WorldWideScience

Sample records for atlantic reef fishes

  1. Atlantic reef fish biogeography and evolution

    Science.gov (United States)

    Floeter, S.R.; Rocha, L.A.; Robertson, D.R.; Joyeux, J.C.; Smith-Vaniz, W.F.; Wirtz, P.; Edwards, A.J.; Barreiros, J.P.; Ferreira, C.E.L.; Gasparini, J.L.; Brito, A.; Falcon, J.M.; Bowen, B.W.; Bernardi, G.

    2008-01-01

    Aim: To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. Location: Atlantic Ocean. Methods: The distributions of 2605 species of reef fishes were compiled for 25 areas of the Atlantic and southern Africa. Maximum-parsimony and distance analyses were employed to investigate biogeographical relationships among those areas. A collection of 26 phylogenies of various Atlantic reef fish taxa was used to assess patterns of origin and diversification relative to evolutionary scenarios based on spatio-temporal sequences of species splitting produced by geological and palaeoceanographic events. We present data on faunal (species and genera) richness, endemism patterns, diversity buildup (i.e. speciation processes), and evaluate the operation of the main biogeographical barriers and/or filters. Results: Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as 'filters' by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism

  2. Comparative visual ecophysiology of mid-Atlantic temperate reef fishes

    Directory of Open Access Journals (Sweden)

    Andrij Z. Horodysky

    2013-11-01

    The absolute light sensitivities, temporal properties, and spectral sensitivities of the visual systems of three mid-Atlantic temperate reef fishes (Atlantic spadefish [Ephippidae: Chaetodipterus faber], tautog [Labridae: Tautoga onitis], and black sea bass [Serranidae: Centropristis striata] were studied via electroretinography (ERG. Pelagic Atlantic spadefish exhibited higher temporal resolution but a narrower dynamic range than the two more demersal foragers. The higher luminous sensitivities of tautog and black sea bass were similar to other benthic and demersal coastal mid-Atlantic fishes. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of the three species spanned 400–610 nm, with high likelihood of cone dichromacy providing the basis for color and contrast discrimination. Significant day-night differences in spectral responses were evident in spadefish and black sea bass but not tautog, a labrid with characteristic structure-associated nocturnal torpor. Atlantic spadefish responded to a wider range of wavelengths than did deeper-dwelling tautog or black sea bass. Collectively, these results suggest that temperate reef-associated fishes are well-adapted to their gradient of brighter to dimmer photoclimates, representative of their unique ecologies and life histories. Continuing anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may however impede visual foraging and reproductive signaling in temperate reef fishes.

  3. Invasive lionfish drive Atlantic coral reef fish declines.

    Directory of Open Access Journals (Sweden)

    Stephanie J Green

    Full Text Available Indo-Pacific lionfish (Pterois volitans and P. miles have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.

  4. 76 FR 78245 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery...

    Science.gov (United States)

    2011-12-16

    ... for the Gulf Council's Red Drum, Reef Fish, Shrimp, and Coral and Coral Reefs FMPs (Generic ACL..., and South Atlantic; Gulf of Mexico Reef Fish Fishery; South Atlantic Snapper-Grouper Fishery AGENCY... (Secretary) under section 304(f) of the Magnuson-Stevens Fishery Conservation and Management Act...

  5. Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean

    Directory of Open Access Journals (Sweden)

    Robertson D Ross

    2008-05-01

    Full Text Available Abstract Background Two processes may contribute to the formation of global centers of biodiversity: elevated local speciation rates (the center of origin hypothesis, and greater accumulation of species formed elsewhere (the center of accumulation hypothesis. The relative importance of these processes has long intrigued marine biogeographers but rarely has been tested. Results To examine how origin and accumulation affected the Greater Caribbean center of diversity, we conducted a range-wide survey of mtDNA cytochrome b in the widespread Atlantic reef damselfish Chromis multilineata (N = 183 that included 10 locations in all four tropical Atlantic biogeographic provinces: the Greater Caribbean, Brazil, the mid-Atlantic ridge, and the tropical eastern Atlantic. We analyzed this data and re-evaluated published genetic data from other reef fish taxa (wrasses and parrotfishes to resolve the origin and dispersal of mtDNA lineages. Parsimony networks, mismatch distributions and phylogenetic analyses identify the Caribbean population of C. multilineata as the oldest, consistent with the center of origin model for the circum-Atlantic radiation of this species. However, some Caribbean haplotypes in this species were derived from Brazilian lineages, indicating that mtDNA diversity has not only originated but also accumulated in the Greater Caribbean. Data from the wrasses and parrotfishes indicate an origin in the Greater Caribbean in one case, Caribbean origin plus accumulation in another, and accumulation in the remaining two. Conclusion Our analyses indicate that the Greater Caribbean marine biodiversity hotspot did not arise through the action of a single mode of evolutionary change. Reef fish distributions at the boundaries between Caribbean and Brazilian provinces (the SE Caribbean and NE Brazil, respectively indicate that the microevolutionary patterns we detected in C. multilineata and other reef fishes translate into macroevolutionary processes

  6. 76 FR 64327 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery...

    Science.gov (United States)

    2011-10-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA727 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery; South Atlantic Snapper-Grouper Fishery...

  7. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes.

    Science.gov (United States)

    Luiz, Osmar J; Madin, Joshua S; Robertson, D Ross; Rocha, Luiz A; Wirtz, Peter; Floeter, Sergio R

    2012-03-01

    How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon-Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers.

  8. Reef fish and benthic assemblages of the Trindade and Martin Vaz Island group, southwestern Atlantic

    Directory of Open Access Journals (Sweden)

    Guilherme Henrique Pereira-Filho

    2011-09-01

    Full Text Available The Trindade and Martin Vaz island group (TMVIG is located at about 1,120 km off the Brazilian coast. Despite its importance, highlighted by the presence of several endemic fish species, the TMVIG lacks detailed information on the structure of fish and benthic assemblages. Presented here is the first quantitative assessment of reef fish and benthic assemblages of the TMVIG in a depth gradient ranging from 5 to 45 m. Additional qualitative information on reef assemblages between 45 and 100 m was obtained using advanced gas diving techniques (TRIMIX and a remotely operated vehicle (ROV. Similarly to other Brazilian oceanic islands, the TMVIG possesses depauperated fish and benthic assemblages, possibly due to its isolation and small size in comparison to the mainland. Depth was the most important factor affecting the structure of fish assemblages, with the density of most fish species declining with depth. Deep reefs (> 45 m were characterized by the presence of extensive rhodolith beds and rocky reefs sparsely covered with crustose coralline algae, black coral (Cirripathes sp. and a few massive or plate-like reef corals. Part-time or obligatory planktivorous fishes (e.g. Cephalopholis furcifer and Clepticus brasiliensis also dominated deep reefs. Similar characteristics were recorded in mesophotic reef ecosystems across the Western Atlantic. Evidence of overfishing (obtained here and in other recent studies, the presence of four endemic and restricted range fish species, as well as the increase in number of new (and still undescribed endemic taxa, indicates that the adoption of precautionary conservation measures are urgently needed in order to maintain the fragile and unique ecosystems of the TMVIG.O conjunto insular de Trindade e Martin Vaz (CITMV está localizado a aproximadamente 1.120 km da costa brasileira. Apesar de sua importância, salientada pela presença de diversas espécies endêmicas de peixes, não existem informações detalhadas

  9. Reef fish structure and distribution in a south-western Atlantic Ocean tropical island.

    Science.gov (United States)

    Pinheiro, H T; Ferreira, C E L; Joyeux, J-C; Santos, R G; Horta, P A

    2011-12-01

    The community structure of the reef fish fauna of Trindade Island, a volcanic oceanic island located 1160 km off the coast of Brazil, is described based on intensive visual censuses. Seventy-six species were encountered in 252 censuses, with mean ± S.E. of 99 ± 3 individuals and 15.7 ± 0.3 species 40 m(-2) transect. The average fish biomass, calculated from length-class estimation, was 22.1 kg 40 m(-2) transect. The species contributing most to biomass were, in decreasing order, Melichthys niger, Cephalopholis fulva, Kyphosus spp., Holocentrus adscensionis, Sparisoma amplum, Sparisoma axillare, Acanthurus bahianus and Epinephelus adscensionis. Carnivorous fishes were the largest trophic group in terms of biomass, followed by omnivores and roving herbivores. The two predominant types of reef habitat, fringing reefs built by coralline algae and rocky reefs made of volcanic boulders, showed significant differences in the biomass and the abundance of the trophic guilds. Within each habitat type, significant differences in species richness, density and biomass were detected among crest, slope and interface zones. Although similar in overall species composition to coastal reefs in Brazil, the fish fauna of Trindade Island shares certain characteristics, such as a high abundance of planktivores, with other Brazilian oceanic islands. Despite comparatively high fish biomass, including the macro-carnivorous species habitually targeted by fisheries, signs of overfishing were evident. These findings highlight the urgency for a conservation initiative for this isolated, unique and vulnerable reef system.

  10. Mesophotic reef fish assemblages of the remote St. Peter and St. Paul's Archipelago, Mid-Atlantic Ridge, Brazil

    Science.gov (United States)

    Rosa, Marcos Rogerio; Alves, Aline Cristina; Medeiros, Diego Valverde; Coni, Ericka Oliveira Cavalcanti; Ferreira, Camilo Moitinho; Ferreira, Beatrice Padovani; de Souza Rosa, Ricardo; Amado-Filho, Gilberto Menezes; Pereira-Filho, Guilherme Henrique; de Moura, Rodrigo Leão; Thompson, Fabiano Lopes; Sumida, Paulo Yukio Gomes; Francini-Filho, Ronaldo Bastos

    2016-03-01

    Mesophotic reef fish assemblages (30-90 m depth) of the small and remote St. Peter and St. Paul's Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil, were characterized using remotely operated vehicles. Ordination analyses identified distinct fish assemblages in the upper (30-50 m) and lower (50-90 m) mesophotic zones, the former characterized by high abundances of species that are also abundant at euphotic reefs ( Caranx lugubris, Melichthys niger, Stegastes sanctipauli and Chromis multilineata) and the latter dominated by two mesophotic specialists ( Prognathodes obliquus and Chromis enchrysura). Planktivores dominated fish assemblages, particularly in the upper mesophotic zone, possibly due to a greater availability of zooplankton coming from the colder Equatorial Undercurrent in mesophotic depths of the SPSPA. Turf algae, fleshy macroalgae and scleractinian corals dominated benthic assemblages between 30 and 40 m depth, while bryozoans, black corals and sponges dominated between 40 and 90 m depth. Canonical correspondence analysis explained 74 % of the relationship between environmental characteristics (depth, benthic cover and complexity) and structure of fish assemblages, with depth as the most important independent variable. Juveniles of Bodianus insularis and adults of P. obliquus and C. enchrysura were clearly associated with branching black corals ( Tanacetipathes spp.), suggesting that black corals play key ecological roles in lower mesophotic reefs of the SPSPA. Results from this study add to the global database about mesophotic reef ecosystems (MREs) and provide a baseline for future evaluations of possible anthropogenic and natural disturbances on MREs of the SPSPA.

  11. Dynamics of fish assemblages on a continuous rocky reef and adjacent unconsolidated habitats at Fernando de Noronha Archipelago, tropical western Atlantic

    Directory of Open Access Journals (Sweden)

    Paulo R. Medeiros

    Full Text Available In recent years, many studies investigated how density-dependent factors, such as shortages in microhabitat and food availability influence the structure of reef fish assemblages. Most of what is currently known, however, comes from comparisons of isolated patch reefs and from correlations between fish abundance and one or few microhabitat variables. In addition, most studies were done in the Caribbean and Indo-Pacific regions, whereas the South Atlantic region has been, to date, understudied. The present study evaluated spatial and temporal variations in reef fish abundance and species richness in a continuous rocky reef and adjacent unconsolidated habitats in a Southwestern Atlantic reef, using underwater techniques to assess both fish numbers and microhabitat variables (depth, rugosity, number of crevices and percent cover of live benthic organisms, bare rock, sand, and limestone. Higher species richness was observed at consolidated substratum stations on both sampling periods (May and October, but fish abundance did not show a significant spatial variation. Topographical complexity and percent cover of algae (except coralline algae were amongst the most important determinants of species richness, and correlations between fish size and refuge crevice size were observed. The non-random patterns of spatial variation in species richness, and to a lesser extent, fish abundance, were related to differences in substratum characteristics and the inherent characteristics of fishes (i.e. habitat preferences and not to geographical barriers restraining fish movement. This study highlights the importance of concomitantly assessing several microhabitat variables to determine their relative influence in reef fish assemblages.

  12. 77 FR 67574 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-11-13

    ...SnapperandReefFish.htm . FOR FURTHER INFORMATION CONTACT: Rich Malinowski, Southeast Regional Office, telephone 727-824-5305, email rich.malinowski@noaa.gov . SUPPLEMENTARY INFORMATION: The reef fish fishery of...

  13. 77 FR 32572 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Science.gov (United States)

    2012-06-01

    ..., and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic States; Exempted Fishing Permit... South Carolina Aquarium to collect, with certain conditions, various species of reef fish, crabs, and...

  14. 77 FR 31734 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-05-30

    ... through regulations at 50 CFR part 622 under the authority of the Magnuson-Stevens Fishery Conservation..., from 2011 to 2012. In 2011, all Gulf states, except Texas, implemented compatible fishing seasons for... component of the reef fish fishery tends to fish in deeper water and has a higher discard mortality rate...

  15. 78 FR 37208 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico...

    Science.gov (United States)

    2013-06-20

    ... Council (Council) and NMFS to use when making future management decisions for Caribbean reef fish. DATES... be provided to the Council and NMFS to use when making future management decisions for Caribbean...

  16. 76 FR 4084 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2011-01-24

    ... for submitting comments. Mail: Rich Malinowski, Southeast Regional Office, NMFS, 263 13th Avenue South... CONTACT: Rich Malinowski, 727-824-5305; fax: 727-824-5308. SUPPLEMENTARY INFORMATION: The reef fish...

  17. Between-Habitat Variation of Benthic Cover, Reef Fish Assemblage and Feeding Pressure on the Benthos at the Only Atoll in South Atlantic: Rocas Atoll, NE Brazil.

    Directory of Open Access Journals (Sweden)

    G O Longo

    Full Text Available The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most "pristine" areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp. prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos

  18. Between-Habitat Variation of Benthic Cover, Reef Fish Assemblage and Feeding Pressure on the Benthos at the Only Atoll in South Atlantic: Rocas Atoll, NE Brazil.

    Science.gov (United States)

    Longo, G O; Morais, R A; Martins, C D L; Mendes, T C; Aued, A W; Cândido, D V; de Oliveira, J C; Nunes, L T; Fontoura, L; Sissini, M N; Teschima, M M; Silva, M B; Ramlov, F; Gouvea, L P; Ferreira, C E L; Segal, B; Horta, P A; Floeter, S R

    2015-01-01

    The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most "pristine" areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp.) prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos between open and

  19. 77 FR 64237 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-10-19

    ... to current commercial fishing practices and to improve safety-at-sea in the Gulf reef fish fishery... improving safety-at-sea and allowing compliance with current Occupational Safety and Health Administration... the location of individual vessels in the fleet. Having a VMS on board makes it clear when a vessel is...

  20. 76 FR 41764 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the...

    Science.gov (United States)

    2011-07-15

    ... Atlantic; Coral and Coral Reefs off the Southern Atlantic States; Exempted Fishing Permit AGENCY: National... artificial reefs without additional authorization. A report on the project findings is due at the end of the...

  1. 76 FR 50979 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2011-08-17

    ... Resources of the Gulf of Mexico (FMP), as prepared and submitted by the Gulf of Mexico Fishery Management..., speculation, or environmental protection. As a result, prospective entities may be businesses, nonprofit..., all entities that possess a valid or renewable commercial reef fish permit are assumed to comprise the...

  2. 75 FR 2469 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2010-01-15

    ... Amendment 31 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared... protection for threatened loggerhead sea turtles in compliance with ESA. To address this issue in the short... would need to possess an active or renewable (within the one year grace period immediately following...

  3. 78 FR 5404 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2013-01-25

    ... fields, and enter or attach your comments. Mail: Submit written comments to Rich Malinowski, Southeast... FURTHER INFORMATION CONTACT: Rich Malinowski, Southeast Regional Office, NMFS, telephone 727-824-5305; email: rich.malinowski@noaa.gov . SUPPLEMENTARY INFORMATION: The reef fish fishery of the Gulf of Mexico...

  4. 75 FR 35335 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery...

    Science.gov (United States)

    2010-06-22

    ... from Rich Malinowski, NMFS, Southeast Regional Office, 263 13th Avenue South, St. Petersburg, FL 33701; telephone: 727-824-5305. FOR FURTHER INFORMATION CONTACT: Rich Malinowski, telephone: 727-824- 5305, e-mail Rich.Malinowski@noaa.gov . SUPPLEMENTARY INFORMATION: The reef fish fishery of the Gulf is managed...

  5. 78 FR 14225 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery...

    Science.gov (United States)

    2013-03-05

    ... Malinowski, NMFS, Southeast Regional Office, 263 13th Avenue South, St. Petersburg, FL 33701; telephone: 727-824-5305. FOR FURTHER INFORMATION CONTACT: Rich Malinowski, telephone: 727-824- 5305, or email: Rich.Malinowski@noaa.gov . SUPPLEMENTARY INFORMATION: The reef fish fishery of the Gulf is managed under the...

  6. 77 FR 39460 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-07-03

    ... ``Instructions'' for submitting comments. Mail: Rich Malinowski, Southeast Regional Office, NMFS, 263 13th Avenue....gov . FOR FURTHER INFORMATION CONTACT: Rich Malinowski, Southeast Regional Office, NMFS, telephone 727-824-5305; email: rich.malinowski@noaa.gov . SUPPLEMENTARY INFORMATION: The Reef fish fishery of the...

  7. 75 FR 39917 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the...

    Science.gov (United States)

    2010-07-13

    ..., and South Atlantic; Coral and Coral Reefs off the Southern Atlantic States; Exempted Fishing Permit... for Coral, Coral Reefs, and Live/Hardbottom Habitat of the South Atlantic Region. The applicant has... Coral Reef Research Foundation (CRRF, http://www.coralreefresearchfoundation.org/ ). Samples would be...

  8. Effects of tourist visitation and supplementary feeding on fish assemblage composition on a tropical reef in the Southwestern Atlantic

    Directory of Open Access Journals (Sweden)

    Martina Di Iulio Ilarri

    Full Text Available The effects of tourist visitation and food provisioning on fish assemblages were assessed by visual censuses (stationary technique carried out in a tropical reef in Northeastern Brazil. Comparisons of species abundance, richness, equitability, and trophic structure in the presence (PT and absence (AT of tourists suggest that tourist visitation and supplementary food influenced the structure of the fish assemblage, as follows: (a diversity, equitability and species richness were significantly higher on the AT period, while the abundance of a particular species was significantly higher during PT; (b trophic structure differed between the AT and PT periods, omnivores being more abundant during the latter period, while mobile invertivores, piscivores, roving herbivores and territorial herbivores were significantly more abundant on AT. Reef tourism is increasingly being regarded as an alternative to generate income for human coastal communities in the tropics. Therefore, closer examination of the consequences of the various components of this activity to reef system is a necessary step to assist conservation and management initiatives.

  9. 77 FR 25407 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Science.gov (United States)

    2012-04-30

    ..., and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic States; Exempted Fishing Permit... conditions, various species of reef fish, crabs, and lobsters in Federal waters off South Carolina and North... zones, or artificial reefs without additional authorization. Additionally, NMFS prohibits the possession...

  10. 76 FR 66273 - Snapper-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the...

    Science.gov (United States)

    2011-10-26

    ... Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic; Exempted Fishing Permit AGENCY... conditions, various species of reef fish and live rock in Federal waters off North Carolina. The specimens... Plan (FMP) for the Snapper-Grouper Fishery of the South Atlantic Region and the FMP for Coral, Coral...

  11. Tortugas Reef Fish Census (CRCP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a long term data set collecting visual census transect data on reef fishes at staions located at Rileys Hump, Tortugas South Ecological Reservee.

  12. 76 FR 30110 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Science.gov (United States)

    2011-05-24

    ..., and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic States; Exempted Fishing Permit... implementing the Fishery Management Plan for Coral, Coral Reefs, and Live/Hardbottom Habitat of the South... Cancer Institute ( http://www.cancer.gov/ ) and the Coral Reef Research Foundation (CRRF, http://www...

  13. Dynamics of fish assemblages on a continuous rocky reef and adjacent unconsolidated habitats at Fernando de Noronha Archipelago, tropical western Atlantic

    Directory of Open Access Journals (Sweden)

    Paulo R. Medeiros

    2011-01-01

    Full Text Available In recent years, many studies investigated how density-dependent factors, such as shortages in microhabitat and food availability influence the structure of reef fish assemblages. Most of what is currently known, however, comes from comparisons of isolated patch reefs and from correlations between fish abundance and one or few microhabitat variables. In addition, most studies were done in the Caribbean and Indo-Pacific regions, whereas the South Atlantic region has been, to date, understudied. The present study evaluated spatial and temporal variations in reef fish abundance and species richness in a continuous rocky reef and adjacent unconsolidated habitats in a Southwestern Atlantic reef, using underwater techniques to assess both fish numbers and microhabitat variables (depth, rugosity, number of crevices and percent cover of live benthic organisms, bare rock, sand, and limestone. Higher species richness was observed at consolidated substratum stations on both sampling periods (May and October, but fish abundance did not show a significant spatial variation. Topographical complexity and percent cover of algae (except coralline algae were amongst the most important determinants of species richness, and correlations between fish size and refuge crevice size were observed. The non-random patterns of spatial variation in species richness, and to a lesser extent, fish abundance, were related to differences in substratum characteristics and the inherent characteristics of fishes (i.e. habitat preferences and not to geographical barriers restraining fish movement. This study highlights the importance of concomitantly assessing several microhabitat variables to determine their relative influence in reef fish assemblages.Em anos recentes, vários estudos investigaram como os fatores dependentes da densidade, por exemplo, a diminuição na disponibilidade de microhabitats e alimento, influenciam a estrutura das assembleias de peixes. A maior parte do

  14. Effects of tourist visitation and supplementary feeding on fish assemblage composition on a tropical reef in the Southwestern Atlantic

    Directory of Open Access Journals (Sweden)

    Martina Di Iulio Ilarri

    2008-12-01

    Full Text Available The effects of tourist visitation and food provisioning on fish assemblages were assessed by visual censuses (stationary technique carried out in a tropical reef in Northeastern Brazil. Comparisons of species abundance, richness, equitability, and trophic structure in the presence (PT and absence (AT of tourists suggest that tourist visitation and supplementary food influenced the structure of the fish assemblage, as follows: (a diversity, equitability and species richness were significantly higher on the AT period, while the abundance of a particular species was significantly higher during PT; (b trophic structure differed between the AT and PT periods, omnivores being more abundant during the latter period, while mobile invertivores, piscivores, roving herbivores and territorial herbivores were significantly more abundant on AT. Reef tourism is increasingly being regarded as an alternative to generate income for human coastal communities in the tropics. Therefore, closer examination of the consequences of the various components of this activity to reef system is a necessary step to assist conservation and management initiatives.Os efeitos da visitação turística e da alimentação suplementar sobre a ictiocenose foram avaliados por meio de censos visuais (técnica estacionária em um recife tropical no nordeste do Brasil. Comparações entre a abundância das espécies, riqueza, equitabilidade e estrutura trófica na presença (PT e na ausência (AT de turistas sugerem que a visitação turística e a alimentação suplementar influenciam a estrutura da ictiocenose, como segue: (a diversidade, equitabilidade e riqueza de espécies foram significativamente maiores no período AT, enquanto a abundância de uma única espécie foi significativamente maior durante o período PT; (b a estrutura trófica foi diferente entre os períodos AT e PT, com os onívoros sendo mais abundantes no último período, enquanto invertívoros móveis, pisc

  15. Turtle cleaners: reef fishes foraging on epibionts of sea turtles in the tropical Southwestern Atlantic, with a summary of this association type

    Directory of Open Access Journals (Sweden)

    Cristina Sazima

    Full Text Available In the present study we record several instances of reef fish species foraging on epibionts of sea turtles (cleaning symbiosis at the oceanic islands of Fernando de Noronha Archipelago and near a shipwreck, both off the coast of Pernambuco State, northeast Brazil. Nine reef fish species and three turtle species involved in cleaning are herein recorded. Besides our records, a summary of the literature on this association type is presented. Postures adopted by turtles during the interaction are related to the habits of associated fishes. Feeding associations between fishes and turtles seem a localized, albeit common, phenomenon.

  16. A geological perspective on the degradation and conservation of western Atlantic coral reefs.

    Science.gov (United States)

    Kuffner, Ilsa B; Toth, Lauren T

    2016-08-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs-as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species-cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources

  17. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    Science.gov (United States)

    Kuffner, Ilsa B.; Toth, Lauren T.

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of

  18. 77 FR 38585 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-06-28

    ... for non-lethal sampling during the course of their normal fishing activities. This non-lethal sampling... releasing the live fish. The intent of this study is to provide regional age structure of recovering goliath... through the EFP to allow for- hire fishermen to temporarily possess goliath grouper for...

  19. 76 FR 23904 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2011-04-29

    ... accurately characterize the part of a fish's anatomy where the venting device should be utilized. Comments... comments that expressed general support of the action contained in this final rule. The remainder of the...

  20. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Manikandan, B.; Ravindran, J.; Shrinivaasu, S.; Marimuthu, N.; Paramasivam, K.

    the neighbouring reefs, it becomes important to maintain a no fishing zones of reef fish in the neighbourhood of reef fishing hotspots. In addition, long term data on diversity, quantity, age, size structure and sex of the reef fishes exploited...

  1. 78 FR 26607 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2013-05-07

    ... yield (OY) and prevent overfishing of vermilion and yellowtail snappers, reduce the regulatory burden to... councils to prevent overfishing and achieve, on a continuing basis, OY from ] federally managed fish stocks... indicated that the yellowtail snapper stock was not overfished or undergoing overfishing. As a result...

  2. 78 FR 12012 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2013-02-21

    ... to prevent overfishing of gag, and to reduce fishing pressure on other SWG species. The reduction in... to help achieve OY for the Gulf gag and other SWG resources and prevent overfishing from the stocks... requires NMFS and regional fishery management councils to prevent overfishing and achieve, on a...

  3. 78 FR 45894 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of Puerto Rico...

    Science.gov (United States)

    2013-07-30

    ...). If the average ex-vessel price were $5 per pound, the total annual revenue loss would be between $4... to mitigate for potential losses of parrotfish landings by increasing fishing time and any bait and... public comment (78 FR 15338). The proposed rule and Regulatory Amendment 4 outline the rationale for...

  4. 77 FR 42251 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-07-18

    ... crew best suited to the needs or conditions of the trip. As a result, although the effects are again...-Rulemaking Portal: http://www.regulations.gov , enter ``NOAA-NMFS-2011-0025'' in the search field and click... charter trip, but subsequently selling the catch. Under current commercial fishing practices, limiting...

  5. 77 FR 30507 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Science.gov (United States)

    2012-05-23

    ... Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION.... Fish collected under this EFP would be surrendered to LDWF personnel or other state fishery biologists... granted, include but are not limited to, a prohibition of conducting research within marine protected...

  6. Checklist of fishes from madagascar reef, campeche bank, méxico.

    Science.gov (United States)

    Zarco Perello, Salvador; Moreno Mendoza, Rigoberto; Simões, Nuno

    2014-01-01

    This study presents the first list of fish species from Madagascar Reef, Campeche Bank, Gulf of México. Field surveys and literature review identified 54 species belonging to 8 orders, 30 families and 43 genera, comprising both conspicuous and cryptic fishes. Species richness was lower at this reef site compared to reefs in the Mexican Caribbean, Veracruz or Tuxpan, but was similar to other reefs in the same region. Species composition was a mixture of species present in all the reef systems of the Mexican Atlantic. Hypoplectrusecosur was recorded here for the first time in the Gulf of Mexico, Mycteropercamicrolepis, Equetuslanceolatus and Chaetodipterusfaber were new records for the reefs of the Campeche Bank, Elacatinusxanthiprora was recorded for the second time in Mexico and expanded its known distribution westwards from Alacranes Reef and Sanopusreticulatus, endemic of the Yucatan state, was recorded here for the first time on a reef.

  7. Checklist of Fishes from Madagascar Reef, Campeche Bank, México

    Directory of Open Access Journals (Sweden)

    Salvador Zarco Perello

    2014-05-01

    Full Text Available This study presents the first list of fish species from Madagascar Reef, Campeche Bank, Gulf of México. Field surveys and literature review identified 54 species belonging to 8 orders, 30 families and 43 genera, comprising both conspicuous and cryptic fishes. Species richness was lower at this reef site compared to reefs in the Mexican Caribbean, Veracruz or Tuxpan, but was similar to other reefs in the same region. Species composition was a mixture of species present in all the reef systems of the Mexican Atlantic. Hypoplectrus ecosur was recorded here for the first time in the Gulf of Mexico, Mycteroperca microlepis, Equetus lanceolatus and Chaetodipterus faber were new records for the reefs of the Campeche Bank, Elacatinus xanthiprora was recorded for the second time in Mexico and expanded its known distribution westwards from Alacranes Reef and Sanopus reticulatus, endemic of the Yucatan state, was recorded here for the first time on a reef.

  8. Checklist of Fishes from Madagascar Reef, Campeche Bank, México

    Science.gov (United States)

    2014-01-01

    Abstract This study presents the first list of fish species from Madagascar Reef, Campeche Bank, Gulf of México. Field surveys and literature review identified 54 species belonging to 8 orders, 30 families and 43 genera, comprising both conspicuous and cryptic fishes. Species richness was lower at this reef site compared to reefs in the Mexican Caribbean, Veracruz or Tuxpan, but was similar to other reefs in the same region. Species composition was a mixture of species present in all the reef systems of the Mexican Atlantic. Hypoplectrus ecosur was recorded here for the first time in the Gulf of Mexico, Mycteroperca microlepis, Equetus lanceolatus and Chaetodipterus faber were new records for the reefs of the Campeche Bank, Elacatinus xanthiprora was recorded for the second time in Mexico and expanded its known distribution westwards from Alacranes Reef and Sanopus reticulatus, endemic of the Yucatan state, was recorded here for the first time on a reef. PMID:24891834

  9. Turtle cleaners: reef fishes foraging on epibionts of sea turtles in the tropical Southwestern Atlantic, with a summary of this association type

    Directory of Open Access Journals (Sweden)

    Cristina Sazima

    2010-03-01

    Full Text Available In the present study we record several instances of reef fish species foraging on epibionts of sea turtles (cleaning symbiosis at the oceanic islands of Fernando de Noronha Archipelago and near a shipwreck, both off the coast of Pernambuco State, northeast Brazil. Nine reef fish species and three turtle species involved in cleaning are herein recorded. Besides our records, a summary of the literature on this association type is presented. Postures adopted by turtles during the interaction are related to the habits of associated fishes. Feeding associations between fishes and turtles seem a localized, albeit common, phenomenon.No presente estudo registramos diversos episódios de peixes recifais alimentando-se de epibiontes sobre o corpo de tartarugas marinhas (simbiose de limpeza nas ilhas oceânicas do arquipélago de Fernando de Noronha e próximo a um naufrágio na costa de Pernambuco, nordeste do Brasil. Nove espécies de peixes recifais e três espécies de tartarugas envolvidas nas associações são aqui registradas. Além de nossos registros, apresentamos também um resumo da literatura sobre o tema. As posturas adotadas pelas tartarugas durante as interações estão relacionadas com os hábitos dos peixes associados. Associações alimentares entre peixes e tartarugas podem ser consideradas como um fenômeno local, embora comum.

  10. Fishing down nutrients on coral reefs

    Science.gov (United States)

    Allgeier, Jacob E.; Valdivia, Abel; Cox, Courtney; Layman, Craig A.

    2016-08-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management.

  11. Fishing degrades size structure of coral reef fish communities.

    Science.gov (United States)

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016

  12. Microbial and sponge loops modify fish production in phase-shifting coral reefs.

    Science.gov (United States)

    Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L

    2015-10-01

    Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. SEAMAP Caribbean Reef Fish Survey (PC1202, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate...

  14. SEAMAP Caribbean Reef Fish Survey (PC1202, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Caribbean Reef Fish Survey were to assess relative abundance of reef fish species around the US Caribbean Islands, estimate...

  15. 2013 SEAMAP Reef Fish Survey (PC1302, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2013 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  16. 2012 SEAMAP Reef Fish Survey (PC1201, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  17. 2012 SEAMAP Reef Fish Survey (PC1201, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2012 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  18. 2013 SEAMAP Reef Fish Survey (PC1302, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives of the 2013 SEAMAP Reef Fish Survey were to collect video data of reef fish on western Gulf of Mexico shelf-edge banks to facilitate assessments of...

  19. Tropical fishes dominate temperate reef fish communities within western Japan.

    Science.gov (United States)

    Nakamura, Yohei; Feary, David A; Kanda, Masaru; Yamaoka, Kosaku

    2013-01-01

    Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008-2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic

  20. Tropical fishes dominate temperate reef fish communities within western Japan.

    Directory of Open Access Journals (Sweden)

    Yohei Nakamura

    Full Text Available Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay; the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008-2010. This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable

  1. Mangroves enhance the biomass of coral reef fish communities in the Caribbean

    Science.gov (United States)

    Mumby, Peter J.; Edwards, Alasdair J.; Ernesto Arias-González, J.; Lindeman, Kenyon C.; Blackwell, Paul G.; Gall, Angela; Gorczynska, Malgosia I.; Harborne, Alastair R.; Pescod, Claire L.; Renken, Henk; C. C. Wabnitz, Colette; Llewellyn, Ghislane

    2004-02-01

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.

  2. Biomass and Abundance of Herbivorous Fishes on Coral Reefs off ...

    African Journals Online (AJOL)

    Keywords: Herbivorous fish, biomass, coral cover, algal turf, fishing, Marine. Protected ... effects of fishing intensity, reef geomorphology and benthic cover. Distance from the ... 2003), pollution ..... derived from distance from human community.

  3. Nocturnal relocation of adult and juvenile coral reef fishes in response to reef noise

    Science.gov (United States)

    Simpson, S. D.; Jeffs, A.; Montgomery, J. C.; McCauley, R. D.; Meekan, M. G.

    2008-03-01

    Juvenile and adult reef fishes often undergo migration, ontogenic habitat shifts, and nocturnal foraging movements. The orientation cues used for these behaviours are largely unknown. In this study, the use of sound as an orientation cue guiding the nocturnal movements of adult and juvenile reef fishes at Lizard Island, Great Barrier Reef was examined. The first experiment compared the movements of fishes to small patch reefs where reef noise was broadcast, with those to silent reefs. No significant responses were found in the 79 adults that were collected, but the 166 juveniles collected showed an increased diversity each morning on the reefs with broadcast noise, and significantly greater numbers of juveniles from three taxa (Apogonidae, Gobiidae and Pinguipedidae) were collected from reefs with broadcast noise. The second experiment compared the movement of adult and juvenile fishes to reefs broadcasting high (>570 Hz), or low (Gobiidae and Blenniidae) preferred these reefs. A similar trend was observed in the 372 juveniles collected, with higher diversity at the reefs with low frequency noises. This preference was seen in the juvenile apogonids; however, juvenile gobiids were attracted to both high and low sound treatments equally, and juvenile stage Acanthuridae preferred the high frequency noises. This evidence that juvenile and adult reef fishes orientate with respect to the soundscape raises important issues for management, conservation and the protection of sound cues used in natural behaviour.

  4. Direct evaluation of macroalgal removal by herbivorous coral reef fishes

    Science.gov (United States)

    Mantyka, C. S.; Bellwood, D. R.

    2007-06-01

    Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.

  5. Restoration of a temperate reef: Effects on the fish community

    DEFF Research Database (Denmark)

    Støttrup, Josianne; Stenberg, Claus; Dahl, Karsten

    2014-01-01

    The extraction of large boulders from coastal reefs for construction of harbours and coastal protection has led to habitat degradation for local fish populations through the destruction of cavernous reefs and changes in macroalgal cover resulting from a loss of substrate. The temperate reef at Læ...

  6. Trans-Atlantic rafting by the brooding reef coral

    NARCIS (Netherlands)

    Hoeksema, B.W.; Roos, P.J.; Cadée, G.C.

    2012-01-01

    including corrigendumSpecimens of the brooding reef coral Favia fragum were found on man-made flotsam stranded on the North Sea shore of the Netherlands. Based on the associated epifauna originating from the southeast USA, we estimate that the corals must have crossed the Atlantic Ocean, transported

  7. Trans-Atlantic rafting by the brooding reef coral

    NARCIS (Netherlands)

    Hoeksema, B.W.; Roos, P.J.; Cadée, G.C.

    2012-01-01

    Specimens of the brooding reef coral Favia fragum were found on man-made flotsam stranded on the North Sea shore of the Netherlands. Based on the associated epifauna originating from the southeast USA, we estimate that the corals must have crossed the Atlantic Ocean, transported by the Gulf Stream a

  8. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Directory of Open Access Journals (Sweden)

    Joseph E Serafy

    Full Text Available Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1 Are reef fish abundances limited by mangrove forest area?; and (2 Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1 focus analyses on species that use mangroves as nurseries, (2 consider more than the mean fish abundance response to mangrove forest extent; and/or (3 quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i

  9. Relationships between structural complexity, coral traits, and reef fish assemblages

    Science.gov (United States)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  10. Influence of landscape structure on reef fish assemblages

    Science.gov (United States)

    Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.

    2008-01-01

    Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.

  11. 76 FR 82413 - Amendments to the Reef Fish, Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and...

    Science.gov (United States)

    2011-12-30

    ... Part 622 Amendments to the Reef Fish, Spiny Lobster, Queen Conch and Coral and Reef Associated Plants... Amendments to the Reef Fish, Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and... the FMP for the Spiny Lobster Fishery of Puerto Rico and the U.S. Virgin Islands (Spiny Lobster...

  12. 76 FR 59377 - Amendments to the Reef Fish, Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and...

    Science.gov (United States)

    2011-09-26

    ..., Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and Invertebrates Fishery Management... Fishery Management Plans (FMPs) for Reef Fish Resources, Spiny Lobster, Queen Conch, and Coral and Reef... (AMs) if ACLs should be exceeded for selected reef fish, spiny lobster, and aquarium trade...

  13. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    document how relatively small changes in fin morphology has afforded some coral reef fish taxa with exceptional locomotor performance and energetic efficiency, and how this key attribute may have played a key role in the evolution and ecology of several diverse Indo-Pacific reef fish families. Using......-finned counterparts. We discuss how such differences in locomotor efficiency are pivotal to the habitat-use of these fishes, and how eco-energetic models may be used to provide new insights into spatial variations in fish demography and ecology among coral reef habitat zones....

  14. Maintenance of fish diversity on disturbed coral reefs

    Science.gov (United States)

    Wilson, S. K.; Dolman, A. M.; Cheal, A. J.; Emslie, M. J.; Pratchett, M. S.; Sweatman, H. P. A.

    2009-03-01

    Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star ( Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46-96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3-4 species (6-8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.

  15. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.

    Directory of Open Access Journals (Sweden)

    Ismael A Kimirei

    Full Text Available Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania. Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ(13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29% or seagrass (53% or reef (18% habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65-72% as opposed to inshore vegetated habitats (28-35%. This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.

  16. Timing and locations of reef fish spawning off the southeastern United States

    Science.gov (United States)

    Heyman, William D.; Karnauskas, Mandy; Kobara, Shinichi; Smart, Tracey I.; Ballenger, Joseph C.; Reichert, Marcel J. M.; Wyanski, David M.; Tishler, Michelle S.; Lindeman, Kenyon C.; Lowerre-Barbieri, Susan K.; Switzer, Theodore S.; Solomon, Justin J.; McCain, Kyle; Marhefka, Mark; Sedberry, George R.

    2017-01-01

    Managed reef fish in the Atlantic Ocean of the southeastern United States (SEUS) support a multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish from harvest, to enhance productivity and reduce the potential for overfishing. We assessed spatiotemporal cues for spawning for six species from four reef fish families, using data on individual spawning condition collected by over three decades of regional fishery-independent reef fish surveys, combined with a series of predictors derived from bathymetric features. We quantified the size of spawning areas used by reef fish across many years and identified several multispecies spawning locations. We quantitatively identified cues for peak spawning and generated predictive maps for Gray Triggerfish (Balistes capriscus), White Grunt (Haemulon plumierii), Red Snapper (Lutjanus campechanus), Vermilion Snapper (Rhomboplites aurorubens), Black Sea Bass (Centropristis striata), and Scamp (Mycteroperca phenax). For example, Red Snapper peak spawning was predicted in 24.7–29.0°C water prior to the new moon at locations with high curvature in the 24–30 m depth range off northeast Florida during June and July. External validation using scientific and fishery-dependent data collections strongly supported the predictive utility of our models. We identified locations where reconfiguration or expansion of existing marine protected areas would protect spawning reef fish. We recommend increased sampling off southern Florida (south of 27° N), during winter months, and in high-relief, high current habitats to improve our understanding of timing and location of reef fish spawning off the southeastern United States. PMID:28264006

  17. Modern coral reefs of western Atlantic: new geological perspective

    Energy Technology Data Exchange (ETDEWEB)

    MacIntyre, I.G.

    1988-11-01

    Contrary to popular belief of the late 1960s, western Atlantic Holocene reefs have a long history and are not feeble novice nearshore veneers that barely survived postglacial temperatures. Rather, the growth of these reefs kept pace with the rising seas of the Holocene transgression and their development was, for the most part, controlled by offshore wave-energy conditions and the relationship between changing sea levels and local shelf topography. Thus, the outer shelves of the eastern Caribbean in areas of high energy have relict reefs consisting predominantly of Acropora palmata, a robust shallow-water coral. The flooding of adjacent shelves during the postglacial transgression introduced stress conditions that terminated the growth of these reefs. When, about 7000 yr ago, shelf-water conditions improved, scattered deeper water coral communities reestablished themselves on these stranded shelf-edge reefs, and fringing and bank-barrier reefs began to flourish in shallow coastal areas. At the same time, the fragile and rapidly growing Acropora cervicornis and other corals flourished at greater depths on the more protected shelves of the western Caribbean and the Gulf of Mexico. As a result, late Holocene buildups more than 30 m thick developed in those areas. 7 figures.

  18. Spearfishing to depletion: evidence from temperate reef fishes in Chile.

    Science.gov (United States)

    Godoy, Natalio; Gelcich, L Stefan; Vásquez, Julio A; Castilla, Juan Carlos

    2010-09-01

    Unreliable and data-poor marine fishery landings can lead to a lack of regulatory action in fisheries management. Here we use official Chilean landing reports and non-conventional indicators, such as fishers' perceptions and spearfishing competition results, to provide evidence of reef fishes depletions caused by unregulated spearfishing. Results show that the three largest and most emblematic reef fishes targeted mainly by spearfishers (> 98% of landings) [Graus nigra (vieja negra), Semicossyphus darwini (sheephead or pejeperro), and Medialuna ancietae (acha)] show signs of depletion in terms of abundance and size and that overall the catches of reef fishes have shifted from large carnivore species toward smaller-sized omnivore and herbivore species. Information from two snorkeling speargun world championships (1971 and 2004, Iquique, Chile) and from fishers' perceptions shows the mean size of reef fish to be declining. Although the ecological consequences of reef fish depletion are not fully understood in Chile, evidence of spearfishing depleting temperate reef fishes must be explicitly included in policy debates. This would involve bans or strong restrictions on the use of SCUBA and hookah diving gear for spearfishing, and minimum size limits. It may also involve academic and policy discussions regarding conservation and fisheries management synergies within networks of no-take and territorial user-rights fisheries areas, as a strategy for the sustainable management of temperate and tropical reef fisheries.

  19. A Review on the Ecology, Exploitation and Conservation of Reef Fish Resources in Mozambique

    OpenAIRE

    2000-01-01

    Coral and rocky reefs are very important ecosystems in terms of their diversity, productivity, abundance and beauty. Mozambique possesses extensive reef areas, where fish fauna is the main exploited resource. Nevertheless, the ecology of these resources is little studied. A recent report listed 794 reef-associated fishes known to occur in Mozambican coral and rocky reefs. This is a first accountancy of the high fish diversity of Mozambican reefs, which must be assessed. Reef-assoc...

  20. Vitamin A intoxication from reef fish liver consumption in Bermuda.

    Science.gov (United States)

    Dewailly, E; Rouja, P; Schultz, E; Julien, P; Tucker, T

    2011-09-01

    We report three historical cases of severe vitamin A intoxication in anglers who had consumed reef fish liver caught in Bermuda. The subsequent analyses of 35 fish livers from seven different fish species revealed that very high concentrations of vitamin A exist in tropical fish liver, even in noncarnivorous fish species. Large variations in concentrations were observed between specimens and between species. The angling population and (especially) pregnant women should be advised of this potential health threat.

  1. Fish survey data from Uva Island reef, Panama

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project examines an eastern Pacific fish assemblage associated with a 2.5 hectare coral reef located within the boundaries of Coiba National Park, Panama. From...

  2. Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation

    National Research Council Canada - National Science Library

    Alvarez-Filip, Lorenzo; Paddack, Michelle J; Collen, Ben; Robertson, D Ross; Côté, Isabelle M

    2015-01-01

    ...., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly...

  3. Simplification of Caribbean Reef-Fish Assemblages over Decades of Coral Reef Degradation: e0126004

    National Research Council Canada - National Science Library

    Lorenzo Alvarez-Filip; Michelle J Paddack; Ben Collen; D Ross Robertson; Isabelle M Côté

    2015-01-01

    ...., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly...

  4. Reef odor: a wake up call for navigation in reef fish larvae.

    Directory of Open Access Journals (Sweden)

    Claire B Paris

    Full Text Available The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC, deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.

  5. Long-term effects of the cleaner fish Labroides dimidiatus on coral reef fish communities.

    Directory of Open Access Journals (Sweden)

    Peter A Waldie

    Full Text Available Cleaning behaviour is deemed a mutualism, however the benefit of cleaning interactions to client individuals is unknown. Furthermore, mechanisms that may shift fish community structure in the presence of cleaning organisms are unclear. Here we show that on patch reefs (61-285 m² which had all cleaner wrasse Labroides dimidiatus (Labridae experimentally removed (1-5 adults reef⁻¹ and which were then maintained cleaner-fish free over 8.5 years, individuals of two site-attached (resident client damselfishes (Pomacentridae were smaller compared to those on control reefs. Furthermore, resident fishes were 37% less abundant and 23% less species rich per reef, compared to control reefs. Such changes in site-attached fish may reflect lower fish growth rates and/or survivorship. Additionally, juveniles of visitors (fish likely to move between reefs were 65% less abundant on removal reefs suggesting cleaners may also affect recruitment. This may, in part, explain the 23% lower abundance and 33% lower species richness of visitor fishes, and 66% lower abundance of visitor herbivores (Acanthuridae on removal reefs that we also observed. This is the first study to demonstrate a benefit of cleaning behaviour to client individuals, in the form of increased size, and to elucidate potential mechanisms leading to community-wide effects on the fish population. Many of the fish groups affected may also indirectly affect other reef organisms, thus further impacting the reef community. The large-scale effect of the presence of the relatively small and uncommon fish, Labroides dimidiadus, on other fishes is unparalleled on coral reefs.

  6. Community structure of shallow rocky shore fish in a tropical bay of the southwestern Atlantic

    Directory of Open Access Journals (Sweden)

    Camilo Moitinho Ferreira

    2015-12-01

    Full Text Available Abstract Southwestern Atlantic Ocean rocky shores sustain important reef fish communities. However, those communities in tropical regions are not well understood, especially in Brazil. In this present article we assess community parameters of reef fishes such as composition, trophic organization and their relationships with physical and biological factors on four tropical rocky shores in Todos os Santos Bay, southwestern Atlantic. During six months, a total of 80 visual censuses were performed, in which 3,582 fish belonging to 76 species were recorded. Territorial herbivorous fish and turf algae were dominant at all the sites. The spatial variability of fish community structure was related to the benthic cover composition and depth. The high abundance of territorial herbivores and mobile invertebrate feeders could be associated with high levels of turf cover, low wave exposure and shallow waters. Moreover, this fact could be a consequence of the low density of roving herbivores and large carnivores probably due to the pressure of intense fishing activity. Thus complementary studies are needed to evaluate the actual conservation status of these rocky shore reefs, singularly located habitats connecting inner and outer reefs in Todos os Santos Bay.

  7. Fish-derived nutrient hotspots shape coral reef benthic communities.

    Science.gov (United States)

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  8. Coral reef fish smell leaves to find island homes

    Science.gov (United States)

    Dixson, Danielle L; Jones, Geoffrey P; Munday, Philip L; Planes, Serge; Pratchett, Morgan S; Srinivasan, Maya; Syms, Craig; Thorrold, Simon R

    2008-01-01

    Recent studies have shown that some coral reef fish larvae return to natal reefs, while others disperse to distant reefs. However, the sensory mechanisms used to find settlement sites are poorly understood. One hypothesis is that larvae use olfactory cues to navigate home or find other suitable reef habitats. Here we show a strong association between the clownfish Amphiprion percula and coral reefs surrounding offshore islands in Papua New Guinea. Host anemones and A. percula are particularly abundant in shallow water beneath overhanging rainforest vegetation. A series of experiments were carried out using paired-choice flumes to evaluate the potential role of water-borne olfactory cues in finding islands. Recently settled A. percula exhibited strong preferences for: (i) water from reefs with islands over water from reefs without islands; (ii) water collected near islands over water collected offshore; and (iii) water treated with either anemones or leaves from rainforest vegetation. Laboratory reared-juveniles exhibited the same positive response to anemones and rainforest vegetation, suggesting that olfactory preferences are innate rather than learned. We hypothesize that A. percula use a suite of olfactory stimuli to locate vegetated islands, which may explain the high levels of self-recruitment on island reefs. This previously unrecognized link between coral reefs and island vegetation argues for the integrated management of these pristine tropical habitats. PMID:18755672

  9. Predatory fish depletion and recovery potential on Caribbean reefs

    Science.gov (United States)

    Valdivia, Abel; Cox, Courtney Ellen; Bruno, John Francis

    2017-01-01

    The natural, prehuman abundance of most large predators is unknown because of the lack of historical data and a limited understanding of the natural factors that control their populations. Determining the supportable predator biomass at a given location (that is, the predator carrying capacity) would help managers to optimize protection and would provide site-specific recovery goals. We assess the relationship between predatory reef fish biomass and several anthropogenic and environmental variables at 39 reefs across the Caribbean to (i) estimate their roles determining local predator biomass and (ii) determine site-specific recovery potential if fishing was eliminated. We show that predatory reef fish biomass tends to be higher in marine reserves but is strongly negatively related to human activities, especially coastal development. However, human activities and natural factors, including reef complexity and prey abundance, explain more than 50% of the spatial variation in predator biomass. Comparing site-specific predator carrying capacities to field observations, we infer that current predatory reef fish biomass is 60 to 90% lower than the potential supportable biomass in most sites, even within most marine reserves. We also found that the scope for recovery varies among reefs by at least an order of magnitude. This suggests that we could underestimate unfished biomass at sites that provide ideal conditions for predators or greatly overestimate that of seemingly predator-depleted sites that may have never supported large predator populations because of suboptimal environmental conditions. PMID:28275730

  10. Connectivity of microbial populations in coral reef environments: microbiomes of sediment, fish and water

    Science.gov (United States)

    Biddle, J.; Leon, Z. R.; McCargar, M.; Drew, J.

    2016-12-01

    The benthic environments of coral reefs are heavily shaped by physiochemical factors, but also the ecological interactions of the animals and plants in the reef ecosystem. Microbial populations may be shared between the ecosystem of sediments, seagrasses and reef fish, however it is unknown to what degree. We investigated the potential connections between the microbiomes of sediments, seagrass blades and roots (Syringodium isoetifolium), Surgeonfish (A. nigricauda, Acanthurinae sp. unknown, C. striatus) and Parrotfish (C. spinidens) guts in reef areas of Fiji. We contrasted these with sediment samples from the Florida Keys and ocean water microbiomes from the Atlantic, Pacific and Indian Oceans. In general, we see a higher diversity of sediment microbial communities in Fiji compared to the Florida Keys. However, many of the same taxa are shared in these chemically similar environments, whereas the ocean water environments are completely distinct with few overlapping groups. We were able to show connectivity of a core microbiome between seagrass, fish and sediments in Fiji, including identifying a potential environmental reservoir of a surgeonfish symbiont, Epulopiscum. Finally, we show that fish guts have different microbial populations from crop to hindgut, and that microbial populations differ based on food source. The connection of these ecosystems suggest that the total microbiome of these environments may vary as their animal inhabitants shift in a changing ocean.

  11. The status of coral reefs and associated fishes and invertebrates of commercial importance in Pedro Bank, Jamaica

    Directory of Open Access Journals (Sweden)

    Andrew W. Bruckner

    2014-09-01

    Full Text Available The coral reefs located off the north coast of the Jamaican mainland are some of the best and most studied reefs in the world. Coral reefs of Pedro Bank, Jamaica were assessed in March, 2012 as part of the KSLOF Global Reef Expedition using a modified Atlantic and Gulf Rapid Reef Assessment (AGRRA protocol. The main objectives were to: 1 characterize the distribution, structure and health of coral reefs; and 2 evaluate the population status of commercially important reef fishes and invertebrates. This work was conducted to assist in characterizing coral reef habitats within and outside a proposed fishery reserve, and identify other possible conservation zones. Within 20 reefs, live coral cover ranged from 4.9% to 19.2%. Coral communities were dominated by small corals (esp. Agaricia, Porites and Siderastrea although many sites had high abundances of large colonies of Montastraea annularis and M. faveolata, and these were generally in good condition. A single area, within the proposed fishery reserve, had extensive Acropora cervicornis thickets, and several shallow locations had small, but recovering A. palmata stands. Macroalgal cover at all sites was relatively low, with only three sites having greater than 30% cover; crustose coralline algae (CCA was high, with eight sites exceeding 20% cover. Fish biomass at all sites near the Cays was low, with a dominance of herbivores (parrotfish and surgeonfish and a near absence of groupers, snappers and other commercially important species. While parrotfish were the most abundant fish, these were all extremely small (mean size= 12cm; <4% over 29cm, and they were dominated by red band parrotfish (Sparisoma aurofrenatum followed by striped parrotfish (Scarus iseri. While coral communities remain in better condition than most coastal reefs in Jamaica, intense fishing pressure using fish traps (main target species: surgeonfish and hookah/spear fishing (main target: parrotfish is of grave concern to the

  12. Invasive lionfish preying on critically endangered reef fish

    Science.gov (United States)

    Rocha, Luiz A.; Rocha, Claudia R.; Baldwin, Carole C.; Weigt, Lee A.; McField, Melanie

    2015-09-01

    Caribbean coral reef ecosystems are at the forefront of a global decline and are now facing a new threat: elimination of vulnerable species by the invasive lionfish ( Pterois spp.). In addition to being threatened by habitat destruction and pollution, the critically endangered social wrasse ( Halichoeres socialis), endemic to Belize's inner barrier reef, has a combination of biological traits (small size, schooling, and hovering behavior) that makes it a target for the invasive lionfish. Based on stomach content analyses, this small fish comprises almost half of the lionfish diet at the inner barrier reef in Belize. The combination of lionfish predation, limited range, and ongoing habitat destruction makes the social wrasse the most threatened coral reef fish in the world. Other species with small range and similar traits occur elsewhere in the Caribbean and face similar risks.

  13. Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure

    KAUST Repository

    Kattan, Alexander

    2017-03-09

    In order to assess human impacts and develop rational restoration goals for corals reefs, baseline estimates of fish communities are required. In Saudi Arabian waters of the Red Sea, widespread unregulated fishing is thought to have been ongoing for decades, but there is little direct evidence of the impact on reef communities. To contextualize this human influence, reef-associated fish assemblages on offshore reefs in Saudi Arabia and Sudan in the central Red Sea were investigated. These reefs have comparable benthic environments, experience similar oceanographic influences, and are separated by less than 300 km, offering an ideal comparison for identifying potential anthropogenic impacts such as fishing pressure. This is the first study to assess reef fish biomass in both these regions, providing important baselines estimates. We found that biomass of top predators on offshore Sudanese reefs was on average almost three times that measured on comparable reefs in Saudi Arabia. Biomass values from some of the most remote reefs surveyed in Sudan’s far southern region even approach those previously reported in the Northwestern Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other isolated Pacific islands and atolls. The findings suggest that fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs, most conspicuously in the form of top predator removal. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia, while making a strong case for protection in the form of no-take marine protected areas to maintain preservation of the relatively intact southern Sudanese Red Sea.

  14. Pacific Reef Assessment and Monitoring Program Fish Monitoring Brief: Pacific Remote Island Areas 2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Two-page summary outlines reef fish and benthic habitat survey efforts conducted by the NOAA Coral Reef Ecosystem Division (CRED) at Wake Atoll NWR in 2014

  15. Pacific Reef Assessment and Monitoring Program Fish Monitoring Brief: Pacific Remote Island Areas 2012

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Two-page summary outlines reef fish and benthic habitat survey efforts conducted by the NOAA Coral Reef Ecosystem Division (CRED) at Howland Island, Baker Island,...

  16. Diversity and stability of herbivorous fishes on coral reefs.

    Science.gov (United States)

    Thibaut, Loic M; Connolly, Sean R; Sweatman, Hugh P A

    2012-04-01

    Biodiversity may provide insurance against ecosystem collapse by stabilizing assemblages that perform particular ecological functions (the "portfolio effect"). However, the extent to which this occurs in nature and the importance of different mechanisms that generate portfolio effects remain controversial. On coral reefs, herbivory helps maintain coral dominated states, so volatility in levels of herbivory has important implications for reef ecosystems. Here, we used an extensive time series of abundances on 35 reefs of the Great Barrier Reef of Australia to quantify the strength of the portfolio effect for herbivorous fishes. Then, we disentangled the contributions of two mechanisms that underlie it (compensatory interactions and differential responses to environmental fluctuations ["response diversity"]) by fitting a community-dynamic model that explicitly includes terms for both mechanisms. We found that portfolio effects operate strongly in herbivorous fishes, as shown by nearly independent fluctuations in abundances over time. Moreover, we found strong evidence for high response diversity, with nearly independent responses to environmental fluctuations. In contrast, we found little evidence that the portfolio effect in this system was enhanced by compensatory ecological interactions. Our results show that portfolio effects are driven principally by response diversity for herbivorous fishes on coral reefs. We conclude that portfolio effects can be very strong in nature and that, for coral reefs in particular, response diversity may help maintain herbivory above the threshold levels that trigger regime shifts.

  17. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic reefs.

    Science.gov (United States)

    Kikuchi, Ruy K P; Leão, Zelinda M A N; Oliveira, Marília D M

    2010-05-01

    Coral reefs along the Eastern Brazilian coast extend for a distance of 800 km from 12 degrees to 18 degrees S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90's in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA) Regional Node of the Global Coral Reef Monitoring Network (GCRMN) by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts) and similarity percentages (SIMPER) tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonics > 20cm per reef site) and of the coral recruits (colonies reefs, which are located less than 5 km from the coast, are in poorer condition than the reefs located more than 5 km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearshore reefs and have a set of vitality indices more closely related to the Northwestern Atlantic reefs than the nearshore reef. These have been

  18. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic Reefs

    Directory of Open Access Journals (Sweden)

    Ruy K.P Kikuchi

    2010-05-01

    Full Text Available Coral reefs along the Eastern Brazilian coast extend for a distance of 800km from 12° to 18°S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90’s in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA Regional Node of the Global Coral Reef Monitoring Network (GCRMN by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts and similarity percentages (SIMPER tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonies >20cm per reef site and of the coral recruits (colonies<2cm per square meter, and the percentage of macroalgae indicate that the nearshore reefs, which are located less than 5km from the coast, are in poorer condition than the reefs located more than 5km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearhore reefs and have a set of vitality indices more closely

  19. Energy profiling of demersal fish: a case-study in wind farm artificial reefs.

    Science.gov (United States)

    De Troch, Marleen; Reubens, Jan T; Heirman, Elke; Degraer, Steven; Vincx, Magda

    2013-12-01

    The construction of wind farms introduces artificial hard substrates in sandy sediments. As Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) tend to aggregate in order to feed around these reefs, energy profiling and trophic markers were applied to study their feeding ecology in a wind farm in the Belgian part of the North Sea. The proximate composition (carbohydrates, proteins and lipids) differed significantly between liver and muscle tissue but not between fish species or between their potential prey species. Atlantic cod showed to consume more energy than pouting. The latter had a higher overall energy reserve and can theoretically survive twice as long on the available energy than cod. In autumn, both fish species could survive longer on their energy than in spring. Polyunsaturated fatty acids were found in high concentrations in fish liver. The prey species Jassa and Pisidia were both rich in EPA while Jassa had a higher DHA content than Pisidia. Energy profiling supported the statement that wind farm artificial reefs are suitable feeding ground for both fish species. Sufficient energy levels were recorded and there is no indication of competition.

  20. 78 FR 66683 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-11-06

    ... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment and finding of no significant impact for the issuance of a special coral reef ecosystem fishing permit. SUMMARY: NMFS issued a Special Coral Reef Ecosystem Fishing Permit that authorizes Kampachi Farms...

  1. Reef ecology. Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery.

    Science.gov (United States)

    Dixson, Danielle L; Abrego, David; Hay, Mark E

    2014-08-22

    Coral reefs are in global decline, converting from dominance by coral to dominance by seaweed. Once seaweeds become abundant, coral recovery is suppressed unless herbivores return to remove seaweeds, and corals then recruit. Variance in the recovery of fishes and corals is not well understood. We show that juveniles of both corals and fishes are repelled by chemical cues from fished, seaweed-dominated reefs but attracted to cues from coral-dominated areas where fishing is prohibited. Chemical cues of specific seaweeds from degraded reefs repulsed recruits, and cues from specific corals that are typical of healthy reefs attracted recruits. Juveniles were present at but behaviorally avoided recruiting to degraded reefs dominated by seaweeds. For recovery, degraded reefs may need to be managed to produce cues that attract, rather than repel, recruiting corals and fishes.

  2. Comparison of remote video and diver's direct observations to quantify reef fishes feeding on benthos in coral and rocky reefs.

    Science.gov (United States)

    Longo, G O; Floeter, S R

    2012-10-01

    This study compared remote underwater video and traditional direct diver observations to assess reef fish feeding impact on benthos across multiple functional groups within different trophic categories (e.g. herbivores, zoobenthivores and omnivores) and in two distinct reef systems: a subtropical rocky reef and a tropical coral reef. The two techniques were roughly equivalent, both detecting the species with higher feeding impact and recording similar bite rates, suggesting that reef fish feeding behaviour at the study areas are not strongly affected by the diver's presence.

  3. Associations among coral reef macroalgae influence feeding by herbivorous fishes

    Science.gov (United States)

    Loffler, Z.; Bellwood, D. R.; Hoey, A. S.

    2015-03-01

    Benthic macroalgae often occur in close association with other macroalgae, yet the implications of such associations on coral reefs are unclear. We selected three pairs of commonly associated macroalgae on inshore reefs of the Great Barrier Reef and exposed them, either independently or paired, to herbivore assemblages. Pairing the palatable alga Acanthophora with the calcified and chemically defended Galaxaura resulted in a 69 % reduction in the consumption of Acanthophora, but had no effect on the consumption of Galaxaura. The reduced consumption of Acanthophora was related to 53-85 % reductions in the feeding rates of two herbivorous fish species, Kyphosus vaigiensis and Siganus doliatus. Neither Acanthophora nor Sargassum were afforded protection when paired with the brown macroalga Turbinaria. Although limited to one of the three species pairings, such associations between algae may allow the ecological persistence of palatable species in the face of intense herbivory, enhancing macroalgal diversity on coral reefs.

  4. Extent of mangrove nursery habitats determines the geographic distribution of a coral reef fish in a South-Pacific archipelago.

    Directory of Open Access Journals (Sweden)

    Christelle Paillon

    Full Text Available Understanding the drivers of species' geographic distribution has fundamental implications for the management of biodiversity. For coral reef fishes, mangroves have long been recognized as important nursery habitats sustaining biodiversity in the Western Atlantic but there is still debate about their role in the Indo-Pacific. Here, we combined LA-ICP-MS otolith microchemistry, underwater visual censuses (UVC and mangrove cartography to estimate the importance of mangroves for the Indo-Pacific coral reef fish Lutjanus fulviflamma in the archipelago of New Caledonia. Otolith elemental compositions allowed high discrimination of mangroves and reefs with 83.8% and 98.7% correct classification, respectively. Reefs were characterized by higher concentrations of Rb and Sr and mangroves by higher concentrations of Ba, Cr, Mn and Sn. All adult L. fulviflamma collected on reefs presented a mangrove signature during their juvenile stage with 85% inhabiting mangrove for their entire juvenile life (about 1 year. The analysis of 2942 UVC revealed that the species was absent from isolated islands of the New Caledonian archipelago where mangroves were absent. Furthermore, strong positive correlations existed between the abundance of L. fulviflamma and the area of mangrove (r = 0.84 for occurrence, 0.93 for density and 0.89 for biomass. These results indicate that mangrove forest is an obligatory juvenile habitat for L. fulviflamma in New Caledonia and emphasize the potential importance of mangroves for Indo-Pacific coral reef fishes.

  5. Coral and Reef Fish in the Northern Quirimbas Archipelago ...

    African Journals Online (AJOL)

    such as increased pollution and sedimentation, and bleaching ... that also conducts limited subsistence agriculture ... the deep water of the Mozambique Channel. This ... Fish densities were assessed using underwater ... challenging logistics of the area and the methods .... gray reef sharks (Carcharhinus amblyrhyncos) and.

  6. Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Parrish, F.A.

    2013-01-01

    Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all t

  7. Spawning ascent durations of pelagic spawning reef fishes

    Institute of Scientific and Technical Information of China (English)

    Caroline A. HABRUN; Gorka SANCHO

    2012-01-01

    Predation risks have been hypothesized to influence spawning behaviors of coral reef fishes that broadcast gametes pelagically.The duration of spawning ascents of 13 species were measured from video footage at a single spawning site for multiple coral reef fishes to investigate if this behavior was influenced by varying risks of predation.Fishes that spawned in pairs had ascents of longer duration than group-spawning species.Duration of spawning ascents did not vary between fishes spawning at daytime and dusk,nor between group-spawning species with specific anti-predatory morphological adaptations.These results indicate that risk of predation may not significantly influence the duration of spawning ascents of pair spawning reef fishes at our study site,while group-spawning behaviors are influenced by predation.Avoidance of egg predation by benthic organisms and female mate choice are more likely to influence the pelagic spawning behaviors of all fishes observed [Current Zoology 58 ( 1 ):95-102,2012].

  8. 76 FR 68711 - Amendments to the Reef Fish, Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and...

    Science.gov (United States)

    2011-11-07

    ... CFR Part 622 [Docket No. 101217620-1654-02] RIN 0648-BA62 Amendments to the Reef Fish, Spiny Lobster... Fishery of Puerto Rico and the U.S. Virgin Islands, Amendment 5 to the FMP for the Spiny Lobster Fishery... catch limits (ACLs) and accountability measures (AMs) for reef fish, spiny lobster, and aquarium...

  9. Biodiversity enhances reef fish biomass and resistance to climate change.

    Science.gov (United States)

    Duffy, J Emmett; Lefcheck, Jonathan S; Stuart-Smith, Rick D; Navarrete, Sergio A; Edgar, Graham J

    2016-05-31

    Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.

  10. The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef

    Science.gov (United States)

    Emslie, Michael J.; Cheal, Alistair J.; Logan, Murray

    2017-09-01

    Predatory fishes are important components of coral-reef ecosystems of the Great Barrier Reef (GBR) through both the ecological functions they perform and their high value to recreational and commercial fisheries, estimated at 30 million in 2014. However, management of GBR predatory fish populations is hampered by a lack of knowledge of their distribution and abundance, aside from that of the highly targeted coral trout ( Plectropomus spp. and Variola spp.). Furthermore, there is little information on how these fishes respond to environmental stressors such as coral bleaching, outbreaks of coral-feeding starfishes ( Acanthaster planci) and storms, which limits adaptive management of their populations as the frequency or severity of such natural disturbances increases under climate change. Here, we document the distribution and abundance of 48 species of reef-associated predatory fishes and assess their vulnerability to a range of natural disturbances. There were clear differences in predatory fish assemblages across the continental shelf, but many species were widespread, with few species restricted to either inshore or offshore waters. There was weak latitudinal structure with only a few species restricted to either the northern or southern GBR. On the whole, predatory fishes were surprisingly resistant to the effects of disturbance, with few clear changes in abundance or species richness following 66 documented disturbances of varying magnitudes.

  11. Do tabular corals constitute keystone structures for fishes on coral reefs?

    Science.gov (United States)

    Kerry, J. T.; Bellwood, D. R.

    2015-03-01

    This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

  12. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    Science.gov (United States)

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    Branching hydrocorals from the genus Millepora play an important ecological role in South Atlantic reefs, where branching scleractinian corals are absent. Previous studies have shown a high proportion of reef fish species using branching fire-coral colonies as shelter, breeding, and feeding sites. However, the effects of Millepora spp. colony size and how the agonistic behaviour of a competitive damselfish affect the associated reef fish community are still unknown. The present study examined how fire-coral colony volume and the presence of a highly territorial and aggressive damselfish (Brazilian endemic Stegastes fuscus) affects the reef fish community associated with the fire-coral Millepora alcicornis. M. alcicornis colonies were surveyed from September 2012 to April 2013 at Tamandaré Reefs off Northeast Brazil. Our results show that the abundance and richness of coral associated fish was positively correlated with M. alcicornis coral colony volume. Additionally, behaviour of S. fuscus, the most abundant reef fish species found associated with fire-coral colonies (almost 57% of the fish community), was also influenced by fire-coral colony volume. There was a clear trend of increased agonistic behaviour and feeding on coral polyps as colony volume increased. This trend was reversed for the non-occupational swimming category, which decreased as M. alcicornis colony volume increased. Behavioural ontogenetic changes were also detected for S. fuscus individuals. Juveniles mainly showed two distinct behaviours: sheltered on coral branches and feeding on coral polyps. In contrast, adults presented greater equitability among the behavioural categories, mostly non-occupational swimming around coral colonies and agonistic behaviour. Lastly, S. fuscus individuals actively defended fire-coral colonies from intruders. A large number of agonistic interactions occurred against potential food competitors, which were mainly roving herbivores, omnivores, and sessile

  13. Are non-estuarine mangroves connected to coral reefs through fish migration? : A mini-review

    NARCIS (Netherlands)

    Nagelkerken, I.

    2007-01-01

    Mangroves are an important fish habitat, but little is known of their nursery function and connectivity to other habitats such as coral reefs. Here, the present status of knowledge on connectivity between non-estuarine mangroves and coral reefs by postlarval coral reef fishes is reviewed. Only since

  14. 78 FR 49258 - Fisheries in the Western Pacific; Special Coral Reef Ecosystem Fishing Permit

    Science.gov (United States)

    2013-08-13

    ... Coral Reef Ecosystem Fishing Permit AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... assessment; request for comments. SUMMARY: NMFS proposes to issue a Special Coral Reef Ecosystem Fishing Permit that would authorize Kampachi Farms, LLC, to culture and harvest a coral reef ecosystem management...

  15. Are non-estuarine mangroves connected to coral reefs through fish migration? : A mini-review

    NARCIS (Netherlands)

    Nagelkerken, I.

    2007-01-01

    Mangroves are an important fish habitat, but little is known of their nursery function and connectivity to other habitats such as coral reefs. Here, the present status of knowledge on connectivity between non-estuarine mangroves and coral reefs by postlarval coral reef fishes is reviewed. Only since

  16. Reef Fish Inventory of Juan De Nova's Natural Park (Western Indian ...

    African Journals Online (AJOL)

    This paper constitutes the first study on reef fish communities at Juan de Nova, one of ... military base, represent sites which experience minimal direct human influence. ... the resilience of coral reef communities to environmental disturbances.. Keywords: reef fishes, diversity, Eparses Islands, natural reserve, western Indian ...

  17. Differences in Reef Fish Assemblages between Populated and Remote Reefs Spanning Multiple Archipelagos Across the Central and Western Pacific

    Directory of Open Access Journals (Sweden)

    Ivor D. Williams

    2011-01-01

    Full Text Available Comparable information on the status of natural resources across large geographic and human impact scales provides invaluable context to ecosystem-based management and insights into processes driving differences among areas. Data on fish assemblages at 39 US flag coral reef-areas distributed across the Pacific are presented. Total reef fish biomass varied by more than an order of magnitude: lowest at densely-populated islands and highest on reefs distant from human populations. Remote reefs (<50 people within 100 km averaged ~4 times the biomass of “all fishes” and 15 times the biomass of piscivores compared to reefs near populated areas. Greatest within-archipelagic differences were found in Hawaiian and Mariana Archipelagos, where differences were consistent with, but likely not exclusively driven by, higher fishing pressure around populated areas. Results highlight the importance of the extremely remote reefs now contained within the system of Pacific Marine National Monuments as ecological reference areas.

  18. 76 FR 67121 - Atlantic Highly Migratory Species; 2012 Atlantic Shark Commercial Fishing Season

    Science.gov (United States)

    2011-10-31

    ... Species; 2012 Atlantic Shark Commercial Fishing Season AGENCY: National Marine Fisheries Service (NMFS... season for the Atlantic commercial shark fisheries. Quotas would be adjusted based on any over- and/or underharvests experienced during the 2010 and 2011 Atlantic commercial shark fishing seasons. In addition,...

  19. 77 FR 3393 - Atlantic Highly Migratory Species; 2012 Atlantic Shark Commercial Fishing Season

    Science.gov (United States)

    2012-01-24

    ...; 2012 Atlantic Shark Commercial Fishing Season AGENCY: National Marine Fisheries Service (NMFS... season for the Atlantic commercial shark fisheries. Quotas were adjusted based on over- and/or underharvests experienced during the 2010 and 2011 Atlantic commercial shark fishing seasons. In addition,...

  20. Size structuring and allometric scaling relationships in coral reef fishes.

    Science.gov (United States)

    Dunic, Jillian C; Baum, Julia K

    2017-05-01

    Temperate marine fish communities are often size-structured, with predators consuming increasingly larger prey and feeding at higher trophic levels as they grow. Gape limitation and ontogenetic diet shifts are key mechanisms by which size structuring arises in these communities. Little is known, however, about size structuring in coral reef fishes. Here, we aimed to advance understanding of size structuring in coral reef food webs by examining the evidence for these mechanisms in two groups of reef predators. Given the diversity of feeding modes amongst coral reef fishes, we also compared gape size-body size allometric relationships across functional groups to determine whether they are reliable indicators of size structuring. We used gut content analysis and quantile regressions of predator size-prey size relationships to test for evidence of gape limitation and ontogenetic niche shifts in reef piscivores (n = 13 species) and benthic invertivores (n = 3 species). We then estimated gape size-body size allometric scaling coefficients for 21 different species from four functional groups, including herbivores/detritivores, which are not expected to be gape-limited. We found evidence of both mechanisms for size structuring in coral reef piscivores, with maximum prey size scaling positively with predator body size, and ontogenetic diet shifts including prey type and expansion of prey size. There was, however, little evidence of size structuring in benthic invertivores. Across species and functional groups, absolute and relative gape sizes were largest in piscivores as expected, but gape size-body size scaling relationships were not indicative of size structuring. Instead, relative gape sizes and mouth morphologies may be better indicators. Our results provide evidence that coral reef piscivores are size-structured and that gape limitation and ontogenetic niche shifts are the mechanisms from which this structure arises. Although gape allometry was not indicative of

  1. Red fluorescence in reef fish: A novel signalling mechanism?

    Directory of Open Access Journals (Sweden)

    Siebeck Ulrike E

    2008-09-01

    Full Text Available Abstract Background At depths below 10 m, reefs are dominated by blue-green light because seawater selectively absorbs the longer, 'red' wavelengths beyond 600 nm from the downwelling sunlight. Consequently, the visual pigments of many reef fish are matched to shorter wavelengths, which are transmitted better by water. Combining the typically poor long-wavelength sensitivity of fish eyes with the presumed lack of ambient red light, red light is currently considered irrelevant for reef fish. However, previous studies ignore the fact that several marine organisms, including deep sea fish, produce their own red luminescence and are capable of seeing it. Results We here report that at least 32 reef fishes from 16 genera and 5 families show pronounced red fluorescence under natural, daytime conditions at depths where downwelling red light is virtually absent. Fluorescence was confirmed by extensive spectrometry in the laboratory. In most cases peak emission was around 600 nm and fluorescence was associated with guanine crystals, which thus far were known for their light reflecting properties only. Our data indicate that red fluorescence may function in a context of intraspecific communication. Fluorescence patterns were typically associated with the eyes or the head, varying substantially even between species of the same genus. Moreover red fluorescence was particularly strong in fins that are involved in intraspecific signalling. Finally, microspectrometry in one fluorescent goby, Eviota pellucida, showed a long-wave sensitivity that overlapped with its own red fluorescence, indicating that this species is capable of seeing its own fluorescence. Conclusion We show that red fluorescence is widespread among marine fishes. Many features indicate that it is used as a private communication mechanism in small, benthic, pair- or group-living fishes. Many of these species show quite cryptic colouration in other parts of the visible spectrum. High inter

  2. Crossing habitat boundaries : mechanisms underlying cross-habitat utilization by reef fishes

    NARCIS (Netherlands)

    Grol, M.G.G.

    2010-01-01

    This thesis contributes to a better understanding of the nursery-role hypothesis of non-reef habitats for coral reef fishes. Not only fish densities were studied in multiple habitats, but also factors which could drive ontogenetic habitat shifts by fishes, such as habitat structural complexity, food

  3. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions.

    Science.gov (United States)

    Kulbicki, Michel; Parravicini, Valeriano; Bellwood, David R; Arias-Gonzàlez, Ernesto; Chabanet, Pascale; Floeter, Sergio R; Friedlander, Alan; McPherson, Jana; Myers, Robert E; Vigliola, Laurent; Mouillot, David

    2013-01-01

    Delineating regions is an important first step in understanding the evolution and biogeography of faunas. However, quantitative approaches are often limited at a global scale, particularly in the marine realm. Reef fishes are the most diversified group of marine fishes, and compared to most other phyla, their taxonomy and geographical distributions are relatively well known. Based on 169 checklists spread across all tropical oceans, the present work aims to quantitatively delineate biogeographical entities for reef fishes at a global scale. Four different classifications were used to account for uncertainty related to species identification and the quality of checklists. The four classifications delivered converging results, with biogeographical entities that can be hierarchically delineated into realms, regions and provinces. All classifications indicated that the Indo-Pacific has a weak internal structure, with a high similarity from east to west. In contrast, the Atlantic and the Eastern Tropical Pacific were more strongly structured, which may be related to the higher levels of endemism in these two realms. The "Coral Triangle", an area of the Indo-Pacific which contains the highest species diversity for reef fishes, was not clearly delineated by its species composition. Our results show a global concordance with recent works based upon endemism, environmental factors, expert knowledge, or their combination. Our quantitative delineation of biogeographical entities, however, tests the robustness of the results and yields easily replicated patterns. The similarity between our results and those from other phyla, such as corals, suggests that our approach may be of broad utility in describing and understanding global marine biodiversity patterns.

  4. Seascape-scale trophic links for fish on inshore coral reefs

    Science.gov (United States)

    Davis, Jean P.; Pitt, Kylie A.; Fry, Brian; Olds, Andrew D.; Connolly, Rod M.

    2014-12-01

    It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0-2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25-44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves ( R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14-78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8-55 % to a fish species found only on reefs ( Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.

  5. Phylogenetic insights into the history and diversification of fishes on reefs

    Science.gov (United States)

    Price, S. A.; Claverie, T.; Near, T. J.; Wainwright, P. C.

    2015-12-01

    Studies of the phylogenetic history of fishes on reefs and the impact of reefs on fish diversification have, to date, been limited to relatively small clades. We take advantage of a recent multi-locus, time-calibrated phylogeny of acanthomorph fishes and a broad-scale morphological dataset of body shape in reef acanthomorphs to explore the history and diversification of fish on reefs at the family level. We find that no reef family exhibits exceptional species diversity for their stem age and some, such as Aulostomidae, Zanclidae, Menidae, and Triodontidae may in fact be species poor. The inferred history of reef colonization is highly dependent on how a reef family is defined; one classification scheme raises the possibility that most modern acanthomorph families originated on reefs. We find that most reef families occupy surprisingly distinct regions of morphospace and yet, some of the most diverse reef families occupy central and highly overlapping positions within the body shape morphospace. To the extent that proximity in morphospace reflects ecological similarity, these results imply that most reef fish families have diversified in adaptive zones away from other families. In contrast, a few of the most successful (e.g., Labridae and Pomacentridae) have achieved dominance while potentially facing stronger interactions with other lineages. Finally, we find no relationship between species diversity and body shape diversity. Assuming neither are diversity dependent, this result suggests that morphological and ecological diversification within families of reef fish may not be linked to the accumulation of species. Time-calibrated phylogenies provide the means for generating a greater understanding of the macroevolutionary processes influencing reef fish diversification, but we are currently limited by the lack of robust crown-group ages for many reef fish families.

  6. Coral reef fish perceive lightness illusions

    Science.gov (United States)

    Simpson, Elisha E.; Marshall, N. Justin; Cheney, Karen L.

    2016-01-01

    Visual illusions occur when information from images are perceived differently from the actual physical properties of the stimulus in terms of brightness, size, colour and/or motion. Illusions are therefore important tools for sensory perception research and from an ecological perspective, relevant for visually guided animals viewing signals in heterogeneous environments. Here, we tested whether fish perceived a lightness cube illusion in which identical coloured targets appear (for humans) to return different spectral outputs depending on the apparent amount of illumination they are perceived to be under. Triggerfish (Rhinecanthus aculeatus) were trained to peck at coloured targets to receive food rewards, and were shown to experience similar shifts in colour perception when targets were placed in illusory shadows. Fish therefore appear to experience similar simultaneous contrast mechanisms to humans, even when targets are embedded in complex, scene-type illusions. Studies such as these help unlock the fundamental principles of visual system mechanisms. PMID:27748401

  7. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    Science.gov (United States)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  8. The influence of fisher knowledge on the susceptibility of reef fish aggregations to fishing.

    Directory of Open Access Journals (Sweden)

    Jan Robinson

    Full Text Available Reef fishes that exhibit predictable aggregating behaviour are often considered vulnerable to overexploitation. However, fisher knowledge of this behaviour is often heterogeneous and, coupled with socioeconomic factors that constrain demand for or access to aggregated fish, will influence susceptibility to fishing. At two case study locations in Papua New Guinea, Ahus and Karkar islands, we conducted interview-based surveys to examine how local context influenced heterogeneity in knowledge of fish aggregations. We then explored the role of fisher knowledge in conferring susceptibility to fishing relative to socioeconomic drivers of fishing effort. Local heterogeneity in knowledge of aggregating behaviour differed between our case studies. At Ahus, variable access rights among fishers and genders to the main habitats were sources of heterogeneity in knowledge. By contrast, knowledge was more homogenous at Karkar and the sole source of variation was gear type. Differences between locations in the susceptibility of aggregations to fishing depended primarily on socioeconomic drivers of fishing effort rather than catchability. While Ahus fishers were knowledgeable of fish aggregations and used more selective gears, Karkar fishers were less constrained by tenure in their access to aggregation habitat. However, fishing effort was greater at Ahus and likely related to high dependency on fishing, greater access to provincial capital markets than Karkar and a weakening of customary management. Moreover, highly efficient fishing techniques have emerged at Ahus to exploit the non-reproductive aggregating behaviour of target species. Understanding how knowledge is structured within fishing communities and its relation to socioeconomic drivers of fishing effort is important if customary practices for conservation, such as tambu areas, are to be supported. The findings of this study call for a holistic approach to assessing the risks posed to reef fish

  9. The influence of fisher knowledge on the susceptibility of reef fish aggregations to fishing.

    Science.gov (United States)

    Robinson, Jan; Cinner, Joshua E; Graham, Nicholas A J

    2014-01-01

    Reef fishes that exhibit predictable aggregating behaviour are often considered vulnerable to overexploitation. However, fisher knowledge of this behaviour is often heterogeneous and, coupled with socioeconomic factors that constrain demand for or access to aggregated fish, will influence susceptibility to fishing. At two case study locations in Papua New Guinea, Ahus and Karkar islands, we conducted interview-based surveys to examine how local context influenced heterogeneity in knowledge of fish aggregations. We then explored the role of fisher knowledge in conferring susceptibility to fishing relative to socioeconomic drivers of fishing effort. Local heterogeneity in knowledge of aggregating behaviour differed between our case studies. At Ahus, variable access rights among fishers and genders to the main habitats were sources of heterogeneity in knowledge. By contrast, knowledge was more homogenous at Karkar and the sole source of variation was gear type. Differences between locations in the susceptibility of aggregations to fishing depended primarily on socioeconomic drivers of fishing effort rather than catchability. While Ahus fishers were knowledgeable of fish aggregations and used more selective gears, Karkar fishers were less constrained by tenure in their access to aggregation habitat. However, fishing effort was greater at Ahus and likely related to high dependency on fishing, greater access to provincial capital markets than Karkar and a weakening of customary management. Moreover, highly efficient fishing techniques have emerged at Ahus to exploit the non-reproductive aggregating behaviour of target species. Understanding how knowledge is structured within fishing communities and its relation to socioeconomic drivers of fishing effort is important if customary practices for conservation, such as tambu areas, are to be supported. The findings of this study call for a holistic approach to assessing the risks posed to reef fish aggregations by fishing

  10. Reef fishes of Saba Bank, Netherlands Antilles: assemblage structure across a gradient of habitat types.

    Directory of Open Access Journals (Sweden)

    Wes Toller

    Full Text Available Saba Bank is a 2,200 km(2 submerged carbonate platform in the northeastern Caribbean Sea off Saba Island, Netherlands Antilles. The presence of reef-like geomorphic features and significant shelf edge coral development on Saba Bank have led to the conclusion that it is an actively growing, though wholly submerged, coral reef atoll. However, little information exists on the composition of benthic communities or associated reef fish assemblages of Saba Bank. We selected a 40 km(2 area of the bank for an exploratory study. Habitat and reef fish assemblages were investigated in five shallow-water benthic habitat types that form a gradient from Saba Bank shelf edge to lagoon. Significant coral cover was restricted to fore reef habitat (average cover 11.5% and outer reef flat habitat (2.4% and declined to near zero in habitats of the central lagoon zone. Macroalgae dominated benthic cover in all habitats (average cover: 32.5--48.1% but dominant algal genera differed among habitats. A total of 97 fish species were recorded. The composition of Saba Bank fish assemblages differed among habitat types. Highest fish density and diversity occurred in the outer reef flat, fore reef and inner reef flat habitats. Biomass estimates for commercially valued species in the reef zone (fore reef and reef flat habitats ranged between 52 and 83 g/m(2. The composition of Saba Bank fish assemblages reflects the absence of important nursery habitats, as well as the effects of past fishing. The relatively high abundance of large predatory fish (i.e. groupers and sharks, which is generally considered an indicator of good ecosystem health for tropical reef systems, shows that an intact trophic network is still present on Saba Bank.

  11. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean.

    Directory of Open Access Journals (Sweden)

    Dominic A Andradi-Brown

    Full Text Available Mesophotic coral ecosystems (MCEs; reefs 30-150m depth are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass with depth, mostly driven by declines in parrotfish (Scaridae. Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus, striped parrotfish (Scarus iserti, blue chromis (Chromis cyanea, creole wrasse (Clepticus parrae, bluehead wrasse (Thalassoma bifasciatum and yellowtail snapper (Ocyurus chrysurus, with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts.

  12. 77 FR 61562 - Atlantic Highly Migratory Species; 2013 Atlantic Shark Commercial Fishing Season

    Science.gov (United States)

    2012-10-10

    ... Species; 2013 Atlantic Shark Commercial Fishing Season AGENCY: National Marine Fisheries Service (NMFS... season for the Atlantic commercial shark fisheries. Quotas would be adjusted as allowable based on any over- and/or underharvests experienced during the 2011 and 2012 Atlantic commercial shark...

  13. Not finding Nemo: limited reef-scale retention in a coral reef fish

    KAUST Repository

    Nanninga, Gerrit B.

    2015-02-03

    The spatial scale of larval dispersal is a key predictor of marine metapopulation dynamics and an important factor in the design of reserve networks. Over the past 15 yr, studies of larval dispersal in coral reef fishes have generated accumulating evidence of consistently high levels of self-recruitment and local retention at various spatial scales. These findings have, to a certain degree, created a paradigm shift toward the perception that large fractions of locally produced recruitment may be the rule rather than the exception. Here we examined the degree of localized settlement in an anemonefish, Amphiprion bicinctus, at a solitary coral reef in the central Red Sea by integrating estimates of self-recruitment obtained from genetic parentage analysis with predictions of local retention derived from a biophysical dispersal model parameterized with real-time physical forcing. Self-recruitment at the reef scale (c. 0.7 km2) was virtually absent during two consecutive January spawning events (1.4 % in 2012 and 0 % in 2013). Predicted levels of local retention at the reef scale varied temporally, but were comparatively low for both simulations (7 % in 2012 and 0 % in 2013). At the same time, the spatial scale of simulated dispersal was restricted to approximately 20 km from the source. Model predictions of reef-scale larval retention were highly dependent on biological parameters, underlining the need for further empirical validations of larval traits over a range of species. Overall, our findings present an urgent caution when assuming the potential for self-replenishment in small marine reserves.

  14. Not finding Nemo: limited reef-scale retention in a coral reef fish

    Science.gov (United States)

    Nanninga, G. B.; Saenz-Agudelo, P.; Zhan, P.; Hoteit, I.; Berumen, M. L.

    2015-06-01

    The spatial scale of larval dispersal is a key predictor of marine metapopulation dynamics and an important factor in the design of reserve networks. Over the past 15 yr, studies of larval dispersal in coral reef fishes have generated accumulating evidence of consistently high levels of self-recruitment and local retention at various spatial scales. These findings have, to a certain degree, created a paradigm shift toward the perception that large fractions of locally produced recruitment may be the rule rather than the exception. Here we examined the degree of localized settlement in an anemonefish, Amphiprion bicinctus, at a solitary coral reef in the central Red Sea by integrating estimates of self-recruitment obtained from genetic parentage analysis with predictions of local retention derived from a biophysical dispersal model parameterized with real-time physical forcing. Self-recruitment at the reef scale (c. 0.7 km2) was virtually absent during two consecutive January spawning events (1.4 % in 2012 and 0 % in 2013). Predicted levels of local retention at the reef scale varied temporally, but were comparatively low for both simulations (7 % in 2012 and 0 % in 2013). At the same time, the spatial scale of simulated dispersal was restricted to approximately 20 km from the source. Model predictions of reef-scale larval retention were highly dependent on biological parameters, underlining the need for further empirical validations of larval traits over a range of species. Overall, our findings present an urgent caution when assuming the potential for self-replenishment in small marine reserves.

  15. 78 FR 18273 - Draft Guidance for Industry on Purchasing Reef Fish Species Associated With the Hazard of...

    Science.gov (United States)

    2013-03-26

    ... Reef Fish Species Associated With the Hazard of Ciguatera Fish Poisoning; Availability AGENCY: Food and...: Purchasing Reef Fish Species Associated With the Hazard of Ciguatera Fish Poisoning.'' The draft guidance... of ciguatera fish poisoning (CFP) from fish that they distribute. The draft guidance is intended...

  16. Ocean acidification affects prey detection by a predatory reef fish.

    Directory of Open Access Journals (Sweden)

    Ingrid L Cripps

    Full Text Available Changes in olfactory-mediated behaviour caused by elevated CO(2 levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2 will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2 and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus. Predators were exposed to either current-day CO(2 levels or one of two elevated CO(2 levels (∼600 µatm or ∼950 µatm that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2 and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2 treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2 treatment and feeding activity was lower for fish in the mid CO(2 treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2 treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2 acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  17. Behavior of prey links midwater and demersal piscivorous reef fishes

    Directory of Open Access Journals (Sweden)

    Peter J. Auster

    Full Text Available Pelagic and demersal guilds of piscivorous fishes are linked by a variety of biological and physical processes that mediate interactions with common prey species. Understanding the behaviors of predators and prey can provide insight into the conditions that make such linkages possible. Here we report on the behaviors of mid-water piscivorous fishes and the responses of prey that produce feeding opportunities for demersal piscivorous fishes associated with "live bottom" ledge habitats off the coast of Georgia (northwest Atlantic Ocean. Prey taxa reduced nearest neighbor distances and retreated towards the seafloor during predatory attacks by mid-water fishes. Demersal fishes subsequently attacked and consumed prey in these ephemeral high density patches. No predation by demersal fishes was observed when prey species were at background densities. If the predator-prey interactions of demersal piscivorous fishes are commonly mediated by the predatory behavior of midwater piscivorous fishes and their prey, such indirect facilitative behaviors may be important in terms of the population processes (e.g., prey consumption and growth rates of these demersal fishes.

  18. Coastal rocky reef fishes of Santa Catarina's northern islands, Brazil

    Directory of Open Access Journals (Sweden)

    Johnatas Adelir Alves

    2015-11-01

    Full Text Available The coast of the state of Santa Catarina only has non-biogenic reefs, i.e. rocky and artificial reefs, and is considered the geographic south limit for many reef fish species. At present the diversity of organisms associated with reef environments is threatened. This study aimed to record the number of families and species of reef fish fauna of the north coast of the state of Santa Catarina. The data were collected through underwater visual census performed on Graças archipelago (26°12'S /48º29'W, Tamboretes archipelago (26°22'S/48°31'W and Barra do Sul islands (26°27'S/48º35'W. A total of 166 species was observed (6 elasmobranchii and 160 actinopterygii belonging to 66 families. The families with more species richness were Carangidae (16, Epinephelidae (9, Blenidae (8, Serranidae (7, Haemulidae (6, Sparidae (6 Tetraodontidae (6, Labridae-Scarini (5, Labrisomidae (5 Pomacentridae (5, Lutjanidae (5 and Muraenidae (5. This study add to the current published list, new 115 species, including new occurrences (e.g. Chromis limbata, and some endemic (e.g. Sparisoma amplum, exotic (e.g. Omobranchus punctatus, endangered (e.g. Hippocampus erectus and overexploited (e.g. Lutjanus analis species. Twenty one species are present in the IUCN’s list, twelve in the IBAMA’s list and four in the local list. All elasmobranchii recorded here are considered threatened species, like the brazilian guitarfish (Rhinobatos horkelii, which appears in three red lists, and it is considered critically endangered. All species of Epinephelidae are mentioned in the list of risk categories of the IUCN and five are cited as overexploited or threatened with overexploitation by IBAMA. Among Epinephelidae, the goliath grouper (Epinephelus itajara, is present in all red lists and has specific protection rules in Brazil. The gathered information will allow to take appropriate conservation measures, such as the establishment of marine protected areas, monitoring of fishing

  19. 78 FR 52487 - Atlantic Highly Migratory Species; 2014 Atlantic Shark Commercial Fishing Season

    Science.gov (United States)

    2013-08-23

    ... Species; 2014 Atlantic Shark Commercial Fishing Season AGENCY: National Marine Fisheries Service (NMFS... season for the Atlantic commercial shark fisheries. Quotas would be adjusted as allowable based on any..., fishing opportunities for commercial shark fishermen in all regions and areas. The proposed measures...

  20. Habitat degradation is threatening reef replenishment by making fish fearless.

    Science.gov (United States)

    Lönnstedt, Oona M; McCormick, Mark I; Chivers, Douglas P; Ferrari, Maud C O

    2014-09-01

    Habitat degradation is one of the 'Big Five' drivers of biodiversity loss. However, the mechanisms responsible for this progressive loss of biodiversity are poorly understood. In marine ecosystems, corals play the role of ecosystem engineers, providing essential habitat for hundreds of thousands of species and hence their health is crucial to the stability of the whole ecosystem. Climate change is causing coral bleaching and degradation, and while this has been known for a while, little do we know about the cascading consequences of these events on the complex interrelationships between predators and their prey. The goal of our study was to investigate, under completely natural conditions, the effect of coral degradation on predator-prey interactions. Settlement stage ambon damselfish (Pomacentrus amboinensis), a common tropical fish, were released on patches of healthy or dead corals, and their behaviours in situ were measured, along with their response to injured conspecific cues, a common risk indicator. This study also explored the effect of habitat degradation on natural levels of mortality at a critical life-history transition. We found that juveniles in dead corals displayed risk-prone behaviours, sitting further away and higher up on the reef patch, and failed to respond to predation cues, compared to those on live coral patches. In addition, in situ survival experiments over 48 h indicated that juveniles on dead coral habitats had a 75% increase in predation-related mortality, compared to fish released on live, healthy coral habitats. Our results provide the first of many potential mechanisms through which habitat degradation can impact the relationship between prey and predators in the coral reef ecosystem. As the proportion of dead coral increases, the recruitment and replenishment of coral reef fishes will be threatened, and so will the level of diversity in these biodiversity hot spots.

  1. Restocking herbivorous fish populations as a social-ecological restoration tool in coral reefs

    OpenAIRE

    Avigdor Abelson; Uri Obolski; Patrick Regoniel; Lilach Hadany

    2016-01-01

    The degradation of the world's coral reefs has aroused growing interest in ecological restoration as a countermeasure, which is widely criticized, mainly due to cost-effectiveness concerns. Here, we propose the restocking of herbivorous fish as a restoration tool, based on supply of young fish to degraded reefs, with the aims of: (1) Buildup of a critical fish biomass for basic ecosystem functions (e.g., grazing); (2) Increased fishing yields, which can sustain coastal communities, and conseq...

  2. Potential contribution of fish restocking to the recovery of deteriorated coral reefs: an alternative restoration method?

    Directory of Open Access Journals (Sweden)

    Uri Obolski

    2016-02-01

    Full Text Available Counteracting the worldwide trend of coral reef degeneration is a major challenge for the scientific community. A crucial management approach to minimizing stress effects on healthy reefs and helping the recovery of disturbed reefs is reef protection. However, the current rapid decline of the world’s reefs suggests that protection might be insufficient as a viable stand-alone management approach for some reefs. We thus suggest that the ecological restoration of coral reefs (CRR should be considered as a valid component of coral reef management, in addition to protection, if the applied method is economically applicable and scalable. This theoretical study examines the potential applicability and outcomes of restocking grazers as a restoration tool for coral reef recovery—a tool that has not been applied so far in reef restoration projects. We studied the effect of restocking grazing fish as a restoration method using a mathematical model of degrading reefs, and analyzed the financial outcomes of the restocking intervention. The results suggest that applying this restoration method, in addition to protection, can facilitate reef recovery. Moreover, our analysis suggests that the restocking approach almost always becomes profitable within several years. Considering the relatively low cost of this restoration approach and the feasibility of mass production of herbivorous fish, we suggest that this approach should be considered and examined as an additional viable restoration tool for coral reefs.

  3. Predator-induced demographic shifts in coral reef fish assemblages.

    Directory of Open Access Journals (Sweden)

    Benjamin I Ruttenberg

    Full Text Available In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management.

  4. The structure of rocky reef fish assemblages across a nearshore to coastal islands' gradient in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Zaniolo Gibran

    geographic knowledge gap in the South Atlantic. As the study region is experiencing fast coastal development and growing threats from seaport expansion, oil and gas exploitation, as well as increasing fishing and tourism pressure, the understanding of the underlying factors that influence the distribution and abundance of the reef-associated biota comprises a relevant baseline for monitoring, conservation planning and management.

  5. The functional role of tabular structures for large reef fishes: avoiding predators or solar irradiance?

    Science.gov (United States)

    Kerry, J. T.; Bellwood, D. R.

    2015-06-01

    Large reef fishes may often be seen sheltering under tabular structures on coral reefs. There are two principle explanations for this behaviour: avoidance of predation or avoidance of solar irradiance. This study sought supporting evidence to distinguish between these two explanations by examining the usage of tabular structures on a shallow mid-shelf reef of the Great Barrier Reef at midday and sunset. If predation avoidance is most important, usage should increase towards sunset; conversely, if avoidance of solar radiation is most important, more fishes should use cover at midday. Underwater video observations revealed that tabular structures were extensively used by large reef fishes at midday, being characterised by numerous species, especially Lutjanidae and Haemulidae. In contrast, at sunset, tabular structures were used by significantly fewer large reef fishes, being characterised mostly by species of unicornfish ( Naso spp.). Resident times of fishes using tabular structures were also significantly longer at midday (28:06 ± 5:55 min) than at sunset (07:47 ± 2:19 min). The results suggest that the primary function of tabular structures for large reef fishes is the avoidance of solar irradiance. This suggestion is supported by the position of fishes when sheltering. The majority of large reef fishes were found to shelter under the lip of tabular structure, facing outwards. This behaviour is thought to allow protection from harmful downwelling UV-B irradiance while allowing the fish to retain photopic vision and survey more of the surrounding area. These findings help to explain the importance of tabular structures for large reef fishes on coral reefs, potentially providing a valuable energetic refuge from solar irradiance.

  6. Relationships between reef fish communities and remotely sensed rugosity measurements in Biscayne National Park, Florida, USA

    Science.gov (United States)

    Kuffner, Ilsa B.; Brock, John C.; Grober-Dunsmore, Rikki; Bonito, Victor E.; Hickey, T. Donald; Wright, C. Wayne

    2007-01-01

    The realization that coral reef ecosystem management must occur across multiple spatial scales and habitat types has led scientists and resource managers to seek variables that are easily measured over large areas and correlate well with reef resources. Here we investigate the utility of new technology in airborne laser surveying (NASA Experimental Advanced Airborne Research Lidar (EAARL)) in assessing topographical complexity (rugosity) to predict reef fish community structure on shallow (n = 10–13 per reef). Rugosity at each station was assessed in situ by divers using the traditional chain-transect method (10-m scale), and remotely using the EAARL submarine topography data at multiple spatial scales (2, 5, and 10 m). The rugosity and biological datasets were analyzed together to elucidate the predictive power of EAARL rugosity in describing the variance in reef fish community variables and to assess the correlation between chain-transect and EAARL rugosity. EAARL rugosity was not well correlated with chain-transect rugosity, or with species richness of fishes (although statistically significant, the amount of variance explained by the model was very low). Variance in reef fish community attributes was better explained in reef-by-reef variability than by physical variables. However, once the reef-by-reef variability was taken into account in a two-way analysis of variance, the importance of rugosity could be seen on individual reefs. Fish species richness and abundance were statistically higher at high rugosity stations compared to medium and low rugosity stations, as predicted by prior ecological research. The EAARL shows promise as an important mapping tool for reef resource managers as they strive to inventory and protect coral reef resources.

  7. Coral reef diseases in the Atlantic-Caribbean

    Science.gov (United States)

    Rogers, Caroline S.; Weil, Ernesto; Dubinsky, Zvy; Stambler, Noga

    2010-01-01

    Coral reefs are the jewels of the tropical oceans. They boast the highest diversity of all marine ecosystems, aid in the development and protection of other important, productive coastal marine communities, and have provided millions of people with food, building materials, protection from storms, recreation and social stability over thousands of years, and more recently, income, active pharmacological compounds and other benefits. These communities have been deteriorating rapidly in recent times. The continuous emergence of coral reef diseases and increase in bleaching events caused in part by high water temperatures among other factors underscore the need for intensive assessments of their ecological status and causes and their impact on coral reefs.

  8. Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago.

    Directory of Open Access Journals (Sweden)

    Benjamin L Richards

    Full Text Available Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores. Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.

  9. A role for partially protected areas on coral reefs: Maintaining fish diversity?

    KAUST Repository

    Tyler, Elizabeth

    2011-04-15

    1. Completely banning fishing from coral reefs is now accepted to have significant benefits for marine biodiversity and in many cases, fisheries. However, the benefits of regulating fishing on coral reefs, by restricting the methods used, or the total amount of fishing, are less well understood, even though such regulations are much more likely to be supported by fishermen. 2. This study assesses whether banning illegal, destructive fishing methods and reducing the numbers of fishermen visiting from outside an area benefits a coral reef fishery, despite unregulated fishing by local fishermen using non-destructive methods. 3. The abundance, biomass, mean length, and species richness of nine commercially important fish families are compared across ten independent patch reefs inside and outside the 470km2 Menai Bay Conservation Area in Zanzibar, Tanzania. 4. Even after taking into account the effect of differences in habitat and the distance between reefs, 61% (±19.7%) more fish species were found in regulated than unregulated reefs. Fish abundance, biomass, and length were not affected, suggesting that banning destructive fishing may improve biodiversity, but that further regulations may be required to improve fish stocks. © 2011 John Wiley and Sons, Ltd.

  10. The importance of the marine ornamental reef fish trade in the wider Caribbean.

    Science.gov (United States)

    Bruckner, A W

    2005-05-01

    The marine ornamental fish trade began in the 1930s in Sri Lanka, spread to Hawaii and the Philippines in the 1950s, and expanded to a multi-million dollar industry in the 1970s with fisheries established throughout the tropical Pacific, Indian and Atlantic Oceans. Currently, 45 countries supply global markets an estimated 14-30 million fish annually, with an import value of US$28-44 million. The largest suppliers are Indonesia and the Philippines, followed by Brazil, Maldives, Vietnam, Sri Lanka and Hawaii. In the tropical Western Atlantic, 16 countries have export fisheries, including the U.S. (Florida and Puerto Rico). The U.S. is the world's largest buyer, followed by the European Union and Japan. The global trade consists of over 1400 species of reef fishes, of which only about 25 are captive bred on a commercial scale. Damselfish, anemonefish, and angelfish constitute over 50% of the global volume; butterflyfish, wrasses, blennies, gobies, triggerfish, filcfish, hawkfishes, groupers and basselets account for 31% of the trade, and the remaining 16% is represented by 33 families. The most important fishes from the Caribbean are angelfish (six species), seahorses (two species), royal gramma, jawfish, queen triggerfish, redlip blenny, puddingwife, bluehead wrasse, and blue chromis. The Caribbean currently supplies a small percentage of the global trade in marine ornamental species, but ornamental fisheries in this region represent important emerging industries. It is critical that effective ornamental fishery management plans and regulations are developed and enforced, and fishery-dependent and fishery-independent data are collected and utilized in decision making processes to ensure sustainable ornamental fisheries throughout the region.

  11. Shallow reef fish communities of South Bahia coast, Brazil

    Directory of Open Access Journals (Sweden)

    Laís de C. T. Chaves

    2010-01-01

    Full Text Available This study aims to describe for the first time the fish community structure of five shallow reefs located off the cities of Santa Cruz de Cabrália and Porto Seguro (Araripe-AR, Itacipanema-IT, Alagados-AL, Naufrágio-NA and Recife de Fora Marine Park-RF Reefs, South Bahia, Northeastern Brazil. Fish density and richness were assessed through stationary point counts of 2 m radius for small cryptic species and 3 m for more conspicuous species. A total of 1 802 fishes belonging to 23 families and 54 species were observed. The most abundant species were the pomacentrids Stegastes fuscus and Abudefduf saxatilis. No significant differences were found for species richness or density of conspicuous species, but density of small cryptic species was low on reefs with high bottom rugosity, where there were more holes and crevices available. Herbivores were dominant on AR, AL and RF, invertivores on AL and both groups were dominant on IT. Some habitat variables such as rugosity and benthic cover were strongly correlated to species and sites. High bottom heterogeneity was found among reefs but they still presented similar species composition, richness and density. Within small-scale studies, such similarities in composition and richness are to be expected for reef fish communities, as most of the species concerned have a wide distribution range.Este trabalho descreve pela primeira vez as comunidades de peixes em cinco recifes rasos de Santa Cruz de Cabrália e Porto Seguro (Araripe-AR, Itacipanema-IT, Alagados-AL, Naufrágio-NA e Recife de Fora Marine Park-RF, sul da Bahia, nordeste do Brasil. A densidade e riqueza foram obtidas utilizando censos estacionários de 2 m de raio para espécies pequenas e criptobênticas e 3 m de raio para espécies conspícuas. Um total de 1802 peixes pertencentes a 23 famílias e 54 espécies foram registrados, sendo as espécies mais abundantes dos pomacentrídeos Stegastes fuscus e Abudefduf saxatilis. Nenhuma diferen

  12. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.

    2016-11-15

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  13. Distribution of fish in seagrass, mangroves and coral reefs: life-stage dependent habitat use in Honduras

    OpenAIRE

    2012-01-01

    Many coral reef fish exhibit habitat partitioning throughout their lifetimes. Such patterns are evident in the Caribbean where research has been predominantly conducted in the Eastern region. This work addressed the paucity of data regarding Honduran reef fish distribution in three habitat types (seagrass, mangroves, and coral reefs), by surveying fish on the islands of Utila and Cayos Cochinos off the coast of Honduras (part of the Mesoamerican barrier reef). During July 2nd - Aug 27th 2007 ...

  14. Water flow and fin shape polymorphism in coral reef fishes.

    Science.gov (United States)

    Binning, Sandra A; Roche, Dominique G

    2015-03-01

    Water flow gradients have been linked to phenotypic differences and swimming performance across a variety of fish assemblages. However, the extent to which water motion shapes patterns of phenotypic divergence within species remains unknown. We tested the generality of the functional relationship between swimming morphology and water flow by exploring the extent of fin and body shape polymorphism in 12 widespread species from three families (Acanthuridae, Labridae, Pomacentridae) of pectoral-fin swimming (labriform) fishes living across localized wave exposure gradients. The pectoral fin shape of Labridae and Acanthuridae species was strongly related to wave exposure: individuals with more tapered, higher aspect ratio (AR) fins were found on windward reef crests, whereas individuals with rounder, lower AR fins were found on leeward, sheltered reefs. Three of seven Pomacentridae species showed similar trends, and pectoral fin shape was also strongly related to wave exposure in pomacentrids when fin aspect ratios of three species were compared across flow habitats at very small spatial scales (back lagoon). Unlike fin shape, there were no intraspecific differences in fish body fineless ratio across habitats or depths. Contrary to our predictions, there was no pattern relating species' abundances to polymorphism across habitats (i.e., abundance was not higher at sites where morphology is better adapted to the environment). This suggests that there are behavioral and/or physiological mechanisms enabling some species to persist across flow habitats in the absence of morphological differences. We suggest that functional relationships between swimming morphology and water flow not only structure species assemblages, but are yet another important variable contributing to phenotypic differences within species. The close links between fin shape polymorphism and local water flow conditions appear to be important for understanding species' distributions as well as patterns of

  15. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    Science.gov (United States)

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.

  16. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches

    Directory of Open Access Journals (Sweden)

    Elena L.E.S. Wagner

    2015-12-01

    Full Text Available Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes, live coral cover and patch size (volume. The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.

  17. The functional importance of Acropora austera as nursery areas for juvenile reef fish on South African coral reefs

    Science.gov (United States)

    Floros, C.; Schleyer, M. H.

    2017-03-01

    Many coral reef fish species use mangrove and seagrass beds as nursery areas. However, in certain regions, the absence or scarcity of such habitats suggests that juvenile coral reef fish may be seeking refuge elsewhere. The underlying biogenic substratum of most coral reefs is structurally complex and provides many types of refuge. However, on young or subtropical coral reefs, species may be more reliant on the living coral layer as nursery areas. Such is the case on the high-latitude coral reefs of South Africa where the coral communities consist of a thin veneer of coral overlaying late Pleistocene bedrock. Thus, the morphology of coral species may be a major determinant in the availability of refuge space. Acropora austera is a branching species that forms large patches with high structural complexity. Associated with these patches is a diverse community of fish species, particularly juveniles. Over the past decade, several large (>100 m2) A. austera patches at Sodwana Bay have been diminishing for unknown reasons and there is little evidence of their replacement or regrowth. Seven patches of A. austera (AP) and non- A. austera (NAP) were selected and monitored for 12 months using visual surveys to investigate the importance of AP as refugia and nursery areas. There were significant differences in fish communities between AP and NAP habitats. In total, 110 species were recorded within the patches compared to 101 species outside the patches. Labrids and pomacentrids were the dominant species in the AP habitats, while juvenile scarids, acanthurids, chaetodons and serranids were also abundant. The diversity and abundance of fish species increased significantly with AP size. As the most structurally complex coral species on the reefs, the loss of APs may have significant implications for the recruitment and survival of certain fish species.

  18. Marine ecosystem appropriation in the Indo-Pacific: a case study of the live reef fish food trade

    Science.gov (United States)

    Warren-Rhodes, Kimberley; Sadovy, Yvonne; Cesar, Herman

    2003-01-01

    Our ecological footprint analyses of coral reef fish fisheries and, in particular, the live reef fish food trade (FT), indicate many countries' current consumption exceeds estimated sustainable per capita global, regional and local coral reef production levels. Hong Kong appropriates 25% of SE Asia's annual reef fish production of 135 260-286 560 tonnes (t) through its FT demand, exceeding regional biocapacity by 8.3 times; reef fish fisheries demand out-paces sustainable production in the Indo-Pacific and SE Asia by 2.5 and 6 times. In contrast, most Pacific islands live within their own reef fisheries means with local demand at < 20% of total capacity in Oceania. The FT annually requisitions up to 40% of SE Asia's estimated reef fish and virtually all of its estimated grouper yields. Our results underscore the unsustainable nature of the FT and the urgent need for regional management and conservation of coral reef fisheries in the Indo-Pacific.

  19. Fishing top predators indirectly affects condition and reproduction in a reef-fish community.

    Science.gov (United States)

    Walsh, S M; Hamilton, S L; Ruttenberg, B I; Donovan, M K; Sandin, S A

    2012-03-01

    To examine the indirect effects of fishing on energy allocation in non-target prey species, condition and reproductive potential were measured for five representative species (two-spot red snapper Lutjanus bohar, arc-eye hawkfish Paracirrhites arcatus, blackbar devil Plectroglyphidodon dickii, bicolour chromis Chromis margaritifer and whitecheek surgeonfish Acanthurus nigricans) from three reef-fish communities with different levels of fishing and predator abundance in the northern Line Islands, central Pacific Ocean. Predator abundance differed by five to seven-fold among islands, and despite no clear differences in prey abundance, differences in prey condition and reproductive potential among islands were found. Body condition (mean body mass adjusted for length) was consistently lower at sites with higher predator abundance for three of the four prey species. Mean liver mass (adjusted for total body mass), an indicator of energy reserves, was also lower at sites with higher predator abundance for three of the prey species and the predator. Trends in reproductive potential were less clear. Mean gonad mass (adjusted for total body mass) was high where predator abundance was high for only one of the three species in which it was measured. Evidence of consistently low prey body condition and energy reserves in a diverse suite of species at reefs with high predator abundance suggests that fishing may indirectly affect non-target prey-fish populations through changes in predation and predation risk.

  20. SPECTRAL AND SPATIAL SELECTIVITY OF LUMINANCE VISION IN REEF FISH

    Directory of Open Access Journals (Sweden)

    Ulrike E Siebeck

    2014-09-01

    Full Text Available Luminance vision has high spatial resolution and is used for form vision and texture discrimination. In humans, birds and bees luminance channel is spectrally selective – it depends on the signals of the long-wavelength sensitive photoreceptors (bees or on the sum of long- and middle- wavelength sensitive cones (humans, but not on the signal of the short-wavelength sensitive (blue photoreceptors. The reasons of such selectivity are not fully understood. The aim of this study is to reveal the inputs of cone signals to high resolution luminance vision in reef fish. 16 freshly caught damselfish, Pomacentrus amboinensis, were trained to discriminate stimuli differing either in their colour or in their fine patterns (stripes vs. cheques. Three colours (‘bright green’, ‘dark green’ and ‘blue’ were used to create two sets of colour and two sets of pattern stimuli. The ‘bright green’ and ‘dark green’ were similar in their chromatic properties for fish, but differed in their lightness; the ‘dark green’ differed from ‘blue’ in the signal for the blue cone, but yielded similar signals in the long-wavelength and middle-wavelength cones. Fish easily learned to discriminate ‘bright green’ from ‘dark green’ and ‘dark green’ from ‘blue’ stimuli. Fish also could discriminate the fine patterns created from ‘dark green’ and ‘bright green’. However, fish failed to discriminate fine patterns created from ‘blue’ and ‘dark green’ colours, i.e. the colours that provided contrast for the blue-sensitive photoreceptor, but not for the long-wavelength sensitive one. High resolution luminance vision in damselfish, Pomacentrus amboinensis, does not have input from the blue-sensitive cone, which may indicate that the spectral selectivity of luminance channel is a general feature of visual processing in both aquatic and terrestrial animals.

  1. Coral reef fish assemblages at Clipperton Atoll (Eastern Tropical Pacific and their relationship with coral cover

    Directory of Open Access Journals (Sweden)

    Aurora M. Ricart

    2016-11-01

    Full Text Available Clipperton Atoll, one of the most isolated coral reefs worldwide, is of great scientific interest due to its geomorphology and high levels of endemism. This study explored the reef fish assemblage structure of Clipperton Atoll and its relationship with live coral cover. Nine stations were sampled at three sites and three depths (6, 12 and 20 m around the reef, measuring fish species richness and biomass and hermatypic coral cover (at genus level. We evaluated variation in species richness, biomass and diversity of fish assemblages among sites and depths, as well as the relationship between the entire fish assemblage composition and live coral cover. The results showed that species richness and biomass were similar among sites, but differed across depths, increasing with depth. In contrast, diversity differed among sites but not among depths. Multivariate analyses indicated that fish assemblage composition differed among sites and depths in relation to changes in cover of coral of the genera Pocillopora, Porites, Pavona and Leptoseris, which dominate at different depths. The results showed that fish species richness and diversity were low at Clipperton Atoll and that, in isolated coral reefs with a low habitat heterogeneity and low human disturbance, live coral cover has a significant influence on the spatial variation of the reef fish assemblages. This study highlights the importance of coral habitat structure in shaping coral reef fish assemblages.

  2. Competition for shelter in a high-diversity system: structure use by large reef fishes

    Science.gov (United States)

    Kerry, J. T.; Bellwood, D. R.

    2016-03-01

    Competition among large reef fishes for shelter beneath tabular structures provides a rare opportunity to study competition in a species-rich environment. The system permits a detailed study of localised competition with major implications for coral reefs with respect to human impacts including climate change. Using underwater video cameras, this study examined competition among 30 species of large reef fishes (from nine families) for access to shelter provided by 26 tabular structures, which may be the highest reported diversity of vertebrates competing for a single resource. Mean concentrations of fishes under tabular structures were also among the highest biomass recorded on reefs (4.71 kg m-2). A generated dominance hierarchy for the occupation of shelter appeared to be primarily driven by the size of fishes. In contrast to previous studies, fishes higher in the hierarchy tended to exhibit the lowest levels of aggression. However, size difference between fishes was found to be strongly negatively correlated with the proportion of aggressive interactions ( R 2 = 0.971, P concerns about future shifts in the structure of large reef fish communities as corals are lost. This is particularly concerning given the critical functional roles played by certain species of large reef fishes that utilise tabular structure for shelter and which occupy the lower ranks of the dominance hierarchy.

  3. 77 FR 75896 - Atlantic Highly Migratory Species; 2013 Atlantic Shark Commercial Fishing Season

    Science.gov (United States)

    2012-12-26

    ... Species; 2013 Atlantic Shark Commercial Fishing Season AGENCY: National Marine Fisheries Service (NMFS... the Atlantic commercial shark fisheries (sandbar sharks, non-sandbar large coastal sharks, blue sharks, porbeagle sharks, and pelagic sharks (other than porbeagle and blue sharks), non-blacknose small...

  4. 78 FR 70500 - Atlantic Highly Migratory Species; 2014 Atlantic Shark Commercial Fishing Seasons

    Science.gov (United States)

    2013-11-26

    ...; 2014 Atlantic Shark Commercial Fishing Seasons AGENCY: National Marine Fisheries Service (NMFS... for the Atlantic commercial shark fisheries. The quota adjustments are based on over- and/or... for commercial shark fishermen in all regions and areas. These actions could affect...

  5. Estimating the role of three mesopredatory fishes in coral reef food webs at Ningaloo Reef, Western Australia

    Science.gov (United States)

    Thillainath, Emma C.; McIlwain, Jennifer L.; Wilson, Shaun K.; Depczynski, Martial

    2016-03-01

    Within the complex food webs that occur on coral reefs, mesopredatory fish consume small-bodied prey and transfer accumulated biomass to other trophic levels. We estimated biomass, growth and mortality rates of three common mesopredators from Ningaloo Reef in Western Australia to calculate their annual turnover rates and potential contribution to local trophic dynamics. Biomass estimates of the serranid Epinephelus rivulatus (4.46 ± 0.76 g m-2) were an order of magnitude greater than two smaller-bodied mesopredatory fishes, Pseudochromis fuscus (0.10 ± 0.03 g m-2) and Parapercis clathrata (0.23 ± 0.31 g m-2). Growth parameters generated from a von Bertalanffy growth function fitted to size-at-age data, however, indicated that mortality rates for the three mesopredators were similar and that 32-55 % of fish survived each year. Consequently, interspecific differences in annual turnover rates among E. rivulatus (1.9 g m-2 yr-1), Pa. clathrata (0.10 g m-2 yr-1) and Ps. fuscus (0.07 g m-2 yr-1) were an artefact of differences in local biomass estimates. The rapid turnover estimates for E. rivulatus suggest this species is an important conduit of energy within the isolated patch reef habitat where it is typically found, while Ps. fuscus and Pa. clathrata channel smaller amounts of energy from specific habitats in the Ningaloo lagoon. Apparent differences in habitat, diet and turnover rates of the three species examined provide an insight into the different roles these species play in coral reef food webs and suggest that life-history traits allow for variability in the local and spatial contribution of these species at Ningaloo Reef. Moreover, calculating turnover rates of a broader suite of fish species from a range of trophic groups will help better define the role of fishes in coral reef trophic dynamics.

  6. Coral Reefs: A Gallery Program, Grades 7-12.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    Gallery classes at the National Aquarium in Baltimore give the opportunity to study specific aquarium exhibits which demonstrate entire natural habitats. The coral reef gallery class features the gigantic western Atlantic coral reef (325,000 gallons) with over 1,000 fish. The exhibit simulates a typical Caribbean coral reef and nearby sandy…

  7. Coral Reefs: A Gallery Program, Grades 7-12.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    Gallery classes at the National Aquarium in Baltimore give the opportunity to study specific aquarium exhibits which demonstrate entire natural habitats. The coral reef gallery class features the gigantic western Atlantic coral reef (325,000 gallons) with over 1,000 fish. The exhibit simulates a typical Caribbean coral reef and nearby sandy…

  8. Influence of Palythoa caribaeorum (Anthozoa, Cnidaria zonation on site-attached reef fishes

    Directory of Open Access Journals (Sweden)

    José P. Mendonça-Neto

    2008-09-01

    Full Text Available This work aimed to test the influence of Palythoa caribeorum, a widely distributed zoanthid in the Atlantic, on site-attached reef fish in a subtropical rocky shore. Density, richness and vertical distribution of reef fish inside (ID and outside (OD previously chosen P. caribaeorum dominance patches were compared through stationary visual censuses along three different periods. Fishes were grouped in different trophic guilds to evidence differences in resources uses in both treatments. A complexity index was estimated by the chain link method and percentage covering of benthic organisms was obtained analyzing random points from replicated photo-quadrats. We observed thirty-eight species of fishes, belonging to twenty-five families. Reef fish communities between studied patches were similar,both in terms of species composition and vertical distribution. Considering only the most site-attached fishes, which were the most frequent and abundant species, data showed that ID sustains higher diversity and abundance than OD. Results showed that benthic composition differ significantly among patches whereas complexity remained without differences. Otherwise, results indicated that these areas might play an important role in space limitation, structuring neighboring benthic community and consequently reef fish assemblages.Este estudo visou testar a influência de Palythoa caribeorum, um zoantídeo amplamente distribuído no Atlântico, na estruturação da comunidade de peixes recifais associados a um costão rochoso de uma região subtropical. A densidade, a riqueza e a distribuição vertical de peixes recifais em áreas previamente selecionadas com e sem a dominância de Palythoa caribaeorum foram comparadas através de censos visuais estacionários em três períodos distintos de tempo. Os peixes foram agrupados em guildas tróficas a fim de evidenciar diferenças nos usos dos recursos nas diferentes áreas analisadas. Foram analisados também

  9. Are artificial reefs surrogates of natural habitats for corals and fish in Dubai, United Arab Emirates?

    Science.gov (United States)

    Burt, J.; Bartholomew, A.; Usseglio, P.; Bauman, A.; Sale, P. F.

    2009-09-01

    Artificial reefs are often promoted as mitigating human impacts in coastal ecosystems and enhancing fisheries; however, evidence supporting their benefits is equivocal. Such structures must be compared with natural reefs in order to assess their performance, but past comparisons typically examined artificial structures that were too small, or were immature, relative to the natural reefs. We compared coral and fish communities on two large (>400,000 m3) and mature (>25 year) artificial reefs with six natural coral patches. Coral cover was higher on artificial reefs (50%) than in natural habitats (31%), but natural coral patches contained higher species richness (29 vs. 20) and coral diversity ( H' = 2.3 vs. 1.8). Multivariate analyses indicated strong differences between coral communities in natural and artificial habitats. Fish communities were sampled seasonally for 1 year. Multivariate fish communities differed significantly among habitat types in the summer and fall, but converged in the winter and spring. Univariate analysis indicated that species richness and abundance were stable throughout the year on natural coral patches but increased significantly in the summer on artificial reefs compared with the winter and spring, explaining the multivariate changes in community structure. The increased summer abundance on artificial reefs was mainly due to adult immigration. Piscivores were much more abundant in the fall than in the winter or spring on artificial reefs, but had low and stable abundance throughout the year in natural habitats. It is likely that the decreased winter and spring abundance of fish on the artificial reefs resulted from both predation and emigration. These results indicate that large artificial reefs can support diverse and abundant coral and fish communities. However, these communities differ structurally and functionally from those in natural habitats, and they should not be considered as replacements for natural coral and fish communities.

  10. Body Size Shifts in Philippine Reef Fishes: Interfamilial Variation in Responses to Protection

    Directory of Open Access Journals (Sweden)

    Robert Y. Fidler

    2014-03-01

    Full Text Available As a consequence of intense fishing pressure, fished populations experience reduced population sizes and shifts in body size toward the predominance of smaller and early maturing individuals. Small, early-maturing fish exhibit significantly reduced reproductive output and, ultimately, reduced fitness. As part of resource management and biodiversity conservation programs worldwide, no-take marine protected areas (MPAs are expected to ameliorate the adverse effects of fishing pressure. In an attempt to advance our understanding of how coral reef MPAs meet their long-term goals, this study used visual census data from 23 MPAs and fished reefs in the Philippines to address three questions: (1 Do MPAs promote shifts in fish body size frequency distribution towards larger body sizes when compared to fished reefs? (2 Do MPA size and (3 age contribute to the efficacy of MPAs in promoting such shifts? This study revealed that across all MPAs surveyed, the distribution of fishes between MPAs and fished reefs were similar; however, large-bodied fish were more abundant within MPAs, along with small, young-of-the-year individuals. Additionally, there was a significant shift in body size frequency distribution towards larger body sizes in 12 of 23 individual reef sites surveyed. Of 22 fish families, eleven demonstrated significantly different body size frequency distributions between MPAs and fished reefs, indicating that shifts in the size spectrum of fishes in response to protection are family-specific. Family-level shifts demonstrated a significant, positive correlation with MPA age, indicating that MPAs become more effective at increasing the density of large-bodied fish within their boundaries over time.

  11. The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries

    NARCIS (Netherlands)

    Dorenbosch, M.; Riel, M.C. van; Nagelkerken, I.A.; Velde, G. van der

    2004-01-01

    Visual census surveys were used to study the distribution of coral reef fishes that are associated with seagrass beds and mangroves in their juvenile phase, on various coral reef sites along the coast of the Caribbean island of Curacao (Netherlands Antilles). The hypothesis tested was that various r

  12. Fish with chips: tracking reef fish movements to evaluate size and connectivity of Caribbean marine protected areas.

    Directory of Open Access Journals (Sweden)

    Simon J Pittman

    Full Text Available Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40-64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.

  13. Increased CO2 stimulates reproduction in a coral reef fish.

    Science.gov (United States)

    Miller, Gabrielle M; Watson, Sue-Ann; McCormick, Mark I; Munday, Philip L

    2013-10-01

    Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO(2)) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO(2) on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO(2) treatments [Current-day Control (430 μatm), Moderate (584 μatm) and High (1032 μatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO(2) dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO(2) treatment. Pairs in the High CO(2) group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO(2) group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO(2). However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.

  14. Effects of reef proximity on the structure of fish assemblages of unconsolidated substrata.

    Directory of Open Access Journals (Sweden)

    Arthur L Schultz

    Full Text Available Fish assemblages of unconsolidated sedimentary habitats on continental shelves are poorly described when compared to those of hard substrata. This lack of data restricts the objective management of these extensive benthic habitats. In the context of protecting representative areas of all community types, one important question is the nature of the transition from reefal to sedimentary fish assemblages. We addressed this question using Baited Remote Underwater Videos (BRUVs to assess fish assemblages of sedimentary habitats at six distances from rocky reefs (0, 25, 50, 100, 200, and 400 m at four sites in subtropical eastern Australia. Distance from reef was important in determining fish assemblage structure, and there was no overlap between reef sites and sedimentary sites 400 m from reef. While there was a gradient in assemblage structure at intermediate distances, this was not consistent across sites. All sites, however, supported a mixed 'halo' assemblage comprising both reef and sediment species at sampling stations close to reef. BRUVs used in conjunction with high-resolution bathymetric and backscatter spatial data can resolve differences in assemblage structure at small spatial scales (10s to 100s of metres, and has further application in unconsolidated habitats. Unless a 'reef halo' assemblage is being examined, a minimum of 200 m but preferably 400 m distance from any hard substrate is recommended when designing broader-scale assessments of fish assemblages of sedimentary habitats.

  15. Human, oceanographic and habitat drivers of central and western Pacific coral reef fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ivor D Williams

    Full Text Available Coral reefs around US- and US-affiliated Pacific islands and atolls span wide oceanographic gradients and levels of human impact. Here we examine the relative influence of these factors on coral reef fish biomass, using data from a consistent large-scale ecosystem monitoring program conducted by scientific divers over the course of >2,000 hours of underwater observation at 1,934 sites, across ~40 islands and atolls. Consistent with previous smaller-scale studies, our results show sharp declines in reef fish biomass at relatively low human population density, followed by more gradual declines as human population density increased further. Adjusting for other factors, the highest levels of oceanic productivity among our study locations were associated with more than double the biomass of reef fishes (including ~4 times the biomass of planktivores and piscivores compared to islands with lowest oceanic productivity. Our results emphasize that coral reef areas do not all have equal ability to sustain large reef fish stocks, and that what is natural varies significantly amongst locations. Comparisons of biomass estimates derived from visual surveys with predicted biomass in the absence of humans indicated that total reef fish biomass was depleted by 61% to 69% at populated islands in the Mariana Archipelago; by 20% to 78% in the Main Hawaiian islands; and by 21% to 56% in American Samoa.

  16. Florida Reef Fish Visual Census 1994 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  17. Restocking herbivorous fish populations as a social-ecological restoration tool in coral reefs

    Directory of Open Access Journals (Sweden)

    Avigdor Abelson

    2016-08-01

    Full Text Available The degradation of the world's coral reefs has aroused growing interest in ecological restoration as a countermeasure, which is widely criticized, mainly due to cost-effectiveness concerns. Here, we propose the restocking of herbivorous fish as a restoration tool, based on supply of young fish to degraded reefs, with the aims of: 1. Buildup of a critical fish biomass for basic ecosystem functions (e.g. grazing; 2. Increased fishing yields, which can sustain coastal communities, and consequently; 3. Reduced reef destruction and better local compliance with fishery policies. We present the rationale of the restocking approach as both a reef restoration and a fishery management tool, and examine its pros and cons. This approach requires, however, further social-ecological and aquaculture research in order to support the critical stages of its implementation.

  18. Florida Reef Fish Visual Census 1997 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  19. Florida Reef Fish Visual Census 1984 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  20. Florida Reef Fish Visual Census 1987 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  1. Acoustic Tracking of Fish Movements in Coral Reef Ecosystems in St John (USVI), 2006-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic Tracking of Reef Fishes to Elucidate Habitat Utilization Patterns and Residence Times Inside and Outside Marine Protected Areas Around the Island of St....

  2. Florida Reef Fish Visual Census 1988 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  3. Florida Reef Fish Visual Census 1991 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  4. Florida Reef Fish Visual Census 1998 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  5. Florida Reef Fish Visual Census 1979 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  6. Florida Reef Fish Visual Census 1993 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  7. Florida Reef Fish Visual Census 1981 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  8. Florida Reef Fish Visual Census 1986 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  9. Florida Reef Fish Visual Census 1992 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  10. Florida Reef Fish Visual Census 1982 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  11. Florida Reef Fish Visual Census 1995 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  12. Florida Reef Fish Visual Census 1985 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  13. Florida Reef Fish Visual Census 1990 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  14. Florida Reef Fish Visual Census 1980 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  15. Florida Reef Fish Visual Census 1996 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  16. Florida Reef Fish Visual Census 1983 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  17. Florida Reef Fish Visual Census 1989 Species Site Matrix (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida Keys. The...

  18. Acoustic Tracking of Fish Movements in Coral Reef Ecosystems in St John (USVI), 2006-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic Tracking of Reef Fishes to Elucidate Habitat Utilization Patterns and Residence Times Inside and Outside Marine Protected Areas Around the Island of St....

  19. Biscayne National Park study on reef fish community changes over time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reef fish assemblage structure was assessed in 20062007 (recent period) in Biscayne National Park, Florida, USA , and compared with data collected from 1977 to 1981...

  20. Detecting age-structured effects in growth performance of coral reef fish juveniles

    OpenAIRE

    Mellin, Camille; Galzin, R.; Ponton, Dominique; Vigliola, Laurent

    2009-01-01

    The growth performance of coral reef fish juveniles collected in different habitats is often used as a proxy for habitat quality for juveniles. However, back-calculated growth trajectories of juveniles may be age-structured, for instance, because of potential differences in initial offspring size and/or quality or size-selective mortality. A novel approach is proposed to isolate growth performance of coral reef fish juveniles from potential age-based factors. Juveniles of Chromis viridis (Pom...

  1. Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors.

    Science.gov (United States)

    Mak, Karen K W; Yanase, Hideshi; Renneberg, Reinhard

    2005-06-15

    Sodium cyanide has been used in the Philippines to collect tropical marine fish for aquarium and food trades since the early 1960s. Cyanide fishing is a fast method to stun and collect fish. This practice is damaging the coral reefs irreversibly. In most countries cyanide fishing is illegal, but most of the exporting and importing countries do not have test and certificate systems. Many analytical methods are available for the detection of cyanide in environmental and biological samples. However, most of the techniques are time consuming, and some lack specificity or sensitivity. Besides, an ultra sensitive cyanide detection method is needed due to the rapid detoxification mechanisms in fish. The aim of this review is to give an overview of cyanide fishing problem in the south-east Asia and current strategies to combat this destructive practice, summarise some of the methods for cyanide detection in biological samples and their disadvantages. A novel approach to detect cyanide in marine fish tissues is briefly discussed.

  2. CRED REA Reef Fish Assessment Survey at Kingman Reef, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 21 March - 12 April...

  3. CRED REA Reef Fish Assessment Survey at Maro Reef, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  4. Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals

    Science.gov (United States)

    Pires, Mathias M.; Guimarães, Paulo Roberto; Hoey, Andrew S.; Hay, Mark E.

    2017-01-01

    The establishment of no-take marine protected areas (MPAs) on coral reefs is a common management strategy for conserving the diversity, abundance, and biomass of reef organisms. Generally, well-managed and enforced MPAs can increase or maintain the diversity and function of the enclosed coral reef, with some of the benefits extending to adjacent non-protected reefs. A fundamental question in coral reef conservation is whether these benefits arise within small MPAs (reef organisms is largely decoupled from local adult reproduction. We examined the structure of fish assemblages, composition of fish feeding groups, benthic cover, and key ecosystem processes (grazing, macroalgal browsing, and coral replenishment) in three small (0.5–0.8 km2) no-take MPAs and adjacent areas where fisheries are allowed (non-MPAs) on coral reefs in Fiji. The MPAs exhibited greater species richness, density, and biomass of fishes than non-MPAs. Furthermore, MPAs contained a greater abundance and biomass of grazing herbivores and piscivores as well as a greater abundance of cleaners than fished areas. We also found differences in fish associations when foraging, with feeding groups being generally more diverse and having greater biomass within MPAs than adjacent non-MPAs. Grazing by parrotfishes was 3–6 times greater, and macroalgal browsing was 3–5 times greater in MPAs than in non-MPAs. On average, MPAs had 260–280% as much coral cover and only 5–25% as much macroalgal cover as their paired non-MPA sites. Finally, two of the three MPAs had three-fold more coral recruits than adjacent non-MPAs. The results of this study indicate that small MPAs benefit not only populations of reef fishes, but also enhance ecosystem processes that are critical to reef resilience within the MPAs. PMID:28122006

  5. Fish attraction to artificial reefs not always harmful: a simulation study.

    Science.gov (United States)

    Smith, James A; Lowry, Michael B; Suthers, Iain M

    2015-10-01

    The debate on whether artificial reefs produce new fish or simply attract existing fish biomass continues due to the difficulty in distinguishing these processes, and there remains considerable doubt as to whether artificial reefs are a harmful form of habitat modification. The harm typically associated with attraction is that fish will be easier to harvest due to the existing biomass aggregating at a newly deployed reef. This outcome of fish attraction has not progressed past an anecdotal form, however, and is always perceived as a harmful process. We present a numerical model that simulates the effect that a redistributed fish biomass, due to an artificial reef, has on fishing catch per unit effort (CPUE). This model can be used to identify the scenarios (in terms of reef, fish, and harvest characteristics) that pose the most risk of exploitation due to fish attraction. The properties of this model were compared to the long-standing predictions by Bohnsack (1989) on the factors that increase the risk or the harm of attraction. Simulations revealed that attraction is not always harmful because it does not always increase maximum fish density. Rather, attraction sometimes disperses existing fish biomass making them harder to catch. Some attraction can be ideal, with CPUE lowest when attraction leads to an equal distribution of biomass between natural and artificial reefs. Simulations also showed that the outcomes from attraction depend on the characteristics of the target fish species, such that transient or pelagic species are often at more risk of harmful attraction than resident species. Our findings generally agree with Bohnsack's predictions, although we recommend distinguishing "mobility" and "fidelity" when identifying species most at risk from attraction, as these traits had great influence on patterns of harvest of attracted fish biomass.

  6. Baselines and Comparison of Coral Reef Fish Assemblages in the Central Red Sea

    KAUST Repository

    Kattan, Alexander

    2014-12-01

    In order to properly assess human impacts and appropriate restoration goals, baselines of pristine conditions on coral reefs are required. In Saudi Arabian waters of the central Red Sea, widespread and heavy fishing pressure has been ongoing for decades. To evaluate this influence, we surveyed the assemblage of offshore reef fishes in both this region as well as those of remote and largely unfished southern Sudan. At comparable latitudes, of similar oceanographic influence, and hosting the same array of species, the offshore reefs of southern Sudan provided an ideal location for comparison. We found that top predators (jacks, large snappers, groupers, and others) dominated the reef fish community biomass in Sudan’s deep south region, resulting in an inverted (top-heavy) biomass pyramid. In contrast, the Red Sea reefs of central Saudi Arabia exhibited the typical bottom-heavy pyramid and show evidence for trophic cascades in the form of mesopredator release. Biomass values from Sudan’s deep south are quite similar to those previously reported in the remote and uninhabited Northwest Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other remote Pacific islands and atolls. The findings of this study suggest that heavy fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia while simultaneously making a strong case for protection in the form of marine protected areas in the southern Sudanese Red Sea.

  7. Using passive acoustic telemetry to infer mortality events in adult herbivorous coral reef fishes

    Science.gov (United States)

    Khan, J. A.; Welsh, J. Q.; Bellwood, D. R.

    2016-06-01

    Mortality is considered to be an important factor shaping the structure of coral reef fish communities, but data on the rate and nature of mortality of adult coral reef fishes are sparse. Mortality on coral reefs is intrinsically linked with predation, with most evidence suggesting that predation is highest during crepuscular periods. We tested this hypothesis using passive acoustic telemetry data to determine the time of day of potential mortality events (PMEs) of adult herbivorous reef fishes. A total of 94 fishes were tagged with acoustic transmitters, of which 43 exhibited a PME. Furthermore, we identified five categories of PMEs based on the nature of change in acoustic signal detections from tagged fishes. The majority of PMEs were characterised by an abrupt stop in detections, possibly as a result of a large, mobile predator. Overall, mortality rates were estimated to be approximately 59 % per year using passive acoustic telemetry. The time of day of PMEs suggests that predation was highest during the day and crepuscular periods and lowest at night, offering only partial support for the crepuscular predation hypothesis. Visually oriented, diurnal and crepuscular predators appear to be more important than their nocturnal counterparts in terms of predation on adult reef fishes. By timing PMEs, passive acoustic telemetry may offer an important new tool for investigating the nature of predation on coral reefs.

  8. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea

    KAUST Repository

    Khalil, Maha T.

    2017-06-06

    Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3–24 km from shore) in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals. All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.

  9. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea

    Directory of Open Access Journals (Sweden)

    Maha T. Khalil

    2017-06-01

    Full Text Available Local-scale ecological information is critical as a sound basis for spatial management and conservation and as support for ongoing research in relatively unstudied areas. We conducted visual surveys of fish and benthic communities on nine reefs (3–24 km from shore in the Thuwal area of the central Saudi Arabian Red Sea. Fish biomass increased with increasing distance from shore, but was generally low compared to reefs experiencing minimal human influence around the world. All reefs had a herbivore-dominated trophic structure and few top predators, such as sharks, jacks, or large groupers. Coral cover was considerably lower on inshore reefs, likely due to a 2010 bleaching event. Community analyses showed inshore reefs to be characterized by turf algae, slower-growing corals, lower herbivore diversity, and highly abundant turf-farming damselfishes. Offshore reefs had more planktivorous fishes, a more diverse herbivore assemblage, and faster-growing corals. All reefs appear to be impacted by overfishing, and inshore reefs seem more vulnerable to thermal bleaching. The study provides a description of the spatial variation in biomass and community structure in the central Saudi Arabian Red Sea and provides a basis for spatial prioritization and subsequent marine protected area design in Thuwal.

  10. Using Fish Population Metrics to Compare the Effects of Artificial Reef Density.

    Directory of Open Access Journals (Sweden)

    Catheline Y M Froehlich

    Full Text Available Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1-190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71-120 culverts in a 30-m radius to yield the highest fish abundances.

  11. Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time.

    Directory of Open Access Journals (Sweden)

    Joshua A Drew

    Full Text Available Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.

  12. Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time.

    Science.gov (United States)

    Drew, Joshua A; Amatangelo, Kathryn L; Hufbauer, Ruth A

    2015-01-01

    Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.

  13. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.

    Directory of Open Access Journals (Sweden)

    Gilberto Acosta-González

    Full Text Available Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU in two GUs (reef slope and terrace over six years (2000, 2005, 2006, 2007, 2008, 2010. Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope and deeper (reef terrace GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity over time may imply the abetment of vulnerability in the face of local and global changes.

  14. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.

    Science.gov (United States)

    Wolanski, Eric; Kingsford, Michael J

    2014-09-06

    A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Forecasting lionfish sources and sinks in the Atlantic: are Gulf of Mexico reef fisheries at risk?

    Science.gov (United States)

    Johnston, Matthew W.; Bernard, Andrea M.; Shivji, Mahmood S.

    2017-03-01

    Invasive lionfish ( Pterois volitans/miles complex) now permeate the entire tropical western Atlantic, Caribbean Sea, and Gulf of Mexico, but lionfish abundance has been measured only in select locations in the field. Despite its rapid range expansion, a comprehensive meta-population analysis of lionfish `sources' and `sinks' and consequentially the invader's potential abundance and impacts on economically important, sympatric reef fishes have not been assessed. These data are urgently needed to spatially direct control efforts and to plan for and perhaps mitigate lionfish-caused damage. Here, we use a biophysical computer model to: (1) forecast larval lionfish sources and sinks that are also delineated as low to high lionfish `density zones' throughout their invaded range, and (2) assess the potential vulnerability of five grouper and snapper species— Epinephelus morio, Mycteroperca microlepis, Epinephelus flavolimbatus, Lutjanus campechanus, and Rhomboplites aurorubens—to lionfish within these density zones in the Gulf of Mexico. Our results suggest that the west Florida shelf and nearshore waters of Texas, USA, and Guyana, South America, function both as lionfish sources and sinks and should be a high priority for targeted lionfish control. Furthermore, of the five groupers and snappers studied, the high fishery value E. morio (red grouper) is the Gulf of Mexico species most at risk from lionfish. Lacking a comprehensive lionfish control policy, these risk exposure data inform managers where removals should be focused and demonstrate the risk to five sympatric native groupers and snappers in the Gulf of Mexico that may be susceptible to dense lionfish aggregations, should control efforts fail.

  16. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic Reefs

    Directory of Open Access Journals (Sweden)

    Ruy K.P Kikuchi

    2010-05-01

    Full Text Available Coral reefs along the Eastern Brazilian coast extend for a distance of 800km from 12° to 18°S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90’s in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA Regional Node of the Global Coral Reef Monitoring Network (GCRMN by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts and similarity percentages (SIMPER tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonies >20cm per reef site and of the coral recruits (coloniesDesde el año 2000 se inició un programa de monitoreo utilizando el protocolo AGRRA en el Parque Nacional Marino de Abrolhos en el marco de la creación del Nodo STA de la GCRMN. Entre 2000 y 2005 se realizaron varias evaluaciones en 26 arrecifes. Los patrones espaciales y temporales de la vitalidad de los arrecifes fueron estudiados mediante análisis de ordenación (MDS, similaridad (ANOSIM y porcentajes de similaridad (SIMPER. La cobertura de coral vivo, la densidad de colonias grandes (>20cm y de reclutas (<2cm y la cobertura de macroalgas indicaron que los arrecifes ubicados a más de 5km de la

  17. Reef Flat Community Structure of Atol das Rocas, Northeast Brazil and Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Adriana C. Fonseca

    2012-01-01

    Full Text Available This study was conducted during 1999 to 2002 and addresses the community structure and some ecological aspects of the benthic reef flat assemblages of Atol das Rocas, located offshore the NE brazilian coast. It corresponds to the sole atoll of the SW Atlantic, which characterized by a shallow topography and is almost completely built by coralline algae. The turf forming red macroalgae Digenea simplex and the crustose coralline Hydrolithon pachydermum were the dominant species of the reef flat. The crustose green macroalgae Dictyosphaeria ocellata and the turf forming red macroalgae Gelidiella acerosa were the subdominant species. Biomass values of D. simplex were about twice higher than the other species, pointing out to its relevance in the community structure of this reef zone. Biodiversity indices indicated a high equitability within the few species observed and a relative temporal stability of the community structure. Some local spatial variations were found in the community structure of the reef flat zone, enabling the definition of three subhabitats. The patterns of distribution and abundance of the benthic organisms seem to be related to the environmental conditions of the reef flat, such as low water turbulence, lengthy periods of aerial exposure, and low herbivore pressure.

  18. Physiology can contribute to better understanding, management, and conservation of coral reef fishes.

    Science.gov (United States)

    Illing, Björn; Rummer, Jodie L

    2017-01-01

    Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more

  19. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae.

    Science.gov (United States)

    Wilson, Shaun K; Depczynski, Martial; Fisher, Rebecca; Holmes, Thomas H; O'Leary, Rebecca A; Tinkler, Paul

    2010-12-07

    Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs

  20. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae.

    Directory of Open Access Journals (Sweden)

    Shaun K Wilson

    Full Text Available Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and

  1. Evolution of long-toothed fishes and the changing nature of fish-benthos interactions on coral reefs.

    Science.gov (United States)

    Bellwood, David R; Hoey, Andrew S; Bellwood, Orpha; Goatley, Christopher H R

    2014-01-01

    Interactions between fishes and the benthos have shaped the development of marine ecosystems since at least the early Mesozoic. Here, using the morphology of fish teeth as an indicator of feeding abilities, we quantify changes over the last 240 million years of reef fish evolution. Fossil and extant coral reef fish assemblages reveal exceptional stasis in tooth design over time, with one notable exception, a distinct long-toothed form. Arising only in the last 40 million years, these long-toothed fishes have bypassed the invertebrate link in the food chain, feeding directly on benthic particulate material. With the appearance of elongated teeth, these specialized detritivores have moved from eating invertebrates to eating the food of invertebrates. Over evolutionary time, fishes have slid back down the food chain.

  2. Coral reef fish populations can persist without immigration.

    Science.gov (United States)

    Salles, Océane C; Maynard, Jeffrey A; Joannides, Marc; Barbu, Corentin M; Saenz-Agudelo, Pablo; Almany, Glenn R; Berumen, Michael L; Thorrold, Simon R; Jones, Geoffrey P; Planes, Serge

    2015-11-22

    Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase.

  3. Coral reef fish populations can persist without immigration

    KAUST Repository

    Salles, Océane C.

    2015-11-18

    Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase.

  4. Spot the difference: mimicry in a coral reef fish.

    Science.gov (United States)

    Gagliano, Monica; Depczynski, Martial

    2013-01-01

    Eyespots on the body of many animals have long been assumed to confer protection against predators, but empirical evidence has recently demonstrated that this may not always be the case and suggested that such markings may also serve other purposes. Clearly, this raises the unresolved question of what functions do these markings have and do they contribute to an individual's evolutionary fitness in the wild. Here, we examined the occurrence of eyespots on the dorsal fin of a coral reef damselfish (Pomacentrus amboinensis), where these markings are typical of the juvenile stage and fade away as the fish approaches sexual maturation to then disappear completely in the vast majority of, but not all, adult individuals. By exploring differences in body shape among age and gender groups, we found that individuals retaining the eyespot into adulthood are all sexually mature males, suggesting that these eyespots may be an adult deceptive signal. Interestingly, the body shape of these individuals resembled more closely that of immature females than mature dominant males. These results suggest that eyespots have multiple roles and their functional significance changes within the lifetime of an animal from being a juvenile advertisement to a deceptive adult signal. Male removal experiments or colour manipulations may be necessary to establish specific functions.

  5. Spot the difference: mimicry in a coral reef fish.

    Directory of Open Access Journals (Sweden)

    Monica Gagliano

    Full Text Available Eyespots on the body of many animals have long been assumed to confer protection against predators, but empirical evidence has recently demonstrated that this may not always be the case and suggested that such markings may also serve other purposes. Clearly, this raises the unresolved question of what functions do these markings have and do they contribute to an individual's evolutionary fitness in the wild. Here, we examined the occurrence of eyespots on the dorsal fin of a coral reef damselfish (Pomacentrus amboinensis, where these markings are typical of the juvenile stage and fade away as the fish approaches sexual maturation to then disappear completely in the vast majority of, but not all, adult individuals. By exploring differences in body shape among age and gender groups, we found that individuals retaining the eyespot into adulthood are all sexually mature males, suggesting that these eyespots may be an adult deceptive signal. Interestingly, the body shape of these individuals resembled more closely that of immature females than mature dominant males. These results suggest that eyespots have multiple roles and their functional significance changes within the lifetime of an animal from being a juvenile advertisement to a deceptive adult signal. Male removal experiments or colour manipulations may be necessary to establish specific functions.

  6. Energetic and ecological constraints on population density of reef fishes.

    Science.gov (United States)

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction.

  7. Connectivity dominates larval replenishment in a coastal reef fish metapopulation.

    Science.gov (United States)

    Saenz-Agudelo, Pablo; Jones, Geoffrey P; Thorrold, Simon R; Planes, Serge

    2011-10-07

    Direct estimates of larval retention and connectivity are essential to understand the structure and dynamics of marine metapopulations, and optimize the size and spacing of reserves within networks of marine-protected areas (MPAs). For coral reef fishes, while there are some empirical estimates of self-recruitment at isolated populations, exchange among sub-populations has been rarely quantified. Here, we used microsatellite DNA markers and a likelihood-based parentage analysis to assess the relative magnitude of self-recruitment and exchange among eight geographically distinct sub-populations of the panda clownfish Amphiprion polymnus along 30 km of coastline near Port Moresby, Papua New Guinea. In addition, we used an assignment/exclusion test to identify immigrants arriving from genetically distinct sources. Overall, 82 per cent of the juveniles were immigrants while 18 per cent were progeny of parents genotyped in our focal metapopulation. Of the immigrants, only 6 per cent were likely to be genetically distinct from the focal metapopulation, suggesting most of the connectivity is among sub-populations from a rather homogeneous genetic pool. Of the 18 per cent that were progeny of known adults, two-thirds dispersed among the eight sub-populations and only one-third settled back into natal sub-populations. Comparison of our data with previous studies suggested that variation in dispersal distances is likely to be influenced by the geographical setting and spacing of sub-populations.

  8. Fish4Knowledge collecting and analyzing massive coral reef fish video data

    CERN Document Server

    Chen-Burger, Yun-Heh; Giordano, Daniela; Hardman, Lynda; Lin, Fang-Pang

    2016-01-01

    This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and tracking, fish species recognition and analysis, a large SQL database to record the results and an efficient retrieval mechanism. Novel user interface mechanisms were developed to provide easy access for marine ecologists, who wanted to explore the dataset. The book is a useful resource for system builders, as it gives an overview of the many new methods that were created to build the Fish4Knowledge system in a manner that also allows readers to see ho...

  9. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs

    Directory of Open Access Journals (Sweden)

    Adam Suchley

    2016-05-01

    Full Text Available Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend.

  10. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes

    KAUST Repository

    Wilson, S. K.

    2010-02-26

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.

  11. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes.

    Science.gov (United States)

    Wilson, S K; Adjeroud, M; Bellwood, D R; Berumen, M L; Booth, D; Bozec, Y-Marie; Chabanet, P; Cheal, A; Cinner, J; Depczynski, M; Feary, D A; Gagliano, M; Graham, N A J; Halford, A R; Halpern, B S; Harborne, A R; Hoey, A S; Holbrook, S J; Jones, G P; Kulbiki, M; Letourneur, Y; De Loma, T L; McClanahan, T; McCormick, M I; Meekan, M G; Mumby, P J; Munday, P L; Ohman, M C; Pratchett, M S; Riegl, B; Sano, M; Schmitt, R J; Syms, C

    2010-03-15

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.

  12. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    Science.gov (United States)

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  13. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Science.gov (United States)

    Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  14. Ciguatera fish poisoning in the Caribbean islands and Western Atlantic.

    Science.gov (United States)

    Pottier, I; Vernoux, J P; Lewis, R J

    2001-01-01

    Ciguatera fish poisoning (ciguatera), a common poisoning caused by fish ingestion, is reviewed in the Western Atlantic and the Caribbean waters. It is endemic from Florida coasts (northern limit) to Martinique Island (southern limit), with outbreaks occurring from time to time. In the Caribbean, ciguatera causes a polymorphic syndrome with gastrointestinal, cardiovascular, and neurological signs and symptoms. Neurological and muscular dysfunctions can be treated by intravenous injection of D-mannitol. The lipid-soluble toxins involved are ciguatoxins that are likely produced by the dinoflagellate Gambierdiscus toxicus. G. toxicus strains are endemic in the Caribbean Sea and in theWestern Atlantic. Although it is likely that blooms of G. toxicus are ingested by herbivorous fishes, they are not implicated in ciguatera in the Caribbean. Rather, large carnivores (barracudas, jacks, snappers, groupers), consumers of smaller benthic fish, are often involved in ciguatera. Fish toxicity depends on fishing area and depth, fish size and tissues, and climatic disturbances. Ciguatoxins have been isolated and purified from Caribbean fish species. The structure of two epimers, C-CTX-1 and C-CTX-2 from horse-eye jack, comprise 14 trans-fused ether-linked rings and a hemiketal in terminal ring. Caribbean ciguatoxins are mainly detected in the laboratory by chicken, mouse, mosquito, or cell bioassays, and by analytical HPLC/tandem mass spectrometry down to parts per billion (ppb). A ciguatera management plan that integrates epidemiology, treatment, and a simple method of detection is required to ensure the protection of consumers.

  15. Arctic warming will promote Atlantic-Pacific fish interchange

    DEFF Research Database (Denmark)

    Wisz, Mary; Broennimann, O.; Grønkjær, Peter

    2015-01-01

    Throughout much of the Quaternary Period, inhospitable environmental conditions above the Arctic Circle have been a formidable barrier separating most marine organisms in the North Atlantic from those in the North Pacific. Rapid warming has begun to lift this barrier, potentially facilitating...... to ecosystems that at present contribute 39% to global marine fish landings...

  16. Coral reef fish assemblages along a disturbance gradient in the northern Persian Gulf: A seasonal perspective.

    Science.gov (United States)

    Ghazilou, Amir; Shokri, Mohammad Reza; Gladstone, William

    2016-04-30

    Seasonal dynamics of coral reef fish assemblages were assessed along a gradient of potential anthropogenic disturbance in the Northern Persian Gulf. Overall, the attributes of coral reef fish assemblages showed seasonality at two different levels: seasonal changes irrespective of the magnitude of disturbance level (e.g. species richness), and seasonal changes in response to disturbance level (e.g. total abundance and assemblage composition). The examined parameters mostly belonged to the second group, but the interpretation of the relationship between patterns of seasonal changes and the disturbance level was not straightforward. The abundance of carnivorous fishes did not vary among seasons. SIMPER identified the family Nemipteridae as the major contributor to the observed spatiotemporal variations in the composition of coral reef fish assemblages in the study area.

  17. Fishes associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic: an update and overview

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    Full Text Available An update is presented for fish species associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic, providing a general view of their diversity. The associates are mostly reef-dwelling fishes that feed on the dolphin wastes. Twelve species are habitual or occasional plankton-eaters and two species are herbivores that occasionally forage on floating pieces of algae. One species is a strict carnivore, one species is a hitchhiker that forages on a variety of foods including parasites and dead tissue from the dolphins, and one species is a carnivore that joins the dolphin groups to forage on schools of small fishes or squids. We predict that the list of fish associated with spinner dolphins will expand mostly with addition of habitual or occasional plankton-eaters.

  18. [Reef fishes community structure of Playa Mero, Parque Nacional Morrocoy, Venezuela].

    Science.gov (United States)

    Rodríguez, J; Villamizar, E

    2000-12-01

    The coral reef fish community was studied in Playa Mero, Morrocoy National Park, after the mass mortality of January, 1996 with a systematic sampling design. Transects and quadrates were used for corals, and a visual census for fishes. The coral community is highly disturbed with extensive areas of dead coral covered by algae, and low coverage and richness of coral species, gorgonians, sponges and briozooans. These factors have generated a relatively homogeneous environment with respect to the fish community, which was dominated by Scaridae and Pomacentridae that represented 75% of fish. Dominant fishes were mainly herbivorous (75.4% of all fish) apparently because of the disturbance that caused the settling of algae.

  19. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean

    Directory of Open Access Journals (Sweden)

    Fabián Pina-Amargós

    2014-02-01

    Full Text Available Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope, inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  20. Seascape context and predators override water quality effects on inshore coral reef fish communities

    Science.gov (United States)

    Gilby, Ben L.; Tibbetts, Ian R.; Olds, Andrew D.; Maxwell, Paul S.; Stevens, Tim

    2016-09-01

    Understanding the relative influence of factors that influence faunal community structure, such as habitat and landscape arrangement, has been a long-standing goal of ecologists. This is complicated in marine environments by the high importance of physico-chemical water factors in determining species distributions relative to their physiological or behavioural limits. In this study, we rank the relative importance of 17 seascape, habitat and physico-chemical water factors for structuring the composition of fish communities on the inshore coral reefs of Moreton Bay, eastern Australia. Fish were surveyed at 12 reef sites along the ambient estuarine water gradient in the bay during summer and winter using a baited underwater video approach. Multivariate random forest analyses showed that reef fish community composition correlated most strongly with the local abundance of piscivorous fish and the seascape context of individual reefs (especially distance to nearest seagrass and mangroves), while water quality factors ranked much lower in importance. However, fish communities from sites nearer to rivers were more spatiotemporally variable than those from sites nearer to oceanic waters, indicating that water quality can drive variations in community structure along short-term temporal scales. In turn, piscivore abundance was greatest on reefs near large areas of seagrass, and with low sand cover, high coral cover and high water clarity. Our findings demonstrate that a reef's location within the broader seascape can be more important for fish communities than factors relating to the reef habitat itself and exposure to reduced water quality. To improve the spatial conservation of marine ecosystems, we encourage a more intimate understanding of how these factors contribute to structuring the use of habitats across seascapes by mobile species.

  1. Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish

    Science.gov (United States)

    Goldstein, E. D.; D'Alessandro, E. K.; Sponaugle, S.

    2017-09-01

    Environmental clines such as latitude and depth that limit species' distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems ( 30-150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish ( Stegastes partitus) ranging from shallow shelf (SS, reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  2. First description of the neuro-anatomy of a larval coral reef fish Amphiprion ocellaris.

    Science.gov (United States)

    Jacob, H; Metian, M; Brooker, R M; Duran, E; Nakamura, N; Roux, N; Masanet, P; Soulat, O; Lecchini, D

    2016-09-01

    The present study described the neuro-anatomy of a larval coral reef fish Amphiprion ocellaris and hypothesized that morphological changes during the transition from the oceanic environment to a reef environment (i.e. recruitment) have the potential to be driven by changes to environmental conditions and associated changes to cognitive requirements. Quantitative comparisons were made of the relative development of three specific brain areas (telencephalon, mesencephalon and cerebellum) between 6 days post-hatch (dph) larvae (oceanic phase) and 11 dph (at reef recruitment). The results showed that 6 dph larvae had at least two larger structures (telencephalon and mesencephalon) than 11 dph larvae, while the size of cerebellum remained identical. These results suggest that the structure and organization of the brain may reflect the cognitive demands at every stage of development. This study initiates analysis of the relationship between behavioural ecology and neuroscience in coral reef fishes. © 2016 The Fisheries Society of the British Isles.

  3. Ecosystem-Scale Effects of Nutrients and Fishing on Coral Reefs

    Directory of Open Access Journals (Sweden)

    Sheila M. Walsh

    2011-01-01

    Full Text Available Nutrient pollution and fishing are the primary local causes of coral reef decline but their ecosystem-scale effects are poorly understood. Results from small-scale manipulative experiments of herbivores and nutrients suggest prioritizing management of fishing over nutrient pollution because herbivores can control macroalgae and turf in the presence of nutrients. However, ecological theory suggests that the opposite occurs at large scales. Moreover, it is unclear whether fishing decreases herbivores because fishing of predators may result in an increase in herbivores. To investigate this paradox, data on the fish and benthic communities, fishing, and nutrients were collected on Kiritimati, Kiribati. Oceanographic conditions and a population resettlement program created a natural experiment to compare sites with different levels of fishing and nutrients. Contrary to theory, herbivores controlled macroalgae in the presence of nutrients at large spatial scales, and herbivores had greater effects on macroalgae when nutrients were higher. In addition, fishing did not increase herbivores. These results suggest that protecting herbivores may have greater relative benefits than reducing nutrient pollution, especially on polluted reefs. Reallocating fishing effort from herbivores to invertivores or planktivores may be one way to protect herbivores and indirectly maintain coral dominance on reefs impacted by fishing and nutrient pollution.

  4. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas.

    Directory of Open Access Journals (Sweden)

    German A Soler

    Full Text Available Marine Protected Areas (MPAs offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores was significantly greater (by 40% - 200% in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.

  5. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    Directory of Open Access Journals (Sweden)

    Mizue Hisano

    Full Text Available Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and

  6. Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous underwater visual census, video, and trap sampling

    KAUST Repository

    Bacheler, NM

    2017-04-28

    Unbiased counts of individuals or species are often impossible given the prevalence of cryptic or mobile species. We used 77 simultaneous multi-gear deployments to make inferences about relative abundance, diversity, length composition, and habitat of the reef fish community along the southeastern US Atlantic coast. In total, 117 taxa were observed by underwater visual census (UVC), stationary video, and chevron fish traps, with more taxa being observed by UVC (100) than video (82) or traps (20). Frequency of occurrence of focal species was similar among all sampling approaches for tomtate Haemulon aurolineatum and black sea bass Centropristis striata, higher for UVC and video compared to traps for red snapper Lutjanus campechanus, vermilion snapper Rhomboplites aurorubens, and gray triggerfish Balistes capriscus, and higher for UVC compared to video or traps for gray snapper L. griseus and lionfish Pterois spp. For 6 of 7 focal species, correlations of relative abundance among gears were strongest between UVC and video, but there was substantial variability among species. The number of recorded species between UVC and video was correlated (ρ = 0.59), but relationships between traps and the other 2 methods were weaker. Lengths of fish visually estimated by UVC were similar to lengths of fish caught in traps, as were habitat characterizations from UVC and video. No gear provided a complete census for any species in our study, suggesting that analytical methods accounting for imperfect detection are necessary to make unbiased inferences about fish abundance.

  7. Ecological monitoring 2014 - stationary point count surveys of reef fishes and benthic habitats of the Northwestern Hawaiian Islands, Mariana Islands, and Wake Atoll

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes a subset of the reef fish and benthic survey data collected by the NOAA Pacific islands Fisheries Science Center Coral Reef Ecosystem...

  8. Ecological monitoring 2012-2013 - reef fishes and benthic habitats of the main Hawaiian Islands, American Samoa, and Pacific Remote Island Areas

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes a subset of the reef fish and benthic survey data collected by the NOAA Pacific islands Fisheries Science Center Coral Reef Ecosystem Division...

  9. 78 FR 69992 - Guidance for Industry on Purchasing Reef Fish Species Associated With the Hazard of Ciguatera...

    Science.gov (United States)

    2013-11-22

    ... Fish Species Associated With the Hazard of Ciguatera Fish Poisoning; Availability AGENCY: Food and Drug... Species Associated with the Hazard of Ciguatera Fish Poisoning.'' The document provides guidance to primary seafood processors who purchase reef fish on how to minimize the risk of ciguatera fish...

  10. Feeding biology of the introduced fish roi, and its impact on Hawaiian reef fishes, January 2004 and January 2005, (NODC Accession 0002172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Feeding biology of the introduced fish roi (Cephalopholis argus), and its impact on Hawaiian reef fishes and fisheries between January 2004 and January 2005. Roi...

  11. Arctic warming will promote Atlantic-Pacific fish interchange

    Science.gov (United States)

    Wisz, M. S.; Broennimann, O.; Grønkjær, P.; Møller, P. R.; Olsen, S. M.; Swingedouw, D.; Hedeholm, R. B.; Nielsen, E. E.; Guisan, A.; Pellissier, L.

    2015-03-01

    Throughout much of the Quaternary Period, inhospitable environmental conditions above the Arctic Circle have been a formidable barrier separating most marine organisms in the North Atlantic from those in the North Pacific. Rapid warming has begun to lift this barrier, potentially facilitating the interchange of marine biota between the two seas. Here, we forecast the potential northward progression of 515 fish species following climate change, and report the rate of potential species interchange between the Atlantic and the Pacific via the Northwest Passage and the Northeast Passage. For this, we projected niche-based models under climate change scenarios and simulated the spread of species through the passages when climatic conditions became suitable. Results reveal a complex range of responses during this century, and accelerated interchange after 2050. By 2100 up to 41 species could enter the Pacific and 44 species could enter the Atlantic, via one or both passages. Consistent with historical and recent biodiversity interchanges, this exchange of fish species may trigger changes for biodiversity and food webs in the North Atlantic and North Pacific, with ecological and economic consequences to ecosystems that at present contribute 39% to global marine fish landings.

  12. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  13. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities.

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-02-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery.

  14. Sessile Animals on an Artificial Fish Reef with Pine Tree

    OpenAIRE

    吉永, 圭輔; ヨシナガ, ケイスケ; YOSHINAGA, Keisuke

    1999-01-01

    This study was carried out to reveal the sessile animals attached to a pine tree reef. The artificial reef was placed off the coast of Ibusuki City in Kagoshima Bay on 21 December 1995. A piece of pine log was recovered from this reef on 30 October 1998, and animal community attached to the pine log was examined. Abundant ship-worms, Teredo navalis japonica, burrowed their ways from the cut end to the core. Sessile animals clung to the bark. There were also observed many other animals within ...

  15. Fish movement patterns in Virgin Islands National Park, Virgin Islands Coral Reef National Monument and adjacent waters

    OpenAIRE

    Friedlander, Alan M.; Monaco, Mark E.; Clark, Randy; Pittman, Simon J.; Beets, Jim; Boulon, Rafe; Callender, Russell; Christensen, John; Hile, Sarah D.; Kendall , Matt S.; Miller, Jeff; Rogers , Caroline; Starnoulis, Kosta; Wedding, Lisa; Roberson, Kimberly

    2013-01-01

    NOAA’s National Centers for Coastal Ocean Science (NCCOS)-Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch, National Park Service (NPS), US Geological Survey, and the University of Hawaii used acoustic telemetry to quantify spatial patterns and habitat affinities of reef fishes around the island of St. John, US Virgin Islands. The objective of the study was to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef National ...

  16. The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean

    Science.gov (United States)

    Waller, Rhian G.; Tyler, Paul A.

    2005-11-01

    The reproductive ecology of colonies of Lophelia pertusa (Linné 1758) and Madrepora oculata Linné (1758) from the Porcupine Seabight (Thérèse Mound and South Porcupine Seabight site) and the Darwin Mounds (NE Rockall Trough— L. pertusa only) was investigated using histological techniques. Samples of L. pertusa exhibited seasonal reproduction, whereas the evidence for M. oculata is equivocal but suggests multiple cohorts of gamete production. L. pertusa produces a single cohort of around 3,000 oocytes, whereas M. oculata produces two cohorts, with a total fecundity of around 60 oocytes. The maximum observed oocyte size in L. pertusa was 140 μm and in M. oculata was 405 μm. From these oocyte sizes and the timing of reproduction, a lecithotrophic larva is expected, though not observed. This seasonality of reproduction fits with the phytodetrital food fall occurring around July in the Seabight area. L. pertusa was found to be non-reproductive at the Darwin Mound site. Though unable to be specifically tested, this may suggest that the increased trawling activity in this area might be keeping colonies below sexually viable sizes, as seen in numerous shallow water situations. All areas in the NE Atlantic are coming under threat from increased fishing and commercial exploration practices. This study shows that these highly seasonal reproducers could be sensitive to these fishing operations and care must be taken so as not to repeat the destruction that has occurred on shallower reefs.

  17. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.

    2011-08-12

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  18. Checklist and analysis of completeness of the reef fish fauna of the Revillagigedo Archipelago, Mexico.

    Science.gov (United States)

    Fourriére, Manon; Reyes-Bonilla, Héctor; Ayala-Bocos, Arturo; Ketchum, James A; Chávez-Comparan, Juan Carlos

    2016-08-15

    This paper presents an updated checklist of cartilaginous and bony fishes from the Revillagigedo Archipelago reefs and nearby areas (Tropical Eastern Pacific). To compile this list, we gathered data from field surveys between 1994 and 2015, from an exhaustive literature review, and by consulting museum collections and databases. With these records we estimated the completeness of the local fish inventory using four non-parametric rarefaction methods. We report a total of 389 species in 102 families; 235 of these are reef fish that occur in the Eastern but also in the Central Pacific, and 13 species were identified as endemic to the archipelago. A non-parametric statistical model predicts that the expected number of reef fish present at Revillagigedo should be 244.3 ± 3.2 species, which is 9 species more than the observed richness, and this difference was statistically significant (p = 0.02). That predictive model estimates that about 96% of the total richness of reef fish from the archipelago is known. Comparisons of the completeness of the inventory at Revillagigedo to that reported for the fish fauna of the Eastern Pacific and worldwide, showed that the quality of the sampling effort is remarkably high, in spite of the geographic isolation of the archipelago.

  19. Changes in Biodiversity and Functioning of Reef Fish Assemblages following Coral Bleaching and Coral Loss

    Directory of Open Access Journals (Sweden)

    Nicholas A.J. Graham

    2011-08-01

    Full Text Available Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60% coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  20. National Coral Reef Monitoring Program: Assessment of coral reef communities in U.S. Virgin Islands (USVI) using the Belt Transect fish census method

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Belt Transect method is used to conduct fish surveys in the U.S. Virgin Islands (USVI) as part of the National Coral Reef Monitoring Program (NCRMP). The Belt...

  1. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  2. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    Directory of Open Access Journals (Sweden)

    Schmitz Lars

    2011-11-01

    Full Text Available Abstract Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal fish active in well-illuminated conditions, whereas night-active (nocturnal fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  3. Guam Long-term Coral Reef Monitoring Program Reef Fish Surveys since 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Government of Guam's Long-term Coral Reef Monitoring Program, coordinated by the Guam Coastal Management Program until October 2013 and now coordinated by the...

  4. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems.

    Science.gov (United States)

    Graham, Nicholas A J; Wilson, Shaun K; Jennings, Simon; Polunin, Nicholas V C; Robinson, Jan; Bijoux, Jude P; Daw, Tim M

    2007-10-01

    Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.

  5. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-12-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  6. Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes.

    Science.gov (United States)

    Cribb, Thomas H; Bott, Nathan J; Bray, Rodney A; McNamara, Marissa K A; Miller, Terrence L; Nolan, Mathew J; Cutmore, Scott C

    2014-10-15

    The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100-1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable.

  7. Distribution of fish in seagrass, mangroves and coral reefs: life-stage dependent habitat use in Honduras.

    Science.gov (United States)

    Jaxion-Harm, Jessica; Saunders, James; Speight, Martin R

    2012-06-01

    Many coral reef fish exhibit habitat partitioning throughout their lifetimes. Such patterns are evident in the Caribbean where research has been predominantly conducted in the Eastern region. This work addressed the paucity of data regarding Honduran reef fish distribution in three habitat types (seagrass, mangroves, and coral reefs), by surveying fish on the islands of Utila and Cayos Cochinos off the coast of Honduras (part of the Mesoamerican barrier reef). During July 2nd - Aug 27th 2007 and June 22nd - Aug 17th, 2008, visual surveys (SCUBA and snorkel) were performed in belt transects in different areas: eleven coral reef, six seagrass beds, and six mangroves sites. Juvenile densities and total habitat surface area were used to calculate nursery value of seagrass and mangroves. A total of 113 fish species from 32 families were found during underwater surveys. Multi-dimensional analyses revealed distinct clusters of fish communities in each habitat type by separating fish associated with seagrass beds, mangroves, and coral reefs. Coral reefs showed the highest mean fish species richness and were dominated by adult fish, while juvenile fish characterized seagrass beds and mangrove sites. Habitat use differed widely at the fish species level. Scarus iseri (Striped Parrotfish), the most abundant fish in this study, were found in all three habitat types, while Lutjanus apodus (Schoolmaster Snapper) juveniles were located primarily in mangroves before migrating to coral reefs. Many species used seagrass beds and mangroves as nurseries; however, the nursery value could not be generalized at the family level. Furthermore, for some fish species, nursery value varied between islands and sites. Our results suggest that connectivity of seagrass, mangrove, and coral reef sites at a species and site levels, should be taken into consideration when implementing policy and conservation practices.

  8. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    Science.gov (United States)

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  9. Home-range allometry in coral reef fishes: comparison to other vertebrates, methodological issues and management implications.

    Science.gov (United States)

    Nash, Kirsty L; Welsh, Justin Q; Graham, Nicholas A J; Bellwood, David R

    2015-01-01

    Body size has been identified as a key driver of home-range area. Despite considerable research into home-range allometry, the relatively high variability in this relationship among taxa means that the mechanisms driving this relationship are still under debate. To date, studies have predominantly focused on terrestrial taxa, and coral reef fishes in particular have received little attention. We quantitatively reviewed studies examining home range in reef fishes, and assessed the interspecific relationship between body mass and home-range area. Body mass and home range are positively related in reef fishes (slopes of 1.15-1.72), with predators having larger home ranges than herbivorous species. This may be attributed to the mobility and lower abundance of predators' food items. Coral reef fishes, and fishes in general, appear to occupy a smaller area per unit mass than terrestrial vertebrates (intercepts of -0.92 to 0.07 versus ≥1.14). This is likely linked to the relative metabolic costs of moving through water compared to air. The small home ranges of reef fishes and their apparent reluctance to cross open areas suggest that reserves aimed at protecting fish species may be more effective if located across whole reefs, even if those reefs are comparatively small, rather than if they cover subsections of contiguous reef, as home ranges in the former are less likely to cross reserve boundaries.

  10. High population density enhances recruitment and survival of a harvested coral reef fish.

    Science.gov (United States)

    Wormald, Clare L; Steele, Mark A; Forrester, Graham E

    2013-03-01

    A negative relationship between population growth and population density (direct density dependence) is necessary for population regulation and is assumed in most models of harvested populations. Experimental tests for density dependence are lacking for large-bodied, harvested fish because of the difficulty of manipulating population density over large areas. We studied a harvested coral reef fish, Lutjanus apodus (schoolmaster snapper), using eight large, isolated natural reefs (0.4-1.6 ha) in the Bahamas as replicates. An initial observational test for density dependence was followed by a manipulation of population density. The manipulation weakened an association between density and shelter-providing habitat features and revealed a positive effect of population density on recruitment and survival (inverse density dependence), but no effect of density on somatic growth. The snappers on an individual reef were organized into a few shoals, and we hypothesize that large shoals on high-density reefs were less vulnerable to large piscivores (groupers and barracudas) than the small shoals on low-density reefs. Reductions in predation risk for individuals in large social groups are well documented, but because snapper shoals occupied reefs the size of small marine reserves, these ecological interactions may influence the outcome of management actions.

  11. Differential response of fish assemblages to coral reef-based seaweed farming.

    Directory of Open Access Journals (Sweden)

    E James Hehre

    Full Text Available As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1 marine protected areas (MPAs were established, (2 neither MPAs nor blast fishing was present (hence "unprotected", and (3 blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.

  12. Avoiding conflicts and protecting coral reefs: Customary management benefits marine habitats and fish biomass

    KAUST Repository

    Campbell, Stuart J.

    2012-10-01

    Abstract One of the major goals of coral reef conservation is to determine the most effective means of managing marine resources in regions where economic conditions often limit the options available. For example, no-take fishing areas can be impractical in regions where people rely heavily on reef fish for food. In this study we test whether coral reef health differed among areas with varying management practices and socio-economic conditions on Pulau Weh in the Indonesian province of Aceh. Our results show that gear restrictions, in particular prohibiting the use of nets, were successful in minimizing habitat degradation and maintaining fish biomass despite ongoing access to the fishery. Reef fish biomass and hard-coral cover were two- to eight-fold higher at sites where fishing nets were prohibited. The guiding principle of the local customary management system, Panglima Laot, is to reduce conflict among community members over access to marine resources. Consequently, conservation benefits in Aceh have arisen from a customary system that lacks a specific environmental ethic or the means for strong resource-based management. Panglima Laot includes many of the features of successful institutions, such as clearly defined membership rights and the opportunity for resource users to be involved in making, enforcing and changing the rules. Such mechanisms to reduce conflict are the key to the success of marine resource management, particularly in settings that lack resources for enforcement. © 2012 Fauna & Flora International.

  13. Length-based assessment of coral reef fish populations in the main and northwestern Hawaiian islands.

    Science.gov (United States)

    Nadon, Marc O; Ault, Jerald S; Williams, Ivor D; Smith, Steven G; DiNardo, Gerard T

    2015-01-01

    The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable "average length in the exploited phase of the population ([Formula: see text])", estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold.

  14. Length-based assessment of coral reef fish populations in the main and northwestern Hawaiian islands.

    Directory of Open Access Journals (Sweden)

    Marc O Nadon

    Full Text Available The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable "average length in the exploited phase of the population ([Formula: see text]", estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR. We found good agreement between predicted average lengths in an unfished population (from our population model and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus, and the gray snapper (Aprion virescens had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus, had SPRs above the 30% threshold.

  15. Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Steven J Lindfield

    Full Text Available In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI, where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers dominated spearfishing catches, with parrotfish (scarines and surgeonfish/unicornfish (acanthurids the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries.

  16. A new Liopropoma sea bass (Serranidae, Epinephelinae, Liopropomini) from deep reefs off Curaçao, southern Caribbean, with comments on depth distributions of western Atlantic liopropomins

    Science.gov (United States)

    Baldwin, Carole C.; Robertson, D. Ross

    2014-01-01

    Collecting reef-fish specimens using a manned submersible diving to 300 m off Curaçao, southern Caribbean, is resulting in the discovery of numerous new fish species. The new Liopropoma sea bass described here differs from other western Atlantic members of the genus in having VIII, 13 dorsal-fin rays; a moderately indented dorsal-fin margin; a yellow-orange stripe along the entire upper lip; a series of approximately 13 white, chevron-shaped markings on the ventral portion of the trunk; and a reddish-black blotch on the tip of the lower caudal-fin lobe. The new species, with predominantly yellow body and fins, closely resembles the other two “golden basses” found together with it at Curaçao: L. aberransand L. olneyi. It also shares morphological features with the other western Atlantic liopropomin genus,Bathyanthias. Preliminary phylogenetic data suggest that western Atlantic liopropomins, includingBathyanthias, are monophyletic with respect to Indo-Pacific Liopropoma, and that Bathyanthias is nested within Liopropoma, indicating a need for further study of the generic limits of Liopropoma. The phylogenetic data also suggest that western Atlantic liopropomins comprise three monophyletic clades that have overlapping depth distributions but different depth maxima (3–135 m, 30–150 m, 133–411 m). The new species has the deepest depth range (182–241 m) of any known western Atlantic Liopropomaspecies. Both allopatric and depth-mediated ecological speciation may have contributed to the evolution of western Atlantic Liopropomini.

  17. Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.

    Directory of Open Access Journals (Sweden)

    Adriana Vergés

    Full Text Available Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast and Ningaloo Reef (western coast. The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.

  18. Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.

    Science.gov (United States)

    Vergés, Adriana; Bennett, Scott; Bellwood, David R

    2012-01-01

    Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.

  19. Additive partitioning of coral reef fish diversity across hierarchical spatial scales throughout the Caribbean.

    Science.gov (United States)

    Francisco-Ramos, Vanessa; Arias-González, Jesús Ernesto

    2013-01-01

    There is an increasing need to examine regional patterns of diversity in coral-reef systems since their biodiversity is declining globally. In this sense, additive partitioning might be useful since it quantifies the contribution of alpha and beta to total diversity across different scales. We applied this approach using an unbalanced design across four hierarchical scales (80 sites, 22 subregions, six ecoregions, and the Caribbean basin). Reef-fish species were compiled from the Reef Environmental Education Foundation (REEF) database and distributions were confirmed with published data. Permutation tests were used to compare observed values to those expected by chance. The primary objective was to identify patterns of reef-fish diversity across multiple spatial scales under different scenarios, examining factors such as fisheries and demographic connectivity. Total diversity at the Caribbean scale was attributed to β-diversity (nearly 62% of the species), with the highest β-diversity at the site scale. [Formula: see text]-diversity was higher than expected by chance in all scenarios and at all studied scales. This suggests that fish assemblages are more homogenous than expected, particularly at the ecoregion scale. Within each ecoregion, diversity was mainly attributed to alpha, except for the Southern ecoregion where there was a greater difference in species among sites. β-components were lower than expected in all ecoregions, indicating that fishes within each ecoregion are a subsample of the same species pool. The scenario involving the effects of fisheries showed a shift in dominance for β-diversity from regions to subregions, with no major changes to the diversity patterns. In contrast, demographic connectivity partially explained the diversity pattern. β-components were low within connectivity regions and higher than expected by chance when comparing between them. Our results highlight the importance of ecoregions as a spatial scale to conserve local

  20. Additive partitioning of coral reef fish diversity across hierarchical spatial scales throughout the Caribbean.

    Directory of Open Access Journals (Sweden)

    Vanessa Francisco-Ramos

    Full Text Available There is an increasing need to examine regional patterns of diversity in coral-reef systems since their biodiversity is declining globally. In this sense, additive partitioning might be useful since it quantifies the contribution of alpha and beta to total diversity across different scales. We applied this approach using an unbalanced design across four hierarchical scales (80 sites, 22 subregions, six ecoregions, and the Caribbean basin. Reef-fish species were compiled from the Reef Environmental Education Foundation (REEF database and distributions were confirmed with published data. Permutation tests were used to compare observed values to those expected by chance. The primary objective was to identify patterns of reef-fish diversity across multiple spatial scales under different scenarios, examining factors such as fisheries and demographic connectivity. Total diversity at the Caribbean scale was attributed to β-diversity (nearly 62% of the species, with the highest β-diversity at the site scale. [Formula: see text]-diversity was higher than expected by chance in all scenarios and at all studied scales. This suggests that fish assemblages are more homogenous than expected, particularly at the ecoregion scale. Within each ecoregion, diversity was mainly attributed to alpha, except for the Southern ecoregion where there was a greater difference in species among sites. β-components were lower than expected in all ecoregions, indicating that fishes within each ecoregion are a subsample of the same species pool. The scenario involving the effects of fisheries showed a shift in dominance for β-diversity from regions to subregions, with no major changes to the diversity patterns. In contrast, demographic connectivity partially explained the diversity pattern. β-components were low within connectivity regions and higher than expected by chance when comparing between them. Our results highlight the importance of ecoregions as a spatial scale to

  1. Complementarity of rotating video and underwater visual census for assessing species richness, frequency and density of reef fish on coral reef slopes.

    Directory of Open Access Journals (Sweden)

    Delphine Mallet

    Full Text Available Estimating diversity and abundance of fish species is fundamental for understanding community structure and dynamics of coral reefs. When designing a sampling protocol, one crucial step is the choice of the most suitable sampling technique which is a compromise between the questions addressed, the available means and the precision required. The objective of this study is to compare the ability to sample reef fish communities at the same locations using two techniques based on the same stationary point count method: one using Underwater Visual Census (UVC and the other rotating video (STAVIRO. UVC and STAVIRO observations were carried out on the exact same 26 points on the reef slope of an intermediate reef and the associated inner barrier reefs. STAVIRO systems were always deployed 30 min to 1 hour after UVC and set exactly at the same place. Our study shows that; (i fish community observations by UVC and STAVIRO differed significantly; (ii species richness and density of large species were not significantly different between techniques; (iii species richness and density of small species were higher for UVC; (iv density of fished species was higher for STAVIRO and (v only UVC detected significant differences in fish assemblage structure across reef type at the spatial scale studied. We recommend that the two techniques should be used in a complementary way to survey a large area within a short period of time. UVC may census reef fish within complex habitats or in very shallow areas such as reef flat whereas STAVIRO would enable carrying out a large number of stations focused on large and diver-averse species, particularly in the areas not covered by UVC due to time and depth constraints. This methodology would considerably increase the spatial coverage and replication level of fish monitoring surveys.

  2. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    Science.gov (United States)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  3. The perfect storm: Match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys

    Science.gov (United States)

    Vaz, Ana C.; Paris, Claire B.; Olascoaga, M. Josefina; Kourafalou, Villy H.; Kang, Heesook; Reed, John K.

    2016-08-01

    Mesophotic coral reef ecosystems are remote from coastal stressors, but are still vulnerable to over-exploitation, and remain mostly unprotected. They may be the key to coral reefs resilience, yet little is known about the pattern of larval subsidies from deeper to shallower coral reef habitats. Here we use a biophysical modeling approach to test the hypothesis that fishes from mesophotic coral reef ecosystems may replenish shallow reef populations. We aim at identifying the spatio-temporal patterns and underlying mechanisms of larval connections between Pulley Ridge, a mesophotic reef in the Gulf of Mexico hosting of a variety of shallow-water tropical fishes, and the Florida Keys reefs. A new three-dimensional (3D) polygon habitat module is developed for the open-source Connectivity Modeling System to simulate larval movement behavior of the bicolor damselfish, Stegastes partitus, in a realistic 3D representation of the coral reef habitat. Biological traits such as spawning periodicity, mortality, and vertical migration are also incorporated in the model. Virtual damselfish larvae are released daily from the Pulley Ridge at 80 m depth over 60 lunar spawning cycles and tracked until settlement within a fine resolution (~900 m) hydrodynamic model of the region. Such probabilistic simulations reveal mesophotic-shallow connections with large, yet sporadic pulses of larvae settling in the Florida Keys. Modal and spectral analyses on the spawning time of successful larvae, and on the position of the Florida Current front with respect to Pulley Ridge, demonstrate that specific physical-biological interactions modulate these "perfect storm" events. Indeed, the co-occurrence of (1) peak spawning with frontal features, and (2) cyclonic eddies with ontogenetic vertical migration, contribute to high settlement in the Florida Keys. This study demonstrates that mesophotic coral reef ecosystems can also serve as refugia for coral reef fish and suggests that they have a critical

  4. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    Science.gov (United States)

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  5. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes.

    Directory of Open Access Journals (Sweden)

    Camilo Mora

    2011-04-01

    Full Text Available Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass scales in a non-saturating manner with biodiversity (as measured by species and functional richness in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs. Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.

  6. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Messmer, Vanessa; Brooks, Andrew J; Srinivasan, Maya; Munday, Philip L; Jones, Geoffrey P

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  7. Variation in brain organization of coral reef fish larvae according to life history traits.

    Science.gov (United States)

    Lecchini, David; Lecellier, Gael; Lanyon, Rynae Greta; Holles, Sophie; Poucet, Bruno; Duran, Emilio

    2014-01-01

    In coral reefs, one of the great mysteries of teleost fish ecology is how larvae locate the relatively rare patches of habitat to which they recruit. The recruitment of fish larvae to a reef, after a pelagic phase lasting between 10 and 120 days, depends strongly on larval ability to swim and detect predators, prey and suitable habitat via sensory cues. However, no information is available about the relationship between brain organization in fish larvae and their sensory and swimming abilities at recruitment. For the first time, we explore the structural diversity of brain organization (comparative sizes of brain subdivisions: telencephalon, mesencephalon, cerebellum, vagal lobe and inferior lobe) among larvae of 25 coral reef fish species. We then investigate links between variation in brain organization and life history traits (swimming ability, pelagic larval duration, social behavior, diel activity and cue use relying on sensory perception). After accounting for phylogeny with independent contrasts, we found that brain organization covaried with some life history traits: (1) fish larvae with good swimming ability (>20 cm/s), a long pelagic duration (>30 days), diurnal activity and strong use of cues relying on sensory perception for detection of recruitment habitat had a larger cerebellum than other species. (2) Fish larvae with a short pelagic duration (fish larvae exhibiting solitary behavior during their oceanic phase had larger inferior and vagal lobes. Overall, we hypothesize that a well-developed cerebellum may allow fish larvae to improve their chances of successful recruitment after a long pelagic phase in the ocean. Our study is the first one to bring together quantitative information on brain organization and the relative development of major brain subdivisions across coral reef fish larvae, and more specifically to address the way in which this variation correlates with the recruitment process.

  8. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    Directory of Open Access Journals (Sweden)

    Sally J Holbrook

    Full Text Available Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia. Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  9. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

    Science.gov (United States)

    Jones, G. P.; Almany, G. R.; Russ, G. R.; Sale, P. F.; Steneck, R. S.; van Oppen, M. J. H.; Willis, B. L.

    2009-06-01

    The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.

  10. Chromosomal diversity in tropical reef fishes is related to body size and depth range.

    Science.gov (United States)

    Martinez, P A; Zurano, J P; Amado, T F; Penone, C; Betancur-R, R; Bidau, C J; Jacobina, U P

    2015-12-01

    Tropical reef fishes show contrasting patterns of karyotypic diversity. Some families have a high chromosomal conservatism while others show wide variation in karyotypic macrostructure. However, the influence of life-history traits on karyotypic diversity is largely unknown. Using phylogenetic comparative methods, we assessed the effects of larval and adult species traits on chromosomal diversity rates of 280 reef species in 24 families. We employed a novel approach to account for trait variation within families as well as phylogenetic uncertainties. We found a strong negative relationship between karyotypic diversity rates and body size and depth range. These results suggest that lineages with higher dispersal potential and gene flow possess lower karyotypic diversity. Taken together, these results provide evidence that biological traits might modulate the rate of karyotypic diversity in tropical reef fishes.

  11. An Analysis of Artificial Reef Fish Community Structure along the Northwestern Gulf of Mexico Shelf: Potential Impacts of "Rigs-to-Reefs" Programs.

    Directory of Open Access Journals (Sweden)

    Matthew J Ajemian

    Full Text Available Artificial structures are the dominant complex marine habitat type along the northwestern Gulf of Mexico (GOM shelf. These habitats can consist of a variety of materials, but in this region are primarily comprised of active and reefed oil and gas platforms. Despite being established for several decades, the fish communities inhabiting these structures remain poorly investigated. Between 2012 and 2013 we assessed fish communities at 15 sites using remotely operated vehicles (ROVs. Fish assemblages were quantified from standing platforms and an array of artificial reef types (Liberty Ships and partially removed or toppled platforms distributed over the Texas continental shelf. The depth gradient covered by the surveys (30-84 m and variability in structure density and relief also permitted analyses of the effects of these characteristics on fish richness, diversity, and assemblage composition. ROVs captured a variety of species inhabiting these reefs from large transient piscivores to small herbivorous reef fishes. While structure type and relief were shown to influence species richness and community structure, major trends in species composition were largely explained by the bottom depth where these structures occurred. We observed a shift in fish communities and relatively high diversity at approximately 60 m bottom depth, confirming trends observed in previous studies of standing platforms. This depth was also correlated with some of the largest Red Snapper captured on supplementary vertical longline surveys. Our work indicates that managers of artificial reefing programs (e.g., Rigs-to-Reefs in the GOM should carefully consider the ambient environmental conditions when designing reef sites. For the Texas continental shelf, reefing materials at a 50-60 m bottom depth can serve a dual purpose of enhancing diving experiences and providing the best potential habitat for relatively large Red Snapper.

  12. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean

    Science.gov (United States)

    McClanahan, Timothy R.; Maina, Joseph M.; Graham, Nicholas A. J.; Jones, Kendall R.

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability. PMID:27149673

  13. Do cleaning organisms reduce the stress response of client reef fish?

    OpenAIRE

    Oliveira Tânia SF; Oliveira Rui F; Bshary Redouan; Canário Adelino VM

    2007-01-01

    Abstract Background Marine cleaning interactions in which cleaner fish or shrimps remove parasites from visiting 'client' reef fish are a textbook example of mutualism. However, there is yet no conclusive evidence that cleaning organisms significantly improve the health of their clients. We tested the stress response of wild caught individuals of two client species, Chromis dimidiata and Pseudanthias squamipinnis, that had either access to a cleaner wrasse Labroides dimidiatus, or to cleaner ...

  14. Impact of mass coral bleaching on reef fish community and fishermen catches at Sabang, Aceh Province, Indonesia

    OpenAIRE

    Edi Rudi; Taufiq Iskandar; Nur Fadli; Hidayati Hidayati

    2012-01-01

    Mass coral bleaching was observed at Sabang, Aceh in early 2010, and approximately 60% ofhard coral in waters surrounding Sabang died post-event. Coral mortality was expected to affect thecomposition of reef fish due to decrease its function such as providing a shelter, feeding and spawninggrounds for fish and other marine organisms. The objectives of this research were to evaluate the impactof coral bleaching on coral reef fish community and to compare the composition of fishermen catchesbef...

  15. Impact of mass coral bleaching on reef fish community and fishermen catches at Sabang, Aceh Province, Indonesia

    OpenAIRE

    Edi Rudi; Taufiq Iskandar; Nur Fadli; Hidayati Hidayati

    2012-01-01

    Mass coral bleaching was observed at Sabang, Aceh in early 2010, and approximately 60% ofhard coral in waters surrounding Sabang died post-event. Coral mortality was expected to affect thecomposition of reef fish due to decrease its function such as providing a shelter, feeding and spawninggrounds for fish and other marine organisms. The objectives of this research were to evaluate the impactof coral bleaching on coral reef fish community and to compare the composition of fishermen catchesbef...

  16. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?

    DEFF Research Database (Denmark)

    Habary, Adam; Johansen, Jacob L.; Nay, Tiffany J.

    2017-01-01

    poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate...

  17. Biogeographic Patterns of Reef Fish Communities in the Saudi Arabian Red Sea

    KAUST Repository

    Roberts, May B.

    2014-12-01

    As a region renowned for high biodiversity, endemism and extreme temperature and salinity levels, the Red Sea is of high ecological interest. Despite this, there is relatively little literature on basic broad scale characteristics of the biodiversity or overall reef fish communities and how they change across latitude. We conducted visual transects recording the abundance of over 200 species of fish from 45 reefs spanning over 1000 km of Saudi Arabian coastline and used hierarchical cluster analysis to find that for combined depths from 0m-10m across this geographical range, the reef fish communities are relatively similar. However we find some interesting patterns both at the community level across depth and latitude as well as in endemic community distributions. We find that the communities, much like the environmental factors, shift gradually along latitude but do not show distinct clusters within the range we surveyed (from Al-Wajh in the north to the Farasan Banks in the south). Numbers of endemic species tend to be higher in the Thuwal region and further south. This type of baseline data on reef fish distribution and possible factors that may influence their ranges in the Red Sea are critical for future scientific studies as well as effective monitoring and in the face of the persistent anthropogenic influences such as coastal development, overfishing and climate change.

  18. Dispersal capacity predicts both population genetic structure and species richness in reef fishes.

    Science.gov (United States)

    Riginos, Cynthia; Buckley, Yvonne M; Blomberg, Simon P; Treml, Eric A

    2014-07-01

    Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.

  19. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    Science.gov (United States)

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  20. Role of mangroves as a nursery ground for juvenile reef fishes in the southern Egyptian Red Sea

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abu El-Regal

    2014-01-01

    Full Text Available This work aims to study the importance of mangrove area as nursery grounds for the juvenile of reef fishes in the Red Sea. Juvenile fishes were collected during three seasons in 2010 from three mangrove swamps by a beach seine net. The net was dragged on the bottom for 100 m three times. A total of 269 juvenile fishes were collected, representing 21 species in 19 families. The most abundant species formed about 86% of all collected fishes. Nine species were collected for the first time from mangrove areas in the Egyptian Red Sea. Most of the collected fishes are economically important fishes. Moreover, eleven families were belonging to coral reef fishes. The highest species richness value was recorded in Hamata mangroves. This finding showed that how mangroves could support the life history of many coral reef fishes.

  1. Effects of fisheries closures and gear restrictions on fishing income in a Kenyan coral reef.

    Science.gov (United States)

    McClanahan, Timothy R

    2010-12-01

    The adoption of fisheries closures and gear restrictions in the conservation of coral reefs may be limited by poor understanding of the economic profitability of competing economic uses of marine resources. Over the past 12 years, I evaluated the effects of gear regulation and fisheries closures on per person and per area incomes from fishing in coral reefs of Kenya. In two of my study areas, the use of small-meshed beach seines was stopped after 6 years; one of these areas was next to a fishery closure. In my third study area, fishing was unregulated. Fishing yields on per capita daily wet weight basis were 20% higher after seine-net fishing was stopped. The per person daily fishing income adjacent to the closed areas was 14 and 22% higher than the fishing income at areas with only gear restrictions before and after the seine-net restriction, respectively. Incomes differed because larger fish were captured next to the closed area and the price per weight (kilograms) increased as fish size increased and because catches adjacent to the closure contained fish species of higher market value. Per capita incomes were 41 and 135% higher for those who fished in gear-restricted areas and near-closed areas, respectively, compared with those who fished areas with no restrictions. On a per unit area basis (square kilometers), differences in fishing income among the three areas were not large because fishing effort increased as the number of restrictions decreased. Changes in catch were, however, larger and often in the opposite direction expected from changes in effort alone. For example, effort declined 21% but nominal profits per square kilometer (not accounting for inflation) increased 29% near the area with gear restrictions. Gear restrictions also reduced the cost of fishing and increased the proportion of self-employed fishers.

  2. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations

    Science.gov (United States)

    Bellwood, D. R.; Goatley, C. H. R.; Brandl, S. J.; Bellwood, O.

    2014-01-01

    The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene–Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs. PMID:24573852

  3. The abundance of herbivorous fish on an inshore Red Sea reef following a mass coral bleaching event

    KAUST Repository

    Khalil, Maha T.

    2013-01-08

    A healthy herbivore community is critical for the ability of a reef to resist and recover from severe disturbances and to regain lost coral cover (i.e., resilience). The densities of the two major herbivorous fish groups (the family Acanthuridae and scarine labrids) were comparatively studied for an inshore reef that was severely impacted by a mass coral bleaching event in 2010 and an unaffected reef within the same region. Densities were found to be significantly higher on the affected reef, most likely due to the high algal densities on that reef. However, densities of herbivores on both reefs were found to be on average about 1-2 orders of magnitude lower than previously published reports from some Pacific reefs and from Red Sea reefs in the Gulf of Aqaba and only slightly higher than Caribbean reefs. Thus, it is predicted that recovery for this reef and similarly affected reefs may be very slow. The protection of herbivores from overfishing and the introduction of other management strategies that maximize reef resilience in Saudi Arabian waters are highly recommended. © 2013 Springer Science+Business Media Dordrecht.

  4. Fear of fishers: human predation explains behavioral changes in coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Fraser A Januchowski-Hartley

    Full Text Available Prey flight decisions in response to predation risk are increasingly being considered in conservation and management decisions in the terrestrial realm, but are rarely considered in marine systems. This field-based study investigated how the behavioral response of coral reef fish families varied along a gradient of subsistence fishing pressure in Papua New Guinea. Specifically, we examined how fishing pressure was related to pre-flight behavior and flight initiation distance (FID, and whether FID was influenced by body size (centimeters total length, group size (including both con- and hetero-specific individuals, or life-history phase. Fishing pressure was positively associated with higher FID, but only in families that were primarily targeted by spear guns. Among these families, there were variable responses in FID; some families showed increased FID monotonically with fishing pressure, while others showed increased FID only at the highest levels of fishing pressure. Body size was more significant in varying FID at higher levels of fishing pressure. Although family-level differences in pre-flight behavior were reported, such behavior showed low concordance with fishing pressure. FID shows promise as a tool by which compliance and effectiveness of management of reef fisheries can be assessed.

  5. Diversity of trypanorhynch metacestodes in teleost fishes from coral reefs off eastern Australia and New Caledonia

    Directory of Open Access Journals (Sweden)

    Beveridge Ian

    2014-01-01

    Full Text Available Trypanorhynch metacestodes were examined from teleosts from coral reefs in eastern Australia and from New Caledonia. From over 12,000 fishes examined, 33 named species of trypanorhynchs were recovered as well as three species of tentacularioids which are described but not named. Host-parasite and parasite-host lists are provided, including more than 100 new host records. Lacistorhynchoid and tentacularioid taxa predominated with fewer otobothrioid and gymnorhynchoids. Five species, Callitetrarhynchus gracilis, Floriceps minacanthus, Pseudotobothrium dipsacum, Pseudolacistorhynchus heroniensis and Ps. shipleyi, were particularly common and exhibited low host specificity. Limited data suggested a higher diversity of larval trypanorhynchs in larger piscivorous fish families. Several fish families surveyed extensively (Blenniidae, Chaetodontidae, Gobiidae, Kyphosidae and Scaridae yielded no trypanorhynch larvae. The overall similarity between the fauna of the Great Barrier Reef and New Caledonia was 45%. Where available, information on the adult stages in elasmobranchs has been included.

  6. Functional responses of North Atlantic fish eggs to increasing temperature

    DEFF Research Database (Denmark)

    Tsoukali, Stavroula; Visser, Andre; MacKenzie, Brian

    2016-01-01

    -days and survival of fish eggs from 32 populations of 17 species in the North Atlantic to different temperatures in order to determine potential consequences of global warming for these species. The response of development time exhibited a similar decreasing trend with respect to temperature across species....... The similar slopes of regression lines relating lntransformed development time and temperature indicate similar sensitivity to temperature changes. Across-species differences were mainly driven by intercept values, indicating up to 8- fold differences in development time at given temperature...

  7. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    Science.gov (United States)

    Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H

    2017-01-01

    Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor

  8. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines.

    Science.gov (United States)

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H; Fortes, Miguel D

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010-2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.

  9. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.

    2012-03-25

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  10. Coral recovery may not herald the return of fishes on damaged coral reefs.

    Science.gov (United States)

    Bellwood, David R; Baird, Andrew H; Depczynski, Martial; González-Cabello, Alonso; Hoey, Andrew S; Lefèvre, Carine D; Tanner, Jennifer K

    2012-10-01

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals.

  11. Foraging habits of reef fishes associated with mangroves and seagrass beds in a Caribbean lagoon: A stable isotope approach

    OpenAIRE

    2015-01-01

    Mangroves and seagrass beds represent suitable fish habitats as nurseries or feeding areas. This study was conducted in a Caribbean lagoon to assess the foraging habits of juvenile transient reef fishes in these two habitats. Twelve fish species were sampled in coastal mangroves, an offshore mangrove islet, and a seagrass bed site, and stable isotope analyses were performed on fishes and their prey items. The SIAR mixing model indicated that transient fishes from both mangroves and s...

  12. Feasibility of a Regionwide Probability Survey for Coral Reef Fish in Puerto Rico and the U.S. Virgin Islands

    National Research Council Canada - National Science Library

    Bryan, David R; Smith, Steven G; Ault, Jerald S; Feeley, Michael W; Menza, Charles W

    2016-01-01

    .... Caribbean were used in conjunction with detailed bathymetric and habitat maps to develop a probability sampling design and investigate the feasibility of conducting a regionwide coral reef fish survey...

  13. Understanding Coral Reef Fish Characteristics Using Videogrammetry in Hanauma and Maunalua Bays, Oahu, Hawaii during 2007 (NODC Accession 0042353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Videogrammetry data taken in 2007 are used for a study of fish within coral reef ecosystems. We attempted to generate or find information on abundance, growth,...

  14. Coral reef fish species survey data GIS from the Florida Keys National Marine Sanctuary (NODC Accession 0001394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of an ArcView shapefile set that contains locations of sampled coral reef fish species at the National Marine Sanctuary along the Florida...

  15. NOAA's Coral Reef Conservation Program's 2016 Projects that Work Towards Stratefic Goals to Reduce Fishing Impacts on Coral

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to work towards CRCP's strategic goals to reduce fishing impacts on coral reefs Building GIS Long-term Capacity:...

  16. 78 FR 72583 - Reef Fish Fishery of the Gulf of Mexico; 2013 Accountability Measure and Closure for Hogfish in...

    Science.gov (United States)

    2013-12-03

    ... notification in the Federal Register. FOR FURTHER INFORMATION CONTACT: Rich Malinowski, Southeast Regional Office, telephone 727-824-5305, email rich.malinowski@noaa.gov . SUPPLEMENTARY INFORMATION: The reef fish...

  17. 78 FR 61827 - Reef Fish Fishery of the Gulf of Mexico; 2013 Recreational Accountability Measure and Closure for...

    Science.gov (United States)

    2013-10-04

    .... FOR FURTHER INFORMATION CONTACT: Rich Malinowski, Southeast Regional Office, telephone 727-824-5305, email rich.malinowski@noaa.gov . SUPPLEMENTARY INFORMATION: The reef fish fishery of the Gulf, which...

  18. Understanding coral reef fish characteristics using videogrammetry in Hanauma and Maunalua Bays, Oahu, Hawaii during 2007 (NODC Accession 0042353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Videogrammetry data taken in 2007 are used for a study of fish within coral reef ecosystems. We attempted to generate or find information on abundance, growth,...

  19. Ectoparasites increase swimming costs in a coral reef fish.

    Science.gov (United States)

    Binning, Sandra A; Roche, Dominique G; Layton, Cayne

    2013-02-23

    Ectoparasites can reduce individual fitness by negatively affecting behavioural, morphological and physiological traits. In fishes, there are potential costs if ectoparasites decrease streamlining, thereby directly compromising swimming performance. Few studies have examined the effects of ectoparasites on fish swimming performance and none distinguish between energetic costs imposed by changes in streamlining and effects on host physiology. The bridled monocle bream (Scolopsis bilineatus) is parasitized by an isopod (Anilocra nemipteri), which attaches above the eye. We show that parasitized fish have higher standard metabolic rates (SMRs), poorer aerobic capacities and lower maximum swimming speeds than non-parasitized fish. Adding a model parasite did not affect SMR, but reduced maximum swimming speed and elevated oxygen consumption rates at high speeds to levels observed in naturally parasitized fish. This demonstrates that ectoparasites create drag effects that are important at high speeds. The higher SMR of naturally parasitized fish does, however, reveal an effect of parasitism on host physiology. This effect was easily reversed: fish whose parasite was removed 24 h earlier did not differ from unparasitized fish in any performance metrics. In sum, the main cost of this ectoparasite is probably its direct effect on streamlining, reducing swimming performance at high speeds.

  20. Who resembles whom? Mimetic and coincidental look-alikes among tropical reef fishes.

    Science.gov (United States)

    Robertson, D Ross

    2013-01-01

    Studies of mimicry among tropical reef-fishes usually give little or no consideration to alternative explanations for behavioral associations between unrelated, look-alike species that benefit the supposed mimic. I propose and assess such an alternative explanation. With mimicry the mimic resembles its model, evolved to do so in response to selection by the mimicry target, and gains evolved benefits from that resemblance. In the alternative, the social-trap hypothesis, a coincidental resemblance of the model to the "mimic" inadvertently attracts the latter to it, and reinforcement of this social trapping by learned benefits leads to the "mimic" regularly associating with the model. I examine three well known cases of supposed aggressive mimicry among reef-fishes in relation to nine predictions from these hypotheses, and assess which hypothesis offers a better explanation for each. One case, involving precise and complex morphological and behavioral resemblance, is strongly consistent with mimicry, one is inconclusive, and one is more consistent with a social-trap based on coincidental, imprecise resemblance. Few cases of supposed interspecific mimicry among tropical reef fishes have been examined in depth, and many such associations may involve social traps arising from generalized, coincidental resemblance. Mimicry may be much less common among these fishes than is generally thought.

  1. Species-specific impacts of a small marine reserve on reef fish production and fishing productivity in the Turks and Caicos Islands

    OpenAIRE

    Tupper, M.H.; Rudd, M.A.

    2002-01-01

    Marine reserves are widely considered to potentially benefit reef fisheries through emigration, yet the empirical basis for predicting the extent of this for small reserves is weak. The effects of fishing pressure and habitat on biomass and catch per unit effort (CPUE) of three species of exploited reef fish were studied at South Caicos, Turks and Caicos Islands. Distribution and abundance of hogfish (Lachnolaimus maximus) and white margate (Haemulon album) were inversely correlated with cove...

  2. National Patterns of Philippine Reef Fish Diversity and Its Implications on the Current Municipal-Level Management

    Directory of Open Access Journals (Sweden)

    Jonathan A. Anticamara

    2015-06-01

    Full Text Available Recent national-level assessments of Philippine reef fish diversity have been mainly based on species richness surveys, but generally do not account for reef f ish abundance and biomass—metrics that better describe fish community assemblages. Given that the Philippines is considered a major biodiversity hotspot and is heavily reliant on coastal resources, there is a great need to quantify the current status of its reef fish diversity using standardized methods. Here, standardized Underwater Visual Census (UVC belt transect sampling methods were used to quantify current levels of reef fish species richness, relative abundance, and relative biomass throughout the Philippines. Results showed that most surveyed municipalities were still species-rich (22.2 ± 0.8 reef fish species per 100 m2, but appeared depleted in terms of reef f ish abundance and biomass. Partitioning analysis revealed significant differences in reef fish species richness patterns across municipalities, suggesting the presence of a few restricted-range and rare species per site. However, partitioning analysis accounting for relative abundance showed that reef fish diversity was generally homogenous across study sites, suggesting the dominance of a few highly-abundant species. SIMPER analysis revealed that Philippine reefs were generally dominated by small and medium-bodied species, rather than large-bodied species—the latter of which are especially vulnerable to fishing due to certain life history traits (e.g. , late age at maturity and slow growth rate and commercial exploitation. While current municipal-level management may be sufficient for restricted-range fish species, large-scale conservation efforts (i.e., in the form of collaborative marine reserve networks are needed for wide-range and large-bodied species that are not confined to politically-defined municipal boundaries. In addition, long-term and nationwide efforts to systematically monitor Philippine reef

  3. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    Science.gov (United States)

    Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G

    2017-09-25

    Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.

  4. 75 FR 76302 - Atlantic Highly Migratory Species; 2011 Commercial Fishing Season and Adaptive Management...

    Science.gov (United States)

    2010-12-08

    ... Species; 2011 Commercial Fishing Season and Adaptive Management Measures for the Atlantic Shark Fishery... currently affecting management of the shark fishery, including commercial landings that exceed the quotas... and 2010 Atlantic commercial shark fishing seasons. NMFS is taking this action to establish the...

  5. Coral reef destruction of Small island in 44 years and destructive fishing in Spermonde Archipelago, Indonesia

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Rani, Chair; Supriadi; Fakhriyyah, Sitti; Agus

    2016-11-01

    Coral reefs are among the most diverse and threatened ecosystems on the planet. The most commonly stated for developing coral reef remote sensing techniques is to asses and or to monitor the status of these ecosystems. The study site was selected one of small island in inner zone Spermonde archipelago, Indonesia. We used Landsat MSS, Landsat TM, Landsat ETM, and Landsat OLI data to examine changes in the coral reefs of inner zone island in the Spermonde Archipelago from 1972 to 2016. The image processing are gap fills, atmospheric correction, geometric corrections, image composites, water column corrections, unsupervised classifications, and reclassification. Some of component change detection procedure was applied to define change. The results showed significant changes in 44 years. Disturbed coral reefs are typically characterized by loss of coral cover by increase in the abundance of dead corals and rubble. Local factors such as destructive fishing is direct destruction of inner zone island. While the impact of local threats may be reduced through management action, global threats to coral reefs are likely to increase in severity in the coming years.

  6. Coral recruitment and potential recovery of eutrophied and blast fishing impacted reefs in Spermonde Archipelago, Indonesia.

    Science.gov (United States)

    Sawall, Yvonne; Jompa, Jamaluddin; Litaay, Magdalena; Maddusila, Andi; Richter, Claudio

    2013-09-15

    Coral recruitment was assessed in highly diverse and economically important Spermonde Archipelago, a reef system subjected to land-based sources of siltation/pollution and destructive fishing, over a period of 2 years. Recruitment on settlement tiles reached up to 705 spat m(-2) yr(-1) and was strongest in the dry season (July-October), except off-shore, where larvae settled earlier. Pocilloporidae dominated near-shore, while a more diverse community of Acroporidae, Poritidae and others settled in the less polluted mid-shelf and off-shore reefs. Non-coral fouling community appeared to hardly influence initial coral settlement on the tiles, although, this does not necessarily infer low coral post-settlement mortality, which may be enhanced at the near- and off-shore reefs as indicated by increased abundances of potential space competitors on natural substrate. Blast fishing showed no local reduction in coral recruitment and live hard coral cover increased in oligotrophic reefs, indicating potential for coral recovery, if managed effectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Reef Fish Dispersal in the Hawaiian Archipelago: Comparative Phylogeography of Three Endemic Damselfishes

    Directory of Open Access Journals (Sweden)

    Kimberly A. Tenggardjaja

    2016-01-01

    Full Text Available Endemic marine species at remote oceanic islands provide opportunities to investigate the proposed correlation between range size and dispersal ability. Because these species have restricted geographic ranges, it is assumed that they have limited dispersal ability, which consequently would be reflected in high population genetic structure. To assess this relationship at a small scale and to determine if it may be related to specific reef fish families, here we employ a phylogeographic survey of three endemic Hawaiian damselfishes: Abudefduf abdominalis, Chromis ovalis, and Chromis verater. Data from mitochondrial markers cytochrome b and control region revealed low but significant genetic structure in all three species. Combining these results with data from a previous study on Dascyllus albisella and Stegastes marginatus, all five endemic damselfish species surveyed to date show evidence of genetic structure, in contrast with other widespread reef fish species that lack structure within the Hawaiian Archipelago. Though individual patterns of connectivity varied, these five species showed a trend of limited connectivity between the atolls and low-lying Northwestern Hawaiian Islands versus the montane Main Hawaiian Islands, indicating that, at least for damselfishes, the protected reefs of the uninhabited northwest will not replenish depleted reefs in the populated Main Hawaiian Islands.

  8. Dependence of juvenile reef fishes on semi-arid hypersaline estuary microhabitats as nurseries.

    Science.gov (United States)

    Sales, N S; Dias, T L P; Baeta, A; Pessanha, A L M

    2016-07-01

    The differences between fish assemblages in three microhabitat types, in relation to vegetation and sediment characteristics of a hypersaline estuary located in an semi-arid zone in north-eastern Brazil, were investigated. Fishes were collected using a beach seine during the rainy and dry seasons in 2012. A total of 78 species were recorded, with the most common families being Gerreidae, Lutjanidae and Tetraodontidae. The majority of species were represented by juveniles, with Eucinostomus argenteus, Ulaema lefroyi and Sphoeroides greeleyi being the dominant species. The fish assemblage structures differed significantly among microhabitat types, with the narrow intertidal flat adjacent to the mangrove fringe supporting the most diverse fish fauna. In addition, only 27 species were common to all of the microhabitats. The results support the hypothesis that hypersaline estuaries serve as important nursery areas for various reef fish species, due to the structural complexity provided by their macroalgae beds and mangroves.

  9. Does herbivorous fish protection really improve coral reef resilience? A case study from new caledonia (South Pacific.

    Directory of Open Access Journals (Sweden)

    Laure Carassou

    Full Text Available Parts of coral reefs from New Caledonia (South Pacific were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1 coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2 results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1 current fishing pressure only slightly affected herbivorous fish communities in the country, and 2 coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.

  10. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish.

    Science.gov (United States)

    Domenici, Paolo; Allan, Bridie; McCormick, Mark I; Munday, Philip L

    2012-02-23

    Elevated carbon dioxide (CO(2)) has recently been shown to affect chemosensory and auditory behaviour, and activity levels of larval reef fishes, increasing their risk of predation. However, the mechanisms underlying these changes are unknown. Behavioural lateralization is an expression of brain functional asymmetries, and thus provides a unique test of the hypothesis that elevated CO(2) affects brain function in larval fishes. We tested the effect of near-future CO(2) concentrations (880 µatm) on behavioural lateralization in the reef fish, Neopomacentrus azysron. Individuals exposed to current-day or elevated CO(2) were observed in a detour test where they made repeated decisions about turning left or right. No preference for right or left turns was observed at the population level. However, individual control fish turned either left or right with greater frequency than expected by chance. Exposure to elevated-CO(2) disrupted individual lateralization, with values that were not different from a random expectation. These results provide compelling evidence that elevated CO(2) directly affects brain function in larval fishes. Given that lateralization enhances performance in a number of cognitive tasks and anti-predator behaviours, it is possible that a loss of lateralization could increase the vulnerability of larval fishes to predation in a future high-CO(2) ocean.

  11. Marine reserves and reproductive biomass: a case study of a heavily targeted reef fish.

    Science.gov (United States)

    Taylor, Brett M; McIlwain, Jennifer L; Kerr, Alexander M

    2012-01-01

    Recruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself) is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest. In this study, we explored empirically and through modeling, the role of marine reserves in maximizing spawner biomass of a heavily exploited reef fish, Lethrinus harak around Guam, Micronesia. On average, spawner biomass was 16 times higher inside the reserves compared with adjacent fished sites. Adult density and habitat-specific mean fish size were also significantly greater. We used these data in an age-structured population model to explore the effect of several management scenarios on L. harak demography. Under minimum-size limits, unlimited extraction and all rotational-closure scenarios, the model predicts that preferential mortality of larger and older fish prompt dramatic declines in spawner biomass and the proportion of male fish, as well as considerable declines in total abundance. For rotational closures this occurred because of the mismatch between the scales of recovery and extraction. Our results highlight how alternative management scenarios fall short in comparison to marine reserves in preserving reproductively viable fish populations on coral reefs.

  12. Marine reserves and reproductive biomass: a case study of a heavily targeted reef fish.

    Directory of Open Access Journals (Sweden)

    Brett M Taylor

    Full Text Available Recruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest. In this study, we explored empirically and through modeling, the role of marine reserves in maximizing spawner biomass of a heavily exploited reef fish, Lethrinus harak around Guam, Micronesia. On average, spawner biomass was 16 times higher inside the reserves compared with adjacent fished sites. Adult density and habitat-specific mean fish size were also significantly greater. We used these data in an age-structured population model to explore the effect of several management scenarios on L. harak demography. Under minimum-size limits, unlimited extraction and all rotational-closure scenarios, the model predicts that preferential mortality of larger and older fish prompt dramatic declines in spawner biomass and the proportion of male fish, as well as considerable declines in total abundance. For rotational closures this occurred because of the mismatch between the scales of recovery and extraction. Our results highlight how alternative management scenarios fall short in comparison to marine reserves in preserving reproductively viable fish populations on coral reefs.

  13. Status of Coral Reef Fish Communities within the Mombasa Marine ...

    African Journals Online (AJOL)

    Keywords: Ecological monitoring, no-take area, partially-protected area, Marine ... abundance of haemulids (nocturnal carnivores) and acanthurids (herbivores) in ... This was also positively ... was little detectable effect on fish abundance.

  14. Validation of microsatellite multiplexes for parentage analysis in a coral reef fish (Lutjanus carponotatus, Lutjanidae)

    KAUST Repository

    Harrison, Hugo B.

    2014-05-25

    Parentage analysis is an important tool for identifying connectivity patterns in coral reef fishes, but often requires numerous highly polymorphic markers. We isolated 21 polymorphic microsatellite markers from the stripey snapper, Lutjanus carponotatus and describe their integration into three multiplex PCRs. All markers were highly polymorphic with a mean of 24.9 ± 1.8 SE alleles per locus and an average observed heterozygosity of 0.797 ± 0.038 SE across 285 genotyped individuals. Using a simulated dataset, we conclude that the complete marker set provides sufficient resolution to resolve parent–offspring relationships in natural populations with 99.6 ± 0.1 % accuracy in parentage assignments. This multiplex assay provides an effective means of investigating larval dispersal and population connectivity in this fishery-targeted coral reef fish species and informing the design of marine protected area networks for biodiversity conservation and fisheries management.

  15. Potential of Pigeon Creek, San Salvador, Bahamas, as Nursery Habitat for Juvenile Reef Fish

    Directory of Open Access Journals (Sweden)

    Conboy, Ian Christopher

    2011-10-01

    Full Text Available This project assessed the significance of Pigeon Creek, San Salvador, Bahamas as a nursery habitat for coral reef fishes. Pigeon Creek’s perimeter is lined with mangrove and limestone bedrock. The bottom is sand or seagrass and ranges in depth from exposed at low tide to a 3-m deep, tide-scoured channel. In June 2006 and January 2007, fish were counted and their maturity was recorded while sampling 112 of 309 possible 50-m transects along the perimeter of the Pigeon Creek. Excluding silversides (Atherinidae, 52% of fish counted, six families each comprised >1% of the total abundance (Scaridae/parrotfishes, 35.3%; Lutjanidae/snappers, 23.9%; Haemulidae/grunts, 21.0%; Gerreidae/mojarras, 8.5%; Pomacentridae/damselfishes, 6.1%; Labridae/wrasses, 2.4%. There were few differences in effort-adjusted counts among habitats (mangrove, bedrock, mixed, sections (north, middle, southwest and seasons (summer 2006 and winter 2007. Red Mangrove (Rhizophora mangle, covering 68% of the perimeter was where 62% of the fish were counted. Snappers, grunts and parrotfishes are important food fishes and significant families in terms of reef ecology around San Salvador. Mangrove was the most important habitat for snappers and grunts; bedrock was most important for parrotfishes. The southwest section was important for snappers, grunts and parrotfishes, the north section for grunts and parrotfishes, and the middle section for snappers. Among the non-silverside fish counted, 91.2% were juveniles. These results suggest that Pigeon Creek is an important nursery for the coral reefs surrounding San Salvador and should be protected from potential disturbances.

  16. Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes.

    Science.gov (United States)

    Kelly, Emily L A; Eynaud, Yoan; Clements, Samantha M; Gleason, Molly; Sparks, Russell T; Williams, Ivor D; Smith, Jennifer E

    2016-12-01

    Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition.

  17. Population expansions dominate demographic histories of endemic and widespread Pacific reef fishes

    Science.gov (United States)

    Delrieu-Trottin, Erwan; Mona, Stefano; Maynard, Jeffrey; Neglia, Valentina; Veuille, Michel; Planes, Serge

    2017-01-01

    Despite the unique nature of endemic species, their origin and population history remain poorly studied. We investigated the population history of 28 coral reef fish species, close related, from the Gambier and Marquesas Islands, from five families, with range size varying from widespread to small-range endemic. We analyzed both mitochondrial and nuclear sequence data using neutrality test and Bayesian analysis (EBSP and ABC). We found evidence for demographic expansions for most species (24 of 28), irrespective of range size, reproduction strategy or archipelago. The timing of the expansions varied greatly among species, from 8,000 to 2,000,000 years ago. The typical hypothesis for reef fish that links population expansions to the Last Glacial Maximum fit for 14 of the 24 demographic expansions. We propose two evolutionary processes that could lead to expansions older than the LGM: (a) we are retrieving the signature of an old colonization process for widespread, large-range endemic and paleoendemic species or (b) speciation; the expansion reflects the birth of the species for neoendemic species. We show for the first time that the demographic histories of endemic and widespread reef fish are not distinctly different and suggest that a number of processes drive endemism. PMID:28091580

  18. Local extinction of a coral reef fish explained by inflexible prey choice

    Science.gov (United States)

    Brooker, R. M.; Munday, P. L.; Brandl, S. J.; Jones, G. P.

    2014-12-01

    While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability.

  19. Population expansions dominate demographic histories of endemic and widespread Pacific reef fishes

    Science.gov (United States)

    Delrieu-Trottin, Erwan; Mona, Stefano; Maynard, Jeffrey; Neglia, Valentina; Veuille, Michel; Planes, Serge

    2017-01-01

    Despite the unique nature of endemic species, their origin and population history remain poorly studied. We investigated the population history of 28 coral reef fish species, close related, from the Gambier and Marquesas Islands, from five families, with range size varying from widespread to small-range endemic. We analyzed both mitochondrial and nuclear sequence data using neutrality test and Bayesian analysis (EBSP and ABC). We found evidence for demographic expansions for most species (24 of 28), irrespective of range size, reproduction strategy or archipelago. The timing of the expansions varied greatly among species, from 8,000 to 2,000,000 years ago. The typical hypothesis for reef fish that links population expansions to the Last Glacial Maximum fit for 14 of the 24 demographic expansions. We propose two evolutionary processes that could lead to expansions older than the LGM: (a) we are retrieving the signature of an old colonization process for widespread, large-range endemic and paleoendemic species or (b) speciation; the expansion reflects the birth of the species for neoendemic species. We show for the first time that the demographic histories of endemic and widespread reef fish are not distinctly different and suggest that a number of processes drive endemism.

  20. Peixes recifais da costa da Paraíba, Brasil Reef fishes from Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz A. Rocha

    1998-01-01

    Full Text Available The coral reef is an ecossystem which evokes great interest, for its beaury, species diversity and fisheries potential. The coast of Paraíba State, northeast Brazil, possesses several natural reefs and shipwrecks which are inhabited by a rich fish fauna. In order to survey the reef fish fauna of Paraíba State, a total of 118 dives, utilizing SCUBA diving techniques, were carriedoutin 27samplingpoints (depths: 0,5-66m, from February/1995 to May/1996. Specimens were collected whenever underwater identification was precluded. A total of 157 known species belonging to 59 families were found. Four unidentified species, one dasyatid, one haemulid, one scarid, and one labrid were recorded. Haemulidae was the most representative family in number of individuais, whereas Carangidae was the most speciose family. This paper is part of a broader study of the northeast Brazilian reef fishes.

  1. Effects of ocean acidification on learning in coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Maud C O Ferrari

    Full Text Available Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO(2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO(2 effects, whereby some individuals are unaffected at particular CO(2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO(2 (current day levels or 850 µatm CO(2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO(2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO(2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO(2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO(2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO(2-treated fish responded to a general risk cue (injured conspecific cues. These results indicate that exposure to CO(2 may alter the cognitive ability of juvenile fish and render

  2. Effects of ocean acidification on learning in coral reef fishes.

    Science.gov (United States)

    Ferrari, Maud C O; Manassa, Rachel P; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark G; Sih, Andrew; Chivers, Douglas P

    2012-01-01

    Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO(2) predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO(2) effects, whereby some individuals are unaffected at particular CO(2) concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO(2) (current day levels) or 850 µatm CO(2), a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO(2) failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO(2) fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO(2) exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO(2) exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO(2)-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO(2) may alter the cognitive ability of juvenile fish and render learning

  3. Historical factors that have shaped the evolution of tropical reef fishes: A review of phylogenies, biogeography, and remaining questions.

    Directory of Open Access Journals (Sweden)

    Peter Francis Cowman

    2014-11-01

    Full Text Available Biodiversity patterns across the marine tropics have intrigued evolutionary biologists and ecologists alike. Tropical coral reefs host 1/3 of all marine species of fish on 0.1% of the ocean’s surface. Yet our understanding of how mechanistic processes have underpinned the generation of diversity is limited. However, it has become clear that the biogeographic history of the marine tropics has played an important role in shaping the diversity of tropical reef fishes we see today. In the last decade, molecular phylogenies and age estimation techniques have provided a temporal framework in which the ancestral biogeographic origins of reef fish lineages have been inferred, but few have included fully sampled phylogenies or made inferences at a global scale. We are currently at a point where new sequencing technologies are accelerating the reconstruction and the resolution of the Fish Tree of Life. How will a complete phylogeny of fishes benefit the study of biodiversity in the tropics? Here, I review the literature concerning the evolutionary history of reef-associated fishes from a biogeographic perspective. I summarize the major biogeographic and climatic events over the last 65 million years that have regionalized the tropical marine belt and what effect they have had on the molecular record of fishes and global biodiversity patterns. By examining recent phylogenetic trees of major reef associated groups, I identify gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish assemblages. Finally, I discuss questions that remain to be answered and new approaches to uncover the mechanistic processes that underpin the evolution of biodiversity on coral reefs.

  4. Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions.

    Science.gov (United States)

    Cowman, Peter F

    2014-01-01

    Biodiversity patterns across the marine tropics have intrigued evolutionary biologists and ecologists alike. Tropical coral reefs host 1/3 of all marine species of fish on 0.1% of the ocean's surface. Yet our understanding of how mechanistic processes have underpinned the generation of this diversity is limited. However, it has become clear that the biogeographic history of the marine tropics has played an important role in shaping the diversity of tropical reef fishes we see today. In the last decade, molecular phylogenies and age estimation techniques have provided a temporal framework in which the ancestral biogeographic origins of reef fish lineages have been inferred, but few have included fully sampled phylogenies or made inferences at a global scale. We are currently at a point where new sequencing technologies are accelerating the reconstruction and the resolution of the Fish Tree of Life. How will a complete phylogeny of fishes benefit the study of biodiversity in the tropics? Here, I review the literature concerning the evolutionary history of reef-associated fishes from a biogeographic perspective. I summarize the major biogeographic and climatic events over the last 65 million years that have regionalized the tropical marine belt and what effect they have had on the molecular record of fishes and global biodiversity patterns. By examining recent phylogenetic trees of major reef associated groups, I identify gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish assemblages. Finally, I discuss questions that remain to be answered and new approaches to uncover the mechanistic processes that underpin the evolution of biodiversity on coral reefs.

  5. Lost fishing gear and litter at Gorringe Bank (NE Atlantic)

    Science.gov (United States)

    Vieira, Rui P.; Raposo, Isabel P.; Sobral, Paula; Gonçalves, Jorge M. S.; Bell, Katherine L. C.; Cunha, Marina R.

    2015-06-01

    Studies concerning marine litter have received great attention over the last several years by the scientific community mainly due to their ecological and economic impacts in marine ecosystems, from coastal waters to the deep ocean seafloor. The distribution, type and abundance of marine litter in Ormonde and Gettysburg, the two seamounts of Gorringe Bank, were analyzed from photo and video imagery obtained during ROV-based surveys carried out at 60-3015 m depths during the E/V Nautilus cruise NA017. Located approximately 125 nm southwest of Portugal, Gorringe Bank lays at the crossroad between the Atlantic and the Mediterranean and is therefore characterized by an intense maritime traffic and fishing activities. The high frequency of lost or discarded fishing gear, such as cables, longlines and nets, observed on Gorringe Bank suggests an origin mostly from fishing activities, with a clear turnover in the type of litter (mostly metal, glass and to a much lesser extent, plastic) with increasing depth. Litter was more abundant at the summit of Gorringe Bank (ca. 4 items·km- 1), decreasing to less than 1 item·km- 1 at the flanks and to ca. 2 items·km- 1 at greater depths. Nevertheless, litter abundance appeared to be lower than in continental margin areas. The results presented herein are a contribution to support further actions for the conservation of vulnerable habitats on Gorringe Bank so that they can continue contributing to fishery productivity in the surrounding region.

  6. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    Science.gov (United States)

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  7. THE BEHAVIOUR OF REEF-DWELLING SPARID FISHES

    African Journals Online (AJOL)

    The line fish industry of the southern Cape coast is a primitive yet at times productive fishery. The ... (Division of Sea Fisheries Annual Reports) with this simple gear. .... The red stumpnose has a reputation for very delicate feeding; it is ... by him and Dr. Liversidge in the large community tank at the Port Elizabeth aquarium,.

  8. Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient.

    Science.gov (United States)

    Guidetti, P; Dulcić, J

    2007-03-01

    Previous studies conducted on a local scale emphasised the potential of trophic cascades in Mediterranean rocky reefs (involving predatory fish, sea urchins and macroalgae) in affecting the transition between benthic communities dominated by erected macroalgae and barrens (i.e., bare rock with partial cover of encrusting algae). Distribution patterns of fish predators of sea urchins (Diplodus sargus sargus, Diplodus vulgaris, Coris julis and Thalassoma pavo), sea urchins (Paracentrotus lividus and Arbacia lixula) and barrens, and fish predation rates upon sea urchins, were assessed in shallow (3-6m depth) sublittoral rocky reefs in the northern, central and southern sectors of the eastern Adriatic Sea, i.e., on a large spatial scale of hundreds of kilometres. No dramatic differences were observed in predatory fish density across latitude, except for a lower density of small D. sargus sargus in the northern Adriatic and an increasing density of T. pavo from north to south. P. lividus did not show any significant difference across latitude, whereas A. lixula was more abundant in the southern than in the central Adriatic. Barrens were more extended in the southern than in the central and northern sectors, and were related with sea urchin density. Fish predation upon adult sea urchins did not change on a large scale, whereas it was slightly higher in the southern sector for juveniles when predation rates of both urchins were pooled. Results show that: (1) assemblages of predatory fish and sea urchins, and barren extent change across latitude in the eastern Adriatic Sea, (2) the weak relations between predatory fish density and predation rates on urchins reveal that factors other than top-down control can be important over large scale (with the caveat that the study was conducted in fished areas) and (3) patterns of interaction among strongly interacting taxa could change on large spatial scales and the number of species involved.

  9. Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs

    Science.gov (United States)

    Streit, Robert P.; Hoey, Andrew S.; Bellwood, David R.

    2015-12-01

    The removal of macroalgal biomass by fishes is a key process on coral reefs. Numerous studies have identified the fish species responsible for removing mature macroalgae, and have identified how this varies spatially, temporally, and among different algal types. None, however, have considered the behavioural and morphological traits of the browsing fishes and how this may influence the removal of macroalgal material. Using video observations of fish feeding on the brown macroalga Sargassum polycystum, we quantified the feeding behaviour and morphology of the four dominant browsing species on the Great Barrier Reef ( Kyphosus vaigiensis, Naso unicornis, Siganus canaliculatus, and Siganus doliatus). The greatest distinction between species was the algal material they targeted. K. vaigiensis and N. unicornis bit on the entire macroalgal thallus in approximately 90 % of bites. In contrast, Si. canaliculatus and Si. doliatus avoided biting the stalks, with 80-98 % of bites being on the macroalgal leaves only. This distinctive grouping into `entire thallus-biters' versus `leaf-biters' was not supported by size-standardized measures of biting morphology. Rather, species-specific adult body sizes, tooth shape, and feeding behaviour appear to underpin this functional distinction, with adults of the two larger fish species ( N. unicornis and K. vaigiensis) eating the entire macroalgal thallus, while the two smaller species ( Si. canaliculatus and Si. doliatus) bite only leaves. These findings caution against assumed homogeneity within this, and potentially other, functional groups on coral reefs. As functional redundancy within the macroalgal browsers is limited, the smaller `leaf-biting' species are unlikely to be able to compensate functionally for the loss of larger `entire thallus-biting' species.

  10. Characteristics of settling coral reef fish are related to recruitment timing and success.

    Directory of Open Access Journals (Sweden)

    Tauna L Rankin

    Full Text Available Many marine populations exhibit high variability in the recruitment of young into the population. While environmental cycles and oceanography explain some patterns of replenishment, the role of other growth-related processes in influencing settlement and recruitment is less clear. Examination of a 65-mo. time series of recruitment of a common coral reef fish, Stegastes partitus, to the reefs of the upper Florida Keys revealed that during peak recruitment months, settlement stage larvae arriving during dark lunar phases grew faster as larvae and were larger at settlement compared to those settling during the light lunar phases. However, the strength and direction of early trait-mediated selective mortality also varied by settlement lunar phase such that the early life history traits of 2-4 week old recruit survivors that settled across the lunar cycle converged to more similar values. Similarly, within peak settlement periods, early life history traits of settling larvae and selective mortality of recruits varied by the magnitude of the settlement event: larvae settling in larger events had longer PLDs and consequently were larger at settlement than those settling in smaller pulses. Traits also varied by recruitment habitat: recruits surviving in live coral habitat (vs rubble or areas with higher densities of adult conspecifics were those that were larger at settlement. Reef habitats, especially those with high densities of territorial conspecifics, are more challenging habitats for young fish to occupy and small settlers (due to lower larval growth and/or shorter PLDs to these habitats have a lower chance of survival than they do in rubble habitats. Settling reef fish are not all equal and the time and location of settlement influences the likelihood that individuals will survive to contribute to the population.

  11. Contrasting effects of habitat loss and fragmentation on coral-associated reef fishes.

    Science.gov (United States)

    Bonin, Mary C; Almany, Glenn R; Jones, Geoffrey P

    2011-07-01

    Disturbance can result in the fragmentation and/or loss of suitable habitat, both of which can have important consequences for survival, species interactions, and resulting patterns of local diversity. However, effects of habitat loss and fragmentation are typically confounded during disturbance events, and previous attempts to determine their relative significance have proved ineffective. Here we experimentally manipulated live coral habitats to examine the potential independent and interactive effects of habitat loss and fragmentation on survival, abundance, and species richness of recruitment-stage, coral-associated reef fishes. Loss of 75% of live coral from experimental reefs resulted in low survival of a coral-associated damselfish and low abundance and richness of other recruits 16 weeks after habitat manipulations. In contrast, fragmentation had positive effects on damselfish survival and resulted in greater abundance and species richness of other recruits. We hypothesize that spacing of habitat through fragmentation weakens competition within and among species. Comparison of effect sizes over the course of the study period revealed that, in the first six weeks following habitat manipulations, the positive effects of fragmentation were at least four times stronger than the effects of habitat loss. This initial positive effect of fragmentation attenuated considerably after 16 weeks, whereas the negative effects of habitat loss increased in strength over time. There was little indication that the amount of habitat influenced the magnitude of the habitat fragmentation effect. Numerous studies have reported dramatic declines in coral reef fish abundance and diversity in response to disturbances that cause the loss and fragmentation of coral habitats. Our results suggest that these declines occur as a result of habitat loss, not habitat fragmentation. Positive fragmentation effects may actually buffer against the negative effects of habitat loss and contribute

  12. Phylogeography and the conservation of coral reef fishes

    Science.gov (United States)

    Rocha, L. A.; Craig, M. T.; Bowen, B. W.

    2007-09-01

    Here we present a review of how the study of the geographic distribution of genetic lineages (phylogeography) has helped identify management units, evolutionary significant units, cryptic species, and areas of endemism, and how this information can help efforts to achieve effective conservation of coral reefs. These studies have confirmed the major biogeographic barriers that were originally identified by tropical species distributions. Ancient separations, identified primarily with mtDNA sequence comparisons, became apparent between populations on each side of the barriers. The general lack of correlation between pelagic larval duration and genetic connectivity across barriers indicates that life history and ecology can be as influential as oceanography and geography in shaping evolutionary partitions within ocean basins. Hence, conservation strategies require a recognition of ecological hotspots, those areas where habitat heterogeneity promotes speciation, in addition to more traditional approaches based on biogeography. Finally, the emerging field of genomics will add a new dimension to phylogeography, allowing the study of genes that are pertinent to recent and ongoing differentiation, and ultimately providing higher resolution to detect evolutionary significant units that have diverged in an ecological time scale.

  13. Succession of crustose coralline red algae (Rhodophyta) on coralgal reefs exposed to physical disturbance in the southwest Atlantic

    Science.gov (United States)

    Mariath, Rodrigo; Rodriguez, Rafael Riosmena; Figueiredo, Marcia A. O.

    2013-12-01

    Biological and physical disturbances create the conditions for species succession in any biological ecosystem. In particular, coral reefs are susceptible to this process because of the complexity of their ecological relationships. In the southwest Atlantic, nearshore reefs are mostly coated by a thin layer of coralline crusts rather than stony corals. However, little is known about the succession of crustose coralline algae. We studied this process by means of a series of experimental and control discs exposed to physical disturbance. Our results showed that the dominant species in natural conditions, Pneophyllum conicum, had early recruits and later became dominant on the discs, replicating the community structure of the actual reef. This species had mature reproductive structures and available spores from the beginning of the colonization experiments. Thicker crusts of Porolithon pachydermum and Peyssonnelia sp. were found on the discs after 112 days, and significantly increased their cover over the succeeding months; and after 1 year, P. conicum was less abundant. Physical disturbance increased crust recruitment and the low-light environment created by sediments. The data demonstrated coexistence among crustose coralline species and a tolerance to physical disturbance, which seemed to favor the thinner crusts of P. conicum over thick-crust species during succession. The succession pattern observed in this subtropical Brazilian coral reef differs from that described for shallow tropical reef communities.

  14. Linking fish species traits to environmental conditions in the Jakarta Bay-Pulau Seribu coral reef system.

    Science.gov (United States)

    Cleary, Daniel F R

    2017-09-15

    Coral reefs around the globe have been subjected to a wide range of stressors. In the present study, fish species were recorded across a pronounced in-to-offshore gradient in the Jakarta Bay-Pulau Seribu reef system. In addition to this, fish species traits were obtained from FishBase. RLQ analysis revealed a significant association between fish species traits and environmental variables. Fish species associated with perturbed, inshore waters were resilient to disturbance, had higher mortality rates, higher growth rates and mainly consumed animals. In contrast, fish species associated with less perturbed, mid- and offshore waters had greater life expectancy, higher age at maturity, greater life span, greater generation time and mainly fed on plants or plants and animals. Eutrophication, pollution and physical destruction of coral substrate in inshore waters has thus selected for a low biomass and depauperate fish community characterised by fast growing and short lived species. Copyright © 2017. Published by Elsevier Ltd.

  15. Variation in larval properties of the Atlantic brooding coral Porites astreoides between different reef sites in Bermuda

    Science.gov (United States)

    de Putron, Samantha J.; Lawson, Julia M.; White, Kascia Q. L.; Costa, Matthew T.; Geronimus, Miriam V. B.; MacCarthy, Anne

    2017-06-01

    Recent research has documented phenotypic differences among larvae released from corals with a brooding reproductive mode, both among species and within broods from a single species. We studied larvae released from the common Atlantic coral Porites astreoides in Bermuda to further evaluate phenotypic variability. Inter-site differences were investigated in larvae from conspecifics at a rim and patch reef site. Larvae were collected daily for one lunar cycle from several colonies per site each year over 5 yr. Larval volume varied with reef site of origin, with colonies from the rim reef site producing larger larvae than colonies from the patch reef site. This inter-site variation in larval size could not be explained by corallite size and may be a response to different environmental conditions at the sites. Larvae from both reef sites also varied in size depending on lunar day of release over 4 yr of study. Regardless of site of origin, smaller larvae were released earlier in the lunar cycle. Over 1 yr of study, lipid and zooxanthellae content and settlement success after 48 h covaried with larval size. However, there may be a trade-off between larger larvae and reduced fecundity. Overall, larvae released from colonies from the rim reef site were larger and had greater settlement success than those from colonies from the patch reef site. This study documents larval phenotypic variability and a distinct inter-site difference in larval ecology among conspecifics within the same geographic area, which may have implications for recruitment success, population dynamics, and resilience.

  16. The structure of rocky reef fish assemblages across a nearshore to coastal islands' gradient in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Zaniolo Gibran

    2012-01-01

    geographic knowledge gap in the South Atlantic. As the study region is experiencing fast coastal development and growing threats from seaport expansion, oil and gas exploitation, as well as increasing fishing and tourism pressure, the understanding of the underlying factors that influence the distribution and abundance of the reef-associated biota comprises a relevant baseline for monitoring, conservation planning and management.Assembleias locais de peixes associados a recifes são influenciadas pela interação entre a disponibilidade de larvas e recrutas e as forças bióticas e abióticas que operam após o recrutamento, assim como por perturbações periódicas e episódicas de diversos tipos e magnitudes. Dessa forma, além de serem estruturalmente heterogêneos e irregularmente distribuídos, os sistemas recifais são altamente dependentes do contexto em que se inserem. Com o objetivo de compreender interações de fatores locais que influenciam a distribuição e abundância de peixes recifais em um mosaico costeiro de recifes rochosos, testamos a hipótese nula de inexistência de variação significativa na estrutura dessas assembleias através da comparação de 33 sítios da costa norte do Estado de São Paulo, Sudeste do Brasil. Foram obtidas amostras replicadas de censos visuais (n = 396 em diferentes distâncias da costa, profundidades e exposições ao batimento de ondas, incluindo o continente, as duas margens do Canal de São Sebastião, a Ilha de São Sebastião (~350 km² e três ilhas costeiras menores e mais afastadas da costa, totalizando 225 h de amostragens subaquáticas. Foram registradas 106 espécies (41 famílias de peixes recifais, com preponderância de invertívoros diurnos. Amostras da margem externa da Ilha de São Sebastião, juntamente com as das ilhas de Alcatrazes, Búzios e Vitória foram significativamente diferentes das da costa e do Canal, com uma clara tendência de aumento na riqueza de espécies do continente para as ilhas. A dist

  17. Reproduction of deep-sea reef-building corals from the southwestern Atlantic

    Science.gov (United States)

    Pires, D. O.; Silva, J. C.; Bastos, N. D.

    2014-01-01

    The logistics of research on deep-sea organisms imposes restrictions on studies that require repetitive long-term collections. Studies on the reproduction of deep-water corals have commonly been made without appropriate temporal series. This study included Madrepora oculata, Solenosmilia variabilis, Lophelia pertusa, and Enallopsammia rostrata, which are among the primary deep-sea reef building corals off Brazil. Samples were collected during 13 consecutive months by the Campos Basin Deep-Sea Corals Assessment Project (R&D Center of the Brazilian Energy Company, Petrobras) in Campos Basin (CB) off Rio de Janeiro State through a remotely-operated-vehicle at approximately 600 m depth. Of every monthly sampling campaign, an average of four to five colonies of all four species were investigated histologically. Colonies of both sexes were observed, indicating that all four species are gonochoric. For now, this appears to be the predominant reproductive pattern observed in corals in the area, as well as in deep-sea corals in general, where 80% of coral species are gonochoric. Although considered functionally gonochoric, M. oculata and L. pertusa presented a few colonies with different hermaphroditism patterns. E. rostrata and M. oculata presented continuous reproduction. Although fertile year-round, S. variabilis presents a reproductive peak between April and September (Autumn-Spring) in contrast with the seasonal reproduction recorded in the southwestern Pacific. L. pertusa had a seasonal reproductive peak, confirming previous observations of periodic reproduction in this species in the northeastern Atlantic. The possible spawning season of L. pertusa from CB concentrates between May and July (high frequency of mature gametes), while spawning occurs between January and March in the North Atlantic and between September and November in the Gulf of Mexico. Our results suggest that the studied species are broadcast spawners because no embryos or larvae were observed in any

  18. Inter- and Intra-specific variation in egg size among reef fishes across the Isthmus of Panama

    Directory of Open Access Journals (Sweden)

    D Ross Robertson

    2015-01-01

    Full Text Available Effects of planktonic food supplies and temperature on pelagic fish larvae are thought to be the primary environmental determinants of adaptive variation in egg size. Differences between the Atlantic and Pacific coasts of Panama in primary production (higher in the Pacific due to upwelling and temperature (less seasonal in the non-upwelling Caribbean allow testing such ideas. We compared the volumes, dry weights and energy content of eggs of 24 species of reef fishes from the two sides of the isthmus during the cool and warm seasons. Both egg volume and egg dry weight were good predictors of egg energy content among species, although not within species. Caribbean species produced larger eggs than their close relatives in the Pacific. In the Pacific, eggs were significantly larger during the cool upwelling season than during the warm, non-upwelling period, with a similar but weaker seasonal pattern evident in the Caribbean. The production of larger eggs in the low-productivity Caribbean is consistent with the hypothesis that species produce larger eggs and offspring when larval food supplies are lower. Parallel patterns of seasonal variation in eggs size and the greater strength of that relationship in the Pacific indicate that temperature drives seasonal variation in egg size within species. The decline in egg size with increasing temperature, a general pattern among ectotherms, may be a physiological side-effect, due to differing effects of temperature on various metabolic processes during oogenesis or on hormones that influence growth and reproduction. Alternatively, the seasonal pattern may be adaptive in these fishes, by affecting larval performance or maintaining a particular timeline of major events during embryonic development.

  19. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment

    NARCIS (Netherlands)

    Verweij, M.C.; Nagelkerken, I.; Graaff, de D.; Peeters, M.; Bakker, E.J.; Velde, van der G.

    2006-01-01

    Mangroves and seagrass beds are considered nurseries for juvenile fish, but little experimental evidence exists to elucidate which factors make them attractive habitats. A multifactorial field experiment on the use of these habitats by juvenile reef fish and their behaviour was performed during dayt

  20. Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment.

    NARCIS (Netherlands)

    Verwey, M.C.; Nagelkerken, I.; Graaff, D. de; Peeters, M.; Bakker, E.J.; Velde, G. van der

    2006-01-01

    Mangroves and seagrass beds are considered nurseries for juvenile fish, but little experimental evidence exists to elucidate which factors make them attractive habitats. A multifactorial field experiment on the use of these habitats by juvenile reef fish and their behaviour was performed during dayt

  1. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes

    Science.gov (United States)

    von der Heyden, Sophie

    2017-03-01

    Anthropogenic activities are having devastating impacts on marine systems with numerous knock-on effects on trophic functioning, species interactions and an accelerated loss of biodiversity. Establishing conservation areas can not only protect biodiversity, but also confer resilience against changes to coral reefs and their inhabitants. Planning for protection and conservation in marine systems is complex, but usually focuses on maintaining levels of biodiversity and protecting special and unique landscape features while avoiding negative impacts to socio-economic benefits. Conversely, the integration of evolutionary processes that have shaped extant species assemblages is rarely taken into account. However, it is as important to protect processes as it is to protect patterns for maintaining the evolutionary trajectories of populations and species. This review focuses on different approaches for integrating genetic analyses, such as phylogenetic diversity, phylogeography and the delineation of management units, temporal and spatial monitoring of genetic diversity and quantification of adaptive variation for protecting evolutionary resilience, into marine spatial planning, specifically for coral reef fishes. Many of these concepts are not yet readily applied to coral reef fish studies, but this synthesis highlights their potential and the importance of including historical processes into systematic biodiversity planning for conserving not only extant, but also future, biodiversity and its evolutionary potential.

  2. Is there a reproductive basis to solitary living versus pair-formation in coral reef fishes?

    Science.gov (United States)

    Pratchett, Morgan S.; Pradjakusuma, Oki. A.; Jones, Geoffrey P.

    2006-03-01

    Many species of coral reef fishes form pairs. While it is assumed that pairs represent the breeding unit of these species, the reproductive status of paired versus solitary individuals, and changes in status associated with pair-formation have seldom been investigated. In order to assess whether pairing is related to reproduction we examined whether the ontogenetic timing of pair formation coincided with the onset of maturation in four species of fishes: Chaetodon lunulatus and Chaetodon melannotus (family Chaetodontidae), and Valenciennea muralis and Valenciennea strigata (family Gobiidae). 65-78% of all fishes occurred in pairs. In C. lunulatus and V. muralis, pair-formation coincided with maturation, suggesting that these species form pairs for breeding. Further, C. lunulatus and V. muralis exhibited significant positive size-assortative pairing, which is often associated with monogamous mating. In contrast, pair formation in C. melannotus and V. strigata did not coincide with maturation. In both these species many solitary individuals were reproductive, and same sex pairs were common. While reproduction may be the basis for pairing in some species, both solitary and paired individuals are capable of breeding in others. We propose that non-reproductive mechanisms, such as predator vigilance, may explain pair-formation in coral reef fishes with non-monogamous breeding systems.

  3. Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes.

    Science.gov (United States)

    Brandl, Simon J; Bellwood, David R

    2015-09-25

    Reciprocity is frequently assumed to require complex cognitive abilities. Therefore, it has been argued that reciprocity may be restricted to animals that can meet these demands. Here, we provide evidence for the potential presence of direct reciprocity in teleost fishes. We demonstrate that in pairs of coral reef rabbitfishes (f. Siganidae), one fish frequently assumes an upright vigilance position in the water column, while the partner forages in small crevices in the reef substratum. Both behaviours are strongly coordinated and partners regularly alternate their positions, resulting in a balanced distribution of foraging activity. Compared to solitary individuals, fishes in pairs exhibit longer vigilance bouts, suggesting that the help provided to the partner is costly. In turn, fishes in pairs take more consecutive bites and penetrate deeper into crevices than solitary individuals, suggesting that the safety provided by a vigilant partner may outweigh initial costs by increasing foraging efficiency. Thus, the described system appears to meet all of the requirements for direct reciprocity. We argue that the nature of rabbitfish pairs provides favourable conditions for the establishment of direct reciprocity, as continuous interaction with the same partner, simultaneous needs, interdependence, and communication relax the cognitive demands of reciprocal cooperation.

  4. Population genetic structure and connectivity in the widespread coral-reef fish Abudefduf saxatilis: the role of historic and contemporary factors

    Science.gov (United States)

    Piñeros, Victor Julio; Gutiérrez-Rodríguez, Carla

    2017-09-01

    We assessed geographic patterns of genetic variation and connectivity in the widely distributed coral-reef fish Abudefduf saxatilis at different temporal scales. We sequenced two mitochondrial regions (cytochrome b and control region) and genotyped 12 microsatellite loci in a total of 296 individuals collected from 14 reefs in two biogeographic provinces in the tropical western Atlantic Ocean and from three provinces within the Caribbean Sea. We used phylogeography, population genetics and coalescent methods to assess the potential effects of climatic oscillations in the Pleistocene and contemporary oceanographic barriers on the population genetic structure and connectivity of the species. Sequence analyses indicated high genetic diversity and a lack of genetic differentiation throughout the Caribbean and between the two biogeographic provinces. Different lines of evidence depicted demographic expansions of A. saxatilis populations dated to the Pleistocene. The microsatellites exhibited high genetic diversity, and no genetic differentiation was detected within the Caribbean; however, these markers identified a genetic discontinuity between the two western Atlantic biogeographic provinces. Migration estimates revealed gene flow across the Amazon-Orinoco Plume, suggesting that genetic divergence may be promoted by differential environmental conditions on either side of the barrier. The climatic oscillations of the Pleistocene, together with oceanographic barriers and the dispersal potential of the species, constitute important factors determining the geographic patterns of genetic variation in A. saxatilis.

  5. Reef fish community in presence of the lionfish (Pterois volitans in Santa Marta, Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Rocío García-Urueña

    2015-11-01

    Full Text Available Objective. Fish species community structure and benthic organisms coverage were studied in five localities in Santa Marta where the lionfish is present. Materials and methods. Abundance of fish species, including lion fish, was established using 30 m random visual censuses and video transects; trophic guilds were established according to available references. On the other hand benthic coverage was evaluated using the software Coral Point Count (CPCe 4.0. Results. Families with higher species numbers were Serranidae, Labridae, and Pomacentridae. Lionfish abundances were low (2.6±2.1 ind/120 m2, but in any case Pterois volitans was observed as the eleventh more abundant species, surpassing species of commercial value such as Cephalopholis cruentata. Species that were found in larger numbers (>100, Thalassoma bifasciatum, Haemulon aurolineatum, Canthigaster rostrata, Abudefduf saxatilis, Chromis cyanea, and Stegastes partitus were mainly invertebrate eaters, planctivores, and territorial herbivores. Coral coverage showed higher coral percentages in Chengue (69.9% and Cinto (27.4%, larger sponge percentages in Morro (32.7%; Isla Aguja and Remanso showed the larger figures for abiotic substrate (41.6 and 37%, respectively; corals, sponges, and gorgonians were the components best explaining fish community, but not for the lion fish, which inhabit all studied reef formations. Conclusions. Lion fish is ranked between the 20 more abundant species, with none commercially important species larger, hence no species may qualify as a natural control. Lion fish has as well become a relatively abundant species in Santa Marta reefs, independent of benthic coverage.

  6. Sediment pollution impacts sensory ability and performance of settling coral-reef fish.

    Science.gov (United States)

    O'Connor, J Jack; Lecchini, David; Beck, Hayden J; Cadiou, Gwenael; Lecellier, Gael; Booth, David J; Nakamura, Yohei

    2016-01-01

    Marine organisms are under threat globally from a suite of anthropogenic sources, but the current emphasis on global climate change has deflected the focus from local impacts. While the effect of increased sedimentation on the settlement of coral species is well studied, little is known about the impact on larval fish. Here, the effect of a laterite "red soil" sediment pollutant on settlement behaviour and post-settlement performance of reef fish was tested. In aquarium tests that isolated sensory cues, we found significant olfaction-based avoidance behaviour and disruption of visual cue use in settlement-stage larval fish at 50 mg L(-1), a concentration regularly exceeded in situ during rain events. In situ light trap catches showed lower abundance and species richness in the presence of red soil, but were not significantly different due to high variance in the data. Prolonged exposure to red soil produced altered olfactory cue responses, whereby fish in red soil made a likely maladaptive choice for dead coral compared to controls where fish chose live coral. Other significant effects of prolonged exposure included decreased feeding rates and body condition. These effects on fish larvae reared over 5 days occurred in the presence of a minor drop in pH and may be due to the chemical influence of the sediment. Our results show that sediment pollution of coral reefs may have more complex effects on the ability of larval fish to successfully locate suitable habitat than previously thought, as well as impacting on their post-settlement performance and, ultimately, recruitment success.

  7. Predators Exacerbate Competitive Interactions and Dominance Hierarchies between Two Coral Reef Fishes.

    Science.gov (United States)

    Hall, April; Kingsford, Michael

    2016-01-01

    Predation and competition are critical processes influencing the ecology of organisms, and can play an integral role in shaping coral reef fish communities. This study compared the relative and interacting effects of competition and predation on two competing species of coral reef fish, Pomacentrus amboinensis and P. moluccensis (Pomacentridae), using a multifactorial experiment. Fish were subjected to the sight and smell of a known predator (Pseudochromis fuscus), the presence of the heterospecific competitor (i.e., P. amboinensis vs. P. moluccensis), or a combination of the two for a period of 19 days. The sub-lethal effects of predator/competitor treatments were compared with controls; a combination of otolith microstructure analysis and observations were used to determine otolith growth patterns and behaviour. We predicted that the stress of competition and/or predation would result in strong sub-lethal impacts, and act synergistically on growth and behavioural patterns. We found strong evidence to support this prediction, but only for P. amboinensis, which suffered reductions in growth in both predator and competitor treatments, with the largest reductions occurring when subjected to both predation and competition concurrently. There was strong evidence of asymmetrical competition between the two damselfish species, with P. moluccensis as the dominant competitor, displaying strong aggressive behaviour towards P. amboinensis. Growth reductions for P. amboinensis in predator/competitor treatments appeared to come about primarily due to increases in shelter seeking behaviour, which significantly reduced the foraging rates of individuals compared with controls. These data highlight the importance of predator/competitor synergisms in influencing key behaviours and demographic parameters for juvenile coral reef fishes.

  8. Predators Exacerbate Competitive Interactions and Dominance Hierarchies between Two Coral Reef Fishes.

    Directory of Open Access Journals (Sweden)

    April Hall

    Full Text Available Predation and competition are critical processes influencing the ecology of organisms, and can play an integral role in shaping coral reef fish communities. This study compared the relative and interacting effects of competition and predation on two competing species of coral reef fish, Pomacentrus amboinensis and P. moluccensis (Pomacentridae, using a multifactorial experiment. Fish were subjected to the sight and smell of a known predator (Pseudochromis fuscus, the presence of the heterospecific competitor (i.e., P. amboinensis vs. P. moluccensis, or a combination of the two for a period of 19 days. The sub-lethal effects of predator/competitor treatments were compared with controls; a combination of otolith microstructure analysis and observations were used to determine otolith growth patterns and behaviour. We predicted that the stress of competition and/or predation would result in strong sub-lethal impacts, and act synergistically on growth and behavioural patterns. We found strong evidence to support this prediction, but only for P. amboinensis, which suffered reductions in growth in both predator and competitor treatments, with the largest reductions occurring when subjected to both predation and competition concurrently. There was strong evidence of asymmetrical competition between the two damselfish species, with P. moluccensis as the dominant competitor, displaying strong aggressive behaviour towards P. amboinensis. Growth reductions for P. amboinensis in predator/competitor treatments appeared to come about primarily due to increases in shelter seeking behaviour, which significantly reduced the foraging rates of individuals compared with controls. These data highlight the importance of predator/competitor synergisms in influencing key behaviours and demographic parameters for juvenile coral reef fishes.

  9. Alterations in gill structure in tropical reef fishes as a result of elevated temperatures.

    Science.gov (United States)

    Bowden, A J; Gardiner, N M; Couturier, C S; Stecyk, J A W; Nilsson, G E; Munday, P L; Rummer, J L

    2014-09-01

    Tropical regions are expected to be some of the most affected by rising sea surface temperatures (SSTs) because seasonal temperature variations are minimal. As temperatures rise, less oxygen dissolves in water, but metabolic requirements of fish and thus, the demand for effective oxygen uptake, increase. Gill remodelling is an acclimation strategy well documented in freshwater cyprinids experiencing large seasonal variations in temperature and oxygen as well as an amphibious killifish upon air exposure. However, no study has investigated whether tropical reef fishes remodel their gills to allow for increased oxygen demands at elevated temperatures. We tested for gill remodelling in five coral reef species (Acanthochromis polyacanthus, Chromis atripectoralis, Pomacentrus moluccensis, Dascyllus melanurus and Cheilodipterus quinquelineatus) from populations in northern Papua New Guinea (2° 35.765' S; 150° 46.193' E). Fishes were acclimated for 12-14 days to 29 and 31°C (representing their seasonal range) and 33 and 34°C to account for end-of-century predicted temperatures. We measured lamellar perimeter, cross-sectional area, base thickness, and length for five filaments on the 2nd gill arches and qualitatively assessed 3rd gill arches via scanning electron microscopy (SEM). All species exhibited significant differences in the quantitative measurements made on the lamellae, but no consistent trends with temperature were observed. SEM only revealed alterations in gill morphology in P. moluccensis. The overall lack of changes in gill morphology with increasing temperature suggests that these near-equatorial reef fishes may fail to maintain adequate O2 uptake under future climate scenarios unless other adaptive mechanisms are employed.

  10. Phenotypic plasticity in sex allocation for a simultaneously hermaphroditic coral reef fish

    Science.gov (United States)

    Hart, M. K.; Svoboda, A.; Mancilla Cortez, D.

    2011-06-01

    Phenotypic plasticity can facilitate reproductive strategies that maximize mating success in variable environments and lead to differences in sex allocation among populations. For simultaneous hermaphrodites with sperm competition, including Serranus tortugarum a small coral reef fish, proportional male allocation (testis in total gonad) is often greater where local density or mating group size is higher. We tested whether S. tortugarum reduced male allocation when transplanted from a higher density site to a lower density site. After 4 months, transplants mirrored the sex-allocation patterns of the resident population on their new reef. Transplants had significantly lower male allocation than representatives from their source population, largely as a result of reduced testis mass relative to body size.

  11. Multiple ciguatoxins present in Indian Ocean reef fish.

    Science.gov (United States)

    Hamilton, Brett; Hurbungs, Mira; Jones, Alun; Lewis, Richard J

    2002-09-01

    Optimised gradient reversed-phase high-performance liquid chromatography electrospray ionisation mass spectrometry (LC/MS) methods, in combination with a [3H]-brevetoxin binding assay (RLB), revealed multiple ciguatoxins in a partially purified extract of a highly toxic Lutjanus sebae (red emperor) from the Indian Ocean. Two major ciguatoxins of 1140.6 Da (I-CTX-1 and -2) and two minor ciguatoxins of 1156.6 Da (I-CTX-3 and -4) were identified. Accurate mass analysis revealed that I-CTX-1 and -2 and Caribbean C-CTX-1 had indistinguishable masses (1140.6316 Da, at 0.44 ppm resolution). Toxicity estimated from LC/MS/RLB responses indicated that I-CTX-1 and -2 were both approximately 60% the potency of Pacific ciguatoxin-1 (P-CTX-1). In contrast to ciguatoxins of the Pacific where the more oxidised ciguatoxins are more potent, I-CTX-3 and -4 were approximately 20% of P-CTX-1 potency. Interconversion in dilute acid or on storage, typical of spiroketal and hemiketal functionality found in P-CTXs and C-CTXs, respectively, was not observed to occur between I-CTX-1 and -2. The ratio of CTX-1 and -2 varied depending on the fish extract being analysed. These results suggest that I-CTX-1 and -2 may arise from separate dinoflagellate precursors that may be oxidatively biotransformed to I-CTX-3 and -4 in fish.

  12. Stable isotopes as tracers of residency for fish on inshore coral reefs

    Science.gov (United States)

    Davis, Jean P.; Pitt, Kylie A.; Fry, Brian; Connolly, Rod M.

    2015-12-01

    Understanding the migratory movements of fish between habitats is an important priority for fisheries management. Carbon (C) and nitrogen (N) stable isotopes were used to evaluate the degree of movement and residency for five fish species collected from coral reefs in Queensland, Australia. Isotope values of fish were measured and compared between slow-turnover muscle tissue and fast-turnover liver tissue, with isotopic agreement between liver and muscle generally indicating resident animals, and relatively low C isotope values in muscle indicating migrants. Three fish species, rabbitfish (Siganus fuscescens), painted sweetlips (Diagramma labiosum) and Guenther's wrasse (Pseudolabrus guentheri) showed relatively consistent carbon isotope values between muscle and liver tissue as expected for resident populations. One quarter of bream (Acanthopagrus australis) individuals showed much lower δ13C values in muscle than liver. These low values diverged from the -10 to -15‰ values of residents and were more similar to the -20‰ values of fish collected from coastal riverine habitats, the presumed migration source. Moses perch (Lutjanus russelli) also showed substantial differences between muscle and liver C isotopes for about a quarter of individuals, but the overall higher C values of these individuals indicated they may have switched diets within island habitats rather than migrating. Our results were consistent with previous studies of fish residency and indicate that measuring stable isotopes in multiple tissues provides a useful methodology for characterizing fish residency in inshore areas.

  13. The Farther the Better: Effects of Multiple Environmental Variables on Reef Fish Assemblages along a Distance Gradient from River Influences

    Science.gov (United States)

    Neves, Leonardo M.; Teixeira-Neves, Tatiana P.; Pereira-Filho, Guilherme H.; Araújo, Francisco G.

    2016-01-01

    The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration. PMID:27907017

  14. Temperature: a prolonged confounding factor on cholinesterase activity in the tropical reef fish Acanthochromis polyacanthus.

    Science.gov (United States)

    Botté, Emmanuelle S; Smith-Keune, Carolyn; Jerry, Dean R

    2013-09-15

    Cholinesterase activity usually decreases in fish exposed to anticholinesterase compounds such as organophosphate and carbamate pesticides. Here we show that tropical reef fish Acanthochromis polyacanthus (or spiny damsel) also exhibits a decrease in ChE activity when exposed to elevated temperature from 28°C to 32°C or 34°C after 4 days. We further demonstrate that the decline persists even after 7 days of recovery at control temperature. This is the first report of a drop in ChE activity in fish as temperature increases. Our results strongly suggest the need for long-term monitoring of water temperature in the field prior to sampling A. polyacanthus for toxicology studies, as temperature is a prolonged and confounding factor for ChE activity in this species.

  15. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    Science.gov (United States)

    Berenshtein, Igal; Kiflawi, Moshe; Shashar, Nadav; Wieler, Uri; Agiv, Haim; Paris, Claire B

    2014-01-01

    Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test ppolarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  16. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    Directory of Open Access Journals (Sweden)

    Igal Berenshtein

    Full Text Available Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients. We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC, which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23, but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze, which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  17. Spatial distribution of the estuarine ichthyofauna of the Rio Formoso (Pernambuco, Brazil, with emphasis on reef fish

    Directory of Open Access Journals (Sweden)

    Andréa C. G. de Paiva

    2009-06-01

    Full Text Available The objectives of the present study were to identify species of reef fish that use the Rio Formoso estuary (northeastern Brazil as a refuge and natural nursery and to describe the spatial distribution of the estuary fish fauna in rainy and dry seasons. A total of 5475 specimens, across 78 species and 39 families, were analyzed; 51.3% of the species were of reef origin. Among these, Eucinostomus melanopterus (Bleeker, 1863, E. gula (Cuvier, 1830, and Sphoeroides testudineus (Linnaeus, 1758, in this order, were the most abundant in the upper estuary; S. greeleyi Gilbert, 1900, E. melanopterus, and Lutjanus synagris (Linnaeus, 1758 were the most abundant in the mid estuary; and E. gula and Albula vulpes (Linnaeus, 1758 in the lower estuary. The percentages of reef species were 39.2%, 54.2% and 66.7% for the upper, mid and lower regions, respectively. The greatest diversity was found in the upper estuary and greatest abundance occurred in the mid region. The type of sediment was a strong determinant of the spatial distribution of fish fauna. The most abundant species were found in a mesohaline (5-18 to euhaline (30-40 salinity regimen, suggesting some capacity for osmotic regulation. The fish fauna of the Rio Formoso estuary receives a direct influence from the reefs and coastal region between Sirinhaém and Tamandaré, thereby providing a greater richness of reef fish.

  18. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish (Cheilodipterus quinquelineatus)

    DEFF Research Database (Denmark)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam

    2015-01-01

    provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish (Cheilodipterusquinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. Tpref was determined using a shuttlebox system, which allowed fish...... than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns....

  19. Prey selectivity affects reproductive success of a corallivorous reef fish.

    Science.gov (United States)

    Brooker, Rohan M; Jones, Geoffrey P; Munday, Philip L

    2013-06-01

    Most animals consume a narrower range of food resources than is potentially available in the environment, but the underlying basis for these preferences is often poorly understood. Foraging theory predicts that prey selection should represent a trade-off between prey preferences based on nutritional value and prey availability. That is, species should consume preferred prey when available, but select less preferred prey when preferred prey is rare. We employed both field observation and laboratory experiments to examine the relationship between prey selection and preferences in the obligate coral-feeding filefish, Oxymonacanthus longirostris. To determine the drivers of prey selection, we experimentally established prey preferences in choice arenas and tested the consequences of prey preferences for key fitness-related parameters. Field studies showed that individuals fed almost exclusively on live corals from the genus Acropora. While diet was dominated by the most abundant species, Acropora nobilis, fish appeared to preferentially select rarer acroporids, such as A. millepora and A. hyacinthus. Prey choice experiments confirmed strong preferences for these corals, suggesting that field consumption is constrained by availability. In a longer-term feeding experiment, reproductive pairs fed on non-preferred corals exhibited dramatic reductions to body weight, and in hepatic and gonad condition, compared with those fed preferred corals. The majority of pairs fed preferred corals spawned frequently, while no spawning was observed for any pairs fed a non-preferred species of coral. These experiments suggest that fish distinguish between available corals based on their intrinsic value as prey, that reproductive success is dependent on the presence of particular coral species, and that differential loss of preferred corals could have serious consequences for the population success of these dietary specialists.

  20. Influence of coral cover and structural complexity on the accuracy of visual surveys of coral-reef fish communities

    KAUST Repository

    Coker, D. J.

    2017-04-20

    Using manipulated patch reefs with combinations of varying live-coral cover (low, medium and high) and structural complexity (low and high), common community metrics (abundance, diversity, richness and community composition) collected through standard underwater visual census techniques were compared with exhaustive collections using a fish anaesthetic (clove oil). This study showed that reef condition did not influence underwater visual census estimates at a community level, but reef condition can influence the detectability of some small and cryptic species and this may be exacerbated if surveys are conducted on a larger scale.

  1. Vermetid gastropods reduce foraging by herbivorous fishes on algae on coral reefs

    Science.gov (United States)

    Tootell, Jesse S.; Steele, Mark A.

    2014-12-01

    Vermetid gastropods have the potential to reduce foraging by herbivorous fishes on algae on coral reefs because they produce mucous nets that cover the surfaces of coral skeletons, potentially inhibiting foraging by fishes. We assessed this possibility using both observational and experimental approaches in Moorea, French Polynesia. Foraging rates of herbivorous fishes (total number of bites by all species per minute) were recorded in plots that varied naturally in the cover of vermetid mucous nets. This study, done at six sites, revealed that foraging on algal turf declined with increasing cover of vermetid mucous nets, ranging from ~2 to 22 bites m-2 min-1 at 0 % coverage to 0-5 bites m-2 min-1 at 100 % coverage. The magnitude of this effect of vermetid nets varied among microhabitats (high, mid, and low bommies) and sites, presumably due to variation in the intensity of herbivory. Experimental removal of vermetid mucous nets from plots more than doubled the foraging intensity on turf algae relative to when vermetid nets were present at high (≥70 %) cover. Our results indicate that algal turf on coral reefs may benefit from associational refuge from grazing provided by vermetid gastropods, which might in turn harm corals via increased competition with algal turf.

  2. Variability in abundance of temperate reef fishes estimated by visual census.

    Directory of Open Access Journals (Sweden)

    Alejo J Irigoyen

    Full Text Available Identifying sources of sampling variation and quantifying their magnitude is critical to the interpretation of ecological field data. Yet, most monitoring programs of reef fish populations based on underwater visual censuses (UVC consider only a few of the factors that may influence fish counts, such as the diver or census methodology. Recent studies, however, have drawn attention to a broader range of processes that introduce variability at different temporal scales. This study analyzes the magnitude of different sources of variation in UVCs of temperate reef fishes off Patagonia (Argentina. The variability associated with time-of-day, tidal state, and time elapsed between censuses (minutes, days, weeks and months was quantified for censuses conducted on the five most conspicuous and common species: Pinguipes brasilianus, Pseudopercis semifasciata, Sebastes oculatus, Acanthistius patachonicus and Nemadactylus bergi. Variance components corresponding to spatial heterogeneity and to the different temporal scales were estimated using nested random models. The levels of variability estimated for the different species were related to their life history attributes and behavior. Neither time-of-day nor tidal state had a significant effect on counts, except for the influence of tide on P. brasilianus. Spatial heterogeneity was the dominant source of variance in all but one species. Among the temporal scales, the intra-annual variation was the highest component for most species due to marked seasonal fluctuations in abundance, followed by the weekly and the instantaneous variation; the daily component was not significant. The variability between censuses conducted at different tidal levels and time-of-day was similar in magnitude to the instantaneous variation, reinforcing the conclusion that stochastic variation at very short time scales is non-negligible and should be taken into account in the design of monitoring programs and experiments. The present

  3. Variability in abundance of temperate reef fishes estimated by visual census.

    Science.gov (United States)

    Irigoyen, Alejo J; Galván, David E; Venerus, Leonardo A; Parma, Ana M

    2013-01-01

    Identifying sources of sampling variation and quantifying their magnitude is critical to the interpretation of ecological field data. Yet, most monitoring programs of reef fish populations based on underwater visual censuses (UVC) consider only a few of the factors that may influence fish counts, such as the diver or census methodology. Recent studies, however, have drawn attention to a broader range of processes that introduce variability at different temporal scales. This study analyzes the magnitude of different sources of variation in UVCs of temperate reef fishes off Patagonia (Argentina). The variability associated with time-of-day, tidal state, and time elapsed between censuses (minutes, days, weeks and months) was quantified for censuses conducted on the five most conspicuous and common species: Pinguipes brasilianus, Pseudopercis semifasciata, Sebastes oculatus, Acanthistius patachonicus and Nemadactylus bergi. Variance components corresponding to spatial heterogeneity and to the different temporal scales were estimated using nested random models. The levels of variability estimated for the different species were related to their life history attributes and behavior. Neither time-of-day nor tidal state had a significant effect on counts, except for the influence of tide on P. brasilianus. Spatial heterogeneity was the dominant source of variance in all but one species. Among the temporal scales, the intra-annual variation was the highest component for most species due to marked seasonal fluctuations in abundance, followed by the weekly and the instantaneous variation; the daily component was not significant. The variability between censuses conducted at different tidal levels and time-of-day was similar in magnitude to the instantaneous variation, reinforcing the conclusion that stochastic variation at very short time scales is non-negligible and should be taken into account in the design of monitoring programs and experiments. The present study provides

  4. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.

    Directory of Open Access Journals (Sweden)

    Thomas Claverie

    Full Text Available Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation and the main vector of shape variation (first principal component for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae, the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae. In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of

  5. Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures.

    Directory of Open Access Journals (Sweden)

    Naomi M Gardiner

    Full Text Available The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR, Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae. High-latitude populations (Heron Island, southern GBR performed significantly better than low-latitude populations (Lizard Island, northern GBR at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations.

  6. Indirect effects of an exploited predator on recruitment of coral-reef fishes.

    Science.gov (United States)

    Stallings, Christopher D

    2008-08-01

    The more ecologists examine the role of trait-mediated indirect interactions (TMIIs), especially in regulating predator-prey interactions, the more we recognize their fundamental role in structuring food webs. However, most empirical evidence for TMIIs comes from studies that are either conducted in laboratory or mesocosm venues or are restricted to simple food webs involving lower trophic-level animals. Here, I quantified the direct and indirect effects of interactions between high-level vertebrate predators on their vertebrate prey using a field experiment. Specifically, I tested how varying densities of a large-bodied, top predator (Nassau grouper; Epinephelus striatus) affected persistence, growth, and behavior of two smaller-bodied, intermediate predators (coney and graysby groupers; Cephalopholis fulva and C. cruentata) on 20 isolated patch reefs in the Bahamas. Large-bodied groupers are capable of consuming their smaller-bodied counterparts, and previous observational studies have indicated that local abundances of these groupers are negatively correlated. I measured the effects of interactions among groupers on lower trophic-level prey by quantifying recruitment of coral-reef fishes to the reefs. The field experiment demonstrated a strong trophic cascade that was entirely mediated by modified behavior of the intermediate predators. These results indicate that indirect, nonlethal interactions in natural systems can have strong cascading effects even at high trophic levels and in high-diversity food webs. Incorporating the complexity of such indirect effects into fisheries management may improve the sustainability of fished populations and strengthen marine conservation efforts; however these results also indicate that the effects of fishing are complex and difficult to predict.

  7. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.

    Science.gov (United States)

    Claverie, Thomas; Wainwright, Peter C

    2014-01-01

    Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes

  8. Unexpected high vulnerability of functions in wilderness areas: evidence from coral reef fishes

    Science.gov (United States)

    Vigliola, Laurent; Graham, Nicholas A. J.; Wantiez, Laurent; Parravicini, Valeriano; Villéger, Sébastien; Mou-Tham, Gerard; Frolla, Philippe; Friedlander, Alan M.; Kulbicki, Michel; Mouillot, David

    2016-01-01

    High species richness is thought to support the delivery of multiple ecosystem functions and services under changing environments. Yet, some species might perform unique functional roles while others are redundant. Thus, the benefits of high species richness in maintaining ecosystem functioning are uncertain if functions have little redundancy, potentially leading to high vulnerability of functions. We studied the natural propensity of assemblages to be functionally buffered against loss prior to fishing activities, using functional trait combinations, in coral reef fish assemblages across unfished wilderness areas of the Indo-Pacific: Chagos Archipelago, New Caledonia and French Polynesia. Fish functional diversity in these wilderness areas is highly vulnerable to fishing, explained by species- and abundance-based redundancy packed into a small combination of traits, leaving most other trait combinations (60%) sensitive to fishing, with no redundancy. Functional vulnerability peaks for mobile and sedentary top predators, and large species in general. Functional vulnerability decreases for certain functional entities in New Caledonia, where overall functional redundancy was higher. Uncovering these baseline patterns of functional vulnerability can offer early warning signals of the damaging effects from fishing, and may serve as baselines to guide precautionary and even proactive conservation actions. PMID:27928042

  9. Cascading effects of fishing on Galapagos rocky reef communities: reanalysis using corrected data

    Science.gov (United States)

    Sonnenholzner, Jorge I.; Ladah, Lydia B.; Lafferty, Kevin D.

    2009-01-01

    This article replaces Sonnenholzner et al. (2007; Mar Ecol Prog Ser 343:77–85), which was retracted on September 19, 2007, due to errors in entry of data on sea urchins. We sampled 10 highly fished and 10 (putatively) lightly fished shallow rocky reefs in the southeastern area of the Galapagos Marine Reserve, Ecuador. After the correction, these are the new results: there was a negative association between slate-pencil urchins Eucidaris galapagensis and non-coralline algae. In addition, pencil urchins were less abundant where there were many predators. An indirect positive association between predators and non-coralline algae occurred. Fishing appeared to affect this trophic cascade. The spiny lobster Panulirus penicillatus, the slipper lobster Scyllarides astori, and the Mexican hogfish Bodianus diplotaenia were significantly less abundant at highly fished sites. Urchin density was higher at highly fished sites. Non-coralline algae were nearly absent from highly fished sites, where a continuous carpet of the anemone Aiptasia sp. was recorded, and the algal assemblage was mainly structured by encrusting coralline and articulated calcareous algae.

  10. Seasonal and ontogenetic patterns of habitat use in coral reef fish juveniles

    OpenAIRE

    Mellin, Camille; Kulbicki, Michel; Ponton, Dominique

    2007-01-01

    We investigated the diversity of patterns of habitat use by juveniles of coral reef fishes according to seasons and at two spatial scales (10-100 m and 1-10 km). We conducted underwater visual censuses in New Caledonia's Lagoon between 1986 and 2001. Co-inertia analyses highlighted the importance of mid-shelf habitats at large spatial scale (1-10 km) and of sandy and vegetated habitats at small spatial scale (10-100 m) for most juveniles. Among all juvenile species, 53% used different habitat...

  11. Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): current status and its characteristics

    KAUST Repository

    DiBattista, Joseph

    2016-08-04

    Butterflyfish are among the most iconic of the coral reef fishes and represent a model system to study general questions of biogeography, evolution and population genetics. We assembled and annotated the genome sequence of the blacktail butterflyfish (Chaetodon austriacus), an Arabian region endemic species that is reliant on coral reefs for food and shelter. Using available bony fish (superclass Osteichthyes) genomes as a reference, a total of 28 926 high-quality protein-coding genes were predicted from 13 967 assembled scaffolds. The quality and completeness of the draft genome of C. austriacus suggest that it has the potential to serve as a resource for studies on the co-evolution of reef fish adaptations to the unique Red Sea environment, as well as a comparison of gene sequences between closely related congeneric species of butterflyfish distributed more broadly across the tropical Indo-Pacific. © 2016 John Wiley & Sons Ltd.

  12. Modeling Coral Reef Fish Home Range Movements in Dry Tortugas, Florida

    Directory of Open Access Journals (Sweden)

    Nicholas A. Farmer

    2014-01-01

    Full Text Available Underestimation of reef fish space use may result in marine reserves that are too small to effectively buffer a portion of the stock from fishing mortality. Commonly used statistical home range models, such as minimum convex polygon (MCP or 95% kernel density (95% KD methods, require the exclusion of individuals who move beyond the bounds of the tracking study. Spatially explicit individual-based models of fish home range movements parameterized from multiple years of acoustic tracking data were developed for three exploited coral reef fishes (red grouper Epinephelus morio, black grouper Mycteroperca bonaci, and mutton snapper Lutjanus analis in Dry Tortugas, Florida. Movements were characterized as a combination of probability of movement, distance moved, and turning angle. Simulations suggested that the limited temporal and geographic scope of most movement studies may underestimate home range size, especially for fish with home range centers near the edges of the array. Simulations provided useful upper bounds for home range size (red grouper: 2.28±0.81 km2 MCP, 3.60±0.89 km2 KD; black grouper: 2.06±0.84 km2 MCP, 3.93±1.22 km2 KD; mutton snapper: 7.72±2.23 km2 MCP, 6.16±1.11 km2 KD. Simulations also suggested that MCP home ranges are more robust to artifacts of passive array acoustic detection patterns than 95% KD methods.

  13. Modeling coral reef fish home range movements in Dry Tortugas, Florida.

    Science.gov (United States)

    Farmer, Nicholas A; Ault, Jerald S

    2014-01-01

    Underestimation of reef fish space use may result in marine reserves that are too small to effectively buffer a portion of the stock from fishing mortality. Commonly used statistical home range models, such as minimum convex polygon (MCP) or 95% kernel density (95% KD) methods, require the exclusion of individuals who move beyond the bounds of the tracking study. Spatially explicit individual-based models of fish home range movements parameterized from multiple years of acoustic tracking data were developed for three exploited coral reef fishes (red grouper Epinephelus morio, black grouper Mycteroperca bonaci, and mutton snapper Lutjanus analis) in Dry Tortugas, Florida. Movements were characterized as a combination of probability of movement, distance moved, and turning angle. Simulations suggested that the limited temporal and geographic scope of most movement studies may underestimate home range size, especially for fish with home range centers near the edges of the array. Simulations provided useful upper bounds for home range size (red grouper: 2.28±0.81 km2 MCP, 3.60±0.89 km2 KD; black grouper: 2.06±0.84 km2 MCP, 3.93±1.22 km2 KD; mutton snapper: 7.72±2.23 km2 MCP, 6.16±1.11 km2 KD). Simulations also suggested that MCP home ranges are more robust to artifacts of passive array acoustic detection patterns than 95% KD methods.

  14. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    Science.gov (United States)

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at Umax. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  15. Body fineness ratio as a predictor of maximum prolonged-swimming speed in coral reef fishes.

    Science.gov (United States)

    Walker, Jeffrey A; Alfaro, Michael E; Noble, Mae M; Fulton, Christopher J

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax ) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax . For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax . For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax , which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies.

  16. Using DNA barcoding to assess Caribbean reef fish biodiversity: expanding taxonomic and geographic coverage.

    Science.gov (United States)

    Weigt, Lee A; Baldwin, Carole C; Driskell, Amy; Smith, David G; Ormos, Andrea; Reyier, Eric A

    2012-01-01

    This paper represents a DNA barcode data release for 3,400 specimens representing 521 species of fishes from 6 areas across the Caribbean and western central Atlantic regions (FAO Region 31). Merged with our prior published data, the combined efforts result in 3,964 specimens representing 572 species of marine fishes and constitute one of the most comprehensive DNA barcoding "coverages" for a region reported to date. The barcode data are providing new insights into Caribbean shorefish diversity, allowing for more and more accurate DNA-based identifications of larvae, juveniles, and unknown specimens. Examples are given correcting previous work that was erroneous due to database incompleteness.

  17. Using DNA barcoding to assess Caribbean reef fish biodiversity: expanding taxonomic and geographic coverage.

    Directory of Open Access Journals (Sweden)

    Lee A Weigt

    Full Text Available This paper represents a DNA barcode data release for 3,400 specimens representing 521 species of fishes from 6 areas across the Caribbean and western central Atlantic regions (FAO Region 31. Merged with our prior published data, the combined efforts result in 3,964 specimens representing 572 species of marine fishes and constitute one of the most comprehensive DNA barcoding "coverages" for a region reported to date. The barcode data are providing new insights into Caribbean shorefish diversity, allowing for more and more accurate DNA-based identifications of larvae, juveniles, and unknown specimens. Examples are given correcting previous work that was erroneous due to database incompleteness.

  18. Do reef fish habituate to diver presence? Evidence from two reef sites with contrasting historical levels of SCUBA intensity in the Bay Islands, Honduras.

    Science.gov (United States)

    Titus, Benjamin M; Daly, Marymegan; Exton, Dan A

    2015-01-01

    Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA). Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.

  19. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    Science.gov (United States)

    Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.

    2017-09-01

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population

  20. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    KAUST Repository

    Abesamis, Rene A.

    2017-03-24

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish (Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds (n = 35) far outnumbering those indicating self-recruitment (n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population

  1. Multifrequency analyses of fish distributions in the northwest Atlantic

    Science.gov (United States)

    Jech, J. Michael

    2004-05-01

    Routine acoustical surveys for estimating Atlantic herring (Clupea harengus) population abundance have been conducted on Georges Bank during the autumn spawning season from 1998 to present. Acoustical data are collected with a Simrad EK500 scientific echo sounder operating at 12 or 18, 38, and 120 kHz, and split-beam (the 12-kHz system is a single beam) transducers. Biological measurements and verification of acoustical scatterers are obtained with a pelagic trawl. Acoustical data are evaluated (scrutinized) manually to remove noise, faulty bottom detections, and to classify acoustical backscattering to species. Species classification is currently subjective, and is based on the experience of the scientists and trawl catches. Objective species classification and automated fish density and abundance estimates are an obvious goal for fisheries surveys using advanced technologies. Classification methods using relationships among frequency-dependent volume backscattering strengths, such as presence-absence and combination-permutation, are described and presented. Results indicate that while classification using these methods and acoustical information alone is not robust, these methods highlight backscattering patterns within aggregations and have the potential to characterize backscattering patterns observed in fisheries acoustics data. [Work supported by NOAA Fisheries and ONR.

  2. Bait effects in sampling coral reef fish assemblages with stereo-BRUVs.

    Directory of Open Access Journals (Sweden)

    Stacey R Dorman

    Full Text Available Baited underwater video techniques are increasingly being utilised for assessing and monitoring demersal fishes because they are: 1 non extractive, 2 can be used to sample across multiple habitats and depths, 3 are cost effective, 4 sample a broader range of species than many other techniques, 5 and with greater statistical power. However, an examination of the literature demonstrates that a range of different bait types are being used. The use of different types of bait can create an additional source of variability in sampling programs. Coral reef fish assemblages at the Houtman Abrolhos Islands, Western Australia, were sampled using baited remote underwater stereo-video systems. One-hour stereo-video recordings were collected for four different bait treatments (pilchards, cat food, falafel mix and no bait (control from sites inside and outside a targeted fishery closure (TFC. In total, 5209 individuals from 132 fish species belonging to 41 families were recorded. There were significant differences in the fish assemblage structure and composition between baited and non-baited treatments (P<0.001, while no difference was observed with species richness. Samples baited with cat food and pilchards contained similar ingredients and were found to record similar components of the fish assemblage. There were no significant differences in the fish assemblages in areas open or closed to fishing, regardless of the bait used. Investigation of five targeted species indicated that the response to different types of bait was species-specific. For example, the relative abundance of Pagrus auratus was found to increase in areas protected from fishing, but only in samples baited with pilchards and cat food. The results indicate that the use of bait in conjunction with stereo-BRUVs is advantageous. On balance, the use of pilchards as a standardised bait for stereo-BRUVs deployments is justified for use along the mid-west coast of Western Australia.

  3. Effects of spearfishing on reef fish populations in a multi-use conservation area.

    Directory of Open Access Journals (Sweden)

    Ashley J Frisch

    Full Text Available Although spearfishing is a popular method of capturing fish, its ecological effects on fish populations are poorly understood, which makes it difficult to assess the legitimacy and desirability of spearfishing in multi-use marine reserves. Recent management changes within the Great Barrier Reef Marine Park (GBRMP fortuitously created a unique scenario by which to quantify the effects of spearfishing on fish populations. As such, we employed underwater visual surveys and a before-after-control-impact experimental design to investigate the effects of spearfishing on the density and size structure of target and non-target fishes in a multi-use conservation park zone (CPZ within the GBRMP. Three years after spearfishing was first allowed in the CPZ, there was a 54% reduction in density and a 27% reduction in mean size of coral trout (Plectropomus spp., the primary target species. These changes were attributed to spearfishing because benthic habitat characteristics and the density of non-target fishes were stable through time, and the density and mean size of coral trout in a nearby control zone (where spearfishing was prohibited remained unchanged. We conclude that spearfishing, like other forms of fishing, can have rapid and substantial negative effects on target fish populations. Careful management of spearfishing is therefore needed to ensure that conservation obligations are achieved and that fishery resources are harvested sustainably. This is particularly important both for the GBRMP, due to its extraordinarily high conservation value and world heritage status, and for tropical island nations where people depend on spearfishing for food and income. To minimize the effects of spearfishing on target species and to enhance protection of functionally important fishes (herbivores, we recommend that fishery managers adjust output controls such as size- and catch-limits, rather than prohibit spearfishing altogether. This will preserve the cultural

  4. Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes.

    Science.gov (United States)

    Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J

    2017-07-01

    Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CTmax). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO2 (simulated ocean acidification) on the hypoxia sensitivity of CTmax We found that CTmax was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CTmax declined sharply with water oxygen tension (PwO2). Furthermore, the hypoxia sensitivity of CTmax was unaffected by elevated CO2 Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. © 2017 The Author(s).

  5. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    Science.gov (United States)

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish (Stegastes partitus) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D1-receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  6. Changes in mesophotic reef fish assemblages along depth and geographical gradients in the Northwestern Hawaiian Islands

    Science.gov (United States)

    Fukunaga, Atsuko; Kosaki, Randall K.; Wagner, Daniel

    2017-09-01

    Mesophotic coral ecosystems (MCEs) extend from 30 to 150 m in depth and support diverse communities of marine organisms. We investigated changes in the structure of mesophotic reef fish assemblages (27-100 m) in the Northwestern Hawaiian Islands (NWHI) along depth and geographical gradients using open- and closed-circuit trimix diving. There were clear changes in the assemblage structure from the southeastern to the northwestern end of the NWHI and from shallow to deep waters. Interactive effects of depth and location were also detected. MCEs in the NWHI can be treated as three regions: southeastern and mid regions primarily separated by the presence and absence, respectively, of the introduced species Lutjanus kasmira, and a northwestern region where fish assemblages are largely composed of endemic species. These spatial patterns may be explained, at least in part, by differences in temperature among the regions.

  7. Fatal septicemia caused by the zoonotic bacterium Streptococcus iniae during an outbreak in Caribbean reef fish.

    Science.gov (United States)

    Keirstead, N D; Brake, J W; Griffin, M J; Halliday-Simmonds, I; Thrall, M A; Soto, E

    2014-09-01

    An outbreak of Streptococcus iniae occurred in the early months of 2008 among wild reef fish in the waters of the Federation of St Kitts and Nevis, lasting almost 2 months. Moribund and dead fish were collected for gross, histological, bacteriological, and molecular analysis. Necropsy findings included diffuse fibrinous pericarditis, pale friable livers, and serosal petechiation. Cytological and histological analysis revealed granulocytic and granulomatous inflammation with abundant coccoid bacterial organisms forming long chains. Necrosis, inflammation, and vasculitis were most severe in the pericardium, meninges, liver, kidneys, and gills. Bacterial isolates revealed β-hemolytic, Gram-positive coccoid bacteria identified as S. iniae by amplification and 16S ribosomal RNA gene sequencing. Results from biochemical and antimicrobial susceptibility analysis, together with repetitive element palindromic polymerase chain reaction fingerprinting, suggest that a single strain was responsible for the outbreak. The inciting cause for this S. iniae-associated cluster of mortalities is unknown.

  8. Extraordinary aggressive behavior from the giant coral reef fish, Bolbometopon muricatum, in a remote marine reserve.

    Directory of Open Access Journals (Sweden)

    Roldan C Muñoz

    Full Text Available Human impacts to terrestrial and marine communities are widespread and typically begin with the local extirpation of large-bodied animals. In the marine environment, few pristine areas relatively free of human impact remain to provide baselines of ecosystem function and goals for restoration efforts. Recent comparisons of remote and/or protected coral reefs versus impacted sites suggest remote systems are dominated by apex predators, yet in these systems the ecological role of non-predatory, large-bodied, highly vulnerable species such as the giant bumphead parrotfish (Bolbometopon muricatum has received less attention. Overfishing of Bolbometopon has lead to precipitous declines in population density and avoidance of humans throughout its range, contributing to its status as a candidate species under the U. S. Endangered Species Act and limiting opportunities to study unexploited populations. Here we show that extraordinary ecological processes, such as violent headbutting contests by the world's largest parrotfish, can be revealed by studying unexploited ecosystems, such as the coral reefs of Wake Atoll where we studied an abundant population of Bolbometopon. Bolbometopon is among the largest of coral reef fishes and is a well known, charismatic species, yet to our knowledge, no scientific documentation of ritualized headbutting exists for marine fishes. Our observations of aggressive headbutting by Bolbometopon underscore that remote locations and marine reserves, by inhibiting negative responses to human observers and by allowing the persistence of historical conditions, can provide valuable opportunities to study ecosystems in their natural state, thereby facilitating the discovery, conservation, and interpretation of a range of sometimes remarkable behavioral and ecological processes.

  9. After continents divide: Comparative phylogeography of reef fishes from the Red Sea and Indian Ocean

    KAUST Repository

    Dibattista, Joseph D.

    2013-01-07

    Aim: The Red Sea is a biodiversity hotspot characterized by a unique marine fauna and high endemism. This sea began forming c. 24 million years ago with the separation of the African and Arabian plates, and has been characterized by periods of desiccation, hypersalinity and intermittent connection to the Indian Ocean. We aim to evaluate the impact of these events on the genetic architecture of the Red Sea reef fish fauna. Location: Red Sea and Western Indian Ocean. Methods: We surveyed seven reef fish species from the Red Sea and adjacent Indian Ocean using mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b sequences. To assess genetic variation and evolutionary connectivity within and between these regions, we estimated haplotype diversity (h) and nucleotide diversity (π), reconstructed phylogenetic relationships among haplotypes, and estimated gene flow and time of population separation using Bayesian coalescent-based methodology. Results: Our analyses revealed a range of scenarios from shallow population structure to diagnostic differences that indicate evolutionary partitions and possible cryptic species. Conventional molecular clocks and coalescence analyses indicated time-frames for divergence between these bodies of water ranging from 830,000 years to contemporary exchange or recent range expansion. Colonization routes were bidirectional, with some species moving from the Indian Ocean to the Red Sea compared with expansion out of the Red Sea for other species. Main conclusions: We conclude that: (1) at least some Red Sea reef fauna survived multiple salinity crises; (2) endemism is higher in the Red Sea than previously reported; and (3) the Red Sea is an evolutionary incubator, occasionally contributing species to the adjacent Indian Ocean. The latter two conclusions - elevated endemism and species export - indicate a need for enhanced conservation priorities for the Red Sea. © 2013 Blackwell Publishing Ltd.

  10. Monitoring herbivorous fishes as indicators of coral reef resilience in American Samoa.

    Directory of Open Access Journals (Sweden)

    Adel Heenan

    Full Text Available Resilience-based management aims to promote or protect processes and species that underpin an ecosystem's capacity to withstand and recover from disturbance. The management of ecological processes is a developing field that requires reliable indicators that can be monitored over time. Herbivory is a key ecological process on coral reefs, and pooling herbivorous fishes into functional groups based on their feeding mode is increasingly used as it may quantify herbivory in ways that indicate resilience. Here we evaluate whether the biomass estimates of these herbivore functional groups are good predictors of reef benthic assemblages, using data from 240 sites from five island groups in American Samoa. Using an information theoretic approach, we assembled a candidate set of linear and nonlinear models to identify the relations between benthic cover and total herbivore and non-herbivore biomass and the biomass of the aforementioned functional groups. For each benthic substrate type considered (encrusting algae, fleshy macroalgae, hard coral and turf algae, the biomass of herbivorous fishes were important explanatory variables in predicting benthic cover, whereas biomass of all fishes combined generally was not. Also, in all four cases, variation in cover was best explained by the biomass of specific functional groups rather than by all herbivores combined. Specifically: 1 macroalgal and turf algal cover decreased with increasing biomass of 'grazers/detritivores'; and 2 cover of encrusting algae increased with increasing biomass of 'grazers/detritivores' and browsers. Furthermore, hard coral cover increased with the biomass of large excavators/bio-eroders (made up of large-bodied parrotfishes. Collectively, these findings emphasize the link between herbivorous fishes and the benthic community and demonstrate support for the use of functional groups of herbivores as indicators for resilience-based monitoring.

  11. Global warming may disproportionately affect larger adults in a predatory coral reef fish

    KAUST Repository

    Messmer, Vanessa

    2016-11-03

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems.

  12. Global warming may disproportionately affect larger adults in a predatory coral reef fish.

    Science.gov (United States)

    Messmer, Vanessa; Pratchett, Morgan S; Hoey, Andrew S; Tobin, Andrew J; Coker, Darren J; Cooke, Steven J; Clark, Timothy D

    2017-06-01

    Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current-day (28.5 °C) vs. projected end-of-century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45-2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass-specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02-2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate-induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock-on effects for trophodynamics and functioning of ecosystems. © 2016 John Wiley & Sons Ltd.

  13. Global ecological success of Thalassoma fishes in extreme coral reef habitats

    KAUST Repository

    Fulton, Christopher J.

    2016-12-20

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  14. Adult and larval traits as determinants of geographic range size among tropical reef fishes.

    Science.gov (United States)

    Luiz, Osmar J; Allen, Andrew P; Robertson, D Ross; Floeter, Sergio R; Kulbicki, Michel; Vigliola, Laurent; Becheler, Ronan; Madin, Joshua S

    2013-10-01

    Most marine organisms disperse via ocean currents as larvae, so it is often assumed that larval-stage duration is the primary determinant of geographic range size. However, empirical tests of this relationship have yielded mixed results, and alternative hypotheses have rarely been considered. Here we assess the relative influence of adult and larval-traits on geographic range size using a global dataset encompassing 590 species of tropical reef fishes in 47 families, the largest compilation of such data to date for any marine group. We analyze this database using linear mixed-effect models to control for phylogeny and geographical limits on range size. Our analysis indicates that three adult traits likely to affect the capacity of new colonizers to survive and establish reproductive populations (body size, schooling behavior, and nocturnal activity) are equal or better predictors of geographic range size than pelagic larval duration. We conclude that adult life-history traits that affect the postdispersal persistence of new populations are primary determinants of successful range extension and, consequently, of geographic range size among tropical reef fishes.

  15. 76 FR 59375 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Amendments to the Queen Conch and...

    Science.gov (United States)

    2011-09-26

    ..., Gulf of Mexico, and South Atlantic; Amendments to the Queen Conch and Reef Fish Fishery Management.... In contrast, the wenchman is presently included as a member of Snapper Unit 2 but clusters...

  16. 76 FR 66675 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Amendments to the Queen Conch and...

    Science.gov (United States)

    2011-10-27

    ..., Gulf of Mexico, and South Atlantic; Amendments to the Queen Conch and Reef Fish Fishery Management... poverty rates, and low median household incomes. Moreover, commercial fishermen of St. Croix and St...

  17. Pollutants and biomarker responses in two reef fish species (Haemulon aurolineatum and Ocyurus chrysurus) in the Southern Gulf of Mexico.

    Science.gov (United States)

    Gold-Bouchot, Gerardo; Rubio-Piña, J; Montero-Muñoz, J; Ramirez-Miss, N; Echeverría-García, A; Patiño-Suarez, V; Puch-Hau, C A; Zapata-Pérez, O

    2017-03-15

    The environmental quality differences between two groups of reefs in the Veracruz Reef System were evaluated. The North group of reefs is very close to Veracruz, an urban and port zone, whereas the South group is more isolated, with minor anthropogenic disturbances. To prove the hypothesis that the North group is more affected by anthropogenic activities, the concentrations of hydrocarbons in liver, metals and metalloids such as Se, As, Ba, Cd, Hg and V in muscle, and PAH metabolites in bile were evaluated, and related to biomarkers (transcript abundance of cytochrome P4501A, Vitellogenin, and Glutathione-S-transferase) in two species of fish: Haemulon aurolineatum and Ocyurus chysurus. H. aurolineatum presents the highest concentrations for many pollutants, but O. chysurus shows the most significant differences in pollutant concentrations and biomarkers between the two reef groups, suggesting that this species could be used as a sentinel in future studies in the Gulf of Mexico.

  18. Age-structure-dependent recruitment: a meta-analysis applied to Northeast Atlantic fish stocks

    NARCIS (Netherlands)

    Brunel, T.P.A.

    2010-01-01

    Exploitation alters the age structure of fish stocks. Several stock-specific studies have suggested that changes in the age structure might have consequences for subsequent recruitment, but the evidence is not universal. To investigate how common such effects are among 39 Northeast Atlantic fish sto

  19. Food selectivity and diet switch can explain the slow feeding of herbivorous coral-reef fishes during the morning.

    Directory of Open Access Journals (Sweden)

    Ruth Khait

    Full Text Available Most herbivorous coral-reef fishes feed slower in the morning than in the afternoon. Given the typical scarcity of algae in coral reefs, this behavior seems maladaptive. Here we suggest that the fishes' slow feeding during the morning is an outcome of highly selective feeding on scarcely found green algae. The rarity of the food requires longer search time and extended swimming tracks, resulting in lower bite rates. According to our findings by noon the fish seem to stop their search and switch to indiscriminative consumption of benthic algae, resulting in apparent higher feeding rates. The abundance of the rare preferable algae gradually declines from morning to noon and seems to reach its lowest levels around the switch time. Using in situ experiments we found that the feeding pattern is flexible, with the fish exhibiting fast feeding rates when presented with ample supply of preferable algae, regardless of the time of day. Analyses of the fish's esophagus content corroborated our conclusion that their feeding was highly selective in the morning and non-selective in the afternoon. Modeling of the fishes' behavior predicted that the fish should perform a diel diet shift when the preferred food is relatively rare, a situation common in most coral reefs found in a warm, oligotrophic ocean.

  20. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?

    Science.gov (United States)

    Munday, Philip L; McCormick, Mark I; Nilsson, Göran E

    2012-11-15

    Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental

  1. Reproductive acclimation to increased water temperature in a tropical reef fish.

    Science.gov (United States)

    Donelson, Jennifer M; McCormick, Mark I; Booth, David J; Munday, Philip L

    2014-01-01

    Understanding the capacity of organisms to cope with projected global warming through acclimation and adaptation is critical to predicting their likely future persistence. While recent research has shown that developmental acclimation of metabolic attributes to ocean warming is possible, our understanding of the plasticity of key fitness-associated traits, such as reproductive performance, is lacking. We show that while the reproductive ability of a tropical reef fish is highly sensitive to increases in water temperature, reproductive capacity at +1.5°C above present-day was improved to match fish maintained at present-day temperatures when fish complete their development at the higher temperature. However, reproductive acclimation was not observed in fish reared at +3.0°C warmer than present-day, suggesting limitations to the acclimation possible within one generation. Surprisingly, the improvements seen in reproduction were not predicted by the oxygen- and capacity-limited thermal tolerance hypothesis. Specifically, pairs reared at +1.5°C, which showed the greatest capacity for reproductive acclimation, exhibited no acclimation of metabolic attributes. Conversely, pairs reared at +3.0°C, which exhibited acclimation in resting metabolic rate, demonstrated little capacity for reproductive acclimation. Our study suggests that understanding the acclimation capacity of reproductive performance will be critically important to predicting the impacts of climate change on biological systems.

  2. Species-specific impacts of a small marine reserve on reef fish production and fishing productivity in the Turks and Caicos Islands

    NARCIS (Netherlands)

    Tupper, M.H.; Rudd, M.A.

    2002-01-01

    Marine reserves are widely considered to potentially benefit reef fisheries through emigration, yet the empirical basis for predicting the extent of this for small reserves is weak. The effects of fishing pressure and habitat on biomass and catch per unit effort (CPUE) of three species of exploited

  3. Relative importance of interlinked mangroves and seagrass beds as feeding habitats for juvenile reef fish on a Caribbean island

    NARCIS (Netherlands)

    Nagelkerken, I.A.; Velde, G. van der

    2004-01-01

    Mangroves and seagrass beds are important daytime shelter habitats for juvenile Caribbean reef fish species, but little is known about their relative importance as feeding grounds. In the present study, we tested the degree to which these 2 habitats are used as a feeding ground for 4 nocturnally

  4. National Coral Reef Monitoring Program: Assessment of coral reef fish communities in St. Croix, U.S. Virgin Islands from 2015-06-08 to 2015-06-19 (NCEI Accession 0151727)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Belt Transect method is used to conduct fish surveys in St. Croix, US Virgin Islands (USVI) as part of the National Coral Reef Monitoring Program (NCRMP). The...

  5. Impact of mass coral bleaching on reef fish community and fishermen catches at Sabang, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Edi Rudi

    2012-12-01

    Full Text Available Mass coral bleaching was observed at Sabang, Aceh in early 2010, and approximately 60% ofhard coral in waters surrounding Sabang died post-event. Coral mortality was expected to affect thecomposition of reef fish due to decrease its function such as providing a shelter, feeding and spawninggrounds for fish and other marine organisms. The objectives of this research were to evaluate the impactof coral bleaching on coral reef fish community and to compare the composition of fishermen catchesbefore and after the coral bleaching. The data were collected before (in 2008 and after (in 2010 themass coral bleaching event in Sabang waters by using a photographic method and the data on theaverage catch of fishermen (catch per fishing effort was calculated in kg/hour. The data of theknowledge of fishermen on climate change was collected by questionnaire method. The results showedthat 259 species of coral reef fishes were caught by fishermen in 2008 and 2010. There was nosignificantly difference between the fish catches before and after the mass coral bleaching. However,species richness decreased up to 50% after the mass coral bleaching. The knowledge of fishermen onclimate change issue was very low.

  6. Transformation of algal turf by echinoids and scarid fishes on French Polynesian coral reefs

    Science.gov (United States)

    Harmelin-Vivien, Mireille L.; Peyrot-Clausade, Mireille; Romano, Jean-Claude

    1992-04-01

    The respective roles of regular echinoids and scarid fishes in the transformation of turf algae, the main food resource for reef herbivores, were investigated on French Polynesian coral reefs. The role of one species of parrotfish ( Scarus sordidus) was compared with that of four species of echinoids. The degree and ways of degradation of the algal matter were determined by the organic matter percentage, the composition of the sugar fraction, and the concentration and composition of chlorophylltype pigments as assayed by HPLC analysis. Chemical analyses were performed on anterior and posterior intestines for scarids, intestinal contents and faeces for echinoids, and on fresh algal turf as a control of initial food quality. A decrease in mean percentage of organic matter in gut content was observed from intestine (9.7%) to faeces (7%) in sea urchins, but not in parrotfishes. The total sugar fraction decreased from fresh algal turf (32% of total organic matter) to echinoid (28%) to scarid (18%) gut contents. The ratio of insoluble to soluble sugars (I/S ratios) was higher in echinoids (2.6) than in scarid gut contents (1.0). A decrease in the total pigment concentration was measured from fresh algal turf to echinoid and it was found to be even lower in scarid gut contents. Chromatograms showed that the composition of chlorophyll-type pigments in scarid intestines was very similar to fresh algal turf, with a dominance of native forms, mainly chlorophyll a and b. On the contrary, degraded pigment forms dominated in echinoids. The main degraded products were pheophorbides in sea urchins, and chlorophyllides in parrotfishes. These results provided evidence for differentiation in digestive processes occurring in the two types of grazers. Echinoids released higher degraded algal material than did scarids. Thus, these two types of grazers play different roles in the recycling of organic matter on coral reefs.

  7. Mangrove habitat use by juvenile reef fish: meta-analysis reveals that tidal regime matters more than biogeographic region.

    Directory of Open Access Journals (Sweden)

    Mathias M Igulu

    Full Text Available Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future.

  8. The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic

    Science.gov (United States)

    Ferreira, B. P.; Costa, M. B. S. F.; Coxey, M. S.; Gaspar, A. L. B.; Veleda, D.; Araujo, M.

    2013-06-01

    In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009-2010 El Niño event was equivalent to the anomaly observed during the 1997-1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.

  9. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes.

    Science.gov (United States)

    D'agata, Stéphanie; Mouillot, David; Kulbicki, Michel; Andréfouët, Serge; Bellwood, David R; Cinner, Joshua E; Cowman, Peter F; Kronen, Mecki; Pinca, Silvia; Vigliola, Laurent

    2014-03-03

    Beyond the loss of species richness, human activities may also deplete the breadth of evolutionary history (phylogenetic diversity) and the diversity of roles (functional diversity) carried out by species within communities, two overlooked components of biodiversity. Both are, however, essential to sustain ecosystem functioning and the associated provision of ecosystem services, particularly under fluctuating environmental conditions. We quantified the effect of human activities on the taxonomic, phylogenetic, and functional diversity of fish communities in coral reefs, while teasing apart the influence of biogeography and habitat along a gradient of human pressure across the Pacific Ocean. We detected nonlinear relationships with significant breaking points in the impact of human population density on phylogenetic and functional diversity of parrotfishes, at 25 and 15 inhabitants/km(2), respectively, while parrotfish species richness decreased linearly along the same population gradient. Over the whole range, species richness decreased by 11.7%, while phylogenetic and functional diversity dropped by 35.8% and 46.6%, respectively. Our results call for caution when using species richness as a benchmark for measuring the status of ecosystems since it appears to be less responsive to variation in human population densities than its phylogenetic and functional counterparts, potentially imperiling the functioning of coral reef ecosystems.

  10. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    Science.gov (United States)

    Bond, Mark E; Babcock, Elizabeth A; Pikitch, Ellen K; Abercrombie, Debra L; Lamb, Norlan F; Chapman, Demian D

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability.

  11. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Mark E Bond

    Full Text Available Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as "reef sharks", are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves. Key predictions of this hypothesis are that (a individual reef sharks exhibit high site-fidelity to these protected areas and (b their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi, the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR, Belize. Acoustically tagged sharks (N = 34 were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs showed that the factor "marine reserve" had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s involved: reduced fishing mortality or enhanced prey availability.

  12. Red fluorescence increases with depth in reef fishes, supporting a visual function, not UV protection.

    Science.gov (United States)

    Meadows, Melissa G; Anthes, Nils; Dangelmayer, Sandra; Alwany, Magdy A; Gerlach, Tobias; Schulte, Gregor; Sprenger, Dennis; Theobald, Jennifer; Michiels, Nico K

    2014-09-07

    Why do some marine fishes exhibit striking patterns of natural red fluorescence? In this study, we contrast two non-exclusive hypotheses: (i) that UV absorption by fluorescent pigments offers significant photoprotection in shallow water, where UV irradiance is strongest; and (ii) that red fluorescence enhances visual contrast at depths below -10 m, where most light in the 'red' 600-700 nm range has been absorbed. Whereas the photoprotection hypothesis predicts fluorescence to be stronger near the surface and weaker in deeper water, the visual contrast hypothesis predicts the opposite. We used fluorometry to measure red fluorescence brightness in vivo in individuals belonging to eight common small reef fish species with conspicuously red fluorescent eyes. Fluorescence was significantly brighter in specimens from the -20 m sites than in those from -5 m sites in six out of eight species. No difference was found in the remaining two. Our results support the visual contrast hypothesis. We discuss the possible roles fluorescence may play in fish visual ecology and highlight the possibility that fluorescent light emission from the eyes in particular may be used to detect cryptic prey.

  13. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish

    Science.gov (United States)

    Schunter, Celia; Welch, Megan J.; Ryu, Taewoo; Zhang, Huoming; Berumen, Michael L.; Nilsson, Göran E.; Munday, Philip L.; Ravasi, Timothy

    2016-11-01

    The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt. Recent studies show that the behaviour of reef fishes is impaired at projected CO 2 levels; however, individual variation exists that might promote adaptation. Here, we show a clear signature of parental sensitivity to high CO 2 in the brain molecular phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven by circadian rhythm genes. Offspring of CO 2-tolerant and CO 2-sensitive parents were reared at near-future CO 2 (754 μatm) or present-day control levels (414 μatm). By integrating 33 brain transcriptomes and proteomes with a de novo assembled genome we investigate the molecular responses of the fish brain to increased CO 2 and the expression of parental tolerance to high CO 2 in the offspring molecular phenotype. Exposure to high CO 2 resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the tolerant and sensitive groups, respectively. Importantly, the majority of differences between offspring of tolerant and sensitive parents occurred in high CO 2 conditions. This transgenerational molecular signature suggests that individual variation in CO 2 sensitivity could facilitate adaptation of fish populations to ocean acidification.

  14. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish

    KAUST Repository

    Schunter, Celia Marei

    2016-07-29

    The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt. Recent studies show that the behaviour of reef fishes is impaired at projected CO levels; however, individual variation exists that might promote adaptation. Here, we show a clear signature of parental sensitivity to high CO in the brain molecular phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven by circadian rhythm genes. Offspring of CO -tolerant and CO -sensitive parents were reared at near-future CO (754 μatm) or present-day control levels (414 μatm). By integrating 33 brain transcriptomes and proteomes with a de novo assembled genome we investigate the molecular responses of the fish brain to increased CO and the expression of parental tolerance to high CO in the offspring molecular phenotype. Exposure to high CO resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the tolerant and sensitive groups, respectively. Importantly, the majority of differences between offspring of tolerant and sensitive parents occurred in high CO conditions. This transgenerational molecular signature suggests that individual variation in CO sensitivity could facilitate adaptation of fish populations to ocean acidification.

  15. Comparative analysis of free and scuba diving for benthopelagic and cryptic fish species associated with rocky reefs

    Directory of Open Access Journals (Sweden)

    Rodolfo Gutterres Giordano

    2014-05-01

    Full Text Available This work aimed to assess, through experimental comparisons between free and scuba diving performed in Arraial do Cabo city, RJ, Brazil, the abundances of Scartella cristata e Chaetodon striatus -two reef fish species of contrasting behaviors- in different depth layers of sheltered and exposed rocky reefs. C. striatus was homogeneously distributed through all the depth strata (0-10 m and scuba diving should be preferred over free diving to assess the abundance of this species at exposed rocky shores, undergoing continuous effects of waves and winds. Both free and scuba diving can be used indistinctly and with no data biases to appraise the abundances of C. striatus in non-turbulent reefs or in shallow zones (i.e., ≤ 5 m of exposed reefs, and, for S. cristata, in all depth layers (i.e., up to 10 m of both sheltered and exposed reefs. Although the abundances of S. cristata did not significantly differ between free and scuba diving, contrasting with most previous studies that stressed the risk of the first method to underestimate the abundance of small and cryptic species, it should be considered that the previous experience of the diver and the nature of our study (i.e., focused specifically on a cryptic species may have contributed to our findings. Further studies are, however, necessary to test our findings in different conditions (i.e., depths, hydrodynamic characteristics, and habitat complexity and for other tropical reef fish species, in order to increase the truthfulness of underwater visual census and reduce the risk of failure of fish conservation and management programs potentially based on biased data.

  16. Limited Capacity for Faster Digestion in Larval Coral Reef Fish at an Elevated Temperature.

    Directory of Open Access Journals (Sweden)

    Ian M McLeod

    Full Text Available The prevalence of extreme, short-term temperature spikes in coastal regions during summer months is predicted to increase with ongoing climate change. In tropical systems, these changes are predicted to increase the metabolic demand of coral reef fish larvae while also altering the plankton communities upon which the larvae feed during their pelagic phase. The consequences of these predictions remain speculative in the absence of empirical data on the interactive effects of warm temperatures on the metabolism, postprandial processes and growth responses of coral reef fish larvae. Here, we tested the effect of increased temperature on the metabolism, postprandial performance and fine-scale growth patterns of a coral reef fish (Amphiprion percula in the latter half of its ~11-d larval phase. First, we measured the length and weight of fed versus fasted larvae (N = 340; mean body mass 4.1±0.05 mg across fine temporal scales at a typical current summer temperature (28.5°C and a temperature that is likely be encountered during warm summer periods later this century (31.5°C. Second, we measured routine metabolic rate (Mo2 routine and the energetics of the postprandial processes (i.e., digestion, absorption and assimilation of a meal; termed specific dynamic action (SDA at both temperatures. Larvae fed voraciously when provided with food for a 12-hour period and displayed a temperature-independent increase in mass of 40.1% (28.5°C and 42.6% (31.5°C, which was largely associated with the mass of prey in the gut. A subsequent 12-h fasting period revealed that the larvae had grown 21.2±4.8% (28.5°C and 22.8±8.8% (31.5°C in mass and 10.3±2.0% (28.5°C and 7.8±2.6% (31.5°C in length compared with pre-feeding values (no significant temperature effect. Mo2 routine was 55±16% higher at 31.5°C and peak Mo2 during the postprandial period was 28±11% higher at 31.5°C, yet elevated temperature had no significant effect on SDA (0.51±0.06 J at 28.5

  17. Fishes associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic: an update and overview

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    2006-12-01

    Full Text Available An update is presented for fish species associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic, providing a general view of their diversity. The associates are mostly reef-dwelling fishes that feed on the dolphin wastes. Twelve species are habitual or occasional plankton-eaters and two species are herbivores that occasionally forage on floating pieces of algae. One species is a strict carnivore, one species is a hitchhiker that forages on a variety of foods including parasites and dead tissue from the dolphins, and one species is a carnivore that joins the dolphin groups to forage on schools of small fishes or squids. We predict that the list of fish associated with spinner dolphins will expand mostly with addition of habitual or occasional plankton-eaters.Uma atualização é apresentada sobre as espécies de peixes associados a golfinhos-rotadores no Arquipélago de Fernando de Noronha, Atlântico Ocidental, fornecendo uma visão geral sobre sua diversidade. Os peixes associados são principalmente habitantes recifais que se alimentam de dejetos dos golfinhos. Doze espécies são planctófagas habituais ou ocasionais e duas são herbívoras que se alimentam ocasionalmente de algas à deriva. Uma espécie é carnívora estrita, uma vive fixada aos golfinhos e seu alimento é variado, incluindo parasitos e tecido morto dos golfinhos, e uma é carnívora que se junta aos grupos de golfinhos durante a caça a peixes e lulas. Prevemos que a lista de peixes associados a golfinhos-rotadores seja expandida principalmente com adição de planctófagos habituais ou ocasionais.

  18. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs.

    Science.gov (United States)

    Mouillot, David; Villéger, Sébastien; Parravicini, Valeriano; Kulbicki, Michel; Arias-González, Jesus Ernesto; Bender, Mariana; Chabanet, Pascale; Floeter, Sergio R; Friedlander, Alan; Vigliola, Laurent; Bellwood, David R

    2014-09-23

    When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.

  19. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations

    Science.gov (United States)

    Pinheiro, H. T.; Goodbody-Gringley, G.; Jessup, M. E.; Shepherd, B.; Chequer, A. D.; Rocha, L. A.

    2016-03-01

    Despite more than 60 yr of coral reef research using scuba diving, mesophotic coral ecosystems (MCEs) between 30 and 150 m depth remain largely unknown. This study represents the first underwater visual census of reef fish communities in the Greater Caribbean on MCEs at depths up to 80 m in Bermuda and 130 m in Curaçao. Sampling was performed using mixed-gas closed-circuit rebreathers. Quantitative data on reef fish communities were obtained for four habitats: coral reefs (45-80 m), rhodolith beds (45-80 m), ledges (85-130 m) and walls (85-130 m). A total of 38 species were recorded in Bermuda and 66 in Curaçao. Mesophotic reef fish communities varied significantly between the two localities. MCEs in Bermuda had lower richness and abundance, but higher biomass than those in Curaçao. Richness, abundance and biomass increased with depth in Bermuda, but decreased in Curaçao. A high turnover of species was found among depth strata and between Bermuda and other Caribbean upper MCEs (45-80 m), indicating that depth was an important driver of community structure at all localities. However, local and evolutionary factors (habitat and endemism) are likely the main factors shaping communities in isolated locations such as Bermuda. High fishing pressure is evident in both localities, as total biomass of apex predators was generally low, and thus may be driving a "refugia" scenario in Bermuda, as the abundance and biomass of macro-carnivores increased with depth and distance from the coast.

  20. Baseline Assessment of Mesophotic Reefs of the Vitória-Trindade Seamount Chain Based on Water Quality, Microbial Diversity, Benthic Cover and Fish Biomass Data

    Science.gov (United States)

    Meirelles, Pedro M.; Amado-Filho, Gilberto M.; Pereira-Filho, Guilherme H.; Pinheiro, Hudson T.; de Moura, Rodrigo L.; Joyeux, Jean-Christophe; Mazzei, Eric F.; Bastos, Alex C.; Edwards, Robert A.; Dinsdale, Elizabeth; Paranhos, Rodolfo; Santos, Eidy O.; Iida, Tetsuya; Gotoh, Kazuyoshi; Nakamura, Shota; Sawabe, Tomoo; Rezende, Carlos E.; Gadelha, Luiz M. R.; Francini-Filho, Ronaldo B.; Thompson, Cristiane; Thompson, Fabiano L.

    2015-01-01

    Seamounts are considered important sources of biodiversity and minerals. However, their biodiversity and health status are not well understood; therefore, potential conservation problems are unknown. The mesophotic reefs of the Vitória-Trindade Seamount Chain (VTC) were investigated via benthic community and fish surveys, metagenomic and water chemistry analyses, and water microbial abundance estimations. The VTC is a mosaic of reef systems and includes fleshy algae dominated rhodolith beds, crustose coralline algae (CCA) reefs, and turf algae dominated rocky reefs of varying health levels. Macro-carnivores and larger fish presented higher biomass at the CCA reefs (4.4 kg per frame) than in the rhodolith beds and rocky reefs (0.0 to 0.1 kg per frame). A larger number of metagenomic sequences identified as primary producers (e.g., Chlorophyta and Streptophyta) were found at the CCA reefs. However, the rocky reefs contained more diseased corals (>90%) than the CCA reefs (~40%) and rhodolith beds (~10%). Metagenomic analyses indicated a heterotrophic and fast-growing microbiome in rocky reef corals that may possibly lead to unhealthy conditions possibly enhanced by environmental features (e.g. light stress and high loads of labile dissolved organic carbon). VTC mounts represent important hotspots of biodiversity that deserve further conservation actions. PMID:26090804

  1. Baseline Assessment of Mesophotic Reefs of the Vitoria-Trindade Seamount Chain Based on Water Quality, Microbial Diversity, Benthic Cover and Fish Biomass Data.

    Directory of Open Access Journals (Sweden)

    Pedro M Meirelles

    Full Text Available Seamounts are considered important sources of biodiversity and minerals. However, their biodiversity and health status are not well understood; therefore, potential conservation problems are unknown. The mesophotic reefs of the Vitória-Trindade Seamount Chain (VTC were investigated via benthic community and fish surveys, metagenomic and water chemistry analyses, and water microbial abundance estimations. The VTC is a mosaic of reef systems and includes fleshy algae dominated rhodolith beds, crustose coralline algae (CCA reefs, and turf algae dominated rocky reefs of varying health levels. Macro-carnivores and larger fish presented higher biomass at the CCA reefs (4.4 kg per frame than in the rhodolith beds and rocky reefs (0.0 to 0.1 kg per frame. A larger number of metagenomic sequences identified as primary producers (e.g., Chlorophyta and Streptophyta were found at the CCA reefs. However, the rocky reefs contained more diseased corals (>90% than the CCA reefs (~40% and rhodolith beds (~10%. Metagenomic analyses indicated a heterotrophic and fast-growing microbiome in rocky reef corals that may possibly lead to unhealthy conditions possibly enhanced by environmental features (e.g. light stress and high loads of labile dissolved organic carbon. VTC mounts represent important hotspots of biodiversity that deserve further conservation actions.

  2. Baseline Assessment of Mesophotic Reefs of the Vitória-Trindade Seamount Chain Based on Water Quality, Microbial Diversity, Benthic Cover and Fish Biomass Data.

    Science.gov (United States)

    Meirelles, Pedro M; Amado-Filho, Gilberto M; Pereira-Filho, Guilherme H; Pinheiro, Hudson T; de Moura, Rodrigo L; Joyeux, Jean-Christophe; Mazzei, Eric F; Bastos, Alex C; Edwards, Robert A; Dinsdale, Elizabeth; Paranhos, Rodolfo; Santos, Eidy O; Iida, Tetsuya; Gotoh, Kazuyoshi; Nakamura, Shota; Sawabe, Tomoo; Rezende, Carlos E; Gadelha, Luiz M R; Francini-Filho, Ronaldo B; Thompson, Cristiane; Thompson, Fabiano L

    2015-01-01

    Seamounts are considered important sources of biodiversity and minerals. However, their biodiversity and health status are not well understood; therefore, potential conservation problems are unknown. The mesophotic reefs of the Vitória-Trindade Seamount Chain (VTC) were investigated via benthic community and fish surveys, metagenomic and water chemistry analyses, and water microbial abundance estimations. The VTC is a mosaic of reef systems and includes fleshy algae dominated rhodolith beds, crustose coralline algae (CCA) reefs, and turf algae dominated rocky reefs of varying health levels. Macro-carnivores and larger fish presented higher biomass at the CCA reefs (4.4 kg per frame) than in the rhodolith beds and rocky reefs (0.0 to 0.1 kg per frame). A larger number of metagenomic sequences identified as primary producers (e.g., Chlorophyta and Streptophyta) were found at the CCA reefs. However, the rocky reefs contained more diseased corals (>90%) than the CCA reefs (~40%) and rhodolith beds (~10%). Metagenomic analyses indicated a heterotrophic and fast-growing microbiome in rocky reef corals that may possibly lead to unhealthy conditions possibly enhanced by environmental features (e.g. light stress and high loads of labile dissolved organic carbon). VTC mounts represent important hotspots of biodiversity that deserve further conservation actions.

  3. Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water

    Directory of Open Access Journals (Sweden)

    Philip L. Munday

    2016-10-01

    Full Text Available Pioneering studies into the effects of elevated CO2 on the behaviour of reef fishes often tested high-CO2 reared fish using control water in the test arena. While subsequent studies using rearing treatment water (control or high CO2 in the test arena have confirmed the effects of high CO2 on a range of reef fish behaviours, a further investigation into the use of different test water in the experimental arena is warranted. Here, we used a fully factorial design to test the effect of rearing treatment water (control or high CO2 and experimental test water (control or high CO2 on antipredator responses of larval reef fishes. We tested antipredator behaviour in larval clownfish Amphiprion percula and ambon damselfish Pomacentrus amboinensis, two species that have been used in previous high CO2 experiments. Specifically, we tested if: (1 using control or high CO2 water in a two channel flume influenced the response of larval clownfish to predator odour; and (2 using control or high CO2 water in the test arena influenced the escape response of larval damselfish to a startle stimulus. Finally, (3 because the effects of high CO2 on fish behaviour appear to be caused by altered function of the GABA-A neurotransmitter we tested if antipredator behaviours were restored in clownfish treated with a GABA antagonist (gabazine in high CO2 water. Larval clownfish reared from hatching in control water (496 µatm strongly avoided predator cue whereas larval clownfish reared from hatching in high CO2 (1,022 µatm were attracted to the predator cue, as has been reported in previous studies. There was no effect on fish responses of using either control or high CO2 water in the flume. Larval damselfish reared for four days in high CO2 (1,051 µatm exhibited a slower response to a startle stimulus and slower escape speed compared with fish reared in control conditions (464 µatm. There was no effect of test water on escape responses. Treatment of high-CO2 reared

  4. Coral reef habitats mapping of Spermonde Archipelago using remote sensing compared with in situ survey of fish abundance

    Science.gov (United States)

    Sawayama, Shuhei; Komatsu, Teruhisa; Nurdin, Nurjannah

    2012-10-01

    Coral reefs worldwide are now facing so great threat due to various impacts that their monitoring is urgently required for conservation and management. To understand status of coral reef ecosystem and find out indicator fish species for health of ecosystem, mapping seabed habitats with remote sensing and in situ visual survey of fish assemblage by snorkeling were conducted in coral reefs in Spermonde Archipelago, Indonesia. ALOS AVNIR-2 multi-band imagery on 14 October 2010 was analyzed to map four habitats: live coral, dead coral, seagrass and sand-rubble. Groundtruth data were obtained using towed video camera and sidescan sonar in May and June 2011. Depth-Invariant indices (DI-indices) based on ratios of radiance values between bands were applied as a water column correction. Overall classification accuracy in Tau-coefficient of mapping with the DI-indices (0.66) didn't differ significantly (p<0.05) from that with the radiance values (0.63). Concerning visual fish survey, 12 fish groups were identified and numbers of individuals belonging to each group were counted along a transect of approximately 100m at 18 sites. We calculated Spearman's rank correlation between abundance (Ind. /100m) of every fish group along a transect and the ratio of each habitat area mapped with DI-indices inside the circle with 50m-diameter which includes the fish transect. We detected significant correlations between abundance of five fish groups and specific habitats, especially butterflyfish and live coral. This result corresponds to the past reports that butterflyfish was a good indicator of healthy corals, suggesting meaningfulness of studying relationships between fish abundance and spatial distribution of habitats in larger scale.

  5. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    Science.gov (United States)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  6. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish

    Science.gov (United States)

    2012-01-01

    Background Coral reefs are areas of maximum biodiversity, but the parasites of coral reef fishes, and especially their species richness, are not well known. Over an 8-year period, parasites were collected from 24 species of Lutjanidae, Nemipteridae and Caesionidae off New Caledonia, South Pacific. Results Host-parasite and parasite-host lists are provided, with a total of 207 host-parasite combinations and 58 parasite species identified at the species level, with 27 new host records. Results are presented for isopods, copepods, monogeneans, digeneans, cestodes and nematodes. When results are restricted to well-sampled reef fish species (sample size > 30), the number of host-parasite combinations is 20–25 per fish species, and the number of parasites identified at the species level is 9–13 per fish species. Lutjanids include reef-associated fish and deeper sea fish from the outer slopes of the coral reef: fish from both milieus were compared. Surprisingly, parasite biodiversity was higher in deeper sea fish than in reef fish (host-parasite combinations: 12.50 vs 10.13, number of species per fish 3.75 vs 3.00); however, we identified four biases which diminish the validity of this comparison. Finally, these results and previously published results allow us to propose a generalization of parasite biodiversity for four major families of reef-associated fishes (Lutjanidae, Nemipteridae, Serranidae and Lethrinidae): well-sampled fish have a mean of 20 host-parasite combinations per fish species, and the number of parasites identified at the species level is 10 per fish species. Conclusions Since all precautions have been taken to minimize taxon numbers, it is safe to affirm than the number of fish parasites is at least ten times the number of fish species in coral reefs, for species of similar size or larger than the species in the four families studied; this is a major improvement to our estimate of biodiversity in coral reefs. Our results suggest that

  7. Effects of Pile Driving on the Residency and Movement of Tagged Reef Fish.

    Science.gov (United States)

    Iafrate, Joseph D; Watwood, Stephanie L; Reyier, Eric A; Scheidt, Douglas M; Dossot, Georges A; Crocker, Steven E

    2016-01-01

    The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of the local population. This study used acoustic telemetry to assess the movement, residency, and survival of 15 sheepshead (Archosargus probatocephalus) and 10 grey snapper (Lutjanus griseus) in Port Canaveral, Florida, USA, in response to 35 days of pile driving at a wharf complex. No obvious signs of mortality or injury to tagged fish were evident from the data. Received sound pressure levels from pile strikes on the interior of the wharf, where reef fish primarily occur, were on average 152-157 dB re 1 μPa (peak). No significant decrease in sheepshead daytime residency was observed during pile driving within the central portion of the wharf and area of highest sound exposure, and no major indicators of displacement from the exposure wharf with the onset of pile driving were observed. There was evidence of potential displacement from the exposure wharf that coincided with the start of pile driving observed for 2 out of 4 grey snapper, along with a decrease in daytime residency for a subset of this species with high site fidelity prior to the event. Results indicate that snapper may be more likely to depart an area of pile driving disturbance more readily than sheepshead, but were less at risk for behavioral impact given the lower site fidelity of this species.

  8. Archaeological evidence of validity of fish populations on unexploited reefs as proxy targets for modern populations.

    Science.gov (United States)

    Longenecker, Ken; Chan, Yvonne L; Toonen, Robert J; Carlon, David B; Hunt, Terry L; Friedlander, Alan M; Demartini, Edward E

    2014-10-01

    Reef-fish management and conservation is hindered by a lack of information on fish populations prior to large-scale contemporary human impacts. As a result, relatively pristine sites are often used as conservation baselines for populations near sites affected by humans. This space-for-time approach can only be validated by sampling assemblages through time. We used archaeological remains to evaluate whether the remote, uninhabited Northwestern Hawaiian Islands (NWHI) might provide a reasonable proxy for a lightly exploited baseline in the Main Hawaiian Islands (MHI). We used molecular and morphological techniques to describe the taxonomic and size composition of the scarine parrotfish catches present in 2 archaeological assemblages from the MHI, compared metrics of these catches with modern estimates of reproductive parameters to evaluate whether catches represented by the archaeological material were consistent with sustainable fishing, and evaluated overlap between size structures represented by the archaeological material and modern survey data from the MHI and the NWHI to assess whether a space-for-time substitution is reasonable. The parrotfish catches represented by archaeological remains were consistent with sustainable fishing because they were dominated by large, mature individuals whose average size remained stable from prehistoric (AD approximately 1400-1700) through historic (AD 1700-1960) periods. The ancient catches were unlike populations in the MHI today. Overlap between the size structure of ancient MHI catches and modern survey data from the NWHI or the MHI was an order of magnitude greater for the NWHI comparison, a result that supports the validity of using the NWHI parrotfish data as a proxy for the MHI before accelerated, heavy human impacts in modern times.

  9. Fish Community Characterization on Shallow (less than 30m) Hardbottom Shelf Habitats in St. Croix, USVI. A preliminary field survey to assess operational and logistical approaches to implement the National Coral Reef Monitoring Program (NCRMP) in the USVI.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reef fish populations are a conspicuous and essential component of USVI coral reef ecosystems. Yet despite their importance, striking population and community level...

  10. Fish Community Characterization on Shallow (<30m) Hardbottom Shelf Habitats in St. Croix, USVI. A preliminary field survey to assess operational and logistical approaches to implement the National Coral Reef Monitoring Program (NCRMP) in the USVI. (NODC Accession 0125237)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reef fish populations are a conspicuous and essential component of USVI coral reef ecosystems. Yet despite their importance, striking population and community level...

  11. Trophic designation and live coral cover predict changes in reef-fish community structure along a shallow to mesophotic gradient in Hawaii

    Science.gov (United States)

    Kane, Corinne N.; Tissot, Brian N.

    2017-09-01

    Reef-fish community structure and habitat associations are well documented for shallow coral reefs (reefs (mesophotic reefs; >30 m). We documented the community structure of fishes and seafloor habitat composition through visual observations at depth intervals from 3 to 50 m in West Hawaii. Community structure changed gradually with depth, with more than 78% of fish species observed at mesophotic depths also found in shallow reef habitats. Depth explained 17% of the variation in reef-fish community structure; live coral cover explained 10% and prevalence of sand accounted for 7% of the fitted variation indicating that depth-related factors and coral habitat play a predominant role in structuring these communities. Differences in community structure also appear to be linked closely with feeding behavior. Trophic designation accounted for 31% of the fitted variation, with changes in herbivore abundance accounting for 10% of the variation. These findings suggest that changes in reef-fish community composition from shallow to mesophotic environments are largely influenced by trophic position, coral habitat and indirect effects of depth itself.

  12. The relationship between coral reef health, alien algae, and fish biomass at sites on Oahu and the Big Island, Hawaii, during 2004-2005 (NODC Accession 0002619)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data in this set come from two studies: "Ability of protected reefs to resist alien algae" and "How many fish does it take to keep the alien algae out?" Both are...

  13. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    The ecological integrity of tropical habitats, including mangroves, seagrass beds and coral reefs, is coming under increasing pressure from human activities. Many coral reef fish species are thought to use mangroves and seagrass beds as juvenile nurseries before migrating to coral reefs as adults. Identifying essential habitats and preserving functional linkages among these habitats is likely necessary to promote ecosystem health and sustainable fisheries on coral reefs. This necessitates quantitative assessment of functional connectivity among essential habitats at the seascape level. This thesis presents the development and first application of a method for tracking fish migration using amino acid (AA) δ13C analysis in otoliths. In a controlled feeding experiment with fish reared on isotopically distinct diets, we showed that essential AAs exhibited minimal trophic fractionation between consumer and diet, providing a δ13C record of the baseline isoscape. We explored the potential for geochemical signatures in otoliths of snapper to act as natural tags of residency in seagrass beds, mangroves and coral reefs in the Red Sea, Caribbean Sea and Eastern Pacific Ocean. The δ13C values of otolith essential AAs varied as a function of habitat type and provided a better tracer of residence in juvenile nursery habitats than conventional bulk stable isotope analyses (SIA). Using our otolith AA SIA approach, we quantified the relative contribution of coastal wetlands and reef habitats to Lutjanus ehrenbergii populations on coastal, shelf and oceanic coral reefs in the Red Sea. L. ehrenbergii made significant ontogenetic migrations, traveling more than 30 km from juvenile nurseries to coral reefs and across deep open water. Coastal wetlands were important nurseries for L. ehrenbergii; however, there was significant plasticity in L. ehrenbergii juvenile habitat requirements. Seascape configuration played an important role in determining the functional connectivity of L

  14. CRED Rapid Ecological Assessment Reef Fish Survey at Ofu & Olosega, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...

  15. CRED Rapid Ecological Assessment Reef Fish Survey at Asuncion, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  16. CRED Rapid Ecological Assessment Reef Fish Survey at Rose, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...

  17. CRED Rapid Ecological Assessment Reef Fish Survey at Tutuila, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426...

  18. CRED Rapid Ecological Assessment Reef Fish Survey at Guam, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  19. CRED Rapid Ecological Assessment Reef Fish Survey at Kingman, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  20. CRED Rapid Ecological Assessment Reef Fish Survey at Rose, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  1. CRED Rapid Ecological Assessment Reef Fish Survey at Maug, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  2. CRED Rapid Ecological Assessment Reef Fish Survey at Lanai, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  3. CRED Rapid Ecological Assessment Reef Fish Survey at Farallon de Pajaros, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  4. CRED Rapid Ecological Assessment Reef Fish Survey at Hawaii, Main Hawaiian Islands in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20130801 to 20130823,...

  5. CRED Rapid Ecological Assessment Reef Fish Survey at Kauai, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  6. CRED Rapid Ecological Assessment Reef Fish Survey at Baker, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  7. CRED Rapid Ecological Assessment Reef Fish Survey at Tinian, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  8. CRED Rapid Ecological Assessment Reef Fish Survey at Rota, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  9. CRED Rapid Ecological Assessment Reef Fish Survey at Guam, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  10. CRED Rapid Ecological Assessment Reef Fish Survey at Baker, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  11. CRED Rapid Ecological Assessment Reef Fish Survey at Swains, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  12. CRED Rapid Ecological Assessment Reef Fish Survey at Wake, Pacific Remote Island Areas in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140305 to 20140319,...

  13. CRED REA Reef Fish Assessment Survey at Midway Atoll, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  14. CRED Rapid Ecological Assessment Reef Fish Survey at Johnston, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  15. CRED Rapid Ecological Assessment Reef Fish Survey at Johnston, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  16. CRED Rapid Ecological Assessment Reef Fish Survey at Oahu, Main Hawaiian Islands in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20130818 to 20131031,...

  17. CRED Rapid Ecological Assessment Reef Fish Survey at Niihau, Main Hawaiian Islands in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20130801 to 20130823,...

  18. CRED Rapid Ecological Assessment Reef Fish Survey at French Frigate, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  19. CRED Rapid Ecological Assessment Reef Fish Survey at Aguijan, Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20140325 to 20140518,...

  20. CRED Rapid Ecological Assessment Reef Fish Survey at Jarvis, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  1. CRED REA Reef Fish Assessment Survey at Oahu Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  2. CRED REA Reef Fish Assessment Survey at Guguan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  3. CRED REA Reef Fish Assessment Survey at Maug Islands, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  4. CRED Rapid Ecological Assessment Reef Fish Survey at Hawaii, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  5. CRED Rapid Ecological Assessment Reef Fish Survey at Palmyra, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  6. CRED Rapid Ecological Assessment Reef Fish Survey at Tinian, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  7. CRED Rapid Ecological Assessment Reef Fish Survey at Jarvis, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-01-21 to...

  8. CRED Rapid Ecological Assessment Reef Fish Survey at Rota, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  9. CRED Rapid Ecological Assessment Reef Fish Survey at Maui, Main Hawaiian Islands in 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20130801 to 20130823,...

  10. CRED Rapid Ecological Assessment Reef Fish Survey at South Bank, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  11. CRED REA Reef Fish Assessment Survey at Swains Island, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 18 February - 19 March...

  12. CRED REA Reef Fish Assessment Survey at Hawaii Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  13. CRED REA Reef Fish Assessment Survey at Rota Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  14. CRED Rapid Ecological Assessment Reef Fish Survey at Pagan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  15. CRED Rapid Ecological Assessment Reef Fish Survey at Farallon de Pajaros, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  16. CRED REA Reef Fish Assessment Survey at Niihau Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  17. CRED Rapid Ecological Assessment Reef Fish Survey at Tau, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 2010-02-17 to...

  18. CRED REA Reef Fish Assessment Survey at Tau Island, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 18 February - 19 March...

  19. CRED Rapid Ecological Assessment Reef Fish Survey at Tau, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...