliquity (in a circular orbit), CO2 atmospheres ranging in surface pressure from 500 hectopascals to 3000 hectopascals would have been stable against collapsing into permanent surface ice reservoirs. Soto et al. examined a similar range in initial surface pressure to investigate atmospheric collapse and to compute collapse rates. CO2 clouds and their radiative effects were included in Forget et al. but they were not included in Soto et al. Here we focus on how CO2 clouds affect the stability of the atmosphere

  3. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  4. Controle de Rhyzopertha dominica pela atmosfera controlada com CO2, em trigo Control of Rhyzopertha dominica using a controlled atmosphere with CO2, in wheat

    Directory of Open Access Journals (Sweden)

    Rogério Amaro Gonçalves

    2000-01-01

    Full Text Available A utilização de gases inertes como fumigantes no controle de pragas é uma alternativa ao uso de fosfina. O objetivo deste trabalho foi avaliar a eficiência de uma atmosfera com CO2 no controle de Rhyzoperta dominica (Fabr. (Coleoptera: Bostrichidae em grãos de trigo armazenado. O trabalho constou de cinco concentrações de CO2 (0, 30 , 40, 50 e 60%, completadas com N2, três períodos de exposição (5, 10, 15 dias, três populações de R. dominica (Fabr. (Coleoptera: Bostrichidae (Campo Mourão, PR, Sete Lagoas, MG e Santa Rosa, RS e sete fases de desenvolvimento do inseto (ovo, larva de 1º, 2º, 3º e 4º ínstar, pupa e adulto com três repetições. As diferentes fases da R. dominica foram acondicionadas em tecido organza e levadas para câmaras de expurgo de 200 litros com 75% deste volume repletos de grãos. As câmaras foram vedadas com borracha de silicone para garantir a hermeticidade. Após a vedação das câmaras injetavam-se os gases contendo diferentes teores de CO2. Os resultados mostraram que todos os teores de CO2 causaram 100% de mortalidade de adultos das três populações nos três períodos de exposição utilizados. Em pupas a mortalidade atingiu 100% no teor de 60% de CO2 para as três populações no período de 15 dias de exposição; porém, todos os teores de CO2 utilizados no período de 15 dias de exposição causaram 100% de mortalidade das pupas da população de Santa Rosa. Para o adequado controle de larvas de diferentes ínstares são necessários teores de CO2 iguais ou acima de 50%. Nos períodos de 10 e 15 dias de exposição, todos os teores de CO2 causaram 100% de mortalidade dos ovos das três populações avaliadas.Controlled atmosphere with inert gases offers an alternative to phosphine use to control stored grain pests. The objective of this research was to test a controlled atmosphere with CO2 to control Rhyzoperta dominica, (Fabr. (Coleoptera: Bostrichidae, an important pest of stored wheat

  5. Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric CO2 by the Phoenix Lander

    Science.gov (United States)

    Niles, Paul B.; Boynton, W. V.; Hoffman, J. H.; Ming, D. W.; Hamara, D.

    2010-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars [1]. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated Delta(sup 13)C values measured in carbonates in martian meteorites [2-4] it has been proposed that the martian atmosphere was enriched in 13C [8]. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated Delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in C-13 relative to CO2 in the terrestrial atmosphere[ 7, 9-11]. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander [12] included a magnetic-sector mass spectrometer (EGA) [13] which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils.

  6. A test of sensitivity to convective transport in a global atmospheric CO2 simulation

    Science.gov (United States)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2006-11-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. Global CO2 in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA's Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  7. Atmospheric CO2 variations on orbital time scale during the Paleocene and Eocene

    Science.gov (United States)

    Zeebe, R. E.; Westerhold, T.; Littler, K.; Zachos, J. C.

    2016-12-01

    Multi-million-year proxy records (d13C, d18O, %CaCO3, Fe, etc.) show prominent variations on orbital time scale during the Paleocene and Eocene. The cycles have been identified at various sites across the globe and preferentially concentrate spectral power at eccentricity and precessional frequencies. It is almost certain that these cycles are an expression of changes in global climate and carbon cycling paced by orbital variations. However, little is currently known about (1) the driving mechanism linking orbital forcing to changes in climate and carbon cycling and (2) the amplitude of atmospheric CO2 variations associated with these cycles. We have used simple and complex carbon cycle models to explore the basic effect of different orbital forcing schemes and noise on the carbon cycle by forcing different carbon cycle parameters. For direct insolation forcing (opposed to eccentricity - tilt - precession), one major challenge is understanding how the system transfers spectral power from high to low frequencies. We will discuss feasible solutions to this problem, including insolation transformations analogous to electronic AC-DC conversion (DC'ing). Our results show that high-latitude mechanisms are unlikely drivers of orbitally paced changes in the Paleocene-Eocene Earth system. Based on a synthesis of modeling and proxy data analysis, we present the first estimates of orbital-scale variations in atmospheric CO2 during the Paleocene and Eocene.

  8. Variable conductivity and embolism in roots, trunks and branches of tree species growing under future atmospheric CO2 concentration (DUKE FACE site): impacts on whole-plant hydraulic performance and carbon assimilation

    Science.gov (United States)

    domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.

    2013-12-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.

  9. [Measurements of CO2 Concentration Profile in Troposphere Based on Balloon-Borne TDLAS System].

    Science.gov (United States)

    Yao, Lu; Liu, Wen-qing; Liu, Jian-guo; Kan, Rui-feng; Xu, Zhen-yu; Ruan, Jun; Yuan, Song

    2015-10-01

    The main source and sink of CO2 in the atmosphere are concentrated in the troposphere. It is of great significance to the study of CO2 flux and global climate change to obtain the accurate tropospheric CO2 concentration profile. For the characteristics of high resolution, high sensitivity and fast response of tunable diode laser absorption spectroscopy (TDLAS), a compact balloon-borne system based on direct absorption was developed to detect the CO2 concentration profiles by use of the 2 004. 02 nm, R(16), v1+v3 line without the interfere of H2O absorption and the CO2 density of the number of molecules below 10 km in the troposphere was obtained. Due to the balloon-borne environment, a compact design of one single board integrated with laser driver, signal conditioning, spectra acquiring and concentration retrieving was developed. Limited by the working capability and hardware resources of embedded micro-processor, the spectra processing algorithm was optimized to reduce the time-cost. Compared with the traditional TDLAS sensors with WMS technique, this system was designed based on the direct absorption technique by means of an open-path Herriott cell with 20 m optical-path, which avoided the process of standardization and enhanced the environmental adaptation. The universal design of hardware and software platform achieved diverse gas measuring by changing the laser and adjusting some key parameters in algorithm. The concept of compact design helped to reduce the system's power and volume and balanced the response speed and measure precision. The power consumes below 1.5 W in room temperature and the volume of the single board is 120 mm x 100 mm x 25 mm, and the measurement accuracy is ± 0.6 x 10(-6) at 1.5 s response time. It has been proved that the system can realize high precision detection of CO2 profile at 15 m vertical resolution in troposphere and TDLAS is an available method for balloon-borne detection.

  10. Using Mauna Loa Atmospheric CO2 Data in Large General Education Geoscience Courses

    Science.gov (United States)

    Richardson, R. M.; Kapp, J. L.

    2007-12-01

    We have been using the Mauna Loa atmospheric CO2 dataset (http://scrippsco2.ucsd.edu/data/in_situ_co2/monthly_mlo.csv) in a large (up to 300) General Education Geoscience course, primarily in small breakout groups (30 students). The exercise is designed to address quantitative literacy including percentages, slopes and linear trends, issues of data completeness and bias, quality of extrapolations, as well as implications for climate change. We are significantly revising the course, which serves 600 students a semester, with help from a curriculum grant. A major goal is to improve student learning by incorporating inquiry based activities in the large lecture setting. Lectures now incorporate several activities throughout a given class period, in which students are asked to use critical thinking skills such as interpreting patterns in data and graphs, analyzing a scientific hypothesis for its coherence with the scientific method, and answering higher order synthesis questions in both verbal and written form. This differs from our past format where class periods were dominated by lecture, with a single short activity done individually about every other lecture. To test the effectiveness of the new course format we will give students the same atmospheric CO2 exercise in the lecture setting that they were given previously in breakout groups. Students will work in small groups in lecture after receiving a short introduction to the exercise by the instructor. They will plot CO2 concentrations, make extrapolations, and interpret patterns in the data. We will compare scores on the exercise with previous semesters. We expect that students will do better having had more experience with interpreting scientific data and practicing higher order thinking skills. We also expect working in small groups will foster better learning through peer teaching and discussion. We will incorporate responses from students who took part in the exercises from current and previous semesters. We

  11. Interaction between Medicago truncatula and Pseudomonas fluorescens: evaluation of costs and benefits across an elevated atmospheric CO(2.

    Directory of Open Access Journals (Sweden)

    Clémentine Lepinay

    Full Text Available Soil microorganisms play a key role in both plants nutrition and health. Their relation with plant varies from mutualism to parasitism, according to the balance of costs and benefits for the two partners of the interaction. These interactions involved the liberation of plant organic compounds via rhizodeposition. Modification of atmospheric CO(2 concentration may affect rhizodeposition and as a consequence trophic interactions that bind plants and microorganisms. Positive effect of elevated CO(2 on plants are rather well known but consequences for micoorganisms and their interactions with plants are still poorly understood. A gnotobiotic system has been developed to study the interaction between Medicago truncatula Jemalong J5 and the mutualistic bacteria Pseudomonas fluorescens strain C7R12 under two atmospheric CO(2 concentrations: ambient (365 ppm versus enriched (750 ppm. Costs and benefits for each partner have been determined over time by measuring plant development and growth, the C and N contents of the various plant parts and the density of the bacteria in rhizosphere compartments. Following the increase in CO(2, there was a beneficial effect of P. fluorescens C7R12 on development, vegetative growth, and C/N content of M. truncatula. Concerning plant reproduction, an early seed production was noticed in presence of the bacterial strain combined with increased atmospheric CO(2 conditions. Paradoxically, this transient increase in seed production was correlated with a decrease in bacterial density in the rhizosphere soil, revealing a cost of increased CO(2 for the bacterial strain. This shift of costs-benefits ratio disappeared later during the plant growth. In conclusion, the increase in CO(2 concentration modifies transiently the cost-benefit balance in favor of the plant. These results may be explained either by a competition between the two partners or a change in bacterial physiology. The ecosystem functioning depends on the

  12. Physical-Biogeochemical Interactions that Alter the Uptake of Atmospheric CO2 in the Barents Sea

    Science.gov (United States)

    Signorini, S. R.; Hakkinen, S. M.; McClain, C. R.

    2009-04-01

    The Barents Sea is characterized by significant calcification rates during summer promoted by intense coccolithophore blooms that peak during August. Coccolithophores, among which Emiliania huxleyi (E. huxleyi) is the most abundant and widespread species, are considered to be the most productive calcifying organisms on Earth. They inhabit the surface layer (MLD 20m) in highly stratified waters where light intensity is high. E. huxleyi often forms massive blooms in temperate and sub-polar oceans. Coupling of the coccolithophore organic carbon and carbonate pumps interact to consume (photosynthesis) and produce (calcification) CO2. The so-called Rain Ratio, defined as the ratio of particulate inorganic carbon (PIC) to particulate organic carbon (POC) in exported biogenic matter, determines the relative strength of the two biological carbon pumps and influences the flux of CO2 across the surface ocean - atmosphere interface. Here we use a combination of satellite ocean color algorithms, coupled ice-ocean model products, an SST-dependent pCO2 algorithm, and gas exchange parameterization to describe the seasonal and decadal variability of the air-sea CO2 flux in the Barents Sea. Model-derived SST and SSS (1955-2008) are used in conjunction with the pCO2 algorithm and carbonate chemistry to derive decadal trends of sea-air CO2 flux, pH and calcite saturation state. Phytoplankton and calcite production have strong spatial variability. Nutrient supply, biomass and calcite concentrations are modulated by light and MLD seasonal cycle. The size, intensity, and location of coccolithophore blooms vary from year to year, but the peak bloom is always in June in the Central Basin of the sub-polar North Atlantic (45oW - 10oW, 50oN - 65oN) and August in the Barents Sea. Calcification rates range from 5% to 27% of net primary production. The Barents Sea PIC production is about twice that of the Central Basin. Predicted freshening and warming of polar seas may increase stratification

  13. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    Science.gov (United States)

    Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian

    2014-03-04

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.

  14. Assessing Atmospheric CO2 Entrapped in Clay Nanotubes using Residual Gas Analyzer.

    Science.gov (United States)

    Das, Sankar; Maity, Abhijit; Pradhan, Manik; Jana, Subhra

    2016-02-16

    A residual gas analyzer (RGA) coupled with a high-vacuum chamber has been explored to measure atmospheric CO2 entrapped in aminosilane-modified clay nanotubes. Ambient CO2 uptake efficacy together with stability of these novel adsorbents composed of both primary and/or secondary amine sites has been demonstrated at standard ambient temperature and pressure. The unprecedented sensitivity and accuracy of the RGA-based mass spectrometry technique toward atmospheric CO2 measurement has been substantiated with a laser-based optical cavity-enhanced integrated cavity output spectroscopy. The adsorption kinetics of atmospheric CO2 on amine-functionalized clay nanotubes followed the fractional-order kinetic model compared to that of the pseudo-first-order or pseudo-second-order rate equations. The efficiency along with stability of these novel adsorbents has also been demonstrated by their repetitive use for CO2 capture in the oxidative environment. Our findings thus point to a fundamental study on the atmospheric CO2 adsorption by amine-loaded adsorbents using an easy handling and low-cost benchtop RGA-based mass spectrometer, opening a new strategy for CO2 capture and sequestering study.

  15. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    Science.gov (United States)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  16. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  17. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere.

    Directory of Open Access Journals (Sweden)

    Emma J Sayer

    Full Text Available Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO(2 concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO(2 production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this 'extra' CO(2 was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests.

  18. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress

    Science.gov (United States)

    Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.

    2004-01-01

    We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the

  19. Effects of elevated CO2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios.

    Science.gov (United States)

    Li, Juan; Zhou, Jian-Min; Duan, Zeng-Qiang

    2007-01-01

    Increasing atmospheric CO2 concentration is generally expected to enhance photosynthesis and growth of agricultural C3 vegetable crops, and therefore results in an increase in crop yield. However, little is known about the combined effect of elevated CO2 and N species on plant growth and development. Two growth-chamber experiments were conducted to determine the effects of NH4+/NO3- ratio and elevated CO2 concentration on the physiological development and water use of tomato seedlings. Tomato was grown for 45 d in containers with nutrient solutions varying in NH4+/NO3- ratios and CO2 concentrations in growth chambers. Results showed that plant height, stem thickness, total dry weight, dry weight of the leaves, stems and roots, G value (total plant dry weight/seedling days), chlorophyll content, photosynthetic rate, leaf-level and whole plant-level water use efficiency and cumulative water consumption of tomato seedlings were increased with increasing proportion of NO3- in nutrient solutions in the elevated CO2 treatment. Plant biomass, plant height, stem thickness and photosynthetic rate were 67%, 22%, 24% and 55% higher at elevated CO2 concentration than at ambient CO2 concentration, depending on the values of NH4+/NO3- ratio. These results indicated that elevating CO2 concentration did not mitigate the adverse effects of 100% NH4(+)-N (in nutrient solution) on the tomato seedlings. At both CO2 levels, NH4+/NO3- ratios of nutrient solutions strongly influenced almost every measure of plant performance, and nitrate-fed plants attained a greater biomass production, as compared to ammonium-fed plants. These phenomena seem to be related to the coordinated regulation of photosynthetic rate and cumulative water consumption of tomato seedlings.

  20. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions

    Directory of Open Access Journals (Sweden)

    P. Peylin

    2013-10-01

    Full Text Available Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean carbon uptake in the north (−3.4 Pg C yr−1 (±0.5 Pg C yr−1 standard deviation, with slightly more uptake over land than over ocean, a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr−1 and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr−1 corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr−1 for the 1996–2007 period, with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr−1, the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr−1. Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr−1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over

  1. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production.

    Science.gov (United States)

    Rogers, Christine A; Wayne, Peter M; Macklin, Eric A; Muilenberg, Michael L; Wagner, Christopher J; Epstein, Paul R; Bazzaz, Fakhri A

    2006-06-01

    Increasing atmospheric carbon dioxide is responsible for climate changes that are having widespread effects on biological systems. One of the clearest changes is earlier onset of spring and lengthening of the growing season. We designed the present study to examine the interactive effects of timing of dormancy release of seeds with low and high atmospheric CO2 on biomass, reproduction, and phenology in ragweed plants (Ambrosia artemisiifolia L.), which produce highly allergenic pollen. We released ragweed seeds from dormancy at three 15-day intervals and grew plants in climate-controlled glass-houses at either ambient or 700-ppm CO2 concentrations, placing open-top bags over influorescences to capture pollen. Measurements of plant height and weight; inflorescence number, weight, and length; and days to anthesis and anthesis date were made on each plant, and whole-plant pollen productivity was estimated from an allometric-based model. Timing and CO2 interacted to influence pollen production. At ambient CO2 levels, the earlier cohort acquired a greater biomass, a higher average weight per inflorescence, and a larger number of influorescences; flowered earlier; and had 54.8% greater pollen production than did the latest cohort. At high CO2 levels, plants showed greater biomass and reproductive effort compared with those in ambient CO2 but only for later cohorts. In the early cohort, pollen production was similar under ambient and high CO2, but in the middle and late cohorts, high CO2 increased pollen production by 32% and 55%, respectively, compared with ambient CO2 levels. Overall, ragweed pollen production can be expected to increase significantly under predicted future climate conditions.

  2. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2

    Science.gov (United States)

    Leakey, Andrew D. B.; Lau, Jennifer A.

    2012-01-01

    Variation in atmospheric [CO2] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO2] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO2] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO2] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO2]. Evolutionary responses to elevated [CO2] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO2] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO2]. This lack of evidence for strong evolutionary effects of elevated [CO2] is surprising, given the large effects of elevated [CO2] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO2] and (ii) benefit maximally from future, greater [CO2]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C4 photosynthesis into C3 leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying

  3. Elevated CO2 decreases both transpiration flow and concentrations of Ca and Mg in the xylem sap of wheat.

    Science.gov (United States)

    Houshmandfar, Alireza; Fitzgerald, Glenn J; Tausz, Michael

    2015-02-01

    The impact of elevated atmospheric [CO2] (e[CO2]) on plants often includes a decrease in their nutrient status, including Ca and Mg, but the reasons for this decline have not been clearly identified. One of the proposed hypotheses is a decrease in transpiration-driven mass flow of nutrients due to decreased stomatal conductance. We used glasshouse and Free Air CO2 Enrichment (FACE) experiments with wheat to show that, in addition to decrease in transpiration rate, e[CO2] decreased the concentrations of Ca and Mg in the xylem sap. This result suggests that uptake of nutrients is not only decreased by reduced transpiration-driven mass flow, but also by as yet unidentified mechanisms that lead to reduced concentrations in the xylem sap. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Elevated CO2 concentration around alfalfa nodules increases N2 fixation

    Science.gov (United States)

    Fischinger, Stephanie A.; Hristozkova, Marieta; Mainassara, Zaman-Allah; Schulze, Joachim

    2010-01-01

    Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate aeration of the root/nodule compartment that avoided any gas leakage to the shoots. The root/nodule compartments were aerated either with a 2500 μl l−1 (+CO2) or zero μl l−1 (–CO2) CO2-containing N2/O2 gas flow (80/20, v/v). Nodule CO2 fixation, nitrogen fixation, and growth were strongly increased in the +CO2 treatment in a 3-week experimental period. More intensive CO2 and nitrogen fixation coincided with higher per plant amounts of amino acids and organic acids in the nodules. Moreover, the concentration of asparagine was increased in both the nodules and the xylem sap. Plants in the +CO2 treatment tended to develop nodules with higher %N concentration and individual activity. In a parallel experiment on plants with inefficient nodules (fix–) the +CO2 treatment remained without effect. Our data support the thesis that nodule CO2 fixation is pivotal for efficient nitrogen fixation. It is concluded that strategies which enhance nodule CO2 fixation will improve nitrogen fixation and nodule formation. Moreover, sufficient CO2 application to roots and nodules is necessary for growth and efficient nitrogen fixation in hydroponic and aeroponic growth systems. PMID:19815686

  5. Effects of elevated CO2 concentration and water deficit on fructan metabolism in Viguiera discolor Baker.

    Science.gov (United States)

    Oliveira, V F; Silva, E A; Zaidan, L B P; Carvalho, M A M

    2013-05-01

    Elevated [CO2 ] is suggested to mitigate the negative effects of water stress in plants; however responses vary among species. Fructans are recognised as protective compounds against drought and other stresses, as well as having a role as reserve carbohydrates. We analysed the combined effects of elevated [CO2 ] and water deficit on fructan metabolism in the Cerrado species Viguiera discolor Baker. Plants were cultivated for 18 days in open-top chambers (OTC) under ambient (∼380 ppm), and high (∼760 ppm) [CO2 ]. In each OTC, plants were submitted to three treatments: (i) daily watering (control), (ii) withholding water (WS) for 18 days and (iii) re-watering (RW) on day 11. Analyses were performed at time 0 and days 5, 8, 11, 15 and 18. High [CO2 ] increased photosynthesis in control plants and increased water use efficiency in WS plants. The decline in soil water content was more distinct in WS 760 (WS under 760 ppm), although the leaf and tuberous root water status was similar to WS 380 plants (WS under 380 ppm). Regarding fructan active enzymes, 1-SST activity decreased in WS plants in both CO2 concentrations, a result consistent with the decline in photosynthesis and, consequently, in substrate availability. Under WS and both [CO2 ] treatments, 1-FFT and 1-FEH seemed to act in combination to generate osmotically active compounds and thus overcome water deficit. The proportion of hexoses to sucrose, 1-kestose and nystose (SKN) was higher in WS plants. In WS 760, this increase was higher than in WS 380, and was not accompanied by decreases in SKN at the beginning of the treatment, as observed in WS 380 plants. These results suggest that the higher [CO2 ] in the atmosphere contributed to maintain, for a longer period, the pool of hexoses and of low DP fructans, favouring the maintenance of the water status and plant survival under drought. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Effects of Changes in Temperature and CO2 Concentration on Simulated Spring Wheat Yields in The Netherlands

    NARCIS (Netherlands)

    Nonhebel, Sanderine

    1993-01-01

    A crop growth simulation model based on SUCROS87 was constructed to study the effects of temperature rise and increase of the atmospheric CO2 concentration on spring wheat yields in The Netherlands. The model simulated potential production (limited by crop characteristics, temperature and radiation

  7. Development and evaluation of a high sensitivity dial system for profiling atmospheric CO2

    Science.gov (United States)

    Ismail, S.; Koch, G. J.; Refaat, T.; Abedin, M. N.; Yu, J.; Singh, U. N.

    2017-11-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 ( laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  8. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa; hide

    2016-01-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  9. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  10. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  11. Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations.

    Science.gov (United States)

    Cabello, Juan; Morales, Marcia; Revah, Sergio

    2017-04-15

    The extensive microalgae diversity offers considerable versatility for a wide range of biotechnological applications in environmental and production processes. Microalgal cultivation is based on CO2 fixation via photosynthesis and, consequently, it is necessary to evaluate, in a short time and reliable way, the effect of the CO2 gas concentration on the consumption rate and establish the tolerance range of different strains and the amount of inorganic carbon that can be incorporated into biomass in order to establish the potential for industrial scale application. Dynamic experiments allow calculating the short-term microalgal photosynthetic activity of strains in photobioreactors. In this paper, the effect of step-changes in CO2 concentration fed to a 20L bubble column photobioreactor on the CO2 consumption rate of Scenedesmus obtusiusculus was evaluated at different operation times. The highest apparent CO2 consumption rate (336μmolm(-2)s(-1) and 5.6% of CO2) was 6530mgCO2gb(-1)d(-1) and it decreased to 222mgCO2gb(-1)d(-1) when biomass concentration increased of 0.5 to 3.1gbL(-1) and 5.6% of CO2 was fed. For low CO2 concentrations (<3.8%) the pH remained close to the optimal value (7.5 and 8). The CO2 consumption rates show that S. obtusiusculus was not limited by CO2 availability for concentrations above of 3.8%. The CO2 mass balance showed that 90% of the C-CO2 transferred was used for S. obtusiusculus growth. Copyright © 2017. Published by Elsevier B.V.

  12. Forsterite Carbonation in Wet-scCO2: Dependence on Adsorbed Water Concentration

    Science.gov (United States)

    Loring, J.; Benezeth, P.; Qafoku, O.; Thompson, C.; Schaef, T.; Bonneville, A.; McGrail, P.; Felmy, A.; Rosso, K.

    2013-12-01

    Capturing and storing CO2 in basaltic formations is one of the most promising options for mitigating atmospheric CO2 emissions resulting from the burning of fossil fuels. These geologic reservoirs have high reactive potential for CO2-mineral trapping due to an abundance of divalent-cation containing silicates, such as forsterite (Mg2SiO4). Recent studies have shown that carbonation of these silicates under wet scCO2 conditions, e. g. encountered near a CO2 injection well, proceeds along a different pathway and is more effective than in CO2-saturated aqueous fluids. The presence of an adsorbed water film on the forsterite surface seems to be key to reactivity towards carbonation. In this study, we employed in situ high pressure IR spectroscopy to investigate the dependence of adsorbed water film thickness on forsterite carbonation chemistry. Post reaction ex situ SEM, TEM, TGA, XRD, and NMR measurements will also be discussed. Several IR titrations were performed of forsterite with water at 50 °C and 90 bar scCO2. Aliquots of water were titrated at 4-hour reaction-time increments. Once a desired total water concentration was reached, data were collected for about another 30 hours. One titration involved 10 additions, which corresponds to 6.8 monolayers of adsorbed water. Clearly, a carbonate was precipitating, and its spectral signature matched magnesite. Another titration involved 8 aliquots, or up to 4.4 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 4.4 monolayers showed an increase and then a plateau. We are currently unsure of the identity of the carbonate that precipitated, but it could be an amorphous anhydrous phase or magnesite crystals with dimensions of only several nanometers. A third titration only involved 3 additions, or up to 1.6 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 1.6 monolayers

  13. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria

    Directory of Open Access Journals (Sweden)

    Kiwamu eMinamisawa

    2015-02-01

    Full Text Available A number of studies have shown that elevated atmospheric CO2 ([CO2] affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE experiment (ambient + 200 μmol⋅mol−1 using three rice cultivars (Akita 63, Takanari, and Koshihikari and two experimental lines of Koshihikari (chromosome segment substitution and near-isogenic lines to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA gene and increased methyl coenzyme M reductase (mcrA in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields.

  14. Research on atmospheric CO2 remote sensing with open-path tunable diode laser absorption spectroscopy and comparison methods

    Science.gov (United States)

    Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen

    2017-06-01

    An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.

  15. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics.

    Science.gov (United States)

    Fernando, Nimesha; Panozzo, Joe; Tausz, Michael; Norton, Robert; Fitzgerald, Glenn; Khan, Alamgir; Seneweera, Saman

    2015-03-01

    Wheat cv. H45 was grown under ambient CO2 concentration and Free Air CO2 Enrichment (FACE; e[CO2], ∼550 μmol CO2 mol(-1)). The effect of FACE on wheat grain proteome and associated changes in the flour rheological properties was investigated. A comparative proteomic analysis was performed using 2-D-DIGE followed by MALDI/TOF-MS. Total grain protein concentration was decreased by 9% at e[CO2]. Relative abundance of three high molecular weight glutenin sub units (HMW-GS) were decreased at e[CO2]. In contrast, relative abundance of serpins Z1C and 1-Cys peroxiredoxin was increased at e[CO2]. Elevated [CO2] also decreased the bread volume (by 11%) and dough strength (by 7%) while increased mixing time. However, dough extensibility and dough stability were unchanged at elevated [CO2]. These findings suggest that e[CO2] has a major impact on gluten protein concentration which is associated lower bread quality at e[CO2]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang

    2015-01-01

    Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of

  17. A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2

    Directory of Open Access Journals (Sweden)

    Josep L. Pelegrí

    2008-03-01

    Full Text Available One possible path for exploring the Earth’s far-from-equilibrium homeostasis is to assume that it results from the organisation of optimal pulsating systems, analogous to that in complex living beings. Under this premise it becomes natural to examine the Earth’s organisation using physiological-like variables. Here we identify some of these main variables for the ocean’s circulatory system: pump rate, stroke volume, carbon and nutrient arterial-venous differences, inorganic nutrients and carbon supply, and metabolic rate. The stroke volume is proportional to the water transported into the thermocline and deep oceans, and the arterial-venous differences occur between recently-upwelled deep waters and very productive high-latitudes waters, with atmospheric CO2 being an indicator of the arterial-venous inorganic carbon difference. The metabolic rate is the internal-energy flux (here expressed as flux of inorganic carbon in the upper ocean required by the system’s machinery, i.e. community respiration. We propose that the pump rate is set externally by the annual cycle, at one beat per year per hemisphere, and that the autotrophic ocean adjusts its stroke volume and arterial-venous differences to modify the internal-energy demand, triggered by long-period astronomical insolation cycles (external-energy supply. With this perspective we may conceive that the Earth’s interglacial-glacial cycle responds to an internal organisation analogous to that occurring in living beings during an exercise-recovery cycle. We use an idealised double-state metabolic model of the upper ocean (with the inorganic carbon/nutrients supply specified through the overturning rate and the steady-state inorganic carbon/nutrients concentrations to obtain the temporal evolution of its inorganic carbon concentration, which mimics the glacial-interglacial atmospheric CO2 pattern.

  18. Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Larsen, Klaus Steenberg; Ibrom, Andreas

    2017-01-01

    Soil respiration (R-s) is an important component of ecosystem carbon balance, and accurate quantification of the diurnal and seasonal variation of R-s is crucial for a correct interpretation of the response of R-s to biotic and abiotic factors, as well as for estimating annual soil CO2 efflux rates......, such that the highest effluxes were now observed during daytime, and also led to a substantial decrease in the estimated annual soil CO2 efflux.By installing fans to produce continuous turbulent mixing of air around the soil chambers, we tested the hypothesis that overestimation of soil CO2 effluxes during low u(*) can...... atmospheric turbulence conditions. Other possible effects from using fans during soil CO2 efflux measurements are discussed. In conclusion, periods with low atmospheric turbulence may provide a significant source of error in R-s rates estimated by the use of closed-chamber tech-niques and erroneous data must...

  19. Communication: evidence of stable van der Waals CO2 clusters relevant to Venus atmosphere conditions.

    Science.gov (United States)

    Asfin, Ruslan E; Buldyreva, Jeanna V; Sinyakova, Tatyana N; Oparin, Daniil V; Filippov, Nikolai N

    2015-02-07

    Non-intrusive spectroscopic probing of weakly bound van der Waals complexes forming in gaseous carbon dioxide is generally performed at low pressures, for instance in supersonic jets, where the low temperature favors dimers, or in few-atmosphere samples, where the signature of dimers varying as the squared gas density is entangled with the dominating collision-induced absorption. We report experimental and theoretical results on CO2 dimers at very high pressures approaching the liquid phase. We observe that the shape of the CO2-dimer bands undergoes a distinctive line-mixing transformation, which reveals an unexpected stability of the dimers despite the collisions with the surrounding particles and negates the common belief that CO2 dimers are short-lived complexes. Our results furnish a deeper insight allowing a better modeling of CO2-rich atmospheres and provide also a new spectroscopic tool for studying the robustness of molecular clusters.

  20. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China

    Science.gov (United States)

    Pang, J.; Wen, X.; Sun, X.

    2016-12-01

    The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ13C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ13C and the isotopic composition of source CO2 (δ13CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ13C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ13C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83 ± 14.11% and 86.84 ± 12.27% and that natural gas had average contributions of 16.17 ± 14.11% and 13.16 ± 12.27%, respectively. The δ13C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ13C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing.

  1. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China.

    Science.gov (United States)

    Pang, Jiaping; Wen, Xuefa; Sun, Xiaomin

    2016-01-01

    The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ(13)C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ(13)C and the isotopic composition of source CO2 (δ(13)CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ(13)C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ(13)C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83±14.11% and 86.84±12.27% and that natural gas had average contributions of 16.17±14.11% and 13.16±12.27%, respectively. The δ(13)C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ(13)C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. LA Megacity: An Integrated Land-Atmosphere System for Urban CO2 Emissions

    Science.gov (United States)

    Feng, S.; Lauvaux, T.; Newman, S.; Rao, P.; Patarasuk, R.; o'Keefe, D.; Huang, J.; Ahmadov, R.; Wong, C.; Song, Y.; Gurney, K. R.; Diaz Isaac, L. I.; Jeong, S.; Fischer, M. L.; Miller, C. E.; Duren, R. M.; Li, Z.; Yung, Y. L.; Sander, S. P.

    2015-12-01

    About 10% of the global population lives in the word's 20 megacities (cities with urban populations greater than 10 million people). Megacities account for approximately 20% of the global anthropogenic fossil fuel CO2 (FFCO2) emissions, and their proportion of emissions increases monotonically with the world population and urbanization. Megacities range in spatial extent from ~1000 - 10,000 km2 with complex topography and variable landscapes. We present here the first attempt at building an integrated land-atmosphere modeling system for megacity environments, developed and evaluated for urban CO2 emissions over the Los Angeles (LA) Megacity area. The Weather Research and Forecasting (WRF) - Chem model was coupled to a ~1.3-km FFCO2 emission product, "Hestia-LA", to simulate the transport of CO2 across the LA magacity. We define the optimal model resolution to represent both the spatial variability of the atmospheric dynamics and the spatial patterns from the CO2 emission distribution. In parallel, we evaluate multiple configurations of WRF with various physical schemes, using meteorological observations from the CalNex-LA campaign of May-June 2010. Our results suggest that there is no remarkable difference between the medium- (4-km) and high- (1.3-km) resolution simulations in terms of atmospheric model performance. However, the high-resolution modeled CO2 mixing ratios clearly outperform the results at medium resolution for capturing both the spatial distribution and the temporal variability of the urban CO2 signals. We compare the impact of physical representation errors and emission aggregation errors on the modeled CO2 mixing ratios across the LA megacity. Finally, we present a novel approach to evaluate the design of the current surface network over the LA megacity using the modeled spatial correlations. These results reinforce the importance of using high-resolution emission products over megacities to represent correctly the large spatial gradients in

  3. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)

    Science.gov (United States)

    Lindon, Michael Allen

    As of 2013, the Carbon Dioxide Information Analysis Center (CDIAC) estimates that the world emits approximately 36 trillion metric tons of Carbon Dioxide (CO2) into the atmosphere every year. These large emissions have been correlated to global warming trends that have many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for along time to come. Approximately 41% of the emissions are due to electricity production, which pump out condensed forms of CO2. This danger to our world is why research towards new and innovative ways of controlling CO2 emissions from these large sources is necessary. As of now, research is focused on two primary methods of CO2 reduction from condensed CO2 emission sources (like fossil fuel power plants): Carbon Capture and Sequestration (CCS) and Carbon Capture and Utilization (CCU). CCS is the process of collecting CO2 using absorbers or chemicals, extracting the gas from those absorbers and finally pumping the gas into reservoirs. CCU on the other hand, is the process of reacting CO2 to form value added chemicals, which can then be recycled or stored chemically. A Dielectric Barrier discharge (DBD) is a pulsed, low temperature, non-thermal, atmospheric pressure plasma which creates high energy electrons suitable for dissociating CO2 into its components (CO and O) as one step in the CCU process. Here I discuss the viability of using a DBD for CO2 dissociation on an industrial scale as well as the fundamental physics and chemistry of a DBD for CO2 dissociation. This work involved modeling the DBD discharge and chemistry, which showed that there are specific chemical pathways and plasma parameters that can be adjusted to improve the CO2 reaction efficiencies and rates. Experimental studies using the Versatile Atmospheric dielectric barrier Discharge Expe

  4. Siderite cannot be used as CO2 sensor for Archaean atmospheres

    Science.gov (United States)

    Gäb, Fabian; Ballhaus, Chris; Siemens, Jan; Heuser, Alexander; Lissner, Moritz; Geisler, Thorsten; Garbe-Schönberg, Dieter

    2017-10-01

    It was proposed to utilize siderite FeCO3 in mid to late Archaean Superior type banded as a proxy to constrain the CO2 partial pressure of Archaean atmospheres. Implicit in this proposition is that siderite was a primary carbonate mineral that crystallized directly from Fe2+ enriched Archaean seawater, in equilibrium with atmospheric CO2. To our knowledge that proposition has not been demonstrated to be valid. We test with water-gas exchange experiments under controlled CO2 partial pressures if siderite can be stabilized as a primary mineral in Fe2+ bearing seawater. Reduced seawater proxies enriched in Fe2+ and Mn2+ are equilibrated with reduced N2-CH4-CO2-H2 gas phases with variable CO2. The solid phases stabilized in Fe2+ enriched water compositions are amorphous ferrous iron hydroxy carbonates. Crystalline siderite FeCO3 is not found to be a stable phase. The phases precipitating from Mn2+ enriched water include crystalline rhodochrosite MnCO3 and possibly amorphous Mn-enriched phases. Based on these results we advise against using siderite in banded iron formations as a CO2 sensor for the Archaean atmosphere.

  5. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora *

    Science.gov (United States)

    Zhao, Xing-Zheng; Wang, Gen-Xuan; Shen, Zhu-Xia; Zhang, Hao; Qiu, Mu-Qing

    2006-01-01

    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500 μmol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply. PMID:16532530

  6. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    Science.gov (United States)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  7. Annual Cycle of GW-induced CO2 Cloud Formation in Mars' Middle Atmosphere

    Science.gov (United States)

    Yiğit, E.; Medvedev, A. S.

    2016-12-01

    Gravity waves (GWs) of lower atmospheric origin influence the dynamical and thermal structure of the Martian middle and upper atmosphere. Recently, using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating the Yigit et al 2008 whole atmosphere nonlinear GW parameterization, Yigit et al 2015 have demonstrated that GWs facilitate high-altitude CO2 ice cloud formation. In this study, using the same modeling framework, we analyze the annual cycle of cloud formation along with the associated variations of GW activity. CO2 ice cloud variations in the mesosphere and the lower thermosphere (MLT) during one Martian year appreciably coincide with GW effects, suggesting that GW processes significantly affect CO2 ice cloud formation in the Martian MLT

  8. Ocean-Atmosphere coupling and CO2 exchanges in the Southwestern Atlantic Ocean

    Science.gov (United States)

    Souza, R.; Pezzi, L. P.; Carmargo, R.; Acevedo, O. C.

    2013-05-01

    The establishment of the INTERCONF Program (Air-Sea Interactions at the Brazil-Malvinas Confluence Zone) in 2004 and subsequent developing of projects such as the SIMTECO (Integrated System for Monitoring the Weather, the Climate and the Ocean in the South of Brazil) and ACEx (Atlantic Ocean Carbon Experiment) from 2010 in Brazil brought to light the importance of understanding the impact of the Southwestern Atlantic Ocean's mesoscale variability on the modulation of the atmospheric boundary layer (ABL) at the synoptic scale. Recent results of all these projects showed that the ABL modulation, as well as the ocean-atmosphere turbulent (heat, momentum and CO2) fluxes are dependent on the behavior of the ocean's surface thermal gradients, especially those found in the Brazil-Malvinas Confluence Zone and at the southern coast off Brazil during the winter. As expected, when atmospheric large scale systems are not present over the study area, stronger heat fluxes are found over regions of higher sea surface temperature (SST) including over warm core eddies shed towards the subantarctic (cold) environment. In the coastal region off southern Brazil, the wintertime propagation of the Brazilian Costal Current (La Plata Plume) acts rising the chlorophyll concentration over the continental shelf as well as diminishing considerably the SST - hence producing prominent across-shore SST gradients towards the offshore region dominated by the Brazil Current waters. Owing to that, heat fluxes are directed towards the ocean in coastal waters that are also responsible for the carbon sinking off Brazil in wintertime. All this description is dependent on the synoptic atmospheric cycle and strongly perturbed when transient systems (cold fronts, subtropical cyclones) are present in the area. However, remote sensing data used here suggest that the average condition of the atmosphere directly responding to the ocean's mesoscale variability appears to imprint a signal that extends from the

  9. LBA-ECO CD-01 Simulated Atmospheric Circulation, CO2 Variation, Tapajos: August 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set consists of a single NetCDF file containing simulated three dimensional winds and CO2 concentrations centered on the Tapajos National Forest...

  10. LBA-ECO CD-01 Simulated Atmospheric Circulation, CO2 Variation, Tapajos: August 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of a single NetCDF file containing simulated three dimensional winds and CO2 concentrations centered on the Tapajos National Forest in Brazil...

  11. Atmospheric and Surface-Condition Effects on CO2 Exchange in the Liaohe Delta Wetland, China

    Directory of Open Access Journals (Sweden)

    Qingyu Jia

    2017-10-01

    Full Text Available The eddy covariance method was used to study the CO2 budget of the Liaohe Delta reed wetland in northern China during 2012–2015. The changes in environmental factors (including meteorology, vegetation, hydrology, and soil were analyzed simultaneously. The change in the trend of the CO2 concentration in the reed wetland was similar to global changes over the four years. The average annual CO2 accumulation was 2.037 kg·CO2·m−2, ranging from 1.472 to 2.297 kg·CO2·m−2. The seasonal characteristics of the CO2 exchange included high CO2 absorption in June and July, and high emissions in April and from September to October, with the highest emissions in July 2015. The average temperatures from 2013 to 2015 were higher than the 50-year average, largely due to increased temperatures in winter. Precipitation was below the 50-year average, mainly because of low precipitation in summer. The average wind speed was less than the 50-year average, and sunshine duration decreased each year. The CO2 exchange and environmental factors had a degree of correlation or consistency. The contribution of meteorology, vegetation, hydrology, and soil to the CO2 budget was analyzed using the partial least squares method. Water and soil temperature had a greater effect on the CO2 exchange variability. The regression equation of the CO2 budget was calculated using the significant contributing factors, including temperature, precipitation, relative humidity, water-table level, salinity, and biomass. The model fit explained more than 70% of the CO2 exchange, and the simulation results were robust.

  12. Technology advancement of the electrochemical CO2 concentrating process

    Science.gov (United States)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  13. The influence of co2 + concentration on the electrodeposition of ...

    African Journals Online (AJOL)

    In this work we have done an experimental study of Zinc- Nickel composite coatings. For this, the influence of the cobalt concentration was the principal object in order to improve the resistance of the corrosion of the coatings, which has been made by electroplating on steel substrates previously treated, have been studied ...

  14. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Directory of Open Access Journals (Sweden)

    James B. Abshire

    2013-12-01

    Full Text Available We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5–6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2–3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6

  15. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  16. Variation in the leaf δ(13)C is correlated with salinity tolerance under elevated CO(2) concentration.

    Science.gov (United States)

    del Amor, Francisco M

    2013-02-15

    Increasing atmospheric CO(2) concentration is expected to impact agricultural systems through a direct effect on leaf gas exchange and also due to effects on the global availability of good-quality water as a result of climate warming. Thus, the planning of land use for agriculture requires new tools to identify the capability of current cultivars to adapt to growth restrictions under new ambient conditions. We hypothesized that salinity stress may produce a specific pattern of carbon isotopic composition (δ(13)C) in tomato (Solanum lycopersicum L.) at elevated CO(2) concentration ([CO(2)]) that could be used in the breeding of salinity tolerance in a near-future climate scenario. Five commercial tomato cultivars were evaluated at elevated (800 μmol mol(-1)) or standard (400 μmol mol(-1)) [CO(2)], being irrigated with a nutrient solution containing 0, 60 or 120 mM NaCl. The biomass enhanced ratio, leaf net CO(2) assimilation and stomatal conductance, leaf NO(3)(-) and Cl(-) concentrations and leaf free amino acid profile were analyzed in relation to the pattern of δ(13)C, under different saline stress conditions. The results indicate that at high [CO(2)]: (i) salinity tolerance was enhanced, but the response was strongly cultivar dependent, (ii) leaf NO(3)(-) concentration was increased whilst Cl(-) and proline concentrations decreased, and (iii) leaf δ(13)C was highly correlated with plant dry matter accumulation and with leaf proline concentration, leaf gas exchange and ion concentrations. This study shows that δ(13)C is a useful tool for the determination of the salinity tolerance of tomato at high [CO(2)], as an integrative parameter of the stress period, and was validated by traditional physiological plant stress traits. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    N. Vinnichenko

    2007-07-01

    Full Text Available Satellite observations of atmospheric CO2 offer the potential to identify regional carbon surface sources and sinks and to investigate carbon cycle processes. The extent to which satellite measurements are useful however, depends on the near surface sensitivity of the chosen sensor. In this paper, the capability of the SCIAMACHY instrument on board ENVISAT, to observe lower tropospheric and surface CO2 variability is examined. To achieve this, atmospheric CO2 retrieved from SCIAMACHY near infrared (NIR spectral measurements, using the Full Spectral Initiation (FSI WFM-DOAS algorithm, is compared to in-situ aircraft observations over Siberia and additionally to tower and surface CO2 data over Mongolia, Europe and North America. Preliminary validation of daily averaged SCIAMACHY/FSI CO2 against ground based Fourier Transform Spectrometer (FTS column measurements made at Park Falls, reveal a negative bias of about −2.0% for collocated measurements within ±1.0° of the site. However, at this spatial threshold SCIAMACHY can only capture the variability of the FTS observations at monthly timescales. To observe day to day variability of the FTS observations, the collocation limits must be increased. Furthermore, comparisons to in-situ CO2 observations demonstrate that SCIAMACHY is capable of observing a seasonal signal that is representative of lower tropospheric variability on (at least monthly timescales. Out of seventeen time series comparisons, eleven have correlation coefficients of 0.7 or more, and have similar seasonal cycle amplitudes. Additional evidence of the near surface sensitivity of SCIAMACHY, is provided through the significant correlation of FSI derived CO2 with MODIS vegetation indices at over twenty selected locations in the United States. The SCIAMACHY/MODIS comparison reveals that at many of the sites, the amount of CO2 variability is coincident with the amount of vegetation activity. The presented analysis suggests that

  18. Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink.

    Science.gov (United States)

    Pugh, T A M; Müller, C; Arneth, A; Haverd, V; Smith, B

    2016-09-20

    Primary productivity of terrestrial vegetation is expected to increase under the influence of increasing atmospheric carbon dioxide concentrations ([CO2]). Depending on the fate of such additionally fixed carbon, this could lead to an increase in terrestrial carbon storage, and thus a net terrestrial sink of atmospheric carbon. Such a mechanism is generally believed to be the primary global driver behind the observed large net uptake of anthropogenic CO2 emissions by the biosphere. Mechanisms driving CO2 uptake in the Terrestrial Biosphere Models (TBMs) used to attribute and project terrestrial carbon sinks, including that from increased [CO2], remain in large parts unchanged since those models were conceived two decades ago. However, there exists a large body of new data and understanding providing an opportunity to update these models, and directing towards important topics for further research. In this review we highlight recent developments in understanding of the effects of elevated [CO2] on photosynthesis, and in particular on the fate of additionally fixed carbon within the plant with its implications for carbon turnover rates, on the regulation of photosynthesis in response to environmental limitations on in-plant carbon sinks, and on emergent ecosystem responses. We recommend possible avenues for model improvement and identify requirements for better data on core processes relevant to the understanding and modelling of the effect of increasing [CO2] on the global terrestrial carbon sink. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Sensitivity of temperate grassland species to elevated atmospheric CO2 and the interaction with temperature and water stress

    Directory of Open Access Journals (Sweden)

    M.B. JONES

    2008-12-01

    Full Text Available The annual cycle of growth of many temperate grasses is limited by low temperatures during the winter and spring and water stress during the summer. Climate change, induced by increase in the concentration of greenhouse gases in the atmosphere, can affect the growth and community structure of temperate grasslands in two ways. The first is directly through changes in atmospheric concentration of CO2 and the second is indirectly through changes in temperature and rainfall. At higher latitudes, where growth is largely temperature limited, it is probable that the direct effects of enhanced CO2 will be less than at low latitudes. However, interactions with increasing temperature and water stress are complex. Temperate grasslands range from intensively managed monocultures of sown species to speciesrich natural and semi-natural communities whose local distributions are controlled by variations in soil type and drainage. The different species can show marked differences in their responses to increasing CO2 concentrations, rising temperatures and water stress. This will probably result in major alterations in the community structure of temperate grasslands in the future. In addition to impacts on primary productivity and community structure, a long-term effect of elevated CO2 on grasslands is likely to be a significant increase in soil carbon storage. However, this may be counteracted by increases in temperature.;

  20. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  1. Photosynthetic activity and proteomic analysis highlights the utilization of atmospheric CO2 by Ulva prolifera (Chlorophyta) for rapid growth.

    Science.gov (United States)

    Huan, Li; Gu, Wenhui; Gao, Shan; Wang, Guangce

    2016-12-01

    Free-floating Ulva prolifera is one of the causative species of green tides. When green tides occur, massive mats of floating U. prolifera thalli accumulate rapidly in surface waters with daily growth rates as high as 56%. The upper thalli of the mats experience environmental changes such as the change in carbon source, high salinity, and desiccation. In this study, the photosynthetic performances of PSI and PSII in U. prolifera thalli exposed to different atmospheric carbon dioxide (CO2 ) levels were measured. Changes in photosynthesis within salinity treatments and dehydration under different CO2 concentrations were also analyzed. The results showed that PSII activity was enhanced as CO2 increased, suggesting that CO2 assimilation was enhanced and U. prolifera thalli can utilize CO2 in the atmosphere directly, even when under moderate stress. In addition, changes in the proteome of U. prolifera in response to salt stress were investigated. Stress-tolerance proteins appeared to have an important role in the response to salinity stress, whereas the abundance of proteins related to metabolism showed no significant change under low salinity treatments. These findings may be one of the main reasons for the extremely high growth rate of free-floating U. prolifera when green tides occur. © 2016 Phycological Society of America.

  2. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... production well. In this approach the salt concentrations at water production wells depending on different parameters are determined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical...... uncertainty is investigated for three parameters: the well distance, the water production rate, and the permeability of the aquifer. One possible way of estimating statistical uncertainties and providing probabilities is performing numerical Monte Carlo (MC) simulations. The MC approach is computationally...

  3. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    Science.gov (United States)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; hide

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  4. Effect of microwave irradiation on reactivity of metallurgical coke in CO2 atmosphere

    Directory of Open Access Journals (Sweden)

    C. Tian

    2018-01-01

    Full Text Available Influence of microwave irradiation on gasification behavior and crystallite parameters of coke samples was studied in this research. The results indicated that microwave irradiation have significant influence on the carbon structure and the reactivity of coke in CO2 atmosphere. The thermogravimetric results showed that the temperature of coke at different conversion rates of 10 %, 20 % and 30 % were reduced by 20 °C, 30 °C and 50 °C respectively. Simultaneously, microwave irradiation may lead to variation in lateral size and stacking height of crystallite and subsequently reduce the gasification reaction rate of coke in CO2 atmosphere.

  5. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres.

    Science.gov (United States)

    Ameye, Maarten; Wertin, Timothy M; Bauweraerts, Ingvar; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2012-10-01

    Here, we investigated the effect of different heat-wave intensities applied at two atmospheric CO2 concentrations ([CO2]) on seedlings of two tree species, loblolly pine (Pinus taeda) and northern red oak (Quercus rubra). Seedlings were assigned to treatment combinations of two levels of [CO2] (380 or 700 μmol mol(-1)) and four levels of air temperature (ambient, ambient +3°C, or 7-d heat waves consisting of a biweekly +6°C heat wave, or a monthly +12°C heat wave). Treatments were maintained throughout the growing season, thus receiving equal heat sums. We measured gas exchange and fluorescence parameters before, during and after a mid-summer heat wave. The +12°C heat wave, significantly reduced net photosynthesis (Anet) in both species and [CO2] treatments but this effect was diminished in elevated [CO2]. The decrease in Anet was accompanied by a decrease in Fv'/Fm' in P. taeda and ΦPSII in Q. rubra. Our findings suggest that, if soil moisture is adequate, trees will experience negative effects in photosynthetic performance only with the occurrence of extreme heat waves. As elevated [CO2] diminished these negative effects, the future climate may not be as detrimental to plant communities as previously assumed. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Pleistocene atmospheric CO2 change linked to Southern Ocean nutrient utilization

    Science.gov (United States)

    Ziegler, M.; Diz, P.; Hall, I. R.; Zahn, R.

    2011-12-01

    Biological uptake of CO2 by the ocean and its subsequent storage in the abyss is intimately linked with the global carbon cycle and constitutes a significant climatic force1. The Southern Ocean is a particularly important region because its wind-driven upwelling regime brings CO2 laden abyssal waters to the surface that exchange CO2 with the atmosphere. The Subantarctic Zone (SAZ) is a CO2 sink and also drives global primary productivity as unutilized nutrients, advected with surface waters from the south, are exported via Subantarctic Mode Water (SAMW) as preformed nutrients to the low latitudes where they fuel the biological pump in upwelling areas. Recent model estimates suggest that up to 40 ppm of the total 100 ppm atmospheric pCO2 reduction during the last ice age were driven by increased nutrient utilization in the SAZ and associated feedbacks on the deep ocean alkalinity. Micro-nutrient fertilization by iron (Fe), contained in the airborne dust flux to the SAZ, is considered to be the prime factor that stimulated this elevated photosynthetic activity thus enhancing nutrient utilization. We present a millennial-scale record of the vertical stable carbon isotope gradient between subsurface and deep water (Δδ13C) in the SAZ spanning the past 350,000 years. The Δδ13C gradient, derived from planktonic and benthic foraminifera, reflects the efficiency of biological pump and is highly correlated (rxy = -0.67 with 95% confidence interval [0.63; 0.71], n=874) with the record of dust flux preserved in Antarctic ice cores6. This strongly suggests that nutrient utilization in the SAZ was dynamically coupled to dust-induced Fe fertilization across both glacial-interglacial and faster millennial timescales. In concert with ventilation changes of the deep Southern Ocean this drove ocean-atmosphere CO2 exchange and, ultimately, atmospheric pCO2 variability during the late Pleistocene.

  7. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics.

    Science.gov (United States)

    Lindroth, Richard L

    2010-01-01

    Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge

  8. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2over past and future centuries.

    Science.gov (United States)

    Landry, Jean-Sébastien; Matthews, H Damon

    2017-08-01

    The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO 2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate-carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year-2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11-154), 47 (2-64), and 1129 (90-5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO 2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC-related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming-induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO 2 between 2000 and 2300 for most estimates (by 4-8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO 2 (by 1-9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO 2 decreases under RCPs 4.5 and 8.5 (by 5-8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO 2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO 2 . © 2016 John Wiley & Sons Ltd.

  9. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  10. Stomatal and pavement cell density linked to leaf internal CO2 concentration.

    Science.gov (United States)

    Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-08-01

    Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Temporal variability and spatial dynamics of CO2 and CH4 concentrations and fluxes in the Zambezi River system

    Science.gov (United States)

    Teodoru, Cristian; Borges, Alberto; Bouillon, Steven; Nyoni, Frank; Nyambe, Imasiku

    2014-05-01

    Spanning over 2900 km in length and with a catchment of approximately 1.4 million km2, the Zambezi River is the fourth largest river in Africa and the largest flowing into the Indian Ocean from the African continent. Yet, there is surprisingly little or no information on carbon (C) cycling in this large river system. As part of a broader study on the riverine biogeochemistry in the Zambezi River basin, we present here mainstream dissolved CO2 and CH4 data collected during 2012 and 2013 over two climatic seasons (dry and wet) to constrain the interannual variability, seasonality and spatial heterogeneity of partial pressure of CO2 (pCO2) and CH4 concentrations and fluxes along the aquatic continuum, in relation to physico-chemical parameters (temperature, conductivity, oxygen, and pH) and various carbon pools (dissolved and particulate, organic and inorganic carbon, total alkalinity, primary production, respiration and net aquatic metabolism). Both pCO2 and CH4 variability was high, ranging from minimal values of 150 ppm and 7 nM, respectively, mainly in the two large reservoirs (the Kariba and the Cabora Bassa characterized by high pH and oxygen and low DOC), up to maximum values of 12,500 ppm and 12,130 nM, CO2 and CH4, respectively, mostly below floodplains/wetlands (low pH and oxygen levels, high DOC and POC concentrations). The interannual variability was relatively large for both CO2 and CH4 (mean pCO2: 2350 ppm in 2013 vs. 3180 ppm in 2013; mean CH4: 600 nM in 2012 vs. 1000 nM in 2013) and significantly higher (up to two fold) during wet season compared to dry season closely linked to distinct seasonal hydrological characteristics. Overall, no clear pattern was observed along the longitudinal gradient as river CO2 and CH4 concentrations are largely influenced by the presence of floodplains/wetlands, anthropogenic reservoirs or natural barriers (waterfalls/ rapids). Following closely the concentration patterns, river CO2 and CH4 mean fluxes of 3440 mg C-CO2 m

  12. Atmospheric CO2enrichment effect on the Cu-tolerance of the C4cordgrass Spartina densiflora.

    Science.gov (United States)

    Pérez-Romero, Jesús Alberto; Idaszkin, Yanina Lorena; Duarte, Bernardo; Baeta, Alexandra; Marques, João Carlos; Redondo-Gómez, Susana; Caçador, Isabel; Mateos-Naranjo, Enrique

    2018-01-01

    A glasshouse experiment was designed to investigate the effect of the co-occurrence of 400 and 700ppm CO 2 at 0, 15 and 45mM Cu on the Cu-tolerance of C 4 cordgrass species Spartina densiflora, by measuring growth, gas exchange, efficiency of PSII, pigments profiles, antioxidative enzyme activities and nutritional balance. Our results revealed that the rising atmospheric CO 2 mitigated growth reduction imposed by Cu in plants grown at 45mM Cu, leading to leaf Cu concentration bellow than 270mgKg -1 Cu, caused by an evident dilution effect. On the other hand, non-CO 2 enrichment plants showed leaf Cu concentration values up to 737.5mgKg -1 Cu. Furthermore, improved growth was associated with higher net photosynthetic rate (A N ). The beneficial effect of rising CO 2 on photosynthetic apparatus seems to be associated with a reduction of stomatal limitation imposed by Cu excess, which allowed these plants to maintain greater i WUE values. Also, plants grown at 45mM Cu and 700ppm CO 2 , showed higher ETR values and lower energy dissipation, which could be linked with an induction of Rubisco carboxylation and supported by the recorded amelioration of N imbalance. Furthermore, higher ETR values under CO 2 enrichment could lead to an additional consumption of reducing equivalents. Idea that was reflected in the lower values of ETR max /A N ratio, malondialdehyde (MDA) and ascorbate peroxidase (APx), guaiacol peroxidase (GPx) and superoxide dismutase (SOD) activities under Cu excess, which could indicate a lower production of ROS species under elevated CO 2 concentration, due to a better use of absorbed energy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems

    Science.gov (United States)

    Graly, Joseph A.; Drever, James I.; Humphrey, Neil F.

    2017-04-01

    In order to constrain CO2 fluxes from biogeochemical processes in subglacial environments, we model the evolution of pH and alkalinity over a range of subglacial weathering conditions. We show that subglacial waters reach or exceed atmospheric pCO2 levels when atmospheric gases are able to partially access the subglacial environment. Subsequently, closed system oxidation of sulfides is capable of producing pCO2 levels well in excess of atmosphere levels without any input from the decay of organic matter. We compared this model to published pH and alkalinity measurements from 21 glaciers and ice sheets. Most subglacial waters are near atmospheric pCO2 values. The assumption of an initial period of open system weathering requires substantial organic carbon oxidation in only 4 of the 21 analyzed ice bodies. If the subglacial environment is assumed to be closed from any input of atmospheric gas, large organic carbon inputs are required in nearly all cases. These closed system assumptions imply that order of 10 g m-2 y-1 of organic carbon are removed from a typical subglacial environment—a rate too high to represent soil carbon built up over previous interglacial periods and far in excess of fluxes of surface deposited organic carbon. Partial open system input of atmospheric gases is therefore likely in most subglacial environments. The decay of organic carbon is still important to subglacial inorganic chemistry where substantial reserves of ancient organic carbon are found in bedrock. In glaciers and ice sheets on silicate bedrock, substantial long-term drawdown of atmospheric CO2 occurs.

  14. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 and 2013 Airborne Campaigns

    Science.gov (United States)

    Abshire, J. B.; Ramanathan, A.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    We have developed a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan with 300 scans per second. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength every second. We then solve for the optimum CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak and the column average CO2 concentrations. We compared these to radiative transfer calculations based on the HITRAN 2008 database, the atmospheric conditions, and the CO2 concentrations sampled by in-situ sensors on the aircraft. Our team participated in the ASCENDS science flights during July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 absorption line shapes were recorded. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds and to stratus cloud tops. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption profile (averaged for 50 sec) matched the predicted profile to better than 1% RMS error for all flight altitudes. For 10 second averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by signal shot noise (i.e. the signal photon count). For flight

  15. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem.

    Science.gov (United States)

    Lipson, David A; Wilson, Richard F; Oechel, Walter C

    2005-12-01

    This study reports the effects of long-term elevated atmospheric CO2 on root production and microbial activity, biomass, and diversity in a chaparral ecosystem in southern California. The free air CO2 enrichment (FACE) ring was located in a stand dominated by the woody shrub Adenostoma fasciculatum. Between 1995 and 2003, the FACE ring maintained an average daytime atmospheric CO2 concentration of 550 ppm. During the last two years of operation, observations were made on soil cores collected from the FACE ring and adjacent areas of chaparral with ambient CO2 levels. Root biomass roughly doubled in the FACE plot. Microbial biomass and activity were related to soil organic matter (OM) content, and so analysis of covariance was used to detect CO2 effects while controlling for variation across the landscape. Extracellular enzymatic activity (cellulase and amylase) and microbial biomass C (chloroform fumigation-extraction) increased more rapidly with OM in the FACE plot than in controls, but glucose substrate-induced respiration (SIR) rates did not. The metabolic quotient (field respiration over potential respiration) was significantly higher in FACE samples, possibly indicating that microbial respiration was less C limited under high CO2. The treatments also differed in the ratio of SIR to microbial biomass C, indicating a metabolic difference between the microbial communities. Bacterial diversity, described by 16S rRNA clone libraries, was unaffected by the CO2 treatment, but fungal biomass was stimulated. Furthermore, fungal biomass was correlated with cellulase and amylase activities, indicating that fungi were responsible for the stimulation of enzymatic activity in the FACE treatment.

  16. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER

    Directory of Open Access Journals (Sweden)

    Michael Allen Lindon

    2014-09-01

    Full Text Available Dissociation of CO2 is investigated in an atmospheric pressure dielectric barrier discharge (DBD with a simple, zero dimensional (0-D chemical model and through experiment. The model predicts that the primary CO2 dissociation pathway within a DBD is electron impact dissociation and electron-vibrational excitation. The relaxation kinetics following dissociation are dominated by atomic oxygen chemistry. The experiments included investigating the energy efficiencies and dissociation rates of CO2 within a planar DBD, while the gas flow rate, voltage, gas composition, driving frequency, catalyst, and pulse modes were varied. Some of the VADER results include a maximum CO2 dissociation energy efficiency of 2.5 +/- 0.5%, a maximum CO$_2$ dissociation rate of 4 +/- 0.4*10^-6 mol CO2/s (5 +/- 0.5% percent dissociation, discovering that a resonant driving frequency of ~30 kHz, dependent on both applied voltage and breakdown voltage, is best for efficient CO2 dissociation and that TiO2, a photocatalyst, improved dissociation efficiencies by an average of 18% at driving frequencies above 5 kHz.

  17. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport

    Directory of Open Access Journals (Sweden)

    C. Rödenbeck

    2003-01-01

    Full Text Available Based on about 20 years of NOAA/CMDL's atmospheric CO2 concentration data and a global atmospheric tracer transport model, we estimate interannual variations and spatial patterns of surface CO2 fluxes in the period 01/1982-12/2000, by using a time-dependent Bayesian inversion technique. To increase the reliability of the estimated temporal features, particular care is exerted towards the selection of data records that are homogeneous in time. Fluxes are estimated on a grid-scale resolution (~8º latitude x 10º longitude, constrained by a-priori spatial correlations, and then integrated over different sets of regions. The transport model is driven by interannually varying re-analyzed meteorological fields. We make consistent use of unsmoothed measurements. In agreement with previous studies, land fluxes are estimated to be the main driver of interannual variations in the global CO2 fluxes, with the pace predominantly being set by the El Niño/La Niña contrast. An exception is a 2-3 year period of increased sink of atmospheric carbon after Mt.  Pinatubo's volcanic eruption in 1991. The largest differences in fluxes between El Niño and La Niña are found in the tropical land regions, the main share being due to the Amazon basin. The flux variations for the Post-Pinatubo period, the 1997/1998 El Niño, and the 1999 La Niña events are exploited to investigate relations between CO2 fluxes and climate forcing. A rough comparison points to anomalies in precipitation as a prominent climate factor for short-term variability of tropical land fluxes, both through their role on NPP and through promoting fire in case of droughts. Some large flux anomalies seem to be directly related to large biomass burning events recorded by satellite observation. Global ocean carbon uptake shows a trend similar to the one expected if ocean uptake scales proportional to the anthropogenic atmospheric CO2 perturbation. In contrast to temporal variations, the longterm

  18. Surface water CO2 concentration influences phytoplankton production but not community composition across boreal lakes.

    Science.gov (United States)

    Vogt, Richard J; St-Gelais, Nicolas F; Bogard, Matthew J; Beisner, Beatrix E; Del Giorgio, Paul A

    2017-11-01

    Recent experimental evidence suggests that changes in the partial pressure of CO2 (pCO2 ), in concert with nutrient fertilisation, may result in increased primary production and shifted phytoplankton community composition that favours species lacking adaptations to low CO2 environments. It is not clear whether these results apply in ambient freshwaters, which are already often supersaturated in CO2 , and where phytoplankton structure and activity are under complex control of diverse local and regional factors. Here, we use a large-scale comparative study of 69 boreal lakes to explore the influence of existing CO2 gradients (c. 50-2300 μatm) on phytoplankton community composition and biomass production. While community composition did not respond to pCO2 gradients, gross primary production was enhanced, but only in lakes already supersaturated in CO2 , demonstrating that environmental context is key in determining pCO2 -phytoplankton interactions. We further argue that increased atmospheric CO2 is unlikely to influence phytoplanktonic composition and production in northern lakes. © 2017 John Wiley & Sons Ltd/CNRS.

  19. Global carbon - nitrogen - phosphorus cycle interactions: A key to solving the atmospheric CO2 balance problem?

    Science.gov (United States)

    Peterson, B. J.; Mellillo, J. M.

    1984-01-01

    If all biotic sinks of atmospheric CO2 reported were added a value of about 0.4 Gt C/yr would be found. For each category, a very high (non-conservative) estimate was used. This still does not provide a sufficient basis for achieving a balance between the sources and sinks of atmospheric CO2. The bulk of the discrepancy lies in a combination of errors in the major terms, the greatest being in a combination of errors in the major terms, the greatest being in the net biotic release and ocean uptake segments, but smaller errors or biases may exist in calculations of the rate of atmospheric CO2 increase and total fossil fuel use as well. The reason why biotic sinks are not capable of balancing the CO2 increase via nutrient-matching in the short-term is apparent from a comparison of the stoichiometry of the sources and sinks. The burning of fossil fuels and forest biomass releases much more CO2-carbon than is sequestered as organic carbon.

  20. The Berkeley Atmospheric CO2 Observation Network (BEACON): Measuring Greenhouse Gases and Criteria Pollutants within the Urban Dome

    Science.gov (United States)

    Teige, V. E.; Weichsel, K.; Hooker, A.; Wooldridge, P. J.; Cohen, R. C.

    2012-12-01

    Efforts to curb greenhouse gas emissions, while global in their impacts, often focus on local and regional scales for execution and are dependent on the actions of communities and individuals. Evaluating the effectiveness of local policies requires observations with much higher spatial resolution than are currently available---kilometer scale. The Berkeley Atmospheric CO2 Observation Network (BEACON):, launched at the end of 2011, aims to provide measurements of urban-scale concentrations of CO2, temperature, pressure, relative humidity, O3, CO, and NO2 with sufficient spatial and temporal resolution to characterize the sources of CO2 within cities. Our initial deployment in Oakland, California uses ~40 sensor packages at a roughly 2 km spacing throughout the city. We will present an initial analysis of the vertical gradients and other spatial patterns observed to date.

  1. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea-level

    Science.gov (United States)

    Mckee, Karen L.; Rogers, Kerrylee; Saintilan, Neil; Middleton, Beth A.

    2012-01-01

    Coastal salt marsh and mangrove ecosystems are particularly vulnerable to changes in atmospheric CO2 concentrations and associated climate and climate-induced changes. We provide a review of the literature detailing theoretical predictions and observed responses of coastal wetlands to a range of climate change stressors, including CO2, temperature, rainfall, and sea-level rise. This review incorporates a discussion of key processes controlling responses in different settings and thresholds of resilience derived from experimental and observational studies. We specifically consider the potential and observed effects on salt marsh and mangrove vegetation of changes in (1) elevated [CO2] on physiology, growth, and distribution; (2) temperature on distribution and diversity; (3) rainfall and salinity regimes on growth and competitive interactions; and (4) sea level on geomorphological, hydrological, and biological processes.

  2. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  3. Effects of temperature, pH, water activity and CO2 concentration on growth of Rhizopus oligosporus NRRL 2710.

    Science.gov (United States)

    Sparringa, R A; Kendall, M; Westby, A; Owens, J D

    2002-01-01

    To investigate the effects of temperature, pH, water activity (aw) and CO2 concentration on the growth of Rhizopus oligosporus NRRL 2710. Hyphal extension rates from mycelial and spore inocula were measured on media with different aw (approximately 1.0, 0.98 and 0.96) and pH (3.5, 5.5 and 7.5) incubated at 30, 37 or 42 degrees C in atmospheres containing 0.03, 12.5 or 25% (v/v) CO2. The effects of environmental conditions on hyphal extension rate were modelled using surface response methodology. The rate of hyphal extension was very sensitive to pH, exhibiting a pronounced optimum at pH 5.5-5.8. The hyphal extension rate was less sensitive to temperature, aw or CO2, exhibiting maximum rates at 42 degrees C, a(w) approximately 1.0 and 0.03% (v/v) CO2. The fastest hyphal extension rate (1.7 mm h(-1)) was predicted to occur at 42 degrees C, pH 5.85, a(w) approximately 1.0 and 0.03% CO2. The present work is the first to model the simultaneous effects of temperature, pH, aw and CO2 concentration on mould growth. The information relates to tempe fermentation and to possible control of the microflora in Tanzanian cassava heap fermentations.

  4. The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown Nicotiana tabacum at elevated CO2 concentration

    Science.gov (United States)

    Down-regulation of photosynthesis is one of the most frequent responses observed in C3 plants grown under elevated atmospheric CO2 concentration ([CO2]). Down-regulation is often attributed to an insufficient capacity of sink organs to use or store the increase in carbohydrate production in leaves t...

  5. Coupling Between the Changes in CO2 Concentration and Sediment Biogeochemistry in the Salinas De San Pedro Mudflat, California, USA

    Science.gov (United States)

    Rezaie Boroon, M.; Diaz, S.; Torres, V.; Lazzaretto, T.; Dehyn, D.

    2013-12-01

    We investigated the effects of elevated carbon dioxide [CO2] on biogeochemistry of marsh sediment including speciation of selected heavy metals in Salinas de San Pedro mudflat in California. The Salinas de San Pedro mudflat has higher carbon (C) content than the vast majority of fully-vegetated salt marshes even with the higher tidal action in the mudflat. Sources for CO2 were identified as atmospheric CO2 as well as due to local fault degassing process. We measured carbon dioxide [CO2], methane [CH4], total organic carbon, dissolved oxygen, salinity, and heavy metal concentration in various salt marsh locations. Overall, our results showed that CO2 concentration ranging from 418.7 to 436.9 [ppm], which are slightly different in various chambers but are in good agreement with some heavy metal concentrations values in mudflat at or around the same location. The selected metal concentration values (ppm) ranging from 0.003 - 0.011(As); 0.001-0.005 (Cd); 0.04-0.02 (Cr); 0.13-0.38 (Cu); 0.11-0.38 (Pb); 0.0009-0.020 (Se); and 0.188-0.321 (Zn). The low dissolved O2 [ppm] in the pore water sediment indicates suboxic environment. Additionally, CO2 [ppm] and loss on ignition (LOI) [%] correlated inversely; the higher CO2 content, the lower was the LOI; that is to say the excess CO2 may caused higher rates of decomposition and therefore it leads to lower soil organic matter (LOI) [%] on the mudflat surface. It appears that the elevated CO2 makes changes in salt marsh pore water chemistry for instance the free ionic metal (Cu2+, Pb2+, etc.) speciation is one of the most reactive form because simply assimilated by the non-decayed or alive organisms in sediment of salt marsh and/or in water. This means that CO2 not only is a sign of improvement in plant productivity, but also activates microbial decomposition through increases in dissolved organic carbon availability. CO2 also increases acidification processes such as anaerobic degradation of microorganism and oxidation of

  6. Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?

    Science.gov (United States)

    Šigut, Ladislav; Holišová, Petra; Klem, Karel; Šprtová, Mirka; Calfapietra, Carlo; Marek, Michal V.; Špunda, Vladimír; Urban, Otmar

    2015-01-01

    Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants

  7. [Effects of elevated rhizosphere CO2 concentration on the photosynthetic characteristics, yield, and quality of muskmelon].

    Science.gov (United States)

    Liu, Yi-Ling; Sun, Zhou-Ping; Li, Tian-Lai; Gu, Feng-Ying; He, Yu

    2013-10-01

    By using aeroponics culture system, this paper studied the effects of elevated rhizosphere CO2 concentration on the leaf photosynthesis and the fruit yield and quality of muskmelon during its anthesis-fruiting period. In the fruit development period of muskmelon, as compared with those in the control (350 microL CO2 x L (-1)), the leaf chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and the maximal photochemical efficiency of PS II (Fv/Fm) in treatments 2500 and 5000 microL CO2 x L(-1) decreased to some extents, but the stomatal limitation value (Ls) increased significantly, and the variation amplitudes were larger in treatment 5000 microL CO2 x L(-1) than in treatment 2500 microL CO2 x L(-1). Under the effects of elevated rhizosphere CO2 concentration, the fruit yield per plant and the Vc and soluble sugar contents in fruits decreased markedly, while the fruit organic acid content was in adverse. It was suggested that when the rhizosphere CO2 concentration of muskmelon during its anthesis-fruiting period reached to 2500 microL x L(-1), the leaf photosynthesis and fruit development of muskmelon would be depressed obviously, which would result in the decrease of fruit yield and quality of muskmelon.

  8. Simulation of CO 2 concentrations at Tsukuba tall tower using WRF ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model. Srabanti Ballav Prabir K Patra Yousuke Sawa Hidekazu Matsueda Ahoro Adachi Shigeru Onogi Masayuki Takigawa Utpal K De. Volume 125 Issue 1 ...

  9. A 490 W transversely excited atmospheric CO2 spark gap laser with added H2

    Science.gov (United States)

    Zand, M.; Koushki, A. M.; Neshati, R.; Kia, B.; Khorasani, K.

    2018-02-01

    In this paper we present a new design for a high pulse repetition rate transversely excited atmospheric CO2 laser with ultraviolet pre-ionization. A new method of fast thyristor capacitor charging and discharging by a spark gap is used. The effect of H2 gas addition on the output and stability of a transversely excited atmospheric laser operating with a basic mixture of CO2, N2 and He is investigated. The output power was increased by adding H2 to the gas mixture ratio of CO2:N2:He:H2  =  1:1:8:0.5 at total pressure of 850 mbar. An average power of 490 W at 110 Hz with 4.5 J per pulse was obtained. The laser efficiency was 11.2% and oxygen gas was used in the spark gap for electron capture to reduce the recovery time and increase the repetition rate.

  10. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    Science.gov (United States)

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  11. Gravity Wave-induced High-altitude CO2 Ice Clouds in Mars' Atmosphere

    Science.gov (United States)

    Yigit, E.; Medvedev, A. S.; Hartogh, P.

    2015-12-01

    First general circulation model simulations that quantify and reproduce patches of cold air required for CO2 condensation and ice cloud formation in Mars' atmosphere are presented. Results suggest that these ice clouds are generated by lower atmospheric small-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral GW parameterization of Yiğit et al. (2008). Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good qualitative agreement with observations of high-altitude CO2 ice clouds. Our study confirms the key role of subgrid-scale GWs in facilitating high-altitude CO2 cloud formation and predicts clouds at altitudes higher than have been observed to date.

  12. Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration.

    Science.gov (United States)

    Xie, Li-Yong; Lin, Er-Da; Zhao, Hong-Liang; Feng, Yong-Xiang

    2016-05-01

    The global atmospheric CO(2) concentration is currently (2012) 393.1 μmol mol(-1), an increase of approximately 42 % over pre-industrial levels. In order to understand the responses of metabolic enzymes to elevated CO(2) concentrations, an experiment was conducted using the Free Air CO(2) Enrichment (FACE )system. Two conventional japonica rice varieties (Oryza sativa L. ssp. japonica) grown in North China, Songjing 9 and Daohuaxiang 2, were used in this study. The activities of ADPG pyrophosphorylase, soluble and granule-bound starch synthases, and soluble and granule-bound starch branching enzymes were measured in rice grains, and the effects of elevated CO(2) on the amylose and protein contents of the grains were analyzed. The results showed that elevated CO(2) levels significantly increased the activity of ADPG pyrophosphorylase at day 8, 24, and 40 after flower, with maximum increases of 56.67 % for Songjing 9 and 21.31 % for Daohuaxiang 2. Similarly, the activities of starch synthesis enzymes increased significantly from the day 24 after flower to the day 40 after flower, with maximum increases of 36.81 % for Songjing 9 and 66.67 % for Daohuaxiang 2 in soluble starch synthase (SSS), and 25.00 % for Songjing 9 and 36.44 % for Daohuaxiang 2 in granule-bound starch synthase (GBSS), respectively. The elevated CO(2) concentration significantly increased the activity of soluble starch branching enzyme (SSBE) at day 16, 32, and 40 after flower, and also significantly increased the activity of granule-bound starch branching enzyme (GBSBE) at day 8, 32, and 40 after flower. The elevated CO(2) concentration increased the peak values of enzyme activity, and the timing of the activity peaks for SSS and GBSBE were earlier in Songjing 9 than in Daohuaxiang 2. There were obvious differences in developmental stages between the two varieties of rice, which indicated that the elevated CO(2) concentration increased enzyme activity expression and starch synthesis, affecting the

  13. Atmospheric CO(2) and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants.

    Science.gov (United States)

    Gavito, M E; Curtis, P S; Mikkelsen, T N; Jakobsen, I

    2000-11-01

    The effect of ambient and elevated atmospheric CO(2) on biomass partitioning and nutrient uptake of mycorrhizal and non-mycorrhizal pea plants grown in pots in a controlled environment was studied. The hypothesis tested was that mycorrhizae would increase C assimilation by increasing photosynthetic rates and reduce below-ground biomass allocation by improving nutrient uptake. This effect was expected to be more pronounced at elevated CO(2) where plant C supply and nutrient demand would be increased. The results showed that mycorrhizae did not interact with atmospheric CO(2) concentration in the variables measured. Mycorrhizae did not affect photosynthetic rates, had no effect on root weight or root length density and almost no effect on nutrient uptake, but still significantly increased shoot weight and reduced root/shoot ratio at harvest. Elevated CO(2) increased photosynthetic rates with no evidence for down-regulation, increased shoot weight and nutrient uptake, had no effect on root weight, and actually reduced root/shoot ratio at harvest. Non-mycorrhizal plants growing at both CO(2) concentrations had lower shoot weight than mycorrhizal plants with similar nutritional status and photosynthetic rates. It is suggested that the positive effect of mycorrhizal inoculation was caused by an enhanced C supply and C use in mycorrhizal plants than in non-mycorrhizal plants. The results indicate that plant growth was not limited by mineral nutrients, but partially source and sink limited for carbon. Mycorrhizal inoculation and elevated CO(2) might have removed such limitations and their effects on above-ground biomass were independent, positive and additive.

  14. Responses of Gmelina arborea, a tropical deciduous tree species, to elevated atmospheric CO2: growth, biomass productivity and carbon sequestration efficacy.

    Science.gov (United States)

    Rasineni, Girish K; Guha, Anirban; Reddy, Attipalli R

    2011-10-01

    The photosynthetic response of trees to rising CO(2) concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO(2) responses in trees have either doubled the gas concentration (>700 μmol mol(-1)) or used single large addition of CO(2) (500-600 μmol mol(-1)). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO(2) concentration (460 μmol mol(-1)). Net photosynthetic rate of Gmelina was ~30% higher in plants grown in elevated CO(2) compared with ambient CO(2)-grown plants. The elevated CO(2) concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in F(V)/F(M), ABS/CSm, ET(0)/CSm and RuBPcase activity. The study also revealed that elevated CO(2) conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ~2100 g tree(-1) carbon after 120 days of treatment when compared to ambient CO(2)-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmo lmol(-1) CO(2). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Atmospheric pCO2 reconstructed across five early Eocene global warming events

    Science.gov (United States)

    Cui, Ying; Schubert, Brian A.

    2017-11-01

    Multiple short-lived global warming events, known as hyperthermals, occurred during the early Eocene (56-52 Ma). Five of these events - the Paleocene-Eocene Thermal Maximum (PETM or ETM1), H1 (or ETM2), H2, I1, and I2 - are marked by a carbon isotope excursion (CIE) within both marine and terrestrial sediments. The magnitude of CIE, which is a function of the amount and isotopic composition of carbon added to the ocean-atmosphere system, varies significantly between marine versus terrestrial substrates. Here we use the increase in carbon isotope fractionation by C3 land plants in response to increased pCO2 to reconcile this difference and reconstruct a range of background pCO2 and peak pCO2 for each CIE, provided two potential carbon sources: methane hydrate destabilization and permafrost-thawing/organic matter oxidation. Although the uncertainty on each pCO2 estimate using this approach is low (e.g., median uncertainty = + 23% / - 18%), this work highlights the potential for significant systematic bias in the pCO2 estimate resulting from sampling resolution, substrate type, diagenesis, and environmental change. Careful consideration of each of these factors is required especially when applying this approach to a single marine-terrestrial CIE pair. Given these limitations, we provide an upper estimate for background early Eocene pCO2 of 463 +248/-131 ppmv (methane hydrate scenario) to 806 +127/-104 ppmv (permafrost-thawing/organic matter oxidation scenario). These results, which represent the first pCO2 proxy estimates directly tied to the Eocene hyperthermals, demonstrate that early Eocene warmth was supported by background pCO2 less than ∼3.5× preindustrial levels and that pCO2 > 1000 ppmv may have occurred only briefly, during hyperthermal events.

  16. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations

    NARCIS (Netherlands)

    Peters, W.; Miller, J.B.; Whitaker, J.; Denning, A.S.; Hirsch, A.; Krol, M.C.; Zupanski, D.; Bruhwiler, L.; Tans, P.P.

    2005-01-01

    We present a data assimilation system to estimate surface fluxes of CO2 and other trace gases from observations of their atmospheric abundances. The system is based on ensemble data assimilation methods under development for Numerical Weather Prediction (NWP) and is the first of its kind to be used

  17. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through carbon-13 stable isotopes’ Ivar van der Velde Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and terrestrial

  18. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2

    NARCIS (Netherlands)

    Drigo, B.; Pijl, A.S.; Duyts, H.; Kielak, A.M.; Gamper, H.A.; Houtekamer, M.J.; Boschker, H.T.S.; Bodelier, P.L.E.; Whiteley, A.S.; Van Veen, J.A.; Kowalchuk, G.A.

    2010-01-01

    Rising atmospheric CO2 levels are predicted to have major consequences on carbon cycling and the functioning of terrestrial ecosystems. Increased photosynthetic activity is expected, especially for C-3 plants, thereby influencing vegetation dynamics; however, little is known about the path of fixed

  19. Is phloem loading a driver of plant photosynthetic responses to elevated atmospheric [CO2]? 

    Science.gov (United States)

    A better understanding of the interactions between photosynthesis, photoassimilate translocation and sink activity is necessary to improve crop productivity. Rising atmospheric [CO2] is perturbing source-sink balance in a manner not experienced by crops during the history of their cultivation, so ne...

  20. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3

    Science.gov (United States)

    Carrie Andrew; Erik A. Lilleskov

    2009-01-01

    Sporocarp production is essential for ectomycorrhizal fungal recombination and dispersal, which influences fungal community dynamics. Increasing atmospheric carbon dioxide (CO2) and ozone (O3) affect host plant carbon gain and allocation, which may in turn influence ectomycorrhizal sporocarp production if the carbon...

  1. Soil type influences the sensitivity of nutrient dynamics to changes in atmospheric CO2

    Science.gov (United States)

    Numerous studies have indicated that increases in atmospheric CO2 have the potential to decrease nitrogen availability through the process of progressive nitrogen limitation (PNL). The timing and magnitude of PNL in field experiments is varied due to numerous ecosystem processes. Here we examined ...