WorldWideScience

Sample records for atmospheric chemistry project

  1. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  2. Heterogeneous atmospheric chemistry

    Science.gov (United States)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  3. Atmospheric pseudohalogen chemistry

    OpenAIRE

    Lary, D. J.

    2004-01-01

    There are at least three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. The first is well known, HCN is a product and marker of biomass burning. However, if a detailed ion chemistry of lightning is considered then it is almost certain than in addition to lightning producing NOx, it also produces HOx and HCN. Unlike NOx and HOx, HCN is long-lived and could therefore ...

  4. Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States

    OpenAIRE

    Geddes, Jeffrey A.; Heald, Colette L.; Martin, Randall V.; Silva, Sam James

    2016-01-01

    Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consist...

  5. Atmospheric pseudohalogen chemistry

    Directory of Open Access Journals (Sweden)

    D. J. Lary

    2004-09-01

    Full Text Available There are at least three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. The first is well known, HCN is a product and marker of biomass burning. However, if a detailed ion chemistry of lightning is considered then it is almost certain than in addition to lightning producing NOx, it also produces HOx and HCN. Unlike NOx and HOx, HCN is long-lived and could therefore be a useful marker of lightning activity. Observational evidence is considered to support this view. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of CN and NCO. NCO can be photolyzed in the visible portion of the spectrum yielding N atoms. The production of N atoms is significant as it leads to the titration of nitrogen from the atmosphere via N+N→N2. Normally the only modelled source of N atoms is NO photolysis which happens largely in the UV Schumann-Runge bands. However, NCO photolysis occurs in the visible and so could be involved in titration of atmospheric nitrogen in the lower stratosphere and troposphere. HCN emission inventories are worthy of attention. The CN and NCO radicals have been termed pseudohalogens since the 1920s. They are strongly bound, univalent, radicals with an extensive and varied chemistry. The products of the atmospheric oxidation of HCN are NO, CO and O3. N+CH4 and N+CH3OH are found to be important sources of HCN. Including the pseudohalogen chemistry gives a small increase in ozone and total reactive nitrogen (NOy.

  6. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    Energy Technology Data Exchange (ETDEWEB)

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC

  7. Atmospheric and aerosol chemistry

    International Nuclear Information System (INIS)

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  8. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: overview and description of models, simulations and climate diagnostics

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2012-08-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.

  9. Evaluation of Present-day Aerosols over China Simulated from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Liao, H.; Chang, W.

    2014-12-01

    High concentrations of aerosols over China lead to strong radiative forcing that is important for both regional and global climate. To understand the representation of aerosols in China in current global climate models, we evaluate extensively the simulated present-day aerosol concentrations and aerosol optical depth (AOD) over China from the 12 models that participated in Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP), by using ground-based measurements and satellite remote sensing. Ground-based measurements of aerosol concentrations used in this work include those from the China Meteorological Administration (CMA) Atmosphere Watch Network (CAWNET) and the observed fine-mode aerosol concentrations collected from the literature. The ground-based measurements of AOD in China are taken from the AErosol RObotic NETwork (AERONET), the sites with CIMEL sun photometer operated by Institute of Atmospheric Physics, Chinese Academy of Sciences, and from Chinese Sun Hazemeter Network (CSHNET). We find that the ACCMIP models generally underestimate concentrations of all major aerosol species in China. On an annual mean basis, the multi-model mean concentrations of sulfate, nitrate, ammonium, black carbon, and organic carbon are underestimated by 63%, 73%, 54%, 53%, and 59%, respectively. The multi-model mean AOD values show low biases of 20-40% at studied sites in China. The ACCMIP models can reproduce seasonal variation of nitrate but cannot capture well the seasonal variations of other aerosol species. Our analyses indicate that current global models generally underestimate the role of aerosols in China in climate simulations.

  10. Atmospheric Chemistry and Air Pollution

    OpenAIRE

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry...

  11. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    International Nuclear Information System (INIS)

    This report completes Clarkson University's study of the chemical and physical behavior of the 218Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny's atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of circ OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO2, ethylene, and H2S to lower vapor pressure compounds and determine the role of gas phase additives such as H2O and NH3 in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of 218PoOx+ in O2 at low radon concentrations

  12. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2013-03-01

    Full Text Available Ozone (O3 from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP has been used to calculate tropospheric ozone radiative forcings (RFs. All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750 to present-day (2010 tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%, nitrogen oxides (31 ± 9%, carbon monoxide (15 ± 3% and non-methane volatile organic compounds (9 ± 2%; earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750 for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5 of 350, 420, 370 and 460 (in 2030, and 200, 300, 280 and 600 (in 2100. Models show some coherent responses of ozone to climate change

  13. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  14. Chemistry Of Atmospheric Brown Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-05-27

    Organic carbon (OC) accounts for a large fraction of atmospheric aerosol and has profound effects on air quality, atmospheric chemistry and climate forcing. Molecular composition of the OC and its evolution during common processes of atmospheric aging have been a subject of extensive research over the last decade (see reviews of Ervens et al.,1 Hallquist et al.,2 Herckes et al.,3 Carlton et al.,4 Kroll and Seinfeld,5 Rudich et al.,6 and Kanakidou et al.7). Even though many fundamental advances have been reported in these studies, our understanding of the climate-related properties of atmospheric OC is still incomplete and the specific ways in which OC impacts atmospheric environment and climate forcing are just beginning to be understood. This review covers one topic of particular interest in this area –environmental chemistry of light-absorbing aerosol OC and its impact on radiative forcing.

  15. Dynamical climatology of the NASA Langley Research Center Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model

    Science.gov (United States)

    Pierce, R. Bradley; Al-Saadi, Jassim A.; Eckman, Richard S.; Fairlie, T. Duncan; Grose, William L.; Kleb, Mary M.; Natarajan, Murali; Olson, Jennifer R.

    2000-12-01

    A comparison of the NASA Langley Research Center (LaRC) Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model's dynamical characteristics with assimilated data sets and observations is presented to demonstrate the ability of the model to represent the dynamical characteristics of Earth's troposphere and stratosphere. The LaRC IMPACT model is a coupled chemical/dynamical general circulation model (GCM) of the Earth's atmosphere extending from the surface to the lower mesosphere. It has been developed as a tool for assessing the effects of chemical, dynamical, and radiative coupling in the stratosphere on the Earth's climate. The LaRC IMPACT model winds and temperatures are found to be in fairly good agreement with Upper Atmospheric Research Satellite (UARS) United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures in the lower stratosphere. The model upper stratospheric zonal mean temperatures are also in good agreement with the UARS-UKMO climatology except for a cold winter pole which results from the upward extension of the cold vortex temperatures and an elevated winter stratopause in the model. The cold pole bias is consistent with the overprediction of the winter stratospheric jet strength, and is characteristic of stratospheric GCMs in general. The model northern and southern hemisphere stratospheric eddy heat and momentum fluxes are within the expected interannual variability of the UARS-UKMO climatology. The combined effects of water vapor transport, radiative, convective, and planetary boundary layer parameterizations are shown to produce tropospheric winds and circulation statistics that are in good agreement with the UARS-UKMO climatology, although the model tropopause and upper tropospheric temperatures are generally cold relative to the UARS-UKMO temperatures. Comparisons between the model and UARS-UKMO climatology indicate that the model does a reasonable job in reproducing the frequency of observed

  16. Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States

    Science.gov (United States)

    Geddes, Jeffrey A.; Heald, Colette L.; Silva, Sam J.; Martin, Randall V.

    2016-02-01

    Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land-atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to the projected change in emissions is affected by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that 8 h average O3 exceeds 70 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. The influence of changes in dry deposition demonstrated here underscores the need to evaluate treatments of this physical process in models. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5-10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 and 2 µg m-3. Changes to reactive nitrogen oxide abundance and partitioning are also locally

  17. Compilation and analyses of emissions inventories for NOAA`s atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.; Mubaraki, M.A.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories.

  18. Computational solution of atmospheric chemistry problems

    Science.gov (United States)

    Jafri, J.; Ake, R. L.

    1986-01-01

    Extensive studies were performed on problems of interest in atmospheric chemistry. In addition to several minor projects, four major projects were performed and described (theoretical studies of ground and low-lying excited states of ClO2; ground and excited state potential energy surfaces of the methyl peroxy radical; electronic states ot the FO radical; and theoretical studies S02 (H2O) (sub n)).

  19. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  20. Some advances in atmospheric chemistry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the recent decade, researches have been carried out by our group on some aspects of atmospheric chemistry through field observation, mechanism analysis and model simulation. Here some main results on greenhouse gas (CH4, N2O) emission from Chinese agricultural fields, aerosol, global carbon cycle and ozone variation in surface laver over China are briefly reported.

  1. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  2. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  3. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis. PMID:20368458

  4. Atmospheric chemistry-climate feedbacks

    OpenAIRE

    Raes, Frank; Liao, Hong; Chen, Wei-Ting; Seinfeld, John H.

    2010-01-01

    We extend the theory of climate feedbacks to include atmospheric chemistry. A change in temperature caused by a radiative forcing will include, in general, a contribution from the chemical change that is fed back into the climate system; likewise, the change in atmospheric burdens caused by a chemical forcing will include a contribution from the associated climate change that is fed back into the chemical system. The theory includes two feedback gains, G_(che) and G_(cli). G_(che) is defined ...

  5. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: evaluation of historical and projected future changes

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2013-08-01

    Full Text Available We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP. The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice, the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N yr−1 from nitrogen oxide emissions, 60 Tg(N yr−1 from ammonia emissions, and 83 Tg(S yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000. However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in

  6. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    Science.gov (United States)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  7. Impact of Amazonian deforestation on atmospheric chemistry

    OpenAIRE

    Ganzeveld, L.N.; Lelieveld, J.

    2004-01-01

    A single-column chemistry and climate model has been used to study the impact of deforestation in the Amazon Basin on atmospheric chemistry. Over deforested areas, daytime ozone deposition generally decreases strongly except when surface wetness decreases through reduced precipitation, whereas nocturnal soil deposition increases. The isoprene and soil nitric oxide emissions decrease although nitrogen oxide release to the atmosphere increases due to reduced canopy deposition. Deforestation als...

  8. Energy, atmospheric chemistry, and global climate

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  9. Exoplanetary Atmospheres - Chemistry, Formation Conditions, and Habitability

    CERN Document Server

    Madhusudhan, Nikku; Moses, Julianne I; Hu, Yongyun

    2016-01-01

    Characterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions. Recent developments in the field have led to unprecedented advancements in our understanding of atmospheric chemistry of exoplanets and the implications for their formation conditions. We review these developments in the present work. We review in detail the theory of atmospheric chemistry in all classes of exoplanets discovered to date, from highly irradiated gas giants, ice giants, and super-Earths, to directly imaged giant planets at large orbital separations. We then review the observational detections of chemical species in exoplanetary atmospheres of these various types using different methods, incl...

  10. Perspective: Water cluster mediated atmospheric chemistry

    International Nuclear Information System (INIS)

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  11. Atmospheric chemistry in volcanic plumes

    OpenAIRE

    von Glasow, Roland

    2010-01-01

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume...

  12. Modelling the atmospheric chemistry of volcanic plumes

    OpenAIRE

    Surl, Luke

    2016-01-01

    Abstract Volcanoes are the principal way by which volatiles are transferred from the solid Earth to the atmosphere-hydrosphere system. Once released into the atmosphere, volcanic emissions rapidly undergo a complex series of chemical reactions. This thesis seeks to further the understanding of such processes by both observation and numerical modelling. I have adapted WRF-Chem to model passive degassing from Mount Etna, the chemistry of its plume, and its influence on the ...

  13. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  14. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    OpenAIRE

    H. Riede; Jöckel, P.; Sander, R.

    2009-01-01

    We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D) global ECHAM/MESSy atmospheric-chemistry (EMAC) general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M), the photochemistry submodel...

  15. Chemistry of the Earth's Earliest Atmosphere

    OpenAIRE

    Fegley Jr, Bruce; Schaefer, Laura

    2012-01-01

    In this chapter we describe chemistry of the early atmosphere of the Earth during and shortly after its formation where there is little if any geological record. We review the arguments for a secondary origin of the terrestrial atmosphere, that is by outgassing during and/or after accretion rather than by capture of solar nebula gas. Then we discuss sources of volatiles accreted by the Earth using meteorites as analogs for the material present in the solar nebula. The next section reviews hea...

  16. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  17. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  18. Preindustrial to present day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    V. Naik

    2012-11-01

    Full Text Available We have analysed results from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, to explore trends in hydroxyl radical concentration (OH and methane (CH4 lifetime since preindustrial times (1850 and gain a better understanding of their key drivers. For the present day (2000, the models tend to simulate higher OH abundances in the Northern Hemisphere versus Southern Hemisphere. Evaluation of simulated carbon monoxide concentrations, the primary sink for OH, against observations suggests low biases in the Northern Hemisphere that may contribute to the high north-south OH asymmetry in the models. A comparison of modelled and observed methyl chloroform lifetime suggests that the present day global multi-model mean OH concentration is slightly overestimated. Despite large regional changes, the modelled global mean OH concentration is roughly constant over the past 150 yr, due to concurrent increases in OH sources (humidity, tropospheric ozone, and NOx emissions, together with decreases in stratospheric ozone and increase in tropospheric temperature, compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC emissions. The large intermodel diversity in the sign and magnitude of OH and methane lifetime changes over this period reflects differences in the relative importance of chemical and physical drivers of OH within each model. For the 1980 to 2000 period, we find that climate warming and a slight increase in mean OH leads to a 4.3 ± 1.9% decrease in the methane lifetime. Analysing sensitivity simulations performed by 10 models, we find that preindustrial to present day climate change decreased the methane lifetime by about 4 months, representing a negative feedback on the climate system. Further, using a subset of the models, we find that global mean OH increased by 46.4 ± 12.2% in response to

  19. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    V. Naik

    2013-05-01

    Full Text Available We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, to explore changes in present-day (2000 hydroxyl radical (OH concentration and methane (CH4 lifetime relative to preindustrial times (1850 and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH compared with the Southern Hemisphere (SH for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42, in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%. Despite large regional changes, the multi-model global mean (mass-weighted OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx emissions, and UV radiation due to decreases in stratospheric ozone, compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC emissions. The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6% indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  20. Preindustrial to Present-Day Changes in Tropospheric Hydroxyl Radical and Methane Lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Naik, V.; Voulgarakis, A.; Fiore, A. M.; Horowitz, L. W.; Lamarque, J.-F.; Lin, M.; Prather, M. J.; Young, P. J.; Bergmann, D.; Cameron-Smith, P. J.; Cionni, I.; Collins, W. J.; Dalsoren, S. B.; Doherty, R.; Eyring, V.; Faluvegi, G.; Folberth, G. A.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; vanNoije, T. P. C.; Plummer, D. A.; Righi, M.; Rumbold, S. T.; Skeie, R.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Sudo, K.; Szopa, S.; Zeng, G.

    2013-01-01

    We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6%) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  1. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  2. Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2012-08-01

    Full Text Available As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, we evaluate the historical black carbon (BC aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluated the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements.

    Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH and Southern Hemisphere (SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Jungfraujoch and Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean.

    For the ice core evaluation, models tend to capture both the observed temporal trends and the magnitudes well at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice-core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct

  3. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, S.; Horowitz, L. W.; McConnell, J. R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, J.-H.

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  4. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2013-03-01

    Full Text Available As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, we evaluate the historical black carbon (BC aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH and Southern Hemisphere (SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan

  5. Atmospheric chemistry and physics from air pollution to climate change

    CERN Document Server

    Seinfeld, John H

    2016-01-01

    Expanded and updated with new findings and new features Since the second edition of Seinfeld and Pandis’ classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere – including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant un...

  6. Atmospheric Chemistry Experiment (ACE) Measurements of Tropospheric and Stratospheric Chemistry and Long-Term Trends

    Science.gov (United States)

    Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray

    2007-01-01

    We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm

  7. The Atmospheric Chemistry of Methyl Chavicol (Estragole)

    Science.gov (United States)

    Bloss, W. J.; Alam, M. S.; Rickard, A. R.; Hamilton, J. F.; Pereira, K. F.; Camredon, M.; Munoz, A.; Vazquez, M.; Alacreu, P.; Rodenas, M.; Vera, T.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and secondary organic aerosols (SOA), with consequences for health, air quality, crop yields, atmospheric chemistry and radiative transfer. It is estimated that ca. 90 % of VOC emissions to the atmosphere originate from biogenic sources (BVOC); such emissions may increase under future climates. Recent field observations have identified Methyl Chavicol ("MC" hereafter, also known as Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA [Bouvier-Brown et al., 2009], and within an oil palm plantation in Malaysian Borneo, where it was found that MC could represent the highest single floral contribution of reactive carbon to the atmosphere [Misztal et al., 2010]. Palm oil cultivation, and hence emissions of MC, may be expected to increase with societal food and biofuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE (European Photoreactor) facility in Valencia, Spain (200 m3 outdoor smog chamber), investigating the degradation of MC by reaction with OH, O3 and NO3. An extensive range of measurement instrumentation was used to monitor precursor and product formation, including stable species (FTIR, PTR-MS, GC-FID and GC-MS), radical intermediates (LIF), inorganic components (NOx, O3, HONO (LOPAP and aerosol production (SMPS) and composition (PILS and filters; analysed offline by LC-MS and FTICR-MS). Experiments were conducted at a range of NOx:VOC ratios, and in the presence and absence of radical (OH) scavenger compounds. This chamber dataset is used to determine the rate constants for reaction of MC with OH, O3 and NO3, the ozonolysis radical yields, and identify the primary degradation products for each initiation route, alongside the aerosol mass yields. Aerosol composition measurements are analysed to identify markers for MC contributions to

  8. A Cooperative Chemistry Project: Chemsource.

    Science.gov (United States)

    Giles, Catherine Y.

    1994-01-01

    Chemsource is a set of instructional materials designed as a resource for high school chemistry teachers, particularly those not trained in the discipline. Materials consist of a videotape demonstrating both generic and science-specific teaching skills and a textbook on varied chemistry topics, including suggested teaching techniques and…

  9. Water physics and chemistry data from bottle casts from the GERDA as part of the Rosenstiel School of Marine and Atmospheric Science (RSMAS) project from 20 July 1955 to 29 May 1957 (NODC Accession 7000057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from the GERDA from 20 July 1955 to 29 May 1957. Data were collected as part of the Rosenstiel...

  10. Impact of aircraft emissions on the atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dameris, M.; Sausen, R.; Grewe, V.; Koehler, I.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany); Bruehl, Ch. [Max-Planck-Inst. fuer Chemie (Otto-Hahn-Institut), Mainz (Germany)

    1997-12-31

    A hierarchy of models of different complexity has been applied to estimate the impact of aircraft NO{sub x} emissions on atmospheric chemistry. The global circulation model ECHAM3 has been coupled with two types of chemistry modules. The first of these describes only a simplified (linear) NO{sub x} and HNO{sub 3} chemistry while the second one is a comprehensive chemistry module (CHEM), describing tropospheric and stratospheric chemistry including photochemical reactions and heterogeneous reactions on sulphate aerosols and PSCs. The module CHEM has been coupled either off-line or with feedback via the ozone concentration. First results of multilayer integrations (over decades) are discussed. (author) 27 refs.

  11. Educational Software Project Emphasizes Chemistry.

    Science.gov (United States)

    Worthy, Ward

    1984-01-01

    Project SERAPHIM (Systems Engineering Respecting Acquisition and Propagation of Heuristic Instructional Materials) aims to help chemical educators by collecting, producing, and disseminating instructional software for microcomputers. Project activities, accomplishments, and possible future endeavors are described. (JN)

  12. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  13. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  14. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin [Univ. of Illinois, Urbana, IL (United States); Eden, James Gary [Univ. of Illinois, Urbana, IL (United States)

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  15. Sulfur Chemistry in the Early and Present Atmosphere of Mars

    Science.gov (United States)

    Levine, Joel S.; Summers, M. E.

    2011-01-01

    Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.

  16. Atmospheric Prebiotic Chemistry and Organic Hazes

    OpenAIRE

    Trainer, Melissa G.

    2013-01-01

    Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of orga...

  17. Atmospheric chemistry: The return of ethane

    Science.gov (United States)

    Hakola, Hannele; Hellén, Heidi

    2016-07-01

    Ethane emissions can lead to ozone pollution. Measurements at 49 sites show that long-declining atmospheric ethane concentrations started rising in 2010 in the Northern Hemisphere, largely due to greater oil and gas production in the USA.

  18. Atmospheric Nucleation: Main Findings Made during the EUCAARI Project

    Czech Academy of Sciences Publication Activity Database

    Kerminen, V.-M.; Petäjä, T.; Manninen, H.E.; Paasonen, P.; Nieminen, T.; Sipilä, M.; Gagné, S.; Laakso, L.; Vehkamäki, H.; Kurten, T.; Ortega, I.K.; Brus, David; Hyvärinen, A.-P.; Lihavainen, H.; Leppä, J.; Mirme, A.; Mirme, S.; Hõrrak, U.; Berndt, T.; Stratmann, F.; Birmili, W.; Wiedensohler, A.; Metzger, A.; Baltensperger, U.; Winkler, P.; Wagner, P.; Petzold, A.; Minikin, A.; Plass-Dülmer, Ch.; Kulmala, M.

    Helsinki : -, 2010, 1E2. ISBN N. [International Aerosol Conference IAC 2010. Helsinki (FI), 29.08.2010-03.09.2010] Institutional research plan: CEZ:AV0Z40720504 Keywords : atmospheric nucleation processes * EUCAARI project * laboratory data Subject RIV: CF - Physical ; Theoretical Chemistry www.iac2010.fi

  19. After nuclear war: perturbations in atmospheric chemistry

    International Nuclear Information System (INIS)

    The world's arsenals of nuclear weapons contain approximately 50,000 nuclear warheads with a total yield of more than 14,000 Mt. Realistically, of course, not every available warhead would be used in a global nuclear exchange. The atmospheric and environmental consequences, however, would depend on how many are used. To estimate the magnitude and duration of atmospheric and environmental changes, researchers have used scenarios to describe theoretical targeting. From such estimates of the numbers, yields, targets, and detonation altitudes, they have then constructed one- to multidimensional models to assess the immediate and long-term effects of each scenario

  20. The role of human activity and land use change in atmospheric chemistry and air quality

    International Nuclear Information System (INIS)

    In the this paper, I review the importance of a mineral of fossil fuel emissions atmospheric chemistry, air quality, and climate. I then review current estimates of the sources for each specie, deriving the fraction of each source that is due to specific land use practices or land cover categories. Understanding the current trends of those species with known increasing abundances and projecting increases into the future is possible if the estimated sources from human activity and land use change can be projected and if the known atmospheric sinks and the interactions in atmospheric chemistry and climate change are appropriately taken into account. Regional trends in the short-lived species can be projected as well, assuming the estimated sources and sinks are correct. However, significant uncertainties continue to surround the estimated budgets for most of these species. Uncertainties and the estimated ranges in different source strength estimates for each are also discussed

  1. Applications of Molecular Dynamics in Atmospheric and Solution Chemistry

    OpenAIRE

    Li, Xin

    2011-01-01

    This thesis focuses on the applications of molecular dynamics simulation techniques in the fields of solution chemistry and atmospheric chemistry. The work behind the thesis takes account of the fast development of computer hardware, which has made computationally intensive simulations become more and more popular in disciplines like pharmacy, biology and materials science. In molecular dynamics simulations using classical force fields, the atoms are represented by mass points with partial ch...

  2. Indoex : chemistry of the Indian Ocean atmosphere

    NARCIS (Netherlands)

    Laat, A.T.J. de

    2001-01-01

    NDOEX (INDian Ocean EXperiment) was large international measurement campaign focussing on measuring radiation in, and the chemical compisition of, the Indian Ocean Atmosphere during northern hemisphere winter. One of the reasons to measure in this region was the specific and unique

  3. Real-time atmospheric chemistry field instrumentation.

    Science.gov (United States)

    Farmer, Delphine K; Jimenez, Jose L

    2010-10-01

    Quantifying the concentrations of trace atmospheric species in complex, reactive, and constantly changing gas and particle mixtures is challenging. This article provides a broad overview of recent advances in instrumentation used for analyzing ambient gases and particles continuously and with fast time resolution during field campaigns. PMID:20722374

  4. Polar ices chemistry: a past atmosphere reflection

    International Nuclear Information System (INIS)

    The chemical composition of polar ice impurities and the interpretation of these data in terms of chemical composition of past atmosphere is presented. This study concerns essentially the soluble mineral compounds (Na+, NH+4, K+, Ca++, Mg++, H+, F-, Cl-, NO-3 and SO-4) and organic compounds (methane sulfonate: CH3SO-3, light carboxylates and formaldehyde: HCHO). Ice cores dating methods and difficulties encountered during trace analyses are also described. The establishment and significance of the ionic budget of polar precipitations are discussed. Temporal and spatial variations of this budget between Antarctica and Greenland regions for the last complete climatic cycle are interpreted in terms of chemical composition of past atmosphere. In particular, changes in atmospheric aerosol load from marine and continental origins in response to great climate changes in the past are presented. It is shown that natural phenomenons (volcanic eruptions and biogenic emissions from the ocean) and anthropic emissions have strongly disturbed the sulfur atmospheric cycle. Record of organic acids concentration suggests that continental biosphere emissions (forest fires and vegetation emissions) were also strongly influenced by climatic conditions in the past. (J.S.). 41 refs., 4 figs

  5. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  6. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    OpenAIRE

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C.

    2008-01-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chem...

  7. Response of lightning NOx emissions and ozone production to climate change: Insights from the Atmospheric Chemistry and Climate Model Intercomparison Project

    Science.gov (United States)

    Finney, D. L.; Doherty, R. M.; Wild, O.; Young, P. J.; Butler, A.

    2016-05-01

    Results from an ensemble of models are used to investigate the response of lightning nitrogen oxide emissions to climate change and the consequent impacts on ozone production. Most models generate lightning using a parameterization based on cloud top height. With this approach and a present-day global emission of 5 TgN, we estimate a linear response with respect to changes in global surface temperature of +0.44 ± 0.05 TgN K-1. However, two models using alternative approaches give +0.14 and -0.55 TgN K-1 suggesting that the simulated response is highly dependent on lightning parameterization. Lightning NOx is found to have an ozone production efficiency of 6.5 ± 4.7 times that of surface NOx sources. This wide range of efficiencies across models is partly due to the assumed vertical distribution of the lightning source and partly to the treatment of nonmethane volatile organic compound (NMVOC) chemistry. Careful consideration of the vertical distribution of emissions is needed, given its large influence on ozone production.

  8. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry

    OpenAIRE

    M. Glasius; Goldstein, AH

    2016-01-01

    Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formatio...

  9. Equilibrium and Disequilibrium Chemistry in Evolved Exoplanet Atmospheres

    Science.gov (United States)

    Hu, Renyu

    2015-12-01

    It has been found that sub-Neptune-sized planets, although not existing in our Solar System, are ubiquitous in our interstellar neighborhood. This revelation is profound because, due to their special sizes and proximity to their host stars, Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres. I will discuss helium-dominated atmospheres as one of the outcomes of extensive atmospheric evolution on warm Neptune- and sub-Neptune-sized exoplanets. Due to depleted hydrogen abundance, the dominant carbon and oxygen species may not be methane or water on these evolved planets. Equilibrium and disequilibrium chemistry models are used to compute the molecular compositions of the atmospheres and their spectral features. Applications to GJ 436 b and other Neptune- and sub-Neptune-sized exoplanets will be discussed. As the observations to obtain the spectra of these planets continue to flourish, we will have the opportunity to study unconventional atmospheric chemical processes and test atmosphere evolution theories

  10. A comparison of stiff ODE solvers for atmospheric chemistry problems

    OpenAIRE

    Verwer, Jan; Blom, Joke; Loon, van, J.Th.; Spee, E.J.

    1995-01-01

    In the operator splitting solution of atmospheric transport-chemistry problems modeling air pollution, a major task is the numerical integration of the stiff ODE systems describing the chemical transformations. In this note a numerical comparison is presented between two special purpose solvers developed for this task.

  11. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John; Karpichev, Boris;

    2012-01-01

    )CHFOCF(2) radicals in yields of approximately 83% and 17%. The major atmospheric fate of the CF(3)C(O)FOCHF(2) alkoxy radical is decomposition via elimination of CF(3) to give FC(O)OCHF(2) and is unaffected by the method used to generate the CF(3)C(O)FOCHF(2) radicals. CF(3)CHFOCF(2) radicals add O(2......) and are converted by subsequent reactions into CF(3)CHFOCF(2)O alkoxy radicals, which decompose to give COF(2) and CF(3)CHFO radicals. In 700 Torr of air 82% of CF(3)CHFO radicals undergo C-C scission to yield HC(O)F and CF(3) radicals with the remaining 18% reacting with O(2) to give CF(3)C...

  12. Chemistry of the Upper Atmosphere of Neptune

    Science.gov (United States)

    Nance, Elizabeth; Arielle Moullet, Bryan Butler

    2016-01-01

    It has been previously asserted that sulfur-bearing species such as CS and SO2 may be present in the upper atmosphere of Neptune, as remnants of cometary impacts (Iino et al., 2014). Based on the example of the SL9 event on Jupiter, CS in particular may be one of the most abundant tracers of past cometary impacts. We present the results of our search for spectral (sub)mm signatures of HCN, CS, and SO2 in Neptune's stratosphere, performed on archival public data from the Atacama Large Millimeter/submillimeter Array (ALMA). Neither CS or SO2 were detected on Neptune. We estimated an upper limit on the S/O stratospheric ratio significantly lower than the S/O ratio in comets, suggesting that S and O cannot both solely originate from a cometary impact.

  13. Ozone Depletion, UVB and Atmospheric Chemistry

    Science.gov (United States)

    Stolarski, Richard S.

    1999-01-01

    The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.

  14. Atmospheric chemistry of hydrofluorocarbons and hydrochlorofluorocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, J.

    1995-03-01

    Pulse radiolysis coupled with a time resolved UV absorption detection system and a FTIR spectrometer coupled to a 140 l reaction chamber was used to study the degradation of HCFCs and HFCs in the atmosphere. Reaction rates for a series of reactions of HFCs and HCFCs were investigated: F + RH, R + O{sub 2} + RO{sub 2} + NO, and RO{sub 2} + NO{sub 2} + M, together with UV absorption spectra of the halogenated alkyl (R) and halogenated alkyl peroxy radicals (RO{sub 2}). The products following the self reactions for RO{sub 2} radicals for RO{sub 2} = CF{sub 3}CF{sub 2}O{sub 2}, CF{sub 2}HCF{sub 2}O{sub 2}, CF{sub 3}CH{sub 2}O{sub 2}, CFH{sub 2}CFHO{sub 2}, CF{sub 3}O{sub 2}, and CF{sub 3}C(O)O{sub 2} were investigated by the FTIR setup. The results show that the self reaction of halogenated peroxy radicals give the alkoxy radical, RO, as product. The atmospheric fate of these radicals were C-C bond cleavage for CF{sub 3}CF{sub 2}O, CHF{sub 2}CF{sub 2}O, CFH{sub 2}CHFO, and CF{sub 3}C(O)O; while CF{sub 3}CH{sub 2}O radicals rect with O{sub 2} to give CF{sub 3}CHO and HO{sub 2}. the reaction between CFH{sub 2}O{sub 2} and HO{sub 2} was shown to give 29{+-}7 % CH{sub 2}FCOOH and 72{+-}11 % HCOF as the carbon containing products. (Abstract Truncated)

  15. Future impact of transport emissions on the global atmospheric chemistry

    Science.gov (United States)

    Koffi, B.; Szopa, S.; Cozic, A.

    2009-04-01

    Emissions of air pollutants by road, air traffic and international shipping affect air quality and climate. Besides their effect on the ozone concentration and its related radiative forcing, they also affect the OH-concentration, i.e. the oxidizing capacity of the atmosphere. The pollutants are emitted by the three transport sectors into highly different environments. The O3 and OH potential productions induced by each of these sectors thus differ strongly. These transport emissions are expected to show drastic quantitative and geographic changes in the next decades, because of new emission regulations, increasing mobility, as well as demographic and economic growths. In addition to changes in emissions, significant changes in climate parameters such as H2O, temperature, and dynamics are expected to occur in the future global atmosphere. They will affect the oxidation processes and thereby the changes in the atmospheric concentrations induced by transport emissions. Within the EU-project QUANTIFY (Quantifying the Climate Impact of Global and European Transport Systems) the LMDz-INCA climate-chemistry model was used to estimate the effect of transport emissions on the global atmospheric chemical composition. In a first step, up-to-date emission datasets were used for the transport and non-transport anthropogenic emissions for present (2000) and future (2050, SRES A1b and B1 scenarios) using 2003 nudged meteorology. A strong reduction of the road emissions and a moderate (B1) to high (A1b) increase of the ship and aircraft emissions are expected by the year 2050. As a consequence, the impact of road emissions on ozone is shown to decrease drastically, whereas aviation would become the major transport sources of tropospheric ozone perturbation at global scale. According to the most likely scenario (A1b), the contribution of all transport modes to the ozone column would increase everywhere, reaching up to 13% in some areas such as Asia. In a second step of the study

  16. Atmospheric chemistry of hydrofluorocarbons and hydrochlorofluorocarbons

    International Nuclear Information System (INIS)

    Pulse radiolysis coupled with a time resolved UV absorption detection system and a FTIR spectrometer coupled to a 140 l reaction chamber was used to study the degradation of HCFCs and HFCs in the atmosphere. Reaction rates for a series of reactions of HFCs and HCFCs were investigated: F + RH, R + O2 + RO2 + NO, and RO2 + NO2 + M, together with UV absorption spectra of the halogenated alkyl (R) and halogenated alkyl peroxy radicals (RO2). The products following the self reactions for RO2 radicals for RO2 = CF3CF2O2, CF2HCF2O2, CF3CH2O2, CFH2CFHO2, CF3O2, and CF3C(O)O2 were investigated by the FTIR setup. The results show that the self reaction of halogenated peroxy radicals give the alkoxy radical, RO, as product. The atmospheric fate of these radicals were C-C bond cleavage for CF3CF2O, CHF2CF2O, CFH2CHFO, and CF3C(O)O; while CF3CH2O radicals rect with O2 to give CF3CHO and HO2. The reaction between CFH2O2 and HO2 was shown to give 29±7 % CH2FCOOH and 72±11 % HCOF as the carbon containing products. The following CF3O reactions were studied: CF3O+NO, (5.2±2.7)x10-11 cm3 molecule-1 s-1; CF3O+ 1013 molecule-1 s-1; CF3O+H2O, 0.2-40x10-17 cm3 molecule. Reactions of FCOx, x=1,2,3 and FOx, x=0,1,2, were also studied: k(FC(O)+NO)=(1.0±0.2)x10-11 cm3 molecule -1 s-1, k(FC(O)O2+NO)=(2.5±0.8)x10-11 cm3 molecule-1 s-1, k(FC(O)O+NO=(1.3±0.7)x10-10 cm3 molecule-1 s-1, k(FC(O)O+O3)-14 cm3 molecule-1 s-1, k(FO2+NO)=(1.45±0 cm3 molecule-1 s-1, k(FO2+NO2)=(1.05±0.15)x10-13 cm3 mole k(FO2+CO)-16 cm3 molecule-1 s-1, k(FO2+CH4)-molecule-1 s-1, k(FO2+O3)z3.4x10-16 cm3 molecule-1 s-1 k(FO+O3)-12 cm3 molecule-1 s-1. The results from this together with data available in the literature indicate that HFCs do not destroy stratospheric ozone. (author). 11 tabs.; 23 ills.; 106 refs

  17. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    Directory of Open Access Journals (Sweden)

    H. Liang

    2015-01-01

    Full Text Available The existence and importance of peroxyformic acid (PFA in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(OO2 and formaldehyde or the hydroperoxyl radical (HO2 were likely to be the major source and degradation into formic acid (FA was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(OO2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(OO2 and PFA chemistry on radical cycling was dependent on the yield of HC(OO2 radical from HC(O + O2 reaction. When this yield exceeded 50%, the HC(OO2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(OO2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  18. NOAA's Tropical Atmosphere Ocean Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Realtime El Nino and La Nina data from the tropical Pacific Ocean is provided by the Tropical Atmosphere Ocean / Triangle Trans-Ocean buoy network (TAO/TRITON) of...

  19. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    Science.gov (United States)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  20. What makes urban atmospheric chemistry different and special?

    Science.gov (United States)

    Harrison, Roy M.

    2016-04-01

    There has been a tendency in the atmospheric chemistry community to regard urban atmospheric chemistry as no different to global processes and to differentiate only in terms of the emissions density in models. Such an approach may be suitable for assessing the impact of urban emissions upon regional and global processes but is unsuited to generating a clear understanding of processes within the urban atmosphere itself. The urban atmosphere differentiates itself from the global atmosphere in terms of its density of emissions and relatively short timescales for chemical reaction processes, a consequence of which is that the key processes in the urban atmosphere are often different from those in the regional and remote atmosphere. This lecture will give relevant examples. One of the key aspects of both urban and rural/remote atmospheres is the oxidation of primary pollutants and the formation of secondary species. Such processes may differ markedly between urban and non-urban environments as there are major differences in the behaviour of key oxidants such as ozone, hydroxyl and NO3 radical. In the remote atmosphere the key production process for hydroxyl is through the photolysis of ozone to form excited state oxygen atoms which react with water vapour to form OH. In the urban atmosphere, concentrations of ozone are typically depressed relative to the rural atmosphere and hence this source of OH is less favourable. There are likely to be much higher concentrations of both nitrous acid and formaldehyde in the urban atmosphere whose photolysis is probably the major source of OH. Additionally, there is far more possibility for nocturnal formation of OH in the urban atmosphere from reactions of Criegee intermediates resulting from the oxidation of alkenes. As a consequence, it has been shown that winter to summer ratios of hydroxyl radical concentrations are much higher in the urban atmosphere than is typical of rural atmospheres in northern mid-latitudes. In rural

  1. Vibrational Spectroscopy of Photoreactive Molecules in Atmospheric Chemistry

    Science.gov (United States)

    Vaida, Veronica

    2010-06-01

    Vibrational overtone spectra of oxidized atmospheric chromophores are presented and analyzed to energies where chemistry through vibrational overtone pumping is possible. Experimental near infrared and visible spectra complemented by dynamical theory are presented to elucidate the light initiated reaction dynamics of pyruvic and of glyoxilic acid photo-decarboxylation. The role of water is investigated by making use of vibrational spectra of hydrates of the title compounds. Consequences of water and sunlight mediated chemistry to formation of secondary organic aerosol in the atmosphere will be discussed. K. L. Plath, J. L. Axson, G. C. Nelson, K. Takahashi, R. T. Skodje and V. Vaida -- React. Kineti. Catal. Lett. 96, 209 (2009) V. Vaida J. Phys. Chem. A 113, 5 (2009) K. Takahashi, K. L. Plath, R. T. Skodje and V. Vaida J. Phys. Chem A 112 7321 (2008)

  2. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    OpenAIRE

    G. Sarwar; Godowitch, J.; B. H. Henderson; K. Fahey; Pouliot, G.; W. T. Hutzell; Mathur, R.; Kang, D.; W. S. Goliff; Stockwell, W. R.

    2013-01-01

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide...

  3. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    OpenAIRE

    Sarwar, G.; J. Godowitch; B. H. Henderson; K. Fahey; Pouliot, G.; W. T. Hutzell; Mathur, R.; Kang, D.; Goliff, W. S.; Stockwell, W. R.

    2013-01-01

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyace...

  4. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    OpenAIRE

    Sarwar, G.; J. Godowitch; Henderson, B.; K. Fahey; Pouliot, G.; W. T. Hutzell; Mathur, R.; Kang, D.; Goliff, W. S.; Stockwell, W. R.

    2013-01-01

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, pe...

  5. Atmospheric Nucleation: Highlights of the EUCAARI Project and Future Directions

    Czech Academy of Sciences Publication Activity Database

    Kerminen, V.-M.; Petäjä, T.; Manninen, H.E.; Paasonen, P.; Nieminen, T.; Sipilä, M.; Junninen, H.; Ehn, M.; Gagné, S.; Laakso, L.; Riipinen, I.; Vehkamäki, H.; Kutren, T.; Ortega, I.K.; Dal Maso, M.; Brus, David; Hyvärinen, A-P.; Lihavainen, H.; Leppä, J.; Lehtinen, K.E.J.; Mirme, A.; Mirme, S.; Hörrak, U.; Berndt, T.; Stratmann, F.; Birmili, W.; Wiedensohler, A.; Metzger, A.; Dommen, J.; Baltensperger, U.; Kiendler-Scarr, A.; Mentel, T.F.; Wildt, J.; Winkler, P.M.; Wagner, P.E.; Petzold, A.; Minikin, A.; Plass-Dülmer, C.; Pöschl, U.; Laaksonen, A.; Kulmala, M.

    2010-01-01

    Roč. 10, č. 22 (2010), s. 10829-10848. ISSN 1680-7316 EU Projects: European Commission(XE) 36833 - EUCAARI; European Commission(XE) 26140 - EUSAAR Grant ostatní: AFCE(FI) 211483; AFCE(FI) 211484; AFCE(FI) 1118615 Institutional research plan: CEZ:AV0Z40720504 Keywords : atmospheric nucleation * boundary layers * particle size Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.309, year: 2010

  6. The Department of Energy's Atmospheric Chemistry Program: A critical review

    International Nuclear Information System (INIS)

    In response to a request from the Department of Energy's (DOE) Office of Health and Environmental Research (OHER), the Committee on Atmospheric Chemistry has reviewed OHER's Atmospheric Chemistry Program (ACP). This report contains the committee's evaluation and critique arising from that review. The review process included a two-day symposium held at the National Academy of Sciences on September 25 and 26, 1990, that focused on presenting the ACP's current components, recent scientific accomplishments, and scientific plans. Following the symposium, committee members met in a one-day executive session to formulate and outline this report. In undertaking this review, OHER and ACP management requested that the committee attempt to answer several specific questions involving the program's technical capability and productivity, its leadership and organization, and its future direction. These questions are given in the Appendix. This report represents the committee's response to the questions posed in the Appendix. Chapter I explores the committee's view of the role that atmospheric chemistry could and should assume within the DOE and its prospective National Energy Strategy. Chapter 2 assesses the current ACP, Chapter 3 presents recommendations for revising and strengthening it, and Chapter 4 restates the committee's conclusions and recommendations

  7. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    Science.gov (United States)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5

  8. The DaVinci Project: Multimedia in Art and Chemistry.

    Science.gov (United States)

    Simonson, Michael; Schlosser, Charles

    1998-01-01

    Provides an overview of the DaVinci Project, a collaboration of students, teachers, and researchers in chemistry and art to develop multimedia materials for grades 3-12 visualizing basic concepts in chemistry and visual art. Topics addressed include standards in art and science; the conceptual framework for the project; and project goals,…

  9. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NS&T) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  10. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  11. Alligator Rivers Analogue project. Groundwater Chemistry

    International Nuclear Information System (INIS)

    The objective of this volume is to provide an account of the groundwater sampling and analysis program undertaken at Koongarra, as part of the Alligator Rivers Analogue Project. Chemical parameters were investigated in groundwaters at various locations and depths in the vicinity of the Koongarra orebody. Measurements of the pH, redox state, conductivity, and bicarbonate alkalinity provided a starting point for interpreting water chemistry. Groundwater samples were obtained using submersible pumps, or, in a few cases, bailers. The concentrations of major cations and anions, such as magnesium and phosphate, were determined using a variety of standard techniques. Numerous elements were routinely analysed using quantitative or semi-quantitative ICPMS. Uranium series radionuclides and environmental isotopes were measured using radiochemical techniques and mass spectrometry. The distributions of isotopes such as deuterium, tritium, 210Pb, 13C and 14C enabled groundwater mixing and flow-paths to be studied. The occurrence and distributions of major species at Koongarra are presented in this volume, using both cross-sections and contour plans. Chemical and isotopic data for groundwater analyses carried out during the project are included in the Appendices. 47 refs., 16 tabs., 58 figs

  12. Geospatial visualization of atmospheric chemistry satellite data using Google Earth

    Science.gov (United States)

    Burke, John

    2008-08-01

    Earth observation satellites employ various types of remote-sensing instruments to peer into the secrets of the atmosphere. Many of these instruments collect two-dimensional data stored as raster images which can be easily georeferenced and overlaid onto a virtual globe, with stunning results. However, certain instruments collect threedimensional science data which can pose a significant challenge for visualization efforts. The Tropospheric Emission Spectrometer (TES) is such an instrument which collects scientific data about atmospheric chemistry and stores the outputs in an Oracle database. With some imaginative programming, the data is transformed into interesting and information-packed visualizations using shell scripts, SQL scripts and Oracle stored procedures to yield Google Earthformatted files. This Google Earth content is hosted on the TES external web site for use by the public.

  13. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    Directory of Open Access Journals (Sweden)

    S. Muthers

    2014-05-01

    Full Text Available The newly developed atmosphere–ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM and without (NOCHEM interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann–Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600–2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600–1850 the simulated

  14. The global change research center atmospheric chemistry model

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, F.P. Jr.

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the O{sub x}, HO{sub x}, NO{sub x}, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  15. Non-equilibrium CO chemistry in the solar atmosphere

    CERN Document Server

    Ramos, A A; Carlsson, M; Cernicharo, J

    2003-01-01

    Investigating the reliability of the assumption of instantaneous chemical equilibrium (ICE) for calculating the CO number density in the solar atmosphere is of crucial importance for the resolution of the long-standing controversy over the existence of `cool clouds' in the chromosphere, and for determining whether the cool gas owes its existence to CO radiative cooling or to a hydrodynamical process. Here we report the first results of such an investigation in which we have carried out time-dependent gas-phase chemistry calculations in radiation hydrodynamical simulations of solar chromospheric dynamics. We show that while the ICE approximation turns out to be suitable for modeling the observed infrared CO lines at the solar disk center, it may substantially overestimate the `heights of formation' of strong CO lines synthesized close to the edge of the solar disk, especially concerning vigorous dynamic cases resulting from relatively strong photospheric disturbances. This happens because during the cool phase...

  16. The Unsolved Mysteries of Atmospheric Chemistry for High School Students and Teachers

    Science.gov (United States)

    Simonich, S. L.

    2011-12-01

    The grant "CAREER: New Molecular Markers of Asian Air Emissions - Anthropogenic Semi-Volatile Organic Compounds" (ATM-0239823) was funded by NSF from 2003-2008. The CAREER proposal described the integration of research and outreach education activities in the field of atmospheric chemistry, specifically atmospheric measurements and atmospheric transport. The primary objective of the research was to identify anthropogenic semi-volatile organic compounds (SOCs) that could be used as molecular markers for Asian air emissions and trans-Pacific atmospheric transport. The outreach education activity was integrated with the research by developing curriculum to introduce underrepresented minority high school students, and their teachers, to atmospheric chemistry and atmospheric measurements through Oregon State University's National Institute of Environmental Health Sciences funded Hydroville Curriculum Project (http://www.hydroville.org/iaq_resources). A curriculum was developed to allow students to assume the role of "Air Quality Scientist" and measure air temperature, air flow, relative humidity, CO, CO2, O3, and volatile organic compounds in out-door and in-door air. The students gained an understanding of atmospheric transport and compared measured concentrations to recommended guidelines. In addition, the outreach education activities included the development of the "Unsolved Mysteries of Human Health" website (http://www.unsolvedmysteries.oregonstate.edu/), including a specific module on the research conducted under the CAREER grant (http://www.unsolvedmysteries.oregonstate.edu /Gas-Chromatography-Mass-Spectrometry-Overview). The PI of the CAREER proposal, Dr. Staci Massey Simonich, is now a full professor at Oregon State University. To date, she has published over 50 peer-review journal articles, as well as mentored 9 undergraduate students, 20 graduate students, 3 post-doctoral scholars, and 3 international visiting scientists in her laboratory.

  17. "The Chemicals Project": Connecting General Chemistry to Students' Lives

    Science.gov (United States)

    Stout, Roland

    2000-10-01

    "The Chemicals Project" described here strives to bring freshman chemistry alive for students by emphasizing its connection to the real world and to their own lives and experiences. Its major assignments deal with chemical phobias, recognizing the chemicals found in everyday life and chemical hazards (using Material Data Safety Sheets). The project is described in a cooperative learning format, employs portfolio grading, and includes a significant writing component. Ways of linking this project with the course lecture and student evaluations of the project are described. The bottom line: pre- and post-testing shows that it works. The Chemicals Project brings chemistry alive for students.

  18. Scientific projection paper for radiation chemistry

    International Nuclear Information System (INIS)

    Together with radiation physics, an understanding of radiation chemistry is necessary for full appreciation of biological effects of high and low energy radiations, and for the development of prophylactic, therapeutic and potentiating methods and techniques in biological organisms. Areas covered in some detail in this report include: the early chemical events involved in the deposition of radiation energy; the kinetics of free radical and excited state reactions; the application of radiation chemistry to radiation biology; and the availability of instrumentation

  19. The Nuclear and Radiochemistry in Chemistry Education Curriculum Project

    International Nuclear Information System (INIS)

    Given the mismatch between supply of and demand for nuclear scientists, education in nuclear and radiochemistry has become a serious concern. The Nuclear and Radiochemistry in Chemistry Education (NRIChEd) Curriculum Project was undertaken to reintroduce the topics normally covered in a one-semester radiochemistry course into the traditional courses of a four-year chemistry major: general chemistry, organic chemistry, quantitative and instrumental analysis, and physical chemistry. NRIChEd uses a three-pronged approach that incorporates radiochemistry topics when related topics in the basic courses are covered, presents special topics of general interest as a vehicle for teaching nuclear and radiochemistry alongside traditional chemistry, and incorporates the use of non-licensed amounts of radioactive substances in demonstrations and student laboratory experiments. This approach seeks not only to reestablish nuclear science in the chemistry curriculum, but to use it as a tool for elucidating fundamental and applied aspects of chemistry as well. Moreover, because of its relevance in many academic areas, nuclear science enriches the chemistry curriculum by encouraging interdisciplinary thinking and problem solving. (author)

  20. Urban Climate Effects on Air Pollution and Atmospheric Chemistry

    Science.gov (United States)

    Rasoul, Tara; Bloss, William; Pope, Francis

    2016-04-01

    Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.

  1. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    Science.gov (United States)

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  2. A new model for magnesium chemistry in the upper atmosphere.

    Science.gov (United States)

    Plane, John M C; Whalley, Charlotte L

    2012-06-21

    This paper describes the kinetic study of a number of gas-phase reactions involving neutral Mg-containing species, which are important for the chemistry of meteor-ablated magnesium in the upper mesosphere/lower thermosphere region. The study is motivated by the very recent observation of the global atomic Mg layer around 90 km, using satellite-born UV-visible spectroscopy. In the laboratory, Mg atoms were produced thermally in the upstream section of a fast flow tube and then converted to the molecular species MgO, MgO(2), OMgO(2), and MgCO(3) by the addition of appropriate reagents. Atomic O was added further downstream, and Mg was detected at the downstream end of the flow tube by laser-induced fluorescence. The following rate coefficients were determined at 300 K: k(MgO + O → Mg + O(2)) = (6.2 ± 1.1) × 10(-10); k(MgO(2) + O → MgO + O(2)) = (8.4 ± 2.8) × 10(-11); k(MgCO(3) + O → MgO(2) + CO(2)) ≥ 4.9 × 10(-12); and k(MgO + CO → Mg + CO(2)) = (1.1 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1). Electronic structure calculations of the relevant potential energy surfaces combined with RRKM theory were performed to interpret the experimental results and also to explore the likely reaction pathways that convert MgCO(3) and OMgO(2) into long-lived reservoir species such as Mg(OH)(2). Although no reaction was observed in the laboratory between OMgO(2) and O, this is most likely due to the rapid recombination of O(2) with the product MgO(2) to form the relatively stable O(2)MgO(2). Indeed, one significant finding is the role of O(2) in the mesosphere, where it initiates holding cycles by recombining with radical species such as MgO(2) and MgOH. A new atmospheric model was then constructed which combines these results together with recent work on magnesium ion-molecule chemistry. The model is able to reproduce satisfactorily some of the key features of the Mg and Mg(+) layers, including the heights of the layers, the seasonal variations of their column

  3. Scientific projection paper for radiation chemistry

    International Nuclear Information System (INIS)

    Among all the environmental hazards to which man is exposed, ionizing radiation is the most thoroughly investigated and the most responsibly monitored and controlled. Nevertheless, because of the importance of radiation in modern society from both the hazard as well as the utilitarian standpoints, much more information concerning the biological effects induced and their modification and reversal is required. Together with radiation physics, an understanding of radiation chemistry is necessary for full appreciation of biological effects of high and low energy radiations, and for the development of prophylactic, therapeutic and potentiating methods and techniques in biological organisms

  4. Alternative Solvents through Green Chemistry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop state-of-the-art, green precision cleaning technologies for NASA’s 21st Century Launch Complex thus eliminating...

  5. Project-based learning in chemistry teaching

    OpenAIRE

    Smrdel, Tjaša

    2013-01-01

    Project-based learning is a teaching method which helps students learn by researching interesting issues and problems from everyday life. With this method students acquire and upgrade their knowledge, develop different skills, abilities and talents and strengthen their social skills. The execution of project-based learning consists of several stages, each with specific characteristics. The role of the teacher in this method is primarily directing the learning process through encouragement, gu...

  6. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2013-03-01

    Full Text Available We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2 into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 predictions generally agree better with the observed data than the CB05TU predictions. RACM2 enhances ozone for all ambient levels leading to higher bias at low (70 ppbv concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. While RACM2 enhances ozone and secondary aerosols by relatively large margins, control strategies developed for ozone or fine particles using the two mechanisms do not differ appreciably.

  7. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2013-10-01

    Full Text Available We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2 into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably.

  8. A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-02-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM, and scavenging (substituting the existing submodel SCAV. We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

  9. LCREP chemistry and lipids - Lower Columbia River Ecosystem Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 1) The purpose of this project is to document juvenile salmon habitat occurrence in the Lower Columbia River and estuary, and examine how habitat conditions...

  10. Response of the AMOC to reduced solar radiation – the modulating role of atmospheric-chemistry

    OpenAIRE

    Muthers, Stefan; Raible, Christoph C.; Thomas F Stocker

    2016-01-01

    The influence of reduced solar forcing (grand solar minimum or geoengineering scenarios like solar radiation management) on the Atlantic meridional overturning circulation (AMOC) is assessed in an ensemble of atmosphere-ocean-chemistry-climate model simulations. Ensemble sensitivity simulations are performed with and without interactive chemistry. Without chemistry-climate interaction the AMOC is intensified in the course of the solar radiation reduction (SRR), which is ...

  11. Environmental Chamber Study of Atmospheric Chemistry and Secondary Organic Aerosol Formation Using Cavity Enhanced Absorption Spectroscopy

    OpenAIRE

    Liu, Yingdi

    2011-01-01

    Air pollution and global climate change are important environmental issues that affect our society. Deeper understanding of atmospheric chemistry is required to understand these problems and to develop effective control strategies. Environmental chambers have been used for the past few decades to study atmospheric chemistry and investigate processes leading to secondary pollutant formation. This thesis work provides two different high sensitivity real time cavity enhance absorption spectrosco...

  12. Final-Year Education Projects for Undergraduate Chemistry Students

    Science.gov (United States)

    Page, Elizabeth

    2011-01-01

    The Undergraduate Ambassadors Scheme provides an opportunity for students in their final year of the chemistry degree course at the University of Reading to choose an educational project as an alternative to practical research. The undergraduates work in schools where they can be regarded as role models and offer one way of inspiring pupils to…

  13. Chemistry dissemination through Ciência@Bragança project

    OpenAIRE

    Moreno, Márcia; Pereira, Ana I.; Ferreira, Isabel C.F.R.; Fernandes, Adília; Mesquita, Cristina; Martins, Anabela; Matias, José

    2014-01-01

    Ciencia@Bragança was a pioneer project developed at Bragança - Portugal, in an interesting and regular cooperation between a research institution (IPB), a science museum (CCVB) and several media (press, radio and television) during a period of two years. The project aimed to bring science closer to the population, allowing it to discover new concepts and bringing awareness to different subjects related to several scientific domains, including chemistry. The diffusion of scienti...

  14. Simulating the impacts of large scale insect- and disease-driven tree mortality on atmospheric chemistry

    Science.gov (United States)

    Geddes, J.; Heald, C. L.; Silva, S. J.; Martin, R.

    2015-12-01

    Land-use and land-cover change (LUC) is an important driver of global change through the alteration of local energy, moisture, and carbon exchanges. LUC can also directly impact the emission and deposition of important reactive trace gases, altering the oxidative chemistry of the atmosphere and subsequently air quality and climate. Large-scale tree mortality as a result of insects and disease may therefore have unexplored feedbacks on atmospheric chemistry. Between 2013 and 2027, over 80 million acres of treed land in the United States is predicted to experience basal area mortality rates exceeding 25%. We harmonized the description of land cover across the relevant surface-atmosphere exchange processes in the GEOS-Chem chemical transport model to facilitate LUC simulations, and used this adapted model to test the impact of projected tree mortality according to the 2012 USDA National Insect and Disease Risk Assessment. Nation-wide biogenic VOC emissions were reduced by 5%, with local impacts approaching 50% in some regions. By themselves, these emission reductions resulted in lower surface-level O3 mixing ratios, but this was counteracted by decreases in the O3 deposition velocity (by up to 10%) due to the reduction in vegetation density. Organic aerosol mass concentrations were also significantly affected across the United States, decreasing by 5-10% across the eastern U.S. and the northwest, with local impacts exceeding 25% in some regions. We discuss the general impacts on air quality in clean and polluted regions of the US, and point to developments needed for a more robust understanding of land cover change feedbacks.

  15. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  16. Alternative Solvents through Green Chemistry Project

    Science.gov (United States)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  17. Chemistry of Silicate Atmospheres of Evaporating Super-Earths

    CERN Document Server

    Schaefer, Laura

    2009-01-01

    We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O2, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds such as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.

  18. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  19. Investigating Titan's Atmospheric Chemistry at Low Temperature in Support of the NASA Cassini Mission

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Salama, Farid

    2013-01-01

    Titan's atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn's magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSMIC simulation chamber at NASA Ames in order to study the different steps of Titan's atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature (approx. 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2,-CH4 chemistry (C2H2, C2H4, C6H6...) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan's atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan fs atmospheric chemistry as well as specific chemical pathways leading to Titan fs haze formation.

  20. A photochemical reactor for studies of atmospheric chemistry

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Eskebjerg, Carsten; Johnson, Matthew Stanley

    2009-01-01

    A photochemical reactor for studies of atmospheric kinetics and spectroscopy has been built at the Copenhagen Center for Atmospheric Research. The reactor consists of a vacuum FTIR spectrometer coupled to a 100 L quartz cylinder by multipass optics mounted on electropolished stainless steel end...

  1. Biological sources and sinks of methane in tropical habitats and tropical atmospheric chemistry. Doctoral thesis

    International Nuclear Information System (INIS)

    The contents of this study include: two methods for measuring methane emission from a tropical lake; methane emission by bubbling from Gatun Lake, Panama; methane emission from wetlands in central Panama; consumption of atmospheric methane in soils of central Panama: effects of agricultural development; a seasonal study of soil-atmosphere methane, carbon dioxide, and 222Rn flux in a tropical moist forest; and the effects of tropical deforestation on global and regional atmospheric chemistry

  2. Non-equilibrium chemistry in the atmospheres of brown dwarfs

    CERN Document Server

    Saumon, D S; Freedman, R S; Lodders, K

    2002-01-01

    Carbon monoxide and ammonia have been detected in the spectrum of Gl 229B at abundances that differ substantially from those obtained from chemical equilibrium. Vertical mixing in the atmosphere is a mechanism that can drive slowly reacting species out of chemical equilibrium. We explore the effects of vertical mixing as a function of mixing efficiency and effective temperature on the chemical abundances in the atmospheres of brown dwarfs and on their spectra. The models compare favorably with the observational evidence and indicate that vertical mixing plays an important role in brown dwarf atmospheres.

  3. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    Science.gov (United States)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  4. Electrostatic activation of prebiotic chemistry in substellar atmospheres

    CERN Document Server

    Stark, Craig R; Diver, Declan A; Rimmer, Paul B

    2013-01-01

    Charged dust grains in the atmospheres of exoplanets may play a key role in the formation of prebiotic molecules, necessary to the origin of life. Dust grains submerged in an atmospheric plasma become negatively charged and attract a flux of ions that are accelerated from the plasma. The energy of the ions upon reaching the grain surface may be sufficient to overcome the activation energy of particular chemical reactions that would be unattainable via ion and neutral bombardment from classical, thermal excitation. As a result, prebiotic molecules or their precursors could be synthesised on the surface of dust grains that form clouds in exoplanetary atmospheres. This paper investigates the energization of the plasma ions, and the dependence on the plasma electron temperature, in the atmospheres of substellar objects such as gas giant planets. Calculations show that modest electron temperatures of $\\approx 1$ eV ($\\approx 10^{4}$ K) are enough to accelerate ions to sufficient energies that exceed the activation...

  5. Convection and Chemistry in the Atmospheric Boundary Layer

    OpenAIRE

    A. C. Petersen

    1999-01-01

    The earth’s troposphere is the lowest layer of the atmosphere and has a thickness of about 10 km. It is the layer that contains most of the mass (80%) of the atmosphere. All weather phenomena that we experience have their origin in the troposphere. It is the stage for some well-known environmental problems: climate change, ozone smog, and acidification. These problems are related to the trace amount of gases that are emitted into the troposphere from anthropogenic sources. Alth...

  6. Electrostatic activation of prebiotic chemistry in substellar atmospheres

    OpenAIRE

    Stark, C. R.; Helling, Ch.; Diver, D.A.; Rimmer, P. B.

    2014-01-01

    Charged dust grains in the atmospheres of exoplanets may play a key role in the formation of prebiotic molecules, necessary to the origin of life. Dust grains submerged in an atmospheric plasma become negatively charged and attract a flux of ions that are accelerated from the plasma. The energy of the ions upon reaching the grain surface may be sufficient to overcome the activation energy of particular chemical reactions that would be unattainable via ion and neutral bombardment from classica...

  7. Nitrogen oxide air pollution: atmospheric chemistry. 1964-1978 (citations from the NTIS data base). Report for 1964-78

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    Research reports on photochemical air pollution models, smog chemistry and reactivity, and SSt exhaust effects are cited in the bibliography. Auroral and upper atmospheric in chemistry, and photochemistry of naturally occurring nitrogen oxides are excluded. (Contains 247 citations)

  8. Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry

    Directory of Open Access Journals (Sweden)

    A. L. Lockwood

    2010-07-01

    Full Text Available Isoprene is an important atmospheric volatile organic compound involved in ozone production and NOx (NO+NO2 sequestration and transport. Isoprene reaction with OH in the presence of NO can form either isoprene hydroxy nitrates ("isoprene nitrates" or convert NO to NO2 which can photolyze to form ozone. While it has been shown that isoprene nitrate production can represent an important sink for NOx in forest impacted environments, there is little experimental knowledge of the relative importance of the individual isoprene nitrate isomers, each of which has a different fate and reactivity. In this work, we have identified the 8 individual isomers and determined their total and individual production yields. The overall yield of isoprene nitrates at atmospheric pressure and 295 K was found to be 0.070(+0.025/−0.015. Three isomers, representing nitrates resulting from OH addition to a terminal carbon, represent 90% of the total IN yield. We also determined the ozone rate constants for three of the isomers, and have calculated their atmospheric lifetimes, which range from ~1–2 h, making their oxidation products likely more important as atmospheric organic nitrates and sinks for nitrogen.

  9. Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry

    Directory of Open Access Journals (Sweden)

    A. L. Lockwood

    2010-04-01

    Full Text Available Isoprene is an important atmospheric volatile organic compound involved in ozone production and NOx (NO+NO2 sequestration and transport. Isoprene reaction with OH in the presence of NO can form either isoprene nitrates or convert NO to NO2 which can photolyze to form ozone. While it has been shown that isoprene nitrate production can represent an important sink for NOx in forest impacted environments, there is little experimental knowledge of the relative importance of the individual isoprene nitrate isomers, each of which has a different fate and reactivity. In this work, we have identified the 8 individual isomers and determined their total and individual production yields. The overall yield of isoprene nitrates at atmospheric pressure and 295 K was found to be 0.070(+0.025/–0.015. Three isomers, the (4,3-IN, (1,2-IN and Z-(4,1-IN represent 90% of the total IN yield. We also determined the ozone rate constants for three of the isomers, and have calculated their atmospheric lifetimes, which range from ~1–2 h, making their oxidation products likely more important as atmospheric organic nitrates and sinks for nitrogen.

  10. Atmospheric trace chemistry in the American humid tropics

    OpenAIRE

    Lodge Jr., James P.; Machado, P. A.; Pate, J. B.; Sheesley, D. C.; Wartburg, A. F.

    2011-01-01

    Numerous attempts have been made to define global mean concentrations of trace substances and to incorporate these into global models of net source and sink strengths of the various natural and anthropogenic atmospheric contaminants.DOI: 10.1111/j.2153-3490.1974.tb01973.x

  11. The role of computational chemistry in the science and measurements of the atmosphere

    Science.gov (United States)

    Phillips, D. H.

    1978-01-01

    The role of computational chemistry in determining the stability, photochemistry, spectroscopic parameters, and parameters for estimating reaction rates of atmospheric constituents is discussed. Examples dealing with the photolysis cross sections of HOCl and (1 Delta g) O2 and with the stability of gaseous NH4Cl and asymmetric ClO3 are presented. It is concluded that computational chemistry can play an important role in the study of atmospheric constituents, particularly reactive and short-lived species which are difficult to investigate experimentally.

  12. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    OpenAIRE

    V.-M. Kerminen; T. Petäjä; Manninen, H. E.; Paasonen, P.; Nieminen, T.; Sipilä, M.; Junninen, H.; M. Ehn; Gagné, S.; Laakso, L.; Riipinen, I; Vehkamäki, H.; Kurten, T.; Ortega, I.K.; Dal Maso, M.

    2010-01-01

    Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions), atmospheric nucleation was studied by (i) developing and testing new air ion and cluster spectrometers, (ii) conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii) investigating atmospheric nucleation mechanism under field conditions, and (iv) applying new theoretical and modelling tools for data interpretation and development...

  13. Investigations of Global Chemistry-Climate Interactions and Organic Aerosol Using Atmospheric Modeling

    Science.gov (United States)

    Pye, Havala Olson Taylor

    Aerosol, or particulate matter (PM), is an important component of the atmosphere responsible for negative health impacts, environmental degradation, reductions in visibility, and climate change. In this work, the global chemical transport model, GEOS-Chem, is used as a tool to examine chemistry-climate interactions and organic aerosols. GEOS-Chem is used to simulate present-day (year 2000) and future (year 2050) sulfate, nitrate, and ammonium aerosols and investigate the potential effects of changes in climate and emissions on global budgets and U.S. air quality. Changes in a number of meteorological parameters, such as temperature and precipitation, are potentially important for aerosols and could lead to increases or decreases in PM concentrations. Although projected changes in sulfate and nitrate precursor emissions favor lower PM concentrations over the U.S., projected increases in ammonia emissions could result in higher nitrate concentrations. The organic aerosol simulation in GEOS-Chem is updated to include aerosol from primary semivolatile organic compounds (SVOCS), intermediate volatility compounds (IVOCs), NOx dependent terpene aerosol, and aerosol from isoprene + NO3 reaction. SVOCs are identified as the largest global source of organic aerosol even though their atmospheric transformation is highly uncertain and emissions are probably underestimated. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and high aerosol yields from NO3 oxidation, biogenic hydrocarbons reacting with the nitrate radical are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. Globally, 69 to 88 Tg/yr of aerosol is predicted to be produced annually, approximately 22 to 24 Tg/yr of which is from biogenic hydrocarbons.

  14. Rugged Optical Atmospheric Humidity Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trace species measurement on unmanned atmospheric research craft suitable for interplanetary travel is a demanding application for optical sensing techniques. Yet...

  15. Data underpinning: Multiple oscillations in Neoarchaean atmospheric chemistry

    OpenAIRE

    Izon, Gareth; Zerkle, Aubrey Lea; Zhelezinskaya, Yadviga; Farquhar, James; Newton, Robert J.; Poulton, Simon W.; Eigenbrode, Jennifer L.; Claire, Mark

    2015-01-01

    This study was supported financially by NERC Fellowship NE/H016805/2 (to AZ) and a NERC Standard Grant NE/J023485/2 (to AZ, MC and SP). The Great Oxidation Event (GOE) represents a crucial juncture in Earth history, signifying the rise in atmospheric oxygen from parts per million to per cent levels at ~2.45-2.32 billion-years-ago (Ga). Although planetary oxygenation undoubtedly led to the inception of the contemporary Earth system, the trigger(s) and mechanism(s) controlling this chemical ...

  16. On the numerical treatment of problems in atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Aro, C.J.

    1995-09-01

    Atmospheric chemical-radiative-transport (CRT) models are vital in performing research on atmospheric chemical change. Even with the enormous computing capability delivered by massively parallel systems, extended three dimensional CRT simulations are still not computationally feasible. The major obstacle in a CRT model is the nonlinear ODE system describing the chemical kinetics in the model. These ODE systems are usually very stiff and account for anywhere from 75% to 90% of the CPU time required to run a CRT model. In this study, a simple explicit class of time stepping method is developed and demonstrated to be useful in treating chemical ODE systems without the use of a Jacobian matrix. These methods, called preconditioned time differencing methods, are tested on small mathematically idealized problems, box model problems, and full 2-D and 3-D CRT models. The methods are found to be both fast and memory efficient. Studies are performed on both vector and parallel systems. The preconditioned time differencing methods are established as a viable alternative to the more common backward differentiation formulas in terms of CPU speed across architectural platforms.

  17. On the atmospheric chemistry of NO2 - O3 systems; a laboratory study.

    NARCIS (Netherlands)

    Verhees, P.W.C.

    1986-01-01

    In this dissertation a laboratory study dealing with the atmospheric chemistry of NO 2 -O 3 systems is described. Knowledge of this system is relevant for a better understanding of a number of air pollution problems, particularly th

  18. "Holes" in Student Understanding: Addressing Prevalent Misconceptions regarding Atmospheric Environmental Chemistry

    Science.gov (United States)

    Kerr, Sara C.; Walz, Kenneth A.

    2007-01-01

    There is a misconception among undergraduate students that global warming is caused by holes in the ozone layer. In this study, we evaluated the presence of this and other misconceptions surrounding atmospheric chemistry that are responsible for the entanglement of the greenhouse effect and the ozone hole in students' conceptual frameworks. We…

  19. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  20. Toward an Earth system model: atmospheric chemistry, coupling, and petascale computing

    International Nuclear Information System (INIS)

    Atmospheric chemicals and aerosols are interactive components of the Earth system, with implications for climate. As part of the SciDAC climate consortium of labs we have implemented a flexible state-of-the-art atmospheric chemistry and aerosol capability into the Community Climate System Model (CCSM). We have also developed a fast chemistry mechanism that agrees well with observations and is computationally more efficient than our more complex chemistry mechanisms. We are working with other colleagues to couple this capability with the biospheric and aerosol-cloud interaction capabilities that are being developed for the CCSM model to create an Earth system model. However, to realise the potential of this Earth system model will require a move from terascale to petascale computing, and the greatest benefit will come from well balanced computers and a balance between capability and capacity computing

  1. Bunsen conference 1999. Atmospheric physical chemistry; Bunsentagung 1999. Physikalische Chemie der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, P.J.; Zellner, R. [comps.

    2000-07-01

    The main subject of the 1999 Bunsen conference was atmospheric physical chemistry. There were lectures and posters on measurement and distribution of atmospheric trace gases, photochemical reactions in the different parts of the atmosphere, natural and anthropogenic emissions resulting from biomass combustion, thermodynamics and microphysics of aerosol, and air pollution abatement. [German] Die Bunsentagung 1999 beschaeftigte sich mit dem Thema Physikalische Chemie der Atmosphaere. Themen der Vortraege und Poster waren u.a. die Messung und Verteilung von Spurengasen in der Atmosphaere, photochemische Reaktionen in den verschiedenen Schichten der Atmosphaere, natuerliche und anthropogene Emissionen durch Verbrennung von Biomasse, Thermodynamik und Microphysik von Aerosolen und Klimaschutz.

  2. Plant surface reactions: an ozone defence mechanism impacting atmospheric chemistry

    Directory of Open Access Journals (Sweden)

    W. Jud

    2015-07-01

    Full Text Available Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: how much ozone effectively enters the plant through open stomata and how much is lost by chemical reactions at the plant surface? In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis of cis-abienol (C20H34O – a diterpenoid with two exocyclic double bonds – caused emissions of formaldehyde (HCHO and methyl vinyl ketone (C4H6O. The ring-structured cembratrien-diols (C20H34O2 with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2, which we could observe in the gas phase, too. Fluid dynamic calculations were used to model ozone distribution in the diffusion limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way, that ozone flux through the open stomata is strongly reduced. Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone

  3. High-power laser-plasma chemistry in planetary atmospheres

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Ferus, Martin; Kubelík, Petr; Krása, Josef; Skála, Jiří; Pfeifer, Miroslav; Civiš, Svatopluk; Cihelka, Jaroslav; Babánková, Dagmar

    2007-01-01

    Roč. 7, č. 3 (2007), s. 516-517. ISSN 1531-1074. [Bioastronomy 2007. San Juach, 16.07.2007-20.07.2007] R&D Projects: GA ČR GA203/06/1278; GA MŠk(CZ) LC528; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40400503 Keywords : laser spark * laser-produced plasma * chemical evolution * plasmachemistry Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.025, year: 2007

  4. Spiers Memorial Lecture. Introductory lecture: chemistry in the urban atmosphere.

    Science.gov (United States)

    Baltensperger, Urs

    2016-07-18

    The urban atmosphere is characterised by a multitude of complex processes. Gaseous and particulate components are continuously emitted into the atmosphere from many different sources. These components are then dispersed in the urban atmosphere via turbulent mixing. Numerous chemical reactions modify the gas phase chemistry on multiple time scales, producing secondary pollutants. Through partitioning, the chemical and physical properties of the aerosol particles are also constantly changing as a consequence of dispersion and gas phase chemistry. This review presents an overview of the involved processes, focusing on the contributions presented at this conference and putting them into a broader context. Advanced methods for aerosol source apportionment are presented as well, followed by some aspects of health effects related to air pollution. PMID:27247983

  5. Investigating the Effects of Project-Oriented Chemistry Experiments on Some Affective and Cognitive Field Components

    Directory of Open Access Journals (Sweden)

    İnci MORGİL

    2009-04-01

    Full Text Available The general aim of this study is to prepare project-based chemistry experiments related to various chemistry topics via group study by pre-service chemistry teachers. Also it is tried to find answers to the following questions:1. Did pre-service teachers’ performance change after mentioned applications? 2. Had conducted applications effect on pre-service teachers’ attitude towards chemistry, attitudes towards chemistry laboratory, anxieties and scientific process skills? 3. How was the physical condition of laboratory where project-based chemistry experiment applications were conducted and what were the difficulties encountered by pre-service teachers in laboratory studies?

  6. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Directory of Open Access Journals (Sweden)

    M. Vaïtilingom

    2011-08-01

    Full Text Available The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2 as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10−10–10−11 M s−1. The chemical composition (marine or continental origin had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5.

    In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10−12 M led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10−14 M, microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach.

    Combining these two approaches (experimental and theoretical, our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more

  7. Surface chemistry of atmospheric plasma modified polycarbonate substrates

    International Nuclear Information System (INIS)

    Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88 deg. to 18 deg. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of -(C-O)- groups and also introduction of new functional groups i.e. -(O-C=O)- after the treatment process. AFM topographic images demonstrated an increase in the rms roughness of the surface from 2.0 nm to 4.0 nm caused by the treatment. Increase in rms roughness of the surface caused relevant decrease in transmission up to ∼2-5%.

  8. Dynamics and Disequilibrium Carbon Chemistry in HD 209458b's Atmosphere

    CERN Document Server

    Cooper, C S; Cooper, Curtis S.; Showman, Adam P.

    2006-01-01

    Chemical equilibrium considerations suggest that, assuming solar elemental abundances, carbon on HD 209458b is sequestered primarily as carbon monoxide (CO) and methane (CH4). The relative mole fractions of CO(g) and CH4(g) in chemical equilibrium are expected to vary greatly according to variations in local temperature and pressure. We show, however, that in the p = 1--1000 mbar range, chemical equilibrium does not hold. To explore disequilibrium effects, we couple the chemical kinetics of CO and CH4 to a three-dimensional numerical model of HD 209458b's atmospheric circulation. These simulations show that vigorous dynamics caused by uneven heating of this tidally locked planet homogenize the CO and CH4 concentrations at p < 1 bar, even in the presence of lateral temperature variations of ~500--1000 K. In the 1--1000 mbar pressure range, we find that over 98% of the carbon is in CO. This is true even in cool regions where CH4 is much more stable thermodynamically. Our work shows furthermore that planets 3...

  9. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  10. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    Directory of Open Access Journals (Sweden)

    Z. Peng

    2015-09-01

    Full Text Available Oxidation flow reactors (OFRs using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D, O(3P, and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH and external OH reactivity (OHRext, as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D, O(3P, and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab

  11. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    Science.gov (United States)

    Peng, Z.; Day, D. A.; Ortega, A. M.; Palm, B. B.; Hu, W. W.; Stark, H.; Li, R.; Tsigaridis, K.; Brune, W. H.; Jimenez, J. L.

    2015-09-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and

  12. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    Science.gov (United States)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  13. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  14. High Performance Nitrous Oxide Analyzer for Atmospheric Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project targets the development of a highly sensitive gas sensor to monitor atmospheric nitrous oxide. Nitrous oxide is an important species in Earth science...

  15. Atmospheric impact of the 1783?1784 Laki eruption: Part I Chemistry modelling

    OpenAIRE

    Stevenson, D.S.; Johnson, C. E.; Highwood, E.J.; V. Gauci; W. J. Collins; Derwent, R. G.

    2003-01-01

    Results from the first chemistry-transport model study of the impact of the 1783–1784 Laki fissure eruption (Iceland: 64°N, 17°W) upon atmospheric composition are presented. The eruption released an estimated 61 Tg(S) as SO2 into the troposphere and lower stratosphere. The model has a high resolution tropopause region, and detailed sulphur chemistry. The simulated SO2 plume spreads over much of the Northern Hemisphere, polewards of ~40°N. About 70% of the SO2 gas is directly deposited...

  16. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    OpenAIRE

    Kerminen, V.-M.; T. Petäjä; Manninen, H. E.; Paasonen, P.; Nieminen, T.; Sipilä, M.; Junninen, H.; M. Ehn; Gagné, S.; Laakso, L.; Riipinen, I; Vehkamäki, H.; Kurten, T.; Ortega, I.K.; Dal Maso, M.

    2010-01-01

    Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions), atmospheric nucleation was studied by (i) developing and testing new air ion and cluster spectrometers, (ii) conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii) investigating atmospheric nucleation mechanism under field conditions, and (iv) applying new theoretical and modelling tools for data interpretation and development of para...

  17. Science Project Ideas about Kitchen Chemistry. Revised Edition.

    Science.gov (United States)

    Gardner, Robert

    This book presents science experiments that can be conducted in the kitchen. Contents include: (1) "Safety First"; (2) "Chemistry in and Near the Kitchen Sink"; (3) "Chemistry in the Refrigerator"; (4) "Chemistry on the Stove"; (5) "Chemistry on the Kitchen Counter"; and (6) "Further Reading and Internet Addresses." (YDS)

  18. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  19. Where is the equator? A definition based on the atmosphere and its implications for atmospheric chemistry and climate

    Science.gov (United States)

    Holmes, C. D.; Prather, M. J.

    2014-12-01

    The concentration of hydroxyl (OH)—the main sink for the greenhouse gases methane and hydrofluorocarbons—in Earth's northern and southern hemispheres is an important longstanding puzzle in atmospheric chemistry. Observations of methylchloroform imply that there is about 10% more OH-loss in the southern hemisphere. In contrast, global 3-D atmospheric models (CTMs and GCMs) simulate 28 ± 10 % greater OH concentrations and methane loss in the northern hemisphere, according to a recent survey. This apparent shortcoming of many models derives in large part from an inconsistent definition of the hemispheres. For model results, OH concentrations and methane/methylchloroform loss are commonly averaged over the geographic hemispheres, with the geographic equator as the dividing line. For the observations, however, the hemispheres are separated by the atmosphere's circulatory mixing barrier, which rarely coincides with the geographic equator. Instead the barrier to interhemispheric mixing corresponds to the rising branch of the Hadley circulation and follows the seasonal migration of the sun. We use artificial tracers in a CTM to define the atmospheric (as opposed to geographic) hemispheres. We show that the tracer definition corresponds with the Intertropical Convergence Zone (ITCZ) where it is well defined and robust against several different tracer definitions. The atmospheric equator lies at 3°N on average (10°N in boreal summer) and extends as far as 30°N during the South Asian summer monsoon (Figure 1). When methane/methylchloroform loss rates are calculated for the dynamic and time-varying hemispheres, the CTM has just 5% greater loss in the northern hemisphere (Figure 1). Thus, using a definition of atmospheric hemispheres that is consistent with atmospheric circulations reveals that OH distributions in CTMs, while still slightly overestimating northern hemisphere OH, are much closer to observational constraints than has been implied by past work. We also

  20. Ionization chemistry in the H2O-dominant atmospheres of the icy moons

    Science.gov (United States)

    Shematovich, V. I.; Johnson, R. E.

    2007-08-01

    The main pathways of the ionization chemistry for pure H2O- and mixed H2O+O2+CO2+NH3+CH4 atmospheres which are representative for neutral and ionized atmospheres of the icy bodies in the Jovian and Saturnian systems are discussed. The gaseous envelopes of the icy moons of the giant planets are formed usually due to the surface radiolysis by the solar UV radiation and energetic magnetospheric plasma (Johnson, 1990). The standard astrochemical UMIST2005 (UDFA05) network is used to infer the main chemical pathways of ionization chemistry in the pure or with admixtures of other volatile molecules water vapor atmospheres. In case of the H2O- dominant atmosphere the parent H2O molecules are easily dissociated and ionized by the solar UVradiation and the energetic magnetospheric electrons. These impact processes result in the formation of the secondary neutral and ionized products - chemically active radicals O and OH, and H+, H2+, O+, OH+, and H2O+ ions. Secondary ions have admixture abundances in the H2O-dominant atmospheres, because they are efficiently transformed to H3O+ hydroxonium ions in the fast ion-molecular reactions. The major H3O+ hydroxonium ion does not chemically interact with other neutrals, and is destroyed in the dissociative recombination with thermal electrons mainly reproducing the chemically simple H, H2, O, and OH species. In case of the mixed H2O+O2-dominant atmosphere corresponding to the near-surface atmospheres of icy moons (Shematovich et al., 2005), the ionization chemistry results in the formation of the second major ion O2+ - because ion of molecular oxygen has the lower ionization potential comparing with other parent species -H2, H2O, CO2. The H+, O+, OH+, and H2O+ ions can be easily converted to O2+ ions through the ion-molecular reactions. In case of significant admixture of molecular hydrogen it is possible to transfer the O2+ ions to the O2H+ ions through the fast reaction with H2 and further to the H3O+ ions through the ion

  1. Complexes and clusters of water relevant to atmospheric chemistry: H2O complexes with oxidants.

    Science.gov (United States)

    Sennikov, Petr G; Ignatov, Stanislav K; Schrems, Otto

    2005-03-01

    Experimental observations and data from quantum chemical calculations on complexes between water molecules and small, oxygen-containing inorganic species that play an important role as oxidants in the atmosphere (O(1D), O(3P), O2(X3sigmag), O2(b1sigmag+), O3, HO, HOO, HOOO, and H2O2) are reviewed, with emphasis on their structure, hydrogen bonding, interaction energies, thermodynamic parameters, and infrared spectra. In recent years, weakly bound complexes containing water have increasingly attracted scientific attention. Water in all its phases is a major player in the absorption of solar and terrestrial radiation. Thus, complexes between water and other atmospheric species may have a perceivable influence on the radiative balance and contribute to the greenhouse effect, even though their concentrations are low. In addition, they can play an important role in the chemistry of the Earth's atmosphere, particularly in the oxidation of trace gases. Apart from gas-phase complexes, the interactions of oxidants with ice surfaces have also received considerable advertency lately due to their importance in the chemistry of snow, ice clouds, and ice surfaces (e.g., ice shields in polar regions). In paleoclimate--respectively paleoenvironmental--studies, it is essential to understand the transfer processes from the atmosphere to the ice surface. Consequently, special attention is being paid here to the intercomparison of the properties of binary complexes and the complexes and clusters of more complicated compositions, including oxidants adsorbed on ice surfaces, where ice is considered a kind of large water cluster. Various facts concerning the chemistry of the Earth's atmosphere (concentration profiles and possible influence on radical reactions in the atmosphere) are discussed. PMID:15799459

  2. Making a Natural Product Chemistry Course Meaningful with a Mini Project Laboratory

    Science.gov (United States)

    Hakim, Aliefman; Liliasari; Kadarohman, Asep; Syah, Yana Maolana

    2016-01-01

    This paper discusses laboratory activities that can improve the meaningfulness of natural product chemistry course. These laboratory activities can be useful for students from many different disciplines including chemistry, pharmacy, and medicine. Students at the third-year undergraduate level of chemistry education undertake the project to…

  3. Chemistry-turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere

    Science.gov (United States)

    Kaser, L.; Karl, T.; Yuan, B.; Mauldin, R. L.; Cantrell, C. A.; Guenther, A. B.; Patton, E. G.; Weinheimer, A. J.; Knote, C.; Orlando, J.; Emmons, L.; Apel, E.; Hornbrook, R.; Shertz, S.; Ullmann, K.; Hall, S.; Graus, M.; Gouw, J.; Zhou, X.; Ye, C.

    2015-12-01

    The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene-dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.

  4. Impact of electron chemistry on the structure and composition of Io's atmosphere

    Science.gov (United States)

    Smyth, William H.; Wong, M. C.

    2004-09-01

    Two-dimensional model calculations (altitude and solar zenith angle) are performed to investigate the impact of electron chemistry on the composition and structure of Io's atmosphere. The calculations are based upon the model of Wong and Smyth (2000, Icarus 146, 60-74) for Io's SO 2 sublimation atmosphere with the addition of new electron chemistry, where the interactions of the electrons and neutrals are treated in a simple fashion. The model calculations are presented for Io's atmosphere at western elongation (dusk ansa) for both a low-density case (subsolar temperature of 113 K) and a high-density case (subsolar temperature of 120 K). The impact of electron-neutral chemistry on the composition and structure of Io's atmosphere is confined primarily to an interaction layer. The penetration depth of the interaction layer is limited to high altitudes in the thicker dayside atmosphere but reaches the surface in the thinner dayside and/or nightside atmosphere at larger solar zenith angles. Within most of the thicker dayside atmosphere, the column density of SO 2 is not significantly altered by electrons, but in the interaction layer all number densities are significantly altered: SO 2 is reduced, O, SO, S, and O 2 are greatly enhanced, and O, SO, and S become comparable to SO 2 at high altitudes. For the thinner nightside atmosphere, the species number densities are dramatically altered: SO 2 is drastically reduced to the least abundant species of the SO 2 family, SO and O 2 are significantly reduced at all altitudes, and O and S are dramatically enhanced and become the dominant species at all altitudes except near the surface. The interaction layer also defines the location of the emission layer for neutrals excited by electron impact and hence determines the fraction of the total neutral column density that is visible in remote observation. Electron chemistry may also impact the ratio of the equatorial to polar SO 2 column density deduced from Lyman- α images and

  5. Kinetic and photochemical data for atmospheric chemistry reactions of the nitrogen oxides

    Science.gov (United States)

    Hampson, R. F., Jr.

    1980-01-01

    Data sheets for thermal and photochemical reactions of importance in the atmospheric chemistry of the nitrogen oxides are presented. For each reaction the available experimental data are summarized and critically evaluated, and a preferred value of the rate coefficient is given. The selection of the preferred value is discussed and an estimate of its accuracy is given. For the photochemical process, the data are summarized, and preferred for the photoabsorption cross section and primary quantum yields are given.

  6. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry

    OpenAIRE

    Farmer, D. K.; Matsunaga, A; K. S. Docherty; Surratt, J D; J. H. Seinfeld; P. J. Ziemann; Jimenez, J. L

    2010-01-01

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantif...

  7. Design of and initial results from a highly instrumented reactor for atmospheric chemistry (HIRAC)

    OpenAIRE

    Glowacki, D. R.; Goddard, A; K. Hemavibool; Malkin, T. L.; Commane, R.; F. Anderson; Bloss, W. J.; Heard, D. E.; T. Ingham; M. J. Pilling; P. W. Seakins

    2007-01-01

    The design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE) technique establishes it as internationally unique for a chamber of its size and pressure/temperature variable capabilities. In addition to the FAGE technique, HIRAC features a...

  8. GREDIQ-RIMA: The evolution of a teaching project of experimentation in chemistry

    OpenAIRE

    Grau Vilalta, Maria Dolors; Guaus Guerrero, Ester; Martínez Martínez, María del Rosario; Calvet Tarragona, Aureli; Farran Marsà, Adriana; Salán Ballesteros, Maria Núria; Álvarez del Castillo, María Dolores; Gorchs Altarriba, Roser; Almajano Pablos, María Pilar; Morillo Cazorla, Margarita; Garrido Soriano, Núria

    2012-01-01

    Authors of this project belong to the Resources Chemistry Teaching Group (GReDiQ) involved in RIMA (Research and innovation in learning methodologies). The audiovisual and multimedia material productions realized have been grouped into three themes: Basic Techniques of Experimentation in Chemistry, Safety in Chemistry Laboratories and Advanced Techniques of Experimentation in Chemistry. This work has been awarded a prize of the Universitat Politècnica de Catalunya (UPC–BARCELONATECH), one of ...

  9. International global atmospheric chemistry (IGAC) program global emissions inventory activity (GEIA). Proceedings of the IGAC/GEIA workshop on global emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Pacyna, J.M. [Norwegian Inst. for Air Research, Lillestroem (Norway); Graedel, T.E. [AT and T Bell Labs., Murray Hill, NJ (United States)

    1992-10-01

    In accordance with the work plan of the International Geosphere-Biosphere Program (IGBP)/International Global Atmospheric Chemistry (IGAC) Global Emission Inventory was organized by the GEIA Secretariat and the Norwegian Institute for Air Research (NILU). The workshop was attended by 34 participants from 9 countries and 3 international organizations. The overall goals of the workshop were to review the progress of work within individual GEIA projects and to plan further activity, as well as to discuss new projects. Major focus was placed on projects related to emissions of acidic components, such as SO{sub 2} and NO{sub x}, and other nitrogen compounds, and volatile organic compounds (VOCs)

  10. Atmospheric cloud physics laboratory project study

    Science.gov (United States)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  11. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    Science.gov (United States)

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  12. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2010-09-01

    Full Text Available This article, the fifth in the ACP journal series, presents data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the heterogeneous processes on surfaces of solid particles present in the atmosphere, for which uptake coefficients and adsorption parameters have been presented on the IUPAC website in 2010. The article consists of an introduction and guide to the evaluation, giving a unifying framework for parameterisation of atmospheric heterogeneous processes. We provide summary sheets containing the recommended uptake parameters for the evaluated processes. Four substantial appendices contain detailed data sheets for each process considered for ice, mineral dust, sulfuric acid hydrate and nitric acid hydrate surfaces, which provide information upon which the recommendations are made.

  13. A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water

    Directory of Open Access Journals (Sweden)

    A. Steffen

    2007-07-01

    Full Text Available It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg. This phenomenon is termed atmospheric mercury depletion events (AMDEs and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review the history of Hg in Polar Regions, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the roles that the snow pack, oceans, fresh water and the sea ice play in the cycling of Hg are presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not

  14. Nitrogen oxide air pollution: atmospheric chemistry. 1979-August, 1980 (citations from the NTIS data base). Report for 1979-Aug 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    Photochemical air pollution models, smog chemistry and reactivity, and SSt exhaust effects are covered in the bibliography. Auroral and upper atmospheric chemistry, and photochemistry of naturally occurring nitrogen oxides are excluded. (This updated bibliography contains 63 citations, 40 of which are new entries to the previous edition.)

  15. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow

    Directory of Open Access Journals (Sweden)

    A. J. Poulain

    2008-03-01

    Full Text Available It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg. This phenomenon is termed atmospheric mercury depletion events (AMDEs and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review Hg research taken place in Polar Regions pertaining to AMDEs, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made but the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the role that the snow pack and the sea ice play in the cycling of Hg is presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does

  16. Seasonal Atmospheric Chemistry at Summit, Greenland Based on N and O Isotopes of Nitrate

    Science.gov (United States)

    Hastings, M. G.; Steig, E. J.; Sigman, D. M.; Jarvis, J.

    2003-12-01

    Nitric acid (HNO3), or nitrate (NO3-) is the major sink for reactive nitrogen oxides (NOx) in the atmosphere. Ice core records of NO3- could provide information about past reactive nitrogen chemistry and oxidative capacity of the atmosphere. However, processes that take place in the surface snow (e.g., evaporation, photolysis) can affect the final NO3- concentrations that are archived in the ice cores, making it difficult to interpret past changes in atmospheric chemistry or climate. The isotopic composition of NO3- in surface snow provides an additional constraint on the effect of post-depositional processing in the upper meter of snowpack on the NO3- content measured in glacial ice cores. Furthermore, the isotopes of NO3- in ice cores have the potential to allow for reconstruction of sources of NOx and aspects of atmospheric chemistry in the past. Snow pit samples (sampled every 3 cm to 1 m) collected at Summit, Greenland during August 2001 show seasonal variation in N and O isotopes of NO3-. δ 15N of NO3- in the upper meter of snow ranges from -15 to +16 per mil (vs. atmospheric N2), with higher values found in summertime snow. The δ 15N of snowpack NO3- falls in the range reported for NO3- in precipitation from other parts of the world. δ 18O of NO3- in the snowpack ranges from 65 to 80 per mil (vs. VSMOW), similar to high values observed for rainwater and aerosol NO3-. In contrast to the δ 15N, the δ 18O of NO3- is lower in summertime snow than in wintertime. Preliminary analyses also show diurnal variation in the isotopes of NO3- during summer, with depletion of 15N and 18O at "night" followed by enrichment during the "day." The similar behavior of the N and O isotopes is suggestive of a simple physical mechanism for the diurnal change, such as photolysis or evaporation. The seasonal δ 15N and δ 18O, however, vary in opposite directions suggesting that these processes are not the dominant mechanism determining the seasonal signals. Our hypothesis is

  17. Use of SURFACE CHEMKIN to model multiphase atmospheric chemistry: Application to nitrogen tetroxide spills

    Science.gov (United States)

    Brady, Brian B.; Robbin Martin, L.

    SURFACE CHEMKIN is a widely available computer program developed for kinetic modeling of chemical vapor deposition. We show that it may be adapted for kinetic modeling of multiphase chemistry in the atmosphere, with broad capability to deal with complex chemistry and physics. It can deal with multiple phases having different reaction manifolds in each phase, it deals with gas, surface, and bulk reactions and mass transfer rates, it keeps track of the phase equilibria with realistic activities, and it can operate in an adiabatic mode to include the effect of heat release on the system. The adapted model is applied here to the problem of a nitrogen tetroxide spill in the troposphere. The model is able to predict the formation of a nitric acid/water aerosol and to follow the chemistry taking place in both the gas and liquid phases as the spill dilutes in the surrounding atmosphere. The model predicts that in such a spill, most (70-90%) of the nitrogen oxides released are converted to nitric acid over a wide range of relative humidity.

  18. Atmospheric deposition and lake chemistry trends at a high mountain site in the eastern Alps

    Directory of Open Access Journals (Sweden)

    Bertha THALER

    2000-02-01

    Full Text Available Records of atmospheric precipitation chemistry starting in 1983 and a series of limnological investigations at two high mountain reference lakes starting in 1988 enable us to describe the response of lake water chemistry to changes in precipitation chemistry and climate. The lakes are located at an altitude well above the timberline in a watershed composed of acidic rocks. Despite the observed reduction in the sulphur atmospheric deposition, the reference lakes showed no corresponding decline in sulphate concentrations, but a marked increase in the acid neutralising capacity was apparent. Changes of the seasonal distribution pattern of the precipitation amounts and a general increase of the air temperature have likely produced an increased weathering which increased the concentration of many inlake solutes and drove the lakes toward more buffered conditions. This phenomenon superimposed to changes like other physical factors (radiation, nutritional conditions and biological factors (enhanced production, competition, predation has produced in the last years greater modifications than merely those to be expected from the decreased acidic input.

  19. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars II. Sulfur and Phosphorus

    CERN Document Server

    Visscher, C

    2005-01-01

    We use thermochemical equilibrium and kinetic calculations to model sulfur and phosphorus chemistry in the atmospheres of giant planets, brown dwarfs, low-mass stars, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. Our results are independent of any particular model atmosphere and the behavior of different gases can be used to constrain atmospheric structure and metallicity. Hydrogen sulfide is the dominant sulfur gas in substellar atmospheres and approximately represents the atmospheric sulfur inventory. Depending on the prevailing S and C chemistry, the abundance of minor sulfur gases may constrain atmospheric temperatures or metallicity. Disequilibrium abundances of PH3 are expected in the observable atmospheres of substellar objects, and PH3 is representative of the total P abundance in giant planets and T dwarfs. A number of other phosphorus gases become relatively abunda...

  20. Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol

    Science.gov (United States)

    Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila

    2013-04-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.

  1. A numerical method for parameterization of atmospheric chemistry - Computation of tropospheric OH

    Science.gov (United States)

    Spivakovsky, C. M.; Wofsy, S. C.; Prather, M. J.

    1990-01-01

    An efficient and stable computational scheme for parameterization of atmospheric chemistry is described. The 24-hour-average concentration of OH is represented as a set of high-order polynomials in variables such as temperature, densities of H2O, CO, O3, and NO(t) (defined as NO + NO2 + NO3 + 2N2O5 + HNO2 + HNO4) as well as variables determining solar irradiance: cloud cover, density of the overhead ozone column, surface albedo, latitude, and solar declination. This parameterization of OH chemistry was used in the three-dimensional study of global distribution of CH3CCl3. The proposed computational scheme can be used for parameterization of rates of chemical production and loss or of any other output of a full chemical model.

  2. Addition of a Project-Based Component to a Conventional Expository Physical Chemistry Laboratory

    Science.gov (United States)

    Tsaparlis, Georgios; Gorezi, Marianna

    2007-01-01

    Students should enjoy their laboratory classes and for this purpose a project-based activity is added to a conventional physical chemistry laboratory. Students were given project work instead of conventional experiment and then they had to make progress in the project according to instructions and then carry out experiments related to the project.

  3. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    Science.gov (United States)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; S., General; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-09-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean - Atmosphere - Sea Ice - Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase halogen radical-based depletion of ozone, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  4. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    Science.gov (United States)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  5. A Collaborative, Wiki-Based Organic Chemistry Project Incorporating Free Chemistry Software on the Web

    Science.gov (United States)

    Evans, Michael J.; Moore, Jeffrey S.

    2011-01-01

    In recent years, postsecondary instructors have recognized the potential of wikis to transform the way students learn in a collaborative environment. However, few instructors have embraced in-depth student use of chemistry software for the creation of interactive chemistry content on the Web. Using currently available software, students are able…

  6. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    Science.gov (United States)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  7. A study of the chemistry of alkali metals in the upper atmosphere

    Science.gov (United States)

    Silver, J. A.; Kolb, C. E.

    1985-01-01

    The reactions of metallic species introduced into the atmosphere by meteor ablation may play a significant role in mesospheric and stratospheric chemistry. During this second year of a three year program to investigate these phenomena, we have completed measurements for the reactions of atomic sodium with ozone, and of NaO with ozone. Preliminary measurements of the rate constant for the reaction of NaO2 + HCl have been done, as well as an initial photodissociation cross section determination for NaCl at 193 nm. We have also begun to investigate the means by which neutral gas phase alkali species may be removed from the mesosphere and stratosphere.

  8. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  9. O_3-N_2O correlations from the Atmospheric Chemistry Experiment: revisiting a diagnostic of transport and chemistry in the stratosphere

    OpenAIRE

    Hegglin, Michaela I.; Shepherd, Theodore G

    2007-01-01

    Our knowledge of stratospheric O3-N2O correlations is extended, and their potential for model-measurement comparison assessed, using data from the Atmospheric Chemistry Experiment (ACE) satellite and the Canadian Middle Atmosphere Model (CMAM). ACE provides the first comprehensive data set for the investigation of interhemispheric, interseasonal, and height-resolved differences of the O_3-N_2O correlation structure. By subsampling the CMAM data, the representativeness of the ACE data is evalu...

  10. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    Science.gov (United States)

    Peng, Zhe; Day, Douglas A.; Ortega, Amber M.; Palm, Brett B.; Hu, Weiwei; Stark, Harald; Li, Rui; Tsigaridis, Kostas; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define "riskier OFR conditions" as those with either low H2O ( 200 s-1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O3, similarly to the troposphere. Working under low O2 (volume mixing

  11. NATO Advanced Study Institute on Pollutants from Combustion Formation and Impact on Atmospheric Chemistry

    CERN Document Server

    2000-01-01

    This volume is based on the lectures presented at the NATO Advanced Study Institute: (ASI) «Pollutants Formation from Combustion. Formation Mechanisms and Impact on th th Atmospheric Chemistry» held in Maratea, Italy, from 13 to 26 september 1998. Preservation of the environment is of increasing concern in individual countries but also at continental or world scales. The structure of a NATO ASI which involve lecturers and participants of different nationalities was thought as especially well suited to address environmental issues. As combustion is known to substantially contribute to the damaging of the atmosphere, it was natural to concentrate the ASI program on reviewing the currently available knowledge of the formation mechanisms of the main pollutants liberated by combustion systems. In most situations, pollutants are present as trace components and their formation and removal is strongly conditioned by the chemical reactions initiated by fuel consumption. Therefore specific lectures were aimed at defi...

  12. Sunscreen synthesis and their immobilisation on polymethylmethacrylate: an integrated project in organic chemistry, polymer chemistry and photochemistry

    International Nuclear Information System (INIS)

    Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate) and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics. (author)

  13. Maillard Chemistry in Clouds and Aqueous Aerosol As a Source of Atmospheric Humic-Like Substances.

    Science.gov (United States)

    Hawkins, Lelia N; Lemire, Amanda N; Galloway, Melissa M; Corrigan, Ashley L; Turley, Jacob J; Espelien, Brenna M; De Haan, David O

    2016-07-19

    The reported optical, physical, and chemical properties of aqueous Maillard reaction mixtures of small aldehydes (glyoxal, methylglyoxal, and glycolaldehyde) with ammonium sulfate and amines are compared with those of aqueous extracts of ambient aerosol (water-soluble organic carbon, WSOC) and the humic-like substances (HULIS) fraction of WSOC. Using a combination of new and previously published measurements, we examine fluorescence, X-ray absorbance, UV/vis, and IR spectra, complex refractive indices, (1)H and (13)C NMR spectra, thermograms, aerosol and electrospray ionization mass spectra, surface activity, and hygroscopicity. Atmospheric WSOC and HULIS encompass a range of properties, but in almost every case aqueous aldehyde-amine reaction mixtures are squarely within this range. Notable exceptions are the higher UV/visible absorbance wavelength dependence (Angström coefficients) observed for methylglyoxal reaction mixtures, the lack of surface activity of glyoxal reaction mixtures, and the higher N/C ratios of aldehyde-amine reaction products relative to atmospheric WSOC and HULIS extracts. The overall optical, physical, and chemical similarities are consistent with, but not demonstrative of, Maillard chemistry being a significant secondary source of atmospheric HULIS. However, the higher N/C ratios of aldehyde-amine reaction products limits the source strength to ≤50% of atmospheric HULIS, assuming that other sources of HULIS incorporate only negligible quantities of nitrogen. PMID:27227348

  14. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  15. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2010-09-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. It is the first model of its kind to incorporate the Master Chemical Mechanism (MCM and a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  16. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    Science.gov (United States)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  17. Comparative Experimental Investigation of Titan's Atmospheric Chemistry Driven by Solar EUV Radiation and Energetic Electron Precipitation

    Science.gov (United States)

    Imanaka, Hiroshi; Lavvas, P.; Yelle, R. V.; Smith, M. A.

    2010-10-01

    The observations by the Cassini Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) clearly demonstrate the importance of complex organic chemistry in the upper atmosphere of Titan; a complex coupling of neutral and ion chemistry for organic aerosol generation induced by EUV photons and Saturn's magnetospheric charged particles. To understand the dominant energy source for aerosol formation and its formation chemistry, we comparatively investigate the chemical mechanism in N2/CH4 gas mixtures resulting from EUV-VUV synchrotron radiation (50-150 nm) and tunable mono-energetic electron beam irradiation (5 eV - 2000 eV). These excitation energy sources cover the dominant energy source available in Titan's upper atmosphere. Our previous study of the EUV-VUV photolysis of N2/CH4 gas mixtures revealed the unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons and in the major nitrogen fixation process in Titan's upper atmosphere (Imanaka and Smith, 2007, 2009, 2010). However, relative roles of ion-molecule reactions and radical/neutral reactions in such complex chemistry remain to be determined. We characterized the electron energy distribution by conducting the Langmuir probe measurements. Degradation of the primary photoelectron from N2 photoionization at 20.6 eV photons is clearly observed, and the electron density rapidly decreases down to 109-10 cm-3, which suggests the complex coupling of ion-molecular reactions and dissociative ion-electron recombination reactions for the observed development of complex organic molecules. The electron beam irradiation experiments at energy larger than 200 eV shows distinct gaseous product distribution with nitrogenated gaseous species from those with EUV irradiation products. The generation of secondary electrons and multiple inelastic collisions of fast electrons might increases the nitrogen fixation efficiency. The much less stringent spin selection rules could

  18. Analytical Models of Exoplanetary Atmospheres. III. Gaseous C-H-O-N Chemistry with 9 Molecules

    CERN Document Server

    Heng, Kevin

    2016-01-01

    We present novel, analytical, equilibrium-chemistry formulae for the abundances of molecules in hot exoplanetary atmospheres that include the carbon, oxygen and nitrogen networks. Our hydrogen-dominated solutions involve acetylene (C$_2$H$_2$), ammonia (NH$_3$), carbon dioxide (CO$_2$), carbon monoxide (CO), ethylene (C$_2$H$_4$), hydrogen cyanide (HCN), methane (CH$_4$), molecular nitrogen (N$_2$) and water (H$_2$O). By considering only the gaseous phase, we prove that the mixing ratio of carbon monoxide is governed by a decic equation (polynomial equation of degree 10). We validate our solutions against numerical calculations of equilibrium chemistry that perform Gibbs free energy minimization and demonstrate that they are accurate for temperatures from 500--3000 K. In hydrogen-dominated atmospheres, the ratio of abundances of HCN to CH$_4$ is nearly constant across a wide range of carbon-to-oxygen ratios, which makes it a robust diagnostic of the metallicity in the gas phase. Our validated formulae allow f...

  19. Contrail: A Module from Physical Chemistry On-Line Project

    Science.gov (United States)

    Chen, Franklin; Zielinski, Theresa Julia; Long, George

    2007-01-01

    The impact of contrails on Earth's climate is researched to understand the active area. It is suggested that the process of contrail formation involves combustion, cooling and ice formation, which are good comprehensive learning exercise for physical chemistry students.

  20. A new Geoengineering Model Intercomparison Project (GeoMIP experiment designed for climate and chemistry models

    Directory of Open Access Journals (Sweden)

    S. Tilmes

    2014-08-01

    Full Text Available A new Geoengineering Model Intercomparison Project (GeoMIP experiment "G4 specified stratospheric aerosols" (short name: G4SSA is proposed to investigate the impact of stratospheric aerosol geoengineering on atmospheric composition, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulphur dioxide (SO2 into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 year−1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of two years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the significance of the impact of geoengineering and the abrupt termination after 50 years on climate and composition of the atmosphere in a changing environment. The zonal and monthly mean stratospheric aerosol input dataset is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  1. An Adaptive Chemistry Approach to Modeling Emissions Performance of Gas Turbine Combustors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed SBIR project, we seek to implement the Adaptive Chemistry methodology in existing CFD codes used to investigate the emissions performance of gas...

  2. Atmospheric impact of the 1783-1784 Laki eruption: Part I Chemistry modelling

    Science.gov (United States)

    Stevenson, D. S.; Johnson, C. E.; Highwood, E. J.; Gauci, V.; Collins, W. J.; Derwent, R. G.

    2003-02-01

    Results from the first chemistry-transport model study of the impact of the 1783-1784 Laki fissure eruption (Iceland: 64° N, 17° W) upon atmospheric composition are presented. The eruption released an estimated 122 Tg(SO2) into the troposphere and lower stratosphere. The model has a high resolution tropopause region, and detailed sulphur chemistry. The simulated SO2 plume spreads over much of the Northern Hemisphere, polewards of ~40° N. About 70% of the SO2 gas is directly deposited to the surface before it can be oxidised to sulphuric acid aerosol. The main SO2 oxidants, OH and H2O2 , are depleted by up to 40% zonally, and the lifetime of SO2 consequently in-creases. Zonally averaged tropospheric SO2 concentrations over the first three months of the eruption exceed 20 ppbv, and sulphuric acid aerosol reaches ~2 ppbv. A total aerosol yield of 51-66 Tg(H2SO4 ) is produced. The mean aerosol lifetime is only 6-9 days, and the peak aerosol loading of the atmosphere is only ~7 Tg(H2SO4.2H2O). Due to the relatively short atmospheric residence times of both the SO2 and sulphate, the aerosol loading approximately mirrors the temporal evolution of emissions associated with the eruption. The model produces a reasonable simulation of the acid deposition found in Greenland ice cores. These results appear to be relatively insensitive to the vertical profile of emissions assumed, although if more of the emissions reached higher levels (>12 km), this would give longer lifetimes and larger aerosol yields. This study suggests that most previous estimates of the global aerosol loading associated with Laki have been generally too large in magnitude, and too long-lived. Environmental effects following the Laki eruption may have been dominated by the widespread deposition of SO2 gas rather than sulphuric acid aerosol.

  3. Atmospheres – Through Projections on a Living Surface

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2013-01-01

    space, liveness and atmosphere. With the development of this model I wish to contribute to the on-going development of the use of video projections and motion graphics as important visual, spatial and narrative elements within the field of spatial experience design, e.g. in performance, exhibition...... design and events. The model is being designed with two purposes in mind. One is a tool for analyzing empirical examples or cases where video projections are used in spatial experience design. The second is to create a tool that can be useful in actual design processes. In this paper I describe a case...

  4. Atmospheric impact of the 1783Â 1784 Laki eruption: Part I Chemistry modelling

    Science.gov (United States)

    Stevenson, D. S.; Johnson, C. E.; Highwood, E. J.; Gauci, V.; Collins, W. J.; Derwent, R. G.

    2003-05-01

    Results from the first chemistry-transport model study of the impact of the 1783-1784 Laki fissure eruption (Iceland: 64°N, 17°W) upon atmospheric composition are presented. The eruption released an estimated 61 Tg(S) as SO2 into the troposphere and lower stratosphere. The model has a high resolution tropopause region, and detailed sulphur chemistry. The simulated SO2 plume spreads over much of the Northern Hemisphere, polewards of ~40°N. About 70% of the SO2 gas is directly deposited to the surface before it can be oxidised to sulphuric acid aerosol. The main SO2 oxidants, OH and H2O2, are depleted by up to 40% zonally, and the lifetime of SO2 consequently increases. Zonally averaged tropospheric SO2 concentrations over the first three months of the eruption exceed 20 ppbv, and sulphuric acid aerosol reaches ~2 ppbv. These compare to modelled pre-industrial/present-day values of 0.1/0.5 ppbv SO2 and 0.1/1.0 ppbv sulphate. A total sulphuric acid aerosol yield of 17-22 Tg(S) is produced. The mean aerosol lifetime is 6-10 days, and the peak aerosol loading of the atmosphere is 1.4-1.7 Tg(S) (equivalent to 5.9-7.1 Tg of hydrated sulphuric acid aerosol). These compare to modelled pre-industrial/present-day sulphate burdens of 0.28/0.81 Tg(S), and lifetimes of 6/5 days, respectively. Due to the relatively short atmospheric residence times of both SO2 and sulphate, the aerosol loading approximately mirrors the temporal evolution of emissions associated with the eruption. The model produces a reason-able simulation of the acid deposition found in Greenland ice cores. These results appear to be relatively insensitive to the vertical profile of emissions assumed, although if more of the emissions reached higher levels (>12 km), this would give longer lifetimes and larger aerosol yields. Introducing the emissions in episodes generates similar results to using monthly mean emissions, because the atmospheric lifetimes are similar to the repose periods between episodes. Most

  5. Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2003-01-01

    Full Text Available Results from the first chemistry-transport model study of the impact of the 1783–1784 Laki fissure eruption (Iceland: 64°N, 17°W upon atmospheric composition are presented. The eruption released an estimated 61 Tg(S as SO2 into the troposphere and lower stratosphere. The model has a high resolution tropopause region, and detailed sulphur chemistry. The simulated SO2 plume spreads over much of the Northern Hemisphere, polewards of ~40°N. About 70% of the SO2 gas is directly deposited to the surface before it can be oxidised to sulphuric acid aerosol. The main SO2 oxidants, OH and H2O2, are depleted by up to 40% zonally, and the lifetime of SO2 consequently increases. Zonally averaged tropospheric SO2 concentrations over the first three months of the eruption exceed 20 ppbv, and sulphuric acid aerosol reaches ~2 ppbv. These compare to modelled pre-industrial/present-day values of 0.1/0.5 ppbv SO2 and 0.1/1.0 ppbv sulphate. A total sulphuric acid aerosol yield of 17–22 Tg(S is produced. The mean aerosol lifetime is 6–10 days, and the peak aerosol loading of the atmosphere is 1.4–1.7 Tg(S (equivalent to 5.9–7.1 Tg of hydrated sulphuric acid aerosol. These compare to modelled pre-industrial/present-day sulphate burdens of 0.28/0.81 Tg(S, and lifetimes of 6/5 days, respectively. Due to the relatively short atmospheric residence times of both SO2 and sulphate, the aerosol loading approximately mirrors the temporal evolution of emissions associated with the eruption. The model produces a reason-able simulation of the acid deposition found in Greenland ice cores. These results appear to be relatively insensitive to the vertical profile of emissions assumed, although if more of the emissions reached higher levels (>12 km, this would give longer lifetimes and larger aerosol yields. Introducing the emissions in episodes generates similar results to using monthly mean emissions, because the atmospheric lifetimes are similar to the repose periods

  6. Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics

    Directory of Open Access Journals (Sweden)

    M. Calisto

    2012-06-01

    Full Text Available We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1–2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NOx, HOx, ozone, temperature and zonal wind. Ozone and NOx have in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NOx generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HOx. Due to the NOx and HOx enhancements, ozone reduces by up to 60–80% in the mesosphere during the days after the event, and by up to 20–40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3 K and zonal winds change significantly by 3–5 m s−1 in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.

  7. Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics

    Directory of Open Access Journals (Sweden)

    M. Calisto

    2012-09-01

    Full Text Available We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1–2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NOx, HOx, ozone, temperature and zonal wind. Ozone and NOx have in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NOx generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HOx. Due to the NOx and HOx enhancements, ozone reduces by up to 60–80% in the mesosphere during the days after the event, and by up to 20–40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3 K and zonal winds change significantly by 3–5 m s−1 in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.

  8. The Role of Nitrogen in Titan’s Upper Atmospheric Hydrocarbon Chemistry Over the Solar Cycle

    Science.gov (United States)

    Luspay-Kuti, A.; Mandt, K. E.; Westlake, J. H.; Plessis, S.; Greathouse, T. K.

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N(4S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH3, C2H6, and C3H8, despite the lower CH4 photodissociation rates compared with solar maximum conditions, is explained by the role of N(4S). N(4S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH3. When in higher abundance during solar maximum at lower altitudes, N(4S) increases the importance of bimolecular CH3 + N(4S) reactions producing HCN and H2CN. The subsequent remarkable CH3 loss and decrease in the CH3 abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  9. Simulating Titan’s atmospheric chemistry at low temperature (200K)

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jesse L.; Salama, Farid

    2016-06-01

    We present our latest results on the Titan Haze Simulation (THS) experiment developed on the COSmIC simulation chamber at NASA Ames Research Center. In Titan’s atmosphere, a complex organic chemistry induced by UV radiation and electron bombardment occurs between N2 and CH4 and leads to the production of larger molecules and solid aerosols. In the THS, the chemistry is simulated by pulsed plasma in the stream of a supersonic expansion, at Titan-like temperature (150 K). The residence time of the gas in the pulsed plasma discharge is on the order of 3 µs, hence the chemistry is truncated allowing us to probe the first and intermediate steps of the chemistry by adding heavier precursors into the initial N2-CH4 gas mixture.Two complementary studies of the gas phase and solid phase products have been performed in 4 different gas mixtures: N2-CH4, N2-CH4-C2H2, N2-CH4-C6H6 and N2-CH4-C2H2-C6H6 using a combination of in situ and ex situ diagnostics. The mass spectrometry analysis of the gas phase was the first to demonstrate that the THS is a unique tool to monitor the different steps of the N2-CH4 chemistry (Sciamma-O’Brien et al. 2014). The results of the solid phase study are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates that form in the gas phase were jet deposited on various substrates then collected for ex situ analysis. Scanning Electron Microscopy images have shown that more complex mixtures produce larger aggregates (100-500 nm in N2-CH4, up to 5 µm in N2-CH4-C2H2-C6H6). Moreover, the morphology of the grains seems to depend on the precursors, which could have a large impact for Titan’s models. We will present the latest results of the X-ray Absorption Near Edge Structure measurements, that show the different functional groups present in our samples and give the C/N ratio; as well as the Direct Analysis in Real Time Mass Spectrometry coupled with Collision Induced Dissociation analyses that have been

  10. Volatile organic compounds in the New England troposphere: Atmospheric chemistry and measurement techniques

    Science.gov (United States)

    Ambrose, Jesse L.

    Atmospheric measurements made at Appledore Island, Maine were used to investigate nighttime nitrate radical (NO3) chemistry and its significance for the nitrogen oxides (NOx = NO + NO2) budget in the Gulf of Maine region during the summer of 2004 International Consortium for Atmospheric Research on Transport and Transformation field campaign. Removal of NOx was strongly dependent on reactions of NO3 with biogenic volatile organic compounds and the fate of dinitrogen pentoxide (N 2O5). For three case studies, temporal profiles of NO 3 were calculated from measured parameters. Comparisons between measured and calculated NO3 mixing ratios highlighted significant uncertainties in the kinetic parameters governing gas-phase and heterogeneous N2O 5 hydrolysis. Removal of NOx was estimated to be ˜11 ppbv day-1, with nighttime chemical pathways contributing ˜50%. Atmospheric measurements made at the AIRMAP atmospheric monitoring station Thompson Farm (THF) during summer, 2004 were used to test the specificity of a proton transfer reaction-mass spectrometer (PTA-MS) for atmospheric toluene measurements under conditions often dominated by biogenic emissions. Quantitative estimates were made of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products in the PTR-MS drift tube. The analysis supported only minor interferences from the investigated fragmentation sources, suggesting that toluene can be reliably quantified by PTR-MS with the operating parameters used, under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted. A GC instrument was developed for measurement of hydrogen cyanide (HCN) in the lower atmosphere. Its major features include a cold temperature analyte enrichment system, a robust porous polymer stationary phase capillary

  11. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2010-11-01

    Full Text Available Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions, atmospheric nucleation was studied by (i developing and testing new air ion and cluster spectrometers, (ii conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii investigating atmospheric nucleation mechanism under field conditions, and (iv applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s. This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete

  12. Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics: revised

    International Nuclear Information System (INIS)

    This study investigates the influence of a major solar proton event (SPE) similar to the Carrington event of 1–2 September 1859 by means of the 3D chemistry climate model (CCM) SOCOL v2.0. Ionization rates were parameterized according to CRAC:CRII (Cosmic Ray-induced Atmospheric Cascade: Application for Cosmic Ray Induced Ionization), a detailed state-of-the-art model describing the effects of SPEs in the entire altitude range of the CCM from 0 to 80 km. This is the first study of the atmospheric effect of such an extreme event that considers all the effects of energetic particles, including the variability of galactic cosmic rays, in the entire atmosphere. We assumed two scenarios for the event, namely with a hard (as for the SPE of February 1956) and soft (as for the SPE of August 1972) spectrum of solar particles. We have placed such an event in the year 2020 in order to analyze the impact on a near future atmosphere. We find statistically significant effects on NOx, HOx, ozone, temperature and zonal wind. The results show an increase of NOx of up to 80 ppb in the northern polar region and an increase of up to 70 ppb in the southern polar region. HOx shows an increase of up to 4000%. Due to the NOx and HOx enhancements, ozone reduces by up to 60% in the mesosphere and by up to 20% in the stratosphere for several weeks after the event started. Total ozone shows a decrease of more than 20 DU in the northern hemisphere and up to 20 DU in the southern hemisphere. The model also identifies SPE induced statistically significant changes in the surface air temperature, with warming in the eastern part of Europe and Russia of up to 7 K for January. (letter)

  13. Atmospheric Chemistry of CF3CF=CH2: Reactions With Cl Atoms, OH Radicals and Ozone

    Science.gov (United States)

    Sulbaek Andersen, M. P.; Javadi, M. S.; Nielsen, O. J.; Hurley, M. D.; Wallington, T. J.; Singh, R.

    2006-12-01

    The detrimental effects of chlorine chemistry on stratospheric ozone levels are well established. Consequently, there has been a concerted international effort to find replacements for chlorofluorocarbons (CFCs) used previously as electronic equipment cleaners, heat transfer agents, refrigerants, and carrier fluids for lubricant deposition. The replacements for CFCs, hydrofluorocarbons (HFCs) and hydrofluorochlorocarbons (HCFCs), have found widespread industrial use over the past decade. Unsaturated fluorinated hydrocarbons are a new class of compounds which have been developed to replace CFCs and HFCs in air condition units. Prior to any large-scale industrial use an assessment of the atmospheric chemistry, and hence environmental impact, of these compounds is needed. To address this need the atmospheric chemistry of CF3CF=CH2 was investigated. Smog chamber/FTIR techniques were used to determine the following properties for this compound: (i) kinetics of reactions with chlorine atoms (ii) kinetics of reactions with hydroxyl radicals (iii) kinetics of reactions with ozone, (iv) atmospheric lifetimes, (v) atmospheric degradation mechanism, and (vi) global warming potentials. The results are discussed with regard to the environmental impact of CF3CF=CH2 and the atmospheric chemistry of unsaturated fluorinated hydrocarbons.

  14. Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan.

    Science.gov (United States)

    Moreno, Teresa; Kojima, Tomoko; Querol, Xavier; Alastuey, Andrés; Amato, Fulvio; Gibbons, Wes

    2012-05-01

    The eastward transport of aerosols exported from mainland Asia strongly influences air quality in the Japanese archipelago. The bulk of the inhalable particulate matter (PM(10)) in these intrusions comprises either natural, desert-derived minerals (mostly supermicron silicates) or anthropogenic pollutants (mostly submicron sulphates), in various states of mixing. We analyse PM(10) collected in Kumamoto, SW Japan, during three contrasting types of aerosol intrusions, the first being dominated by desert PM which became increasingly mixed with anthropogenic components as time progressed, the second being a relatively minor event mixing fine, distal desert PM with anthropogenic materials, and the third being dominated by anthropogenic pollutants. Whereas the chemistry of the natural mineral component is characterised by "crustal" elements (Si, Al, Fe, Mg, K, Li, P, Sc, V, Rb, Sr, Zr, Th, lanthanoids), the anthropogenic component is rich in secondary inorganic compounds and more toxic metallic elements (NH(4)(+), SO(4)(2-), As, Pb, Cd, Cu, Zn, Sn, Bi, Sb, and Ge). Some desert-dust (Kosa) intrusions are more calcareous than others, implicating geologically different source areas, and contain enhanced levels of NO(3)(-), probably as supermicron Ca(NO(3))(2) particles produced by chemical reaction between NOx pollutants (mostly from industry and traffic) and carbonate during atmospheric transport. The overall trace element chemistry of aerosol intrusions into Kumamoto shows low V/Rb, low NO(3)(-)/SO(4)(2-), enhanced As levels, and unfractionated La/Ce values, which are all consistent with anthropogenic sources including coal emissions rather than those derived from the refining and combustion of oil fractionates. Geographically dispersed, residual sulphatic plumes of this nature mix with local traffic (revealed by OC and EC concentrations) and industrial emissions and dissipate only slowly, due to the dominance of submicron accumulation mode PM which is atmospherically

  15. Parallelization and load balancing of a comprehensive atmospheric chemistry transport model

    Science.gov (United States)

    Elbern, Hendrik

    Chemistry transport models are generally claimed to be well suited for massively parallel processing on distributed memory architectures since the arithmetic-to-communication ratio is usually high. However, this observation proves insufficient to account for an efficient parallel performance with increasing complexity of the model. The modeling of the local state of the atmosphere ensues very different branches of the modules' code and greater differences in the computational work load and, consequently, runtime of individual processors occur to a much larger extent during a time step than reported for meteorological models. Variable emissions, changes in actinic fluxes, and all processes associated with cloud modeling are highly variable in time and space and are identified to induce large load imbalances which severely affect the parallel efficiency. This is more so, when the model domain encompasses more heterogeneous meteorological or regional regimes, which impinge dissimilarly on simulations of atmospheric chemistry processes. These conditions hold for the EURAD model applied in this study, which covers the European continental scale as integration domain. Based on a master-worker configuration with a horizontal grid partitioning approach, a method is proposed where the integration domain of the individual processors is locally adjusted to accommodate for load imbalances. This ensures a minimal communication volume and data exchange only with the next neighbors. The interior boundary adjustments of the processors are combined with routine boundary exchange which is required each time step anyway. Two dynamic load balancing schemes were implemented and compared against a conventional equal area partition and a static load balancing scheme. The methods are devised for massively parallel distributed memory computers of both, Single and Multiple Instruction stream Multiple Data stream (SIMD, MIMD) types. A midsummer episode of highly elevated ozone concentrations

  16. Atmospheric deposition chemistry in a subalpine area of the Julian Alps, NW Slovenia

    Directory of Open Access Journals (Sweden)

    Gregor Muri

    2013-04-01

    Full Text Available Wet-only precipitation was collected in Rateče, a remote village in the outskirts of the Julian Alps (Nort-West Slovenia during 2003-2011, in order to characterise atmospheric deposition chemistry. The samples were collected on a daily basis and combined into weekly samples that were analysed for pH, conductivity and major anions and cations. Ammonium, nitrate and sulphate were the most abundant ions, exhibiting volume-weighted mean values (2003-2011 of 22, 17 and 17 µeq L–1, respectively. Furthermore, the trends of the major parameters in the precipitation were assessed using a simple linear regression. A significant downward trend of both nitrate and sulphate was observed, explained by evident reductions in NOx and SOx emissions in the region. The decline of nitrate and sulphate was also reflected in a significant and downward trend of conductivity. While the trend of ammonium could also be downward, the trends of other major ions were not significant. Atmospheric nitrogen deposition, representing inorganic forms of nitrogen (i.e., ammonium and nitrate, was calculated to examine potential threats that the deposition of nitrogen may cause on lake ecosystems. Nitrogen deposition in Rateče ranged from 5.5 to 9.5 kg N ha–1 yr–1. Although this was below the critical threshold that might cause an impact on surface waters, nitrogen deposition in the nearby Julian Alps, where sensitive mountain lakes are situated, might be higher and its impact on the ecosystem greater. In fact, several studies performed on water chemistry, sedimentary organic matter and stable isotopes in Slovenian mountain lakes have shown progressive changes in their water columns and sediments that can be attributed to nitrogen deposition.

  17. Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2010-04-01

    Full Text Available Except for a few reactions involving electronically excited molecular or atomic oxygen or nitrogen, atmospheric chemistry modelling usually assumes that the temperature dependence of reaction rates is characterized by Arrhenius law involving kinetic temperatures. It is known, however, that in the upper atmosphere the vibrational temperatures may exceed the kinetic temperatures by several hundreds of Kelvins. This excess energy has an impact on the reaction rates. We have used upper atmospheric OH populations and reaction rate coefficients for OH(v=0...9+O3 and OH(v=0...9+O to estimate the effective (i.e. population weighted reaction rates for various atmospheric conditions. We have found that the effective rate coefficient for OH(v=0...9+O3 can be larger by a factor of up to 1020 than that involving OH in its vibrational ground state only. At altitudes where vibrationally excited states of OH are highly populated, the OH reaction is a minor sink of Ox and O3 compared to other reactions involving, e.g., atomic oxygen. Thus the impact of vibrationally excited OH on the ozone or Ox sink remains small. Among quiescent atmospheres under investigation, the largest while still small (less than 0.1% effect was found for the polar winter upper stratosphere and mesosphere. The contribution of the reaction of vibrationally excited OH with ozone to the OH sink is largest in the upper polar winter stratosphere (up to 4%, while its effect on the HO2 source is larger in the lower thermosphere (up to 1% for polar winter and 1.7% for midlatitude night conditions. For OH(v=0...9+O the rate coefficients differ by plus/minus a few percent only from those involving OH in its vibrational ground state. The effects on the odd oxygen sink are negative and can reach −0.7% (polar summer lowermost thermosphere, i.e. neglect of vibrational excitation overestimates the odd oxygen

  18. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles

    International Nuclear Information System (INIS)

    Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 1015 grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burning affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 1012 grams)

  19. Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event

    CERN Document Server

    Melott, Adrian L; Dreschhoff, Gisela; Johnson, Carey K

    2009-01-01

    We estimate atmospheric chemistry changes from ionization at the 1908 Tunguska airburst event, finding agreement with nitrate enhancement in GIS2PH and GISP2 ice cores and noting an unexplained accompanying ammonium spike. We then consider the candidate Younger Dryas comet impact. The estimated NOx production and O3 depletion are large, beyond accurate extrapolation. A modest nitrate deposition signal exists in ice core data. The predicted very large impulsive deposition might be visible in higher resolution data. Ammonium has been attributed to biomass burning, and found coincident with nitrate spikes at YD onset in both the GRIP and GISP2 ice cores. A similar result is well-resolved in Tunguska ice core data, but the Tunguska forest fire was far too small to account for this. Direct input of ammonia from a comet into the atmosphere is consistent with the spike for the candidate YD object, but also inadequate for Tunguska. An analog of the Haber process with hydrogen contributed by the cometary or surface wa...

  20. Photon and Water Mediated Sulfur Oxide and Acid Chemistry in the Atmosphere of Venus

    Science.gov (United States)

    Kroll, Jay A.; Vaida, Veronica

    2014-06-01

    Sulfur compounds have been observed in the atmospheres of a number of planetary bodies in our solar system including Venus, Earth, Mars, Io, Europa, and Callisto. The global cloud cover on Venus located at an altitude between 50 and 80 kilometers is composed primarily of sulfuric acid (H_2SO_4) and water. Planetary photochemical models have attempted to explain observations of sulfuric acid and sulfur oxides with significant discrepancies remaining between models and observation. In particular, high SO_2 mixing ratios are observed above 90 km which exceed model predictions by orders of magnitude. Work recently done in the Vaida lab has shown red light can drive photochemistry through overtone pumping for acids like H_2SO_4 and has been successful in explaining much of the sulfur chemistry in Earth's atmosphere. Water can have a number of interesting effects such as catalysis, suppression, and anti-catalysis of thermal and photochemical processes. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and present spectroscopic studies to document such effects. We investigate these reactions using FTIR and UV/Vis spectroscopy and will report on our findings.

  1. Simultaneous atmospheric measurements using two Fourier transform infrared spectrometers at the Polar Environment Atmospheric Research Laboratory during spring 2006, and comparisons with the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer

    OpenAIRE

    D. Fu; K. A. Walker; R. L. Mittermeier; Strong, K.; Sung, K.; H. Fast; Bernath, P. F.; C. D. Boone; W. H. Daffer; Fogal, P.; Kolonjari, F.; P. Loewen; Manney, G. L.; O. Mikhailov

    2008-01-01

    The 2006 Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign collected measurements at the Polar Environment Atmospheric Research Laboratory (PEARL, 80.05° N, 86.42° W, 610 m above sea level) at Eureka, Canada from 17 February to 31 March 2006. Two of the ten instruments involved in the campaign, both Fourier transform spectrometers (FTSs), were operated simultaneously, recording atmospheric solar absorption spectra. The first instrument was an ABB Bomem...

  2. Upper Atmosphere Sounding Rocket Projects at Esrange Space Center

    Science.gov (United States)

    Lockowandt, Christian; Kemi, Stig; Sjolander, Krister; Abrahamsson, Mattias

    Swedish Space Corporation, SSC has a long tradition of developing and launching scientific sounding rockets from Esrange Space Center with the aim to study the different layers of the atmosphere and near space. Now a new era has started with an initiative from the Swedish National Space Board, SNSB. The sounding rocket and atmospheric balloon activities will be vitalised with a national program offering the scientific community yearly rocket launches and balloon flights. The three upcoming sounding rocket missions that have recently started are: O-STATES O STATES (Oxygen transformation in the thermosphere) is a research project at the Meteorological Institute of Stockholm University with Prof. Jörg Gumbel, as responsible researcher. The payload comprises two instrument modules with totally 7 instruments for studying oxygen in its various forms. The payload will be launched twice on two sounding rockets at the same launch campaign, in different atmospheric conditions. This provides a cost-effective mission with a large research exchange. The launches from Esrange Space Center are preliminary scheduled to take place in August 2014 with an apogee of approximately 250 km. SPIDER SPIDER (Small Payloads for Investigation of Disturbances in Electrojet by Rockets) is a research project at Space and Plasma Physics, Royal Institute of Technology, Stockholm with Nicholay Ivchenko as responsible researcher. The mission includes up to 10 subsidiary payloads ejected from the main payload to measure the structure of the electrostatic turbulence in the ionosphere. The measurements take place entirely in the subsidiary payloads, which are completely autonomous and recovered individually after the flight. The launch from Esrange Space Center is preliminary scheduled to take place in March 2015 with a desired apogee of approximately 140 km. LEEWAVES LEEWAVES (Local Excitation and Effects of Waves on Atmospheric Vertical Structure) is a research project at the Meteorological

  3. The JAERI and Universities joint project research reports on the 4th joint research project between JAERI and Universities on backend chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    In the Joint Research Project between JAERI and Universities on Backend Chemistry, the 4th-term researches of it were performed on sixteen themes from April of 1999 to March of 2001 under the four categories, i.e. Nuclear-chemistry and physical-chemistry properties of actinides', 'Solid state chemistry and nuclear fuel engineering of actinides', 'Solution chemistry and technologies for separation and analysis of actinides' and Treatment of radioactive waste and environmental chemistry'. The present report compiled the papers contributed to the Joint Research Project. (author)

  4. Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b

    Energy Technology Data Exchange (ETDEWEB)

    Barman, T S; Macintosh, B A; Konopacky, Q M; Marois, C

    2011-03-21

    Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrow-band photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a Hydrogen-rich atmosphere. Only weak CH{sub 4} absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH{sub 4} ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best fitting bulk parameters, T{sub eff} = 1100K {+-} 100 and log(g) = 3.5 {+-} 0.5 (for solar composition). Given the observed luminosity (log L{sub obs}/L{sub {circle_dot}} {approx} -5.1), these values correspond to a radius of 0.75 R{sub Jup{sub 0.12}{sup +0.17}} and mass {approx} 0.72 M{sub Jup{sub -0.6}{sup +2.6}} - strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to {approx} 10 x that of the Sun) along with thick clouds and non-equilibrium chemistry are likely required to reproduce the complete ensemble of spectroscopic and photometric data and the low effective temperatures (< 1000K) required by the evolution models.

  5. Implementation of a convective atmospheric boundary layer scheme in a tropospheric chemistry transport model

    Science.gov (United States)

    Wang, K.-Y.; Pyle, J. A.; Sanderson, M. G.; Bridgeman, C.

    1999-10-01

    A convective atmospheric boundary layer (ABL) scheme for the transport of trace gases in the lower troposphere has been implemented from the Community Climate Model, Version 2 [Hack et al., 1993] into a tropospheric chemistry transport model [Wang, 1998]. The atmospheric boundary layer scheme includes the calculation of atmospheric radiative transfer, surface energy balance, and land surface temperature and has a specified annual variation of sea surface temperature. The calculated diurnal variation of the height of the boundary layer is similar to the results of Troen and Mahrt [1986] and is in a good agreement with Holtslag and Boville [1993]. The modeled height of the boundary layer shows a seasonal shift between land and sea in the Northern Hemisphere. In summer (June-July-August), the height of the boundary layer is deeper over land (850-2250 m) and shallower over sea (50-850 m); while in winter (December-January-February), it is shallower over land (50-850 m) and deeper over sea (850-2850 m). The coupled ABL-chemical transport model is verified against measurements of radon 222 and methane. Comparison of the coupled model with a non-ABL model indicates significant differences between these model simulations and a better agreement between the coupled model and measurements. There is a significant effect on the trace gas distribution when the ABL model is compared with the non-ABL schemes. For example, the ABL scheme shows more O3 transported from the middle troposphere down to the surface, while more CO is pumped up from the surface into the middle troposphere. The seasonal cycle of modeled CH4 is significantly improved with the inclusion of the new ABL scheme, especially in regions which are not remote from methane sources.

  6. Design of and initial results from a highly instrumented reactor for atmospheric chemistry (HIRAC

    Directory of Open Access Journals (Sweden)

    D. R. Glowacki

    2007-07-01

    Full Text Available The design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE technique establishes it as internationally unique for a chamber of its size and pressure/temperature variable capabilities. In addition to the FAGE technique, HIRAC features a suite of analytical instrumentation, including: a multipass FTIR system; a conventional gas chromatography (GC instrument and a GC instrument for formaldehyde detection; and NO/NO2, CO, O3, and H2O vapour analysers. Ray tracing simulations and measurements of the blacklamp flux have been utilized to develop a detailed model of the radiation field within HIRAC. Comparisons between the analysers and the FTIR coupled to HIRAC have been performed, and HIRAC has also been used to investigate pressure dependent kinetics of the chlorine atom reaction with ethene and the reaction of O3 and t-2-butene. The results obtained are in good agreement with literature recommendations and Master Chemical Mechanism predictions. HIRAC thereby offers a highly instrumented platform with the potential for: (1 high precision kinetics investigations over a range of atmospheric conditions; (2 detailed mechanism development, significantly enhanced according to its capability for measuring radicals; and (3 field instrument intercomparison, calibration, development, and investigations of instrument response under a range of atmospheric conditions.

  7. A Simplified Model to Predict the Effect of Increasing Atmospheric CO[subscript 2] on Carbonate Chemistry in the Ocean

    Science.gov (United States)

    Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger

    2008-01-01

    The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. In agreement with more detailed treatments, we find that calcium carbonate (aragonite) may become unsaturated in cold surface seawater by the year 2100 C.E., resulting in the destruction…

  8. Troposphere-Stratosphere Coupled Chemistry-Climate Interactions: From Global Warming Projections to Air Quality

    Science.gov (United States)

    Nowack, P. J.; Abraham, N. L.; Maycock, A. C.; Braesicke, P.; Pyle, J. A.

    2015-12-01

    Changes in stratospheric composition can affect tropospheric composition and vice versa. Of particular interest are trace gas concentrations at the interface between these two atmospheric layers in the tropical upper troposphere and lower stratosphere (UTLS). This is due to the crucial importance of composition changes in the UTLS for the global energy budget. In a recent study (Nowack et al., 2015), we provided further evidence that composition changes in the tropical UTLS can significantly affect global warming projections. Using a state-of-the-art atmosphere-ocean chemistry-climate model, we found a ~20% smaller global warming in response to an abrupt 4xCO2 forcing if composition feedbacks were included in the calculations as compared to simulations in which composition feedbacks were not considered. We attributed this large difference in surface warming mainly to circulation-driven decreases in tropical UTLS ozone and related changes in stratospheric water vapor, partly counteracted by simultaneous changes in ice clouds. Here, we explain why this result is expected to differ between models and how, inter alia, tropospheric chemical mechanisms can contribute to this uncertainty. We highlight that improving our understanding of processes in the tropical UTLS and their representation in Earth system models remains a key challenge in climate research.Finally, taking geoengineering as a new example, we show that changes in the stratosphere can have an impact on air quality in the troposphere. In particular, we explain for a simple solar radiation management scenario how changes in surface ozone can be linked to changes in meteorology and composition in the troposphere and stratosphere. In conclusion, we highlight the importance of considering air quality impacts when evaluating a variety of geoengineering scenarios. Reference: Nowack, P.J., Abraham, N.L., Maycock, A.C., Braesicke, P., Gregory, J.M., Joshi, M.M., Osprey, A., and Pyle, J.A. Nature Climate Change 5, 41

  9. Russian contribution to ExoMars Trace Gas Orbiter: Atmospheric Chemistry Suite (ACS)

    Science.gov (United States)

    Shakun, Alexey; Korablev, Oleg; Trokhimovskiy, Alexander; Grigoriev, Alexey; Anufreychik, Konstantin; Fedorova, Anna; Ignatiev, Nikolay; Ivanov, Yuriy; Moshkin, Boris; Kalinnikov, Yuriy; Montmessin, Franck

    2016-04-01

    Atmospheric Chemistry Suite (ACS) is a part of science payload of Trace Gas Orbiter (TGO), ExoMars mission. This project developed by European Space Agency (ESA) in collaboration with Russian Space Agency (Roscosmos). Russian contribution to ExoMars TGO is the Proton rocket and two science instruments ACS (three infrared spectrometers) and FREND (neutron detector). ACS consists of three infrared spectrometers (ACS/NIR, ACS/MIR and ACS/TIRVIM) capable to take spectral measurements from near to thermal infrared range simultaneously or separately. Spectrometric channels of ACS share common mechanical, electrical, and thermal interfaces. Electronic box (ACS/BE) provides to spectrometric channels power and data transfer interfaces. SpaceWire link is used for science data transfer and MIL-1553 link - for commanding and housekeeping data transfer. The NIR channel is an echelle spectrometer with acousto-optic tunable filter (AOTF) for the selection of diffraction orders. ACS NIR is capable to perform nadir and occultation observations. NIR covers the spectral range of 0.7-1.7 μm with resolving power of ~25000. NIR will perform unique for TGO instruments nightglow science (searching for O2, OH, NO nightglow emissions on Mars). From the 1.38 μm band NIR will do water vapour mapping in nadir and H2O vertical profiling in solar occultations. High resolution NIR measurements of 1.27 μm O2(a1Δg) dayglow will supply indirect ozone observations on the dayside on nadir. In solar occultation mode, the O2 vertical profiles will be measured from the surface (in case of low dust activity) to the 40 km altitude based on 0.76 μm absorption band. Together with MIR channel in solar occultation NIR will support the measurements of CO2 density profiles (based on 1.43 μm band) and aerosols characterization from 0.7 to 4 μm. The wide spectral range will allow not just determine aerosol particle sizes and density at different altitudes, but also distinguish between dust and ice particles

  10. Isotopes of carbon monoxide in the free troposphere and their implications to atmospheric chemistry. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Mak, J.E.

    1992-01-01

    The thesis project was designed to provide information for the following questions: what is the oxidative capacity of the troposphere, and how are the source strengths of carbon monoxide partitioned. Because of its active role in tropospheric chemistry, carbon monoxide is important in determining the fate of a number of species, including hydroxyl radicals. (14)CO serves as a natural tracer for its destruction, as the source function can be well contrained. By determining the tropospheric inventory of (14)CO and calculating its source strength, one may realize the rate of destruction. Similarly, because certain sources have unique stable isotope signatures, an analysis of the stable isotopes provides information on the relative source strengths. A sampling system was built which allowed for the collection of large, whole air samples from an aircraft platform. CO was extracted and the isotopes were determined, and from these data an OH abundance was calculated using a 2-D transport model.

  11. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  12. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer dataset

    Directory of Open Access Journals (Sweden)

    A. Jones

    2011-11-01

    Full Text Available The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS aboard the Canadian satellite SCISAT (launched in August 2003 was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC Chemistry Climate Model validation activity. The ACE-FTS climatological dataset is available through the ACE website.

  13. Investigation of Atmospheric Chemistry in the Tropical UTLS with NASA's Global Hawk UAS during ATTREX

    Science.gov (United States)

    Stutz, J.; Atlas, E. L.; Cheung, R.; Chipperfield, M.; Colosimo, S. F.; Deutschmann, T.; Daube, B. C.; Gao, R. S.; Elkins, J. W.; Fahey, D. W.; Feng, W.; Hossaini, R.; Navarro, M. A.; Pittman, J. V.; Raecke, R.; Scalone, L.; Spolaor, M.; Tricoli, U.; Thornberry, T. D.; Tsai, J. Y.; Werner, B.; Wofsy, S. C.; Pfeilsticker, K.

    2015-12-01

    Bromine species play an important role in ozone chemistry in the tropical upper troposphere / lower stratosphere (UTLS). The tropical UTLS also serves as a gate to the stratosphere, and the vertical transport of organic and inorganic bromine species is an important source of halogens that impact stratospheric ozone chemistry. An accurate quantification of the sources, sinks, and chemical transformation of bromine species is thus crucial to the understanding of the bromine and ozone budget in the UTLS and the stratosphere. However, the investigation of the composition of the tropical UTLS is challenging, as the altitude of this region of 15 - 20 km requires high-altitude aircraft, or balloons. In recent years a new aircraft has become available to penetrate into this region: NASA's Global Hawk (GH) Unmanned Aircraft System (UAS). The GH has a ceiling altitude of 20 km and a 24h endurance with a full complement of scientific experiments. The GH provides a new and exciting platform that allows unique insights into atmospheric processes in the UTLS. Here we present observations of CH4, BrO, NO2, and ozone made on-board the GH during the 2011, 2013, and 2014 Airborne Tropical TRopopause EXperiment (ATTREX) in the pacific tropical UTLS. We will discuss the details of UV-vis remote sensing measurements of BrO and NO2 by the UCLA/HD limb scanning Differential Optical Absorption Spectroscopy instrument. We also present observations of organic bromine species from the University of Miami's Whole Air Sampler, in-situ ozone measurement by NOAA, and CH4 measurements by the Harvard Picarro instrument and the NOAA UCATS gas chromatograph. Methods to determine vertical trace gas profiles through aircraft maneuvers and by scanning the mini-DOAS telescope in viewing elevation will be discussed. The combination of the observations with calculations using the TOMCAT/SLIMCAT 3-D model allows quantification and interpretation of the bromine and ozone budget in the UTLS.

  14. Atmospheric chemistry of polycyclic aromatic compounds with special emphasis on nitro derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Feilberg, A.

    2000-04-01

    Field measurements of polycyclic aromatic compounds (PAC) have been carried out at a semi-rural site and at an urban site. Correlation analyses, PAC indicators, and PAC ratios have been used to evaluate the importance of various sources of nitro-PAHs. A major source of nitro-PAHs is atmospheric transformation of PAHs initiated by OH radicals. Especially during long-range transport (LRT) of air pollution from Central Europe, the nitro-PAH composition in Denmark is dominated by nitro-PAHs formed in the atmosphere. Locally emitted nitro-PAHs are primarily from diesel vehicles. Levels of unsubstituted PAHs can also be strongly elevated in connection with LRT episodes. The ratio of 2-nitrofluoranthene relative to 1-nitropyrene is proposed as a measure of the relative photochemical age of particulate matter. Using this ratio, the relative mutagenicity of particle extracts appears to increase with increasing photochemical age. In connection with the field measurements, a method for measuring nitro-PAHs in particle extracts based on MS-MS detection has been developed. The atmospheric chemistry of nitronaphthalenes has been investigated with a smog chamber system combined with simulation with photochemical kinetics software. A methodology to implement gas-particle partitioning in a model based on chemical kinetics is described. Equilibrium constants (KP) for gas-particle partitioning of 1- and 2-nitronaphthalene have been determined. Mass transfer between the two phases appears to occur on a very short timescale. The gas phase photolysis of the nitronaphthalenes depends upon the molecular conformation. Significantly faster photolysis of 1-nitronaphthalene than of 2-nitronaphthalene is observed. The photochemistry of nitro-PAHs, and to some extent other PAC, associated with organic aerosols, has been studied with model systems simulating organic aerosol material. A number of aerosol constituents, including substituted phenols, benzaldehydes, and oxy-PAHs, are demonstrated to

  15. DOUBLE SHELL TANK INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    International Nuclear Information System (INIS)

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  16. Soil Chemistry 1983-86 at the Rain Project Catchments

    OpenAIRE

    Lotse, E.G.; Wright, R.

    1989-01-01

    The aim of the rain project is to explain the effects of changed acid deposition on soils and waters. This report presents results from chemical and physical analyses of soil samples collected yearly 1984-1986 at the rain project catchments at Sogndal and Risdalsheia. Estimates of historical weathering rates based on total elemental analysis of soil and bedrock are 295 and 12 meq/m"/yr at Sogndal and Risdalsheia, respectively. Of the key chemical parameters measured only absorbed sulfate show...

  17. The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest

    Science.gov (United States)

    Pugh, T. A. M.; MacKenzie, A. R.; Langford, B.; Nemitz, E.; Misztal, P. K.; Hewitt, C. N.

    2011-05-01

    Biogenic volatile organic compounds (BVOCs) such as isoprene constitute a large proportion of the global atmospheric oxidant sink. Their reactions in the atmosphere contribute to processes such as ozone production and secondary organic aerosol formation. However, over the tropical rainforest, where 50 % of the global emissions of BVOCs are believed to occur, atmospheric chemistry models have been unable to simulate concurrently the measured daytime concentration of isoprene and that of its principal oxidant, hydroxyl (OH). One reason for this model-measurement discrepancy may be incomplete mixing of isoprene within the convective boundary layer, leading to patchiness or segregation in isoprene and OH mixing ratios and average concentrations that appear to be incompatible with each other. One way of capturing this effect in models of atmospheric chemistry is to use a reduced effective rate constant for their reaction. Recent studies comparing atmospheric chemistry global/box models with field measurements have suggested that this effective rate reduction may be as large as 50 %; which is at the upper limit of that calculated using large eddy simulation models. To date there has only been one field campaign worldwide that has reported co-located measurements of isoprene and OH at the necessary temporal resolution to calculate the segregation of these compounds. However many campaigns have recorded sufficiently high resolution isoprene measurements to capture the small-scale fluctuations in its concentration. Assuming uniform distributions of other OH production and loss processes, we use a box model of atmospheric chemistry, constrained by the spectrum of isoprene concentrations measured, as a virtual instrument, to estimate the variability in OH at a point and hence, to estimate the segregation intensity of isoprene and OH from high-frequency isoprene time series. The method successfully reproduces the only directly observed segregation, using measurements made in a

  18. Current Status of the Validation of the Atmospheric Chemistry Instruments on Envisat

    Science.gov (United States)

    Lecomte, P.; Koopman, R.; Zehner, C.; Laur, H.; Attema, E.; Wursteisen, P.; Snoeij, P.

    2003-04-01

    Envisat is ESA's advanced Earth observing satellite launched in March 2002 and is designed to provide measurements of the atmosphere, ocean, land and ice over a five-year period. After the launch and the switch-on period, a six-month commissioning phase has taken place for instrument calibration and geophysical validation, concluded with the Envisat Calibration Review held in September 2002. In addition to ESA and its industrial partners in the Envisat consortium, many other companies and research institutes have contributed to the calibration and validation programme under ESA contract as expert support laboratories (ESLs). A major contribution has also been made by the Principal Investigators of approved proposals submitted to ESA in response to a worldwide "Announcement of Opportunity for the Exploitation of the Envisat Data Products" in 1998. Working teams have been formed in which the different participants worked side by side to achieve the objectives of the calibration and validation programme. Validation is a comparison of Envisat level-2 data products and estimates of the different geophysical variables obtained by independent means, the validation instruments. Validation is closely linked to calibration because inconsistencies discovered in the comparison of Envisat Level 2 data products to well-known external instruments can have many different sources, including inaccuracies of the Envisat instrument calibration and the data calibration algorithms. Therefore, initial validation of the geophysical variables has provided feedback to calibration, de-bugging and algorithm improvement. The initial validation phase ended in December 2002 with the Envisat Validation Workshop at which, for a number of products, a final quality statement was given. Full validation of all data products available from the Atmospheric Chemistry Instruments on Envisat (MIPAS, GOMOS and SCIAMACHY) is quite a challenge and therefore it has been decided to adopt a step-wise approach

  19. Impact of continental outflow on chemistry of atmospheric aerosols over tropical Bay of Bengal

    Science.gov (United States)

    Srinivas, B.; Kumar, A.; Sarin, M. M.; Sudheer, A. K.

    2011-07-01

    The continental outflow from Indo-Gangetic Plain and south-east Asia dominates the widespread dispersal of pollutants over tropical Bay of Bengal (BoB) during the late NE-monsoon (January-March). It is thus pertinent to assess the impact on marine atmospheric boundary layer of BoB. The chemical data, based on analyses of size-segregated (PM2.5 and PM10) aerosols, suggest the dominance of nss-SO42- (range: 1.3 to 28 μg m-3) in PM2.5. Almost all SO42- is of anthropogenic origin and accounts for as much as 65 % of the water-soluble inorganic constituents. The impact of anthropogenic sources is further evident from the widespread depletion of chloride (range: 40 to 100 %) compared to sea-salt composition. The carbonaceous species (EC and OC) contribute nearly 25 % to PM2.5; and significant linear relationship with K+ suggests biomass burning as their dominant source (biofuels and agricultural waste). The enhancement in the fractional solubility of aerosol Fe, as assessed in PM2.5, re-emphasizes the impact of combustion sources (biomass and fossil-fuel) and chemical processing (of dust) during the long-range transport. The high enrichment factors of heavy metals (Pb and Cd) further demonstrate the influence of pollution sources on the chemistry of MABL. The downwind transport of pollutants and exchange across air-sea interface can, thus, have profound impact on the ocean surface biogeochemistry.

  20. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes

    Science.gov (United States)

    Delort, Anne-Marie; Vaïtilingom, Mickael; Amato, Pierre; Sancelme, Martine; Parazols, Marius; Mailhot, Gilles; Laj, Paolo; Deguillaume, Laurent

    2010-11-01

    Recent studies showed that living microorganisms, including bacteria, fungi and yeasts, are present in the atmospheric water phase (fog and clouds) and their role in chemical processes may have been underestimated. At the interface between atmospheric science and microbiology, information about this field of science suffers from the fact that not all recent findings are efficiently conveyed to both scientific communities. The purpose of this paper is therefore to provide a short overview of recent work linked to living organisms in the atmospheric water phase, from their activation to cloud droplets and ice crystal, to their potential impact on atmospheric chemical processes. This paper is focused on the microorganisms present in clouds and on the role they could play in atmospheric chemistry and nucleation processes. First, the life cycle of microorganisms via the atmosphere is examined, including their aerosolization from sources, their integration into clouds and their wet deposition on the ground. Second, special attention is paid to the possible impacts of microorganisms on liquid and ice nucleation processes. Third, a short description of the microorganisms that have been found in clouds and their variability in numbers and diversity is presented, emphasizing some specific characteristics that could favour their occurrence in cloud droplets. In the last section, the potential role of microbial activity as an alternative route to photochemical reaction pathways in cloud chemistry is discussed.

  1. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  2. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  3. Bonding and Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S4.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on chemical bonding is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides an introduction to the main types of chemical bonding and important aspects of structure. The main emphasis is placed on such topics as ionic and covalent bonding,…

  4. Independent Research Projects in General Chemistry Classes as an Introduction to Peer-Reviewed Literature

    Science.gov (United States)

    Tribe, Lorena; Cooper, Evan L.

    2008-01-01

    A well-structured independent literature research project with a poster session was used to introduce students to peer-reviewed literature in a general chemistry course. Overall, students reported an enhanced appreciation of the course due to performing research at some level, using peer-reviewed literature, and presenting their results in a…

  5. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  6. Chemistry Laboratory--A Self-Paced Project Approach with Traditional Experiments.

    Science.gov (United States)

    Faber, Gary C.; Martin, Elizabeth M.

    1983-01-01

    Citing problems with a traditional introductory chemistry laboratory program, discusses a two-semester, project-oriented laboratory program using traditional experiments. A series of slide/tape programs discussing/illustrating potentially difficult concepts and techniques is used to facilitate instruction. Includes list of topics covered in the…

  7. Undergraduate Introductory Quantitative Chemistry Laboratory Course: Interdisciplinary Group Projects in Phytoremediation

    Science.gov (United States)

    Van Engelen, Debra L.; Suljak, Steven W.; Hall, J. Patrick; Holmes, Bert E.

    2007-01-01

    The laboratory course around the phytoremediation is designed to develop both individual skills and promote cooperative learning while starting students work on projects in a specific area of environmental chemistry and analysis. Many research-active undergraduate institutions have developed courses, which are interdisciplinary in nature that…

  8. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    Science.gov (United States)

    Draper, Alison J.

    2004-01-01

    An active service-learning research work is conducted in the field of advanced environmental chemistry. Multiple projects are assigned to students, which promote individual learning skills, self-confidence as scientists, and a deep understanding of the environmental chemist's profession.

  9. Exploration of SO[subscript 2] Scrubbers: An Environmental Chemistry Project

    Science.gov (United States)

    Schilling, Amber L.; Leber, Phyllis A.; Yoder, Claude H.

    2009-01-01

    The remediation of acid rain by SO[subscript 2] scrubbing is integrated into a laboratory project appropriate for first-year chemistry students. By burning a small amount of sulfur and bubbling the gas produced through distilled water, the student first observes one of the reactions that produces acid rain. The student then tests four different…

  10. A Wiki-Based Group Project in an Inorganic Chemistry Foundation Course

    Science.gov (United States)

    Kristian, Kathleen E.

    2015-01-01

    A semester-long group project that utilizes wiki sites to enhance collaboration was developed for a foundation course in inorganic chemistry. Through structured assignments, student groups use metal-based or metal-combating therapeutic agents as a model for applying and understanding course concepts; they also gain proficiency with scientific- and…

  11. The Halogens. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I2.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the elements and compounds of Group IV (halogens) of the periodic table. Level one deals with the physical and chemical properties of the individual elements. Level two considers…

  12. A Transition from a Traditional to a Project-Like Physical Chemistry Laboratory via a Heterogeneous Catalysis Study.

    Science.gov (United States)

    Goldwasser, M. R.; Leal, O.

    1979-01-01

    Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)

  13. Preface to the Special Issue on Climate-Chemistry Interactions: Atmospheric Ozone, Aerosols, and Clouds over East Asia

    Directory of Open Access Journals (Sweden)

    Wei-Chyung Wang and Jen-Ping Chen

    2007-01-01

    Full Text Available Atmospheric radiatively-important chemical constituents (e.g., O3 and aerosols are important to maintain the radiation balance of the Earth-atmosphere climate system, and changes in their concentration due to both natural causes and anthropogenic activities will induce climate changes. The distribution of these constituents is sensitive to the state of the climate (e.g., temperature, moisture, wind, and clouds. Therefore, rises in atmospheric temperature and water vapor, and changes in circulation and clouds in global warming can directly affect atmospheric chemistry with subsequent implications for these constituents. Although many coupling mechanisms are identified, the net effect of all these impacts on climate change is not well understood. In particular, changes in water vapor and clouds associated with the hydrologic cycle contain significant uncertainties.

  14. Disequilibrium Carbon, Oxygen, and Nitrogen Chemistry in the Atmospheres of HD 189733b and HD 209458b

    CERN Document Server

    Moses, Julianne I; Fortney, Jonathan J; Showman, Adam P; Lewis, Nikole K; Griffith, Caitlin A; Shabram, Megan; Friedson, A James; Marley, Mark S; Freedman, Richard S

    2011-01-01

    We have developed 1-D photochemical and thermochemical kinetics and diffusion models for the transiting exoplanets HD 189733b and HD 209458b to study the effects of disequilibrium chemistry on the atmospheric composition of "hot Jupiters." Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species, and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b can help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than a mbar due to transport-induced quenching, but CH$_4$ and NH$_3$ are photochemically removed at higher altitudes. Atomi...

  15. Mathematical Modeling of Complex Reaction Systems for Computer-Aided Control and its Illustration on Atmospheric Chemistry

    Science.gov (United States)

    Amiryan, A.

    2015-12-01

    Modeling of sequential process has its own importance in Atmospheric Chemistry. Numerical calculations which allow to predict separate stages and components of chemical reaction make possible the reaction management, such is the new and perspective direction in chemical researches. Chemical processes basically pass multiple simple stages where various atoms and radicals participate. The complex chain of chemical reactionary systems complicates their research and the research is impossible without new methods of mathematical simulation and high technologies which allow not only to explain results of experiments but also to predict dynamics of processes. A new program package is suggested for solving research problems of chemical kinetics. The program is tested on different illustrative examples on Atmospheric Chemistry and installed in various scientific and educational institutions.

  16. Atmospheric chemistry of n-C(x)F(2)(x)(+1)CHO (x = 1, 2, 3, 4)

    DEFF Research Database (Denmark)

    Hurley, M D; Ball, J C; Wallington, T J;

    2006-01-01

    Smog chamber/FTIR techniques were used to study the atmospheric fate of n-C(x)F(2)(x)(+1)C(O) (x = 1, 2, 3, 4) radicals in 700 Torr O(2)/N(2) diluent at 298 +/- 3 K. A competition is observed between reaction with O(2) to form n-C(x)()F(2)(x)()(+1)C(O)O(2) radicals and decomposition to form n-C(x...... atmospheric chemistry of n-C(x)F(2)(x)(+1)C(O) radicals and their possible role in contributing to the formation of perfluorocarboxylic acids in the environment....

  17. Impact of improvements in volcanic implementation on atmospheric chemistry and climate in the GISS-E2 Model

    Science.gov (United States)

    Tsigaridis, Kostas; LeGrande, Allegra; Bauer, Susanne

    2015-04-01

    The representation of volcanic eruptions in climate models introduces some of the largest errors when evaluating historical simulations, partly due to the crude model parameterizations. We will show preliminary results from the Goddard Institute for Space Studies (GISS)-E2 model comparing traditional highly parameterized volcanic implementation (specified Aerosol Optical Depth, Effective Radius) to deploying the full aerosol microphysics module MATRIX and directly emitting SO2 allowing us the prognosically determine the chemistry and climate impact. We show a reasonable match in aerosol optical depth, effective radius, and forcing between the full aerosol implementation and reconstructions/observations of the Mt. Pinatubo 1991 eruption, with a few areas as targets for future improvement. This allows us to investigate not only the climate impact of the injection of volcanic aerosols, but also influences on regional water vapor, O3, and OH distributions. With the skill of the MATRIX volcano implementation established, we explore (1) how the height of the injection column of SO2 influence atmospheric chemistry and climate response, (2) how the initial condition of the atmosphere influences the climate and chemistry impact of the eruption with a particular focus on how ENSO and QBO and (3) how the coupled chemistry could mitigate the climate signal for much larger eruptions (i.e., the 1258 eruption, reconstructed to be ~10x Pinatubo). During each sensitivity experiment we assess the impact on profiles of water vapor, O3, and OH, and assess how the eruption impacts the budget of each.

  18. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    OpenAIRE

    Heng, Kevin; Lyons, James R.; Tsai, Shang-Min

    2015-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van't Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients) and procedures associated with the Gibbs free energy (minimisation, rescaling) have a common physical and mathematical origin. We address an ambiguity ...

  19. Molecular dynamics simulations of small halogenated organics at the air-water interface: implications in water treatment and atmospheric chemistry

    Czech Academy of Sciences Publication Activity Database

    Habartová, Alena; Valsaraj, K. T.; Roeselová, Martina

    2013-01-01

    Roč. 117, č. 38 (2013), s. 9205-9215. ISSN 1089-5639 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 Keywords : aerosol * air bubbles * interfacial concentration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.775, year: 2013

  20. Atmospheric chemistry observation at the summit of Mt. Fuji using 7Be and 222Rn as atmospheric tracers

    International Nuclear Information System (INIS)

    Observations on atmospheric naturally occurring radionuclides, which have definite sources could provide useful information on emission, transport and removal processes, etc for other important atmospheric chemical species. For the purpose, 7Be and 222Ru seem most useful to know about the free tropospheric processes. We have observed 7Be and 222Ru at the summit of Mt. Fuji (3,776 m a.s.l.) along with O3, SO2, CO. Those data were analyzed to suggest the possible transport of O3 from the upper atmosphere and of polluted air mass from the boundary layer over the Asian continent to the lower free troposphere over Japan. The present work shows the possible application of the atmospheric radionuclides data to understanding the atmospheric physical and chemical processes. (author)

  1. Carbon Dioxide (CO2) Retrievals from Atmospheric Chemistry Experiment (ACE) Solar Occultation Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Chiou, Linda; Boone, Chris; Bernath, Peter

    2010-01-01

    The Atmospheric Chemistry Experiment ACE satellite (SCISAT-1) was launched into an inclined orbit on 12 August 2003 and is now recording high signal-to-noise 0.02 per centimeter resolution solar absorption spectra covering 750-4400 per centimeter (2.3-13 micrometers). A procedure has been developed for retrieving average dry air CO2 mole fractions (X(sub CO2)) in the altitude range 7-10 kilometers from the SCISAT-1 spectra. Using the N2 continuum absorption in a window region near 2500 per centimeter, altitude shifts are applied to the tangent heights retrieved in version 2.2 SCISAT-1 processing, while cloudy or aerosol-impacted measurements are eliminated. Monthly-mean XCO2 covering 60 S to 60 N latitude for February 2004 to March 2008 has been analyzed with consistent trends inferred in both hemispheres. The ACE XCO2 time series have been compared with previously-reported surface network measurements, predictions based on upper tropospheric aircraft measurements, and space-based measurements. The retrieved X(sub CO2) from the ACE-FTS spectra are higher on average by a factor of 1.07 plus or minus 0.025 in the northern hemisphere and by a factor of 1.09 plus or minus 0.019 on average in the southern hemisphere compared to surface station measurements covering the same time span. The ACE derived trend is approximately 0.2% per year higher than measured at surface stations during the same observation period.

  2. Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2008-10-01

    Full Text Available Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE, using an infrared Fourier Transform Spectrometer (ACE-FTS and (for NO2 an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation. In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY, stellar occultation measurements (GOMOS, limb measurements (MIPAS, OSIRIS, nadir measurements (SCIAMACHY, balloon-borne measurements (SPIRALE, SAOZ and ground-based measurements (UV-VIS, FTIR. Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS and SAGE II (for ACE-FTS (sunrise and MAESTRO and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.

  3. Afterglow chemistry of atmospheric-pressure helium–oxygen plasmas with humid air impurity

    International Nuclear Information System (INIS)

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium–oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm−3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm−3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm−3. Electrons and oxygen ionic species, initially of the order of 1011 cm−3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm−3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm−3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements. (paper)

  4. Impact of continental outflow on chemistry of atmospheric aerosols over tropical Bay of Bengal

    Directory of Open Access Journals (Sweden)

    B. Srinivas

    2011-07-01

    Full Text Available The continental outflow from Indo-Gangetic Plain and south-east Asia dominates the widespread dispersal of pollutants over tropical Bay of Bengal (BoB during the late NE-monsoon (January–March. It is thus pertinent to assess the impact on marine atmospheric boundary layer of BoB. The chemical data, based on analyses of size-segregated (PM2.5 and PM10 aerosols, suggest the dominance of nss-SO42− (range: 1.3 to 28 μg m−3 in PM2.5. Almost all SO42− is of anthropogenic origin and accounts for as much as 65 % of the water-soluble inorganic constituents. The impact of anthropogenic sources is further evident from the widespread depletion of chloride (range: 40 to 100 % compared to sea-salt composition. The carbonaceous species (EC and OC contribute nearly 25 % to PM2.5; and significant linear relationship with K+ suggests biomass burning as their dominant source (biofuels and agricultural waste. The enhancement in the fractional solubility of aerosol Fe, as assessed in PM2.5, re-emphasizes the impact of combustion sources (biomass and fossil-fuel and chemical processing (of dust during the long-range transport. The high enrichment factors of heavy metals (Pb and Cd further demonstrate the influence of pollution sources on the chemistry of MABL. The downwind transport of pollutants and exchange across air-sea interface can, thus, have profound impact on the ocean surface biogeochemistry.

  5. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    Science.gov (United States)

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species. PMID:20194777

  6. A Review of Atmospheric Chemistry Research in China: Photochemical Smog, Haze Pollution, and Gas-Aerosol Interactions

    Institute of Scientific and Technical Information of China (English)

    MA Jianzhong; XU Xiaobin; ZHAO Chunsheng; YAN Peng

    2012-01-01

    In this paper we present a review of atmospheric chemistry research in China over the period 2006-2010,focusing on tropospheric ozone,aerosol chemistry,and the interactions between trace gases and aerosols in the polluted areas of China.Over the past decade,China has suffered severe photochemical smog and haze pollution,especially in North China,the Yangtze River Delta,and the Pearl River Delta.Much scientific work on atmospheric chemistry and physics has been done to address this large-scale,complex environmental problem.Intensive field experiments,satellite data analyses,and model simulations have shown that air pollution is significantly changing the chemical and physical characters of the natural atmosphere over these parts of China.In addition to strong emissions of primary pollutants,photochemical and heterogeneous reactions play key roles in the formation of complex pollution.More in-depth research is recommended to reveal the formation mechanism of photochemical smog and haze pollution and their climatic effects at the urban,regional,and global scales.

  7. Using "Household Chemistry Projects" To Develop Research Skills and To Teach Scientific Writing

    Science.gov (United States)

    Schmidt, Michael H.

    1997-04-01

    Students in a junior-level Chemistry library resources and scientific writing course were assigned semester-long "Household Chemistry Projects." Students were asked to independently develop written proposals for research they could do at their homes using ordinary household supplies. Upon approval of their proposals, students performed the research and wrote up in their results in standard journal format. The final drafts were subjected to peer review, and published in a class journal. Through feedback and rewriting, students not only improved their scientific writing skills, but also learned about designing, conducting, and criticizing research.

  8. Atmosphere Resource Recovery & Environmental Monitoring (ARREM) for Long Duration Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project focuses on key physico-chemical process technologies for Atmosphere Revitalization Systems (ARS) that increase reliability, capability, and consumable...

  9. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres

    Science.gov (United States)

    Gaillard, Fabrice; Scaillet, Bruno

    2014-10-01

    Magmatic degassing is ubiquitous and enduring, yet its impact on both planetary surficial chemistry and how it may have varied among planetary systems remains imprecise. A large number of factors are likely to be involved in the control of magmatic gas compositions, leading roles being given to the redox state and volatile abundances in planetary interiors, and the fate of the latter during mantle melting. We however show that the pressure at which degassing occurs, that is the atmospheric pressure in most sensible cases, has a prime influence on the composition of subaerial volcanic gases on planets: high surface pressure produces N2- and CO2-rich and dry volcanic gases, while low pressure promotes sulfur-rich gases. In-between, atmospheric pressures close to 1 bar trigger volcanic gases dominated by H2O. This simple pattern broadly mirrors the atmospheres of Venus-Earth-Mars-Io planetary suite and constitutes benchmarks for the prediction and interpretation of atmospheric features of extra-solar planets. Volatile abundances within the planetary body interiors also matter but they play a secondary role. Furthermore, our analysis shows that any difference in redox conditions prevailing during partial melting tends to disappear with the degassing process itself, converging toward a unique - planetary oxygen fugacity - at the venting pressure. A feedback relationship between volcanic gas compositions and atmospheric pressure implies a runaway drying during atmospheric growth; that is volcanic gases must become CO2 richer as the atmospheric mass increases. This may explain some features of the Venusian atmosphere. On Earth, impact ejection of the atmosphere and CO2-sink mechanisms, such as carbonate precipitation and plate tectonics, must have decreased atmospheric pressure allowing the reestablishment of water-rich volcanic gases.

  10. Atmospheric chemistry of some concepts for engineered intervention into large-scale pollution problems

    International Nuclear Information System (INIS)

    As the era of global change approaches, serious debate has begun on the merits of regional and global-scale atmospheric engineering enterprises to repair pollution damage. Post hoc mitigation schemes often prove to be inordinately expensive, and are sometimes dangerous. Here, chemical ramifications are discussed for three engineering concepts the authors are involved in assessing. Two of their projects regard global ozone depletion. It has been proposed that additions of small quantities of the light alkanes to the ozone hole could suppress massive springtime losses over Antarctica by scavenging chlorine atoms. A newly discovered heterogeneous reaction, however, implies that hydrogen atoms released during organic oxidation will activate the scavenged chlorine and more. Alkane injections could thus deepen the hole instead of plugging it. Ground based infrared laser multiple-photon dissociation has been suggested as a means for removing chlorofluorocarbons from the atmosphere before they can reach the ozone layer and cause depletions. The process would release chlorine atoms into the tropospheric system, and might lead to localized ozone production and smog-like plumes downwind of the laser assemblages. The third engineering proposal the authors are evaluating focuses on urban pollution. Reverse convection towers can generate electricity by channeling the cooling from evaporation of water droplets into controlled downdrafts. It has been noted that if the towers were constructed in cities, the falling drops within them would sweep out visibility-degrading particles. However, alterations in NOx could increase the intensity of midday ozone episodes. Their overall experience indicates that the direction and magnitude of potential chemical side effects of post hoc environmental engineering will be difficult to predict. 99 refs

  11. The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest

    Directory of Open Access Journals (Sweden)

    T. A. M. Pugh

    2011-05-01

    Full Text Available Biogenic volatile organic compounds (BVOCs such as isoprene constitute a large proportion of the global atmospheric oxidant sink. Their reactions in the atmosphere contribute to processes such as ozone production and secondary organic aerosol formation. However, over the tropical rainforest, where 50 % of the global emissions of BVOCs are believed to occur, atmospheric chemistry models have been unable to simulate concurrently the measured daytime concentration of isoprene and that of its principal oxidant, hydroxyl (OH. One reason for this model-measurement discrepancy may be incomplete mixing of isoprene within the convective boundary layer, leading to patchiness or segregation in isoprene and OH mixing ratios and average concentrations that appear to be incompatible with each other. One way of capturing this effect in models of atmospheric chemistry is to use a reduced effective rate constant for their reaction. Recent studies comparing atmospheric chemistry global/box models with field measurements have suggested that this effective rate reduction may be as large as 50 %; which is at the upper limit of that calculated using large eddy simulation models. To date there has only been one field campaign worldwide that has reported co-located measurements of isoprene and OH at the necessary temporal resolution to calculate the segregation of these compounds. However many campaigns have recorded sufficiently high resolution isoprene measurements to capture the small-scale fluctuations in its concentration. Assuming uniform distributions of other OH production and loss processes, we use a box model of atmospheric chemistry, constrained by the spectrum of isoprene concentrations measured, as a virtual instrument, to estimate the variability in OH at a point and hence, to estimate the segregation intensity of isoprene and OH from high-frequency isoprene time series. The method successfully reproduces the only directly observed segregation, using

  12. The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest

    Directory of Open Access Journals (Sweden)

    T. A. M. Pugh

    2010-07-01

    Full Text Available Biogenic volatile organic compounds (BVOCs such as isoprene constitute a large proportion of the global atmospheric oxidant sink. Their reactions in the atmosphere contribute to processes such as ozone production and secondary organic aerosol formation. However, over the tropical rainforest, where 50% of the global emissions of BVOCs are believed to occur, atmospheric chemistry models have been unable to simultaneously simulate the measured daytime concentration of isoprene and that of its principal oxidant, hydroxyl (OH. One reason for this model-measurement discrepancy may be incomplete mixing of isoprene within the convective boundary layer, leading to patchiness or segregation in isoprene and OH mixing ratios and average concentrations that appear to be incompatible with each other. One way of capturing this effect in models of atmospheric chemistry is to use a reduced effective rate constant for their reaction. Recent studies comparing atmospheric chemistry global/box models with field measurements have suggested that this effective rate reduction may be as large as 50%; which is at the upper limit of that calculated using large eddy simulation models. To date there has only been one field campaign worldwide that has reported co-located measurements of isoprene and OH at the necessary temporal resolution to calculate the segregation of these compounds. However many campaigns have recorded sufficiently high resolution isoprene measurements to capture the small-scale fluctuations in its concentration. We use a box model of atmospheric chemistry, constrained by the spectrum of isoprene concentrations measured, to estimate segregation intensity of isoprene and OH from high-frequency isoprene time series. The method successfully reproduces the only directly observed segregation. The effective rate constant reduction for the reaction of isoprene and OH over a South-East Asian rainforest is calculated to be typically <15%. This estimate is not

  13. The impact of temperature dependent CO2 cross section measurements: A role for heterogeneous chemistry in the atmosphere of Mars?

    Science.gov (United States)

    Anbar, A. D.; Allen, M.; Nair, H.; Leu, M-T.; Yung, Y. L.

    1992-01-01

    Carbon dioxide comprises over 95 percent of the Mars atmosphere, despite continuous photolysis of CO2 by solar ultraviolet (UV) radiation. Since the direct recombination of CO and O is spinforbidden, the chemical stability of CO2 in the Martian atmosphere is thought to be the result of a HO(x)-catalyzed recombination scheme. Thus the rate of CO oxidation is sensitive to the abundance and altitude distribution of OH, H, and HO2. Most Martian atmospheric models assume that HO(x) abundances are governed purely by gas phase chemistry. However, it is well established that reactive HO(x) radical are adsorbed by a wide variety of surfaces. The authors have combined laboratory studies of H, OH, and HO2 adsorption on inorganic surfaces, observational data of aerosol distributions, and an updated photochemical model to demonstrate that adsorption on either dust or ice aerosols is capable of reducing HO(x) abundances significantly, thereby retarding the rate of CO oxidation.

  14. Large Atmospheric Computation on the Earth Simulator: The LACES Project

    Directory of Open Access Journals (Sweden)

    Michel Desgagné

    2006-01-01

    Full Text Available The Large Atmospheric Computation on the Earth Simulator (LACES project is a joint initiative between Canadian and Japanese meteorological services and academic institutions that focuses on the high resolution simulation of Hurricane Earl (1998. The unique aspect of this effort is the extent of the computational domain, which covers all of North America and Europe with a grid spacing of 1 km. The Canadian Mesoscale Compressible Community (MC2 model is shown to parallelize effectively on the Japanese Earth Simulator (ES supercomputer; however, even using the extensive computing resources of the ES Center (ESC, the full simulation for the majority of Hurricane Earl's lifecycle takes over eight days to perform and produces over 5.2 TB of raw data. Preliminary diagnostics show that the results of the LACES simulation for the tropical stage of Hurricane Earl's lifecycle compare well with available observations for the storm. Further studies involving advanced diagnostics have commenced, taking advantage of the uniquely large spatial extent of the high resolution LACES simulation to investigate multiscale interactions in the hurricane and its environment. It is hoped that these studies will enhance our understanding of processes occurring within the hurricane and between the hurricane and its planetary-scale environment.

  15. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  16. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2007-08-01

    Full Text Available Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP. Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes <68 km for all locations, above which WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  17. Chemistry Outreach Project to High Schools Using a Mobile Chemistry Laboratory, ChemKits, and Teacher Workshops

    Science.gov (United States)

    Long, Gary L.; Bailey, Carol A.; Bunn, Barbara B.; Slebodnick, Carla; Johnson, Michael R.; Derozier, Shad

    2012-01-01

    The Chemistry Outreach Program (ChOP) of Virginia Tech was a university-based outreach program that addressed the needs of high school chemistry classes in underfunded rural and inner-city school districts. The primary features of ChOP were a mobile chemistry laboratory (MCL), a shipping-based outreach program (ChemKits), and teacher workshops.…

  18. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2012-11-01

    Full Text Available Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry. One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others. The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70–75% of the modelled monthly aerosol optical depth (AOD in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions. Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  19. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    Science.gov (United States)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  20. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    Science.gov (United States)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  1. Joint project final report, Task II: Sulfur chemistry, Task III: Nitrogen Chemistry[Straw fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Lans, R. van der; Weigang, L.; Arendt Jensen, P.; Degn Jensen, A.; Dam-Johansen, K.

    2001-09-01

    It is the aim of the project to promote the use of biomass in the production of power and heat in Denmark as well as enhancing the technology base of the Danish industry within this area. The project involves, the following task areas: 1) Deposit Build-up; 2) Sulfur Chemistry; 3) Nitrogen Chemistry; and 4) Furnace Modeling. The present report covers the activities in task 2 and 3, which are carried out at Department of Chemical Engineering, DTU. Task 2: Sulfur chemistry: The lab-scale results show that the amount of sulfur released into the gas-phase increases at high temperatures. Other process parameters such as oxygen concentration have less impact. Little sulfur is apparently released during char oxidation. The experiments show that about 40% of the sulfur is released during pyrolysis at 400 {sup d}eg{sup .}C. At combustion conditions it was found that about 50% of the sulfur is released at 500{sup d}eg.{sup C}; above this temperature an almost linear correlation is found beteen sulfur release and combustion temperature up to 80-85% release at 950{sup d}eg.{sup C}. The experiments are in agreement with results from full scale straw fired grate boilers, indicating that only a small amount of fuel-sulfur is fixed in the bottom ash under typical operating conditions. The results are important in order to understand the varying emission levels observed in full-scala systems and provide guidelines for low SO{sub 2} operation. Task 3: Nitrogen chemistry: In the nitgrogen chemistry submodel volatile-N is released as NH{sub 3} and N{sub 2}. The ammonia can react further to N{sub 2} or NO. Char nitrogen is oxidized to NO, and the char bed acts as a catalyst for the reduction of NO to N{sub 2}. Predictions with the bed-model including the NO submodel indicate that when all volatile nitrogen is converted to NH{sub 3}, the concentrations og NH{sub 3} are significantly overpredicted. This means that either the NH{sub 3} reaction rates are underpredicted or that a smaller

  2. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest

    Science.gov (United States)

    Gerken, Tobias; Wei, Dandan; Chase, Randy J.; Fuentes, Jose D.; Schumacher, Courtney; Machado, Luiz A. T.; Andreoli, Rita V.; Chamecki, Marcelo; Ferreira de Souza, Rodrigo A.; Freire, Livia S.; Jardine, Angela B.; Manzi, Antonio O.; Nascimento dos Santos, Rosa M.; von Randow, Celso; dos Santos Costa, Patrícia; Stoy, Paul C.; Tóta, Julio; Trowbridge, Amy M.

    2016-01-01

    From April 2014 to January 2015, ozone (O3) dynamics were investigated as part of GoAmazon 2014/5 project in the central Amazon rainforest of Brazil. Just above the forest canopy, maximum hourly O3 mixing ratios averaged 20 ppbv (parts per billion on a volume basis) during the June-September dry months and 15 ppbv during the wet months. Ozone levels occasionally exceeded 75 ppbv in response to influences from biomass burning and regional air pollution. Individual convective storms transported O3-rich air parcels from the mid-troposphere to the surface and abruptly enhanced the regional atmospheric boundary layer by as much as 25 ppbv. In contrast to the individual storms, days with multiple convective systems produced successive, cumulative ground-level O3 increases. The magnitude of O3 enhancements depended on the vertical distribution of O3 within storm downdrafts and origin of downdrafts in the troposphere. Ozone mixing ratios remained enhanced for > 2 h following the passage of storms, which enhanced chemical processing of rainforest-emitted isoprene and monoterpenes. Reactions of isoprene and monoterpenes with O3 are modeled to generate maximum hydroxyl radical formation rates of 6 × 106 radicals cm-3s-1. Therefore, one key conclusion of the present study is that downdrafts of convective storms are estimated to transport enough O3 to the surface to initiate a series of reactions that reduce the lifetimes of rainforest-emitted hydrocarbons.

  3. PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2011-05-01

    Full Text Available The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included in the tool. The preprocessor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The inclusion of these emissions in transport models is also presented. The preprocessor is coded using Fortran90 and C and is driven by a namelist allowing the user to choose the type of emissions and the databases.

  4. PREP-CHEM-SRC - 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models

    Science.gov (United States)

    Freitas, S. R.; Longo, K. M.; Alonso, M. F.; Pirre, M.; Marecal, V.; Grell, G.; Stockler, R.; Mello, R. F.; Sánchez Gácita, M.

    2011-05-01

    The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included in the tool. The preprocessor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The inclusion of these emissions in transport models is also presented. The preprocessor is coded using Fortran90 and C and is driven by a namelist allowing the user to choose the type of emissions and the databases.

  5. Atmospheric station Kresin u Pacova , Czech Republic-a uniques research infrastrucuture for studying atmospheric chemistry in a changing climate

    Czech Academy of Sciences Publication Activity Database

    Váňa, Milan; Dvorská, Alice; Hošková, K.; Schwarz, Jaroslav; Zíková, Naděžda; Sedlák, Pavel; Prošek, P.

    Helsinky: University of Helsinky, 2014, s. 33. [ICOS International Conference on Greenhouse Gases and Biogeochemical Cycles /1./. Brusels (BE), 23.09.2014-25.09.2014] Institutional support: RVO:67179843 Keywords : atmospheric station Křešín * climate change * Košetice observatory Subject RIV: DG - Athmosphere Sciences, Meteorology

  6. A two-dimensional atmospheric chemistry modeling investigation of Earth's Phanerozoic O3 and near-surface ultraviolet radiation history

    Science.gov (United States)

    Harfoot, Michael B. J.; Beerling, David J.; Lomax, Barry H.; Pyle, John A.

    2007-04-01

    We use the Cambridge two-dimensional (2-D) chemistry-radiation transport model to investigate the implications for column O3 and near-surface ultraviolet radiation (UV), of variations in atmospheric O2 content over the Phanerozoic (last 540 Myr). Model results confirm some earlier 1-D model investigations showing that global annual mean O3 column increases monotonically with atmospheric O2. Sensitivity studies indicate that changes in temperature and N2O exert a minor influence on O3 relative to O2. We reconstructed Earth's O3 history by interpolating the modeled relationship between O3 and O2 onto two Phanerozoic O2 histories. Our results indicate that the largest variation in Phanerozoic column O3 occurred between 400 and 200 Myr ago, corresponding to a rise in atmospheric O2 to ˜1.5 times the present atmospheric level (PAL) and subsequent fall to ˜0.5 PAL. The O3 response to this O2 decline shows latitudinal differences, thinning most at high latitudes (30-40 Dobson units (1 DU = 0.001 atm cm) at 66°N) and least at low latitudes (5-10 DU at 9°N) where a "self-healing" effect is evident. This O3 depletion coincides with significant increases in the near-surface biologically active UV radiation at high latitudes, +28% as weighted by the Thimijan spectral weighting function. O3 and UV changes were exacerbated when we incorporated a direct feedback of the terrestrial biosphere on atmospheric chemistry, through enhanced N2O production as the climate switched from an icehouse to a greenhouse mode. On the basis of a summary of field and laboratory experimental evidence, we suggest that these UV radiation increases may have exerted subtle rather than catastrophic effects on ecosystem processes.

  7. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  8. The Multi-Initiative Dissemination Project: Active-Learning Strategies for College Chemistry

    Science.gov (United States)

    Burke, K. A.; Greenbowe, Thomas J.; Lewis, Eileen L.; Peace, G. Earl

    2002-06-01

    Aspects of the NSF-funded Multi-Initiative Dissemination Project (MID) are discussed in order to inform potential participants of the benefits of attending a MID workshop. The workshops are for two- and four-year college instructors who want to improve their students' understanding of science. Four of the NSF-funded chemistry systemic reform projects (ChemConnections, Molecular Science, New Traditions, and Peer-Led Team Learning) disseminate information and conduct hands-on activities with their session participants during the MID workshops. The MID workshops are funded from 2001 through 2003.

  9. The influence of the limestone-quarry Čertovy schody on the precipitation chemistry and atmospheric deposition

    Czech Academy of Sciences Publication Activity Database

    Špičková, Jitka; Dobešová, Irena; Vach, Marek; Skřivan, Petr; Burian, Miloš

    Prague: Ministry of the Environment CR ; Czech Hydrometeorological Institute; Charles University Environment Center; Czech Geological Survey, 2005 - (Hůnová, I.). s. 132-132 ISBN 80-86690-25-3. [ Acid Rain 2005. International Conference on Acid Deposition /7./. 12.06.2005-17.06.2005, Prague] R&D Projects: GA ČR(CZ) GA205/04/0060 Institutional research plan: CEZ:AV0Z30130516 Keywords : precipitation chemistry * Bohemian Karst * trace metals Subject RIV: DD - Geochemistry

  10. Monitoramento atmosférico passivo de SO2, NO2 e O3 em áreas urbanas e de influência industrial como prática de química ambiental para alunos de graduação Atmospheric passive monitoring of SO2, NO2 and O3 in urban areas and in those under industrial influence as an environmental chemistry experiment for undergraduate students

    OpenAIRE

    Vânia P. Campos; Lícia P. S. Cruz; Eagles M. Alves; Tatiane S. Santos; Adriano D. Silva; Ana C. C. dos Santos; Lima, Angelo M. V.; Carine S. Paixão; Daniele C. M. B. Santos; Denise S. Brandão; Elisângela J. S. Andrade; José I. Moreira Jr.; Karla C. S. Conceição; Márcia de S. Ramos; Maria C. G. Pontes

    2006-01-01

    This study is a result of undergraduate student participation in the Environmental Chemistry discipline provided by the Chemistry Institute/UFBA. The students were involved in the development of passive samplers, a project of the LAQUAM (Environmental Analytical Chemistry Laboratory). The students' residences and other neighborhoods were used to create a passive sampling network, allowing the measurement of atmospheric levels of pollutants in urban areas and in those under industrial influenc...

  11. Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model

    Science.gov (United States)

    Pugh, T. A. M.; MacKenzie, A. R.; Hewitt, C. N.; Langford, B.; Edwards, P. M.; Furneaux, K. L.; Heard, D. E.; Hopkins, J. R.; Jones, C. E.; Karunaharan, A.; Lee, J.; Mills, G.; Misztal, P.; Moller, S.; Monks, P. S.; Whalley, L. K.

    2010-01-01

    Atmospheric composition and chemistry above tropical rainforests is currently not well established, particularly for south-east Asia. In order to examine our understanding of chemical processes in this region, the performance of a box model of atmospheric boundary layer chemistry is tested against measurements made at the top of the rainforest canopy near Danum Valley, Malaysian Borneo. Multi-variate optimisation against ambient concentration measurements was used to estimate average canopy-scale emissions for isoprene, total monoterpenes and nitric oxide. The excellent agreement between estimated values and measured fluxes of isoprene and total monoterpenes provides confidence in the overall modelling strategy, and suggests that this method may be applied where measured fluxes are not available, assuming that the local chemistry and mixing are adequately understood. The largest contributors to the optimisation cost function at the point of best-fit are OH (29%), NO (22%) and total peroxy radicals (27%). Several factors affect the modelled VOC chemistry. In particular concentrations of methacrolein (MACR) and methyl-vinyl ketone (MVK) are substantially overestimated, and the hydroxyl radical (OH) concentration is substantially underestimated; as has been seen before in tropical rainforest studies. It is shown that inclusion of dry deposition of MACR and MVK and wet deposition of species with high Henry's Law values substantially improves the fit of these oxidised species, whilst also substantially decreasing the OH sink. Increasing OH production arbitrarily, through a simple OH recycling mechanism , adversely affects the model fit for volatile organic compounds (VOCs). Given the constraints on isoprene flux provided by measurements, a substantial decrease in the rate of reaction of VOCs with OH is the only remaining option to explain the measurement/model discrepancy for OH. A reduction in the isoprene+OH rate constant of 50%, in conjunction with increased

  12. Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model

    Directory of Open Access Journals (Sweden)

    T. A. M. Pugh

    2010-01-01

    Full Text Available Atmospheric composition and chemistry above tropical rainforests is currently not well established, particularly for south-east Asia. In order to examine our understanding of chemical processes in this region, the performance of a box model of atmospheric boundary layer chemistry is tested against measurements made at the top of the rainforest canopy near Danum Valley, Malaysian Borneo. Multi-variate optimisation against ambient concentration measurements was used to estimate average canopy-scale emissions for isoprene, total monoterpenes and nitric oxide. The excellent agreement between estimated values and measured fluxes of isoprene and total monoterpenes provides confidence in the overall modelling strategy, and suggests that this method may be applied where measured fluxes are not available, assuming that the local chemistry and mixing are adequately understood. The largest contributors to the optimisation cost function at the point of best-fit are OH (29%, NO (22% and total peroxy radicals (27%. Several factors affect the modelled VOC chemistry. In particular concentrations of methacrolein (MACR and methyl-vinyl ketone (MVK are substantially overestimated, and the hydroxyl radical (OH concentration is substantially underestimated; as has been seen before in tropical rainforest studies. It is shown that inclusion of dry deposition of MACR and MVK and wet deposition of species with high Henry's Law values substantially improves the fit of these oxidised species, whilst also substantially decreasing the OH sink. Increasing OH production arbitrarily, through a simple OH recycling mechanism , adversely affects the model fit for volatile organic compounds (VOCs. Given the constraints on isoprene flux provided by measurements, a substantial decrease in the rate of reaction of VOCs with OH is the only remaining option to explain the measurement/model discrepancy for OH. A reduction in the isoprene+OH rate constant of 50%, in conjunction with

  13. The puzzling chemical composition of GJ 436b's atmosphere: influence of tidal heating on the chemistry

    OpenAIRE

    Agúndez, Marcelino; Venot, Olivia; Selsis, Franck; Iro, Nicolas

    2014-01-01

    The dissipation of the tidal energy deposited on eccentric planets may induce a heating of the planet that affects its atmospheric thermal structure. Here we study the influence of tidal heating on the atmospheric composition of the eccentric (e = 0.16) "hot Neptune" GJ 436b, for which inconclusive chemical abundances are retrieved from multiwavelength photometric observations carried out during primary transit and secondary eclipse. We build up a one-dimensional model of GJ 436b's atmosphere...

  14. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    OpenAIRE

    Feliu Jr., S.; Pardo, Angel; Merino, M. C.; Coy, A. E.; Viejo, F.; Arrabal, R.

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH)2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of M...

  15. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 2: Application to BEARPEX-2007 observations

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-02-01

    Full Text Available In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. Here, we apply CAFE to noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007. In this work we evaluate the CAFE modeling approach, demonstrate the significance of in-canopy chemistry for forest-atmosphere exchange and identify key shortcomings in the current understanding of intra-canopy processes.

    CAFE generally reproduces BEARPEX-2007 observations but requires an enhanced radical recycling mechanism to overcome a factor of 6 underestimate of hydroxyl (OH concentrations observed during a warm (~29 °C period. Modeled fluxes of acyl peroxy nitrates (APN are quite sensitive to gradients in chemical production and loss, demonstrating that chemistry may perturb forest-atmosphere exchange even when the chemical timescale is long relative to the canopy mixing timescale. The model underestimates peroxy acetyl nitrate (PAN fluxes by 50% and the exchange velocity by nearly a factor of three under warmer conditions, suggesting that near-surface APN sinks are underestimated relative to the sources. Nitric acid typically dominates gross dry N deposition at this site, though other reactive nitrogen (NOy species can comprise up to 28% of the N deposition budget under cooler conditions. Upward NO2 fluxes cause the net above-canopy NOy flux to be ~30% lower than the gross depositional flux. CAFE under-predicts ozone fluxes and exchange velocities by ~20%. Large uncertainty in the parameterization of cuticular and ground deposition precludes conclusive attribution of non-stomatal fluxes to chemistry or surface uptake. Model-measurement comparisons of vertical concentration gradients for several emitted species suggests that the lower canopy airspace may be

  16. International geophysics series theory of planetary atmospheres an introduction to their physics and chemistry

    CERN Document Server

    Marshall, John

    1978-01-01

    For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by m

  17. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observation

    NARCIS (Netherlands)

    Pozzer, A.; Jöckel, P.; Tost, H.; Sander, R.; Ganzeveld, L.N.; Kerkweg, A.; Lelieveld, J.

    2007-01-01

    The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simu

  18. Atmospheric Chemistry in Existing Air Atmospheric Dispersion Models and Their Applications: Trends, Advances and Future in Urban Areas in Ontario, Canada and in Other Areas of the World

    Directory of Open Access Journals (Sweden)

    Barbara Laskarzewska

    2009-03-01

    Full Text Available Air quality is a major concern for the public. Therefore, the reliability in modeling and predicting the air quality accurately is of a major interest. This study reviews existing atmospheric dispersion models, specifically, the Gaussian Plume models and their capabilities to handle the atmospheric chemistry of nitrogen oxides (NOx and sulfur dioxides (SO2. It also includes a review of wet deposition in the form of in-cloud, below cloud, and snow scavenging. Existing dispersion models are investigated to assess their capability of handling atmospheric chemistry, specifically in the context of NOx and SO2 substances and their applications to urban areas. A number of previous studies have been conducted where Gaussian dispersion model was applied to major cities around the world such as London, Helsinki, Kanto, and Prague, to predict ground level concentrations of NOx and SO2. These studies demonstrated a good agreement between the modeled and observed ground level concentrations of NOx and SO2. Toronto, Ontario, Canada is also a heavily populated urban area where a dispersion model could be applied to evaluate ground level concentrations of various contaminants to better understand the air quality. This paper also includes a preliminary study of road emissions for a segment of the city of Toronto and its busy streets during morning and afternoon rush hours. The results of the modeling are compared to the observed data. The small scale test of dispersion of NO2 in the city of Toronto was utilized for the local hourly meteorological data and traffic emissions. The predicted ground level concentrations were compared to Air Quality Index (AQI data and showed a good agreement. Another improvement addressed here is a discussion on various wet deposition such as in cloud, below cloud, and snow.

  19. A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres

    CERN Document Server

    Helling, Ch; Allard, F; Dehn, M; Hauschild, P; Homeier, D; Lodders, K; Marley, M; Rietmeijer, F; Tsuji, T; Woitke, P

    2008-01-01

    The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these `dust' clouds strongly affects both the atmospheric temperature-pressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the diversity of cloud models in atmospheric simulations is large and it is not always clear how the underlying physics of the various models compare. Likewise the observational consequences of different modeling approaches can be masked by other model differences, making objective comparisons challenging. In order to clarify the current state of the modeling approaches, this paper compares five different cloud models in two sets of tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and T-dwarf atmospheric (temperature T, pressure p, convective velocity vconv)-structures. Test case 2 compares complete mode...

  20. Advanced Technologies for Coordinated In Situ Atmospheric Sensing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a great need for better understanding of the continuity of atmospheric processes on multiple scales ranging from several kilometers to the order of a...

  1. LIDAR for atmospheric backscatter and temperature measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this effort are to measure atmospheric backscatter profiles and temperature using a zenith looking lidar, designed for a small lander.The lidar...

  2. Atmospheric Breathing Electric Thruster for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will investigate the development of an atmosphere-breathing electric propulsion solar-powered vehicle to explore planets such as Mars. The vehicle would...

  3. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  4. Fast Temperature Sensor for use in Atmospheric Sciences Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes a novel sensor to measure atmospheric temperature at high frequency (10 Hz) and with high precision and accuracy (0.1 degrees C)....

  5. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  6. Plasma Extraction of Oxygen from Martian Atmosphere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (96 % CO2). In this process, CO2 is...

  7. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC's Non-Thermal Sanitation by Atmospheric Pressure Plasma technology sanitizes fresh fruits and vegetables without the use of consumable chemicals and without...

  8. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  9. Plasma Catalytic Extraction of Oxygen from the Martian Atmosphere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma catalytic techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (95% CO2).. The Phase I...

  10. Rigidized Deployable Lifting Brake for Atmospheric Entry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerobraking to reduce velocity for planetary capture and landing has long been assumed for use on Mars missions because Mars has an atmosphere, and the use of...

  11. Long-lived halocarbon trends and budgets from atmospheric chemistry modelling constrained with measurements in polar firn

    Directory of Open Access Journals (Sweden)

    P. Martinerie

    2009-01-01

    Full Text Available The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6 are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are insignificant. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.

  12. Simulating atmospheric composition over a South-East Asian tropical rainforest: Performance of a chemistry box model

    Directory of Open Access Journals (Sweden)

    T. A. M. Pugh

    2009-09-01

    Full Text Available Atmospheric composition and chemistry above tropical rainforests is currently not well established, particularly for south-east Asia. In order to examine our understanding of chemical processes in this region, the performance of a box model of atmospheric boundary layer chemistry is tested against measurements made at the top of the rainforest canopy near Danum Valley, Malaysian Borneo. Multi-variate optimisation against ambient concentration measurements was used to estimate average canopy-scale emissions for isoprene, total monoterpenes and nitric oxide. The excellent agreement between estimated values and measured fluxes of isoprene and total monoterpenes provides confidence in the overall modelling strategy, and suggests that this method may be applied where measured fluxes are not available. The largest contributors to the optimisation cost function at the point of best-fit are OH (41%, NO (18% and total monoterpenes (16%. Several factors affect the modelled VOC chemistry. In particular concentrations of methacrolein (MACR and methyl-vinyl ketone (MVK are substantially overestimated, and the hydroxyl radical [OH] concentration is substantially underestimated; as has been seen before in tropical rainforest studies. It is shown that inclusion of dry deposition of MACR and MVK and wet deposition of species with high Henry's Law values substantially improves the fit of these oxidised species, whilst also substantially decreasing the OH sink. Increasing [OH] production arbitrarily, through a simple OH recycling mechanism, adversely affects the model fit for volatile organic compounds (VOCs. Given the constraints on isoprene flux provided by measurements, a substantial decrease in the rate of reaction of VOCs with OH is the only remaining option to explain the measurement/model discrepancy for OH. A reduction in the isoprene + OH rate constant of 50–70% is able to produce both isoprene and OH concentrations within error of those measured

  13. The impact of dynamic processes on chemistry in atmospheric boundary layers over tropical and boreal forest

    OpenAIRE

    Ouwersloot, H.G.

    2013-01-01

    Improving our knowledge of the atmospheric processes that drive climate and air quality is very relevant for society. The application of this knowledge enables us to predict and mitigate the effects of human induced perturbations to our environment. Key factors in the current and future climate evolution are related to the emissions and atmospheric presence of carbon dioxide (CO2) and hydrocarbons. The latter group of chemical species, on which special emphasis is placed in this dissertation,...

  14. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    OpenAIRE

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtained from intensive monitoring programmes conducted at a number of sites in northwestern Europe and North-America. Specific hypotheses were tested in laboratory experiments.Atmospheric acid inputs do...

  15. Advanced exploitation of Ground-Based measurements for Atmospheric Chemistry and Climate Applications "AGACC"

    OpenAIRE

    De Mazière, Martine; De Backer, Hugo; Carleer, Michel; Mahieu, Emmanuel; Clémer, Katrijn; Dils, Bart; Kruglanski, Michel; Hendrick, François; Hermans, Christian; Van Roozendael, Michel; Vigouroux, Corinne; Cheymol, Anne; De Bock, Veerle; Mangold, Alexander; Malderen, Roeland

    2011-01-01

    We live in an era in which human activities are causing significant changes to the atmospheric environment which result in local to global consequences on the ecosystems. Changes in the atmospheric composition impact our climate via chemical and dynamical feedback mechanisms; in many instances they also affect air quality, and the health of the biosphere. Monitoring and understanding those changes and their consequences is fundamental to establish adequate actions for adaptation to and mitiga...

  16. Studies of Atmospheric Chemistry and Reaction Mechanisms Using Optical Spectroscopy and Mass Spectrometry

    OpenAIRE

    Liu, Yingdi

    2011-01-01

    This thesis mainly focuses on (1) development and applications of cavity ringdown spectroscopy (CRDS) to study atmospheric trace gases; (2) reactive intermediates in the alkene ozonolysis reactions using photoionization time-of-flight mass spectrometry (TOFMS); and (3) development of new methods using CRDS for thin film studies.Specifically, CRDS based instruments are developed to measure and characterize peroxy radicals in atmosphere. By combining the chemical amplification detection of pero...

  17. The Influence of Galactic Cosmic Rays on Ion-Neutral Hydrocarbon Chemistry in the Upper Atmospheres of Free-Floating Exoplanets

    CERN Document Server

    Rimmer, P B; Bilger, C

    2013-01-01

    Cosmic rays may be linked to the formation of volatiles necessary for prebiotic chemistry. We explore the effect of cosmic rays in a hydrogen-dominated atmosphere, as a proof-of-concept that ion-neutral chemistry may be important for modelling hydrogen-dominated atmospheres. In order to accomplish this, we utilize Monte Carlo cosmic ray transport models with particle energies of $10^6$ eV $< E < 10^{12}$ eV in order to investigate the cosmic ray enhancement of free electrons in substellar atmospheres. Ion-neutral chemistry is then applied to a Drift-Phoenix model of a free-floating giant gas planet. Our results suggest that the activation of ion-neutral chemistry in the upper atmosphere significantly enhances formation rates for various species, and we find that C$_2$H$_2$, C$_2$H$_4$, NH$_3$, C$_6$H$_6$ and possibly C$_{10}$H are enhanced in the upper atmospheres because of cosmic rays. Our results suggest a potential connection between cosmic ray chemistry and the hazes observed in the upper atmospher...

  18. The chemistry CATT–BRAMS model (CCATT–BRAMS 4.5: a regional atmospheric model system for integrated air quality and weather forecasting and research

    Directory of Open Access Journals (Sweden)

    K. M. Longo

    2013-02-01

    Full Text Available The Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT–BRAMS, version 4.5 is an online regional chemical transport model designed for local and regional studies of atmospheric chemistry from surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT–BRAMS model takes advantages of the BRAMS specific development for the tropics/subtropics and of the recent availability of preprocessing tools for chemical mechanisms and of fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations of scales down to meters. The online coupling between meteorology and chemistry allows the system to be used for simultaneous atmospheric weather and chemical composition forecasts as well as potential feedbacks between them. The entire system comprises three preprocessing software tools for chemical mechanism (which are user defined, aerosol and trace gases emission fields and atmospheric and chemistry fields for initial and boundary conditions. In this paper, the model description is provided along evaluations performed using observational data obtained from ground-based stations, instruments aboard of aircrafts and retrieval from space remote sensing. The evaluation takes into account model application on different scales from megacities and Amazon Basin up to intercontinental region of the Southern Hemisphere.

  19. Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project

    Science.gov (United States)

    Colantonio, Ron

    2011-01-01

    Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena

  20. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  1. Role of Atmospheric Chemistry in the Climate Impacts of Stratospheric Volcanic Injections

    Science.gov (United States)

    Legrande, Allegra N.; Tsigaridis, Kostas; Bauer, Susanne E.

    2016-01-01

    The climate impact of a volcanic eruption is known to be dependent on the size, location and timing of the eruption. However, the chemistry and composition of the volcanic plume also control its impact on climate. It is not just sulfur dioxide gas, but also the coincident emissions of water, halogens and ash that influence the radiative and climate forcing of an eruption. Improvements in the capability of models to capture aerosol microphysics, and the inclusion of chemistry and aerosol microphysics modules in Earth system models, allow us to evaluate the interaction of composition and chemistry within volcanic plumes in a new way. These modeling efforts also illustrate the role of water vapor in controlling the chemical evolution, and hence climate impacts, of the plume. A growing realization of the importance of the chemical composition of volcanic plumes is leading to a more sophisticated and realistic representation of volcanic forcing in climate simulations, which in turn aids in reconciling simulations and proxy reconstructions of the climate impacts of past volcanic eruptions. More sophisticated simulations are expected to help, eventually, with predictions of the impact on the Earth system of any future large volcanic eruptions.

  2. Probing Titan's Complex Atmospheric Chemistry Using the Atacama Large Millimeter/Submillimeter Array

    Science.gov (United States)

    Cordiner, Martin A.; Nixon, Conor; Charnley, Steven B.; Teanby, Nick; Irwin, Pat; Serigano, Joseph; Palmer, Maureen; Kisiel, Zbigniew

    2015-01-01

    Titan is Saturn's largest moon, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and other species of possible pre-biotic relevance. Titan's carbon-rich atmosphere may be analogous to that of primitive terrestrial planets throughout the universe, yet its origin, evolution and complete chemical inventory are not well understood. Here we present spatially-resolved maps of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH in Titan's atmosphere, observed using the Atacama Large Millimeter/submillimeter Array (ALMA) in 2012-2013. These data show previously-undetected spatial structures for the observed species and provide the first spectroscopic detection of C2H5CN on Titan. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with photochemical production and transport in the upper atmosphere followed by subsidence over the poles. The HNC emission peaks are offset from the polar axis, indicating that Titan's mesosphere may be more longitudinally variable than previously thought.

  3. Final Report. "Collaborative Project. Contributions of organic compounds to the growth of freshly nucleated atmospheric nanoparticles"

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James N [Univ. of California, Irvine, CA (United States)

    2015-12-23

    This is the final technical report for the portion of the project that took place at the National Center for Atmospheric Research, which covers approximately the first year of the three-year project. During this time we focused primarily on analysis and modeling of DOE-funded observations as well as preparation for laboratory studies of individual processes that contribute to atmospheric new particle formation.

  4. The puzzling chemical composition of GJ 436b's atmosphere: influence of tidal heating on the chemistry

    CERN Document Server

    Agundez, M; Selsis, F; Iro, N

    2013-01-01

    The dissipation of the tidal energy deposited on eccentric planets may induce a heating of the planet that affects its atmospheric thermal structure. Here we study the influence of tidal heating on the atmospheric composition of the eccentric (e = 0.16) "hot Neptune" GJ 436b, for which inconclusive chemical abundances are retrieved from multiwavelength photometric observations carried out during primary transit and secondary eclipse. We build up a one-dimensional model of GJ 436b's atmosphere in the vertical direction and compute the pressure-temperature and molecular abundances profiles for various plausible internal temperatures of the planet (up to 560 K) and metallicities (from solar to 100 times solar), using a radiative-convective model and a chemical model which includes thermochemical kinetics, vertical mixing, and photochemistry. We find that the CO/CH4 abundance ratio increases with metallicity and tidal heating, and ranges from 1/20 to 1000 within the ranges of metallicity and internal temperature ...

  5. O3-N2O correlations from the Atmospheric Chemistry Experiment: Revisiting a diagnostic of transport and chemistry in the stratosphere

    Science.gov (United States)

    Hegglin, Michaela I.; Shepherd, Theodore G.

    2007-10-01

    Our knowledge of stratospheric O3-N2O correlations is extended, and their potential for model-measurement comparison assessed, using data from the Atmospheric Chemistry Experiment (ACE) satellite and the Canadian Middle Atmosphere Model (CMAM). ACE provides the first comprehensive data set for the investigation of interhemispheric, interseasonal, and height-resolved differences of the O3-N2O correlation structure. By subsampling the CMAM data, the representativeness of the ACE data is evaluated. In the middle stratosphere, where the correlations are not compact and therefore mainly reflect the data sampling, joint probability density functions provide a detailed picture of key aspects of transport and mixing, but also trace polar ozone loss. CMAM captures these important features, but exhibits a displacement of the tropical pipe into the Southern Hemisphere (SH). Below about 21 km, the ACE data generally confirm the compactness of the correlations, although chemical ozone loss tends to destroy the compactness during late winter/spring, especially in the SH. This allows a quantitative comparison of the correlation slopes in the lower and lowermost stratosphere (LMS), which exhibit distinct seasonal cycles that reveal the different balances between diabatic descent and horizontal mixing in these two regions in the Northern Hemisphere (NH), reconciling differences found in aircraft measurements, and the strong role of chemical ozone loss in the SH. The seasonal cycles are qualitatively well reproduced by CMAM, although their amplitude is too weak in the NH LMS. The correlation slopes allow a "chemical" definition of the LMS, which is found to vary substantially in vertical extent with season.

  6. The Atmospheric Circulation of a Nine-hot-Jupiter Sample: Probing Circulation and Chemistry over a Wide Phase Space

    Science.gov (United States)

    Kataria, Tiffany; Sing, David K.; Lewis, Nikole K.; Visscher, Channon; Showman, Adam P.; Fortney, Jonathan J.; Marley, Mark S.

    2016-04-01

    We present results from an atmospheric circulation study of nine hot Jupiters that compose a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths, suggesting diverse cloud and haze properties in their atmospheres. By utilizing the specific system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model “grid” recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day–night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of kelvin, which could imply large variations in Na, K, CO and {{{CH}}}4 abundances in those regions. These chemical variations can be large enough to be observed in transmission with high-resolution spectrographs, such as ESPRESSO on VLT, METIS on the E-ELT, or MIRI and NIRSpec aboard JWST. We also compare theoretical emission spectra generated from our models to available Spitzer eclipse depths for each planet and find that the outputs from our solar-metallicity, cloud-free models generally provide a good match to many of the data sets, even without additional model tuning. Although these models are cloud-free, we can use their results to understand the chemistry and dynamics that drive cloud formation in their atmospheres.

  7. Effects of vegetation burning on the atmospheric chemistry of the Venezuelan savanna

    International Nuclear Information System (INIS)

    Biomass burning in tropical savanna and rainforest regions is an important factor in the chemical composition of the atmosphere. On the global scale, burning of savanna grass procedures three to four times greater emission of trace gases than deforestation processes of tropical rainforest. As part of a comprehensive study of the Venezuelan savanna atmosphere, measurements of gases and particles, chemical composition of rain, and biogenic soil emission were made during burning and nonburning periods at several rural savanna sites. A review of the most significant findings is presented in this chapter, and their regional and global implications are discussed

  8. MATCH-SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation

    OpenAIRE

    Andersson, C.; Bergström, R; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; H. Kokkola

    2015-01-01

    We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower c...

  9. MATCH–SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation

    OpenAIRE

    Andersson, C.; Bergström, R; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; H. Kokkola

    2014-01-01

    We have implemented the sectional aerosol dynamics model SALSA in the European scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH–SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The model PNC size ...

  10. Sol-Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab

    Science.gov (United States)

    de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier

    2014-01-01

    A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…

  11. Modelling atmospheric chemistry and long-range transport of emerging Asian pollutants

    CERN Document Server

    Wang, Kuo-Ying

    2008-01-01

    Modeling is a very important tool for scientific processes, requiring long-term dedication, desire, and continuous reflection. In this work, we discuss several aspects of modeling, and the reasons for doing it. We discuss two major modeling systems that have been built by us over the last 10 years. It is a long and arduous process but the reward of understanding can be enormous, as demonstrated in the examples shown in this work. We found that long-range transport of emerging Asian pollutants can be interpreted using a Lagrangian framework for wind analysis. More detailed processes still need to be modeled but an accurate representation of the wind structure is the most important thing above all others. Our long-term chemistry integrations reveal the capability of the IMS model in simulating tropospheric chemistry on a climate scale. These long-term integrations also show ways for further model development. Modeling is a quantitative process, and the understanding can be sustained only when theories are vigor...

  12. A modelling study of the atmospheric chemistry of DMS using the global model, STOCHEM-CRI

    Science.gov (United States)

    Khan, M. A. H.; Gillespie, S. M. P.; Razis, B.; Xiao, P.; Davies-Coleman, M. T.; Percival, C. J.; Derwent, R. G.; Dyke, J. M.; Ghosh, M. V.; Lee, E. P. F.; Shallcross, D. E.

    2016-02-01

    The tropospheric chemistry of dimethylsulfide (DMS) is investigated using a global three-dimensional chemical transport model, STOCHEM with the CRIv2-R5 chemistry scheme. The tropospheric distribution of DMS and its removal at the surface by OH abstraction, OH addition, NO3 oxidation, and BrO oxidation is modelled. The study shows that the lifetime and global burden of DMS is ca. 1.2 days and 98 Gg S, respectively. Inclusion of BrO oxidation resulted in a reduction of the lifetime (1.0 day) and global burden (83 Gg S) of DMS showing that this reaction is important in the DMS budget. The percentage contribution of BrO oxidation to the total removal of DMS is found to be only 7.9% that is considered a lower limit because the study does not include an inorganic source of bromine from sea-salt. BrO oxidation contributed significantly in the high latitudes of the southern hemisphere (SH). Inclusion of DMS removal by Cl2 showed that potentially a large amount of DMS is removed via this reaction specifically in the remote SH oceans, depending on the flux of Cl2 from the Southern Ocean. Model DMS levels are evaluated against measurement data from six different sites around the globe. The model predicted the correct seasonal cycle for DMS at all locations and correlated well with measurement data for most of the periods.

  13. Atmospheric chemistry of CF3O radicals: Reaction with H2O

    DEFF Research Database (Denmark)

    Wallington, T.J.; Hurley, M.D.; Schneider, W.F.;

    1993-01-01

    Evidence is presented that CF3O radicals react with H2O in the gas phase at 296 K to give CF3OH and OH radicals. This reaction is calculated to be exothermic by 1.7 kcal mol-I implying a surprisingly strong CF3O-H bond energy of 120 +/- 3 kcal mol-1. Results from a relative rate experimental stud...... suggest that the rate constant for the reaction of CF3O radicals with H2O lies in the range (0.2-4.0) X 10(-17) cm3 molecule-1 s-1. Implications for the atmospheric chemistry of CF3O radicals are discussed....

  14. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    CERN Document Server

    Heng, Kevin; Tsai, Shang-Min

    2015-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets. Starting from the first law of thermodynamics, we demonstrate that the van't Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients) and procedures associated with the Gibbs free energy (minimisation, rescaling) have a common physical and mathematical origin. We correct an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and rigorously derive its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. To avoid confusion, we simply term them the dimensionless and dimensional equilibrium constants. We demonstrate that the Arrhenius equation takes on a functional form that is more gene...

  15. Climatology and atmospheric chemistry of the non-methane hydrocarbons ethane and propane over the North Atlantic

    Directory of Open Access Journals (Sweden)

    Detlev Helmig

    2015-08-01

    propane measurements at the PMO were compared with the MOZART-4 atmospheric chemistry and transport model at the appropriate time and location. The model was found to yield good agreement in the description of the lower range of atmospheric mole fractions observed, of the seasonal cycle, and the regional oxidation chemistry. However, ethane and propane enhancements in transport events were underestimated, indicating that after the 3 days of synoptic transport to PMO the spatial extent of plumes frequently is smaller than the 2.8x2.8 (300 km model grid resolution.

  16. Reactions of substituted benzene anions with N and O atoms: Chemistry in Titan's upper atmosphere and the interstellar medium

    Science.gov (United States)

    Wang, Zhe-Chen; Bierbaum, Veronica M.

    2016-06-01

    The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.

  17. Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO2 radicals

    Directory of Open Access Journals (Sweden)

    H. Liang

    2013-06-01

    Full Text Available Field measurements of atmospheric peroxides were obtained during the summer on two consecutive years over urban Beijing, and focused on the impacts of aerosols on the chemistry of peroxide compounds and hydroperoxyl radicals (HO2. The major peroxides were determined to be hydrogen peroxide (H2O2, methyl hydroperoxide (MHP, and peroxyacetic acid (PAA. A negative correlation was found between H2O2 and PAA in rainwater, providing evidence for a conversion between H2O2 and PAA in the aqueous phase. A standard gas phase chemistry model based on the NCAR Master Mechanism provided a good reproduction of the observed H2O2 profile on non-haze days but greatly overpredicted the H2O2 level on haze days. We attribute this overprediction to the reactive uptake of HO2 by the aerosols, since there was greatly enhanced aerosol loading and aerosol liquid water content on haze days. The discrepancy between the observed and modeled H2O2 can be diminished by adding to the model a newly proposed transition metal ion catalytic mechanism of HO2 in aqueous aerosols. This confirms the importance of the aerosol uptake of HO2 and the subsequent aqueous phase reactions in the reduction of H2O2. The closure of HO2 and H2O2 between the gas and aerosol phases suggests that the aerosols do not have a net reactive uptake of H2O2, because the conversion of HO2 to H2O2 on aerosols compensates for the H2O2 loss. Laboratory studies for the aerosol uptake of H2O2 in the presence of HO2 are urgently required to better understand the aerosol uptake of H2O2 in the real atmosphere.

  18. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.;

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... absorption spectroscopy was also employed for the detection of stable products in the exhaust gas. To clarify the different processes for ammonia decomposition, N-2(2 - 10%) was added to the plasma. Modeling of the chemical kinetics in an Ar/NH3 plasma was performed as well. The dominant stable products of...... an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  19. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  20. ATMOSPHERIC TRANSPORT TO THE GAW REGIONAL STATION AT ZAVIŽAN AND RELATED PRECIPITATION CHEMISTRY

    OpenAIRE

    Bajić, Alica

    2001-01-01

    Abstract: A study on the connection between the state of the atmosphere, as represented by cluster-mean trajectories, and the chemical composition of precipitation at the Croatian GAW regional station of Zavižan is presented. The trajectory cluster analysis has been done on the basis of daily backward trajectories calculated for 1996, using the HYSPLIT_4 trajectory model. The seasonal cluster analysis indicates four major flow directions in the region: 1) fast W-NW flow, 2) strong SW flow,...

  1. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections

    International Nuclear Information System (INIS)

    Coral reefs are among the most biodiverse ecosystems in the world. Today they are threatened by numerous stressors, including warming ocean waters and coastal pollution. Here we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs, as estimated from earth system models participating in the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We project risks to reefs in the context of three potential aragonite saturation (Ωa) thresholds. We find that in preindustrial times, 99.9% of reefs adjacent to open ocean in the CMIP5 ensemble were located in regions with Ωa > 3.5. Under a business-as-usual scenario (RCP 8.5), every coral reef considered will be surrounded by water with Ωa 2 emissions abatement, the Ωa threshold for reefs is critical to projecting their fate. Our results indicate that to maintain a majority of reefs surrounded by waters with Ωa > 3.5 to the end of the century, very aggressive reductions in emissions are required. The spread of Ωa projections across models in the CMIP5 ensemble is narrow, justifying a high level of confidence in these results. (letter)

  2. Comparisons of Atmospheric Chemistry Models and Observational Data in Google Earth

    Science.gov (United States)

    Burek, M.; Nackowicz, M.

    2007-12-01

    We have developed a set of tools to enable Google Earth to support the scientific analysis of a chemistry and air quality field campaign in Mexico during spring of 2006. Using a variety of information types (gridded three- dimensional model results, surface observations and aircraft-based observations) we are able to provide the scientists with additional information on the overall structure of the chemical conditions at the time and location of the observations. Because the visualization is performed using Goggle Earth, the KML files produced can easily be distributed to the community. It is our goal that the tools we are building will enable the overall community (research and education) to access and visualize significant portions of the information available at the NCAR Community Data Portal.

  3. Sensitivity studies on the photolysis rates calculation in Amazonian atmospheric chemistry ? Part I: The impact of the direct radiative effect of biomass burning aerosol particles

    OpenAIRE

    Albuquerque, L. M. M.; Longo, K. M.; S. R. Freitas; Tarasova, T.; Plana Fattori, A.; Nobre, C.; Gatti, L. V.

    2005-01-01

    International audience The impact of the direct radiative effect of the aerosol particles on the calculation of the photolysis rates and consequently on the atmospheric chemistry in regional smoke clouds due to biomass burning over the Amazon basin is addressed in this work. It explores a case study for 19 September 2002 at LBA-RACCI-SMOCC (The Large-Scale Biosphere-Atmosphere experiment in Amazonia ? Radiation, Cloud, and Climate Interactions ? Smoke, Aerosols, Clouds, Rainfall and Climat...

  4. Complexes and Clusters of Water Relevant to Atmospheric Chemistry: H2O Complexes with Oxidants

    OpenAIRE

    Sennikov, Peter; Ignatov, Stanislav; Schrems, Otto

    2005-01-01

    Experimental observations and data from quantum chemical calculations related to the complexes between water molecules and small oxygen containing inorganic species which are playing an important role as oxidants (O(1D), O(3P), O2(X3Σg), O2(b1Σg+), O3, HO, HOO, HOOO, and H2O2) in the atmosphere are reviewed with emphasis on their structure, hydrogen bonding, interaction energies, thermodynamic parameters and IR spectra. In recent years, weakly bound complexes containing water have i...

  5. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 deg. C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH)2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH)2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  6. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S. [Centro Nacional de Investigaciones Metalurgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)], E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Coy, A.E.; Viejo, F.; Arrabal, R. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2009-01-15

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 deg. C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH){sub 2} and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH){sub 2}. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  7. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    Science.gov (United States)

    Feliu, S., Jr.; Pardo, A.; Merino, M. C.; Coy, A. E.; Viejo, F.; Arrabal, R.

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH) 2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH) 2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  8. Projections of Southern Hemisphere atmospheric circulation interannual variability

    Science.gov (United States)

    Grainger, Simon; Frederiksen, Carsten S.; Zheng, Xiaogu

    2016-05-01

    An analysis is made of the coherent patterns, or modes, of interannual variability of Southern Hemisphere 500 hPa geopotential height field under current and projected climate change scenarios. Using three separate multi-model ensembles (MMEs) of coupled model intercomparison project phase 5 (CMIP5) models, the interannual variability of the seasonal mean is separated into components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. In the CMIP5 RCP8.5 and RCP4.5 experiments, there is very little change in the twenty-first century in the intraseasonal component modes, related to the Southern annular mode (SAM) and mid-latitude wave processes. The leading three slowly-varying internal component modes are related to SAM, the El Niño-Southern oscillation (ENSO), and the South Pacific wave (SPW). Structural changes in the slow-internal SAM and ENSO modes do not exceed a qualitative estimate of the spatial sampling error, but there is a consistent increase in the ENSO-related variance. Changes in the SPW mode exceed the sampling error threshold, but cannot be further attributed. Changes in the dominant slowly-varying external mode are related to projected changes in radiative forcing. They reflect thermal expansion of the tropical troposphere and associated changes in the Hadley Cell circulation. Changes in the externally-forced associated variance in the RCP8.5 experiment are an order of magnitude greater than for the internal components, indicating that the SH seasonal mean circulation will be even more dominated by a SAM-like annular structure. Across the three MMEs, there is convergence in the projected response in the slow-external component.

  9. The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes—results from the aeronox project

    Science.gov (United States)

    Schumann, U.

    The AERONOX project investigated the emissions of nitrogen oxides (NO x) from aircraft engines and global air traffic at cruising altitudes, the resultant increase in NO x concentrations, and the effects on the composition of the atmosphere, in particular with respect to ozone formation in the upper troposphere and lower stratosphere. The project was structured into three subprojects: Engine exhaust emissions, physics and chemistry in the aircraft wake, and global atmospheric model simulations. A complementary program of work by aviation experts has provided detailed information on air traffic data which was combined with data on aircraft performance and emissions to produce a global emissions inventory. This summary gives an overview of the results of this project. Further details are given in the following papers of this issue and the final project report of 1995. The work resulted in improved predictive equations to determine NO x emissions at cruise conditions based on available data for aircraft/engine combinations, and NO x emission measurements on two engines in cruise conditions. This information was combined with a traffic database to provide a new global NO x emissions inventory. It was found that only minor chemical changes occur during the vortex regime of the emission plume; however, this result does not exclude the possibility of further changes in the dispersion phase. A variety of global models was set up to investigate the changes in NO x concentrations and photochemistry. Although aviation contributes only a small proportion (about 3%) of the total global NO x from all anthropogenic sources, the models show that aviation contributes a large fraction to the concentrations of NOX in the upper troposphere, in particular north of 30°N.

  10. The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5: a regional atmospheric model system for integrated air quality and weather forecasting and research

    Directory of Open Access Journals (Sweden)

    K. M. Longo

    2013-09-01

    Full Text Available Coupled Chemistry Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS, version 4.5 is an on-line regional chemical transport model designed for local and regional studies of atmospheric chemistry from the surface to the lower stratosphere suitable both for operational and research purposes. It includes gaseous/aqueous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantage of BRAMS-specific development for the tropics/subtropics as well as the recent availability of preprocessing tools for chemical mechanisms and fast codes for photolysis rates. BRAMS includes state-of-the-art physical parameterizations and dynamic formulations to simulate atmospheric circulations down to the meter. This on-line coupling of meteorology and chemistry allows the system to be used for simultaneous weather and chemical composition forecasts as well as potential feedback between the two. The entire system is made of three preprocessing software tools for user-defined chemical mechanisms, aerosol and trace gas emissions fields and the interpolation of initial and boundary conditions for meteorology and chemistry. In this paper, the model description is provided along with the evaluations performed by using observational data obtained from ground-based stations, instruments aboard aircrafts and retrieval from space remote sensing. The evaluation accounts for model applications at different scales from megacities and the Amazon Basin up to the intercontinental region of the Southern Hemisphere.

  11. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-11-01

    Full Text Available A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA. The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber is designed to allow research in multiphase atmospheric (photo- chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290–297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10−3 s−1 for JNO2 and (1.4 × 10−5 s−1 for JO1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-Air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber

  12. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-01-01

    Full Text Available A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA. The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber is designed to allow research in multiphase atmospheric (photo-chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290–297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10−3 s−1 for JNO2 and (1.4 × 10-5 s−1 for J O1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber clouds by fast

  13. Atmospheric deposition effects on the chemistry of a stream in Northeastern Georgia

    Science.gov (United States)

    Buell, G.R.; Peters, N.E.

    1988-01-01

    The quantity and quality of precipitation and streamwater were measured from August 1985 through September 1986 in the Brier Creek watershed, a 440-ha drainage in the Southern Blue Ridge Province of northeastern Georgia, to determine stream sensitivity to acidic deposition. Precipitation samples collected at 2 sites had a volume-weighted average pH of 4.40 whereas stream samples collected near the mouth of Brier Creek had a discharge-weighted average pH of 6.70. Computed solute fluxes through the watershed and observed changes in streamwater chemistry during stormflow suggest that cation exchange, mineral weathering, SO42- adsorption by the soil, and groundwater discharge to the stream are probable factors affecting neutralization of precipitation acidity. Net solute fluxes for the watershed indicate that, of the precipitation input, > 99% of the H+, 93% of the NH4+ and NO3-, and 77% of the SO42- were retained. Sources within the watershed yielded base cations, Cl-, and HCO3- and accounted for 84, 47, and 100% of the net transport, respectively. Although streamwater SO42- and NO3- concentrations increased during stormflow, peak concentrations of these anions were much less than average concentrations in the precipitation. This suggests retention of these solutes occurs even when water residence time is short.The quantity and quality of precipitation and streamwater were measured from August 1985 through September 1986 in the Brier Creek watershed, a 440-ha drainage in the Southern Blue Ridge Province of northeastern Georgia, to determine stream sensitivity to acidic deposition. Precipitation samples collected at 2 sites had a volume-weighted average pH of 4.40 whereas stream samples collected near the mouth of Brier Creek had a discharge-weighted average pYH of 6.70. Computed solute fluxes through the watershed and observed changes in streamwater chemistry drying stormflow suggest that cation exchange, mineral weathering, SO42- adsorption by the soil, and

  14. The role and importance of ozone for atmospheric chemistry and methods for measuring its concentration

    Directory of Open Access Journals (Sweden)

    Marković Dragan M.

    2003-01-01

    Full Text Available Depending on where ozone resides, it can protect or harm life on Earth. The thin layer of ozone that surrounds Earth acts as a shield protecting the planet from irradiation by UV light. When it is close to the planet's surface, ozone is a powerful photochemical oxidant that damage, icons frescos, museum exhibits, rubber, plastic and all plant and animal life. Besides the basic properties of some methods for determining the ozone concentration in working and living conditions, this paper presents a detailed description of the electrochemical method. The basic properties of the electrochemical method are used in the construction of mobile equipment for determining the sum of oxidants in the atmosphere. The equipment was used for testing the determination of the ozone concentration in working rooms, where the concentration was at a high level and caused by UV radiation or electrostatic discharge. According to the obtained results, it can be concluded that this equipment for determining the ozone concentration in the atmosphere is very powerful and reproducible in measurements.

  15. Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2014-07-01

    Full Text Available Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterisations recently implemented in the Atmospheric Global Climate Model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL, and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three dimensional simulations, by a much improved reproduction of the Radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing, significantly modify chemical reaction rates and the equilibrium value of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger

  16. Sub-60 deg. C atmospheric helium-water plasma jets: modes, electron heating and downstream reaction chemistry

    International Nuclear Information System (INIS)

    For plasma treatment of many heat-labile materials (e.g. living tissues) that either are moist or contain a surface layer of liquid, it is desirable that the gas plasma is generated at atmospheric pressure for process convenience and with a gas temperature ideally no more than 60 deg. C for mitigating permanent damage to the integrity of the test material. This implies that the liquid-containing plasma needs to be of low dissipated electrical energy and that plasma treatment should be based largely on non-equilibrium reaction chemistry. In this paper, a class of sub-60 deg. C atmospheric helium-water plasma jets is studied in terms of their main physiochemical properties. It is shown that there are five distinct modes appearing in the sequence of, with increasing voltage, the first chaotic mode, the plasma bullet mode, the second chaotic mode, the abnormal glow mode and the non-thermal arc mode. Its chaotic modes may be sustained over a wide range of water vapour concentrations (0-2500 ppm). Compared with other liquid-containing plasmas, the He-H2O plasma jet operated below its non-thermal arc mode has several distinct advantages, namely very low energy consumption (2-10 μJ per pulse), sub-60 deg. C gas temperature, electron-modulated production of He, N2, N2+, O*, H and OH(A-X), and low ozone production (0.1-0.4 ppm). These results provide a first attempt at the landscape of the physiochemical characteristics in atmospheric He-H2O plasma jets.

  17. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS: model description and application to a temperate deciduous forest canopy

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2013-01-01

    Full Text Available Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formation of SOA mass from forest emissions, a 1-D column model of the multiphase physical and chemical processes occurring within and just above a vegetative canopy is being developed. An initial, gas-phase-only version of this model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS, includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer (PBL, near-explicit representation of chemical transformations, mixing with the background atmosphere and bi-directional exchange between the atmosphere and canopy and the atmosphere and forest floor. The model formulation of ACCESS is described in detail and results are presented for an initial application of the modeling system to Walker Branch Watershed, an isoprene-emission-dominated forest canopy in the southeastern United States which has been the focal point for previous chemical and micrometeorological studies. Model results of isoprene profiles and fluxes are found to be consistent with previous measurements made at the simulated site and with other measurements made in and above mixed deciduous forests in the southeastern United States. Sensitivity experiments are presented which explore how canopy concentrations and fluxes of gas-phase precursors of SOA are affected by background anthropogenic nitrogen oxides (NOx. Results from these experiments suggest that the

  18. Production of NOx by Lightning and its Effects on Atmospheric Chemistry

    Science.gov (United States)

    Pickering, Kenneth E.

    2009-01-01

    Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.

  19. The influence of chemistry, production and community composition on leaf litter decompositon under elevated atmospheric CO2 and tropospheric O3 in a northern hardwood ecosystem

    Science.gov (United States)

    Rising concentrations of atmospheric carbon dioxide and tropospheric ozone have the potential to alter leaf litter production and chemistry. In turn, these changes may alter the decomposition of labile and recalcitrant carbon compounds, as well as forest productivity and sequestration of soil carbon...

  20. Atmospheric chemistry of HFC-134a. Kinetic and mechanistic study of the CF3CFHO2 + NO2 reaction

    DEFF Research Database (Denmark)

    Møgelberg, T.E.; Nielsen, O.J.; Sehested, J.; Wallington, T.J.; Hurley, M.D.; Schneider, W.F.

    -transform infrared technique was used to investigate the thermal decomposition of the product CF3CFHO2NO2. At 296 K in the presence of 700 Torr of air, decomposition of CF3CFHO2NO2 was rapid (greater than 90% decomposition within 3 min). The results are discussed in the context of atmospheric chemistry of CF3CFH2...

  1. Fine-Structure Measurements of Oxygen A Band Absorbance for Estimating the Thermodynamic Average Temperature of the Earth's Atmosphere: An Experiment in Physical and Environmental Chemistry

    Science.gov (United States)

    Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula

    2006-01-01

    The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…

  2. Lessons Learned from the Development and Implementation of the Atmosphere Resource Recovery and Environmental Monitoring Project

    Science.gov (United States)

    Roman, Monsi C.; Perry, Jay L.; Howard, David F.

    2014-01-01

    The Advanced Exploration Systems (AES) Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project have been developing atmosphere revitalization and environmental monitoring subsystem architectures suitable for enabling sustained crewed exploration missions beyond low Earth orbit (LEO). Using the International Space Station state-of-the-art (SOA) as the technical basis, the ARREM Project has contributed to technical advances that improve affordability, reliability, and functional efficiency while reducing dependence on a ground-based logistics resupply model. Functional demonstrations have merged new process technologies and concepts with existing ISS developmental hardware and operate them in a controlled environment simulating various crew metabolic loads. The ARREM Project's strengths include access to a full complement of existing developmental hardware that perform all the core atmosphere revitalization functions, unique testing facilities to evaluate subsystem performance, and a coordinated partnering effort among six NASA field centers and industry partners to provide the innovative expertise necessary to succeed. A project overview is provided and the project management strategies that have enabled a multidiscipinary engineering team to work efficiently across project, NASA field center, and industry boundaries to achieve the project's technical goals are discussed. Lessons learned and best practices relating to the project are presented and discussed.

  3. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet.

    Science.gov (United States)

    Wende, Kristian; Williams, Paul; Dalluge, Joe; Gaens, Wouter Van; Aboubakr, Hamada; Bischof, John; von Woedtke, Thomas; Goyal, Sagar M; Weltmann, Klaus-Dieter; Bogaerts, Annemie; Masur, Kai; Bruggeman, Peter J

    2015-01-01

    The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argon-oxygen and argon-air plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argon-oxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2(-) or ClO(-). These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources

  4. Comparison of the HadGEM2 climate-chemistry model against in-situ and SCIAMACHY atmospheric methane data

    Directory of Open Access Journals (Sweden)

    G. D. Hayman

    2014-05-01

    Full Text Available Wetlands are a major emission source of methane (CH4 globally. In this study, we have evaluated wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator against atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite. Two JULES wetland emission estimates were investigated: (a from an offline run driven with CRU-NCEP meteorological data and (b from the same offline run in which the modelled wetland fractions were replaced with those derived from the Global Inundation Extent from Multi-Satellites (GIEMS remote sensing product. The mean annual emission assumed for each inventory (181 Tg CH4 per annum over the period 1999–2007 is in line with other recently-published estimates. There are regional differences as the unconstrained JULES inventory gave significantly higher emissions in the Amazon and lower emissions in other regions compared to the JULES estimates constrained with the GIEMS product. Using the UK Hadley Centre's Earth System model with atmospheric chemistry (HadGEM2, we have evaluated these JULES wetland emissions against atmospheric observations of methane. We obtained improved agreement with the surface concentration measurements, especially at northern high latitudes, compared to previous HadGEM2 runs using the wetland emission dataset of Fung (1991. Although the modelled monthly atmospheric methane columns reproduced the large–scale patterns in the SCIAMACHY observations, they were biased low by 50 part per billion by volume (ppb. Replacing the HadGEM2 modelled concentrations above 300 hPa with HALOE–ACE assimilated TOMCAT output resulted in a significantly better agreement with the SCIAMACHY observations. The use of the GIEMS product to constrain JULES-derived wetland fraction improved the description of the wetland emissions in JULES and gave a good description

  5. Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data

    Directory of Open Access Journals (Sweden)

    G. D. Hayman

    2014-12-01

    Full Text Available Wetlands are a major emission source of methane (CH4 globally. In this study, we evaluate wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator against atmospheric observations of methane, including, for the first time, total methane columns derived from the SCIAMACHY instrument on board the ENVISAT satellite. Two JULES wetland emission estimates are investigated: (a from an offline run driven with Climatic Research Unit–National Centers for Environmental Prediction (CRU-NCEP meteorological data and (b from the same offline run in which the modelled wetland fractions are replaced with those derived from the Global Inundation Extent from Multi-Satellites (GIEMS remote sensing product. The mean annual emission assumed for each inventory (181 Tg CH4 per annum over the period 1999–2007 is in line with other recently published estimates. There are regional differences as the unconstrained JULES inventory gives significantly higher emissions in the Amazon (by ~36 Tg CH4 yr−1 and lower emissions in other regions (by up to 10 Tg CH4 yr−1 compared to the JULES estimates constrained with the GIEMS product. Using the UK Hadley Centre's Earth System model with atmospheric chemistry (HadGEM2, we evaluate these JULES wetland emissions against atmospheric observations of methane. We obtain improved agreement with the surface concentration measurements, especially at high northern latitudes, compared to previous HadGEM2 runs using the wetland emission data set of Fung et al. (1991. Although the modelled monthly atmospheric methane columns reproduce the large-scale patterns in the SCIAMACHY observations, they are biased low by 50 part per billion by volume (ppb. Replacing the HadGEM2 modelled concentrations above 300 hPa with HALOE–ACE assimilated TOMCAT output results in a significantly better agreement with the SCIAMACHY observations. The use of the GIEMS product to constrain the JULES

  6. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs

  7. Interannual variability in hindcasts of atmospheric chemistry: the role of meteorology

    Directory of Open Access Journals (Sweden)

    P. Hess

    2009-02-01

    Full Text Available Two 40-year meteorological datasets are used to drive the Model of Ozone and Related Tracers chemical transport model, version 2 (MOZART2 in hindcast simulations. One dataset is from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR reanalysis, the second dataset uses meteorology from the Community Atmosphere Model (CAM3 forced with observed interannually varying sea surface temperatures. All emissions, except those from lightning are annually constant. Analysis of these simulations is from 1979–1999, due to meteorological discontinuities in the NCEP reanalysis during the 1970s. The meteorology using CAM3 captures observed trends in temperature, water vapor, precipitation and cloudiness; the simulation using NCEP meteorology does not. This paper examines the regional and global interannual variability of various chemical and meteorological fields: CO, OH, O3 and HNO3, the surface photolysis rate of NO2 (as a proxy for overhead cloudiness, lightning NO emissions, water vapor, planetary boundary layer height, and temperature. The variability due to changes in emissions is not considered in this analysis. In both the NCEP and CAM3 simulations the relative variability of CO, OH, O3 and HNO3 are qualitatively similar, with variability maxima both in the tropics and the high latitudes. Locally, relative variability generally ranges between 3 and 10%; globally the tropospheric variability generally ranges from half to one percent, but can be higher. For most fields the leading Empirical Orthogonal Function explains approximately 10% of the variability and correlates significantly with El Niño. In both simulations the first principal component of a multiple tracer, globally averaged analysis shows a strong coupling between surface temperature, measures of the hydrological cycle, CO and OH, but is not correlated with El Niño. In both simulations

  8. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS data set

    Directory of Open Access Journals (Sweden)

    A. Jones

    2012-06-01

    Full Text Available The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS aboard the Canadian satellite SCISAT (launched in August 2003 was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC Chemistry-Climate Model Validation Activity. The ACE-FTS climatological data set is available through the ACE website.

  9. Observations of peroxyacetyl nitrate (PAN in the upper troposphere by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS

    Directory of Open Access Journals (Sweden)

    K. A. Tereszchuk

    2013-01-01

    Full Text Available Peroxyacetyl nitrate (CH3CO·O2NO2, abbreviated as PAN is a trace molecular species present in the troposphere and lower stratosphere due primarily to pollution from fuel combustion and the pyrogenic outflows from biomass burning. In the lower troposphere, PAN has a relatively short life-time and is principally destroyed within a few hours through thermolysis, but it can act as a reservoir and carrier of NOx in the colder temperatures of the upper troposphere where UV photolysis becomes the dominant loss mechanism. Pyroconvective updrafts from large biomass burning events can inject PAN into the upper troposphere and lower stratosphere (UTLS, providing a means for the long-range transport of NOx. Given the extended lifetimes at these higher altitudes, PAN is readily detectable via satellite remote sensing.

    A new PAN data product is now available for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS Version 3.0 data set. We report measurements of PAN in Boreal biomass burning plumes recorded during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS campaign. The retrieval method employed and errors analysis are described in full detail.

    The retrieved volume mixing ratio (VMR profiles are compared to coincident measurements made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument on the European Space Agency (ESA ENVIronmental SATellite (ENVISAT. Three ACE-FTS occultations containing measurements of Boreal biomass burning outflows, recorded during BORTAS, were identified as having coincident measurements with MIPAS. In each case, the MIPAS measurements demonstrated good agreement with the ACE-FTS VMR profiles for PAN.

    The ACE-FTS PAN data set is used to obtain zonal mean distributions of seasonal averages from ~5 to 20 km. A strong

  10. Five-year record of atmospheric precipitation chemistry in urban Beijing, China

    Directory of Open Access Journals (Sweden)

    F. Yang

    2011-10-01

    Full Text Available Precipitation samples on an event basis were collected from March 2001 through August 2005 at an urban location in Beijing. Ionic species in the samples were measured with ion chromatography to understand the long-term changes in the precipitation chemistry and their causes. Most precipitation samples had an intermediate pH (6.1–7.3 and 16% were acidic. As the major ions, SO42− plus NO3, and NH4+ plus Ca2+ comprised more than 80% of anionic and cationic mass, respectively. Different from their more or less reductions of gaseous precursors, the counterintuitive features of much less than expected decrease in SO42− levels and unexpected increase in NO3 concentrations in the precipitations are likely due to the combination of enhanced conversion of gaseous precursors to acid compounds, and increased regional transport. The average ratio of neutralizing to acidifying potential (i.e. NP/AP was as high as 1.2 but it exhibited a significant decline pattern, indicative of a long-term increasing trend in the acidifying potential of the wet depositions. This is mainly ascribed to reduced input of two major alkaline agents – NH4+ and Ca2+ – over increased input of a minor alkaline agent – Mg2+ – according to the magnitudes of their neutralization factors. The equivalent mass ratio of NO3 to nss-SO42− presented an evident increasing trend with a still low mean value of 0.37 ± 0.11. This indicates that the relative contribution of NO3 to the wet deposition acidity was strengthened in recent years while the precipitation acidity in Beijing was still overwhelmingly from sulfur but not nitrogen.

  11. "Sizing" Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles.

    Science.gov (United States)

    Enami, Shinichi; Sakamoto, Yosuke; Hara, Keiichiro; Osada, Kazuo; Hoffmann, Michael R; Colussi, Agustín J

    2016-02-16

    The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H2SO4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas phase into H2SO4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H2SO4(g) in the gas phase and into SO4(2-) + MeSO3(-) (methanesulfonate) on water surfaces. R = MeSO3(-)/(non-sea-salt SO4(2-)) ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if Rhet = MeSO3(-)/SO4(2-) for DMSO(aq) + ·OH(g) were known. Here, we report that Rhet = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) + ·OH(g) reaction products that quantifies the MeSO3(-) produced in DMSO heterogeneous oxidation on aqueous aerosols for the first time. On this basis, the inverse R dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols. PMID:26761399

  12. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D.; Hoffman, T. [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1995-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  13. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  14. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

    Science.gov (United States)

    Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.

    2008-01-01

    Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346

  15. Peroxyacetic acid in urban and rural atmosphere: concentration, feedback on PAN-NOx cycle and implication on radical chemistry

    Directory of Open Access Journals (Sweden)

    J. L. Li

    2009-10-01

    analysis reveals that a possible unknown pathway results in the significant removal of H2O2 and the extent of H2O2 undergoing this pathway needs a further study. (iv Considering that PAA is the reservior of free radicals, its fate is expected to have an effect on the free radical budget in the atmosphere. A box model based on the CBM-IV mechanism has been performed to access its influence on the radical budget. We suggest that the detailed information on PAA in the atmosphere is of importance to better understand the free radical chemistry.

  16. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.; Brigmon, R.

    2009-10-20

    elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

  17. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models

    Directory of Open Access Journals (Sweden)

    M. Buchwitz

    2004-11-01

    Full Text Available The remote sensing of the atmospheric greenhouse gases methane (CH4 and carbon dioxide (CO2 in the troposphere from instrumentation aboard satellites is a new area of research. In this manuscript, results obtained from observations of the up-welling radiation in the near-infrared by SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY, which flies on board ENVISAT, are presented. Vertical columns of CH4, CO2 and oxygen (O2 have been retrieved and the (air or O2-normalized CH4 and CO2 column amounts, the dry air column averaged mixing ratios XCH4 and XCO2 derived. In this manuscript the first results, obtained by using the version 0.4 of the Weighting Function Modified (WFM DOAS retrieval algorithm applied to SCIAMACHY data, are described and compared with global models. This is an important step in assessing the quality and information content of the data products derived from SCIAMACHY observations. This study investigates the behaviour of CO2 and CH4 in the period from January to October 2003. The SCIAMACHY greenhouse gas column amounts and their mixing ratios for cloud free scenes over land are shown to be in reasonable agreement with models. Over the ocean, as a result of the lower surface spectral reflectance and resultant low signal to noise with the exception of sun glint conditions, the accuracy of the individual data products is poorer. The measured methane column amounts agree with the model columns within a few percent. The inter-hemispheric difference of the methane mixing ratios, determined from single day cloud free measurements over land, is in the range 30–110 ppbv and in reasonable agreement with the corresponding model data (48–71 ppbv. For the set of individual measurements the standard deviations of the difference with respect to the models are in the range ~100

  18. Prospects for simulating macromolecular surfactant chemistry at the ocean–atmosphere boundary

    International Nuclear Information System (INIS)

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water–air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea–air interface into aerosol–cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification. (papers)

  19. The ARCHIMEDE-ARGILE project: acquisition and regulation of the water chemistry in a clay formation

    International Nuclear Information System (INIS)

    The first aim of the CEC/ANDRA project known as ARCHIMEDE-ARGILE is to gain an understanding on the mechanisms of acquisition and regulation of the water chemistry in a clay environment. This step is essential for predicting both the behaviour and the migration in solution of artificial elements which are initially absent in clay formation. The second aim is to assess sampling methodology and data collection techniques for key physico-chemical parameters (pH, Eh, pCO2, CEC, alkalinity...) which are the basis of the geochemical modelling of the behaviour of natural and artificial radioelements. Six drill holes have been performed in 1992 in the sliding ribs gallery in the Underground Research Facility (URF) at Mol. The study has demonstrated the importance of in situ measurements for key parameters that cannot be rigorously evaluated otherwise: redox, pH, pCO2. Fluid geochemistry can realistically be modelled using equilibrium models, in which cation exchange must be taken into account. Bacterial studies have revealed the importance of human activity on the microbial equilibrium of the formation. This paper presents the main results obtained during the first two years of the project with emphasis on determination of the hydrochemical characteristics of the Boom clay. (author). 12 refs., 4 figs., 1 tab

  20. Basic actinide and fission products chemistry in the CEC-coordinated project: Migration of radionuclides in the geosphere (MIRAGE)

    International Nuclear Information System (INIS)

    The paper reviews the research works performed on the basic actinide (Am, Pu, Np) and fission product (Tc, Sr) chemistry by four CEC member laboratories under the project named 'MIRAGE' for the years 1983 and 1984. Research subjects dealt with are solubility, carbonate complexation, hydrolysis reaction, colloid generation, speciation methods and sorption phenomena. Important achievements are summarized and discussed for each subject separately. (orig.)

  1. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    Science.gov (United States)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Bayliss, Jon; Karr, Laurel; Paley, Steve; Marone, Matt; Gibson, Tracy; Surma, Jan; Mansell, Matt; Lunn, Griffin; Devor, Robert; Berggren, Mark

    2016-01-01

    The atmosphere of Mars, which is 96 percent carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASAs Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100 of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon has been tested with encouraging results.

  2. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 2: Application to BEARPEX-2007 observations

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2010-09-01

    Full Text Available In a companion paper, we have introduced the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. Here, we use CAFE to interpret noontime observations from the 2007 phase of the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007, conducted at a young Ponderosa pine plantation in the western Sierra Nevada. The model reproduces many features of the BEARPEX-2007 data and offers new insights into the forest-atmosphere exchange of reactive molecules at this location. Nitrogen oxide (NOx = NO + NO2 fluxes are driven by soil emissions of NO, while the partitioning between NO and NO2 fluxes is sensitive to in-canopy photochemical gradients. Enhanced thermolysis at the ground increases downward acyl peroxy nitrate (APN fluxes by as much as 50%, in general agreement with previous findings. APN fluxes are also influenced by in-canopy chemical production, especially when their formation is tied closely to oxidation of BVOC emissions. Gross dry N deposition is typically dominated by nitric acid, though other reactive nitrogen (NOy species can comprise up to 28% of the N deposition budget under cooler conditions. Upward NO2 fluxes cause the net above-canopy NOy flux to be ~30% lower than the gross depositional flux. Model-measurement comparison of hydrogen peroxide mixing ratios suggests this molecule deposits at the aerodynamic limit. CAFE under-predicts ozone fluxes by ~20%, which may indicate additional in-canopy chemical losses that are missing from the current model.

  3. A preliminary analysis of the surface chemistry of atmospheric aerosol particles in a typical urban area of Beijing.

    Science.gov (United States)

    Zhang, Zhengzheng; Li, Hong; Liu, Hongyan; Ni, Runxiang; Li, Jinjuan; Deng, Liqun; Lu, Defeng; Cheng, Xueli; Duan, Pengli; Li, Wenjun

    2016-09-01

    Atmospheric aerosol particle samples were collected using an Ambient Eight Stage (Non-Viable) Cascade Impactor Sampler in a typical urban area of Beijing from 27th Sep. to 5th Oct., 2009. The surface chemistry of these aerosol particles was analyzed using Static Time of Flight-Secondary Ion Mass Spectrometry (Static TOF-SIMS). The factors influencing surface compositions were evaluated in conjunction with the air pollution levels, meteorological factors, and air mass transport for the sampling period. The results show that a variety of organic ion groups and inorganic ions/ion groups were accumulated on the surfaces of aerosol particles in urban areas of Beijing; and hydrophobic organic compounds with short- or middle-chain alkyl as well as hydrophilic secondary inorganic compounds were observed. All these compounds have the potential to affect the atmospheric behavior of urban aerosol particles. PM1.1-2.1 and PM3.3-4.7 had similar elements on their surfaces, but some molecules and ionic groups demonstrated differences in Time of Flight-Secondary Ion Mass Spectrometry spectra. This suggests that the quantities of elements varied between PM1.1-2.1 and PM3.3-4.7. In particular, more intense research efforts into fluoride pollution are required, because the fluorides on aerosol surfaces have the potential to harm human health. The levels of air pollution had the most significant influence on the surface compositions of aerosol particles in our study. Hence, heavier air pollution was associated with more complex surface compositions on aerosol particles. In addition, wind, rainfall, and air masses from the south also greatly influenced the surface compositions of these urban aerosol particles. PMID:27593274

  4. Atmospheric Chemistry Measurements in Schools and Outreach Activities with Low-cost Air Quality Sensors

    Science.gov (United States)

    Fleming, Z.; Monks, P. S.; McKenzie, K.

    2014-12-01

    The increasing range of low cost air quality sensors entering the market-place or being developed in-house in the last couple of years has led to many possibilities for using these instruments for public outreach activities or citizen science projects. A range of instruments sent out into local schools for the children to interpret and analyse the data and put the air quality in their area into context. A teaching package with tutorials has been developed to bring the data to life and link in with curriculum.The instruments have also been positioned around the city of Leicester in the UK to help understand the spatial variations in air quality and to assess the impact of retro-fitting buses on a busy bus route. The data is easily accessible online on a near real time basis and the various instruments can be compared with others around the country or the world from classrooms around the world.We will give an overview of the instrumentation with a comparison with commercial and cutting edge research instrumentation, the type of activities that were carried out and the public outreach forums where the data can be used.

  5. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    Science.gov (United States)

    Heng, Kevin; Lyons, James R.; Tsai, Shang-Min

    2016-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.

  6. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models

    Directory of Open Access Journals (Sweden)

    M. Buchwitz

    2005-01-01

    Full Text Available The remote sensing of the atmospheric greenhouse gases methane (CH4 and carbon dioxide (CO2 in the troposphere from instrumentation aboard satellites is a new area of research. In this manuscript, results obtained from observations of the up-welling radiation in the near-infrared by SCIAMACHY on board ENVISAT are presented. Vertical columns of CH4, CO2 and oxygen (O2 have been retrieved and the (air or O2-normalised CH4 and CO2 column amounts, the dry air column averaged mixing ratios XCH4 and XCO2 derived. In this manuscript the first results, obtained by using the version 0.4 of the Weighting Function Modified (WFM DOAS retrieval algorithm applied to SCIAMACHY data, are described and compared with global models. For the set of individual cloud free measurements over land the standard deviation of the difference with respect to the models is in the range ~100–200 ppbv (5–10% for XCH4 and ~14–32 ppmv (4–9% for XCO2. The inter-hemispheric difference of the methane mixing ratio, as determined from single day data, is in the range 30–110 ppbv and in reasonable agreement with the corresponding model data (48–71 ppbv. The weak inter-hemispheric difference of the CO2 mixing ratio can also be detected with single day data. The spatiotemporal pattern of the measured and the modelled XCO2 are in reasonable agreement. However, the amplitude of the difference between the maximum and the minimum for SCIAMACHY XCO2 is about ±20 ppmv which is about a factor of four larger than the variability of the model data which is about ±5 ppmv. More studies are needed to explain the observed differences. The XCO2 model field shows low CO2 concentrations beginning of January 2003 over a spatially extended CO2 sink region located in southern tropical/sub-tropical Africa. The SCIAMACHY data also show low CO2 mixing ratios over this area. According to the model the sink region becomes a source region about six months later and exhibits higher mixing ratios

  7. The Quixote project: Collaborative and Open Quantum Chemistry data management in the Internet age

    Directory of Open Access Journals (Sweden)

    Adams Sam

    2011-10-01

    Full Text Available Abstract Computational Quantum Chemistry has developed into a powerful, efficient, reliable and increasingly routine tool for exploring the structure and properties of small to medium sized molecules. Many thousands of calculations are performed every day, some offering results which approach experimental accuracy. However, in contrast to other disciplines, such as crystallography, or bioinformatics, where standard formats and well-known, unified databases exist, this QC data is generally destined to remain locally held in files which are not designed to be machine-readable. Only a very small subset of these results will become accessible to the wider community through publication. In this paper we describe how the Quixote Project is developing the infrastructure required to convert output from a number of different molecular quantum chemistry packages to a common semantically rich, machine-readable format and to build respositories of QC results. Such an infrastructure offers benefits at many levels. The standardised representation of the results will facilitate software interoperability, for example making it easier for analysis tools to take data from different QC packages, and will also help with archival and deposition of results. The repository infrastructure, which is lightweight and built using Open software components, can be implemented at individual researcher, project, organisation or community level, offering the exciting possibility that in future many of these QC results can be made publically available, to be searched and interpreted just as crystallography and bioinformatics results are today. Although we believe that quantum chemists will appreciate the contribution the Quixote infrastructure can make to the organisation and and exchange of their results, we anticipate that greater rewards will come from enabling their results to be consumed by a wider community. As the respositories grow they will become a valuable source of

  8. Studying the atmospheric chemistry: Statististical study of epiphyte plant Spanish Moss in Florida, USA

    Science.gov (United States)

    Ghosh, S.; Parker, W.; Odom, L.

    2003-04-01

    determine where the elements came in from based on the following study done by HT Shacklette and JJ Connor in 1973. The first method used, R mode Cluster Analysis (CA) in this report has resulted in some specific group of elements that tend to be coming from the same kind of sources. The Rare Earth Elements (REEs) show an excellent grouping. Their probable source maybe from samples, which had lots of intake of soil dust and rock dust. The grouping of elements Co-Pb-V-Ni-W-Ba probably is because they are all from samples collected near highway where there is a lot of automotive exhaust. Again, clustering of Zn-Sn-Mo-In-Sb probably show that they are from samples, which came from some industrial sites. Samples probably collected from and around sea beaches will have the following elements clustering together: Na-Mg-Li-B. The second method, Principal Component Analysis (PCA) in this project has resulted in a specific descriptive model of chemical variation in Spanish moss. The model appears to be mathematically adequate, in that 4 components describe nearly 64% of the total observed variation and also informative in identifying some major probable sources for the different elements analyzed. Two kinds of sources have been identified: one is natural particulates from soil and rock dust and agricultural sources &the other being technological metals from automotive exhaust and industrial output. The first two components have been labeled as "natural particulates" and the remaining as "technological metals" after Connor and Shacklette. The elements with highest loadings on first and second component are lithium, boron, sodium, magnesium, aluminum, calcium, scandium, titanium, iron, selenium, strontium, yttrium, molybdenum, indium, antimony, lanthanum, uranium and bismuth and Rare earth elements (REE) which in general have mainly agricultural and natural sources. The elements with highest loadings on third and fourth component are potassium, copper, arsenic, barium, vanadium

  9. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity) and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  10. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D ampersand D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project's open-quotes Waste Minimization/Pollution Prevention Strategic Plan.close quotes

  11. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  12. Incorporating nuclear chemistry as an education tool in the undergraduate chemistry curriculum. A description of the curriculum project

    International Nuclear Information System (INIS)

    Although many areas of major national need depend critically on professionals trained in nuclear and radiochemistry, educational opportunities and student interest in this area have declined steadily for the last twenty years. One major contributing factor to the lack of student interest is that most students in science and chemistry courses are never introduced to these topics. This deficiency in sciences curricula, coupled with the negative public perception towards all things 'nuclear', has resulted in a serious shortage of individuals with a background in this area. We propose to address this problem by 'educating the educators' - providing faculty from two- and four-year colleges and high school science teachers with the curriculum materials, training, and motivation to incorporate these topics on a continuing basis in their curricula. Two advantages of this approach are; it will generate scientists with a basic understanding of this field and as teachers incorporate nuclear topics, many students will have the opportunity to reflect on the role of science in a technological society. (author)

  13. Climate and atmospheric modeling studies. Climate applications of Earth and planetary observations. Chemistry of Earth and environment

    Science.gov (United States)

    1990-01-01

    The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.

  14. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    OpenAIRE

    Wang, D.; Jia, W; S. C. Olsen; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2013-01-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) ...

  15. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    OpenAIRE

    Swartz, W. H.; Stolarski, R. S.; Oman, L.D.; E. L. Fleming; C. H. Jackman

    2012-01-01

    The 11-yr solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM). The results are largely c...

  16. PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models

    OpenAIRE

    Freitas, S. R.; Longo, K. M.; Alonso, M. F.; M. Pirre; Marecal, V.; Grell, G; R. Stockler; R. F. Mello; Sánchez Gácita, M.

    2011-01-01

    The preprocessor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emission fields of trace gases and aerosols for use in atmospheric-chemistry transport models. The considered emissions are from the most recent databases of urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources. For biomass burning, emissions can be also estimated directly from satellite fire detections using a fire emission model included...

  17. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    OpenAIRE

    W. H. Swartz; R. S. Stolarski; L. D. Oman; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-yr solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM). The results are largely consistent with...

  18. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    OpenAIRE

    W. H. Swartz; R. S. Stolarski; L. D. Oman; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-yr solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent wit...

  19. AMPS sciences objectives and philosophy. [Atmospheric, Magnetospheric and Plasmas-in-Space project on Spacelab

    Science.gov (United States)

    Schmerling, E. R.

    1975-01-01

    The Space Shuttle will open a new era in the exploration of earth's near-space environment, where the weight and power capabilities of Spacelab and the ability to use man in real time add important new features. The Atmospheric, Magnetospheric, and Plasmas-in-Space project (AMPS) is conceived of as a facility where flexible core instruments can be flown repeatedly to perform different observations and experiments. The twin thrusts of remote sensing of the atmosphere below 120 km and active experiments on the space plasma are the major themes. They have broader implications in increasing our understanding of plasma physics and of energy conversion processes elsewhere in the universe.

  20. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands. PMID:26515781

  1. Monitoramento atmosférico passivo de SO2, NO2 e O3 em áreas urbanas e de influência industrial como prática de química ambiental para alunos de graduação Atmospheric passive monitoring of SO2, NO2 and O3 in urban areas and in those under industrial influence as an environmental chemistry experiment for undergraduate students

    Directory of Open Access Journals (Sweden)

    Vânia P. Campos

    2006-07-01

    Full Text Available This study is a result of undergraduate student participation in the Environmental Chemistry discipline provided by the Chemistry Institute/UFBA. The students were involved in the development of passive samplers, a project of the LAQUAM (Environmental Analytical Chemistry Laboratory. The students' residences and other neighborhoods were used to create a passive sampling network, allowing the measurement of atmospheric levels of pollutants in urban areas and in those under industrial influence. The assembly of the passive samplers, including impregnation of filters and chemical analysis were part of the students' practice tasks. The results were analyzed taking into consideration the Brazilian legislation.

  2. Implementation of the chemistry module MECCA (v2.5 in the modal aerosol version of the Community Atmosphere Model component (v3.6.33 of the Community Earth System Model

    Directory of Open Access Journals (Sweden)

    M. S. Long

    2012-06-01

    Full Text Available A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3 were tested in conjunction with the basic load balancing options available to modal CAM (1 to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros-2 and RODAS-3 results versus Ros-3, and (2 to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.

  3. Research Project BUL-13801 'VVER-1000 Coolant Chemistry Improvement by Extended Fuel Cycles'

    International Nuclear Information System (INIS)

    Unit's power (shut down periods) as an information source for the processes connected with the activity buildup in primary circuits surfaces. Scientific Scope of the Project: (i) The main factors causing AOA will be joined interpreted in order to be explained the critical conditions for the formation of higher local H3BO3 concentration of the core bottom part; (ii) Determination of the most important factors impacting on the corrosion rate of primary circuit's constructive materials, on the solubility, migration and deposition of corrosion products; (iii) Interpretation of the data for hideout and hideout return effects in primary circuits as a possible information source for the activity buildup processes on primary circuit surfaces; (iv) Development of such kind of water chemistry regimes, addressed to the different periods of reactor operation cycle, which will limit the corrosion rate and will provide a limitation of the amount of corrosion product deposits on the fuel assemblies. Expected Outputs: The VVER-1000 coolant chemistry improvement will provide possibilities for: (i) limitation of the occurrence of AOA phenomenon; (ii) limitation of the corrosion of the primary circuit surfaces and mitigation of the corrosion product deposition and activity buildup processes.

  4. DIAS Project: The establishment of a European digital upper atmosphere server

    Science.gov (United States)

    Belehaki, A.; Cander, Lj.; Zolesi, B.; Bremer, J.; Juren, C.; Stanislawska, I.; Dialetis, D.; Hatzopoulos, M.

    2005-08-01

    The main objective of DIAS (European Digital Upper Atmosphere Server) project is to develop a pan-European digital data collection on the state of the upper atmosphere, based on real-time information and historical data collections provided by most operating ionospheric stations in Europe. A DIAS system will distribute information required by various groups of users for the specification of upper atmospheric conditions over Europe suitable for nowcasting and forecasting purposes. The successful operation of the DIAS system will lead to the development of new European added-value products and services, to the effective use of observational data in operational applications and consequently to the expansion of the relevant European market.

  5. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  6. A new 2D climate model with chemistry and self consistent eddy-parameterization. The impact of airplane NO{sub x} on the chemistry of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gepraegs, R.; Schmitz, G.; Peters, D. [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany)

    1997-12-31

    A 2D version of the ECHAM T21 climate model has been developed. The new model includes an efficient spectral transport scheme with implicit diffusion. Furthermore, photodissociation and chemistry of the NCAR 2D model have been incorporated. A self consistent parametrization scheme is used for eddy heat- and momentum flux in the troposphere. It is based on the heat flux parametrization of Branscome and mixing-length formulation for quasi-geostrophic vorticity. Above 150 hPa the mixing-coefficient K{sub yy} is prescribed. Some of the model results are discussed, concerning especially the impact of aircraft NO{sub x} emission on the model chemistry. (author) 6 refs.

  7. The DACCIWA Project: Dynamics-Aerosol-Chemistry-Cloud interactions in West Africa

    Science.gov (United States)

    Knippertz, Peter

    2014-05-01

    Massive economic and population growth and urbanisation are expected to lead to a tripling of anthropogenic emissions from southern West Africa (SWA) between 2000 and 2030, the impacts of which on human health, ecosystems, food security and the regional climate are largely unknown. An assessment of these impacts is complicated by (a) a superposition with effects of global climate change, (b) the strong dependence of SWA on the sensitive West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation and regional circulations and (d) by a lack of observations to advance our understanding and improve predictions. The purpose of this contribution is to introduce the research consortium DACCIWA (Dynamics-Aerosol-Chemistry-Cloud interactions in West Africa), which comprises 16 partners in six European and West African countries. The interdisciplinary DACCIWA team will build on the scientific and logistical foundations established by the African Monsoon Multidisciplinary Analysis (AMMA) project and collaborate closely with operational centres. DACCIWA will receive funding of about M8.75€ from the European Commission as part of Framework Programme 7 from 2015 until 2018. The DACCIWA project will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems and climate. This will include a major field campaign in summer 2015 with three research aircrafts and two ground-based supersites. Combining the resulting benchmark dataset with a wide range of modelling activities will allow us: (a) to assess all relevant physical and chemical processes, (b) to improve the monitoring of climate and compositional parameters from space, (c) to determine health impacts from air pollution, and (d) to develop the next generation of weather and climate models capable of representing coupled

  8. Technetium chemistry

    International Nuclear Information System (INIS)

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  9. Radiation chemistry at the Metallurgical Laboratory, Manhattan Project, University of Chicago (1942-1947) and the Argonne National Laboratory, Argonne, IL (1947-1984)

    International Nuclear Information System (INIS)

    The events in radiation chemistry which occurred in the Manhattan Project Laboratory and Argonne National Laboratory during World War II are reviewed. Research programmes from then until the present day are presented, with emphasis on pulse radiolysis studies. (UK)

  10. Measurements and modelling of atmospheric pollution over the Paris area: an overview of the ESQUIF project

    Energy Technology Data Exchange (ETDEWEB)

    Menut, L.; Vautard, R.; Flamant, P.H. [Centre National de Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Meteorologie Dynamique; Flamant, C.; Beekmann, M.; Megie, G.; Sicard, M. [Centre National de la Recherche Scientifique (CNRS), 91 - Verrieres-le-Buisson (France). Service d' Aeronomie; Abonnel, C.; Lefebvre, M.P.; Lossec, B. [Meteo-France, 75 - Paris (France); Chazette, P.; Martin, D. [CNRS (France). Lab. des Sciences du Climat et de l' Environnement; Gombert, D. [AIRPARIF, Paris (France); Guedalia, D. [CNRS-Universite Paul Sabatier (France). Lab. d' Aerologie; Kley, D. [Forschungszentrum Juelich GmbH (Germany); Perros, P.; Toupance, G. [CNRS (France). Lab. Interuniversitaire des Systemes Atmospheriques

    2000-11-01

    The ''etude et simulation de la qualite de l'air en ile de France'' (ESQUIF) project is the first integrated project dedicated to the study of the processes leading to air pollution events over the Paris area. The project was carried out over two years (summer 1998 to winter 2000) to document all types of meteorological conditions favourable to air quality degradation, and in particular to photo oxydant formation. The goals of ESQUIF are (1) to improve our understanding of the relevant chemical and dynamical processes and, in turn, improve their parametrizations in numerical models, and (2) to improve and validate existing models dedicated to pollution analysis, scenarios and/or forecasting, by establishing a comprehensive and thorough database. We present the rationale of the ESQUIF project and we describe the experimental set-up. We also report on the first experiments which took place during the summer of 1998 involving surface networks, and remote sensing instruments as well as several aircraft. Focusing on three days of August 1998, the relative contributions of long-range transported and locally-produced ozone to the elevated ozone concentrations observed during this period are discussed and chemistry-transport model preliminary results on this period are compared to measurements. (orig.)

  11. A model to calculate consistent atmospheric emission projections and its application to Spain

    Science.gov (United States)

    Lumbreras, Julio; Borge, Rafael; de Andrés, Juan Manuel; Rodríguez, Encarnación

    Global warming and air quality are headline environmental issues of our time and policy must preempt negative international effects with forward-looking strategies. As part of the revision of the European National Emission Ceilings Directive, atmospheric emission projections for European Union countries are being calculated. These projections are useful to drive European air quality analyses and to support wide-scale decision-making. However, when evaluating specific policies and measures at sectoral level, a more detailed approach is needed. This paper presents an original methodology to evaluate emission projections. Emission projections are calculated for each emitting activity that has emissions under three scenarios: without measures (business as usual), with measures (baseline) and with additional measures (target). The methodology developed allows the estimation of highly disaggregated multi-pollutant, consistent emissions for a whole country or region. In order to assure consistency with past emissions included in atmospheric emission inventories and coherence among the individual activities, the consistent emission projection (CEP) model incorporates harmonization and integration criteria as well as quality assurance/quality check (QA/QC) procedures. This study includes a sensitivity analysis as a first approach to uncertainty evaluation. The aim of the model presented in this contribution is to support decision-making process through the assessment of future emission scenarios taking into account the effect of different detailed technical and non-technical measures and it may also constitute the basis for air quality modelling. The system is designed to produce the information and formats related to international reporting requirements and it allows performing a comparison of national results with lower resolution models such as RAINS/GAINS. The methodology has been successfully applied and tested to evaluate Spanish emission projections up to 2020 for 26

  12. Payette River Basin Project: Improving Operational Forecasting in Complex Terrain through Chemistry

    Science.gov (United States)

    Blestrud, D.; Kunkel, M. L.; Parkinson, S.; Holbrook, V. P.; Benner, S. G.; Fisher, J.

    2015-12-01

    Idaho Power Company (IPC) is an investor owned hydroelectric based utility, serving customers throughout southern Idaho and eastern Oregon. The University of Arizona (UA) runs an operational 1.8-km resolution Weather and Research Forecast (WRF) model for IPC, which is incorporated into IPC near and real-time forecasts for hydro, solar and wind generation, load servicing and a large-scale wintertime cloud seeding operation to increase winter snowpack. Winter snowpack is critical to IPC, as hydropower provides ~50% of the company's generation needs. In efforts to improve IPC's near-term forecasts and operational guidance to its cloud seeding program, IPC is working extensively with UA and the National Center for Atmospheric Research (NCAR) to improve WRF performance in the complex terrain of central Idaho. As part of this project, NCAR has developed a WRF based cloud seeding module (WRF CS) to deliver high-resolution, tailored forecasts to provide accurate guidance for IPC's operations. Working with Boise State University (BSU), IPC is conducting a multiyear campaign to validate the WRF CS's ability to account for and disperse the cloud seeding agent (AgI) within the boundary layer. This improved understanding of how WRF handles the AgI dispersion and fate will improve the understanding and ultimately the performance of WRF to forecast other parameters. As part of this campaign, IPC has developed an extensive ground based monitoring network including a Remote Area Snow Sampling Device (RASSD) that provides spatially and temporally discrete snow samples during active cloud seeding periods. To quantify AgI dispersion in the complex terrain, BSU conducts trace element analysis using LA-ICP-MS on the RASSD sampled snow to provide measurements (at the 10-12 level) of incorporated AgI, measurements are compare directly with WRF CS's estimates of distributed AgI. Modeling and analysis results from previous year's research and plans for coming seasons will be presented.

  13. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    Science.gov (United States)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  14. Preface to the Special Issue on Climate-Chemistry Interactions: Atmospheric Ozone, Aerosols, and Clouds over East Asia

    OpenAIRE

    Wei-Chyung Wang and Jen-Ping Chen

    2007-01-01

    Atmospheric radiatively-important chemical constituents (e.g., O3 and aerosols) are important to maintain the radiation balance of the Earth-atmosphere climate system, and changes in their concentration due to both natural causes and anthropogenic activities will induce climate changes. The distribution of these constituents is sensitive to the state of the climate (e.g., temperature, moisture, wind, and clouds). Therefore, rises in atmospheric temperature and water vapor, and changes in circ...

  15. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.

  16. Atmospheric chemistry of CH3CHF2 (R-152a): mechanism of the CH3CF2O2+HO2 reaction

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Andersen, Mads Peter Sulbæk;

    2004-01-01

    FTIR smog chamber techniques have been used to investigate the mechanism of the reaction of CH3CF2O2 with HO2 radicals in 100-700 Torr of synthetic air at 296 K. The reaction gives CH3CF2OOH and COF2 in molar yields of 0.53 +/- 0.05 and 0.47 +/- 0.05, respectively. Results are discussed with...... respect to the atmospheric chemistry of peroxy radicals and the environmental impact of R-152a. (C) 2004 Elsevier B.V. All rights reserved....

  17. A spatial framework for assessing current conditions and monitoring future change in the chemistry of the Antarctic atmosphere

    Directory of Open Access Journals (Sweden)

    D. A. Dixon

    2011-03-01

    , Pb, Bi, As, and Li are enriched across Antarctica relative to both ocean and upper crust elemental ratios. Global volcanic outgassing accounts for the majority of the Bi measured in East and West Antarctica and for a significant fraction of the Cd in East Antarctica. Nonetheless, global volcanic outgassing cannot account for the enriched values of Pb or As. Local volcanic outgassing from Mount Erebus may account for a significant fraction of the As and Cd in West Antarctica and for a significant fraction in East Antarctic glaze/dune areas. However, despite potential contributions from local and global volcanic sources, significant concentrations of Pb, Cd, and As remain across much of Antarctica.

    Most importantly, this study provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere.

  18. Incorporating Primary Literature Summary Projects into a First-Year Chemistry Curriculum

    Science.gov (United States)

    Forest, Kaya; Rayne, Sierra

    2009-01-01

    In our focus on material that must be covered in a content-rich course such as first-year chemistry, we often neglect the development of other essential skills such as reading, writing, and critical thinking. The primary research literature summary assignment described attempts to address this issue. The purpose of the assignment is to introduce…

  19. Learning Nuclear Chemistry through Practice: A High School Student Project Using PET in a Clinical Setting

    Science.gov (United States)

    Liguori, Lucia; Adamsen, Tom Christian Holm

    2013-01-01

    Practical experience is vital for promoting interest in science. Several aspects of chemistry are rarely taught in the secondary school curriculum, especially nuclear and radiochemistry. Therefore, we introduced radiochemistry to secondary school students through positron emission tomography (PET) associated with computer tomography (CT). PET-CT…

  20. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  1. Incorporating Students' Self-Designed, Research-Based Analytical Chemistry Projects into the Instrumentation Curriculum

    Science.gov (United States)

    Gao, Ruomei

    2015-01-01

    In a typical chemistry instrumentation laboratory, students learn analytical techniques through a well-developed procedure. Such an approach, however, does not engage students in a creative endeavor. To foster the intrinsic motivation of students' desire to learn, improve their confidence in self-directed learning activities and enhance their…

  2. Metacognition in Physics/Chemistry Teacher Education--A Danish Project.

    Science.gov (United States)

    Henriksen, Leif; And Others

    1996-01-01

    A preservice physics/chemistry course was created that was inspired by constructivist thinking, that emphasized metacognition, and that integrated concepts of pedagogical and scientific topics by developing a teaching/learning cycle. Denmark's educational system and the implementation of the course are described. Preliminary evaluations suggest…

  3. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  4. The chemistry of the global atmosphere; International Symposium of the Commission for Atmospheric Chemistry and Global Pollution of IAMAP, 7th, Chamrousse, France, Sept. 5-11, 1990, Selected Papers

    Science.gov (United States)

    Buat-Menard, P. (Editor); Delmas, R. J. (Editor)

    1992-01-01

    Topics presented include the adsorption and reaction of trichlorofluoromethane on various particles, equilibria of the marine multiphase ammonia system, a novel ozone sensor for direct eddy flux measurements, and characterization of the carbonate content of atmospheric aerosols. Also presented are variations in heavy metals concentrations in Antarctic snows, sources of continental dust over Antarctica during the last glacial cycle, an inventory of anthropogenic emissions and air pollution in the USSR, and atmospheric nuclei in the remote free-troposphere.

  5. Theoretical support to NRL's upper atmospheric branch: Physics and chemistry of the upper and middle atmospheres with emphasis on daytime, nighttime, and auroral optical emissions

    Science.gov (United States)

    1991-06-01

    Significant advances were made in the ability to model physical processes in the thermosphere (airglow and aurora) and middle atmosphere. These advances came in the form of code development and improved methods for updating input parameters (most notably, cross sections). Important advances were also made in the development of an algorithm for deducing O3 and O2 density profiles from full solar disk extinction measurements to be made by the instrument Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on board the upper atmosphere research satellite (UARS).

  6. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  7. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    Science.gov (United States)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2013-07-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and would decrease those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9%) in the B1 scenario

  8. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    Science.gov (United States)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2012-08-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The

  9. Describing the direct and indirect radiative effects of atmospheric aerosols over Europe by using coupled meteorology-chemistry simulations: a contribution from the AQMEII-Phase II exercise

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Balzarini, Alessandra; Baró, Rocío; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Zabkar, Rahela

    2014-05-01

    The study of the response of the aerosol levels in the atmosphere to a changing climate and how this affects the radiative budget of the Earth (direct, semi-direct and indirect effects) is an essential topic to build confidence on climate science, since these feedbacks involve the largest uncertainties nowadays. Air quality-climate interactions (AQCI) are, therefore, a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models (i.e., models with on-line chemistry) that include detailed treatment of aerosol life cycle and aerosol impacts on radiation (direct effects) and clouds (indirect effects) are in demand. In this context, the main objective of this contribution is the study and definition of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the direct radiative forcing and the indirect effect caused by aerosols over Europe, using an ensemble of fully-coupled meteorology-chemistry model simulations with the WRF-Chem model run under the umbrella of AQMEII-Phase 2 international initiative. Simulations were performed for Europe for the entire year 2010. According to the common simulation strategy, the year was simulated as a sequence of 2-day time slices. For better comparability, the seven groups applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. With exception of a simulation with different cloud microphysics, identical physics options were chosen while the chemistry options were varied. Two model set-ups will be considered here: one sub-ensemble of simulations not taking into account any aerosol feedbacks (the baseline case) and another sub-ensemble of simulations which differs from the former by the inclusion of aerosol-radiation feedback. The existing differences for meteorological

  10. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    Directory of Open Access Journals (Sweden)

    A. A. Rockett

    2012-08-01

    Full Text Available Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2 has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050 H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem. Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%, CO (14%, NOx (16%, soot (17%, sulfate aerosol (4%, and ammonium nitrate aerosol (12% in the A1FI scenario, and decreases those of ozone (5%, CO (4%, NOx (11%, soot (7%, sulfate aerosol (4%, and ammonium nitrate aerosol (9 % in the B1 scenario. The

  11. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    Directory of Open Access Journals (Sweden)

    D. Wang

    2013-07-01

    Full Text Available Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2 has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050 H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem. Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%, CO (14%, NOx (16%, soot (17%, sulfate aerosol (4%, and ammonium nitrate aerosol (12% in the A1FI scenario, and would decrease those of ozone (5%, CO (4%, NOx (11%, soot (7%, sulfate aerosol (4%, and ammonium nitrate aerosol (9% in the B1 scenario

  12. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Additional information. Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    The CD-ROM attached to the printed version of TECDOC 1505 'Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants (DAWAG)' includes the report itself, detailed progress reports of three research coordination meetings (Annexes I-III) and the final country reports. This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity)and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  13. Stereographic projection for three-dimensional global discontinuous Galerkin atmospheric modeling

    Science.gov (United States)

    Blaise, Sébastien; Lambrechts, Jonathan; Deleersnijder, Eric

    2015-09-01

    A method to solve the three-dimensional compressible Navier-Stokes equations on the sphere is suggested, based on a stereographic projection with a high-order mapping of the elements from the stereographic space to the sphere. The projection is slightly modified, in order to take into account the domain thickness without introducing any approximation about the aspect ratio (deep-atmosphere). In a discontinuous Galerkin framework, the elements alongside the equator are exactly represented using a nonpolynomial geometry, in order to avoid the numerical issues associated with the seam connecting the two hemispheres. This is an crucial point, necessary to avoid mass loss and spurious deviations of the velocity. The resulting model is validated on idealized three-dimensional atmospheric test cases on the sphere, demonstrating the good convergence properties of the scheme, its mass conservation, and its satisfactory behavior in terms of accuracy and low numerical dissipation. A simulation is performed on a variable resolution unstructured grid, producing accurate results despite a substantial reduction of the number of elements.

  14. Projected changes in atmospheric river events in Arizona as simulated by global and regional climate models

    Science.gov (United States)

    Rivera, Erick R.; Dominguez, Francina

    2015-12-01

    Inland-penetrating atmospheric rivers (ARs) affect the United States Southwest and significantly contribute to cool season precipitation. In this study, we examine the results from an ensemble of dynamically downscaled simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and their driving general circulation models (GCMs) in order to determine statistically significant changes in the intensity of the cool season ARs impacting Arizona and the associated precipitation. Future greenhouse gas emissions follow the A2 emission scenario from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations. We find that there is a consistent and clear intensification of the AR-related water vapor transport in both the global and regional simulations which reflects the increase in water vapor content due to warmer atmospheric temperatures, according to the Clausius-Clapeyron relationship. However, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no significant changes are projected either by the GCMs or the NARCCAP models. This lack of robust precipitation variations can be explained in part by the absence of meaningful changes in both the large-scale water vapor flux convergence and the maximum positive relative vorticity in the GCMs. Additionally, some global models show a robust decrease in relative humidity which may also be responsible for the projected precipitation patterns.

  15. Atmospheric Chemistry of Six Methyl-perfluoroheptene-ethers Used as Heat Transfer Fluid Replacement Compounds: Measured OH Radical Reaction Rate Coefficients, Atmospheric Lifetimes, and Global Warming Potentials

    Science.gov (United States)

    Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B.

    2013-12-01

    Mixtures of methyl-perfluoroheptene-ethers (C7F13OCH3, MPHEs) are currently in use as a replacement for perfluorinated alkane (PFC) and polyether mixtures (both persistent greenhouse gases with atmospheric lifetimes >1000 years) used as heat transfer fluids. Currently, the atmospheric fate of the MPHE isomers are not well characterized, however, reaction with the OH radical is expected to be a dominant tropospheric loss process for these compounds. In order to assess the atmospheric lifetimes and environmental implications of MPHE use, rate coefficients for MPHE isomers' reaction with OH radicals are desired. In the work presented here, rate coefficients, k, for the gas-phase reaction of the OH radical with six MPHEs commonly used in commercial mixtures (isomers and stereoisomers) and their deuterated analogs (d3-MPHE) were determined at 296 K using a relative rate method with combined gas-chromatography/IR spectroscopy detection. A range of OH rate coefficient values was observed, up to a factor of 20× different, between the MPHE isomers with the (E)-stereoisomers exhibiting the greatest reactivity. The measured OH reaction rate coefficients for the d3-MPHE isomers were lower than the observed MPHE values although a large range of k values between isomers was still observed. The reduction in reactivity with deuteration signifies that the MPHE + OH reaction proceeds via both addition to the olefinic C=C bond and H-abstraction from the methyl ester group. OH addition to the C=C bond was determined to be the primary reaction channel. Atmospheric lifetimes with respect to the OH reaction for the six MPHE isomers were found to be in the range of days to months. The short lifetimes indicate that MPHE use will primarily impact tropospheric local and regional air quality. A MPHE atmospheric degradation mechanism will be presented. As part of this work, radiative efficiencies and global warming potentials (GWPs) for the MPHE isomers were estimated based on measured

  16. Studies in technetium chemistry, Project 1: Evaluation of technetium acetylacetonates as potential cerebral blood flow agents, Project 2

    International Nuclear Information System (INIS)

    Although the emphasis in our original submission was on N2S2 and N3S coordinating ligands in technetium(V), we have now broadened the chemistry studies into areas that encompass new systems that allow the generation of neutral complexes. This change was based upon developments that have taken place in our basic chemistry studies that could bear on one of the original aims of this work, i.e., the design of complexes designed to penetrate cellular membranes and to remain trapped in target tissues. Among these topics are oxotechnetium(V) complexes containing amine and alcoholate ligands, coordination compounds containing the alternative technetium(V) nitrido core and the synthesis at macroscopic levels of a tetradentate ''umbrella'' ligand that successfully binds the metal. Basic studies with the original bisamide-bisthiol ligand system have continued with the identification of the products formed when aqueous solutions of the complex [TcO(ema)]- are acidified. This material is isolatable as yellow/brown crystals when HCl is added to the tetraphenylarsonium salt of the complex synthesized according to published procedures. Elemental analysis, FAB(+) mass spectrometry and 1H NMR results were consistent with the formulation TcO(ema)H. Infrared spectra showed a dramatic shift in the Tc = O stretch to 966 cm-1, as distinct from 945 cm-1 in the original complex

  17. Facilitating the Deposit of Experimental Chemistry Data in Institutional Repositories: Project SPECTRa

    OpenAIRE

    Morgan, Peter

    2007-01-01

    Institutional Open Access repositories are becoming established as an important part of the university library and information services infrastructure. While early efforts to populate them with content have concentrated on the deposit of peer-reviewed research papers, there is a growing awareness of their potential as repositories of data and other non-text materials, and consequently a need to develop strategies and procedures that can realise this potential. Chemistry as a discipline h...

  18. Facilitating the deposit of experimental chemistry data in institutional repositories: Project SPECTRa

    OpenAIRE

    Morgan, Peter; Downing, Jim; Murray-Rust, Peter; Tonge, Alan; Cotterill, Fiona; Rzepa, Henry; Windsor, Lorraine

    2007-01-01

    Institutional Open Access repositories are becoming established as an important part of the university library and information services infrastructure. While early efforts to populate them with content have concentrated on the deposit of peer-reviewed research papers, there is a growing awareness of their potential as repositories of data and other non-text materials, and consequently a need to develop strategies and procedures that can realise this potential. Chemistry as a discipline has be...

  19. Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode

    Science.gov (United States)

    Xue, Likun; Gu, Rongrong; Wang, Tao; Wang, Xinfeng; Saunders, Sandra; Blake, Donald; Louie, Peter K. K.; Luk, Connie W. Y.; Simpson, Isobel; Xu, Zheng; Wang, Zhe; Gao, Yuan; Lee, Shuncheng; Mellouki, Abdelwahid; Wang, Wenxing

    2016-08-01

    We analyze a photochemical smog episode to understand the oxidative capacity and radical chemistry of the polluted atmosphere in Hong Kong and the Pearl River Delta (PRD) region. A photochemical box model based on the Master Chemical Mechanism (MCM v3.2) is constrained by an intensive set of field observations to elucidate the budgets of ROx (ROx = OH+HO2+RO2) and NO3 radicals. Highly abundant radical precursors (i.e. O3, HONO and carbonyls), nitrogen oxides (NOx) and volatile organic compounds (VOCs) facilitate strong production and efficient recycling of ROx radicals. The OH reactivity is dominated by oxygenated VOCs (OVOCs), followed by aromatics, alkenes and alkanes. Photolysis of OVOCs (except for formaldehyde) is the dominant primary source of ROx with average daytime contributions of 34-47 %. HONO photolysis is the largest contributor to OH and the second-most significant source (19-22 %) of ROx. Other considerable ROx sources include O3 photolysis (11-20 %), formaldehyde photolysis (10-16 %), and ozonolysis reactions of unsaturated VOCs (3.9-6.2 %). In one case when solar irradiation was attenuated, possibly by the high aerosol loadings, NO3 became an important oxidant and the NO3-initiated VOC oxidation presented another significant ROx source (6.2 %) even during daytime. This study suggests the possible impacts of daytime NO3 chemistry in the polluted atmospheres under conditions with the co-existence of abundant O3, NO2, VOCs and aerosols, and also provides new insights into the radical chemistry that essentially drives the formation of photochemical smog in the high-NOx environment of Hong Kong and the PRD region.

  20. Implementation of the chemistry module MECCA (v2.5 in the modal aerosol version of the Community Atmosphere Model component (v3.6.33 of the Community Earth System Model

    Directory of Open Access Journals (Sweden)

    M. S. Long

    2013-02-01

    Full Text Available A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33 and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5 to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3 were tested in conjunction with the basic load-balancing options available to modal-CAM (1 to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed and repeatability of Ros-2 and RODAS-3 results versus Ros-3, and (2 to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.

  1. Dynamics of the middle atmosphere as observed by the ARISE project

    Science.gov (United States)

    Blanc, E.

    2015-12-01

    It has been strongly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate all the way to the Earth's surface. A key part of this coupling occurs through the propagation and breaking of planetary and gravity waves. However, limited observations prevent to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The main challenge of the ARISE (Atmospheric dynamics InfraStructure in Europe) project is to combine existing national and international observation networks including: the International infrasound monitoring system developed for the CTBT (Comprehensive nuclear-Test-Ban Treaty) verification, the NDACC (Network for the Detection of Atmospheric Composition Changes) lidar network, European observation infrastructures at mid latitudes (OHP observatory), tropics (Maïdo observatory), high latitudes (ALOMAR and EISCAT), infrasound stations which form a dense European network and satellites. The ARISE network is unique by its coverage (polar to equatorial regions in the European longitude sector), its altitude range (from troposphere to mesosphere and ionosphere) and the involved scales both in time (from seconds to tens of years) and space (from tens of meters to thousands of kilometers). Advanced data products are produced with the scope to assimilate data in the Weather Prediction models to improve future forecasts over weeks and seasonal time scales. ARISE observations are especially relevant for the monitoring of extreme events such as thunderstorms, volcanoes, meteors and at larger scales, deep convection and stratospheric warming events for physical processes description and study of long term evolution with climate change. Among the applications, ARISE fosters integration of innovative methods for remote detection of non-instrumented volcanoes including distant eruption characterization to provide notifications with reliable confidence indices to the

  2. Scanning imaging absorption spectrometer for atmospheric chartography carbon monoxide total columns: statistical evaluation and comparison with chemistry transport model results

    NARCIS (Netherlands)

    de Laat, A.T.J.; Gloudemans, A.M.S.; Aben, I.; Krol, M.C.; Meirink, J.F.; van der Werf, G.R.; Schrijver, H.

    2007-01-01

    This paper presents a detailed statistical analysis of one year (September 2003 to August 2004) of global Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) carbon monoxide (CO) total column retrievals from the Iterative Maximum Likelihood Method (IMLM) algorithm, vers

  3. Scanning Imaging Absorption Spectrometer for Atmospheric Chartography carbon monoxide total columns: Statistical evaluation and comparison with chemistry transport model results

    NARCIS (Netherlands)

    Laat, de A.T.J.; Gloudemans, A.M.S.; Aben, I.; Krol, M.C.; Meirink, J.F.; Werf, van der G.R.; Schrijver, H.

    2007-01-01

    This paper presents a detailed statistical analysis of one year (September 2003 to August 2004) of global Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) carbon monoxide (CO) total column retrievals from the Iterative Maximum Likelihood Method (IMLM) algorithm, vers

  4. O ensino de química quântica e o computador na perspectiva de projetos The teaching of quantum chemistry and the computer from the perspective projects

    OpenAIRE

    Agnaldo Arroio; Honório, Káthia M; Weber, Karen C.; Paula Homem-de-Mello; da Silva, Albérico B. F.

    2005-01-01

    This paper aims to discuss and reflect about the use of computers in the teaching of Quantum Chemistry. A course on Computational Quantum Chemistry concentrating on Medicinal Chemistry projects was developed for undergraduate and graduate students. The results showed that students got more motivated and involved when there is an articulation between theory and practice. This work presents an alternative way to teach Theoretical Chemistry using projects.

  5. Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling

    OpenAIRE

    Locatelli, R.; Bousquet, P.; Hourdin, F.; Saunois, M.; COZIC A.; Couvreux, F; Grandpeix, J.-Y.; Lefebvre, M.-P.; C. Rio; Bergamaschi, P.; Chambers, S. D.; U. Karstens; Kazan, V.; S. Van der Laan; Meijer, H. A. J.

    2015-01-01

    Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal ...

  6. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V.; Lukenyuk, A.; Shymkiv, A.; Udodov, E.

    2016-06-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  7. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V; Lukenyuk, A.; Shymkiv, A.

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  8. The Need for Innovative Methods of Teaching and Learning Chemistry in Higher Education--Reflections from a Project of the European Chemistry Thematic Network

    Science.gov (United States)

    Eilks, Ingo; Byers, Bill

    2010-01-01

    This paper summarizes the work and conclusions of a working group established by the European Chemistry Thematic Network (ECTN). The aim of the working group was to identify potential areas for innovative approaches to the teaching and learning of chemistry in Higher Education, and to survey good practice throughout the EU. The paper starts by…

  9. Aespoe project. Hydrogeology and hydro-chemistry used to indicate present flow dynamics

    International Nuclear Information System (INIS)

    Major development in hydrogeological and hydrochemical groundwater modelling have been used independently to describe the present flow dynamics prior to and following the construction of the Aespoe Hard Rock Laboratory. Groundwater flow models used in calculating flow paths in the rock mass can be compared to the geochemical groundwater mixing and mass balance modelling in order to provide useful information on flow paths and transport times. However, there is still much work to be done to improve the integration between models on groundwater flow, groundwater chemistry and transport of solutes. (author)

  10. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  11. Application of MAGIC to Lake Redó (Central Pyrenees): an assessment of the effects of possible climate driven changes in atmospheric precipitation, base cation deposition, and weathering rates on lake water chemistry.

    OpenAIRE

    Ventura, Marc; Wright, Richard F.; Catalan, Jordi; Camarero, Lluís

    2004-01-01

    The process-oriented catchment-scale model MAGIC was used to simulate water chemistry at Lake Redó, a high mountain lake in the Central Pyrenees, Spain. Data on lakewater and atmospheric deposition chemistry for the period 1984-1998 were used to calibrate the model, which was then used to reconstruct past and to provide forecasts for three hypothetical future scenarios of deposition. Forecast scenarios considered several combinations of changes in S and N deposition due to abatement strategie...

  12. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 3: Project cost estimates

    Science.gov (United States)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) cost modeling activities were initiated in phase 1 to establish the ground rules and cost model that would apply to both phase 1 and phase 2 cost analyses. The primary emphasis in phase 1 was development of a cost model for a LAWS instrument for the Japanese Polar Orbiting Platform (JPOP). However, the Space Station application was also addressed in this model, and elements were included, where necessary, to account for Space Station unique items. The cost model presented in the following sections defines the framework for all LAWS cost modeling. The model is consistent with currently available detail, and can be extended to account for greater detail as the project definition progresses.

  13. High-Speed Atmospheric Correction Algorithm for Spectral Image Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Generating land and ocean data products from NASA multispectral and hyperspectral imagery missions requires atmospheric correction, the removal of atmospheric...

  14. Computer Interactives for the Mars Atmospheric and Volatile Evolution (MAVEN) Mission through NASA's "Project Spectra!"

    Science.gov (United States)

    Wood, E. L.

    2014-12-01

    "Project Spectra!" is a standards-based E-M spectrum and engineering program that includes paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games, students experience and manipulate information making abstract concepts accessible, solidifying understanding and enhancing retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new interactives. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature. Students design a planet that is able to maintain liquid water on the surface. In the second interactive, students are asked to consider conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  15. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    Directory of Open Access Journals (Sweden)

    I. Stemmler

    2010-05-01

    Full Text Available Perfluorooctanoic acid (PFOA and other perfluorinated compounds are industrial chemicals in use since decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8–23 t a−1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere lead to episodic transport events (timescale of days into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≈1 t a−1, much higher than previously estimated, and is dominated by primary emissions rather than secondarily formed.

  16. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    Science.gov (United States)

    Stemmler, I.; Lammel, G.

    2010-10-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8-23) t a-1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere led to episodic transport events (timescale of days) into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≈1 t a-1, much higher than previously estimated, and is dominated by primary emissions rather than secondary formation.

  17. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    Directory of Open Access Journals (Sweden)

    I. Stemmler

    2010-10-01

    Full Text Available Perfluorooctanoic acid (PFOA and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8–23 t a−1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere led to episodic transport events (timescale of days into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≈1 t a−1, much higher than previously estimated, and is dominated by primary emissions rather than secondary formation.

  18. The CHUVA Project Contributions to the Understanding of Anthropogenic Interactions Affecting the Atmospheric Physics over Amazonas.

    Science.gov (United States)

    Machado, L.; Cecchini, M. A.; Gonçalves, W.

    2014-12-01

    CHUVA, meaning "rain" in Portuguese, is the acronym for the Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement). The CHUVA project has conducted six field campaigns; the last campaign was held in Manaus in 2014 jointly with GoAmazon and ACRIDICON. CHUVA's main scientific motivation is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. This study will briefly describe the CHUVA project and the main scientific results obtained in the Amazon region. Specifically, we will describe the results of one year radar observation of Manaus rainfall and the relationship with black carbon. The results indicate that the aerosol influence on precipitating systems is modulated by the atmospheric instability degree. For stable atmospheres, the higher the aerosol concentration, the lower the precipitation over the region. On the other hand, for unstable cases, higher concentrations of particulate material are associated with more precipitation, elevated presence of ice and larger rain cells, which suggests an association with long lived systems. Also we will describe some preliminary results obtained during GoAmazon describing the cloud and rainfall size distribution (DSD). The DSD was adjusted to the gamma function using the momentum method and disposed in the three-dimensional space of the gamma parameters: the intercept, the shape and the width. Each point in this three-dimensional space corresponds to a specific DSD and the ensemble of points describes all regimes of precipitation in Amazon. Based in this Gamma space we will discuss the characteristics of the rainfall regime and anthropogenic features.

  19. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    Science.gov (United States)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between ‑1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  20. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    Science.gov (United States)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  1. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  2. Online searching in project-based learning in Chemistry education and the evaluation of the results

    OpenAIRE

    Inci MORGIL; Yavuz, Soner; Senar TEMEL; Oskay, Ozge Özyalçın

    2005-01-01

    In Project-based learning, students perform learning process by preparing a project in a chosen subject. The basic steps in this process are; determining the target question, determining the main aims of the study, forming the teams, determining the properties and presentation type of the result report, forming the working agenda, determining the control points and evaluation criteria. According to the working agenda, team collect data, organize them and prepare a presentation report. In the ...

  3. Implications of land-atmosphere coupling on the present and projected climate over the Iberian Peninsula

    Science.gov (United States)

    Jerez, S.; Montavez, J. P.; Jimenez-Guerrero, P.; Gomez-Navarro, J. J.; Garcia-Valero, J. A.; Gonzalez-Rouco, J.; Jimenez, J. M.

    2009-04-01

    Regional Climate Models (RCMs) are widely extended tools to evaluate the global warming impact at regional scales. Some of these models have a wide spectrum of physical options in order to parametrize the implemented processes, such as land-atmosphere interactions. This work assesses the implications of the election of the land-surface model (LSM) within a climate version of the MM5 mesoscale model in the present and future modeling of the climate of the Iberian Peninsula (IP). Often such interactions are modeled by a simple soil model (Simple Five-Layers Soil Model) whose main weakness comes conditioned by the fact that the content of soil moisture is prescribed to fixed seasonal values. Previous works prove that this leads to an underestimation of summer temperatures in regional climate experiments, among other limitations. A more complex soil parametrization (Noah Land-Surface Model) can be coupled to the atmospheric part of MM5. Noah LSM dynamically models the evolution of the soil moisture, allowing the development of some feedback processes between the soil and the atmosphere that otherwise would remain inhibited. Hence, the aim of this work is to characterize the projected warming over the Iberian Peninsula that can be attributed to the new processes taken into account only when this more complex soil model is employed. First, simulations have been performed for the recent past (1959-2002), using ERA40 data as driven conditions, in order to elucidate the contribution of the more complex LSM to the skill of such simulations to accurately reproduce the observations in the Iberian Peninsula. Focusing on 2-meter temperature outputs, when Noah LSM is employed the main improvements are achieved for summer season and are localized towards the south of the IP. Higher monthly mean values (even more than 3 degrees) and a major temporal variability of the anomalies series (about 30% of increase) are found. Spatially, more realistic patterns are also reproduced since

  4. Sunscreen synthesis and their immobilisation on polymethylmethacrylate: an integrated project in organic chemistry, polymer chemistry and photochemistry; Sintese de fotoprotetores e sua imobilizacao em poli(metacrilato de metilo): um projeto integrado de quimica organica, quimica de polimeros e fotoquimica

    Energy Technology Data Exchange (ETDEWEB)

    Murtinho, Dina Maria B.; Serra, Maria Elisa S.; Pineiro, Marta, E-mail: dmurtinho@ci.uc.p [Universidade de Coimbra (Portugal). Faculdade de Ciencias e Tecnologia. Dept. de Quimica

    2010-07-01

    Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate) and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics. (author)

  5. Atmospheric chemistry of HFC-134a. Kinetic and mechanistic study of the CF3CFHO2 + NO2 reaction

    DEFF Research Database (Denmark)

    Møgelberg, T.E.; Nielsen, O.J.; Sehested, J.;

    1994-01-01

    A pulse radiolysis system was used to study the kinetics of the reaction of CF3CFHO2 with NO2. By monitoring the rate of the decay of NO2 using its absorption at 400 nm the reaction rate constant was determined to be k = (5.0 +/- 0.5) x 10(-12) cm3 molecule-1 s-1. A long path length Fourier......-transform infrared technique was used to investigate the thermal decomposition of the product CF3CFHO2NO2. At 296 K in the presence of 700 Torr of air, decomposition of CF3CFHO2NO2 was rapid (greater than 90% decomposition within 3 min). The results are discussed in the context of atmospheric chemistry of CF3CFH2...

  6. Middle Atmosphere Response to Different Descriptions of the 11-Year Solar Cycle in Spectral Irradiance in a Chemistry-Climate Model

    Science.gov (United States)

    Swartz, W. H.; Stolarski, R. S.; Oman, L. D.; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the

  7. Corrosion and protection of metals in the rural atmosphere of "El Pardo" Spain (PATINA / CYTED project

    Directory of Open Access Journals (Sweden)

    Simancas, J.

    2003-12-01

    Full Text Available Atmospheric corrosion tests of metallic and organic coatings on steel, zinc and aluminium have been conducted in "El Pardo" (Spain as part of the PATINA/CYTED project "Anticorrosive Protection of Metals in the Atmosphere". This is a rural atmosphere with the following ISO corrosivity categories: C2 (Fe, C2 (Zn, C3 (Cu and Cl (Al. Its average temperature and relative humidity is 13 °C and 62.8 %, respectively, and it has low SO2 and Cl- contents. Results of 42 months exposure are discussed. Atmospheric exposure tests were carried out for the following types of coatings: conventional paint coatings for steel and hot-dip galvanized steel (group 1, new painting technologies for steel and galvanized steel (group 2, zinc-base metallic coatings (group 3, aluminium-base metallic coatings (group 4, coatings on aluminium (group 5 and coil-coatings on steel, hot-dip galvanized steel and 55 % Al-Zn coated steel (group 6.

    Como parte del proyecto PATINA/CYTED "Protección anticorrosiva de metales en la atmósfera" se han llevado a cabo en la estación de ensayo de "El Pardo" (España, ensayos de corrosión atmosférica de recubrimientos metálicos y orgánicos sobre acero, zinc y aluminio. Se trata de una atmósfera rural según la clasificación ISO de grado de corrosividad: C2 (Fe, C2 (Zn, C3 (Cu y Cl (Al. La temperatura y humedad relativa media es de 13 °C y 62,8 %, respectivamente, y tiene bajos contenidos de SO2 y Cl-. Se discuten los resultados obtenidos después de 42 meses de exposición. Los ensayos de corrosión atmosférica se llevaron a cabo para tres tipos de recubrimientos: recubrimientos de pintura convencional sobre acero y acero zincado (grupo 1, nuevas tecnologías en pinturas para acero y acero galvanizado (grupo 2, recubrimientos metálicos base zinc (grupo 3, recubrimientos metálicos base aluminio (grupo 4, recubrimientos sobre aluminio (grupo 5 y recubrimientos de banda en continuo

  8. Collaborative project. Ocean-atmosphere interaction from meso- to planetary-scale. Mechanics, parameterization, and variability

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Ramalingam [Texas A & M Univ., College Station, TX (United States); Small, Justin [National Center for Atmospheric Research (NCAR), Boulder, CO (United States)

    2015-12-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. High-resolution global coupled integrations using CAM/CESM were carried out at NCAR by the lead PI. At TAMU, we have complemented the work at NCAR by analyzing datasets from the high-resolution (28km) CESM integrations (Small et al., 2014) as well as very high resolution (9km, 3km) runs using a coupled regional climate (CRCM) carried out locally. The main tasks carried out were: 1. Analysis of surface wind in observations and high-resolution CAM/CCSM simulations 2. Development of a feature-tracking algorithm for studying midlatitude air-sea interaction by following oceanic mesoscale eddies and creating composites of the atmospheric response overlying the eddies. 3. Applying the Lagrangian analysis technique in the Gulf Stream region to compare data from observational reanalyses, global CESM coupled simulations, 9km regional coupled simulations and 3km convection-resolving regional coupled simulations. Our main findings are that oceanic mesoscale eddies influence not just the atmospheric boundary layer above them, but also the lower portions of the free troposphere above the boundary layer. Such a vertical response could have implications for a remote influence of Gulf Stream oceanic eddies on North Atlantic weather patterns through modulation of the storm track, similar to what has been noted in the North Pacific. The coarse resolution

  9. Clear sky UV simulations for the 21st century based on ozone and temperature projections from Chemistry-Climate Models

    Directory of Open Access Journals (Sweden)

    K. Tourpali

    2009-02-01

    Full Text Available We have estimated changes in surface solar ultraviolet (UV radiation under cloud free conditions in the 21st century based on simulations of 11 coupled Chemistry-Climate Models (CCMs. The total ozone columns and vertical profiles of ozone and temperature projected from CCMs were used as input to a radiative transfer model in order to calculate the corresponding erythemal irradiance levels. Time series of monthly erythemal irradiance received at the surface during local noon are presented for the period 1960 to 2100. Starting from the first decade of the 21st century, the surface erythemal irradiance decreases globally as a result of the projected stratospheric ozone recovery at rates that are larger in the first half of the 21st century and smaller towards its end. This decreasing tendency varies with latitude, being more pronounced over areas where stratospheric ozone has been depleted the most after 1980. Between 2000 and 2100 surface erythemal irradiance is projected to decrease over midlatitudes by 5 to 15%, while at the southern high latitudes the decrease is twice as much. In this study we have not included effects from changes in cloudiness, surface reflectivity and tropospheric aerosol loading, which will likely be affected in the future due to climate change. Consequently, over some areas the actual changes in future UV radiation may be different depending on the evolution of these parameters.

  10. MATCH-SALSA - Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model - Part 1: Model description and evaluation

    Science.gov (United States)

    Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; Kokkola, H.

    2015-02-01

    We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The modeled PNC size distribution peak occurs at the same or smaller particle size as the observed peak at four measurement sites spread across Europe. Total PNC is underestimated at northern and central European sites and accumulation-mode PNC is underestimated at all investigated sites. The low nucleation rate coefficient used in this study is an important reason for the underestimation. On the other hand, the model performs well for particle mass (including secondary inorganic aerosol components), while elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, in terms of biogenic emissions and chemical transformation. Updating the biogenic secondary organic aerosol (SOA) scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation.

  11. MATCH–SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation

    Directory of Open Access Journals (Sweden)

    C. Andersson

    2014-05-01

    Full Text Available We have implemented the sectional aerosol dynamics model SALSA in the European scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry. The new model is called MATCH–SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC in central Europe and lower concentrations in remote regions. The model PNC size distribution peak occurs at the same or smaller particle size as the observed peak at five measurement sites spread across Europe. Total PNC is underestimated at Northern and Central European sites and accumulation mode PNC is underestimated at all investigated sites. On the other hand the model performs well for particle mass, including secondary inorganic aerosol components. Elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, both in terms of biogenic emissions and chemical transformation, and for nitrogen gas-particle partitioning. Updating the biogenic SOA scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation. An improved nitrogen partitioning model may also improve the description of condensational growth.

  12. THE DISSOCIATIVE RECOMBINATION OF PROTONATED ACRYLONITRILE, CH2CHCNH+, WITH IMPLICATIONS FOR THE NITRILE CHEMISTRY IN DARK MOLECULAR CLOUDS AND THE UPPER ATMOSPHERE OF TITAN

    International Nuclear Information System (INIS)

    Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at ∼2 meV relative kinetic energy about 50% of the DR events involve only ruptures of X-H bonds (where X = C or N) while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ∼1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 x 10-6 (T/300) -0.80 cm3 s-1 for electron temperatures ranging from ∼10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan's upper atmosphere are discussed.

  13. The atmospheric circulation of a nine-hot Jupiter sample: Probing circulation and chemistry over a wide phase space

    CERN Document Server

    Kataria, Tiffany; Lewis, Nikole K; Visscher, Channon; Showman, Adam P; Fortney, Jonathan J; Marley, Mark S

    2016-01-01

    We present results from an atmospheric circulation study of nine hot Jupiters that comprise a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths which suggest diverse cloud and haze properties in their atmospheres. By utilizing the specific system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model "grid" recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day-night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of K, which could imply large variations in Na, K, CO and CH4 abundances in those regions. These chemical variations can be large enough...

  14. Root herbivores drive changes to plant primary chemistry, but root loss is mitigated under elevated atmospheric CO2

    OpenAIRE

    McKenzie, Scott W.; Johnson, Scott N.; Jones, T. Hefin; Ostle, Nick J.; Hails, Rosemary S.; Vanbergen, Adam J.

    2016-01-01

    Above- and belowground herbivory represents a major challenge to crop productivity and sustainable agriculture worldwide. How this threat from multiple herbivore pests will change under anthropogenic climate change, via altered trophic interactions and plant response traits, is key to understanding future crop resistance to herbivory. In this study, we hypothesized that atmospheric carbon enrichment would increase the amount (biomass) and quality (C:N ratio) of crop plant resources for above-...

  15. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS): model description and application to a temperate deciduous forest canopy

    OpenAIRE

    R. D. Saylor

    2012-01-01

    Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs) and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA) mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formati...

  16. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    OpenAIRE

    Stemmler, I.; Lammel, G

    2010-01-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use since decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formatio...

  17. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    OpenAIRE

    Stemmler, I.; Lammel, G

    2010-01-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissio...

  18. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    OpenAIRE

    Stemmler, I.; Lammel, G

    2010-01-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation ...

  19. Climatology and atmospheric chemistry of the non-methane hydrocarbons ethane and propane over the North Atlantic

    OpenAIRE

    Detlev Helmig; Mauricio Muoz; Jacques Hueber; Claudio Mazzoleni; Lynn Mazzoleni; Owen, Robert C.; Maria Val-Martin; Paulo Fialho; Christian Plass-Duelmer; Palmer, Paul I.; Lewis, Alastair C.; Gabriele Pfister

    2015-01-01

    Abstract A record spanning ten years of non-methane hydrocarbon (NMHC) data from the Pico Mountain Observatory (PMO), Pico Island, Azores, Portugal, was analyzed for seasonal NMHC behavior, atmospheric processing, and trends, focusing on ethane and propane. The location of this site in the central North Atlantic, at an elevation of 2225 m asl, allows these data to be used to investigate the background conditions and pollution transport events occurring in the lower free North Atlantic troposp...

  20. Water Planets in the Habitable Zone: Atmospheric Chemistry, Observable Features, and the case of Kepler-62e and -62f

    OpenAIRE

    Kaltenegger, L.; Sasselov, D.; Rugheimer, S.

    2013-01-01

    Planets composed of large quantities of water that reside in the habitable zone are expected to have distinct geophysics and geochemistry of their surfaces and atmospheres. We explore these properties motivated by two key questions: whether such planets could provide habitable conditions and whether they exhibit discernable spectral features that distinguish a water-planet from a rocky Earth-like planet. We show that the recently discovered planets Kepler-62e and -62f are the first viable can...

  1. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century

    Directory of Open Access Journals (Sweden)

    S. Wu

    2012-02-01

    Full Text Available The effects of future land use and land cover change on the chemical composition of the atmosphere and air quality are largely unknown. To investigate the potential effects associated with future changes in vegetation driven by atmospheric CO2 concentrations, climate, and anthropogenic land use over the 21st century, we performed a series of model experiments combining a general circulation model with a dynamic global vegetation model and an atmospheric chemical-transport model. Our results indicate that climate- and CO2-induced changes in vegetation composition and density between 2100 and 2000 could lead to decreases in summer afternoon surface ozone of up to 10 ppb over large areas of the northern mid-latitudes. This is largely driven by the substantial increases in ozone dry deposition associated with increases in vegetation density in a warmer climate with higher atmospheric CO2 abundance. Climate-driven vegetation changes over the period 2000–2100 lead to general increases in isoprene emissions, globally by 15% in 2050 and 36% in 2100. These increases in isoprene emissions result in decreases in surface ozone concentrations where the NOx levels are low, such as in remote tropical rainforests. However, over polluted regions, such as the northeastern United States, ozone concentrations are calculated to increase with higher isoprene emissions in the future. Increases in biogenic emissions also lead to higher concentrations of secondary organic aerosols, which increase globally by 10% in 2050 and 20% in 2100. Summertime surface concentrations of secondary organic aerosols are calculated to increase by up to 1 μg m−3 and double for large areas in Eurasia over the period of 2000–2100. When we use a scenario of future anthropogenic land use change, we find less increase in global isoprene emissions due to replacement of higher-emitting forests by lower-emitting cropland. The global

  2. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  3. Applications of the Atmosphere-Land Exchange Inverse (ALEXI) Model and Highlights of Current Projects

    Science.gov (United States)

    Hain, C.; Mecikalski, J. R.; Schultz, L. A.

    2009-12-01

    The Atmosphere-Land Exchange Inverse (ALEXI) model was developed as an auxiliary means for estimating surface fluxes over large regions primarily using remote-sensing data. The model is unique in that no information regarding antecedent precipitation or moisture storage capacity is required - the surface moisture status is deduced from a radiometric temperature change signal. ALEXI uses the available water fraction (fAW) as a proxy for soil moisture conditions. Combining fAW with ALEXI’s ability to provide valuable information about the partitioning of the surface energy budget, which can dictated largely by soil moisture conditions, accommodates the retrieval of an average fAW from the surface to the rooting depth of the active vegetation. Using this approach has many advantages over traditional energy flux and soil moisture measurements (towers with limited range and large monetary/personnel costs) or approximation methods (parametrization of the relationship between available water and soil moisture) in that data is available both spatially and temporal over a large, non-homogeneous, sometimes densely vegetated area. Being satellite based, the model can be run anywhere thermal infrared satellite information is available. The current ALEXI climatology dates back to March 2000 and covers the continental U.S. Examples of projects underway using the ALEXI soil moisture retrieval tools include the Southern Florida Water Management Project; NASA’s Project Nile, which proposes to acquire hydrological information for the water management in the Nile River basin; and a USDA pro ject to expand the ALEXI framework to include Europe and parts of northern Africa using data from the European geostationary satellites, specifically the Meteosat Second Generation (MSG) Series.

  4. Synthesis and Hydrogenation of Disubstituted Chalcones: A Guided-Inquiry Organic Chemistry Project

    Science.gov (United States)

    Mohrig, Jerry R.; Hammond, Christina Noring; Schatz, Paul F.; Davidson, Tammy A.

    2009-01-01

    Guided-inquiry experiments offer the same opportunities to participate in the process of science as classical organic qualitative analysis used to do. This three-week guided-inquiry project involves an aldol-dehydration synthesis of a chalcone chosen from a set of nine, followed by a catalytic transfer hydrogenation reaction using ammonium formate…

  5. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    Science.gov (United States)

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  6. GILDES model studies of aqueous chemistry. 5: Initial SO{sub 2}-induced atmospheric corrosion of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Tidblad, J.; Graedel, T.E. [Lucent Technologies, Murray Hill, NJ (United States). Bell Labs.

    1997-08-01

    The authors report in this paper the first theoretical treatment of kinetic and equilibrium chemical processes of the atmospheric corrosion of nickel performed with the multiregime GILDES model. The formulation for exposure of nickel to sulfur dioxide in humidified air involves 67 reactions for 35 species and includes a representation of the protective properties of corrosion products. Two protective mechanisms are investigated: transport through the corrosion products of corrosive agents and blocking of the active surface area. The latter appears to dominate. Results for corrosion products and corrosion rate are compared with those for laboratory exposures at 210 ppb SO{sub 2}, and agreement is excellent.

  7. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century

    Directory of Open Access Journals (Sweden)

    S. Wu

    2011-05-01

    Full Text Available The effects of future land use and land cover change on the chemical composition of the atmosphere and air quality are largely unknown. To investigate the potential effects associated with future changes in vegetation driven by atmospheric CO2 concentrations, climate, and anthropogenic land use over the 21st century, we performed a series of model experiments combining a general circulation model with a dynamic global vegetation model and an atmospheric chemical-transport model. Our results indicate that climate- and CO2-induced changes in vegetation composition and density could lead to decreases in summer afternoon surface ozone of up to 10 ppb over large areas of the northern mid-latitudes. This is largely driven by the substantial increases in ozone dry deposition associated with changes in the composition of temperate and boreal forests where conifer forests are replaced by those dominated by broadleaf tree types, as well as a CO2-driven increase in vegetation density. Climate-driven vegetation changes over the period 2000–2100 lead to general increases in isoprene emissions, globally by 15 % in 2050 and 36 % in 2100. These increases in isoprene emissions result in decreases in surface ozone concentrations where the NOx levels are low, such as in remote tropical rainforests. However, over polluted regions, such as the northeastern United States, ozone concentrations are calculated to increase with higher isoprene emissions in the future. Increases in biogenic emissions also lead to higher concentrations of secondary organic aerosols, which increase globally by 10 % in 2050 and 20 % in 2100. Surface concentrations of secondary organic aerosols are calculated to increase by up to 1 μg m−3 for large areas in Eurasia. When we use a scenario of future anthropogenic land use change, we find less increase in global isoprene emissions due to replacement of higher-emitting forests by lower

  8. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2007-01-01

    Full Text Available The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO very well. However, for the background in the northern hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion, and in the high latitude southern hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly by means of sensitivity studies.

  9. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2007-05-01

    Full Text Available The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO very well. However, for the background in the Northern Hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion, and in the high latitude Southern Hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes and isoprene are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly by means of sensitivity studies.

  10. Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration

    International Nuclear Information System (INIS)

    The temperature response of atmosphere–ocean climate models is analyzed based on atmospheric CO2 step-function-change simulations submitted to phase 5 of the Coupled Model Intercomparison Project (CMIP5). From these simulations and a control simulation, we estimate adjusted radiative forcing, the climate feedback parameter, and effective climate system thermal inertia, and we show that these results can be used to predict the temperature response to time-varying CO2 concentrations. We evaluate several kinds of simple mathematical models for the CMIP5 simulation results, including single- and multiple-exponential models and a one-dimensional ocean-diffusion model. All of these functional forms, except the single-exponential model, can produce curves that fit most CMIP5 results quite well for both continuous and step-function CO2-change pathways. Choice of model for any particular application would include consideration of factors such as the number of free parameters to be constrained and the conception of the underlying mechanistic model. Smooth curve fits to the CMIP5 simulation results realize approximately half (range 38%–61%) of equilibrium warming within the first decade after a CO2 concentration increase, but approximately one quarter (range 14%–40%) of equilibrium warming occurs more than a century after the CO2 increase. Following an instantaneous quadrupling of atmospheric CO2, fits to four of the 20 simulation results reach 4 ° C of warming within the first decade, but fits to three of the 20 simulation results require more than a century to reach 4 ° C. These results indicate the need to reduce uncertainty in the temporal response of climate models and to consider this uncertainty when evaluating the risks posed by climate change. (letter)

  11. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    Science.gov (United States)

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  12. Role of excited CF3CFHO radicals in the atmospheric chemistry of HFC-134a

    DEFF Research Database (Denmark)

    Wallington, T.J.; Hurley, M.D.; Fracheboud, J.M.;

    1996-01-01

    Oz, CF3CFHO + O-2 --> CF3C(O)F + HO2, and decomposition via C-C bond scission, CF3CFHO + M --> CS3 + HC(O)F + M. CF3CFHO radicals were produced by two different reactions: either via the self-reaction of CF3CFHO2 radicals or via the CF3CFHO2 + NO reaction. It was found that decomposition was much...... more important when CF3CFHO radicals were produced via the CF3CFHO2 + NO reaction than when they were produced via the self-reaction of CF3CFHO2 radicals. We ascribe this observation to the formation of vibrationally excited CF3CFHO* radicals in the CF3CFHO2 + NO reaction. Rapid decomposition of CF3......The atmospheric degradation of HFC-134a (CF3CFH2) proceeds via the formation of CF3CFHO radicals, Long path length FTIR environmental chamber techniques were used to study the atmospheric fate of CF3CFHO radicals. Two competing reaction pathways were identified for CF3CFHO radicals: reaction with...

  13. The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC

    Directory of Open Access Journals (Sweden)

    L. J. Labrador

    2005-01-01

    Full Text Available The impact of different assumptions concerning the source magnitude as well as the vertical placement of lightning-produced nitrogen oxides is studied using the global chemistry transport model MATCH-MPIC. The responses of NOx, O3, OH, HNO3 and peroxyacetyl-nitrate (PAN are investigated. A marked sensitivity to both parameters is found. NOx burdens globally can be enhanced by up to 100% depending on the vertical placement and source magnitude strength. In all cases, the largest enhancements occur in the tropical upper troposphere, where lifetimes of most trace gases are longer and where they thus become more susceptible to long-range transport by large-scale circulation patterns. Comparison with observations indicate that 0 and 20 Tg(N/yr production rates of NOx from lightning are too low and too high, respectively. However, no single intermediate production rate or vertical distribution can be singled out as best fitting the observations, due to the large scatter in the datasets. This underscores the need for further measurement campaigns in key regions, such as the tropical continents.

  14. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 28 May 1982 - 04 June 1982 (NODC Accession 8300008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from May 28, 1982 to June 4, 1982. Data...

  15. Water physics and chemistry data from moored current meter and bottle casts in the Gulf of Mexico as part of the Brine Disposal project, 20 November 1980 - 16 March 1981 (NODC Accession 8100530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Gulf of Mexico from November 20, 1980 to March 16, 1981. Data...

  16. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project, 28 April 1977 - 19 October 1977 (NODC Accession 7800053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from April 28, 1977 to October 19,...

  17. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 04 September 1982 - 15 September 1982 (NODC Accession 8300162)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from September 4, 1982 to September 15,...

  18. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 21 April 1980 - 18 July 1980 (NODC Accession 8100501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from April 21, 1980 to July 18, 1980....

  19. Water physics and chemistry data from moored current meter and bottle casts in the New York Bight as part of the North East Monitoring Program (NEMP) project, 10 April 1984 - 31 October 1984 (NODC Accession 8500225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the New York Bight from April 10, 1984 to October 31, 1984. Data were...

  20. Water physics and chemistry data from moored current meter and bottle casts in the Gulf of Mexico as part of the Brine Disposal project, 27 June 1980 - 31 October 1980 (NODC Accession 8100401)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Gulf of Mexico from June 27, 1980 to October 31, 1980. Data were...