WorldWideScience

Sample records for atlantic meridional overturning

  1. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean.

    Science.gov (United States)

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-12-16

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.

  2. On the stability of the Atlantic meridional overturning circulation

    Science.gov (United States)

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-01-01

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC. PMID:19897722

  3. A multimodel comparison of centennial Atlantic meridional overturning circulation variability

    Energy Technology Data Exchange (ETDEWEB)

    Menary, Matthew B.; Vellinga, Michael; Palmer, Matthew D. [Met Office Hadley Centre, Exeter, Devon (United Kingdom); Park, Wonsun; Latif, Mojib [IFM-GEOMAR, Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Lohmann, Katja; Jungclaus, Johann H. [Max Planck Inst Meteorol, Hamburg (Germany)

    2012-06-15

    A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100 years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000 years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world. (orig.)

  4. Late Holocene sea level variability and Atlantic Meridional Overturning Circulation

    Science.gov (United States)

    Cronin, Thomas M.; Farmer, Jesse R.; Marzen, R. E.; Thomas, E.; Varekamp, J.C.

    2014-01-01

    Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise.

  5. Surface changes in the North Atlantic meridional overturning circulation during the last millennium

    Science.gov (United States)

    Wanamaker, Alan D.; Butler, Paul G.; Scourse, James D.; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A.

    2012-01-01

    Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector. PMID:22692542

  6. Atlantic Meridional Overturning Circulation response to idealized external forcing

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Latif, M. [Leibniz-Institut fuer Meereswissenschaften an der Universitaet Kiel, Kiel (Germany)

    2012-10-15

    The response of the Atlantic Meridional Overturning Circulation (AMOC) to idealized external (solar) forcing is studied in terms of the internal (unforced) AMOC modes with the Kiel Climate Model (KCM), a coupled atmosphere-ocean-sea ice general circulation model. The statistical investigation of KCM's internal AMOC variability obtained from a multi-millennial control run yields three distinct modes: a multi-decadal mode with a period of about 60 years, a quasi-centennial mode with a period of about 100 years and a multi-centennial mode with a period of about 300-400 years. Most variance is explained by the multi-centennial mode, and the least by the quasi-centennial mode. The solar constant varies sinusoidally with two different periods (100 and 60 years) in forced runs with KCM. The AMOC response to the external forcing is rather complex and nonlinear. It involves strong changes in the frequency structure of the variability. While the control run depicts multi-timescale behavior, the AMOC variability in the experiment with 100 year forcing period is channeled into a relatively narrow band centered near the forcing period. It is the quasi-centennial AMOC mode with a period of just under 100 years which is excited, although it is heavily damped in the control run. Thus, the quasi-centennial mode retains its period which does not correspond exactly to the forcing period. Surprisingly, the quasi-centennial mode is also most strongly excited when the forcing period is set to 60 years, the period of the multi-decadal mode which is rather prominent in the control run. It is largely the spatial structure of the forcing rather than its period that determines which of the three internal AMOC modes is excited. The results suggest that we need to understand the full modal structure of the internal AMOC variability in order to understand the circulation's response to external forcing. This could be a challenge for climate models: we cannot necessarily expect that the

  7. Surface changes in the North Atlantic meridional overturning circulation during the last millennium

    DEFF Research Database (Denmark)

    Wanamaker, Jr., Alan D.; Butler, Paul G.; Scourse, James D.

    2012-01-01

    the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation......Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance...... of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning...

  8. Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH

    NARCIS (Netherlands)

    Wouters, B.; Drijfhout, D.; Hazeleger, W.

    2012-01-01

    The Atlantic meridional overturning circulation (AMOC) in a 600 years pre-industrial run of the newly developed EC-EARTH model features marked interdecadal variability with a dominant time-scale of 50–60 years. An oscillation of approximately 2 Sverdrup (1 Sv = 106 m3 s-1) is identified, which

  9. An electrical analogy relating the Atlantic multidecadal oscillation to the Atlantic meridional overturning circulation.

    Directory of Open Access Journals (Sweden)

    Bruce E Kurtz

    Full Text Available The Atlantic meridional overturning circulation (AMOC is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60-80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO. This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values.

  10. Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH

    International Nuclear Information System (INIS)

    Wouters, Bert; Drijfhout, Sybren; Hazeleger, Wilco

    2012-01-01

    The Atlantic meridional overturning circulation (AMOC) in a 600 years pre-industrial run of the newly developed EC-EARTH model features marked interdecadal variability with a dominant time-scale of 50-60 years. An oscillation of approximately 2 Sverdrup (1 Sv = 10 6 m 3 s -1 ) is identified, which manifests itself as a monopole causing the overturning to simultaneously strengthen (/weaken) and deepen (/shallow) as a whole. Eight years before the AMOC peaks, density in the Labrador-Irminger Sea region reaches a maximum, triggering deep water formation. This density change is caused by a counterclockwise advection of temperature and salinity anomalies at lower latitudes, which we relate to the north-south excursions of the subpolar-subtropical gyre boundary and variations in strength and position of the subpolar gyre and the North Atlantic Current. The AMOC fluctuations are not directly forced by the atmosphere, but occur in a delayed response of the ocean to forcing by the North Atlantic Oscillation, which initiates ''intergyre''-gyre fluctuations. Associated with the AMOC is a 60-year sea surface temperature variability in the Atlantic, with a pattern and timescale showing similarities with the real-world Atlantic Multidecadal Variability. This good agreement with observations lends a certain degree of credibility that the mechanism that is described in this article could be seen as representative of the real climate system. (orig.)

  11. Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, Bert; Drijfhout, Sybren; Hazeleger, Wilco

    2012-12-15

    The Atlantic meridional overturning circulation (AMOC) in a 600 years pre-industrial run of the newly developed EC-EARTH model features marked interdecadal variability with a dominant time-scale of 50-60 years. An oscillation of approximately 2 Sverdrup (1 Sv = 10{sup 6} m{sup 3} s{sup -1}) is identified, which manifests itself as a monopole causing the overturning to simultaneously strengthen (/weaken) and deepen (/shallow) as a whole. Eight years before the AMOC peaks, density in the Labrador-Irminger Sea region reaches a maximum, triggering deep water formation. This density change is caused by a counterclockwise advection of temperature and salinity anomalies at lower latitudes, which we relate to the north-south excursions of the subpolar-subtropical gyre boundary and variations in strength and position of the subpolar gyre and the North Atlantic Current. The AMOC fluctuations are not directly forced by the atmosphere, but occur in a delayed response of the ocean to forcing by the North Atlantic Oscillation, which initiates ''intergyre''-gyre fluctuations. Associated with the AMOC is a 60-year sea surface temperature variability in the Atlantic, with a pattern and timescale showing similarities with the real-world Atlantic Multidecadal Variability. This good agreement with observations lends a certain degree of credibility that the mechanism that is described in this article could be seen as representative of the real climate system. (orig.)

  12. The importance of deep, basinwide measurements in optimized Atlantic Meridional Overturning Circulation observing arrays

    Science.gov (United States)

    McCarthy, G. D.; Menary, M. B.; Mecking, J. V.; Moat, B. I.; Johns, W. E.; Andrews, M. B.; Rayner, D.; Smeed, D. A.

    2017-03-01

    The Atlantic Meridional Overturning Circulation (AMOC) is a key process in the global redistribution of heat. The AMOC is defined as the maximum of the overturning stream function, which typically occurs near 30°N in the North Atlantic. The RAPID mooring array has provided full-depth, basinwide, continuous estimates of this quantity since 2004. Motivated by both the need to deliver near real-time data and optimization of the array to reduce costs, we consider alternative configurations of the mooring array. Results suggest that the variability observed since 2004 could be reproduced by a single tall mooring on the western boundary and a mooring to 1500 m on the eastern boundary. We consider the potential future evolution of the AMOC in two generations of the Hadley Centre climate models and a suite of additional CMIP5 models. The modeling studies show that deep, basinwide measurements are essential to capture correctly the future decline of the AMOC. We conclude that, while a reduced array could be useful for estimates of the AMOC on subseasonal to decadal time scales as part of a near real-time data delivery system, extreme caution must be applied to avoid the potential misinterpretation or absence of a climate time scale AMOC decline that is a key motivation for the maintenance of these observations.Plain Language SummaryThe Atlantic Overturning Circulation is a system of ocean currents that carries heat northwards in the Atlantic. This heat is crucial to maintaining the mild climate of northwest Europe. The Overturning Circulation is predicted to slow in future in response to man-made climate change. The RAPID program is designed to measure the Overturning Circulation using a number of fixed point observations spanning the Atlantic between the Canary Islands and the Bahamas. We look at whether we could reduce the number of these fixed point observations to continue to get accurate estimates of the overturning strength but for less cost. We conclude that

  13. Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean

    Science.gov (United States)

    Perez, Fiz F.; Fontela, Marcos; García-Ibáñez, Maribel I.; Mercier, Herlé; Velo, Anton; Lherminier, Pascale; Zunino, Patricia; de La Paz, Mercedes; Alonso-Pérez, Fernando; Guallart, Elisa F.; Padin, Xose A.

    2018-02-01

    Since the Industrial Revolution, the North Atlantic Ocean has been accumulating anthropogenic carbon dioxide (CO2) and experiencing ocean acidification, that is, an increase in the concentration of hydrogen ions (a reduction in pH) and a reduction in the concentration of carbonate ions. The latter causes the ‘aragonite saturation horizon’—below which waters are undersaturated with respect to a particular calcium carbonate, aragonite—to move to shallower depths (to shoal), exposing corals to corrosive waters. Here we use a database analysis to show that the present rate of supply of acidified waters to the deep Atlantic could cause the aragonite saturation horizon to shoal by 1,000-1,700 metres in the subpolar North Atlantic within the next three decades. We find that, during 1991-2016, a decrease in the concentration of carbonate ions in the Irminger Sea caused the aragonite saturation horizon to shoal by about 10-15 metres per year, and the volume of aragonite-saturated waters to reduce concomitantly. Our determination of the transport of the excess of carbonate over aragonite saturation (xc[CO32-])—an indicator of the availability of aragonite to organisms—by the Atlantic meridional overturning circulation shows that the present-day transport of carbonate ions towards the deep ocean is about 44 per cent lower than it was in preindustrial times. We infer that a doubling of atmospheric anthropogenic CO2 levels—which could occur within three decades according to a ‘business-as-usual scenario’ for climate change—could reduce the transport of xc[CO32-] by 64-79 per cent of that in preindustrial times, which could severely endanger cold-water coral habitats. The Atlantic meridional overturning circulation would also export this acidified deep water southwards, spreading corrosive waters to the world ocean.

  14. A reconstructed South Atlantic Meridional Overturning Circulation time series since 1870

    Science.gov (United States)

    Lopez, Hosmay; Goni, Gustavo; Dong, Shenfu

    2017-04-01

    This study reconstructs a century-long South Atlantic Meridional Overturning Circulation (SAMOC) index. The reconstruction is possible due to its covariability with sea surface temperature (SST). A singular value decomposition (SVD) method is applied to the correlation matrix of SST and SAMOC. The SVD is performed on the trained period (1993 to present) for which Expendable Bathythermographs and satellite altimetry observations are available. The joint modes obtained are used in the reconstruction of a monthly SAMOC time series from 1870 to present. The reconstructed index is highly correlated to the observational based SAMOC time series during the trained period and provides a long historical estimate. It is shown that the Interdecadal Pacific Oscillation (IPO) is the leading mode of SAMOC-SST covariability, explaining 85% with the Atlantic Niño accounting for less than 10%. The reconstruction shows that SAMOC has recently shifted to an anomalous positive period, consistent with a recent positive shift of the IPO.

  15. Impact of the Indonesian Throughflow on the Atlantic Meridional Overturning Circulation

    Science.gov (United States)

    Le Bars, Dewi; Dijkstra, Henk

    2014-05-01

    Understanding the mechanisms controlling the strength and variability of the Atlantic Meridional Overturning Circulation (AMOC) is one of the main topics of climate science and in particular physical oceanography. Current simple representations of the global ocean overturning separates the surface return flow to the Atlantic basin into a cold water path through the Drake Passage and a warm water path through the Indonesian Throughflow and Agulhas leakage. The relative importance of these two paths has been investigated in non-eddying ocean models. In these models the Agulhas retroflection cannot be modelled properly, which leads to an important overestimation of the Agulhas leakage. Furthermore, it seems that the in these models the relation between the meridional density gradient and the overturning strength is greatly simplified and changes significantly when eddies are resolved (Den Toom et al. 2013). As a result, the impact of the Pacific-Indian Oceans exchange through the Indonesian Throughflow on the AMOC is still unknown. To investigate this question we run a state-of-the-art ocean model, the Parallel Ocean Program (POP), globally, at eddy resolving resolution (0.1º). Using climatological forcing from the CORE dataset we perform two simulations of 110 years, a control experiment with realistic coastlines and one in which the Indonesian Passages are closed. Results show that, for a closed Indonesian Throughflow, the Indian Ocean cools down but its salinity increases. The Agulhas leakage reduces also by 3Sv (Le Bars et al. 2013) and the net effect on the south Atlantic is a cooling down and decrease salinity. The anomalies propagate slowly northward and a significant decrease of the AMOC is found at 26ºN after 50 years. This decrease AMOC also leads to reduced northward heat flux in the Atlantic. These processes are investigated with a detailed analysis of the heat and freshwater balances in the Atlantic-Arctic region and in the region south of 34ºS where

  16. OCEAN CIRCULATION. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises.

    Science.gov (United States)

    Srokosz, M A; Bryden, H L

    2015-06-19

    The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models. Copyright © 2015, American Association for the Advancement of Science.

  17. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.

    Science.gov (United States)

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-22

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  18. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming

    Science.gov (United States)

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-01

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ˜50 y to ˜20 y, and the amplitude is reduced by ˜60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  19. There is no real evidence for a diminishing trend of the Atlantic meridional overturning circulation

    Directory of Open Access Journals (Sweden)

    A. Parker

    2016-01-01

    Full Text Available The Atlantic Meridional Overturning Circulation (AMOC is part of the great ocean “conveyor belt” that circulates heat around the globe. Since the early 2000s, ocean sensors have started to monitor the AMOC, but the measurements are still far from accurate and the time window does not permit the separation of short term variability from a longer term trend. Other works have claimed that global warming is slowing down the AMOC, based on models and proxies of temperatures. Some other observations demonstrate a stable circulation of the oceans. By using tide gauge data complementing recent satellite and ocean sensor observations, the stability of the AMOC is shown to go back to 1860. It is concluded that no available information has the due accuracy and time coverage to show a clear trend outside the inter-annual and multi-decadal variability in the direction of increasing or decreasing strength over the last decades.

  20. The Atlantic Meridional Overturning Circulation over time: a Nd isotope perspective

    Science.gov (United States)

    Goldstein, S. L.; Pena, L. D.; Yehudai, M.; Seguí, M. J.; Kim, J.; Knudson, K. P.; Basak, C.

    2017-12-01

    The Atlantic Meridional Overturning Circulation (AMOC) is a major means for distributing heat between the tropics and the high latitudes, and thus its temporal variability has major impacts on ice age cycles. We present a summary of work in-progress to generate north-south profiles of the AMOC from the North Atlantic to the Southern Ocean, at various time slices over the past 2 Ma, based on Nd isotopes in Fe-Mn oxide encrusted foraminifera and fish debris. Our sites show a consistent north-south gradient in the North Atlantic source water (NSW) signal strength throughout, providing strong evidence that the data represent the fluctuations of the AMOC. The North Atlantic data show strong evidence that the eNd of the NSW end-member remained similar to today through this time interval (Kim et al. this meeting). We have identified 5 modes of the AMOC circulation. The most common ones are the (1) "interglacial norm" where the NSW signal remains strong into the South Atlantic similar to the present-day, and the (2) "glacial norm" where moderate southern source water (SSW) signals extend into the deep North Atlantic. Less common are the (3) "weak AMOC" mode, typical of Heinrich events, the Mid-Pleistocene Transition (MPT), and MIS 10,16, where even the deep North Atlantic shows a strong SSW signal, and its counterpart the (4) "ultra-strong AMOC", in MIS 9, 11, 19, 21 and 25, when the NSW signal is unusually strong south of the equator. Finally, during the (5) "pre-MPT" mode, in MIS 26 and 27, uniquely low Nd isotope ratios in the North Atlantic signals major input of Nd from the Canadian Shield directly preceding the MPT AMOC crisis (Pena and Goldstein, Science 2014), reflecting events there that likely triggered it. Overall we expect that the AMOC profiles will be useful as a means to directly relate climate to concurrent ocean circulation through time.

  1. Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium

    Directory of Open Access Journals (Sweden)

    D. Hofer

    2011-02-01

    Full Text Available The variability of the Atlantic meridional overturing circulation (AMOC strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by infrequent transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium.

  2. Observed decline of the Atlantic Meridional Overturning circulation 2004 to 2012

    Science.gov (United States)

    Cunningham, Stuart; Smeed, David; Johns, William; Meinen, Chris; Rayner, Darren; Moat, Ben; Duchez, Aurelie; Bryden, Harry; Baringer Molly, O.; McCarthy, Gerard

    2014-05-01

    The Atlantic Meridional Overturning Circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April~2008 to March 2012 the AMOC was an average of 2.7 Sv weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the subtropical gyre above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of Lower North Atlantic Deep Water below 3000 m. The transport of Lower North Atlantic Deep Water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).

  3. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    Science.gov (United States)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  4. A coupled model study on the Atlantic Meridional Overturning Circulation under extreme atmospheric CO2 conditions

    Directory of Open Access Journals (Sweden)

    Rita Lecci

    2016-05-01

    Full Text Available This study investigates the climate sensitivity to a strong CO2 atmospheric forcing focusing on the North Atlantic Ocean (NA. The analysis is based on a set of 600 years long experiments performed with a state-of-the-art coupled general circulation model (CGCM with the 1990 reference value of atmospheric CO2 multiplied by 4, 8 and 16. Extreme increases in atmospheric CO2 concentration have been applied to force the climate system towards stable states with different thermo-dynamical properties and analyze how the different resulting oceanic stratification and diffusion affect the Atlantic Meridional Overturning Circulation (AMOC. The AMOC weakens in response to the induced warming with distinctive features in the extreme case: a southward shift of convective sites and the formation of a density front at mid-latitudes. The analysis of the density fluxes reveals that NA loses density at high latitudes and gains it southward of 40°N mainly due to the haline contribution. Our results indicate that the most important processes that control the AMOC are active in the high latitudes and are related to the stability of the water column. The increased ocean stratification stabilizes the ocean interior leading to a decreased vertical diffusivity, a reduction in the formation of deep water and a weaker circulation. In particular, the deep convection collapses mainly in the Labrador Sea as a consequence of the water column stratification under high latitudes freshening.

  5. Variability of the Atlantic meridional overturning circulation in the last millennium and two IPCC scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Pablo; Montoya, Marisa; Gonzalez-Rouco, Fidel [Universidad Complutense de Madrid, Ciudad Universitaria, Dpto. Astrofisica y Ciencias de la Atmosfera/Instituto de Geociencias, Facultad de Ciencias Fisicas, Madrid (Spain); Universidad Complutense de Madrid, Ciudad Universitaria, Instituto de Geociencias (UCM-CSIC), Facultad de Ciencias Fisicas, Madrid (Spain); Mignot, Juliette [IPSL/LOCEAN, UPMC/CNRS/IRD/MNHN, Universite Pierre et Marie Curie, Paris Cedex 05 (France); Legutke, Stephanie [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    2012-05-15

    The variability of the Atlantic meridional overturning circulation (AMOC) is investigated in several climate simulations with the ECHO-G atmosphere-ocean general circulation model, including two forced integrations of the last millennium, one millennial-long control run, and two future scenario simulations of the twenty-first century. This constitutes a new framework in which the AMOC response to future climate change conditions is addressed in the context of both its past evolution and its natural variability. The main mechanisms responsible for the AMOC variability at interannual and multidecadal time scales are described. At high frequencies, the AMOC is directly responding to local changes in the Ekman transport, associated with three modes of climate variability: El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the East Atlantic (EA) pattern. At low frequencies, the AMOC is largely controlled by convection activity south of Greenland. Again, the atmosphere is found to play a leading role in these variations. Positive anomalies of convection are preceded in 1 year by intensified zonal winds, associated in the forced runs to a positive NAO-like pattern. Finally, the sensitivity of the AMOC to three different forcing factors is investigated. The major impact is associated with increasing greenhouse gases, given their strong and persistent radiative forcing. Starting in the Industrial Era and continuing in the future scenarios, the AMOC experiences a final decrease of up to 40% with respect to the preindustrial average. Also, a weak but significant AMOC strengthening is found in response to the major volcanic eruptions, which produce colder and saltier surface conditions over the main convection regions. In contrast, no meaningful impact of the solar forcing on the AMOC is observed. Indeed, solar irradiance only affects convection in the Nordic Seas, with a marginal contribution to the AMOC variability in the ECHO-G runs. (orig.)

  6. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    Science.gov (United States)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  7. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming

    Science.gov (United States)

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-01-01

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves. PMID:26951654

  8. Meltwater routing and the Atlantic meridional overturning circulation: A Gulf of Mexico perspective

    Science.gov (United States)

    Flower, B. P.; Williams, C.; Randle, N.; Hastings, D. W.

    2008-12-01

    Routing of low-salinity meltwater from the Laurentide Ice Sheet (LIS) into the North Atlantic via eastern outlets (e.g., St. Lawrence and Hudson River systems) and northern outlets (e.g., Hudson Bay and Arctic Ocean) is thought to have reduced Atlantic meridional overturning circulation (AMOC) and thereby triggered rapid regional to global climate change during the last glacial cycle. In contrast, southward meltwater flow to the Gulf of Mexico is generally thought to allow enhanced AMOC and warmer climates in the North Atlantic region. Situated at the outlet of the Mississippi River system, Orca Basin is ideally located to record meltwater input from the LIS. Orca Basin core MD02-2550 collected by the R/V Marion Dufresne in 2002 on IMAGES cruise VIII allows sub-centennial-scale records of Mg/Ca sea-surface temperature (SST) and δ18Oseawater back to ca. 23.9 ka. Accumulation rates average about 40 cm/k.y. Our current data extend from ca. 16.5-7 ka, with age control provided by 40 AMS radiocarbon dates (nearly all in stratigraphic order; calibrated using Calib 5.0.2). We use paired Mg/Ca and oxygen isotope data on Globigerinoides ruber to isolate changes in the oxygen isotopic composition of seawater. Four major episodic δ18O decreases of more than 2 per mil indicate substantial LIS meltwater input. Intervals of major meltwater discharge to the Gulf of Mexico do not appear to match known pulses of global sea level increase. However, abrupt reductions in southward meltwater input to the Gulf of Mexico seem to correlate with abrupt coolings in the North Atlantic region (e.g., Younger Dryas, Intra-Allerod cold period, and Oldest Dryas). In particular, a 3.5 per mil δ18O increase centered at 10,970 radiocarbon years B.P. (the "cessation event") appears to coincide with the onset of the Younger Dryas in European lakes and with Δ14C evidence from Cariaco Basin for AMOC reduction. Furthermore, recent results with the NCAR Community Climate System model (CCSM3) indicate

  9. A commentary on the Atlantic meridional overturning circulation stability in climate models

    Science.gov (United States)

    Gent, Peter R.

    2018-02-01

    The stability of the Atlantic meridional overturning circulation (AMOC) in ocean models depends quite strongly on the model formulation, especially the vertical mixing, and whether it is coupled to an atmosphere model. A hysteresis loop in AMOC strength with respect to freshwater forcing has been found in several intermediate complexity climate models and in one fully coupled climate model that has very coarse resolution. Over 40% of modern climate models are in a bistable AMOC state according to the very frequently used simple stability criterion which is based solely on the sign of the AMOC freshwater transport across 33° S. In a recent freshwater hosing experiment in a climate model with an eddy-permitting ocean component, the change in the gyre freshwater transport across 33° S is larger than the AMOC freshwater transport change. This casts very strong doubt on the usefulness of this simple AMOC stability criterion. If a climate model uses large surface flux adjustments, then these adjustments can interfere with the atmosphere-ocean feedbacks, and strongly change the AMOC stability properties. AMOC can be shut off for many hundreds of years in modern fully coupled climate models if the hosing or carbon dioxide forcing is strong enough. However, in one climate model the AMOC recovers after between 1000 and 1400 years. Recent 1% increasing carbon dioxide runs and RCP8.5 future scenario runs have shown that the AMOC reduction is smaller using an eddy-resolving ocean component than in the comparable standard 1° ocean climate models.

  10. Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2007-01-01

    Full Text Available Using a 3-dimensional climate model of intermediate complexity we show that the overturning circulation of the Atlantic Ocean can vary at multicentennial-to-millennial timescales for modern boundary conditions. A continuous freshwater perturbation in the Labrador Sea pushes the overturning circulation of the Atlantic Ocean into a bi-stable regime, characterized by phases of active and inactive deep-water formation in the Labrador Sea. In contrast, deep-water formation in the Nordic Seas is active during all phases of the oscillations. The actual timing of the transitions between the two circulation states occurs randomly. The oscillations constitute a 3-dimensional phenomenon and have to be distinguished from low-frequency oscillations seen previously in 2-dimensional models of the ocean. A conceptual model provides further insight into the essential dynamics underlying the oscillations of the large-scale ocean circulation. The model experiments indicate that the coupled climate system can exhibit unforced climate variability at multicentennial-to-millennial timescales that may be of relevance for Holocene climate variations.

  11. Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation

    Science.gov (United States)

    Hong, Yu; Moore, John C.; Jevrejeva, Svetlana; Ji, Duoying; Phipps, Steven J.; Lenton, Andrew; Tilmes, Simone; Watanabe, Shingo; Zhao, Liyun

    2017-03-01

    We analyze the multi-earth system model responses of ocean temperatures and the Atlantic Meridional Overturning Circulation (AMOC) under an idealized solar radiation management scenario (G1) from the Geoengineering Model Intercomparison Project. All models simulate warming of the northern North Atlantic relative to no geoengineering, despite geoengineering substantially offsetting the increases in mean global ocean temperatures. Increases in the temperature of the North Atlantic Ocean at the surface (˜0.25 K) and at a depth of 500 m (˜0.10 K) are mainly due to a 10 Wm-2 reduction of total heat flux from ocean to atmosphere. Although the AMOC is slightly reduced under the solar dimming scenario, G1, relative to piControl, it is about 37% stronger than under abrupt4 × CO2 . The reduction of the AMOC under G1 is mainly a response to the heat flux change at the northern North Atlantic rather than to changes in the water flux and the wind stress. The AMOC transfers heat from tropics to high latitudes, helping to warm the high latitudes, and its strength is maintained under solar dimming rather than weakened by greenhouse gas forcing acting alone. Hence the relative reduction in high latitude ocean temperatures provided by solar radiation geoengineering, would tend to be counteracted by the correspondingly active AMOC circulation which furthermore transports warm surface waters towards the Greenland ice sheet, warming Arctic sea ice and permafrost.

  12. Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model

    Directory of Open Access Journals (Sweden)

    M. Kageyama

    2009-09-01

    Full Text Available Paleorecords from distant locations on the globe show rapid and large amplitude climate variations during the last glacial period. Here we study the global climatic response to different states of the Atlantic Meridional Overturning Circulation (AMOC as a potential explanation for these climate variations and their possible connections. We analyse three glacial simulations obtained with an atmosphere-ocean coupled general circulation model and characterised by different AMOC strengths (18, 15 and 2 Sv resulting from successive ~0.1 Sv freshwater perturbations in the North Atlantic. These AMOC states suggest the existence of a freshwater threshold for which the AMOC collapses. A weak (18 to 15 Sv AMOC decrease results in a North Atlantic and European cooling. This cooling is not homogeneous, with even a slight warming over the Norwegian Sea. Convection in this area is active in both experiments, but surprisingly stronger in the 15 Sv simulation, which appears to be related to interactions with the atmospheric circulation and sea-ice cover. Far from the North Atlantic, the climatic response is not significant. The climate differences for an AMOC collapse (15 to 2 Sv are much larger and of global extent. The timing of the climate response to this AMOC collapse suggests teleconnection mechanisms. Our analyses focus on the North Atlantic and surrounding regions, the tropical Atlantic and the Indian monsoon region. The North Atlantic cooling associated with the AMOC collapse induces a cyclonic atmospheric circulation anomaly centred over this region, which modulates the eastward advection of cold air over the Eurasian continent. This can explain why the cooling is not as strong over western Europe as over the North Atlantic. In the Tropics, the southward shift of the Inter-Tropical Convergence Zone appears to be strongest over the Atlantic and Eastern Pacific and results from an adjustment of the atmospheric and oceanic heat transports. Finally, the

  13. Exceptional Shift to a Weaker Atlantic Meridional Overturning Circulation at the end of the Little Ice Age

    Science.gov (United States)

    Thornalley, D. J.; Oppo, D.; Moffa Sanchez, P.; Hall, I. R.; Keigwin, L. D.; Rose, N.; Green, K.; Pallottino, F.; Ortega, P.; Robson, J.

    2016-12-01

    Several proxy and modelling studies suggest that there may have been considerable change in the operation of the Atlantic Meridional Overturning Circulation (AMOC) during the last two millennia. Yet despite its importance for regional and global climate, the recent history of the AMOC is poorly constrained and comprehensive observational records only extend back a few decades at most. Observational data suggest that the export of large volumes of sea-ice and freshwater from the Arctic during the Great Salinity Anomaly of the late 1960s to early 1970s impacted North Atlantic circulation, and perhaps the strength of the AMOC, thus raising the possibility that more extreme events may have affected the AMOC during the pre-instrumental era. We present a suite of AMOC related proxies from high resolution marine sediment cores from the North Atlantic, spanning the last 2000 years, including proxies for both deep ocean circulation and surface ocean climate. Our results suggest that there was an exceptional shift to a weaker mode of Labrador Sea Water (LSW) formation during the late 19th century, which persisted up to the present day, notwithstanding strong decadal-scale LSW production events such as during the 1990s. Using a compilation of sites that allow the sea-surface temperature fingerprint of AMOC change to be identified, we show that the shift to weaker LSW formation was accompanied by a weakening of the combined AMOC. Preliminary data suggests that this exceptional event impacted marine ecosystems in certain locations. Based on their timing, we infer that the weakening of LSW and AMOC may have been caused by the export of sea-ice and freshwater from the Arctic during the termination of the Little Ice Age (somewhat mimicking, albeit on a smaller scale, the AMOC weakening events that accompanied the last Ice Age termination). These results have significant implications for the sensitivity of the AMOC to climate forcing, and the cause of late Holocene climate events.

  14. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    OpenAIRE

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; Jaccard, Samuel L.; Tiedemann, Ralf; Haug, Gerald H.

    2017-01-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld's largest ocean, where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, similar to 400-ppmv (parts per million by volume) CO2 world ...

  15. High Resolution Model Development to Quantify the Impact of Icebergs on the Stability of the Atlantic Meridional Overturning Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Condron, Alan [Univ. of Massachusetts, Amherst, MA (United States)

    2016-10-18

    In the present-day North Atlantic Ocean, relatively warm and salty water moves northwards from the tropics to the high latitudes, sinks, and returns southward towards the equator as North Atlantic Deep Water, forming the so called Atlantic Meridional Overturning Circulation (AMOC). It has been found that the stability of the AMOC is non-linearly related to the freshwater budget of the North Atlantic. In this way, additional fresh water can be added to the ocean with little impact, until a tipping point is reached that causes the AMOC to suddenly weaken and the Northern Hemisphere to abruptly cool. A great deal of uncertainty still remains over the sensitivity of the AMOC to changes in freshwater discharge as a result of the unrealistic manner in which freshwater has historically been added to climate models. Frequently, freshwater is discharged in ocean models entirely as liquid water, but in reality a large fraction of freshwater entering the ocean is ice calving from marine glaciers (half for Antarctica and two-thirds for Greenland). To more accurately quantify AMOC sensitivity to past and future changes in freshwater input, this project developed a comprehensive iceberg model to more realistically simulate the interaction between the cryosphere and the oceans at high-latitudes. The iceberg model created is written in Fortran90 and designed to scale efficiently on High Performance Computing (HPC) clusters so that tens-of-thousands of icebergs can be simulated at any time. Experiments performed with our model showed that in the Pleistocene there would have been enormous floods of freshwater released into the North Atlantic that would have transported icebergs and meltwater along the entire east coast of the United States, as far south as Florida Keys. In addition, high-resolution, modern-day, model simulations showed that if the Greenland Ice Sheet continues to melt at its current rate then there will be a 6-fold increase in the number of icebergs drifting in the

  16. Combined effects of global warming and an Atlantic meridional overturning circulation shutdown on West African and European climate

    Science.gov (United States)

    Brown, M. G.; Vizy, E. K.; Cook, K. H.

    2011-12-01

    We investigate the effects of an Atlantic meridional overturning circulation (AMOC) shutdown, for example, due to an influx of fresh water from Arctic ice sheet melting, in combination with global warming (Intergovernmental Panel on Climate Change's A2 business as normal emissions scenario) on West African and European climate. Shutdown of the AMOC by the end of this century is generally seen as possible but not likely, but Arctic ice is melting more quickly than predicted by global models, and the consequences for climate may be severe and the changes abrupt. A regional climate model with 90-km grid spacing is used to conduct a series of present day and future AMOC shutdown simulations. The present-day control initial surface and lateral boundary conditions are derived from the present day National Center for Environmental Prediction reanalysis 2 (NCEP2). For the future runs we use coupled atmosphere-ocean GCM anomalies generated from the Intergovernmental Panel on Climate Change's Assessment Report 4 (IPCC AR4) A2 business as normal emission scenario experiment and apply them directly to the present day control boundary conditions. An idealized SSTA is derived and applied to the present day SSTs based upon coupled atmosphere/ocean GCM water hosing experiments that force a shutdown of the AMOC, but placed in the context of under global warming, In both the boreal spring and summer months, cooling in the eastern Atlantic due to the AMOC shutdown causes an eastward extension of the North Atlantic subtropical high over Europe and rainfall rates decrease markedly throughout most of Europe. In May and June, rainfall rates decrease by 50-80% over Sahelian Africa as a secondary response to the eastern Atlantic cool SSTs, as dry air is advected southward, associated with enhanced northerly flow. In contrast, the atmospheric response to the SSTA in the North Atlantic over Europe and West Africa is decoupled during the boreal summer months; rainfall over Europe continues to

  17. Sediment 231Pa/230Th as a recorder of the rate of the Atlantic meridional overturning circulation: insights from a 2-D model

    Directory of Open Access Journals (Sweden)

    S. E. Allen

    2010-03-01

    Full Text Available A two dimensional scavenging model is used to investigate the patterns of sediment 231Pa/230Th generated by the Atlantic Meridional Overturning Circulation (AMOC and further advance the application of this proxy for ocean paleocirculation studies. The scavenging parameters and the geometry of the overturning circulation cell have been chosen so that the model generates meridional sections of dissolved 230Th and 231Pa consistent with published water column profiles and an additional 12 previously unpublished profiles measured in the North and Equatorial Atlantic. The processes that generate the meridional sections of dissolved and particulate 230Th, dissolved and particulate 231Pa, dissolved and particulate 231Pa/230Th, and sediment 231Pa/230Th are discussed in detail. The results indicate that the relationship between sediment 231Pa/230Th at any given site and the overturning circulation is very complex. They clearly show that constraining past changes in the strength and geometry of the AMOC requires an extensive data set and they suggest strategies to maximize information from a limited number of samples.

  18. Overturn of the Oceasn Flow in the North Atlantic as a Trigger of Inertia Motion to Form a Meridional Ocean Circulation

    Science.gov (United States)

    Nakamura, Shigehisa

    2010-05-01

    This work is an introduction of a meridional ocean circulation. As for the zonal motions,there have been many contributions. Recent oceanographic works noticed an overturn of the ocean current in the North Atlantic. The author notices this overturn is a trigger to generate a meridional ocean circulation to have a track through the deep Atlantic, the deep circum-polar current, the deep branch flow to the Pacific between the Australian and the South America. The east part of the branch flow relates to the upwelling off Peru, and the west part relates to form a deep water in the Northwest Pacific. THe overturn of the North Atlantic suggests an outflow of the deep water and a storage of the old aged deep water in the Northwest Pacific. The storage water increase in the Northwest Pacific shoould be a trigger of the swelling up of the sea level mid Pacific to affect to the ocean front variations between the coastal waters and the ocean water. In order to keep a hydrodynamic balance on the earth, an increase of the deep water in the Pacific should flow through the Bering Sea and the Arctic Sea to get to the North Atlantic. It should be noted that a budget of the ocean water flow must be hold the condition of the water masses concservation on the earth surface. This inertia motion is maintained once induced after any natural effect or some man-made influences. At this stage, the author has to notice that there has been developed a meridional inertia path of the air particle as well as the ocean water parcel, nevertheless nobody has had pointed out this inertiamotion with a meridional path in the ocean. Air-sea interaction must be one of the main factors for driving the ocean water though the inertia motion in the global scale is more energetic. To the details, the scientists should pursue what geophysical dynamics must be developed in the future.

  19. Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing

    Science.gov (United States)

    Brown, Nicolas; Galbraith, Eric D.

    2016-08-01

    It is well known that glacial periods were punctuated by abrupt climate changes, with large impacts on air temperature, precipitation, and ocean circulation across the globe. However, the long-held idea that freshwater forcing, caused by massive iceberg discharges, was the driving force behind these changes has been questioned in recent years. This throws into doubt the abundant literature on modelling abrupt climate change through "hosing" experiments, whereby the Atlantic Meridional Overturning Circulation (AMOC) is interrupted by an injection of freshwater to the North Atlantic: if some, or all, abrupt climate change was not driven by freshwater input, could its character have been very different than the typical hosed experiments? Here, we describe spontaneous, unhosed oscillations in AMOC strength that occur in a global coupled ocean-atmosphere model when integrated under a particular background climate state. We compare these unhosed oscillations to hosed oscillations under a range of background climate states in order to examine how the global imprint of AMOC variations depends on whether or not they result from external freshwater input. Our comparison includes surface air temperature, precipitation, dissolved oxygen concentrations in the intermediate-depth ocean, and marine export production. The results show that the background climate state has a significant impact on the character of the freshwater-forced AMOC interruptions in this model, with particularly marked variations in tropical precipitation and in the North Pacific circulation. Despite these differences, the first-order patterns of response to AMOC interruptions are quite consistent among all simulations, implying that the ocean-sea ice-atmosphere dynamics associated with an AMOC weakening dominate the global response, regardless of whether or not freshwater input is the cause. Nonetheless, freshwater addition leads to a more complete shutdown of the AMOC than occurs in the unhosed oscillations

  20. Reconstruction of the North Atlantic end-member of the Atlantic Meridional Overturning Circulation over glacial-interglacial cycles

    Science.gov (United States)

    Kim, J.; Seguí, M. J.; Knudson, K. P.; Yehudai, M.; Goldstein, S. L.; Pena, L. D.; Basak, C.; Ferretti, P.

    2017-12-01

    North Atlantic Deep Water (NADW) represents the major water mass that drives the Atlantic Meridional Ocean Circulation (AMOC), which undergoes substantial reorganization with changing climate. In order to understand its impact on ocean circulation and climate through time, it is necessary to constrain its composition. We report Nd isotope ratios of Fe-Mn oxide encrusted foraminifera and fish debris from DSDP Site 607 (41.00N 32.96W, 3427m), in the present-day core of NADW, and ODP 1063 (33.68N 57.62W, 4585m), on the deep abyssal plain at the interface between NADW and Antarctic Bottom Water. We provide a new North Atlantic paleocirculation record covering 2 Ma. At Site 607 interglacial ɛNd-values are consistently similar to present-day NADW (ɛNd -13.5), with median ɛNd-values of -14.3 in the Early Pleistocene and -13.8 in the Late Pleistocene. Glacial ɛNd-values are higher by 1 ɛNd-unit in the Early Pleistocene, and 1.5-2 ɛNd-units in the Late Pleistocene. Site 1063 shows much greater variability, with ɛNd ranging from -10 to -26. We interpret the North Atlantic AMOC source as represented by the Site 607 interglacial ɛNd-values, which has remained nearly stable throughout the entire period. The higher glacial ɛNd-values reflect incursions of some southern-sourced waters to Site 607, which is supported by coeval shifts to lower benthic foraminiferal d13C. In contrast, the Site 1063 ɛNd-values do not appear to reflect the AMOC end-member, and likely reflects local effects from a bottom source. A period of greatly disrupted ocean circulation marks 950-850 Ma, which may have been triggered by enhanced ice growth in the Northern Hemisphere that began around 1.2 Ma, as suggested by possible input events of Nd from the surrounding cratons into the North Atlantic observed in Site 607. Interglacial AMOC only recovers to the previously observed vigor over 200 ka following the disruption, whereas further intensified SSW incursion into the deep North Atlantic come to

  1. Abrupt changes in Antarctic Intermediate Water strength lead Atlantic Meridional Overturning Circulation changes during the last deglacial

    Science.gov (United States)

    Xie, R.; Marcantonio, F.; Schmidt, M. W.

    2011-12-01

    Reorganization of meridional overturning circulation that is a response to or a trigger of climate change in the North Atlantic has been a subject of intense interest. During the last deglaciation, cold periods such as the Younger Dryas (YD) and Heinrich 1 (H1) are thought to be coincident with significant reductions in North Atlantic Deep Water (NADW) formation. Yet, the role that Antarctic Intermediate Water (AAIW) played during these cold events is still poorly constrained. Benthic Cd/Ca data from sediment cores in the Florida Straits suggest a reduced contribution of AAIW in the North Atlantic western boundary current during the YD [1]. However, ɛNd evidence in sediment cores from Tobago basin suggests a greater influence of AAIW in the North Atlantic during YD and H1 [2]. In this study, we measure ɛNd values in the authigenic Fe-Mn oxyhydroxide fraction of sediment from three cores, KNR166-2-26JPC (24°19.62'N, 83°15.14'W; 546 m) and KNR166-2-31JPC (24°13.18'N, 83°17.75'W; 751 m) within the Florida Straits, and VM12-107 (11.33°N, 66.63°W; 1079 m) in the Southern Carribean Sea. All three cores lie within the path of AAIW and are, therefore, useful to gauge the waxing and waning of AAIW during the last deglaciation. Cores 26JPC and 31JPC are located within the Florida Current, which under modern conditions represents a mixture of recirculated North Atlantic subtropical gyre water and Southern origin waters. Our preliminary results from 26JPC and 31JPC show significantly less radiogenic ɛNd values during the YD and H1 than during the Holocene (~1 epsilon unit for 26JPC and ~0.6 epsilon units for 31JPC during both periods). We interpret the lower ɛNd during the YD and H1 as signifying a decreased input of Southern-sourced waters (i.e., AAIW) arriving at these sites, in agreement with the study of Came et al.[1], but not that of Pahnke et al. in the Tobago Basin [2]. We suggest that ɛNd values in the latter study, in which the core site location is at a

  2. The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: Evidence, causes, and possible implications for global cooling

    Science.gov (United States)

    Abelson, Meir; Erez, Jonathan

    2017-06-01

    A compilation of benthic δ18O from the whole Atlantic and the Southern Ocean (Atlantic sector) shows two major jumps in the interbasinal gradient of δ18O (Δδ18O) during the Eocene and the Oligocene: one at ˜40 Ma and the second concomitant with the isotopic event of the Eocene-Oligocene transition (EOT), ˜33.7 Ma ago. From previously published circulation models and proxies, we show that the first Δδ18O jump reflects the thermal isolation of Antarctica associated with the proto-Antarctic circumpolar current (ACC). The second marks the onset of interhemispheric northern-sourced circulation cell, similar to the modern Atlantic meridional overturning circulation (AMOC). The onset of AMOC-like circulation slightly preceded (100-300 kyr) the EOT, as we show by the high-resolution profiles of δ18O and δ13C previously published from DSDP/ODP sites in the Southern Ocean and South Atlantic. These events coincide with the onset of antiestuarine circulation between the Nordic seas and the North Atlantic which started around the EOT and may be connected to the deepening of the Greenland-Scotland Ridge. We suggest that while the shallow proto-ACC supplied the energy for deep ocean convection in the Southern Hemisphere, the onset of the interhemispheric northern circulation cell was due to the significant EOT intensification of deepwater formation in the North Atlantic driven by the Nordic antiestuarine circulation. This onset of the interhemispheric northern-sourced circulation cell could have prompted the EOT global cooling.Plain Language SummaryThe Eocene-Oligocene transition is the major abrupt climatic event during the Cenozoic, which marks the major step to the icehouse world. We show that this transition is a shift to a world with Atlantic meridional overturning circulation (AMOC) and slightly preceded this transition. Thus, possibly was a major factor in this climatic shift.

  3. Abrupt Climate Change and the Atlantic Meridional Overturning Circulation: sensitivity and non-linear response to Arctic/sub-Arctic freshwater pulses. Collaborative research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2015-06-15

    This project investigated possible mechanisms by which melt-water pulses can induce abrupt change in the Atlantic Meridional Overturning Circulation (AMOC) magnitude. AMOC magnitude is an important ingredient in present day climate. Previous studies have hypothesized abrupt reduction in AMOC magnitude in response to influxes of glacial melt water into the North Atlantic. Notable fresh-water influxes are associated with the terminus of the last ice age. During this period large volumes of melt water accumulated behind retreating ice sheets and subsequently drained rapidly when the ice weakened sufficiently. Rapid draining of glacial lakes into the North Atlantic is a possible origin of a number of paleo-record abrupt climate shifts. These include the Younger-Dryas cooling event and the 8,200 year cooling event. The studies undertaken focused on whether the mechanistic sequence by which glacial melt-water impacts AMOC, which then impacts Northern Hemisphere global mean surface temperature, is dynamically plausible. The work has implications for better understanding past climate stability. The work also has relevance for today’s environment, in which high-latitude ice melting in Greenland appears to be driving fresh water outflows at an accelerating pace.

  4. Pulling the Meridional Overturning Circulation From the South DESC0005100

    Energy Technology Data Exchange (ETDEWEB)

    Cessi, Paola [Univ. of California, San Diego, CA (United States); Wolfe, Christopher L. [Scripps Inst. of Oceanography, San Diego, CA (United States)

    2015-11-25

    This project concerned the Atlantic Meridional Overturning Circulation (AMOC), its stability, variability and sensitivity to atmospheric forcing, both mechanical (wind-stress) and thermodynamical (heat and freshwater surface fluxes). The focus of the study is the interhemispheric cell in the largely adiabatic regime, where the flow is characterized by a descending branch in the high latitudes of the North Atlantic and the upwelling branch in the Antarctic Circumpolar Current (ACC) region of the Southern Ocean. These two end points are connected by shared isopycnals along which the flow takes place. The approach is to systematically study the amplitude and frequency of the AMOC’s response to localized buoyancy with an ocean-only model in both coarse and high-resolution configurations, analyzed with innovative diagnostics, focused on the “residual overturning circulation” (ROC), which is the proper measure of the transport of heat and other tracers.

  5. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.

    Science.gov (United States)

    Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H

    2017-09-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.

  6. Interhemispheric teleconnections: Late Pliocene change in Mediterranean outflow water linked to changes in Indonesian Through-Flow and Atlantic Meridional Overturning Circulation, a review and update

    Science.gov (United States)

    Sarnthein, Michael; Grunert, Patrick; Khélifi, Nabil; Frank, Martin; Nürnberg, Dirk

    2017-07-01

    The ultimate, possibly geodynamic control and potential impact of changes in circulation activity and salt discharge of Mediterranean outflow waters (MOW) on Atlantic meridional overturning circulation have formed long-standing objectives in paleoceanography. Late Pliocene changes in the distal advection of MOW were reconstructed on orbital timescales for northeast Atlantic DSDP/ODP sites 548 and 982 off Brittany and on Rockall Plateau, supplemented by a proximal record from Site U1389 west off Gibraltar, and compared to Western Mediterranean surface and deep-water records of Alboran Sea Site 978. From 3.43 to 3.3 Ma, MOW temperatures and salinities form a prominent rise by 2-4 °C and 3 psu, induced by a preceding and coeval rise in sea surface and deep-water salinity and increased summer aridity in the Mediterranean Sea. We speculate that these changes triggered an increased MOW flow and were ultimately induced by a persistent 2.5 °C cooling of Indonesian Through-Flow waters. The temperature drop resulted from the northward drift of Australia that crossed a threshold value near 3.6-3.3 Ma and led to a large-scale cooling of the eastern subtropical Indian Ocean and in turn, to a reduction of African monsoon rains. Vice versa, we show that the distinct rise in Mediterranean salt export after 3.4 Ma induced a unique long-term rise in the formation of Upper North Atlantic Deep Water, that followed with a phase lag of 100 ky. In summary, we present evidence for an interhemispheric teleconnection of processes in the Indonesian Gateways, the Mediterranean and Labrador Seas, jointly affecting Pliocene climate.

  7. Interhemispheric teleconnections: Late Pliocene change in Mediterranean outflow water linked to changes in Indonesian Through-Flow and Atlantic Meridional Overturning Circulation, a review and update

    Science.gov (United States)

    Sarnthein, Michael; Grunert, Patrick; Khélifi, Nabil; Frank, Martin; Nürnberg, Dirk

    2018-03-01

    The ultimate, possibly geodynamic control and potential impact of changes in circulation activity and salt discharge of Mediterranean outflow waters (MOW) on Atlantic meridional overturning circulation have formed long-standing objectives in paleoceanography. Late Pliocene changes in the distal advection of MOW were reconstructed on orbital timescales for northeast Atlantic DSDP/ODP sites 548 and 982 off Brittany and on Rockall Plateau, supplemented by a proximal record from Site U1389 west off Gibraltar, and compared to Western Mediterranean surface and deep-water records of Alboran Sea Site 978. From 3.43 to 3.3 Ma, MOW temperatures and salinities form a prominent rise by 2-4 °C and 3 psu, induced by a preceding and coeval rise in sea surface and deep-water salinity and increased summer aridity in the Mediterranean Sea. We speculate that these changes triggered an increased MOW flow and were ultimately induced by a persistent 2.5 °C cooling of Indonesian Through-Flow waters. The temperature drop resulted from the northward drift of Australia that crossed a threshold value near 3.6-3.3 Ma and led to a large-scale cooling of the eastern subtropical Indian Ocean and in turn, to a reduction of African monsoon rains. Vice versa, we show that the distinct rise in Mediterranean salt export after 3.4 Ma induced a unique long-term rise in the formation of Upper North Atlantic Deep Water, that followed with a phase lag of 100 ky. In summary, we present evidence for an interhemispheric teleconnection of processes in the Indonesian Gateways, the Mediterranean and Labrador Seas, jointly affecting Pliocene climate.

  8. The GEOVIDE cruise in May–June 2014 reveals an intense Meridional Overturning Circulation over a cold and fresh subpolar North Atlantic

    Directory of Open Access Journals (Sweden)

    P. Zunino

    2017-11-01

    Full Text Available The GEOVIDE cruise was carried out in the subpolar North Atlantic (SPNA along the OVIDE section and across the Labrador Sea in May–June 2014. It was planned to clarify the distribution of the trace elements and their isotopes in the SPNA as part of the GEOTRACES international program. This paper focuses on the state of the circulation and distribution of thermohaline properties during the cruise. In terms of circulation, the comparison with the 2002–2012 mean state shows a more intense Irminger Current and also a weaker North Atlantic Current, with a transfer of volume transport from its northern to its central branch. However, those anomalies are compatible with the variability already observed along the OVIDE section in the 2000s. In terms of properties, the surface waters of the eastern SPNA were much colder and fresher than the averages over 2002–2012. In spite of negative temperature anomalies in the surface waters, the heat transport across the OVIDE section estimated at 0.56 ± 0.06 PW was the largest measured since 2002. This relatively large value is related to the relatively strong Meridional Overturning Circulation measured across the OVIDE section during GEOVIDE (18.7 ± 3.0 Sv. By analyzing the air–sea heat and freshwater fluxes over the eastern SPNA in relation to the heat and freshwater content changes observed during 2013 and 2014, we concluded that on a short timescale these changes were mainly driven by air–sea heat and freshwater fluxes rather than by ocean circulation.

  9. The GEOVIDE cruise in May-June 2014 reveals an intense Meridional Overturning Circulation over a cold and fresh subpolar North Atlantic

    Science.gov (United States)

    Zunino, Patricia; Lherminier, Pascale; Mercier, Herlé; Daniault, Nathalie; García-Ibáñez, Maribel I.; Pérez, Fiz F.

    2017-11-01

    The GEOVIDE cruise was carried out in the subpolar North Atlantic (SPNA) along the OVIDE section and across the Labrador Sea in May-June 2014. It was planned to clarify the distribution of the trace elements and their isotopes in the SPNA as part of the GEOTRACES international program. This paper focuses on the state of the circulation and distribution of thermohaline properties during the cruise. In terms of circulation, the comparison with the 2002-2012 mean state shows a more intense Irminger Current and also a weaker North Atlantic Current, with a transfer of volume transport from its northern to its central branch. However, those anomalies are compatible with the variability already observed along the OVIDE section in the 2000s. In terms of properties, the surface waters of the eastern SPNA were much colder and fresher than the averages over 2002-2012. In spite of negative temperature anomalies in the surface waters, the heat transport across the OVIDE section estimated at 0.56 ± 0.06 PW was the largest measured since 2002. This relatively large value is related to the relatively strong Meridional Overturning Circulation measured across the OVIDE section during GEOVIDE (18.7 ± 3.0 Sv). By analyzing the air-sea heat and freshwater fluxes over the eastern SPNA in relation to the heat and freshwater content changes observed during 2013 and 2014, we concluded that on a short timescale these changes were mainly driven by air-sea heat and freshwater fluxes rather than by ocean circulation.

  10. Laurentide Ice Sheet meltwater and the Atlantic meridional overturning circulation since the last glacial maximum: A view from the Gulf of Mexico

    Science.gov (United States)

    Flower, B. P.; Williams, C.; Brown, E. A.; Hastings, D. W.; Hendricks, J.; Goddard, E. A.

    2010-12-01

    The influence of ice sheet meltwater on the Atlantic meridional overturning circulation (AMOC) since the last glacial maximum represents an important issue in abrupt climate change. Comparison of Greenland and Antarctic ice core records has revealed a complex interhemispheric linkage and led to different models of ocean circulation including the “bipolar seesaw.” Meltwater input from the Laurentide Ice Sheet has been invoked as a cause of proximal sea-surface temperature (SST) and salinity change in the North Atlantic, and of regional to global climate change via its influence on the AMOC. We present published and new Mg/Ca, Ba/Ca, and δ18O data on the planktic foraminifer Globigerinoides ruber from northern Gulf of Mexico sediment cores that provide detailed records of SST, δ18O of seawater (δ18Osw), and inferred salinity for the 20-8 ka interval. Age control for Orca Basin core MD02-2550 is based on >40 AMS 14C dates on Globigerinoides ruber and documents continuous sedimentation at rates >35 cm/kyr. Early meltwater input is inferred from δ18Osw and Ba/Ca data prior to and during the Mystery Interval, consistent with a high sensitivity to solar insolation and greenhouse forcing. New bulk sediment δ18O data show major spikes reaching -5.5‰ ca. 14.6 and 12.6 ka. We speculate that these excursions represent fine carbonate sediment from Canadian Paleozoic marine carbonates, analogous to detrital carbonate in the North Atlantic which has a δ18O value of -5‰. Partial support for our hypothesis comes from SEM photomicrographs of bulk sediment from this section, which show no coccoliths or foraminifera in contrast to other intervals. The biogenic carbonate flux seems to have been greatly reduced by fine sediment input. Inferred peak meltwater flow appears to have been associated with the Bolling warming and meltwater pulse 1a. Finally, meltwater reduction at the start of the Younger Dryas supports models for a diversion to North Atlantic outlets and AMOC

  11. Intraseasonal to Interannual Variability of the Atlantic Meridional Overturning Circulation from Eddy-Resolving Simulations and Observations

    Science.gov (United States)

    2014-08-12

    the Atantic Ocean, Int. WOCE News- lett., 40, 3–5. Lozier, M. S. (2010), Deconstructing the conveyor belt , Science, 328, 1507–1511, doi:10.1126...and interaction with the atmosphere, the AMOC plays a fundamental role in establishing the mean state and the variability of the climate system . The...and 15 years for the Atlantic), the 3 hourly, 0.5 Navy Operational Global Atmospheric Prediction System (NOGAPS) [Ros- mond et al., 2002] was used

  12. Meridional overturning circulation: stability and ocean feedbacks in a box model

    NARCIS (Netherlands)

    Cimatoribus, A.A.; Drijfhout, S.S.; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467

    2014-01-01

    A box model of the inter-hemispheric Atlantic meridional overturning circulation is developed, including a variable pycnocline depth for the tropical and subtropical regions. The circulation is forced by winds over a periodic channel in the south and by freshwater forcing at the surface. The model

  13. The Emergence of the Pacific Meridional Overturning Circulation (PMOC) Paced by Obliquity Cycles during the Pliocene

    Science.gov (United States)

    Burls, N.; Fedorov, A. V.; Sigman, D. M.; Jaccard, S.; Tiedemann, R.; Haug, G. H.

    2016-12-01

    Deep water formation in northern high latitudes, as part of the Atlantic meridional overturning circulation (AMOC), is a critical element of modern ocean circulation and climate. For the warm Pliocene, roughly 4 to 2.8 million years ago, we present measurements and modeling evidence that deep water formation also occurred in the North Pacific, supporting another overturning cell - the Pacific meridional overturning circulation (PMOC). The evidence includes calcium carbonate accumulation in Pliocene subarctic Pacific sediments rivaling that of the modern North Atlantic, with pigment, total organic carbon, and redox-sensitive trace metal measurements supporting deep ocean ventilation as the driver of the enhanced calcium carbonate preservation. Together with high accumulation rates of biogenic opal, this implies a bi-directional communication between surface waters and the waters overlying the deep seafloor, and hence deep convection. A Pliocene-like climate simulation reproduces this deep water formation, with co-occurring Atlantic and Pacific overturning cells. The PMOC emerges as a result of the less intense hydrological cycle under Pliocene conditions characterized by a reduced meridional SST gradient. This weaker hydrological cycle leads to the erosion of the North Pacific halocline, allowing deep convection. Examining the data in more detail shows that, while the opal accumulation rate was continuously high, maxima in calcium carbonate accumulation rate were sharp and intermittent. Most likely, these maxima occurred during Northern Hemisphere summer insolation maxima when, as supported by the modeling results, mid-latitude SSTs in the Northern Hemisphere were at a maximum and the meridional SST gradient was particularly weak. These findings suggest that the climate system fluctuated between periods of strong and weak PMOC during the Pliocene. Such fluctuations appear to be a crucial part of Pliocene climate variability on orbital timescales.

  14. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    NARCIS (Netherlands)

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; Van Den Broeke, M. R.

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW),

  15. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    Science.gov (United States)

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.

  16. A modeling sensitivity study of the influence of the Atlantic meridional overturning circulation on neodymium isotopic composition at the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    T. Arsouze

    2008-09-01

    Full Text Available Using a simple parameterisation that resolves the first order global Nd isotopic composition (hereafter expressed as εNd in an Ocean Global Circulation Model, we have tested the impact of different circulation scenarios on the εNd in the Atlantic for the Last Glacial Maximum (LGM, relative to a modern control run. Three different LGM freshwater forcing experiments are performed to test for variability in the εNd oceanic distribution as a function of ocean circulation. Highly distinct representations of the ocean circulation are generated in the three simulations, which drive significant differences in εNd, particularly in deep waters of the western part of the basin. However, at the LGM, the Atlantic is more radiogenic than in the modern control run, particularly in the Labrador basin and in the Southern Ocean. A fourth experiment shows that changes in Nd sources and bathymetry drive a shift in the εNd signature of the basin that is sufficient to explain the changes in the εNd signature of the northern end-member (NADW or GNAIW glacial equivalent in our LGM simulations. All three of our LGM circulation scenarios show good agreement with the existing intermediate depth εNd paleo-data. This study cannot indicate the likelihood of a given LGM oceanic circulation scenario, even if simulations with a prominent water mass of southern origin provide the most conclusive results. Instead, our modeling results highlight the need for more data from deep and bottom waters from western Atlantic, where the εNd change in the three LGM scenarios is the most important (up to 3 εNd. This would also aid more precise conclusions concerning the evolution of the northern end-member εNd signature, and thus the potential use of εNd as a tracer of past oceanic circulation.

  17. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale University

    2013-11-23

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  18. Interdecadal variability of the meridional overturning circulation as an ocean internal mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiuhua [Universitaet Hamburg, Meteorologisches Institut, Hamburg (Germany); Jungclaus, Johann [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2008-11-15

    The meridional overturning circulation (MOC) in the coupled ECHAM5/MPIOM exhibits variability at periods of near 30 years and near 60 years. The 30-year variability, referred to as interdecadal variability (IDV), exist in an ocean model driven by climatological atmospheric forcing, suggesting that it is maintained by ocean dynamics; the 60-year variability, the multidecadal variability (MDV), is only observed in the fully coupled model and therefore is interpreted as an atmosphere-ocean coupled mode. The coexistence of the 30-year IDV and the 60-year MDV provides a possible explanation for the widespread time scales observed in climate variables. Further analyses of the climatologically forced ocean model shows that, the IDV is related to the interplay between the horizontal temperature-dominated density gradients and the ocean circulation: temperature anomalies move along the cyclonic subpolar gyre leading to fluctuations in horizontal density gradients and the subsequent weakening and strengthening of the MOC. This result is consistent with that from less complex models, indicating the robustness of the IDV. We further show that, along the North Atlantic Current path, the sea surface temperature anomalies are determined by the slow LSW advection at the intermediate depth. (orig.)

  19. Chaotic variability of the meridional overturning circulation on subannual to interannual timescales

    Directory of Open Access Journals (Sweden)

    J. J.-M. Hirschi

    2013-09-01

    Full Text Available Observations and numerical simulations have shown that the meridional overturning circulation (MOC exhibits substantial variability on sub- to interannual timescales. This variability is not fully understood. In particular it is not known what fraction of the MOC variability is caused by processes such as mesoscale ocean eddies and waves which are ubiquitous in the ocean. Here we analyse twin experiments performed with a global ocean model at eddying (1/4° and non-eddying (1° resolutions. The twin experiments are forced with the same surface fluxes for the 1958 to 2001 period but start from different initial conditions. Our results show that on subannual to interannual timescales a large fraction of MOC variability directly reflects variability in the surface forcing. Nevertheless, in the eddy-permitting case there is an initial-condition-dependent MOC variability (hereinafter referred to as "chaotic" variability of several Sv (1Sv = 106 m3 s−1 in the Atlantic and the Indo-Pacific. In the Atlantic the chaotic MOC variability represents up to 30% of the total variability at the depths where the maximum MOC occurs. In comparison the chaotic MOC variability is only 5–10% in the non-eddying case. The surface forcing being almost identical in the twin experiments suggests that mesoscale ocean eddies are the most likely cause for the increased chaotic MOC variability in the eddying case. The exact formation time of eddies is determined by the initial conditions which are different in the two model passes, and as a consequence the mesoscale eddy field is decorrelated in the twin experiments. In regions where eddy activity is high in the eddy-permitting model, the correlation of sea surface height variability in the twin runs is close to zero. In the non-eddying case in contrast, we find high correlations (0.9 or higher over most regions. Looking at the sub- and interannual MOC components separately reveals that most of the chaotic MOC variability

  20. Asymmetric response of the Atlantic Meridional Ocean Circulation to freshwater anomalies in a strongly-eddying global ocean model

    NARCIS (Netherlands)

    Brunnabend, Sandra Esther|info:eu-repo/dai/nl/371740878; Dijkstra, Henk A.|info:eu-repo/dai/nl/073504467

    2017-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) responds sensitively to density changes in regions of deepwater formation. In this paper, we investigate the nonlinear response of the AMOC to large amplitude freshwater changes around Greenland using a strongly-eddying global ocean model. Due

  1. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation.

    Science.gov (United States)

    Yang, Qian; Dixon, Timothy H; Myers, Paul G; Bonin, Jennifer; Chambers, Don; van den Broeke, M R

    2016-01-22

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.

  2. South Atlantic meridional transports from NEMO-based simulations and reanalyses

    Science.gov (United States)

    Mignac, Davi; Ferreira, David; Haines, Keith

    2018-02-01

    The meridional heat transport (MHT) of the South Atlantic plays a key role in the global heat budget: it is the only equatorward basin-scale ocean heat transport and it sets the northward direction of the global cross-equatorial transport. Its strength and variability, however, are not well known. The South Atlantic transports are evaluated for four state-of-the-art global ocean reanalyses (ORAs) and two free-running models (FRMs) in the period 1997-2010. All products employ the Nucleus for European Modelling of the Oceans (NEMO) model, and the ORAs share very similar configurations. Very few previous works have looked at ocean circulation patterns in reanalysis products, but here we show that the ORA basin interior transports are consistently improved by the assimilated in situ and satellite observations relative to the FRMs, especially in the Argo period. The ORAs also exhibit systematically higher meridional transports than the FRMs, which is in closer agreement with observational estimates at 35 and 11° S. However, the data assimilation impact on the meridional transports still greatly varies among the ORAs, leading to differences up to ˜ 8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the MHTs, respectively. We narrow this down to large inter-product discrepancies in the western boundary currents (WBCs) at both upper and deep levels explaining up to ˜ 85 % of the inter-product differences in MHT. We show that meridional velocity differences, rather than temperature differences, in the WBCs drive ˜ 83 % of this MHT spread. These findings show that the present ocean observation network and data assimilation schemes can be used to consistently constrain the South Atlantic interior circulation but not the overturning component, which is dominated by the narrow western boundary currents. This will likely limit the effectiveness of ORA products for climate or decadal prediction studies.

  3. The North Atlantic Ocean Is in a State of Reduced Overturning

    Science.gov (United States)

    Smeed, D. A.; Josey, S. A.; Beaulieu, C.; Johns, W. E.; Moat, B. I.; Frajka-Williams, E.; Rayner, D.; Meinen, C. S.; Baringer, M. O.; Bryden, H. L.; McCarthy, G. D.

    2018-02-01

    The Atlantic Meridional Overturning Circulation (AMOC) is responsible for a variable and climatically important northward transport of heat. Using data from an array of instruments that span the Atlantic at 26°N, we show that the AMOC has been in a state of reduced overturning since 2008 as compared to 2004-2008. This change of AMOC state is concurrent with other changes in the North Atlantic such as a northward shift and broadening of the Gulf Stream and altered patterns of heat content and sea surface temperature. These changes resemble the response to a declining AMOC predicted by coupled climate models. Concurrent changes in air-sea fluxes close to the western boundary reveal that the changes in ocean heat transport and sea surface temperature have altered the pattern of ocean-atmosphere heat exchange over the North Atlantic. These results provide strong observational evidence that the AMOC is a major factor in decadal-scale variability of North Atlantic climate.

  4. Atlantic overturning responses to Late Pleistocene climate forcings.

    Science.gov (United States)

    Lisiecki, Lorraine E; Raymo, Maureen E; Curry, William B

    2008-11-06

    The factors driving glacial changes in ocean overturning circulation are not well understood. On the basis of a comparison of 20 climate variables over the past four glacial cycles, the SPECMAP project proposed that summer insolation at high northern latitudes (that is, Milankovitch forcing) drives the same sequence of ocean circulation and other climate responses over 100-kyr eccentricity cycles, 41-kyr obliquity cycles and 23-kyr precession cycles. SPECMAP analysed the circulation response at only a few sites in the Atlantic Ocean, however, and the phase of circulation response has been shown to vary by site and orbital band. Here we test the SPECMAP hypothesis by measuring the phase of orbital responses in benthic delta(13)C (a proxy indicator of ocean nutrient content) at 24 sites throughout the Atlantic over the past 425 kyr. On the basis of delta(13)C responses at 3,000-4,010 m water depth, we find that maxima in Milankovitch forcing are associated with greater mid-depth overturning in the obliquity band but less overturning in the precession band. This suggests that Atlantic overturning is strongly sensitive to factors beyond ice volume and summer insolation at high northern latitudes. A better understanding of these processes could lead to improvements in model estimates of overturning rates, which range from a 40 per cent increase to a 40 per cent decrease at the Last Glacial Maximum and a 10-50 per cent decrease over the next 140 yr in response to projected increases in atmospheric CO(2) (ref. 4).

  5. An Anthropogenic Radioisotope, Iodine 129, As A Tracer For Studying The Northern Limb of The Meridional Overturning Circulation (moc)

    Science.gov (United States)

    Gascard, J. C.; Raisbeck, G.; Yiou, F.; Sequeira, S.; Mork, K. A.

    A number of observations taken during the 1990s, seem to corroborate the fact that the northern limb of the Meridional Overturning Circulation (the so-called MOC), is undergoing large scale variability. Arctic Sea-Ice thinning, Overflows slackening, Labrador and Greenland Seas Deep Convection weakening, have recently been re- ported. Can this large scale variability be interpreted as a natural variability of the MOC or is it more related to global changes due to anthropogenic effects like green- house gases enhancing Global Warming at High Latitudes ? Iodine 129 resulting from reprocessing nuclear wastes at La Hague (France) and Sellafield (UK), has penetrated through all the various parts of the MOC from the Source: the Norwegian Coastal Current (NCC) collecting Iodine 129 from the North Sea, to the Sink: the Greenland- Iceland-Scotland Overflows and ultimately to the North Atlantic Deep Waters via the Deep Western Boundary Current. During recent years, discharges of Iodine 129 have increased drastically and peaks in Iodine 129 concentrations have already been ob- served all along the coast of Norway. In this talk, we will first present the most recent results showing the transfer of Iodine 129 through the various parts of the MOC from the NCC down to the North Atlantic Overflows (Denmark Strait), and second, explain how this results allow us to improve our understanding of the MOC system and in particular its variability. This is an important issue for improving reliability of actual numerical simulations of past, present and future behavior of the MOC, which has strong implications for climate related problems.

  6. The role of Meridional Overturning Circulation (MOC) on Ancient Climates and Implications for Anthropogenic Climate Change

    Science.gov (United States)

    Cumming, M.

    2017-12-01

    Our increasingly robust history of ancient climates indicates that high latitude glaciation is the ultimate product of an episodic cooling trend that began about 100-million years ago rather than a result of a yet-to-be identified modal change. Antarctic geography (continent surrounded by ocean) allowed ice to develop prior to significant glaciation in the Northern Hemisphere (ocean surrounded by land), but global ice volume generally increased as Earth cooled. The question of what caused the Ice Ages should be reframed as to "What caused the Cenozoic Cooling?" Records tell us that changes in temperature and CO2 levels rise and fall together, however it is not clear when CO2 acts as a driver versus when it is primarily an indicator of temperature change. The episodic nature of the cooling trend suggests other more dynamic phenomena are involved. It is proposed that oceanic meridional overturning circulation (MOC) plays a significant role in regulating Earth's surface temperature. Robust MOC has a cooling effect which results from its sequestration of cold waters (together with their increased heat-absorbing potential) below the surface. Unable to better absorb equatorial insolation for great lengths of time, oceanic deep waters are not able to fully compensate for the heat lost by warm-water transport to Polar Regions. A lag-time between cooling and subsequent warming yields lower operating temperatures commensurate with the strength of global MOC. The long-term decline in global temperatures is largely explained by the tectonic reshaping of ocean basins and the connections between them such that MOC has generally, but not uniformly, increased. Geophysically Influenced MOC (GIMOC) has caused a significant proportion of the lowering of global temperatures in the Cenozoic Era. Short-term disruptions in MOC (and subsequent impacts on global temperatures) were likely involved in Late Pleistocene glacial termination events and may already be compounding present

  7. Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy

    NARCIS (Netherlands)

    Weijer, W.; Ruijter, W.P.M. de; Sterl, A.; Drijfhout, S.

    2001-01-01

    The heat and salt input from the Indian to Atlantic Oceans by Agulhas Leakage is found to influence the Atlantic overturning circulation in a low-resolution Ocean General Circulation Model. The model used is the Hamburg Large-Scale Geostrophic (LSG) model, which is forced by mixed boundary

  8. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations

    Directory of Open Access Journals (Sweden)

    S. L. Weber

    2007-01-01

    Full Text Available This study analyses the response of the Atlantic meridional overturning circulation (AMOC to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40% during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%. It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW and North Atlantic Deep Water (NADW at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.

  9. Increased Drake Passage through-flow triggered abrupt re-invigoration of Atlantic Overturning Circulation during the last deglaciation

    Science.gov (United States)

    Roberts, J.; McCave, I. N. N.; McClymont, E.; Kender, S.; Hillenbrand, C. D.; Matano, R. P.; Hodell, D. A.; Peck, V. L.

    2016-12-01

    The position of Antarctic Circumpolar Current (ACC) fronts in the Drake Passage is important for the supply of low-density intermediate water into the Atlantic, and is thus key to the stability of Atlantic Meridional Overturning Circulation (AMOC). We examined changes in the position of ACC fronts by reconstructing flow speed and temperature in the Drake Passage over the last 25,000 years. A dramatic convergence of flow speeds and temperatures at the entrance and exit of Drake Passage 14,700 years ago indicates a significant southward shift of the sub-Antarctic Front from a position north of Drake Passage. The timing of this southward shift coincides with an abrupt re-invigoration of AMOC at the onset of the Bølling-Allerød. We argue that 14,700 years ago, a southward shift in the position of the ACC fronts relative to Drake Passage enabled low-density intermediate water to enter the Atlantic; this accentuated the meridional density gradient in the Atlantic causing an abrupt re-invigoration of AMOC.

  10. Mechanisms of meridional transport processes in the tropical Atlantic; Mechanismen meridionaler Transportprozesse im tropischen Atlantik

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, J.

    2001-07-01

    Meridional transport processes of water masses and tracers in the subtropical and tropical Atlantic are investigated using a regional eddy resolving model of the wind driven and thermohaline circulation. Analytical emphasis is on float simulations in the model which, complementary to Eulerian means, represent the Lagrangian view and give further insight into the spreading and pathways of characteristic water masses in this area. In the tropics and subtropics shallow 3-dimensional circulation cells are superimposed on the northward warm water transfer within the deep reaching thermohaline overturning cell (MOC) as part of the global ''Conveyor Belt''. Under present-day climate conditions the model shows that the equatorial thermocline is exclusively ventilated by subsurface flow within the tropical-subtropical cell (STC) of the South Atlantic. Only with a prescribed ''Conveyor-off''-Mode the STC of the North Atlantic contributes to this ventilation process with equal amounts. Throughout the year the interhemispheric transport of surface and central water masses of South Atlantic origin into the Caribbean Sea is dominated by zonal detours to the east as a consequence of the interplay of several retroflection events occuring in the North Atlantic. The eulerian mean flow field in the deep layer postulates the interhemispheric mass transport into the South Atlantic to be confined entirely to the western boundary, whereas Lagrangian means indicate intermittent eastward excursions along the equator, related to seasonally alternating zonal currents due to long Rossby waves. It was suggested that the observed characteristic eastward maximum of tracer concentrations along the equator is a consequence of rectifying effects of single or interacting equatorial waves. The model does not validate this hypothesis. The response to transport anomalies of subpolar origin and long periodicity is subject to different time-scales in both

  11. Impact of interocean exchange on the Atlantic overturning circulation

    NARCIS (Netherlands)

    Weijer, W.

    2000-01-01

    The awareness that human activity could change climate has greatly raised public and scientific interest in climate. One issue of present-day climate research is the stability of the thermohaline circulation. This overturning circulation, popularly known as the `conveyor belt', redistributes

  12. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years.

    Science.gov (United States)

    Thornalley, David J R; Oppo, Delia W; Ortega, Pablo; Robson, Jon I; Brierley, Chris M; Davis, Renee; Hall, Ian R; Moffa-Sanchez, Paola; Rose, Neil L; Spooner, Peter T; Yashayaev, Igor; Keigwin, Lloyd D

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle 1, 2 . The AMOC has been shown to be weakening in recent years 1 ; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC 1, 3-5 . Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA-sourced from melting glaciers and thickened sea ice that developed earlier in the LIA-weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet 6 . Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here.

  13. Stability of the Atlantic overturning circulation: competition between Bering Strait freshwater flux and Agulhas heat and salt sources

    NARCIS (Netherlands)

    Weijer, W.; Ruijter, W.P.M. de; Dijkstra, H.A.

    2000-01-01

    In this study we examine the role that is played by interocean fluxes of buoyancy in stabilizing the present-day overturning circulation of the Atlantic Ocean. A 2D model of the Atlantic overturning circulation is used, in which the interocean fluxes of heat and salt (via the Bering Strait, the

  14. Effect of Interactive River Routing on North Atlantic Overturning in a Simulation of the last Deglaciation

    Science.gov (United States)

    Mikolajewicz, Uwe; Ziemen, Florian; Kapsch, Marie; Meccia, Virna

    2017-04-01

    One of the major challenges in climate modeling is the simulation of glacial-interglacial transitions. A few models of intermediate complexity have been successful in simulating the last termination. Complex atmosphere-ocean general circulation models (AOGCMs) with prescribed ice sheets are able to yield realistic climate changes. Here we present results from our first attempt to simulate a substantial part of the last glacial cycle with an AOGCM coupled interactively with a state-of-the-art ice sheet model. The ECHAM5/MPIOM AOGCM is interactively coupled to the dynamical ice sheet model PISM and the dynamical vegetation model LPJ. The model is integrated from the late Glacial into the Holocene using insolation and greenhouse gas concentrations as transient forcing. To make the long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other components using a periodical-synchronous coupling technique. The land sea mask remains fixed at the LGM state. River routing and surface elevation are calculated interactively. A mini-ensemble with different initial conditions is performed. Additionally, one fully synchronously simulation, without acceleration in the atmosphere, is run. In all simulations the northern hemisphere deglaciation starts between 18 and 17 kyr BP, consistent with the onset of global warming. The model produces Heinrich event like variability. These rapid ice discharge events have a strong impact on the North Atlantic meridional overturning circulation (NAMOC). The interactive river routing has a strong impact on the simulated NAMOC during the deglaciation. The retreat of the Laurentide Ice Sheet together with the depressed topography due to the former ice load leads to a redirection of the river routes.. In particular, the discharge route for runoff from the melting southwestern Laurentide shifts from the Gulf of Mexico to the Arctic. The consequence is a rapid reduction/suppression of the North Atlantic deep water

  15. Impact of interbasin exchange on the Atlantic overturning circulation

    NARCIS (Netherlands)

    Weijer, W.; Ruijter, W.P.M. de; Dijkstra, H.A.; Leeuwen, P.J. van

    2000-01-01

    The thermohaline exchange between the Atlantic and the Southern Ocean is analyzed, using a data set based on WOCE hydrographic data. It is shown that the salt and heat transports brought about by the South Atlantic subtropical gyre play an essential role in the Atlantic heat and salt budgets. It

  16. Sensitivity of North Atlantic subpolar gyre and overturning to stratification-dependent mixing: response to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Marzeion, Ben [Massachusetts Institute of Technology, EAPS, Cambridge, MA (United States); Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research, Bergen (Norway); University of Innsbruck, Tropical Glaciology Group, Institute of Geography, Innsbruck (Austria); Levermann, Anders [Potsdam University, Earth System Analysis, Potsdam Institute for Climate Impact Research and Institute of Physics, Potsdam (Germany); Mignot, Juliette [Universite Pierre et Marie Curie, LOCEAN, Paris (France)

    2010-04-15

    We use a reduced complexity climate model with a three-dimensional ocean component and realistic topography to investigate the effect of stratification-dependent mixing on the sensitivity of the North Atlantic subpolar gyre (SPG), and the Atlantic meridional overturning circulation (AMOC), to idealized CO{sub 2} increase and peaking scenarios. The vertical diffusivity of the ocean interior is parameterized as {kappa} {proportional_to} N {sup -{alpha}}, where N is the local buoyancy frequency. For all parameter values 0 {<=} {alpha} {<=} 3, we find the SPG, and subsequently the AMOC, to weaken in response to increasing CO{sub 2} concentrations. The weakening is significantly stronger for {alpha} {>=} {alpha}{sub cr} {approx} 1.5. Depending on the value of {alpha}, two separate model states develop. These states remain different after the CO{sub 2} concentration is stabilized, and in some cases even after the CO{sub 2} concentration has been decreased again to the pre-industrial level. This behaviour is explained by a positive feedback between stratification and mixing anomalies in the Nordic Seas, causing a persistent weakening of the SPG. (orig.)

  17. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT)

    Science.gov (United States)

    Baker, Alex R.; Jickells, Tim D.

    2017-11-01

    We briefly review the role of atmospheric deposition measurements within the Atlantic Meridional Transect (AMT) programme and then go on to present new data on the soluble concentrations of a range of trace metals (Fe, Al, Mn, Ti, Zn, V, Ni and Cu) and major ions in aerosols collected along the AMT transect. The results allow us to identify emission sources of the trace metals particularly in terms of the relative importance of anthropogenic versus crustal sources. We identify strong gradients in concentrations and deposition for both crustal and anthropogenically sourced metals with much higher inputs to the North Atlantic compared to the South Atlantic, reflecting stronger land based emission sources in the Northern Hemisphere. We suggest anthropogenic sources of Ni and V may include an important component from shipping. We consider the extent to which these gradients are reflected in surface water concentrations of these metals based on the GEOTRACES water column trace metal data. We find there is a clear difference in the concentrations of surface water dissolved Al and Fe between the north and south Atlantic gyres reflecting atmospheric inputs. However for Mn, V or Ni, higher inputs to the North Atlantic compared to the South Atlantic are not clearly reflected in their water column concentrations.

  18. An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958-2007 in a suite of interannual CORE-II simulations

    Science.gov (United States)

    Farneti, Riccardo; Downes, Stephanie M.; Griffies, Stephen M.; Marsland, Simon J.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Böning, Claus; Bozec, Alexandra; Canuto, Vittorio M.; Chassignet, Eric; Danabasoglu, Gokhan; Danilov, Sergey; Diansky, Nikolay; Drange, Helge; Fogli, Pier Giuseppe; Gusev, Anatoly; Hallberg, Robert W.; Howard, Armando; Ilicak, Mehmet; Jung, Thomas; Kelley, Maxwell; Large, William G.; Leboissetier, Anthony; Long, Matthew; Lu, Jianhua; Masina, Simona; Mishra, Akhilesh; Navarra, Antonio; George Nurser, A. J.; Patara, Lavinia; Samuels, Bonita L.; Sidorenko, Dmitry; Tsujino, Hiroyuki; Uotila, Petteri; Wang, Qiang; Yeager, Steve G.

    2015-09-01

    In the framework of the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II), we present an analysis of the representation of the Antarctic Circumpolar Current (ACC) and Southern Ocean meridional overturning circulation (MOC) in a suite of seventeen global ocean-sea ice models. We focus on the mean, variability and trends of both the ACC and MOC over the 1958-2007 period, and discuss their relationship with the surface forcing. We aim to quantify the degree of eddy saturation and eddy compensation in the models participating in CORE-II, and compare our results with available observations, previous fine-resolution numerical studies and theoretical constraints. Most models show weak ACC transport sensitivity to changes in forcing during the past five decades, and they can be considered to be in an eddy saturated regime. Larger contrasts arise when considering MOC trends, with a majority of models exhibiting significant strengthening of the MOC during the late 20th and early 21st century. Only a few models show a relatively small sensitivity to forcing changes, responding with an intensified eddy-induced circulation that provides some degree of eddy compensation, while still showing considerable decadal trends. Both ACC and MOC interannual variabilities are largely controlled by the Southern Annular Mode (SAM). Based on these results, models are clustered into two groups. Models with constant or two-dimensional (horizontal) specification of the eddy-induced advection coefficient κ show larger ocean interior decadal trends, larger ACC transport decadal trends and no eddy compensation in the MOC. Eddy-permitting models or models with a three-dimensional time varying κ show smaller changes in isopycnal slopes and associated ACC trends, and partial eddy compensation. As previously argued, a constant in time or space κ is responsible for a poor representation of mesoscale eddy effects and cannot properly simulate the sensitivity of the ACC and MOC

  19. Oxygen variability and meridional oxygen supply in the tropical North East Atlantic oxygen minimum zone

    Science.gov (United States)

    Hahn, Johannes; Brandt, Peter; Greatbatch, Richard J.; Krahmann, Gerd; Körtzinger, Arne

    2013-04-01

    The oxygen minimum zone (OMZ) of the tropical North East Atlantic (TNEA) is located between the oxygen-rich equatorial region and the Cape Verde Frontal Zone at about 20°N in a depth range of 300 - 700 m. Its horizontal extent is predominantly defined by the North Equatorial Current and by the equatorial zonal current system ventilating the region to the north and south of the OMZ, respectively. The interior of the OMZ is characterized by a sluggish flow regime, where mesoscale eddies play a major role in the ventilation. In this study we focus on the oxygen variability in the TNEA as well as the eddy driven lateral ventilation of the TNEA OMZ across its southern boundary. During recent years an intense measurement program was executed along 23°W cutting meridionally through the TNEA OMZ. Hydrographic and velocity data has been acquired from ship sections and moorings, together covering the latitude range between 6°S and 14°N with particularly high meridional resolution of shipboard and high temporal resolution of moored observations. Based on shipboard data we derived a meridional section of oxygen variance, which reveals numerous local maxima of oxygen variability. Exemplary, strong oxygen variability is observed at the upper (300m, 5° - 12°N) and the southern boundary (400m - 700m, 5°N - 8°N) of the OMZ, whereas the interior of the OMZ is characterized by weak variability. An application of the extended Osborn-Cox model shows that the strong oxygen variability at the southern boundary is mainly generated by mesoscale eddies. The strong variability at the upper boundary is generated by mesoscale eddies as well as microscale turbulence. We apply two methods to estimate the meridional oxygen flux: 1) a flux gradient parameterization and 2) a correlation of oxygen and velocity mooring time series. From the analysis of the 5°N mooring data we find a northward oxygen flux directed towards the OMZ at its core depth, that is mainly due to variability of

  20. An optimally tuned ensemble of the "eb_go_gs" configuration of GENIE: parameter sensitivity and bifurcations in the Atlantic overturning circulation

    Directory of Open Access Journals (Sweden)

    R. Marsh

    2013-10-01

    Full Text Available The key physical parameters for the "eb_go_gs" configuration of version 2.7.4 of GENIE, an Earth system model of intermediate complexity (EMIC, are tuned using a multi-objective genetic algorithm. An ensemble of 90 parameter sets is tuned using two ocean and two atmospheric state variables as targets. These are "Pareto-optimal", representing a range of trade-offs between the four tuning targets. For the leading five parameter sets, simulations are evaluated alongside a simulation with untuned "default" parameters, comparing selected variables and diagnostics that describe the state of the atmosphere, ocean and sea ice. Further experiments are undertaken with these selected parameter sets to compare equilibrium climate sensitivities and transient climate responses. The pattern of warming under doubled CO2 is strongly shaped by changes in the Atlantic meridional overturning circulation (AMOC, while the pattern and rate of warming under rising CO2 is closely linked to changing sea ice extent. One of the five tuned parameter sets is identified as marginally optimal, and the objective function (error landscape is further analysed in the vicinity of the tuned values of this parameter set. "Cliffs" along some dimensions motivate closer inspection of corresponding variations in the AMOC. This reveals that bifurcations in the AMOC are highly sensitive to parameters that are not typically associated with MOC stability. Specifically, the state of the AMOC is sensitive to parameters governing the wind-driven circulation and atmospheric heat transport. For the GENIE configuration presented here, the marginally optimal parameter set is recommended for single simulations, although the leading five parameter sets may be used in ensemble mode to admit a constrained degree of parametric uncertainty in climate prediction.

  1. Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995-2013); evidence of ocean acidification

    Science.gov (United States)

    Kitidis, Vassilis; Brown, Ian; Hardman-Mountford, Nicholas; Lefèvre, Nathalie

    2017-11-01

    Here we present more than 21,000 observations of carbon dioxide fugacity in air and seawater (fCO2) along the Atlantic Meridional Transect (AMT) programme for the period 1995-2013. Our dataset consists of 11 southbound and 2 northbound cruises in boreal autumn and spring respectively. Our paper is primarily focused on change in the surface-ocean carbonate system during southbound cruises. We used observed fCO2 and total alkalinity (TA), derived from salinity and temperature, to estimate dissolved inorganic carbon (DIC) and pH (total scale). Using this approach, estimated pH was consistent with spectrophotometric measurements carried out on 3 of our cruises. The AMT cruises transect a range of biogeographic provinces where surface Chlorophyll-α spans two orders of magnitude (mesotrophic high latitudes to oligotrophic subtropical gyres). We found that surface Chlorophyll-α was negatively correlated with fCO2, but that the deep chlorophyll maximum was not a controlling variable for fCO2. Our data show clear evidence of ocean acidification across 100° of latitude in the Atlantic Ocean. Over the period 1995-2013 we estimated annual rates of change in: (a) sea surface temperature of 0.01 ± 0.05 °C, (b) seawater fCO2 of 1.44 ± 0.84 μatm, (c) DIC of 0.87 ± 1.02 μmol per kg and (d) pH of -0.0013 ± 0.0009 units. Monte Carlo simulations propagating the respective analytical uncertainties showed that the latter were < 5% of the observed trends. Seawater fCO2 increased at the same rate as atmospheric CO2.

  2. Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: New perspectives from the Atlantic meridional transect (AMT) programme

    Science.gov (United States)

    Poulton, Alex J.; Holligan, Patrick M.; Charalampopoulou, Anastasia; Adey, Tim R.

    2017-11-01

    Coccolithophore species composition was determined in 199 samples collected from the upper 300 m of the Atlantic Ocean, spanning temperate, tropical and subtropical waters in both hemispheres during four Atlantic Meridional Transect (AMT) cruises over the period 2003-2005. Of the 171 taxa observed, 140 consistently represented column, horizontally across hydrographic provinces (subtropical gyres, equatorial waters, temperate waters), and temporally between cruises. Sharper gradients of statistical dissimilarity in species composition occurred vertically over a few tens of metres than horizontally over hundreds of kilometres. Three floral groups were identified from analysis of the depth of normalised abundance maxima in the subtropical gyres and equatorial waters: the upper euphotic zone (UEZ, >10% surface irradiance); the lower euphotic zone (LEZ, 10-1% surface irradiance); and the sub-euphotic zone (SEZ, conditions between the LEZ and temperate waters. The SEZ is below the depth where light is thought to be sufficient to support photosynthesis, suggesting that deep-dwelling species such as Florisphaera profunda and Gladiolithus spp. may be mixotrophic or phagotrophic, although conclusive proof will need to be gained experimentally. Mixotrophy could also be an important nutritional strategy for species abundant (Umbellosphaera spp., holococcolithophores) in the UEZ where inorganic nutrient concentrations are depleted and limiting to growth, although other nutritional strategies, such as the use of organic nutrients, are also possible. Statistical differences were also found in the species composition between the different cruises, with high levels of similarity for similar timed cruises (May or September-October). Few individual taxa showed significant variability in abundance over the time-span of sampling, except species such as E. huxleyi and G. ericsonii at higher latitudes. In subtropical and equatorial waters, high levels of species richness and low levels

  3. The Atlantic Meridional Transect: Spatially Extensive Calibration and Validation of Optical Properties and Remotely Sensed Measurements of Ocean Colour

    Science.gov (United States)

    Aiken, James; Hooker, Stanford

    1997-01-01

    Twice a year, the Royal Research Ship (RRS) James Clark Ross (JCR) steams a meridional transect of the atlantic Ocean between Grimsly (UK) and Stanley (Falkland Islands) with a port call in Montevideo (Uruguay), as part of the annual research activities of the British Antarctic Survey (BAS). In September, the JCR sails from the UK, and the following April it makes the return trip. The ship is operated by the BAS for the Natural Environment Research Council (NERC). The Atlantic Meridional Transect (AMT) Program exploits the passage of the JCR from approximately 50 deg. N to 50 deg. S with a primary objective to investigate physical and biological processes, as well as to measure the mesi-to-basin-scale bio-optical properties of the atlantic Ocean. The calibration and validation of remotely sensed observations of ocean colour is an inherent objective of these studies: first, by relating in situ measurements of water leaving radiance to satellite measurement, and second, by measuring the bio-optically active constituents of the water.

  4. Impact of the new equation of state of seawater (TEOS-10) on the estimates of water mass mixture and meridional transport in the Atlantic Ocean

    Science.gov (United States)

    Almeida, Lucas; de Azevedo, José Luiz Lima; Kerr, Rodrigo; Araujo, Moacyr; Mata, Mauricio M.

    2018-03-01

    The equation of state of seawater (EOS) provides a simple way to link the properties of seawater that are the most important for ocean dynamics and the ocean-atmosphere climate system. In 2010, the set of equations used to derive all thermodynamic properties of seawater were updated using a thermodynamic approach. The new approach, named TEOS-10, results in better estimates of seawater properties, such as salinity and temperature, when compared to the previous EOS version (EOS-80). Since several physical processes in the oceans are driven by these properties, improvements in the EOS performance are expected to lead to a better and more realistic representation of the ocean. This work focuses on assessing the main differences of the: (i) contribution of water masses to a total mixture, (ii) baroclinic velocity, and (iii) volume and heat transport, as calculated by the EOS-80 and by the TEOS-10, along four zonal transects at 26.5°N, 10°N, 11°S, and 34.5°S in the Atlantic Ocean. The density differences (always between TEOS-10 and EOS-80) increase with depth and hence the results indicate that the most significant difference in the water mass contributions was found for Antarctic Bottom Water. Within that layer, the differences reach up to 10% on its fraction of the mixture when calculated by the TEOS-10, although the difference in the North Atlantic Deep Water contribution was not negligible either. The estimated baroclinic velocities showed considerable differences in all studied areas, being more significant over boundary current systems. The Gulf Stream presented lower velocity, while the Brazil Current presented increasing velocity when using TEOS-10. The comparison between values computed for volume transported by the Atlantic Meridional Overturning Circulation showed a total difference of about +6%, which cannot be neglected when considering the space and time variability involved. The heat transport showed significant differences in the study areas at the

  5. How does Atlantic Multi-decadal Overturning Circulation modulate Tropical circulation and preciptation responses to global warming ?

    Science.gov (United States)

    Vial, Jessica; Codron, Francis; Cassou, Christophe; Bony, Sandrine

    2017-04-01

    Tropical precipitation response to global warming remains highly uncertain. Most of the uncertainty is attributed to inter-model spread in atmospheric circulation changes. Model diversity in tropical circulation response has been traced further to differences in Tropical surface warming patterns, and in particular to the location of the maximum increase in the Equatorial Pacific. The involved mechanisms point to the importance of ocean-atmosphere interactions assessed through several process metrics. Here, we investigate the role of the Atlantic Multi-decadal Overturning Circulation (AMOC) in the response of the Tropical circulation to increased greenhouse gazes concentration. AMOC has been shown to affect the global Tropics, including the Equatorial surface warming pattern through atmospheric bridges across Central and/or North America. We use two ensembles of the coupled (ocean-atmosphere) CNRM-CM5 climate model that differ from their mean AMOC and apply an abrupt doubling CO2 concentration in both cases. Beyond the modulation role of AMOC in the Tropical circulation and precipitation changes, we show that AMOC has a potential effect on the estimation of the climate sensitivity of the model.

  6. A record of the last 460 thousand years of upper ocean stratification from the central Walvis Ridge, South Atlantic

    NARCIS (Netherlands)

    Scussolini, P.; Peeters, F.J.C.

    2013-01-01

    The upper branch of the Atlantic Meridional Overturning Circulation predominantly enters the Atlantic Ocean through the southeast, where the subtropical gyre is exposed to the influence of the Agulhas leakage (AL). To understand how the transfer of Indian Ocean waters via the AL affected the upper

  7. On the Currents and Transports Connected with the Atlantic Meridional Overtuning Circulation in the Subpolar North Atlantic

    Science.gov (United States)

    2013-08-14

    conveyor belt , Science, 328, 1507–1511. Lumpkin, R., K. G. Speer, and K. P. Koltermann (2008), Transport across 48N in the Atlantic Ocean, J. Phys...Fleet Numerical Meteorology and Oceanography Center 3 hourly, 0.5 Navy Operational Global Atmo- spheric Prediction System (NOGAPS [Rosmond et al...Smith (2007), Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system

  8. Natural Surfactant Enrichments in the Atlantic Ocean Between 50°N and 50°S: Data from the Atlantic Meridional Transect, Oct-Nov 2014

    Science.gov (United States)

    Sabbaghzadeh, B.; Upstill-Goddard, R. C.; Nightingale, P. D.; Beale, R.

    2016-02-01

    Surfactants that decrease air-sea gas exchange by suppressing the gas transfer velocity (kw) show variable enrichments in the sea surface microlayer (SML) relative to the underlying water. This reflects variability in the rates of surfactant production and consumption. Total surfactant activity (SA: equivalent to Triton-X-100, mgL -1) was determined daily between the UK and the Falkland Islands, during cruise 24 of the Atlantic Meridional Transect programme (AMT 24). Samples were simultaneously obtained from the SML (Garrett screen), from the ship's underway system (inlet at 7m) and in hydrocasts to 500m. SA analysis was by hanging mercury drop electrode polarography (Metrohm 797 VA Computrace). SA enrichment factors (EF: SML SA / underlying water SA) >1 were observed at most locations, showing the SML to be consistently SA-enriched along the entire cruise transect. The persistence of these enrichments up to wind speeds 12m s-¹ support previous conclusions regarding the stability of the SML under high winds. More specifically, SA in the SML was up to four-fold higher in the Atlantic Northern Hemisphere than in the Atlantic Southern Hemisphere. Even so, EF values were not significantly different between the two hemispheres (p >0.05). These various findings have potentially important implications for kw variability across ocean basin scales.

  9. Salt exchange in the Indian-Atlantic Ocean Gateway since the Last Glacial Maximum : A compensating effect between Agulhas Current changes and salinity variations?

    NARCIS (Netherlands)

    Simon, Margit H.; Gong, Xun; Hall, Ian R.; Ziegler, Martin; Barker, Stephen; Knorr, Gregor; van der Meer, Marcel T J; Kasper, Sebastian; Schouten, Stefan

    2015-01-01

    The import of relatively salty water masses from the Indian Ocean to the Atlantic is considered to be important for the operational mode of the Atlantic Meridional Overturning Circulation (AMOC). However, the occurrence and the origin of changes in this import behavior on millennial and

  10. Salt exchange in the Indian-Atlantic Ocean Gateway since the Last Glacial Maximum: A compensating effect between Agulhas Current changes and salinity variations?

    NARCIS (Netherlands)

    Simon, M.H.; Gong, X.; Hall, I.R.; Ziegler, M.; Barker, S.; Knorr, G.; van der Meer, M.T.J.; Kasper, S.; Schouten, S.

    2015-01-01

    The import of relatively salty water masses from the Indian Ocean to the Atlantic is considered to be important for the operational mode of the Atlantic Meridional Overturning Circulation (AMOC). However, the occurrence and the origin of changes in this import behavior on millennial and

  11. Meridional patterns of inorganic nutrient limitation and co-limitation of bacterial growth in the Atlantic Ocean

    Science.gov (United States)

    Hale, Michelle S.; Li, William K. W.; Rivkin, Richard B.

    2017-11-01

    Growth of heterotrophic bacteria is generally considered to be controlled by temperature and the availability of organic substrates, however there is evidence that bacterial growth can also be limited by the concentrations or supply rate of inorganic nutrients (i.e. nitrogen, phosphorus or iron). We examined spatial and seasonal patterns of organic carbon and inorganic nutrient (N and P) limitation of bacterial growth along each of two meridional transects through the Atlantic Ocean, during contrasting seasons. Here we used nutrient bioassays to demonstrate widespread inorganic nutrient limitation and co-limitation with organic carbon in the oligotrophic temperate, tropical and subtropical ocean. There were distinct seasonal and spatial differences in the inorganic and organic nutrient limitation of bacterial growth, with inorganic nitrogen as the primary limiting nutrient in May/June, and inorganic nitrogen and organic carbon co-limiting growth in October/November. There was no evidence that the availability of inorganic phosphorus limited bacterial growth in the Southern Hemisphere. We propose that the patterns of nutrient-dependent bacterial growth reflect seasonal and spatial differences in aeolian inputs and the quality of dissolved organic matter, and that bacteria directly compete with autotrophs for inorganic nutrients in the oligotrophic regions of the World Ocean. The findings of this study have important implications for understanding the balance between the biological and microbial carbon pumps, and the modelling of the net metabolic balance of the Ocean in response to climate-driven changes in nutrient inputs.

  12. Atlantic deep-water response to the Early Pliocene shoaling of the Central American seaway

    NARCIS (Netherlands)

    Bell, David B.; Jung, Simon J A; Kroon, Dick; Hodell, David A.; Lourens, Lucas J.; Raymo, Maureen E.

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7–4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the

  13. Coupling of equatorial Atlantic surface stratification to glacial shifts in the tropical rainbelt.

    Science.gov (United States)

    Portilho-Ramos, R C; Chiessi, C M; Zhang, Y; Mulitza, S; Kucera, M; Siccha, M; Prange, M; Paul, A

    2017-05-08

    The modern state of the Atlantic meridional overturning circulation promotes a northerly maximum of tropical rainfall associated with the Intertropical Convergence Zone (ITCZ). For continental regions, abrupt millennial-scale meridional shifts of this rainbelt are well documented, but the behavior of its oceanic counterpart is unclear due the lack of a robust proxy and high temporal resolution records. Here we show that the Atlantic ITCZ leaves a distinct signature in planktonic foraminifera assemblages. We applied this proxy to investigate the history of the Atlantic ITCZ for the last 30,000 years based on two high temporal resolution records from the western Atlantic Ocean. Our reconstruction indicates that the shallowest mixed layer associated with the Atlantic ITCZ unambiguously shifted meridionally in response to changes in the strength of the Atlantic meridional overturning with a southward displacement during Heinrich Stadials 2-1 and the Younger Dryas. We conclude that the Atlantic ITCZ was located at ca. 1°S (ca. 5° to the south of its modern annual mean position) during Heinrich Stadial 1. This supports a previous hypothesis, which postulates a southern hemisphere position of the oceanic ITCZ during climatic states with substantially reduced or absent cross-equatorial oceanic meridional heat transport.

  14. Sensitivity of the Antarctic Circumpolar Current transport to surface buoyancy conditions in the North Atlantic

    Science.gov (United States)

    Sun, Shantong; Liu, Jinliang

    2017-10-01

    The sensitivity of the Antarctic Circumpolar Current (ACC) transport to surface buoyancy conditions in the North Atlantic is investigated using a sector configuration of an ocean general circulation model. We find that the sensitivity of the ACC transport is significantly weaker than previous studies. We attribute this difference to the different depth of the simulated Atlantic Meridional Overturning Circulation. Because a fast restoring buoyancy boundary condition is used that strongly constrains the surface buoyancy structure at the Southern Ocean surface, the ACC transport is determined by the isopycnal slope that is coupled to the overturning circulation in the Southern Ocean. By changing the surface buoyancy in the North Atlantic, the shared buoyancy contour between the North Atlantic and the Southern Ocean is varied, and consequently the strength of the overturning circulation is modified. For different depth of the simulated overturning circulation, the response of the ACC transport to changes in the strength of the overturning circulation varies substantially. This is illustrated in two conceptual models based on the residual-mean theory of overturning circulation. Our results imply that the sensitivity of the ACC transport to surface forcing in the North Atlantic could vary substantially in different models depending on the simulated vertical structure of the overturning circulation.

  15. Digamacris n. gen. (Orthoptera, Acrididae, Melanoplinae de la region atlantica meridional de Brasil Digamacris n. gen. (Orthoptera, Acrididae, Melanoplinae from the Atlantic Meridional region of Brazil

    Directory of Open Access Journals (Sweden)

    Carlos S. Carbonell

    1989-01-01

    Full Text Available Digamacris, a new genus of the Dichroplini (Acrididae, Melanoplinae is described for the species Pezotettix amoenus Stal, 1878 and Dichroplus fratemus Carl, 1916, both included at present in the genus Dichroplus. These species live in edges and clearings of the Atlantic Forest (Mata Atlantica of Brazil. D. fratemus is found in the states of Minas Gerais, Espirito Santo and Rio de Janeiro east of the Bay of Guanabara. D. amoenus in the state of Rio de Janeiro W. of the Bay of Guanabara and in the coastal area of the state of São Paulo. The species are illustrated and redescribed. Both have two neatly different chromatic forms of females, while the males are uniform in coloration and closely correspond with one of the female forms.

  16. North Atlantic climate model bias influence on multiyear predictability

    Science.gov (United States)

    Wu, Y.; Park, T.; Park, W.; Latif, M.

    2018-01-01

    The influences of North Atlantic biases on multiyear predictability of unforced surface air temperature (SAT) variability are examined in the Kiel Climate Model (KCM). By employing a freshwater flux correction over the North Atlantic to the model, which strongly alleviates both North Atlantic sea surface salinity (SSS) and sea surface temperature (SST) biases, the freshwater flux-corrected integration depicts significantly enhanced multiyear SAT predictability in the North Atlantic sector in comparison to the uncorrected one. The enhanced SAT predictability in the corrected integration is due to a stronger and more variable Atlantic Meridional Overturning Circulation (AMOC) and its enhanced influence on North Atlantic SST. Results obtained from preindustrial control integrations of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: models with large North Atlantic biases tend to have a weak AMOC influence on SAT and exhibit a smaller SAT predictability over the North Atlantic sector.

  17. A modelling study of the Bjerknes compensation in the meridional heat transport in a freshening ocean

    Directory of Open Access Journals (Sweden)

    Haijun Yang

    2013-05-01

    Full Text Available The compensation between the meridional heat transports in the atmosphere and ocean is studied through a coupled model's water-hosing experiments. It is found that the atmospheric heat transport (AHT change compensates the oceanic heat transport (OHT change very well in the extratropics, while the former over-compensates the latter in the tropics. Similar to previous studies, the fresh water input in the high latitude Atlantic weakens the Atlantic meridional overturning circulation and thus the northward Atlantic OHT significantly, leading to a warming (cooling in sea surface temperature in the Southern (Northern Hemisphere and in turn a southward shift of atmospheric convection. This results in an enhanced Hadley Cell (HC and stronger northward AHT, compensating the reduced Atlantic OHT. Meanwhile, the wind-driven Subtropical Cell in the Indo-Pacific oceans is enhanced in response to the HC change, increasing the northward OHT in the Indo-Pacific, which partly offsets the reduced OHT in the Atlantic. The response in the Indo-Pacific is responsible for the overcompensation of the AHT to the global OHT. The Held's mechanism works very well in the tropical Indo-Pacific in our experiments. This is substantially different from previous studies.

  18. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.

    Science.gov (United States)

    Golledge, N R; Menviel, L; Carter, L; Fogwill, C J; England, M H; Cortese, G; Levy, R H

    2014-09-29

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  19. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    Science.gov (United States)

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. Copyright © 2016, American Association for the Advancement of Science.

  20. Paleoceanography. Onset of Mediterranean outflow into the North Atlantic.

    Science.gov (United States)

    Hernández-Molina, F Javier; Stow, Dorrik A V; Alvarez-Zarikian, Carlos A; Acton, Gary; Bahr, André; Balestra, Barbara; Ducassou, Emmanuelle; Flood, Roger; Flores, José-Abel; Furota, Satoshi; Grunert, Patrick; Hodell, David; Jimenez-Espejo, Francisco; Kim, Jin Kyoung; Krissek, Lawrence; Kuroda, Junichiro; Li, Baohua; Llave, Estefania; Lofi, Johanna; Lourens, Lucas; Miller, Madeline; Nanayama, Futoshi; Nishida, Naohisa; Richter, Carl; Roque, Cristina; Pereira, Hélder; Sanchez Goñi, Maria Fernanda; Sierro, Francisco J; Singh, Arun Deo; Sloss, Craig; Takashimizu, Yasuhiro; Tzanova, Alexandrina; Voelker, Antje; Williams, Trevor; Xuan, Chuang

    2014-06-13

    Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics. Copyright © 2014, American Association for the Advancement of Science.

  1. Vertical density gradient in the eastern North Atlantic during the last 30,000 years

    Energy Technology Data Exchange (ETDEWEB)

    Rogerson, M.; Ramirez, J. [University of Hull, Geography Department, Hull (United Kingdom); Bigg, G.R. [University of Sheffield, Department of Geography, Sheffield (United Kingdom); Rohling, E.J. [University of Southampton, National Oceanography Centre, School of Ocean and Earth Science, Southampton (United Kingdom)

    2012-08-15

    Past changes in the density and momentum structure of oceanic circulation are an important aspect of changes in the Atlantic Meridional Overturning Circulation and consequently climate. However, very little is known about past changes in the vertical density structure of the ocean, even very extensively studied systems such as the North Atlantic. Here we exploit the physical controls on the settling depth of the dense Mediterranean water plume derived from the Strait of Gibraltar to obtain the first robust, observations-based, probabilistic reconstruction of the vertical density gradient in the eastern North Atlantic during the last 30,000 years. We find that this gradient was weakened by more than 50%, relative to the present, during the last Glacial Maximum, and that changes in general are associated with reductions in AMOC intensity. However, we find only a small change during Heinrich Event 1 relative to the Last Glacial Maximum, despite strong evidence that overturning was substantially altered. This implies that millennial-scale changes may not be reflected in vertical density structure of the ocean, which may be limited to responses on an ocean-overturning timescale or longer. Regardless, our novel reconstruction of Atlantic density structure can be used as the basis for a dynamical measure for validation of model-based AMOC reconstructions. In addition, our general approach is transferrable to other marginal sea outflow plumes, to provide estimates of oceanic vertical density gradients in other locations. (orig.)

  2. Influence of Sea Ice on the Thermohaline Circulation in the Arctic-North Atlantic Ocean

    Science.gov (United States)

    Mauritzen, Cecilie; Haekkinen, Sirpa

    1997-01-01

    A fully prognostic coupled ocean-ice model is used to study the sensitivity of the overturning cell of the Arctic-North-Atlantic system to sea ice forcing. The strength of the thermohaline cell will be shown to depend on the amount of sea ice transported from the Arctic to the Greenland Sea and further to the subpolar gyre. The model produces a 2-3 Sv increase of the meridional circulation cell at 25N (at the simulation year 15) corresponding to a decrease of 800 cu km in the sea ice export from the Arctic. Previous modeling studies suggest that interannual and decadal variability in sea ice export of this magnitude is realistic, implying that sea ice induced variability in the overturning cell can reach 5-6 Sv from peak to peak.

  3. Meridional distribution of hydroperoxides and formaldehyde in the marine boundary layer of the Atlantic (48°N-35°S) measured during the Albatross campaign

    Science.gov (United States)

    Weller, R.; Schrems, O.; Boddenberg, A.; GäB, S.; Gautrois, M.

    2000-06-01

    Gas phase H2O2, organic peroxides, and formaldehyde (HCHO) have been measured in situ during October/November 1996 on board RV Polarstern in surface air over the Atlantic from 48°N-35°S with different analytical methods. The results indicate that recombination and self-reactions of peroxy radicals largely dominate over scavenging by NO. The peroxy radical chemistry was governed by the photooxidation of CH4 and CO, as could be deduced from our failure to detect organic hydroperoxides other than CH3OOH (methyl hydroperoxide (MHP)). Hydroperoxide and formaldehyde mixing ratios were highest within the tropics with peak values of around 2000 parts per trillion by volume (pptv) (H2O2), 1500 pptv (MHP), and 1000 pptv (HCHO). In the case of H2O2 and MHP we observed diurnal variations of the mixing ratios in the tropical North Atlantic and derived deposition rates of around (1.8±0.6)×10-5 s-1 for H2O2 and (1.2±0.4)×10-5 s-1 for MHP. The measured MHP/(H2O2+MHP) and MHP/HCHO ratios corresponded to 0.32±0.12 and 0.87±0.4, respectively. HCHO mixing ratios observed during the expedition were significantly higher than predicted by current photochemical theory based on the photooxidation of CH4 and CO.

  4. The Atlantic Multidecadal Oscillation without a role for ocean circulation.

    Science.gov (United States)

    Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn

    2015-10-16

    The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. Copyright © 2015, American Association for the Advancement of Science.

  5. Glacial-Interglacial Variability of Nd isotopes in the South Atlantic and Southern Ocean

    Science.gov (United States)

    Knudson, K. P.; Goldstein, S. L.; Pena, L.; Seguí, M. J.; Kim, J.; Yehudai, M.; Fahey, T.

    2017-12-01

    Understanding the relationship between meridional overturning circulation and climate is key to understanding the processes and feedbacks underlying future climate changes. North Atlantic Deep Water (NADW) represents a major water mass that participates in global oceanic circulation and undergoes substantial reorganization with climate changes on millennial and orbital timescales. Nd isotopes are semi-quantitative water mass tracers that reflect the mixing of end-member water masses, and their values in the Southern Ocean offer the ability to characterize NADW variability over time. Here, we present paleo-circulation records of Nd isotopes measured on fish debris and Fe-Mn encrusted foraminifera from ODP Sites 1090 (42° 54.82'S, 3702 m), and 1094 (53° 10.81'S, 2807 m). Site 1090 is located in the Cape Basin, SE Atlantic, near the lower boundary between NADW and Circumpolar Deep Water (CDW), while 1094 is in the Circumpolar Current. They are ideal locations to monitor changes in the export of NADW to the Southern Ocean. These new results build on previous work (Pena and Goldstein, 2014) to document meridional overturning changes in the Southern Ocean.

  6. Glider Observations of the Properties, Circulation and Formation of Water Masses on the Rockall Plateau in the North Atlantic.

    Science.gov (United States)

    Houpert, L.; Gary, S. F.; Inall, M. E.; Johns, W. E.; Porter, M.; Dumont, E.; Cunningham, S. A.

    2016-02-01

    The Overturning in Subpolar North Atlantic Program (OSNAP) is an international collaboration with the overarching goal of measuring the full-depth mass fluxes associated with the AMOC (Atlantic Meridional Overturning Circulation), as well as meridional heat and fresh-water fluxes. Through the deployment of moorings and gliders, UK-OSNAP is part of this international partnership to maintain a transoceanic observing system in the subpolar north Atlantic (the OSNAP array).We present here the first year and a half of UK-OSNAP glider missions on the Rockall Plateau in the North Atlantic, along the section located at 58°N, between 22°W and 15°W. Between July 2014 and September 2015, 10 gliders sections were realized on the Rockall Plateau. The depth-averaged current estimated from gliders shows very strong values (up to 45cm.s-1) associated with meso-scale variability due particularly to eddies and water mass formation. Glider data also reveal a deep mixed layer in February/March 2015 up to 600m associated with the formation of the 27.3σθ and 27.4σθ Subpolar Mode Waters. The variability of the meridional transport of heat, salt and mass on the Rockall Plateau are also discussed. Relative and absolute geostrophic transports are calculated from the glider data and from the combination of the glider data and the data from mooring M4 located in the Iceland Basin (58°N, 21°W).

  7. North Atlantic SST Patterns and NAO Flavors

    Science.gov (United States)

    Rousi, E.; Rahmstorf, S.; Coumou, D.

    2017-12-01

    North Atlantic SST variability results from the interaction of atmospheric and oceanic processes. The North Atlantic Oscillation (NAO) drives changes in SST patterns but is also driven by them on certain time-scales. These interactions are not very well understood and might be affected by anthropogenic climate change. Paleo reconstructions indicate a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in recent decades leading to a pronounced cold anomaly ("cold blob") in the North Atlantic (Rahmstorf et al., 2015). The latter may favor NAO to be in its negative mode. In this work, sea surface temperature (SST) patterns are studied in relation to NAO variations, with the aim of discovering preferred states and understanding their interactions. SST patterns are analyzed with Self-Organizing Maps (SOM), a clustering technique that helps identify different spatial patterns and their temporal evolution. NAO flavors refer to different longitudinal positions and tilts of the NAO action centers, also defined with SOMs. This way the limitations of the basic, index-based, NAO-definition are overcome, and the method handles different spatially shapes associated with NAO. Preliminary results show the existence of preferred combinations of SSTs and NAO flavors, which in turn affect weather and climate of Europe and North America. The possible influence of the cold blob on European weather is discussed.

  8. Similar mid-depth Atlantic water mass provenance during the Last Glacial Maximum and Heinrich Stadial 1

    Science.gov (United States)

    Howe, Jacob N. W.; Huang, Kuo-Fang; Oppo, Delia W.; Chiessi, Cristiano M.; Mulitza, Stefan; Blusztajn, Jurek; Piotrowski, Alexander M.

    2018-05-01

    The delivery of freshwater to the North Atlantic during Heinrich Stadial 1 (HS1) is thought to have fundamentally altered the operation of Atlantic meridional overturning circulation (AMOC). Although benthic foraminiferal carbon isotope records from the mid-depth Atlantic show a pronounced excursion to lower values during HS1, whether these shifts correspond to changes in water mass proportions, advection, or shifts in the carbon cycle remains unclear. Here we present new deglacial records of authigenic neodymium isotopes - a water mass tracer that is independent of the carbon cycle - from two cores in the mid-depth South Atlantic. We find no change in neodymium isotopic composition, and thus water mass proportions, between the Last Glacial Maximum (LGM) and HS1, despite large decreases in carbon isotope values at the onset of HS1 in the same cores. We suggest that the excursions of carbon isotopes to lower values were likely caused by the accumulation of respired organic matter due to slow overturning circulation, rather than to increased southern-sourced water, as typically assumed. The finding that there was little change in water mass provenance in the mid-depth South Atlantic between the LGM and HS1, despite decreased overturning, suggests that the rate of production of mid-depth southern-sourced water mass decreased in concert with decreased production of northern-sourced intermediate water at the onset of HS1. Consequently, we propose that even drastic changes in the strength of AMOC need not cause a significant change in South Atlantic mid-depth water mass proportions.

  9. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.

    Science.gov (United States)

    Swingedouw, Didier; Ortega, Pablo; Mignot, Juliette; Guilyardi, Eric; Masson-Delmotte, Valérie; Butler, Paul G; Khodri, Myriam; Séférian, Roland

    2015-03-30

    While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption.

  10. Low-frequency variability of meridional transport in the divergence zone of the North Atlantic subtropical and subpolar gyres. The WOCE section A2; Niederfrequente Variabilitaet meridionaler Transporte in der Divergenzzone des nordatlantischen Subtropen- und Subpolarwirbels. Der WOCE-Schnitt A2

    Energy Technology Data Exchange (ETDEWEB)

    Lorbacher, K.

    2000-07-01

    The subinertial, climate relevant variability of the large-scale ocean circulation in the northern North Atlantic and its integral key parameters such as the advective transports of mass (volume), heat and freshwater are determined from observations alone using the hydrographic data from seven realisations of the so-called '48 N'-section between the English Channel and the Grand Banks of Newfoundland. The data consist of five available sets of the WOCE/A2-section during the Nineties for the years 1993, 1994, 1996, 1997, 1998 and of two previous transatlantic cruises in April of 1957 and 1982. The realisations of the WOCE/A2-section were carried out in the same season (May to July), except for the cruise in October 1994. The '48 N'-section follows the divergence zone of the mainly wind-driven subtropical gyre and the more complex, with respect to the forcing, subpolar gyre. In the central Westeuropean and Newfoundland Basins the section runs a few degrees south of the line of zero wind stress curl (curl{sub z}{tau}). In the West, the WOCE/A2-section turns northwest to cross the boundary current regime perpendicularly. Therefore, this quasi-zonal hydrographic section covers all large-scale circulation elements on the regional scale that contribute essentially to the ocean circulation on the global scale - the Meridional Overturning Circulation (MOC). The transport estimates are given as the sum of the three transport components of a quasi-steady, large-scale ocean circulation: The ageostrophic Ekman-, and the two geostrophic components, the depth-independent, barotropic or Sverdrup- and the baroclinic component. To maintain the mass balance over the plane of the section the compensation of each component is assumed. In the case of the baroclinic component the balance is achieved through a suitable choice for a surface of 'no-motion'. The absolute meridional velocity as a function of the zonal distance along the section and depth is

  11. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates

    Directory of Open Access Journals (Sweden)

    M. Sarnthein

    2009-06-01

    Full Text Available A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001. The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3 and 2.7 Ma (glacial MIS G6/4 (Lisiecki and Raymo, 2005. Various models (sensu Driscoll and Haug, 1998 and paleoceanographic records (intercalibrated using orbital age control suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS, deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2–3°C (Bartoli et al., 2005. Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007, which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS, and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC. Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16–3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  12. Transition from the Cretaceous ocean to Cenozoic circulation in the western South Atlantic - A twofold reconstruction

    Science.gov (United States)

    Uenzelmann-Neben, Gabriele; Weber, Tobias; Grützner, Jens; Thomas, Maik

    2017-10-01

    The Cretaceous oceanic circulation has been quite different from the modern with a different distribution of the continents on the globe. This has resulted in a much lower temperature gradient between poles and equator. We have studied seismic reflection data and used numerical simulations of atmosphere and ocean dynamics to identify important steps in modifications of the oceanic circulation in the South Atlantic from the Cretaceous to the Cenozoic and the major factors controlling them. Starting in the Albian we could not identify any traces of an overturning circulation for the South Atlantic although a weak proto-Antarctic Circumpolar Current (ACC) was simulated. No change in circulation was observed for the Paleocene/early Eocene South Atlantic, which indicated that this period has witnessed a circulation similar to the Albian and Cenomanian/Turonian circulation. The most drastic modifications were observed for the Eocene/Oligocene boundary and the Oligocene/early Miocene with the onset of an ACC and Atlantic meridional overturning circulation (AMOC) and hence southern sourced deep and bottom water masses in the western South Atlantic. A modern AMOC, which intensified in strength after closure of the Central American Seaway (CAS), and a strong ACC have resulted in current controlled sedimentary features and wide spread hiatusses in the South Atlantic since the middle Miocene. The opening of Drake Passage in early Oligocene times and the closure of the CAS at 6 Ma, i.e., tectonic processes, have been identified as the key triggers for the observed most severe changes in oceanic circulation in the South Atlantic.

  13. Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning

    Science.gov (United States)

    Ruan, Xiaozhou; Thompson, Andrew F.; Flexas, Mar M.; Sprintall, Janet

    2017-11-01

    The ocean's global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean's Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing, and that cross-density upwelling occurs preferentially over sloping topography. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.

  14. Atlantic Multidecadal Oscillation and Northern Hemisphere's climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Marcia Glaze [University of Colorado-Boulder, Department of Geologic Sciences, CIRES, Benson Earth Sciences Building, Boulder, CO (United States); Kravtsov, Sergey; Tsonis, Anastasios A. [University of Wisconsin-Milwaukee, Department of Mathematical Sciences, Atmospheric Sciences Group, Milwaukee, WI (United States)

    2012-03-15

    Proxy and instrumental records reflect a quasi-cyclic 50-80-year climate signal across the Northern Hemisphere, with particular presence in the North Atlantic. Modeling studies rationalize this variability in terms of intrinsic dynamics of the Atlantic Meridional Overturning Circulation influencing distribution of sea-surface-temperature anomalies in the Atlantic Ocean; hence the name Atlantic Multidecadal Oscillation (AMO). By analyzing a lagged covariance structure of a network of climate indices, this study details the AMO-signal propagation throughout the Northern Hemisphere via a sequence of atmospheric and lagged oceanic teleconnections, which the authors term the ''stadium wave''. Initial changes in the North Atlantic temperature anomaly associated with AMO culminate in an oppositely signed hemispheric signal about 30 years later. Furthermore, shorter-term, interannual-to-interdecadal climate variability alters character according to polarity of the stadium-wave-induced prevailing hemispheric climate regime. Ongoing research suggests mutual interaction between shorter-term variability and the stadium wave, with indication of ensuing modifications of multidecadal variability within the Atlantic sector. Results presented here support the hypothesis that AMO plays a significant role in hemispheric and, by inference, global climate variability, with implications for climate-change attribution and prediction. (orig.)

  15. Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events

    Directory of Open Access Journals (Sweden)

    M. Wary

    2017-06-01

    Full Text Available Dansgaard–Oeschger oscillations constitute one of the most enigmatic features of the last glacial cycle. Their cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here, based on dinocyst analyses from the 48–30 ka interval of four sediment cores from the northern Northeast Atlantic and southern Norwegian Sea, we provide direct and quantitative evidence of a regional paradoxical seesaw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases. Combined with additional palaeorecords and multi-model hosing simulations, our results suggest that during cold Greenland phases, reduced Atlantic meridional overturning circulation and cold North Atlantic sea-surface conditions were accompanied by the subsurface propagation of warm Atlantic waters that re-emerged in the Nordic Seas and provided moisture towards Greenland summit.

  16. On the Linkage between Labrador Sea Water Volume and Overturning Circulation in the Labrador Sea

    Science.gov (United States)

    Li, Feili; Lozier, Susan

    2017-04-01

    The linkage between the volume of newly formed Labrador Sea Water (LSW) and overturning in the Labrador Sea is investigated using output from an eddy-resolving ocean general circulation model (OGCM) in order to understand the mechanisms driving overturning variability. Overturning transport is estimated in density space across the western leg (from Labrador to Greenland) of the OSNAP (Overturning in the Subpolar North Atlantic Program) array. We estimate the LSW volume northwest of the OSNAP section in order to understand the impact of local LSW formation on transport across the section. As expected, on interannual timescales, a larger LSW volume in the Labrador Sea, due to intensified atmospheric cooling, correlates with stronger overturning (r= 0.61) and an enhanced export of LSW (r= -0.70). Our results also reveal the inadequacy of using indirect measurements for approximating both the strength of convection and of overturning in the Labrador Sea. We demonstrate the desirability of robust estimates derived from direct monitoring, i.e., from the Argo and OSNAP measurements in the region.

  17. Subpolar Atlantic cooling and North American east coast warming linked to AMOC slowdown

    Science.gov (United States)

    Rahmstorf, Stefan; Caesar, Levke; Feulner, Georg; Saba, Vincent

    2017-04-01

    Reconstructing the history of the Atlantic Meridional Overturning Circulation (AMOC) is difficult due to the limited availability of data. One approach has been to use instrumental and proxy data for sea surface temperature (SST), taking multi-decadal and longer SST variations in the subpolar gyre region as indicator for AMOC changes [Rahmstorf et al., 2015]. Recent high-resolution global climate model results [Saba et al., 2016] as well as dynamical theory and conceptual modelling [Zhang and Vallis, 2007] suggest that an AMOC weakening will not only cool the subpolar Atlantic but simultaneously warm the Northwest Atlantic between Cape Hatteras and Nova Scotia, thus providing a characteristic SST pattern associated with AMOC variations. We analyse sea surface temperature (SST) observations from this region together with high-resolution climate model simulations to better understand the linkages of SST variations to AMOC variability and to provide further evidence for an ongoing AMOC slowdown. References Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht (2015), Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nature Climate Change, 5(5), 475-480, doi: 10.1038/nclimate2554. Saba, V. S., et al. (2016), Enhanced warming of the Northwest Atlantic Ocean under climate change, Journal of Geophysical Research-Oceans, 121(1), 118-132, doi: 10.1002/2015JC011346. Zhang, R., and G. K. Vallis (2007), The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre, Journal of Physical Oceanography, 37(8), 2053-2080, doi: 10.1175/jpo3102.1.

  18. Wind-driven variations in an overturning circulation

    Science.gov (United States)

    Bringedal, Carina; Eldevik, Tor; Spall, Michael

    2017-04-01

    The Atlantic overturning circulation and poleward heat transport is balanced by northern heat loss to the atmosphere and corresponding water mass transformation. The structure of this circulation and transformation is particularly manifested - and observed - at the Greenland-Scotland ridge. There is however a rich variability in the exchanges across the ridge on seasonal and yearly time scales. This variability has been almost perfectly captured in atmospherically forced ocean GCMs (e.g. Olsen et al 2008, Sandø et al 2012), suggesting that on shorter time scales the variability of the exchanges are connected to sea level pressure and corresponding wind stress forcing. Focusing on seasonal and yearly time scales, we accordingly propose that the connection between the exchanges of overturning waters across the Greenland-Scotland ridge and the sea level pressure must be direct and simple, and we use idealized simulations to support this hypothesis. The mechanisms underlying the connection are formulated through conceptual models. Although the models and simulations are simplified with respect to bathymetry and hydrography, they can reproduce the main features of the overturning circulation in the Nordic seas. In the observations, the variable exchanges can largely be related to sea level pressure variations and large scale wind patterns, and the idealized simulations and accompanying conceptual models show how these impacts can manifest via coastal downwelling and gyre circulation. S. M. Olsen, B. Hansen, D. Quadfasel and S. Østerhus, Observed and modelled stability of overflow across the Greenland-Scotland ridge, Nature 455, (2008) A. B. Sandø, J. E. Ø. Nilsen, T. Eldevik and M. Bentsen, Mechanisms for variable North Atlantic-Nordic seas exchanges, Journal of Geophysical Research 117, (2012)

  19. The accuracy of estimates of the overturning circulation from basin-wide mooring arrays

    Science.gov (United States)

    Sinha, B.; Smeed, D. A.; McCarthy, G.; Moat, B. I.; Josey, S. A.; Hirschi, J. J.-M.; Frajka-Williams, E.; Blaker, A. T.; Rayner, D.; Madec, G.

    2018-01-01

    Previous modeling and observational studies have established that it is possible to accurately monitor the Atlantic Meridional Overturning Circulation (AMOC) at 26.5°N using a coast-to-coast array of instrumented moorings supplemented by direct transport measurements in key boundary regions (the RAPID/MOCHA/WBTS Array). The main sources of observational and structural errors have been identified in a variety of individual studies. Here a unified framework for identifying and quantifying structural errors associated with the RAPID array-based AMOC estimates is established using a high-resolution (eddy resolving at low-mid latitudes, eddy permitting elsewhere) ocean general circulation model, which simulates the ocean state between 1978 and 2010. We define a virtual RAPID array in the model in close analogy to the real RAPID array and compare the AMOC estimate from the virtual array with the true model AMOC. The model analysis suggests that the RAPID method underestimates the mean AMOC by ∼1.5 Sv (1 Sv = 106 m3 s-1) at ∼900 m depth, however it captures the variability to high accuracy. We examine three major contributions to the streamfunction bias: (i) due to the assumption of a single fixed reference level for calculation of geostrophic transports, (ii) due to regions not sampled by the array and (iii) due to ageostrophic transport. A key element in (i) and (iii) is use of the model sea surface height to establish the true (or absolute) geostrophic transport. In the upper 2000 m, we find that the reference level bias is strongest and most variable in time, whereas the bias due to unsampled regions is largest below 3000 m. The ageostrophic transport is significant in the upper 1000 m but shows very little variability. The results establish, for the first time, the uncertainty of the AMOC estimate due to the combined structural errors in the measurement design and suggest ways in which the error could be reduced. Our work has applications to basin

  20. Model bias for South Atlantic Antarctic intermediate water in CMIP5

    Science.gov (United States)

    Zhu, Chenyu; Liu, Zhengyu; Gu, Sifan

    2017-07-01

    Characterized by a salinity minimum in the mid-depth, the Antarctic Intermediate Water (AAIW) is an important component of global ocean water mass. The simulation of the AAIW in current climate models, however, has remained deficient, especially in the Atlantic sector. Here, we evaluate the simulation of the South Atlantic AAIW in eleven state-of-the-art coupled climate models. It is found that all the models show a common AAIW bias relative to the observation, with a saltier, warmer and lighter core located at a shallower depth. This AAIW bias seems to contribute to a deficient freshwater export by the Atlantic Meridional Overturning Circulation (AMOC), potentially overstabilizing the AMOC. The causes of the bias are investigated in sensitivity experiments using an ocean alone model. It is found that the AAIW bias is caused neither by the surface climate bias nor the North Atlantic bias, although is weakly affected by the inter-basin exchange. This left the conclusion that the AAIW bias is caused predominantly by the deficient model representation of ocean dynamics and mixing processes in the AAIW region.

  1. Astronomically paced middle Eocene deepwater circulation in the western North Atlantic

    Science.gov (United States)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Lohmann, Gerrit; Pälike, Heiko; Zachos, James C.

    2017-04-01

    The role of the Atlantic Meridional Overturning Circulation (AMOC) as a key player for abrupt climatic changes (e.g. Heinrich Stadials) during the Pleistocene is relatively well constrained. However, the timing of the onset of a „modern" North Atlantic Deepwater (NADW) formation are still debated: Recent estimates range from the middle Miocene to the Early Eocene [Davies et al., 2001, Stoker et al., 2005, Hohbein et al., 2012] and are mainly based on the seismic interpretation contourite drifts. Another understudied aspect of the AMOC is its behavior during climatic variations on orbital time scales and under different climatic boundary conditions (icehouse vs hothouse). IODP Expedition 342 drilled carbonate-rich sequences from sediment drifts offshore Newfoundland that cover the middle Eocene with high sedimentation rates ( 3 cm/ kyr). We present a 2 Myr long stable carbon and oxygen isotope record of benthic foraminifera nuttalides truempyi spanning magnetochron C20r in unprecedented resolution (Nielsen, T., and Shannon, P. M., 2005, Neogene stratigraphy and the sedimentary and oceanographic development of the NW European Atlantic margin: Marine and Petroleum Geology, v. 22, no. 9, p. 977-1005. Hohbein, M. W., Sexton, P. F., and Cartwright, J. A., 2012, Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend: Geology, v. 40, no. 3, p. 255-258.

  2. The influence of meridional ice transport on Europa's ocean stratification and heat content

    Science.gov (United States)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  3. An experimental study of the Atlantic variability on interdecadal timescales

    Directory of Open Access Journals (Sweden)

    M. Vincze

    2012-06-01

    Full Text Available A series of laboratory experiments has been carried out to model the basic dynamics of the multidecadal variability observed in North Atlantic sea surface temperature (SST records. According to the minimal numerical sector model introduced by te Raa and Dijkstra (2002, the three key components to excite such a low-frequency variability are rotation, meridional temperature gradient and additive thermal noise in the surface heat forcing. If these components are present, periodic perturbations of the overturning background flow are excited, leading to thermal Rossby mode like propagation of anomalous patches in the SST field. Our tabletop scale setup was built to capture this phenomenon, and to test whether the aforementioned three components are indeed sufficient to generate a low-frequency variability in the system. The results are compared to those of the numerical models, as well as to oceanic SST reanalysis records. To the best of our knowledge, the experiment described here is the very first to investigate the dynamics of the North Atlantic multidecadal variability in a laboratory-scale setup.

  4. An anatomy of the projected North Atlantic warming hole in CMIP5 models

    Science.gov (United States)

    Menary, Matthew B.; Wood, Richard A.

    2018-04-01

    Global mean surface air temperature has increased over the past century and climate models project this trend to continue. However, the pattern of change is not homogeneous. Of particular interest is the subpolar North Atlantic, which has cooled in recent years and is projected to continue to warm less rapidly than the global mean. This is often termed the North Atlantic warming hole (WH). In climate model projections, the development of the WH is concomitant with a weakening of the Atlantic meridional overturning circulation (AMOC). Here, we further investigate the possible link between the AMOC and WH and the competing drivers of vertical mixing and surface heat fluxes. Across a large ensemble of 41 climate models we find that the spatial structure of the WH varies considerably from model to model but is generally upstream of the simulated deep water formation regions. A heat budget analysis suggests the formation of the WH is related to changes in ocean heat transport. Although the models display a plethora of AMOC mean states, they generally predict a weakening and shallowing of the AMOC also consistent with the evolving depth structure of the WH. A lagged regression analysis during the WH onset phase suggests that reductions in wintertime mixing lead a weakening of the AMOC by 5 years in turn leading initiation of the WH by 5 years. Inter-model differences in the evolution and structure of the WH are likely to lead to somewhat different projected climate impacts in nearby Europe and North America.

  5. North Atlantic deep water formation and AMOC in CMIP5 models

    Science.gov (United States)

    Heuzé, Céline

    2017-07-01

    Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  6. Deglacial Tropical Atlantic subsurface warming links ocean circulation variability to the West African Monsoon.

    Science.gov (United States)

    Schmidt, Matthew W; Chang, Ping; Parker, Andrew O; Ji, Link; He, Feng

    2017-11-13

    Multiple lines of evidence show that cold stadials in the North Atlantic were accompanied by both reductions in Atlantic Meridional Overturning Circulation (AMOC) and collapses of the West African Monsoon (WAM). Although records of terrestrial change identify abrupt WAM variability across the deglaciation, few studies show how ocean temperatures evolved across the deglaciation. To identify the mechanism linking AMOC to the WAM, we generated a new record of subsurface temperature variability over the last 21 kyr based on Mg/Ca ratios in a sub-thermocline dwelling planktonic foraminifera in an Eastern Equatorial Atlantic (EEA) sediment core from the Niger Delta. Our subsurface temperature record shows abrupt subsurface warming during both the Younger Dryas (YD) and Heinrich Event 1. We also conducted a new transient coupled ocean-atmosphere model simulation across the YD that better resolves the western boundary current dynamics and find a strong negative correlation between AMOC strength and EEA subsurface temperatures caused by changes in ocean circulation and rainfall responses that are consistent with the observed WAM change. Our combined proxy and modeling results provide the first evidence that an oceanic teleconnection between AMOC strength and subsurface temperature in the EEA impacted the intensity of the WAM on millennial time scales.

  7. An anatomy of the projected North Atlantic warming hole in CMIP5 models

    Science.gov (United States)

    Menary, Matthew B.; Wood, Richard A.

    2017-07-01

    Global mean surface air temperature has increased over the past century and climate models project this trend to continue. However, the pattern of change is not homogeneous. Of particular interest is the subpolar North Atlantic, which has cooled in recent years and is projected to continue to warm less rapidly than the global mean. This is often termed the North Atlantic warming hole (WH). In climate model projections, the development of the WH is concomitant with a weakening of the Atlantic meridional overturning circulation (AMOC). Here, we further investigate the possible link between the AMOC and WH and the competing drivers of vertical mixing and surface heat fluxes. Across a large ensemble of 41 climate models we find that the spatial structure of the WH varies considerably from model to model but is generally upstream of the simulated deep water formation regions. A heat budget analysis suggests the formation of the WH is related to changes in ocean heat transport. Although the models display a plethora of AMOC mean states, they generally predict a weakening and shallowing of the AMOC also consistent with the evolving depth structure of the WH. A lagged regression analysis during the WH onset phase suggests that reductions in wintertime mixing lead a weakening of the AMOC by 5 years in turn leading initiation of the WH by 5 years. Inter-model differences in the evolution and structure of the WH are likely to lead to somewhat different projected climate impacts in nearby Europe and North America.

  8. Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion

    Science.gov (United States)

    Ma, Xiaolin; Tian, Jun; Ma, Wentao; Li, Ke; Yu, Jimin

    2018-02-01

    East Antarctic ice sheet expansion (EAIE) at ∼13.9 Ma in the middle Miocene represents a major climatic event during the long-term Cenozoic cooling, but ocean circulation and carbon cycle changes during this event remain unclear. Here, we present new fish teeth isotope (εNd) and benthic foraminiferal B/Ca records from the South China Sea (SCS), newly integrated meridional Pacific benthic foraminiferal δ18O and δ13C records and simulated results from a biogeochemical box model to explore the responses of deep Pacific Ocean circulation and carbon cycle across EAIE. The εNd and meridional benthic δ13C records reveal a more isolated Pacific Deep Water (PDW) and a sluggish Pacific meridional overturning circulation during the post-EAIE with respect to the pre-EAIE owing to weakened southern-sourced deep water formation. The deep-water [CO23-] and calcium carbonate mass accumulation rate in the SCS display markedly similar increases followed by recoveries to the pre-EAIE level during EAIE, which were probably caused by a shelf-basin shift of CaCO3 deposition and strengthened weathering due to a sea level fall within EAIE. The model results show that the ∼1‰ positive δ13C excursion during EAIE could be attributed to increased weathering of high-δ13C shelf carbonates and a terrestrial carbon reservoir expansion. The drawdown of atmospheric CO2 over the middle Miocene were probably caused by combined effects of increased shelf carbonate weathering, expanded land biosphere carbon storage and a sluggish deep Pacific meridional overturning circulation.

  9. Latest Quaternary palaeoceanographic change in the eastern North Atlantic based upon a dinoflagellate cyst event ecostratigraphy

    Directory of Open Access Journals (Sweden)

    Rex Harland

    2016-05-01

    Full Text Available The analyses of dinoflagellate cyst records, from the latest Quaternary sediments recovered from DSDP Core 610A taken on the Feni Ridge in the southern Rockall Trough, and part of core MD01-2461 on the continental margin of the Porcupine Seabight in the eastern North Atlantic Ocean, has provided evidence for significant oceanographic change encompassing the Last Glacial Maximum (LGM and part of the Holocene. This together with other published records has led to a regional evaluation of oceanographic change in the eastern North Atlantic over the past 68 ka, based upon a distinctive dinoflagellate event ecostratigraphy. These changes reflect changes in the surface waters of the North Atlantic Current (NAC, and perhaps the deeper thermohaline Atlantic Meridional Overturning Circulation (AMOC, driving fundamental regime changes within the phytoplanktonic communities. Three distinctive dinoflagellate cyst associations based upon both factor and cluster analyses have been recognised. Associations characterised by Bitectatodinium tepikiense (between 61.1 ± 6.2 to 13.4 ± 1.1 ka BP, Nematosphaeropsis labyrinthus (between 10.5 ± 0.3 and 11.45 ± 0.8 ka. BP, and the cyst of Protoceratium reticulatum (between 8.5 ± 0.9 and 5.2 ± 1.3 ka. BP indicate major change within the eastern North Atlantic oceanography. The transitions between these changes occur over a relatively short time span (c.1.5 ka, given our sampling resolution, and have the potential to be incorporated into an event stratigraphy through the latest Quaternary as recommended by the INTIMATE (INTegrating Ice core, MArine and TErrestrial records group. The inclusion of a dinoflagellate cyst event stratigraphy would highlight changes within the phytoplankton of the North Atlantic Ocean as a fully glacial world changed to our present interglacial.

  10. Variations in Mediterranean-Atlantic exchange across the late Pliocene climate transition

    Science.gov (United States)

    García-Gallardo, Ángela; Grunert, Patrick; Piller, Werner E.

    2018-03-01

    Mediterranean-Atlantic exchange through the Strait of Gibraltar plays a significant role in the global ocean-climate dynamics in two ways. On one side, the injection of the saline and warm Mediterranean Outflow Water (MOW) contributes to North Atlantic deep-water formation. In return, the Atlantic inflow is considered a sink of less saline water for the North Atlantic Ocean. However, while the history of MOW is the focus of numerous studies, the Pliocene Atlantic inflow has received little attention so far. The present study provides an assessment of the Mediterranean-Atlantic exchange with a focus on the Atlantic inflow strength and its response to regional and global climate from 3.33 to 2.60 Ma. This time interval comprises the mid-Pliocene warm period (MPWP; 3.29-2.97 Ma) and the onset of the Northern Hemisphere glaciation (NHG). For this purpose, gradients in surface δ18O records of the planktonic foraminifer Globigerinoides ruber between the Integrated Ocean Drilling Program (IODP) Hole U1389E (Gulf of Cádiz) and Ocean Drilling Program (ODP) Hole 978A (Alboran Sea) have been evaluated. Interglacial stages and warm glacials of the MPWP revealed steep and reversed (relative to the present) W-E δ18O gradients suggesting a weakening of Mediterranean-Atlantic exchange likely caused by high levels of relative humidity in the Mediterranean region. In contrast, periods of stronger inflow are indicated by flat δ18O gradients due to more intense arid conditions during the severe glacial Marine Isotope Stage (MIS) M2 and the initiation of NHG (MIS G22, G14, G6-104). Intensified Mediterranean-Atlantic exchange in cold periods is linked to the occurrence of ice-rafted debris (IRD) at low latitudes and a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Our results thus suggest the development of a negative feedback between AMOC and exchange rates at the Strait of Gibraltar in the latest Pliocene as it has been proposed for the late Quaternary.

  11. Enhanced δ13C and δ18O Differences Between the South Atlantic and South Pacific During the Last Glaciation: The Deep Gateway Hypothesis

    Science.gov (United States)

    Sikes, Elisabeth L.; Allen, Katherine A.; Lund, David C.

    2017-10-01

    Enhanced vertical gradients in benthic foraminiferal δ13C and δ18O in the Atlantic and Pacific during the last glaciation have revealed that ocean overturning circulation was characterized by shoaling of North Atlantic sourced interior waters; nonetheless, our understanding of the specific mechanisms driving these glacial isotope patterns remains incomplete. Here we compare high-resolution depth transects of Cibicidoides spp. δ13C and δ18O from the Southwest Pacific and the Southwest Atlantic to examine relative changes in northern and southern sourced deep waters during the Last Glacial Maximum (LGM) and deglaciation. During the LGM, our transects show that water mass properties and boundaries in the South Atlantic and Pacific were different from one another. The Atlantic between 1.0 and 2.5 km was more than 1‰ enriched in δ13C relative to the Pacific and remained more enriched through the deglaciation. During the LGM, Atlantic δ18O was 0.5‰ more enriched than the Pacific, particularly below 2.5 km. This compositional difference between the deep portions of the basins implies independent deep water sources during the glaciation. We attribute these changes to a "deep gateway" effect whereby northern sourced waters shallower than the Drake Passage sill were unable to flow southward into the Southern Ocean because a net meridional geostrophic transport cannot be supported in the absence of a net east-west circumpolar pressure gradient above the sill depth. We surmise that through the LGM and early deglaciation, shoaled northern sourced waters were unable to escape the Atlantic and contribute to deep water formation in the Southern Ocean.

  12. Rayleigh-Taylor convective overturn in stellar collapse

    International Nuclear Information System (INIS)

    Bruenn, S.W.; Buchler, J.R.; Livio, M.

    1979-01-01

    Rayleigh--Taylor convective overturn in collapsing stellar cores is modeled with a one-dimensional parametrization. The results of a numerical hydrodynamic study are very encouraging and indicate that such an overturn could well be a dominant feature in the supernova explosion mechanism

  13. Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere

    Science.gov (United States)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2016-02-01

    global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.

  14. Iceland-Scotland Overflow Water transport variability through the Charlie-Gibbs Fracture Zone and the impact of the North Atlantic Current

    Science.gov (United States)

    Bower, Amy; Furey, Heather

    2017-09-01

    The Charlie-Gibbs Fracture Zone (CGFZ), a deep and wide gap in the Mid-Atlantic Ridge near 52°N, is a gateway between the eastern and western subpolar regions for the Atlantic Meridional Overturning Circulation (AMOC). In 2010-2012, an eight-mooring array of current meters and temperature/salinity sensors was installed across the CGFZ between 500 m and the sea floor to measure the mean transport of westward-flowing Iceland-Scotland Overflow Water (ISOW) and investigate the impact of the eastward-flowing North Atlantic Current (NAC) on ISOW transport variability. The 22 month record mean ISOW transport through the CGFZ, -1.7 ± 0.5 Sv (95% confidence interval), is 30% lower than the previously published estimate based on 13 months of current-only measurements, -2.4 ± 1.2 Sv. The latter mean estimate may have been biased high due to the lack of continuous salinity measurements, although the two estimates are not statistically different due to strong mesoscale variability in both data sets. Empirical Orthogonal Function analysis and maps of satellite-derived absolute dynamic topography show that weak westward ISOW transport events and eastward reversals are caused by northward meanders of the NAC, with its deep-reaching eastward velocities. These results add to growing evidence that a significant fraction of ISOW exits the Iceland Basin by routes other than the CGFZ.

  15. North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges

    Science.gov (United States)

    Zhang, Xianming; Zhang, Yanxu; Dassuncao, Clifton; Lohmann, Rainer; Sunderland, Elsie M.

    2017-08-01

    Perfluorooctane sulfonate (PFOS) is an aliphatic fluorinated compound with eight carbon atoms that is extremely persistent in the environment and can adversely affect human and ecological health. The stability, low reactivity, and high water solubility of PFOS combined with the North American phaseout in production around the year 2000 make it a potentially useful new tracer for ocean circulation. Here we characterize processes affecting the lifetime and accumulation of PFOS in the North Atlantic Ocean and transport to sensitive Arctic regions by developing a 3-D simulation within the MITgcm. The model captures variability in measurements across biogeographical provinces (R2 = 0.90, p = 0.01). In 2015, the North Atlantic PFOS reservoir was equivalent to 60% of cumulative inputs from the North American and European continents (1400 Mg). Cumulative inputs to the Arctic accounted for 30% of continental discharges, while the remaining 10% was transported to the tropical Atlantic and other regions. PFOS concentrations declined rapidly after 2002 in the surface mixed layer (half-life: 1-2 years) but are still increasing below 1000 m depth. During peak production years (1980-2000), plumes of PFOS-enriched seawater were transported to the sub-Arctic in energetic surface ocean currents. However, Atlantic Meridional Overturning Circulation (AMOC) and deep ocean transport returned a substantial fraction of this northward transport (20%, 530 Mg) to southern latitudes and reduced cumulative inputs to the Arctic (730 Mg) by 70%. Weakened AMOC due to climate change is thus likely to increase the magnitude of persistent bioaccumulative pollutants entering the Arctic Ocean.

  16. The North Atlantic Oscillation as a driver of multidecadal variability of the AMOC, the AMO, and Northern Hemisphere climate

    Science.gov (United States)

    Delworth, T. L.; Zeng, F. J.; Yang, X.; Zhang, L.

    2017-12-01

    We use suites of simulations with coupled ocean-atmosphere models to show that multidecadal changes in the North Atlantic Oscillation (NAO) can drive multidecadal changes in the Atlantic Meridional Overturning Circulation (AMOC) and the Atlantic Multidecadal Oscillation (AMO), with associated hemispheric climatic impacts. These impacts include rapid changes in Arctic sea ice, hemispheric temperature, and modulation of Atlantic hurricane activity. We use models that incorporate either a fully dynamic ocean or a simple slab ocean to explore the role of ocean dynamics and ocean-atmosphere interactions. A positive phase of the NAO is associated with strengthened westerly winds over the North Atlantic. These winds extract more heat than normal from the subpolar ocean, thereby increasing upper ocean density, deepwater formation, and the strength of the AMOC and associated poleward ocean heat transport. This warming leads to a positive phase of the AMO. The enhanced oceanic heat transport extends to the Arctic where it causes a reduction of Arctic sea ice. Large-scale atmospheric warming reduces vertical wind shear in the tropical North Atlantic, creating an environment more favorable for tropical storms. We use models to further show that observed multidecadal variations of the NAO over the 20th and early 21st centuries may have led to multidecadal variations of simulated AMOC and the AMO. Specifically, negative NAO values from the late 1960s through the early 1980s led to a weakened AMOC/cold North Atlantic, whereas increasing NAO values from the late 1980s through the late 1990s increased the model AMOC and led to a positive (warm) phase of the AMO. The warm phase contributed to increases in tropical storm activity and decreases in Arctic sea ice after the mid 1990s. Ocean dynamics are essential for translating the observed NAO variations into ocean heat content variations for the extratropical North Atlantic, but appear less important in the tropical North Atlantic

  17. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  18. North Atlantic deep water formation and AMOC in CMIP5 models

    Directory of Open Access Journals (Sweden)

    C. Heuzé

    2017-07-01

    Full Text Available Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5 models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  19. Inferences of the deep solar meridional flow

    Science.gov (United States)

    Böning, Vincent G. A.

    2017-10-01

    Understanding the solar meridional flow is important for uncovering the origin of the solar activity cycle. Yet, recent helioseismic estimates of this flow have come to conflicting conclusions in deeper layers of the solar interior, i.e., at depths below about 0.9 solar radii. The aim of this thesis is to contribute to a better understanding of the deep solar meridional flow. Time-distance helioseismology is the major method for investigating this flow. In this method, travel times of waves propagating between pairs of locations on the solar surface are measured. Until now, the travel-time measurements have been modeled using the ray approximation, which assumes that waves travel along infinitely thin ray paths between these locations. In contrast, the scattering of the full wave field in the solar interior due to the flow is modeled in first order by the Born approximation. It is in general a more accurate model of the physics in the solar interior. In a first step, an existing model for calculating the sensitivity of travel-time measurements to solar interior flows using the Born approximation is extended from Cartesian to spherical geometry. The results are succesfully compared to the Cartesian ones and are tested for self-consistency. In a second step, the newly developed model is validated using an existing numerical simulation of linear wave propagation in the Sun. An inversion of artificial travel times for meridional flow shows excellent agreement for noiseless data and reproduces many features in the input flow profile in the case of noisy data. Finally, the new method is used to infer the deep meridional flow. I used Global Oscillation Network Group (GONG) data that were earlier analyzed using the ray approximation and I employed the same Substractive Optimized Local Averaging (SOLA) inversion technique as in the earlier study. Using an existing formula for the covariance of travel-time measurements, it is shown that the assumption of uncorrelated errors

  20. Variations in the difference between mean sea level measured either side of Cape Hatteras and their relation to the North Atlantic Oscillation

    Science.gov (United States)

    Woodworth, P. L.; Morales Maqueda, M. Á.; Gehrels, W. R.; Roussenov, V. M.; Williams, R. G.; Hughes, C. W.

    2017-10-01

    We consider the extent to which the difference in mean sea level (MSL) measured on the North American Atlantic coast either side of Cape Hatteras varies as a consequence of dynamical changes in the ocean caused by fluctuations in the North Atlantic Oscillation (NAO). From analysis of tide gauge data, we know that changes in MSL-difference and NAO index are correlated on decadal to century timescales enabling a scale factor of MSL-difference change per unit change in NAO index to be estimated. Changes in trend in the NAO index have been small during the past few centuries (when measured using windows of order 60-120 years). Therefore, if the same scale factor applies through this period of time, the corresponding changes in trend in MSL-difference for the past few centuries should also have been small. It is suggested thereby that the sea level records for recent centuries obtained from salt marshes (adjusted for long-term vertical land movements) should have essentially the same NAO-driven trends south and north of Cape Hatteras, only differing due to contributions from other processes such as changes in the Meridional Overturning Circulation or `geophysical fingerprints'. The salt marsh data evidently support this interpretation within their uncertainties for the past few centuries, and perhaps even for the past millennium. Recommendations are made on how greater insight might be obtained by acquiring more measurements and by improved modelling of the sea level response to wind along the shelf.

  1. Spatio-temporal characteristics of Agulhas leakage: a model inter-comparison study

    CSIR Research Space (South Africa)

    Holton, L

    2016-05-01

    Full Text Available Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well...

  2. Mixing and diffusion in intermittent overturning turbulence

    Science.gov (United States)

    Redondo, Jose M.; Mahjoub, Otman B.; Gonzalez-Nieto, Pilar L.; Lawry, Andrew

    2014-05-01

    The improvements in experimental methods and high resolution image analysis are nowadays able to detect subtle changes in the structure of the turbulence over a wide range of temporal and spatial scales [1], we compare the scaling shown by different mixing fronts driven by buoyancy that form a Rayleigh-Taylor mixing front. We use PIV and density front tracking in several experimental configurations akin to geophysical overturning [2-7]. We parametrize the role of unstable stratification by means of the Atwood number and compare both the scaling and the multifractal and the maximum local fractal structure functions of the different markers used to visualize the front. Both reactive and passive scalar tracers are used to investigate the mixing structure and the intermittency of the flow. Different initial conditions are compared and the mixing efficiency of the overal turbulent process evaluated [6-7]. An interesting approach, relating the Multi-Fractal dimension spectra, the intermittency and the spectral exponent is to find relationships that may be used to parameterise the sub-grid turbulence in terms of generalized diffusivities [4 ] that take into account the topology and the self-similarity of the Mixing RT and RM flows. As an example, a relationship between the diffusivity, the exponent β, the intermittency μ, and D(i), may be found for the volume fraction or the concentration, at the same time other locally measured parameters such as the enstrophy or the gradient alignment as well as their multi-fractal structures may turn out to be physically relevant indicators of the local turbulence and the mixing. Several methods of deriving local eddy diffusivity and local entrainment should give more realistic estimates of the spatial/temporal non-homogeneities (and intermittencies in the Kolmogorov 62 sense obtained as spatial correlations of the turbulent dissipation, or from structure functions) and these values may be used to parameterise turbulence at a variety

  3. Meridional Flow Observations: Implications for the current Flux Transport Models

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Irene; Komm, Rudolf; Kholikov, Shukur; Howe, Rachel; Hill, Frank

    2011-01-01

    Meridional circulation has become a key element in the solar dynamo flux transport models. Available helioseismic observations from several instruments, Taiwan Oscillation Network (TON), Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI), have made possible a continuous monitoring of the solar meridional flow in the subphotospheric layers for the last solar cycle, including the recent extended minimum. Here we review some of the meridional circulation observations using local helioseismology techniques and relate them to magnetic flux transport models.

  4. Currents, Geostrophic, Aviso, 0.25 degrees, Global, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviso Meridional Geostrophic Current is inferred from Sea Surface Height Deviation, climatological dynamic height, and basic fluid mechanics.

  5. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  6. Atmospheric circulation in northern hemisphere and north atlantic oscillation

    Directory of Open Access Journals (Sweden)

    Александр Вадимович Холопцев

    2015-08-01

    Full Text Available Conditions under which statistical connections of interannual changes of repitition duration periods in Northern hemisphere of elementary circulation mechanisms associated to meridional northern and meridional southern groups with variations of North Atlantic oscillation are significant were revealed. It is shown, that the characteristics changes of these connections taking place in modern period can be caused by distribution changes of distribution of sea surface temperatures

  7. Intraseasonal meridional current variability in the eastern equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ogata, T.; Sasaki, H.; Murty, V.S.N.; Sarma, M.S.S.; Masumoto, Y.

    values of the Mixed Rossby-gravity wave at 15-d period. This meridional current variability shows large coherence with the local meridional wind stress, suggesting the upper-ocean responses to the local wind-forcing. A part of the energy of the biweekly...

  8. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean

    Science.gov (United States)

    Wang, Zeliang; Hamilton, James; Su, Jie

    2017-06-01

    Understanding the mechanisms that drive exchanges between the Arctic Ocean and adjacent oceans is critical to building our knowledge of how the Arctic is reacting to a warming climate, and how potential changes in Arctic Ocean freshwater export may impact the AMOC (Atlantic Meridional Overturning Circulation). Here, freshwater pathways from the Arctic Ocean to the North Atlantic are investigated using a 1 degree global model. An EOF analysis of modeled sea surface height (SSH) demonstrates that while the second mode accounts for only 15% of the variability, the associated geostrophic currents are strongly correlated with freshwater exports through CAA (Canadian Arctic Archipelago; r = 0.75), Nares Strait (r = 0.77) and Fram Strait (r = -0.60). Separation of sea level into contributing parts allows us to show that the EOF1 is primarily a barotropic mode reflecting variability in bottom pressure equivalent sea level, while the EOF2 mode reflects changes in steric height in the Arctic Basin. This second mode is linked to momentum wind driven surface current, and dominates the Arctic Ocean freshwater exports. Both the Arctic Oscillation and Arctic Dipole atmospheric indices are shown to be linked to Arctic Ocean freshwater exports, with the forcing associated with the Arctic Dipole reflecting the out-of-phase relationship between transports through the CAA and those through Fram Strait. Finally, observed freshwater transport variation through the CAA is found to be strongly correlated with tide gauge data from the Beaufort Sea coast (r = 0.81), and with the EOF2 mode of GRACE bottom pressure data (r = 0.85) on inter-annual timescales.

  9. Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts

    Science.gov (United States)

    Brune, Sebastian; Düsterhus, André; Pohlmann, Holger; Müller, Wolfgang A.; Baehr, Johanna

    2017-11-01

    We analyze the time dependency of decadal hindcast skill in the North Atlantic subpolar gyre within the time period 1961-2013. We compare anomaly correlation coefficients and temporal interquartile ranges of total upper ocean heat content and sea surface temperature for three differently initialized sets of hindcast simulations with the global coupled model MPI-ESM. All initializations use weakly coupled assimilation with the same full value nudging in the atmospheric component and different assimilation techniques for oceanic temperature and salinity: (1) ensemble Kalman filter assimilating EN4 observations and HadISST data, (2) nudging of anomalies to ORAS4 reanalysis, (3) nudging of full values to ORAS4 reanalysis. We find that hindcast skill depends strongly on the evaluation time period, with higher hindcast skill during strong multiyear trends, especially during the warming in the 1990s and lower hindcast skill in the absence of such trends. Differences between the prediction systems are more pronounced when investigating any 20-year subperiod within the entire hindcast period. In the ensemble Kalman filter initialized hindcasts, we find significant correlation skill for up to 5-8 lead years, albeit along with an overestimation of the temporal interquartile range. In the hindcasts initialized by anomaly nudging, significant correlation skill for lead years greater than two is only found in the 1980s and 1990s. In the hindcasts initialized by full value nudging, correlation skill is consistently lower than in the hindcasts initialized by anomaly nudging in the first lead years with re-emerging skill thereafter. The Atlantic meridional overturning circulation reacts on the density changes introduced by oceanic nudging, this limits the predictability in the subpolar gyre in the first lead years. Overall, we find that a model-consistent assimilation technique can improve hindcast skill. Further, the evaluation of 20 year subperiods within the full hindcast period

  10. Mechanisms of the Internally Generated Decadal-to-Multidecadal Variability in the Atlantic

    Science.gov (United States)

    Chen, Hua

    dynamics, including Rossby waves, ocean gyres and the Atlantic Meridional Overturning Circulation. The atmospheric response to SST, including the SST-forced heat flux and SST-forced wind stress, acts as a damping on the AMV 45-year mode.

  11. Property changes of deep and bottom waters in the Western Tropical Atlantic

    Science.gov (United States)

    Herrford, Josefine; Brandt, Peter; Zenk, Walter

    2017-06-01

    The flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) contributes to the Atlantic meridional overturning circulation. Changes in the associated water mass formation might impact the deep ocean's capacity to take up anthropogenic CO2 while a warming of the deep ocean significantly contributes to global sea level rise. Here we compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view of water mass distribution, pathways, along-path transformation and long-term temperature changes of NADW and AABW in the western South and Equatorial Atlantic. We confirm previous results which show that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic - along the deep western boundary and eastward, parallel to the equator - as well as the hot-spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5°S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5±0.7•10-3 °C yr-1 of the waters in the northern Brazil Basin at temperatures colder than 0.6 °C throughout the period 1989-2014 and can relate this warming to a thinning of the dense AABW layer. Whereas isopycnal heave is the dominant effect which defines the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the lower NADW and AABW layers. There temperatures on isopycnals exhibit decadal variations with warming in the 1990s and cooling in the 2000s - the contributions to the

  12. Interannual to Decadal Variability of Meridional Transports Across the SAMOC Basin Wide Array (SAMBA) in Simulations with an Eddy-resolving Global Ocean Model

    Science.gov (United States)

    Campos, E. J.; Ambrizzi, T.

    2016-02-01

    Results of numerical experiments with ocean general circulation models show increasing trends in the Agulhas leakage and in the meridional heat transport in the South Atlantic. To further investigate impacts of interannual to interdecadal changes in the wind forcing on the circulation and meridional transports in the South Atlantic, a set of simulations is conducted with an eddy-resolving global implementation of the Hybrid Coordinate Ocean Model (HYCOM). Firstly, a climatological experiment is run, forced with monthly means of the NCEP Reanalysis products, with no interannual variability. The last ten years of a two-decades run are then analyzed. The mean circulation patterns in the South Atlantic are well represented, as compared with observations and results of other models. The outputs show no long term trends, ruling out the hypothesis of any noticeable model's internal drift. Another experiments is then run, forced with interannual variability, from 1949 to the present. The results are compared with those of the climatological experiment, focusing on the circulation, the inter-ocean exchanges, the Agulhas leakage and the meridional transports in the South Atlantic.

  13. Response of the North Atlantic dynamic sea level and circulation to Greenland meltwater and climate change in an eddy-permitting ocean model

    Science.gov (United States)

    Saenko, Oleg A.; Yang, Duo; Myers, Paul G.

    2017-10-01

    The response of the North Atlantic dynamic sea surface height (SSH) and ocean circulation to Greenland Ice Sheet (GrIS) meltwater fluxes is investigated using a high-resolution model. The model is forced with either present-day-like or projected warmer climate conditions. In general, the impact of meltwater on the North Atlantic SSH and ocean circulation depends on the surface climate. In the two major regions of deep water formation, the Labrador Sea and the Nordic Seas, the basin-mean SSH increases with the increase of the GrIS meltwater flux. This SSH increase correlates with the decline of the Atlantic meridional overturning circulation (AMOC). However, while in the Labrador Sea the warming forcing and GrIS meltwater input lead to sea level rise, in the Nordic Seas these two forcings have an opposite influence on the convective mixing and basin-mean SSH (relative to the global mean). The warming leads to less sea-ice cover in the Nordic Seas, which favours stronger surface heat loss and deep mixing, lowering the SSH and generally increasing the transport of the East Greenland Current. In the Labrador Sea, the increased SSH and weaker deep convection are reflected in the decreased transport of the Labrador Current (LC), which closes the subpolar gyre in the west. Among the two major components of the LC transport, the thermohaline and bottom transports, the former is less sensitive to the GrIS meltwater fluxes under the warmer climate. The SSH difference across the LC, which is a component of the bottom velocity, correlates with the long-term mean AMOC rate.

  14. Mass, nutrient and oxygen budgets for the northeastern Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    G. Maze

    2012-10-01

    Full Text Available The northeast Atlantic is a key horizontal and vertical crossroads region for the meridional overturning circulation, but basic nutrient and oxygen fluxes are still poorly constrained by observations in the region. A surface to bottom northeast Atlantic Ocean budget for mass, nutrients (nitrate and phosphate and oxygen is determined using an optimization method based on three surveys of the OVIDE transect (from Greenland to Portugal completed with the World Ocean Atlas 2009. Budgets are derived for two communicating boxes representing the northeastern European basin (NEEB and the Irminger Sea.

    For the NEEB (Irminger box, it is found that 30% of the mass import (export across the OVIDE section reach (originate from the Nordic Seas, while 70% are redistributed between both boxes through the Reykjanes Ridge (9.3 ± 0.7 × 109 kg s−1.

    Net biological source/sink terms of nitrate point to both the Irminger and NEEB boxes as net organic matter production sites (consuming nitrate at a rate of –7.8 ± 6.5 kmol s−1 and –8.4 ± 6.6 kmol s−1, respectively. Using a standard Redfield ratio of C : N = 106 : 16, nitrate consumption rates indicate that about 40 TgC yr−1 of carbon is fixed by organic matter production between the OVIDE transect and the Greenland–Scotland Ridge. Nutrient fluxes also induce a net biological production of oxygen of 73 ± 60 kmol s−1 and 79 ± 62 kmol s−1 in the Irminger and NEEB boxes, which points to the region as being autotrophic.

    The abiotic air–sea oxygen flux leads to an oceanic oxygen uptake in the two regions (264 ± 66 kmol s−1 in the north and 443 ± 70 kmol s−1 in the south. The abiotic flux is partitioned into a mixing and a thermal component. It is found that the Irminger Sea oceanic oxygen uptake is driven by an air–sea heat flux cooling increasing the ocean surface

  15. Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model

    Science.gov (United States)

    Ortega, Pablo; Robson, Jon; Sutton, Rowan T.; Andrews, Martin B.

    2017-10-01

    A necessary step before assessing the performance of decadal predictions is the evaluation of the processes that bring memory to the climate system, both in climate models and observations. These mechanisms are particularly relevant in the North Atlantic, where the ocean circulation, related to both the Subpolar Gyre and the Meridional Overturning Circulation (AMOC), is thought to be important for driving significant heat content anomalies. Recently, a rapid decline in observed densities in the deep Labrador Sea has pointed to an ongoing slowdown of the AMOC strength taking place since the mid 90s, a decline also hinted by in-situ observations from the RAPID array. This study explores the use of Labrador Sea densities as a precursor of the ocean circulation changes, by analysing a 300-year long simulation with the state-of-the-art coupled model HadGEM3-GC2. The major drivers of Labrador Sea density variability are investigated, and are characterised by three major contributions. First, the integrated effect of local surface heat fluxes, mainly driven by year-to-year changes in the North Atlantic Oscillation, which accounts for 62% of the total variance. Additionally, two multidecadal-to-centennial contributions from the Greenland-Scotland Ridge outflows are quantified; the first associated with freshwater exports via the East Greenland Current, and the second with density changes in the Denmark Strait Overflow. Finally, evidence is shown that decadal trends in Labrador Sea densities are followed by important atmospheric impacts. In particular, a positive winter NAO response appears to follow the negative Labrador Sea density trends, and provides a phase reversal mechanism.

  16. The evolution of the North Atlantic Oscillation for the last 700 years inferred from D/H isotopes in the sedimentary record of Lake Azul (Azores archipelago, Portugal).

    Science.gov (United States)

    Rubio de Ingles, Maria Jesus; Shanahan, Timothy M.; Sáez, Alberto; José Pueyo, Juan; Raposeiro, Pedro M.; Gonçalves, Vitor M.; Hernández, Armand; Trigo, Ricardo; Sánchez López, Guiomar; Francus, Pierre; Giralt, Santiago

    2015-04-01

    other NAO records of the North Atlantic region (Trouet et al., 2012) highlighting the validity of the D/H isotopes as precipitation proxy. Trouet V., Scourse J.D., Raible C.C., 2012. North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millenium: Reconciling contradictory proxy record of NAO variability. Global and planetary change.

  17. Agulhas ring injection into the South Atlantic during glacials and interglacials

    Directory of Open Access Journals (Sweden)

    V. Zharkov

    2008-09-01

    Full Text Available Recent proxies suggest that, at the end of the last glacial, there was a significant increase in the injection of Agulhas rings into the South Atlantic (SA. This brought about a dramatic increase in the salt-influx (from the Indian Ocean into the SA helping re-start the then-collapsed meridional overturning cell (MOC, leading to the termination of the Younger Dryas (YD. Here, we propose a mechanism through which large variations in ring production take place.

    Using nonlinear analytical solutions for eddy shedding, we show that there are restricted possibilities for ring detachment when the coast is oriented in the north-south direction. We define a critical coastline angle below which there is rings shedding and above which there is almost no shedding. In the case of the Agulhas region, the particular shape of the African continent implies that rings can be produced only when the retroflection occurs beyond a specific latitude where the angle is critical. During glaciation, the wind stress curl (WSC vanished at a latitude lower than that of the critical angle, which prohibited the retroflection from producing rings. When the latitude at which the WSC vanishes migrated poleward towards its present day position, the corresponding coastline angle decreased below the critical angle and allowed for a vigorous production of rings.

    Simple process-oriented numerical simulations (using the Bleck and Boudra model are in satisfactory agreement with our results and enable us to affirm that, during the glacials, the behavior of the Agulhas Current (AC was similar to that of the modern East Australian Current (EAC, for which the coastline slant is supercritical.

  18. Recent progress in understanding climate thresholds

    NARCIS (Netherlands)

    Good, Peter; Bamber, Jonathan; Halladay, Kate; Harper, Anna B.; Jackson, Laura C.; Kay, Gillian; Kruijt, Bart; Lowe, Jason A.; Phillips, Oliver L.; Ridley, Jeff; Srokosz, Meric; Turley, Carol; Williamson, Phillip

    2018-01-01

    This article reviews recent scientific progress, relating to four major systems that could exhibit threshold behaviour: ice sheets, the Atlantic meridional overturning circulation (AMOC), tropical forests and ecosystem responses to ocean acidification. The focus is on advances since the

  19. Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect

    Directory of Open Access Journals (Sweden)

    D. Cossa

    2018-04-01

    Full Text Available We report here the results of total mercury (HgT determinations along the 2014 Geotraces Geovide cruise (GA01 transect in the North Atlantic Ocean (NA from Lisbon (Portugal to the coast of Labrador (Canada. HgT concentrations in unfiltered samples (HgTUNF were log-normally distributed and ranged between 0.16 and 1.54 pmol L−1, with a geometric mean of 0.51 pmol L−1 for the 535 samples analysed. The dissolved fraction (< 0.45 µm of HgT (HgTF, determined on 141 samples, averaged 78 % of the HgTUNF for the entire data set, 84 % for open seawaters (below 100 m and 91 % if the Labrador Sea data are excluded, where the primary production was high (with a winter convection down to 1400 m. HgTUNF concentrations increased eastwards and with depth from Greenland to Europe and from subsurface to bottom waters. The HgTUNF concentrations were similarly low in the subpolar gyre waters ( ∼  0.45 pmol L−1, whereas they exceeded 0.60 pmol L−1 in the subtropical gyre waters. The HgTUNF distribution mirrored that of dissolved oxygen concentration, with highest concentration levels associated with oxygen-depleted zones. The relationship between HgTF and the apparent oxygen utilization confirms the nutrient-like behaviour of Hg in the NA. An extended optimum multiparameter analysis allowed us to characterize HgTUNF concentrations in the different source water types (SWTs present along the transect. The distribution pattern of HgTUNF, modelled by the mixing of SWTs, show Hg enrichment in Mediterranean waters and North East Atlantic Deep Water and low concentrations in young waters formed in the subpolar gyre and Nordic seas. The change in anthropogenic Hg concentrations in the Labrador Sea Water during its eastward journey suggests a continuous decrease in Hg content in this water mass over the last decades. Calculation of the water transport driven by the Atlantic Meridional Overturning Circulation across the Portugal

  20. Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect

    Science.gov (United States)

    Cossa, Daniel; Heimbürger, Lars-Eric; Pérez, Fiz F.; García-Ibáñez, Maribel I.; Sonke, Jeroen E.; Planquette, Hélène; Lherminier, Pascale; Boutorh, Julia; Cheize, Marie; Lukas Menzel Barraqueta, Jan; Shelley, Rachel; Sarthou, Géraldine

    2018-04-01

    We report here the results of total mercury (HgT) determinations along the 2014 Geotraces Geovide cruise (GA01 transect) in the North Atlantic Ocean (NA) from Lisbon (Portugal) to the coast of Labrador (Canada). HgT concentrations in unfiltered samples (HgTUNF) were log-normally distributed and ranged between 0.16 and 1.54 pmol L-1, with a geometric mean of 0.51 pmol L-1 for the 535 samples analysed. The dissolved fraction (< 0.45 µm) of HgT (HgTF), determined on 141 samples, averaged 78 % of the HgTUNF for the entire data set, 84 % for open seawaters (below 100 m) and 91 % if the Labrador Sea data are excluded, where the primary production was high (with a winter convection down to 1400 m). HgTUNF concentrations increased eastwards and with depth from Greenland to Europe and from subsurface to bottom waters. The HgTUNF concentrations were similarly low in the subpolar gyre waters ( ˜ 0.45 pmol L-1), whereas they exceeded 0.60 pmol L-1 in the subtropical gyre waters. The HgTUNF distribution mirrored that of dissolved oxygen concentration, with highest concentration levels associated with oxygen-depleted zones. The relationship between HgTF and the apparent oxygen utilization confirms the nutrient-like behaviour of Hg in the NA. An extended optimum multiparameter analysis allowed us to characterize HgTUNF concentrations in the different source water types (SWTs) present along the transect. The distribution pattern of HgTUNF, modelled by the mixing of SWTs, show Hg enrichment in Mediterranean waters and North East Atlantic Deep Water and low concentrations in young waters formed in the subpolar gyre and Nordic seas. The change in anthropogenic Hg concentrations in the Labrador Sea Water during its eastward journey suggests a continuous decrease in Hg content in this water mass over the last decades. Calculation of the water transport driven by the Atlantic Meridional Overturning Circulation across the Portugal-Greenland transect indicates northward Hg transport

  1. Rapid bottom-water circulation changes during the last glacial cycle in the coastal low-latitude NE Atlantic

    NARCIS (Netherlands)

    Gallego-Torres, D.; Romero, O.E.; Martínez-Ruiz, F.; Kim, J.-H.; Donner, B.; Ortega-Huertas, M.

    2014-01-01

    Previous paleoceanographic studies along the NW African margin focused on the dynamics of surface and intermediate waters, whereas little attention has been devoted to deep-water masses. Currently, these deep waters consist mainly of North Atlantic Deep Waters as part of the Atlantic Meridional

  2. AIRS observations of seasonal variability in meridional temperature ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. AIRS observations of seasonal variability in meridional temperature gradient over Indian region at 100 hPa. A Gupta S K Dhaka V Panwar R Bhatnagar V Kumar Savita M Datta S K Dash. Volume 122 Issue 1 February 2013 pp 201-213 ...

  3. Link between convection and meridional gradient of sea surface ...

    Indian Academy of Sciences (India)

    . Resolution. URL. SST. TMI ... In this paper, we use satellite data for SST and rainfall to show that there exists a strong relationship between convec- tion and the meridional gradient of SST in the bay. We show that convection sets in within a ...

  4. AIRS observations of seasonal variability in meridional temperature ...

    Indian Academy of Sciences (India)

    Meridional temperature gradient; Atmospheric Infra Red Sounder (AIRS) data; Indian summer monsoon; .... fine scale earlier in this region, due to paucity of data. 2. Data. We have used AIRS (AIRX3STM) version 5 level. 3 research quality product (http://airs.jpl.nasa. ..... regional information as we are presenting in this.

  5. Role of the Ocean-Atmosphere interactions for the Atlantic Multidecadal Variability in an idealized coupled model

    Science.gov (United States)

    Jamet, Quentin; Huck, Thierry; de Verdière, Alain Colin; Arzel, Olivier; Campin, Jean-Michel

    2015-04-01

    The role of the ocean-atmosphere interactions in the multidecadal variability of the Atlantic Meridional Overturning Circulation (AMOC) is investigated in an idealized coupled configuration of the MIT General Circulation Model. The flat-bottom ocean, composed of an Atlantic-like small basin, a Pacific-like large basin, and an unblocked Antarctic-like circumpolar channel, is coupled to a global atmospheric model (SPEEDY). In order to better represent the atmospheric dynamics and its interactions with the ocean, three set-ups, with horizontal resolution of about 4°, 2° and 1° (at the equator) in both the ocean and atmosphere models, are compared. They show a linearly increasing North Atlantic Oscillation-like variability. At all resolutions, the AMOC undergoes a spontaneous variability on multidecadal time scales between 30-40 yr, with an additional higher frequency in the highest resolution set-up. The AMOC variability responds to temperature anomalies along the western boundary through the thermal wind relationship. These temperature anomalies result from the propagation of large-scale baroclinic Rossby waves across the small basin. The unstable region responsible for the growth of Rossby waves through baroclinic instability, diagnosed using a temperature variance budget, shifts from the eastern boundary at coarse resolution (4°) to the western boundary at higher resolution (2° and 1°). An earlier study, performed with the same coarse resolution set-up (4°), has shown that the AMOC does not participate to the growth of Rossby waves, but passively reacts to these waves. The AMOC being mainly connected to the western boundary dynamics, its role in setting large scale baroclinic Rossby waves might be different between the coarse resolution set-ups (4°) and the higher resolution set-ups (2° and 1°). The ocean-atmosphere interactions are strongly enhanced in the highest resolution set-up (1°), with the development of a significant correlation of about 0

  6. Atlantic Region

    NARCIS (Netherlands)

    Elands, B.H.M.; Bell, S.; Blok, J.

    2010-01-01

    Chapter 2 explores recreation and tourism practices in forest areas in the Atlantic region, which refers to the geographical area close to the North Sea and the Atlantic Ocean. The Atlantic countries described in this section are Belgium (Flanders and Wallonia), Denmark, Iceland, Ireland, the

  7. Centennial to millennial climate variability in the far northwestern Pacific (off Kamchatka) and its linkage to the East Asian monsoon and North Atlantic from the Last Glacial Maximum to the early Holocene

    Science.gov (United States)

    Gorbarenko, Sergey A.; Shi, Xuefa; Malakhova, Galina Yu.; Bosin, Aleksandr A.; Zou, Jianjun; Liu, Yanguang; Chen, Min-Te

    2017-08-01

    High-resolution reconstructions based on productivity proxies and magnetic properties of core LV63-41-2 (off Kamchatka) reveal prevailing centennial productivity/climate variability in the northwestern (NW) Pacific from the Last Glacial Maximum (LGM) to the early Holocene (EH). The age model of the core is established by AMS 14C dating and by projections of AMS 14C data of the nearby core SO-201-12KL through correlation of the productivity proxies and relative paleomagnetic intensity. The resulting sequence of centennial productivity increases/climate warming events in the NW Pacific occurred synchronously with the East Asian summer monsoon (EASM) sub-interstadials during the LGM (four events), Heinrich Event 1 (HE1) (four events), Bølling-Allerød (B/A) warming (four events), and over the EH (four events). Remarkable similarity of the sequence of the NW Pacific increased-productivity events with the EASM sub-interstadials over the LGM-HE1 implies that the Siberian High is a strong and common driver. The comparison with the δ18O record from Antarctica suggests that another mechanism associated with the temperature gradient in the Southern Hemisphere may also be responsible for the EASM/NW Pacific centennial events over the LGM-HE1. During the B/A warming and resumption of the Atlantic Meridional Overturning Circulation (AMOC), clear synchronicity between the NW Pacific, EASM and Greenland sub-interstadials was mainly controlled by changes in the atmospheric circulation. During the EH the linkages between solar forcing, ocean circulation, and climate changes likely control the synchronicity of abrupt climate changes in the NW Pacific and North Atlantic. The sequence of centennial events recorded in this study is a persistent regional feature during the LGM-EH, which may serve as a template in high-resolution paleoceanography and sediment stratigraphy in the NW Pacific.

  8. Centennial to millennial climate variability in the far northwestern Pacific (off Kamchatka and its linkage to the East Asian monsoon and North Atlantic from the Last Glacial Maximum to the early Holocene

    Directory of Open Access Journals (Sweden)

    S. A. Gorbarenko

    2017-08-01

    Full Text Available High-resolution reconstructions based on productivity proxies and magnetic properties of core LV63-41-2 (off Kamchatka reveal prevailing centennial productivity/climate variability in the northwestern (NW Pacific from the Last Glacial Maximum (LGM to the early Holocene (EH. The age model of the core is established by AMS 14C dating and by projections of AMS 14C data of the nearby core SO-201-12KL through correlation of the productivity proxies and relative paleomagnetic intensity. The resulting sequence of centennial productivity increases/climate warming events in the NW Pacific occurred synchronously with the East Asian summer monsoon (EASM sub-interstadials during the LGM (four events, Heinrich Event 1 (HE1 (four events, Bølling–Allerød (B/A warming (four events, and over the EH (four events. Remarkable similarity of the sequence of the NW Pacific increased-productivity events with the EASM sub-interstadials over the LGM-HE1 implies that the Siberian High is a strong and common driver. The comparison with the δ18O record from Antarctica suggests that another mechanism associated with the temperature gradient in the Southern Hemisphere may also be responsible for the EASM/NW Pacific centennial events over the LGM-HE1. During the B/A warming and resumption of the Atlantic Meridional Overturning Circulation (AMOC, clear synchronicity between the NW Pacific, EASM and Greenland sub-interstadials was mainly controlled by changes in the atmospheric circulation. During the EH the linkages between solar forcing, ocean circulation, and climate changes likely control the synchronicity of abrupt climate changes in the NW Pacific and North Atlantic. The sequence of centennial events recorded in this study is a persistent regional feature during the LGM-EH, which may serve as a template in high-resolution paleoceanography and sediment stratigraphy in the NW Pacific.

  9. Chores at Times of Fatal or Serious Injuries Associated with Tractor Overturns with and without Rollover Protection

    Directory of Open Access Journals (Sweden)

    Henry P. Cole

    2016-09-01

    Full Text Available This study describes chores when farmers were either fatally or seriously injured and required emergency medical treatment as a result of overturns of tractors with or without rollover protective structures (ROPS. Data from the 2002 Kentucky Farm Tractor Overturn Survey were used for this study. The data were collected by a telephone survey of a population-based random sample of 6063 (7.98% of Kentucky’s 76,017 farm operators as listed in the Kentucky Agricultural Statistics Service database. Of farm operators interviewed, 551 (9.1% reported 603 overturns and 5512 (90.9% reported no overturns in the history of their farm, covering a period from 1925 to February 2002. Only the latest overturn was considered to improve recall accuracy. In addition, since the 1925 to 1959 time period had only 49 (8.1% of the overturns reported, (14 farmers did not provide the year of most recent overturn; only data from the 1960 to 2002 period (approximately 41 years were used. After making these adjustments, incidents evaluated included 25 cases (one fatal and four serious nonfatal injuries that involved ROPS-equipped tractor overturns and 88 cases (24 fatal and 64 serious nonfatal injuries that involved non-ROPS tractor overturns. Chores at highest risk for tractor overturns were identified for which educational and ROPS retrofit interventions could be emphasized. The highest frequency of overturn-related fatalities and nonfatal injuries were associated with hay harvesting, rotary mowing, and on-farm travel chores. These three chores represented 68.2% of fatal events and 50.0% of permanent and 56.6% of temporary disability overturn incidents. Tragically, in countries such as India and China with emerging mechanization, a large majority of tractors are produced without ROPS that can be expected to result in the same overturn-related epidemic of deaths experienced in highly mechanized countries, despite evidence of the protection provided by ROPS.

  10. River runoff influences on the Central Mediterranean overturning circulation

    Science.gov (United States)

    Verri, Giorgia; Pinardi, N.; Oddo, P.; Ciliberti, S. A.; Coppini, G.

    2018-03-01

    The role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas. The impact of river runoff on the Adriatic and Ionian Sea basins was assessed by a twin experiment, with and without runoff, from 1999 to 2012. This study tries to show the connection between the Adriatic as a marginal sea containing the downwelling branch of the anti-estuarine CMOC and the large runoff occurring there. It is found that the multiannual CMOC is a persistent anti-estuarine structure with secondary estuarine cells that strengthen in years of large realistic river runoff. The CMOC is demonstrated to be controlled by wind forcing at least as much as by buoyancy fluxes. It is found that river runoff affects the CMOC strength, enhancing the amplitude of the secondary estuarine cells and reducing the intensity of the dominant anti-estuarine cell. A large river runoff can produce a positive buoyancy flux without switching off the antiestuarine CMOC cell, but a particularly low heat flux and wind work with normal river runoff can reverse it. Overall by comparing experiments with, without and with unrealistically augmented runoff we demonstrate that rivers affect the CMOC strength but they can never represent its dominant forcing mechanism and the potential role of river runoff has to be considered jointly with wind work and heat flux, as they largely contribute to the energy budget of the basin. Looking at the downwelling branch of the CMOC in the Adriatic basin, rivers are demonstrated to locally reduce the volume of Adriatic dense water formed in the Southern Adriatic Sea as a result of increased water stratification. The spreading of the Adriatic dense water into the Ionian abyss is affected as well: dense waters overflowing the Otranto Strait are less dense in a realistic runoff regime, with respect to no runoff experiment, and

  11. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    Science.gov (United States)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  12. The Investigation of EM Scattering from the Time-Varying Overturning Wave Crest Model by the IEM

    Directory of Open Access Journals (Sweden)

    Xiao Meng

    2016-01-01

    Full Text Available Investigation of the electromagnetic (EM scattering of time-varying overturning wave crests is a worthwhile endeavor. Overturning wave crest is one of the reasons of sea spike generation, which increases the probability of false radar alarms and reduces the performance of multitarget detection in the environment. A three-dimensional (3D time-varying overturning wave crest model is presented in this paper; this 3D model is an improvement of the traditional two-dimensional (2D time-varying overturning wave crest model. The integral equation method (IEM was employed to investigate backward scattering radar cross sections (RCS at various incident angles of the 3D overturning wave crest model. The super phenomenon, where the intensity of horizontal polarization scattering is greater than that of vertical polarization scattering, is an important feature of sea spikes. Simulation results demonstrate that super phenomena may occur in some time samples as variations in the overturning wave crest.

  13. Los testimonios de Marte en la Meseta Meridional

    Directory of Open Access Journals (Sweden)

    Julián Hurtado Aguña

    2001-01-01

    Full Text Available Marte, fue una de las más importantes divinidades romanas presentes en Híspanla. Dentro de la Meseta meridional sus testimonios aparecen en algunas localidades de la provincia de Madrid, como Alcalá de Henares, Talamanca del Jarama o Collado Villalba, estando ausentes en otras partes de esta región. Especialmente importante es la presencia de inscripciones dedicadas a Marte en la ciudad romana de Complutum (Alcalá de Henares, donde sus dedicantes pudieran pertenecer en algún caso al grupo social de los libertos.One oí the most important román divinities in Híspanla was Mars. His testimonies in the Meridional Plateau are in some villages of Madrid's province, as Alcalá de Henares, Talamanca del Jarama or Collado Villalba, and they are not in other places of this reglan. Specially important is ttie presence of inscriptions to Mars in ttie román town of Complutum (Alcalá de Henares, wtiere his devotes could belong to the social freedmans group.

  14. Radial Transport and Meridional Circulation in Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A. [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States); Rafikov, Roman R., E-mail: sashaph@princeton.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-10

    Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflow higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.

  15. Timing of last deglaciation in the Cantabrian Mountains (Iberian Peninsula; North Atlantic Region) based on in situ-produced 10Be exposure dating

    Science.gov (United States)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; Domínguez-Cuesta, María José; Rinterknecht, Vincent; Pallàs, Raimon; Aumaître, Georges; Bourlès, Didier L.; Keddadouche, Karim; Aster Team

    2017-09-01

    The Last Glacial Termination led to major changes in ice sheet coverage that disrupted global patterns of atmosphere and ocean circulation. Paleoclimate records from Iberia suggest that westerly episodes played a key role in driving heterogeneous climate in the North Atlantic Region. We used 10Be Cosmic Ray Exposure (CRE) dating to explore the glacier response of small mountain glaciers (ca. 5 km2) that developed on the northern slope of the Cantabrian Mountains (Iberian Peninsula), an area directly under the influence of the Atlantic westerly winds. We analyzed twenty boulders from three moraines and one rock glacier arranged as a recessional sequence preserved between 1150 and 1540 m above sea level (a.s.l.) in the Monasterio valley (Redes Natural Park). Results complement previous chronologic data based on radiocarbon and optically stimulated luminescence from the Monasterio valley, which suggest a local Glacial Maximum (local GM) prior to 33 ka BP and a long-standing glacier advance at 24 ka coeval to the global Last Glacial Maximum (LGM). Resultant 10Be CRE ages suggest a progressive retreat and thinning of the Monasterio glacier over the time interval 18.1-16.7 ka. This response is coeval with the Heinrich Stadial 1, an extremely cold and dry climate episode initiated by a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Glacier recession continued through the Bølling/Allerød period as indicate the minimum exposure ages obtained from a cirque moraine and a rock glacier nested within this moraine, which yielded ages of 14.0 and 13.0 ka, respectively. Together, they suggest that the Monasterio glacier experienced a gradual transition from glacier to rock glacier activity as the AMOC started to strengthen again. Glacial evidence ascribable to the Younger Dryas cooling was not dated in the Monasterio valley, but might have occurred at higher elevations than evidence dated in this work. The evolution of former glaciers documented in the

  16. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  17. A finite volume code for meridional circulation in stars

    CERN Document Server

    Talon, S; Michaud, G; Richer, J

    2003-01-01

    To understand the driving of both meridional circulation and differential rotation in radiative envelopes of stars, one has to solve for 3D mass, momentum, and energy conservation equations for a compressible gas in a central gravity field. In this study, we propose a novel finite volume technique that uses Cartesian geometry thus reducing greatly the complexity of spherical operators. The boundary conditions are efficiently imposed at the surface of the star using the fictitious points technique. We use the anelastic approximation and the Poisson equation for pressure is solved by the Jacobi method which preserves natural symmetries. We present analytical test cases of the fictitious domain technique, and show our results of asymptotic circulation in a model with little stratification and a large viscosity.

  18. North Pacific Meridional Mode over the Common Era

    Science.gov (United States)

    Sanchez, S. C.; Charles, C. D.; Amaya, D. J.; Miller, A. J.

    2016-12-01

    The Pacific Meridional Mode (PMM) has been increasingly recognized as an influential mode of variability for channeling extratropical anomalies to the equatorial ocean-atmosphere system. The PMM has been identified as an important precursor for ENSO, a source of much decadal power in the tropical Pacific, and is potentially intensifying. It is still unknown why the Pacific Meridional Mode might be intensifying; most arguments center around the changing mean state associated with anthropogenic global warming. There are a number of processes by which the background state could influence the PMM: altering the location of trade winds, the characteristics of stochastic forcing, the sensitivity of latent heat flux to surface wind anomalies, the wind response to SST anomalies, or changing the Intertropical Convergence Zone (ITCZ) structure. Recent work has found that the PMM is particularly sensitive to ITCZ shifts in intensity and location (using a simple linear coupled model, [Martinez-Villalobos and Vimont 2016]). Over the last millennium the ITCZ has experienced epochs of notable latitudinal shifts to balance the cross equatorial energy transport. Here we investigate how the strength of the PMM may have varied with these shifts in the ITCZ over the Common Era using the CESM-Last Millennium Ensemble (LME). We assess the strength of the PMM pathway by the degree of air-sea coupling and the amplitude of tropical decadal variability. We expect the ITCZ location and the degree of air-sea coupling (WES feedback) to play a critical role in determining the effectiveness and intensity of the PMM pathway. We verify our inferences in the LME with coral paleoproxy records from the central tropical Pacific. Chiefly we target records from the Line Islands (spanning 1°N to 6°N) to infer variations in the location of the ITCZ and the amplitude of decadal variability. This work enables us to discuss the idea of an intensifying PMM in a more historical context.

  19. Understanding the Impact of Root Morphology on Overturning Mechanisms: A Modelling Approach

    Science.gov (United States)

    Fourcaud, Thierry; Ji, Jin-Nan; Zhang, Zhi-Qiang; Stokes, Alexia

    2008-01-01

    Background and Aims The Finite Element Method (FEM) has been used in recent years to simulate overturning processes in trees. This study aimed at using FEM to determine the role of individual roots in tree anchorage with regard to different rooting patterns, and to estimate stress distribution in the soil and roots during overturning. Methods The FEM was used to carry out 2-D simulations of tree uprooting in saturated soft clay and loamy sand-like soil. The anchorage model consisted of a root system embedded in a soil block. Two root patterns were used and individual roots removed to determine their contribution to anchorage. Key Results In clay-like soil the size of the root–soil plate formed during overturning was defined by the longest roots. Consequently, all other roots localized within this plate had no influence on anchorage strength. In sand-like soil, removing individual root elements altered anchorage resistance. This result was due to a modification of the shape and size of the root–soil plate, as well as the location of the rotation axis. The tap root and deeper roots had more influence on overturning resistance in sand-like soil compared with clay-like soil. Mechanical stresses were higher in the most superficial roots and also in leeward roots in sand-like soil. The relative difference in stresses between the upper and lower sides of lateral roots was sensitive to root insertion angle. Assuming that root eccentricity is a response to mechanical stresses, these results explain why eccentricity differs depending on root architecture. Conclusions A simple 2-D Finite Element model was developed to better understand the mechanisms involved during tree overturning. It has been shown how root system morphology and soil mechanical properties can modify the shape of the root plate slip surface as well as the position of the rotation axis, which are major components of tree anchorage. PMID:17942593

  20. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    Science.gov (United States)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow can modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields.

  1. Upgrading the Arecibo Potassium Lidar Receiver for Meridional Wind Measurements

    Science.gov (United States)

    Piccone, A. N.; Lautenbach, J.

    2017-12-01

    Lidar can be used to measure a plethora of variables: temperature, density of metals, and wind. This REU project is focused on the set up of a semi steerable telescope that will allow the measurement of meridional wind in the mesosphere (80-105 km) with Arecibo Observatory's potassium resonance lidar. This includes the basic design concept of a steering system that is able to turn the telescope to a maximum of 40°, alignment of the mirror with the telescope frame to find the correct focusing, and the triggering and programming of a CCD camera. The CCD camera's purpose is twofold: looking though the telescope and matching the stars in the field of view with a star map to accurately calibrate the steering system and determining the laser beam properties and position. Using LabVIEW, the frames from the CCD camera can be analyzed to identify the most intense pixel in the image (and therefore the brightest point in the laser beam or stars) by plotting average pixel values per row and column and locating the peaks of these plots. The location of this pixel can then be plotted, determining the jitter in the laser and position within the field of view of the telescope.

  2. Meridional equatorial electrojet current in the American sector

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available Huancayo is the only equatorial electrojet station where the daytime increase of horizontal geomagnetic field (H is associated with a simultaneous increase of eastward geomagnetic field (Y. It is shown that during the counter electrojet period when ∆H is negative, ∆Y also becomes negative. Thus, the diurnal variation of ∆Y at equatorial latitudes is suggested to be a constituent part of the equatorial electrojet current system. Solar flares are known to increase the H field at an equatorial station during normal electrojet conditions (nej. At Huancayo, situated north of the magnetic equator, the solar flare effect, during nej, consists of positive impulses in H and Y and negative impulse in Z field. During counter electrojet periods (cej, a solar flare produces a negative impulse in H and Y and a positive impulse in Z at Huancayo. It is concluded that both the zonal and meridional components of the equatorial electrojet in American longitudes, as in Indian longitudes, flows in the same, E region of the ionosphere.

    Key words. Geomagnetism and paleomagnetism (dynamo theories · Ionosphere (equatorial ionosphere; ionosphere disturbances

  3. Meridional equatorial electrojet current in the American sector

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1999-02-01

    Full Text Available Huancayo is the only equatorial electrojet station where the daytime increase of horizontal geomagnetic field (H is associated with a simultaneous increase of eastward geomagnetic field (Y. It is shown that during the counter electrojet period when ∆H is negative, ∆Y also becomes negative. Thus, the diurnal variation of ∆Y at equatorial latitudes is suggested to be a constituent part of the equatorial electrojet current system. Solar flares are known to increase the H field at an equatorial station during normal electrojet conditions (nej. At Huancayo, situated north of the magnetic equator, the solar flare effect, during nej, consists of positive impulses in H and Y and negative impulse in Z field. During counter electrojet periods (cej, a solar flare produces a negative impulse in H and Y and a positive impulse in Z at Huancayo. It is concluded that both the zonal and meridional components of the equatorial electrojet in American longitudes, as in Indian longitudes, flows in the same, E region of the ionosphere.Key words. Geomagnetism and paleomagnetism (dynamo theories · Ionosphere (equatorial ionosphere; ionosphere disturbances

  4. FEM for stability analysis against overturning of portal water injection sheet pile

    Science.gov (United States)

    Lingyun, Liu; Haiyan, Guo; Qi, Sun

    2006-07-01

    Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth pressure between the PWISPs. Stability analysis against overturning follows as a consequence. Using Finite Element Analysis (FEA) software ANSYS, both the nonlinear characteristics of the soil and thos of the contact elements are taken into account to obtain the earth pressure distribution on the contact surface. Based on the results of the FEA, Rankin's theory and the slip plane theory, the formula of the earth pressure on the inner surfaces between the piles is given. Assuming the PWISP as the analysis object and the earth pressure as an outside force acting upon it, the equation of stability against overturning of the PWISP is presented. Finally, some parameters are discussed about the stability of the PWISP against overturning, such as the embedded depth of the front pile, the distance between the two rows of piles, the internal friction angle and the cohesion of the earth. The results show that the increase of the cohesion and the internal friction angle will decrease the distance and the embedded depth, and therefore enhance the stability against overturning. Specifically, when the distance is 1/3 2/3 of the maximal excavation depth, the two rows of piles give the best performance in stability.

  5. Sensitivity of the overturning circulation of the Baltic Sea to climate change, a numerical experiment

    Science.gov (United States)

    Hordoir, Robinson; Höglund, Anders; Pemberton, Per; Schimanke, Semjon

    2018-02-01

    An ocean model covering the Baltic Sea area is forced by several climate scenarios for a period extending from 1961 to 2100. The Baltic Sea overturning circulation is then analyzed. The analysis shows that this circulation decreases between the end of the 20th century and the end of the 21st century, and that the decrease is amplified in the case of the strongest greenhouse gas emission scenarios, which corresponds with the highest warming cases. The reasons behind this decrease in overturning circulation are investigated. A strong increase of thermal stratification is noticed at the level of the Baltic Sea mixed layer. Based on buoyancy flux considerations, we demonstrate that the decrease in overturning circulation coincides with the increase of thermal stratification. Evidence shows that the underlying process is linked to a smaller erosion of the halocline due to a higher shielding, itself linked with a stronger and longer seasonal thermocline. This theory works if surface wind mixing is not taken into account directly in the computation of buoyancy fluxes.

  6. Rocking motion of structures under earthquakes. Overturning of 2-DOF system

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Watanabe, Tetsuya; Tanaka, Kihachiro; Tomoda, Akinori

    2011-01-01

    In recent years, huge earthquakes happen, for example, The South Hyogo prefecture Earthquake in 1995, The Mid Niigata Prefecture Earthquake in 2004, The Iwate-Miyagi Nairiku Earthquake in 2008. In The Niigataken Chuetsu-oki Earthquake in 2007, hundreds of drums fell down and water spilled out. A lot of studies about rocking behavior of rigid body had been performed from 1960's. However, these studies were only for a specific condition of the structure size or input vibration characteristics. Therefore, generalizes fall condition for earthquake is required. This paper deals with the analytical and the experimental study of the rocking vibration of 1-DOF rocking system, 2-DOF vibration-rocking system and 2-DOF rocking system under earthquakes. In this study, the equation of motion for each rocking systems are developed. The numerical model of 2-DOF rocking system is evaluated by free rocking experiment. In this paper, 'Overturning Map' which can distinguish whether structures falls or not is proposed. The overturning map of each rocking systems excited by the artificial earthquake wave calculated from the design spectrum is shown. As the result, overturning condition of structures is clarified. (author)

  7. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  8. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  9. A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Deok Su; Jean, Sang Gyu; Mamatov, Sanjar [Hyosung Goodsprings, Inc., Busan (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-07-15

    This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (εDs) had the highest effect on head increase, while the hub inlet length (d1i) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).

  10. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  11. Currents, HF Radio-derived, SF Bay Outlet, Normal Model, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements, with missing values filled in by a normal...

  12. Currents, HF Radio-derived, SF Bay Outlet, 1 hr, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 1 hour average of the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN EXPERIMENTAL...

  13. Currents, HF Radio-derived, Monterey Bay, 25 hr, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 25 hour running average of the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN...

  14. Currents, HF Radio-derived, Ano Nuevo, 25 hr, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 25 hour running average of the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN...

  15. Currents, HF Radio-derived, Ano Nuevo, 1 hr, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 1 hour average of the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN EXPERIMENTAL...

  16. Currents, HF Radio-derived, Monterey Bay, 1 hr, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 1 hour average of the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN EXPERIMENTAL...

  17. Currents, HF Radio-derived, Bodega Bay, 1 hr, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 1 hour average of the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN EXPERIMENTAL...

  18. Currents, HF Radio-derived, SF Bay, 33 hr, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 33 hour running average of the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN...

  19. Currents, HF Radio-derived, SF Bay, 25 hr, Meridional, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 25 hour running average of the meridional component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN...

  20. Glacial and oceanic history of the polar North Atlantic margins: An overview

    DEFF Research Database (Denmark)

    Elverhøj, A.; Dowdeswell, J.; Funder, S.V.

    1998-01-01

    The five-year PONAl'vl (polar North Atlantic l\\largin: Late Cenozoic Evolution) pr programme was launched by the European Science Foundation in 1989. Its aim was to study the major climate-driven environmental variations in the Norwegian-Greenland (also Nordic) Sea and its continental margins over...... with a relatively st.able ice margin loc,tted in fjords or the inner shelf. The contrasting behaviour of the two ice sheets is probably linked to the palaeoeeanographic circulation pattern in the Polar North Atlantic. East Greenland is under the influence of the cold East Greenland Current, whereas the development...... and behaviour of ice in the Barents Sea is influenced by the continuous, but highly variable. North Atlantic meridional current system that has resulted in a northward innow of relatively warm waters of Atlantic origin on the eastern side of the Polar North Atlantic. Ofparlicular interest arc the so...

  1. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study

    NARCIS (Netherlands)

    Kageyama, M.; Merkel, U.; Otto-Bliesner, B.; Prange, M.; Abe-Ouchi, A.; Lohmann, G.; Ohgaito, R.; Roche, D.M.V.A.P.; Singarayer, J

    2013-01-01

    Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or

  2. Variability in Labrador Sea Water formation

    NARCIS (Netherlands)

    Gelderloos, R.

    2012-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) transports of a large amount of heat towards the North Atlantic region. Since this circulation is considered to have shown pronounced variability in the past, and a weakening is projected for the 21st century, it is very important to understand

  3. Coccolithophore paleoproductivity and ecology response to deglacial and Holocene changes in the Azores Current System

    DEFF Research Database (Denmark)

    Schwab, C.; Kinkel, Hanno; Weinelt, M.

    2012-01-01

    In order to test the sensitivity of marine primary productivity in the midlatitude open ocean North Atlantic to changes in the Atlantic Meridional Overturning Circulation (AMOC), we investigated two spliced sediment cores from a site south of the Azores Islands at the northern rim of the North At...

  4. Interpreting the implied meridional oceanic energy transport in AMIP

    International Nuclear Information System (INIS)

    Randall, D.A.; Gleckler, P.J.

    1993-09-01

    The Atmospheric Model Intercomparison Project (AMIP) was outlined in Paper No. CLIM VAR 2.3 (entitled open-quote The validation of ocean surface heat fluxes in AMIP') of these proceedings. Preliminary results of AMIP subproject No. 5 were also summarized. In particular, zonally averaged ocean surface heat fluxes resulting from various AMIP simulations were intercompared, and to the extent possible they were validated with uncertainties in observationally-based estimates of surface heat fluxes. The intercomparison is continued in this paper by examining the Oceanic Meridional Energy Transport (OMET) implied by the net surface heat fluxes of the AMIP simulations. As with the surface heat fluxes of the AMIP simulations. As with the surface heat fluxes, the perspective here will be very cursory. The annual mean implied ocean heat transport can be estimated by integrating the zonally averaged net ocean surface heat flux, N sfc , from one pole to the other. In AGCM simulations (and perhaps reality), the global mean N sfc is typically not in exact balance when averaged over one or more years. Because of this, an important assumption must be made about changes in the distribution of energy in the oceans. Otherwise, the integration will yield a non-zero transport at the endpoint of integration (pole) which is not physically realistic. Here the authors will only look at 10-year means of the AMIP runs, and for simplicity they assume that any long term imbalance in the global averaged N sfc will be sequestered (or released) over the global ocean. Tests have demonstrated that the treatment of how the global average energy imbalance is assumed to be distributed is important, especially when the long term imbalances are in excess of 10 W m -2 . However, this has not had a substantial impact on the qualitative features of the implied heat transport of the AMIP simulations examined thus far

  5. Predominant nonlinear atmospheric response to meridional shift of the Gulf Stream path from the WRF atmospheric model simulations

    Science.gov (United States)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.

    2016-02-01

    A remarkably strong nonlinear behavior of the atmospheric circulation response to North Atlantic SST anomalies (SSTA) is revealed from a set of large-ensemble, high-resolution, and hemispheric-scale Weather Research and Forecasting (WRF) model simulations. The model is forced with the SSTA associated with meridional shift of the Gulf Stream (GS) path, constructed from a lag regression of the winter SST on a GS Index from observation. Analysis of the systematic set of experiments with SSTAs of varied amplitudes and switched signs representing various GS-shift scenarios provides unique insights into mechanism for emergence and evolution of transient and equilibrium response of atmospheric circulation to extratropical SSTA. Results show that, independent of sign of the SSTA, the equilibrium response is characterized by an anomalous trough over the North Atlantic Ocean and the Western Europe concurrent with enhanced storm track, increased rainfall, and reduced blocking days. To the north of the anomalous low, an anomalous ridge emerges over the Greenland, Iceland, and Norwegian Seas accompanied by weakened storm track, reduced rainfall and increased blocking days. This nonlinear component of the total response dominates the weak and oppositely signed linear response that is directly forced by the SSTA, yielding an anomalous ridge (trough) downstream of the warm (cold) SSTA. The amplitude of the linear response is proportional to that of the SSTA, but this is masked by the overwhelmingly strong nonlinear behavior showing no clear correspondence to the SSTA amplitude. The nonlinear pattern emerges 3-4 weeks after the model initialization in November and reaches its first peak amplitude in December/January. It appears that altered baroclinic wave activity due to the GS SSTA in November lead to low-frequency height responses in December/January through transient eddy vorticity flux convergence.

  6. Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current

    Directory of Open Access Journals (Sweden)

    A. M. Treguier

    2007-12-01

    Full Text Available An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC in a streamline-following framework. Previous model-based estimates of the meridional circulation were calculated using zonal averages: this method leads to a counter-intuitive poleward circulation of the less dense waters, and underestimates the eddy effects. We show that on the contrary, the upper ocean circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by the simplest theoretical models: the sign of the residual circulation cannot be inferred from the surface buoyancy forcing only. Among the other processes that likely play a part in setting the meridional circulation, our model results emphasize the complex three-dimensional structure of the ACC (probably not well accounted for in streamline-averaged, two-dimensional models and the distinct role of temperature and salinity in the definition of the density field. Heat and salt transports by the time-mean flow are important even across time-mean streamlines. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.

  7. Contrasting meridional structures of stratospheric and tropospheric planetary wave variability in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Cheng Sun

    2014-11-01

    Full Text Available The meridional structures of stratospheric and tropospheric planetary wave variability (PWV over the Northern Hemisphere (NH extratropics were investigated and compared using reanalysis data. By performing the spherical double Fourier series expansion of geopotential height data, the horizontal structures of PWV at each vertical level could be examined in the two-dimensional (2D wavenumber (zonal and meridional wavenumbers space. Comparing the amplitudes of wave components during the last three decades, the results suggested that the structures of PWV in the NH troposphere significantly differ from the stratospheric counterparts. The PWV in the troposphere shows multiple meridional wave-like structures, most pronounced for the meridional dipole; while in contrast, PWV in the stratosphere mainly shows large-scale zonal wave patterns, dominated by zonal waves 1 and 2, and have little wave-like fluctuation in the latitudinal direction. The dominant patterns of the NH PWV also show contrasting features of meridional structure between the stratosphere and the troposphere. As represented in the 2D wavenumber space, the leading two empirical orthogonal functions of PWV in the stratosphere largely exhibit the zonal wave 1 pattern, while those in the troposphere clearly show meridional wave-like structures and are dominated by the dipole. The refractive index was derived based on the zonal mean basic state to qualitatively interpret the observational findings. The results suggested that the basic state in the NH troposphere is much more favourable for latitudinally propagating stationary waves than the stratosphere. The difference in meridional structure between stratospheric and tropospheric planetary waves can be well captured in a linear baroclinic model with the observed zonal mean basic state. Furthermore, both theoretical and modelling analyses demonstrated that the fact that zonal wave patterns are preferred in the NH stratosphere may be partly

  8. Evolution of Interhemispheric Sea-Surface Temperature Contrast in the Tropical Atlantic During Termination I

    Science.gov (United States)

    Kim, J.

    2001-12-01

    Meteorological and oceanographic studies show that interannual and decadal variability in tropical Atlantic sea-surface temperature (SST) strongly influences the climates over northeast Brazil, sub-Saharan Africa, as well as the Central American and Caribbean regions. In this context, it is worthwhile to reconstruct spatial temperature patterns for the longer-term tropical Atlantic SST history. In this study, a high-resolution alkenone-derived SST record from the subtropical eastern South Atlantic (core GeoB 1023-5) is compared with one from the tropical western North Atlantic (core M35003-4). This comparison reveals synchronous SST variations between both near equatorial Atlantic regions during the Heinrich Event 1 (H1) (18-15.5 cal kyr B.P.), but dipole-like SST variations during the Younger Dryas (YD) (13-11.5 cal kyr B.P.). To assess the relationship of SST variations between both regions, we calculated SST differences between cores GeoB 1023-5 and M35003-4, and compared it with the coccolithophorid Florisphaera profunda abundance record from the equatorial eastern Atlantic (core RC24-08) as an indicator of variations in intensity of south-easterly trade winds [McIntyre and Molfino, 1996]. This comparison suggests that synchronous warming in both regions during the H1 can be attributed to a reduced northward heat transport from the warm equatorial Atlantic to the cold high-latitude North Atlantic linked to the slowdown of thermohaline circulation overturning during cold events under full glacial conditions. However, dipole-like SST variations during the YD is probably more associated with strengthened south-easterly trade winds, which led to a strong upwelling-related cooling in the eastern South Atlantic region and concurrently enhanced advection of warm subtropical South Atlantic waters to the tropical western Atlantic during that time. Accordingly, a coupled oceanic-atmospheric process created a warm pool in the tropical western Atlantic and thus a dipole

  9. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, F-91191 Gif-Sur-Yvette (France); Fournier, Alexandre [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris (France); Talagrand, Olivier [Laboratoire de météorologie dynamique, UMR 8539, Ecole Normale Supérieure, Paris Cedex 05 (France)

    2015-12-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales.

  10. North Atlantic, ITCZ, and Monsoonal Climate Links

    Science.gov (United States)

    Haug, G. H.; Deplazes, G.; Peterson, L. C.; Brauer, A.; Mingram, J.; Dulski, P.; Sigman, D. M.

    2008-12-01

    Major element chemistry and color data from sediment cores in the anoxic Cariaco Basin off Venezuela record with (sub)annual resolution large and abrupt shifts in the hydrologic cycle of the tropical Atlantic during the last 80 ka. These data suggest a direct connection between the position of the ITCZ over northern South America, the strength of trade winds, and the temperature gradient to the high northern latitudes, ENSO, and monsoonal climate in Asia. The mechanisms behind these decadal-scale ITCZ-monsoon swings can be further explored at major climate transitions such as the onset of Younger Dryas cooling at ~12.7 ka, one of the most abrupt climate changes observed in ice core, lake and marine records in the North Atlantic realm and much of the Northern Hemisphere. Annually laminated sediments from ideally record the dynamics of abrupt climate changes since seasonal deposition immediately responds to climate and varve counts accurately estimate the time of change. We compare sub-annual geochemical data from a lake in Western Germany, which provides one of the best-dated records currently available for this climate transition, with the new the Cariaco Basin record and a new and higher resolution record from Lake Huguang Maar in China, and the Greenland ice core record. The Lake Meerfelder Maar record indicates an abrupt increase in storminess, occurring from one year to the next at 12,678 ka BP, coincident with other observed climate changes in the region. We interpret this shift of the wintertime winds to signify an abrupt change in the North Atlantic westerlies to a stronger and more zonal jet. The observed wind shift provides the atmospheric mechanism for the strong temporal link between North Atlantic overturning and European climate during the last deglaciation, tightly coupled to ITCZ migrations observed in the Cariaco Basin sediments, and a stronger east Asian Monsoon winter monsoon as seen in lake Huguang Maar, when cave stalagmite oxygen isotope data

  11. An isentropic perspective of the atmospheric overturning induced by Hector the Convector

    Science.gov (United States)

    Dauhut, Thibaut; Chaboureau, Jean-Pierre; Mascart, Patrick; Pauluis, Olivier

    2017-04-01

    The overturning inside Hector the Convector, a tropical multicellular convective system of the Northern Australia that regularly overshoots into the stratosphere, is synthesized at the scale of a Large-Eddy Simulation (Dauhut et al., 2015). The isentropic analysis offers the advantage to filter out the reversible motions due to the gravity waves and to take into account the turbulent fluxes that contribute to the vertical transport. Two key circulations are evidenced: the troposphere-deep overturning and the mass exchange due to the overshoots into the stratosphere. The transition from deep to very deep convection is associated with a change in the diabatic tendency inside the tallest updrafts: the latent heat release due to the freezing of a large amount of hydrometeors overrode the loss of energy due to mixing with the drier, colder air of the environment. In agreement with a previous study of Hector examining the properties of its two tallest updrafts (Dauhut et al., 2016), the entrainment rate exhibits a minimum during the very deep convection phase, as low as 0.04 /km. The two-stream approximation corroborates the Eulerian computation of the vertical mass flux in the mid-troposphere and in the lower stratosphere. It however gives a lower estimate of the flux in the upper troposphere, filtering out the reversible motions, and a larger estimate in the lower troposphere and at the tropopause, where slow vertical motions contribute significantly to the transport.

  12. Closed-form overturning limit of rigid block under critical near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kunihiko eNabeshima

    2016-05-01

    Full Text Available A closed-form limit on the input level of the double impulse as a substitute of a near-fault ground motion is derived for the overturning of a rigid block. The rocking vibration of the rigid block is formulated by using the conservation law of angular momentum and the conservation law of mechanical energy. The initial rotational velocity after the first impulse and the rotational velocity after the impact are determined by the conservation law of angular momentum. The velocity change after the second impulse is also characterized by the conservation law of angular momentum. The maximum angles of rotation of the rigid block in both the clockwise and anti-clockwise directions, which are needed for the computation of the overturning limit, are derived by the conservation law of mechanical energy. This enables us to avoid the computation of complicated non-linear time-history responses. The critical timing of the second impulse to the first impulse is characterized by the time of impact after the first impulse. It is clarified that the action of the second impulse just after the impact corresponds to the critical timing. It is derived from the closed-form expression of the critical velocity amplitude limit of the double impulse that its limit is proportional to the square root of size, i.e. the scale effect.

  13. Escleroplastia meridional: A propósito de un caso en 1999 Meridional scleroplasty: With regard to a case in 1999

    Directory of Open Access Journals (Sweden)

    Enrique J. Machado Fernández

    2000-06-01

    Full Text Available En este artículo se presenta un caso reciente de rechazo al aloplante utilizado para escleroplastia meridional. Se refieren las características del cuadro clínico presentado y su tratamiento. Además, se expresan consideraciones basadas en datos estadísticos y hallazgos anatomopatológicos que fundamentan la suspensión de la práctica de esta técnica en el Centro de Microcirugía Ocular.In present paper, authors present a recent case of rejection to allograft used to meridional scleroplasty. Festures of clinical picture and its treatment are related. Furthermore, we express statistical data based on considerations and anatomic-pathologic findings supporting suspension of practice of this technique in Center of Microsurgery of Eye.

  14. Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields

    Science.gov (United States)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.

  15. Improvements in launchings and recipients of PIG in Malha de Gasodutos Nordeste Meridional; Melhorias nos lancamentos e recebedores de PIG da Malha de Gasodutos Nordeste Meridional

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, Jairo A.C.; Lemos, Francisco A.C.; Lima, Artur W.R. de S. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This paper describes the study that resulted in the preparation of a project for improvement of launchers and receivers of PIG in facilities maintained and operated by PETROBRAS S.A. (TRANSPETRO) in the Malha de Gasodutos Nordeste Meridional (Malha NEM). The improvements are part of the component in cleaner production system and reduce the risks of accidents and the costs of hazardous waste management.

  16. Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010

    Science.gov (United States)

    Wilson, Robert M.

    2012-01-01

    Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.

  17. Do the Atlantic climate modes impact the ventilation of the eastern tropical North Atlantic oxygen minimum zones?

    Science.gov (United States)

    Burmeister, Kristin; Lübbecke, Joke F.

    2017-04-01

    Oxygen minimum zones (OMZs) exist in the upwelling regions of the eastern tropical Atlantic and Pacific at intermediate depth. They are a consequence of high biological productivity in combination with weak ventilation. The flow fields in the tropical Atlantic is characterized by Latitudinally Alternating Zonal Jets (LAZJs) with a large vertical scale. It has been suggested that LAZJs play an important role for the ventilation of the OMZ as eastward currents advect oxygen-rich waters from the western boundary towards the OMZ. In the Eastern Tropical North Atlantic (ETNA), the eastward flowing North Equatorial Undercurrent and North Equatorial Countercurrent (NECC) provide the main oxygen supply into the OMZ. Variability in the strength and location of the LAZJs is associated with oxygen variability in the ETNA OMZ. We here want to address the question whether the variability in the zonal current field can be partly attributed to the large-scale climate modes of the tropical Atlantic, namely the Atlantic zonal and meridional mode. An influence of these modes on the NECC has been found in previous studies. For the analysis we are using the output of a global ocean circulation model, in which a 1/10° nest covering the tropical Atlantic is embedded into a global 1/2° model, as well as reanalysis products and satellite data. The zonal current field and oxygen distribution from the high resolution model is compared to observational data. The location and intensity of the current bands during positive and negative phases of the Atlantic climate modes are compared by focusing on individual events and via composite analysis. Based on the results, the potential impact of the Atlantic climate modes on the ventilation of the ETNA OMZ is discussed.

  18. On the seasonal cycles and variability of Florida Straits, Ekman and Sverdrup transports at 26° N in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    C. P. Atkinson

    2010-10-01

    Full Text Available Since April 2004 the RAPID array has made continuous measurements of the Atlantic Meridional Overturning Circulation (AMOC at 26° N. Two key components of this system are Ekman transport zonally integrated across 26° N and western boundary current transport in the Florida Straits. Whilst measurements of the AMOC as a whole are somewhat in their infancy, this study investigates what useful information can be extracted on the variability of the Ekman and Florida Straits transports using the decadal timeseries already available. Analysis is also presented for Sverdrup transports zonally integrated across 26° N.

    The seasonal cycles of Florida Straits, Ekman and Sverdrup transports are quantified at 26° N using harmonic analysis of annual and semi-annual constituents. Whilst Sverdrup transport shows clear semi-annual periodicity, calculations of seasonal Florida Straits and Ekman transports show substantial interannual variability due to contamination by variability at non-seasonal frequencies; the mean seasonal cycle for these transports only emerges from decadal length observations. The Florida Straits and Ekman mean seasonal cycles project on the AMOC with a combined peak-to-peak seasonal range of 3.5 Sv. The combined seasonal range for heat transport is 0.40 PW.

    The Florida Straits seasonal cycle possesses a smooth annual periodicity in contrast with previous studies suggesting a more asymmetric structure. No clear evidence is found to support significant changes in the Florida Straits seasonal cycle at sub-decadal periods. Whilst evidence of wind driven Florida Straits transport variability is seen at sub-seasonal and annual periods, a model run from the 1/4° eddy-permitting ocean model NEMO is used to identify an important contribution from internal oceanic variability at sub-annual and interannual periods. The Ekman transport seasonal cycle possesses less symmetric structure, due in part to different seasonal transport

  19. Holocene Atlantic Freshwater Redistribution and the Intensification of the South American Monsoon

    Science.gov (United States)

    Came, R.; Oppo, D.; Zheng, W.; Liu, Z.; Keigwin, L.; Schmidt, G.; Carlson, A.; Legrande, A.

    2008-12-01

    The Atlantic-to-Pacific water vapor transport across Central America has been postulated to play an important role in the overturning circulation of the Atlantic Ocean (Schmittner et al., 2000). Paleoceanographic data suggest that the δ18Osw, and presumably salinity, of western Pacific surface waters has decreased over the course of the Holocene (Stott et al., 2004), and modeling work suggests a number of inter-related mechanisms - changes in water vapor transport in and out of the Pacific, weakening of the East Asian monsoon, and changes in surface ocean circulation (Schmidt et al., 2007; Oppo et al., 2007). Here, we examine whether the increase in water vapor transport from the Atlantic to the Pacific that occurred as the Intertropical Convergence Zone (ITCZ) migrated southward resulted in an increase in Atlantic salinities; in essence we test whether the Pacific Ocean freshened at the expense of the Atlantic Ocean freshwater budget. Our results from the North Atlantic confirm the previously documented southward migration of the Intertropical Convergence Zone, and results from the South Atlantic provide paleoceanographic evidence suggesting a Holocene intensification of the South American monsoon.

  20. Interconverting the matrix and principal-meridional representations of dioptric power and reduced vergence.

    Science.gov (United States)

    Harris, W F

    2000-11-01

    Converting the traditional representation of power as sphere, cylinder and axis to the dioptric power matrix F is usually performed by means of Long's equations and the reverse process by means of Keating's equations. It is sometimes useful to be able to convert directly between the matrix and power expressed in terms of principal powers F1 and F2 along corresponding principal meridians at angles a1 and a2. The equations for interconverting F and the principal-meridional representation expressed as F1(a1)F2 are presented here. Equivalent equations allow direct interconversion of the reduced vergence matrix L and the principal-meridional representation of vergence L1(a1)L2. Vergence becomes infinite at line and point focuses. Similarly effective power and back- and front-vertex power are infinite for some systems. Nevertheless it is possible unambiguously to represent infinite vergence and vertex power in principal-meridional form. However, information is usually lost in these infinite cases when the principal-meridional representation is converted to the matrix representation, and the former is not recoverable from the latter. As a consequence the matrix representation is usually unsatisfactory for vergences and vertex powers that are infinite. On the other hand, the principal-meridional representation of vergence and power is always satisfactory. If one adopts the position that effective powers and vertex powers are really vergences rather than powers then one concludes that the matrix provides a satisfactory representation for powers of thin systems in general but not for vergences. Implied by a vergence at a point is an interval of Sturm. The equations for characterizing the interval from the reduced vergence are presented.

  1. North Atlantic warming: patterns of long-term trend and multidecadal variability

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Igor V.; Alexeev, Vladimir A.; Zhang, Xiangdong [University of Alaska Fairbanks, International Arctic Research Center, Fairbanks, AK (United States); Bhatt, Uma S. [University of Alaska Fairbanks, Geophysical Institute, Fairbanks, AK (United States); Polyakova, Evgenia I. [Stanford University, Department of Geological and Environmental Studies, Stanford, CA (United States)

    2010-02-15

    Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, {proportional_to}50-80 years). Our results suggest a general warming trend of 0.031 {+-} 0.006 C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for {proportional_to}60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales. (orig.)

  2. Modulation of extremes in the Atlantic region by modes of climate variability/change: A mechanistic coupled regional model study

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Ramalingam [Texas A & M Univ., College Station, TX (United States)

    2015-01-09

    During the course of this project, we have accomplished the following: 1) Explored the parameter space of component models to minimize regional model bias 2) Assessed the impact of air-sea interaction on hurricanes, focusing in particular on the role of the oceanic barrier layer 3) Contributed to the activities of the U.S. CLIVAR Hurricane Working Group 4) Assessed the impact of lateral and lower boundary conditions on extreme flooding events in the U.S. Midwest in regional model simulations 5) Analyzed the concurrent impact of El Niño-Southern Oscillation and Atlantic Meridional Mode on Atlantic Hurricane activity using observations and regional model simulations

  3. South Atlantic Shrimp System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SEFSC, in cooperation with the South Atlantic states, collects South Atlantic shrimp data from dealers and fishermen. These data are collected to provide catch,...

  4. 2005 Atlantic Hurricanes Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2005 Atlantic Hurricanes poster features high quality satellite images of 15 hurricanes which formed in the Atlantic Basin (includes Gulf of Mexico and Caribbean...

  5. Duration of a Magma Ocean and Subsequent Mantle Overturn in Mars: Evidence from Nakhlites

    Science.gov (United States)

    Debaille, V.; Brandon, A. D.; Yin, Q.-Z.; Jacobsen, B.

    2008-01-01

    It is now generally accepted that the heat produced by accretion, short-lived radioactive elements such as Al-26, and gravitational energy from core formation was sufficient to at least partially melt the silicate portions of terrestrial planets resulting in a global-scale magma ocean. More particularly, in Mars, the geochemical signatures displayed by shergottites, are likely inherited from the crystallization of this magma ocean. Using the short-lived chronometer Sm-146 - Nd-142 (t(sup 1/2) = 103 Myr), the duration of the Martian magma ocean (MMO) has been evaluated to being less than 40 Myr, while recent and more precise ND-142/ND-144 data were used to evaluate the longevity of the MMO to approximately 100 Myr after the solar system formation. In addition, it has been proposed that the end of the crystallization of the MMO may have triggered a mantle overturn, as a result of a density gradient in the cumulate layers crystallized at different levels. Dating the mantle overturn could hence provide additional constraint on the duration of the MMO. Among SNC meteorites, nakhlites are characterized by high epsilon W-182 of approximately +3 and an epsilon Nd-142 similar to depleted shergottites of +0.6-0.9. It has hence been proposed that the source of nakhlites was established very early in Mars history (approximately 8-10 Myr). However, the times recorded in HF-182-W-182 isotope system, i.e. when 182Hf became effectively extinct (approximately 50 Myr after solar system formation) are less than closure times recorded in the Sm-146-Nd-142 isotope system (with a full coverage of approximately 500 Myr after solar system formation). This could result in decoupling between the present-day measured epsilon W-182 and epsilon Nd-142 as the SM-146 may have recorded later differentiation events in epsilon ND-142 not observed in epsilon W-182 values. With these potential complexities in short-lived chronological data for SNC's in mind, new Hf-176/Hf-177, Nd-143/Nd-144 and Nd

  6. Magnetohydrdodynamic models of coronal transients in the meridional plane. IV. effect of the solar wind

    International Nuclear Information System (INIS)

    Wu, S.T.; Steinolfson, R.S.; Dryer, M.; Tandberg-Hanssen, E.

    1981-01-01

    A two-dimensional, time-dependenct magnetohydrodynamic model in the meridional plane with and without an ambient solar wind in an ambient radial magnetic field has been used to investigate mass motions associated with coronal transients. We show that that solar wind does not significantly affect the general dynamic characteristics of the mass motion. The ambient solar wind, however, increases the velocity of the mass motion and produces a moderate change in the thermodynamic properties of the coronal plasma

  7. Agrobiodiversity of cactus pear (Opuntia, Cactaceae) in the Meridional Highlands Plateau of Mexico

    OpenAIRE

    Juan Antonio Reyes-Agüero; Juan Rogelio Aguirre Rivera

    2011-01-01

    Mexico is characterized by a remarkable richness of Opuntia, mostly at the Meridional Highlands Plateau; it is also here where the greatest richness of Opuntia variants occurs. Most of these variants have been maintained in homegardens; however, the gathering process which originated these homegardens has been disrupted over the past decades, as a result of social change and the destruction of large wild nopaleras. If the variants still surviving in homegardens are lost, these will be hard to...

  8. The meganism behind internally generated centennial-to-millennial scale climate variability in an earth system model of intermediate complexity

    NARCIS (Netherlands)

    Friedrich, T.; Timmermann, A.; Menviel, L.; Elison Timm, O.; Mouchet, A.; Roche, D.M.V.A.P.

    2010-01-01

    The mechanism triggering centennial-to-millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC) in the earth system model of intermediate complexity LOVECLIM is investigated. It is found that for several climate boundary conditions such as low obliquity values (∼22.1 )

  9. Indian summer monsoon forcing on the deglacial polar cold reversals

    Indian Academy of Sciences (India)

    Virupaxa K Banakar

    2017-09-01

    Sep 1, 2017 ... ing depletion in its atmospheric concentration did not occur during these cold reversals; instead,. CO2 concentration remained constant at ~240 ppmv (Monnin et al. 2001). An anti-phased inter- hemispheric ocean-heat-budget is a necessity for the operation of Atlantic Meridional Overturn- ing Circulation ...

  10. Agrobiodiversity of cactus pear (Opuntia, Cactaceae in the Meridional Highlands Plateau of Mexico

    Directory of Open Access Journals (Sweden)

    Juan Antonio Reyes-Agüero

    2011-08-01

    Full Text Available Mexico is characterized by a remarkable richness of Opuntia, mostly at the Meridional Highlands Plateau; it is also here where the greatest richness of Opuntia variants occurs. Most of these variants have been maintained in homegardens; however, the gathering process which originated these homegardens has been disrupted over the past decades, as a result of social change and the destruction of large wild nopaleras. If the variants still surviving in homegardens are lost, these will be hard to recover, that is, the millenary cultural heritage from the human groups that populated the Mexican Meridional Highland Plateau will be lost forever. This situation motivated the preparation of a catalogue that records the diversity of wild and cultivated Opuntia variants living in the meridional Highlands Plateau. To this end, 379 samples were obtained in 29 localities, between 1998 and 2003. The information was processed through Twinspan. All specimens were identified and preserved in herbaria. Botanical keys and descriptions were elaborated. The catalogue includes information on 126 variants comprising 18 species. There were species with only one variant (Opuntia atropes, O. cochinera, O. jaliscana, O. leucotricha, O. rzedowskii and O. velutina, two (O. durangensis, O. lindheimeri, O. phaeacantha and O. robusta, five (O. joconostle and O. lasiacantha, seven (O. chavena, 12 (O. hyptiacantha and O. streptacantha, 15 (O. ficus-indica, 22 (O. albicarpa, and up to 34 (O. megacantha. Additionally, 267 common cactus pear names were related to those variants.

  11. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  12. Evidence that a Deep Meridional Flow Sets the Sunspot Cycle Period

    Science.gov (United States)

    Hathaway, David H.; Nandy, D.; Wilson, R. M.; Reichmann, E. J.

    2003-01-01

    Sunspots appear on the Sun in two bands on either side of the equator that drift toward lower latitudes as each sunspot cycle progresses. We examine the equatorward drift of the centroid of the sunspot area in each hemisphere from 1874 to 2002 and find that the drift rate slows as the centroid approaches the equator. We compare the drift rate at sunspot cycle maximum to the cycle-period for each hemisphere and find a highly significant anti-correlation: hemispheres with faster drift rates have shorter periods. These observations are. consistent with an equatorward meridional counterflow, deep within the Sun, as the primary driver of the equatorward migration and the period associated with the sunspot cycle. We also find that the drift rate at maximum is significantly correlated with the amplitude of the following cycle, a prediction of dynamo models that employ a deep equatorward meridional flow. Our results indicate an amplitude of about 1.2 m/s for the meridional flow velocity at the base of the solar convection zone.

  13. Interactions Between the Thermohaline Circulation and Tropical Atlantic SST in a Coupled General Circulation Model

    Science.gov (United States)

    Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)

    2001-01-01

    Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.

  14. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  15. Intra-seasonal Oscillations (ISO of zonal-mean meridional winds and temperatures as measured by UARS

    Directory of Open Access Journals (Sweden)

    F. T. Huang

    2005-06-01

    Full Text Available Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI on the UARS spacecraft in the upper mesosphere (95km, persistent and regular intra-seasonal oscillations (ISO with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here on an analysis of concurrent UARS temperature measurements, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55km, their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.

  16. Importance of dissolved organic nitrogen in the north Atlantic Ocean in sustaining primary production: a 3-D modelling approach

    Directory of Open Access Journals (Sweden)

    G. Charria

    2008-10-01

    Full Text Available An eddy-permitting coupled ecosystem-circulation model including dissolved organic matter is used to estimate the dissolved organic nitrogen (DON supply sustaining primary production in the subtropical north Atlantic Ocean.

    After an analysis of the coupled model performances compared to the data, a sensitivity study demonstrates the strong impact of parameter values linked to the hydrolysis of particulate organic nitrogen and remineralisation of dissolved organic nitrogen on surface biogeochemical concentrations.

    The physical transport of dissolved organic nitrogen contributes to maintain the level of primary production in this subtropical gyre. It is dominated by the meridional component. We estimate a meridional net input of 0.039 molN m−2 yr−1 over the domain (13–35° N and 71–40° W in the subtropical gyre. This supply is driven by the Ekman transport in the southern part and by non-Ekman transport (meridional current components, eddies, meanders and fronts in the northern part of the subtropical gyre. At 12° N, our estimate (18 kmolN s−1 confirms the estimation (17.9 kmolN s−1 made by Roussenov et al. (2006 using a simplified biogeochemical model in a large scale model. This DON meridional input is within the range (from 0.05 up to 0.24 molN m−2 yr−1 (McGillicuddy and Robinson, 1997; Oschlies, 2002 of all other possible mechanisms (mesoscale activity, nitrogen fixation, atmospheric deposition fuelling primary production in the subtropical gyre. The present study confirms that the lateral supply of dissolved organic nitrogen might be important in closing the N budget over the north Atlantic Ocean and quantifies the importance of meridional input of dissolved organic nitrogen.

  17. Meteorological conditions, physiochemical properties, thermal-oxygen stratification, water overturn and water balance of Lake Gardno on Wolin Island

    Directory of Open Access Journals (Sweden)

    Tylkowski Jacek

    2015-09-01

    Full Text Available The main research problem of the paper is aimed at determining the proper functioning of Lake Gardno within the period 2012-2014 considered as hydrological years in reference to the physiochemical properties of its waters, water balance, thermal regime and water overturn. Lake Gardno is a representative of non-run-off lake geo-eco-systems; it is situated within the Southern Baltic Sea Coastland at the cliff shore of Wolin Island. The paper analyses how weather conditions affect the specifics of water supplies provided to the lake and seasonal dynamics of its waters, their chemical, thermal and aerobic properties. It also specifies their overturn and balance with a particular emphasis on their supplies together with fog deposits.

  18. Aerosol interactions with African/Atlantic climate dynamics

    International Nuclear Information System (INIS)

    Hosseinpour, F; Wilcox, E M

    2014-01-01

    Mechanistic relationships exist between variability of dust in the oceanic Saharan air layer (OSAL) and transient changes in the dynamics of Western Africa and the tropical Atlantic Ocean. This study provides evidence of possible interactions between dust in the OSAL region and African easterly jet–African easterly wave (AEJ–AEW) system in the climatology of boreal summer, when easterly wave activity peaks. Synoptic-scale changes in instability and precipitation in the African/Atlantic intertropical convergence zone are correlated with enhanced aerosol optical depth (AOD) in the OSAL region in response to anomalous 3D overturning circulations and upstream/downstream thermal anomalies at above and below the mean-AEJ level. Upstream and downstream anomalies are referred to the daily thermal/dynamical changes over the West African monsoon region and the Eastern Atlantic Ocean, respectively. Our hypothesis is that AOD in the OSAL is positively correlated with the downstream AEWs and negatively correlated with the upstream waves from climatological perspective. The similarity between the 3D pattern of thermal/dynamical anomalies correlated with dust outbreaks and those of AEWs provides a mechanism for dust radiative heating in the atmosphere to reinforce AEW activity. We proposed that the interactions of OSAL dust with regional climate mainly occur through coupling of dust with the AEWs. (paper)

  19. 4M Overturned Pyramid (MOP) Model Utilization: Case Studies on Collision in Indonesian and Japanese Maritime Traffic Systems (MTS)

    OpenAIRE

    Wanginingastuti Mutmainnah; Masao Furusho

    2016-01-01

    4M Overturned Pyramid (MOP) model is a new model, proposed by authors, to characterized MTS which is adopting epidemiological model that determines causes of accidents, including not only active failures but also latent failures and barriers. This model is still being developed. One of utilization of MOP model is characterizing accidents in MTS, i.e. collision in Indonesia and Japan that is written in this paper. The aim of this paper is to show the characteristics of ship collision accidents...

  20. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required

    Science.gov (United States)

    Dygert, N. J.; Liang, Y.

    2017-12-01

    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb 1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few

  1. A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

    Directory of Open Access Journals (Sweden)

    Belén Rodríguez-Fonseca

    2016-06-01

    Full Text Available The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years and modeling projects (e.g., CMIP permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.

  2. Tropical Dominance of N2 Fixation in the North Atlantic Ocean

    Science.gov (United States)

    Marconi, Dario; Sigman, Daniel M.; Casciotti, Karen L.; Campbell, Ethan C.; Alexandra Weigand, M.; Fawcett, Sarah E.; Knapp, Angela N.; Rafter, Patrick A.; Ward, Bess B.; Haug, Gerald H.

    2017-10-01

    To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, 90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in Pacific basins.

  3. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  4. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.

    Science.gov (United States)

    McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A

    2015-05-28

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  5. Meridional flow and differential rotation by gravity darkening in fast rotating solar-type stars

    Science.gov (United States)

    Rüdiger, G.; Küker, M.

    2002-04-01

    An explanation is presented for the rather strong total surface differential rotation of the observed very young solar-type stars like AB Dor and PZ Tel. Due to its rapid rotation, a non-uniform energy flux leaves the stellar core so that the outer convection zone is non-uniformly heated from below. Due to this ``gravity darkening'' of the equator, a meridional flow is created flowing equatorwards at the surface and thus accelerating the equatorial rotation. The effect linearly grows with the normalized pole-equator difference, epsilon , of the heat-flux at the bottom of the convection zone. A rotation rate of about 9 h leads to epsilon =0.1 for a solar-type star. In this case the resulting equator-pole differences of the angular velocity at the stellar surface, delta Omega , varies from unobservable 0.005 day-1 to the (desired) value of 0.03 day-1 when the dimensionless diffusivity factors cnu and cchi vary between 1 and 0.1 (standard value cnu =~ cchi =~ 0.3, see Table \\ref{tab1}). In all cases the related temperature differences between pole and equator at the surface are unobservably small. The (clockwise) meridional circulation which we obtain flows opposite to the (counterclockwise) circulation appearing as a byproduct in the Lambda -theory of the non-uniform rotation in outer convection zones. The consequences of this situation for those dynamo theories of stellar activity are discussed that work with the meridional circulation as the dominant magnetic-advection effect in latitude to produce the solar-like form of the butterfly diagram.

  6. Controls on the meridional extent of tropical precipitation and its contraction under global warming

    Science.gov (United States)

    Donohoe, A.

    2017-12-01

    A method for decomposing changes and variability in the spatial structure of tropical precipitation into shifting (meridional translation), contracting, and intensifying modes of variability is introduced. We demonstrate that the shifting mode of tropical precipitation explains very little (20%) more of the tropical precipitation changes and variability. Furthermore, the contraction of tropical precipitation is highly correlated (R2 > 0.95) with an intensification of the precipitation in both the observations and forced modeled simulations. These results suggest that the simultaneous contraction and intensification of tropical precipitation is the dominant mode of variability and changes under external forcing. We speculate that tropical surface temperature controls this concurrent variability. Indeed, models robustly predict that tropical precipitation increases and meridionally contracts in response to increased CO2 and is reduced and meridionally expanded under glacial forcing and boundary conditions. In contrast, the directionality of the tropical precipitation shift is both ambiguous and small in magnitude in response to increased CO2. Furthermore, the ratio of the contraction/expansion to intensification/reduction is consistent in the continuum of climate states from the glacial climate to a modern climate to a 4XCO2 climate suggesting that the intensification and contraction are linked together via a single mechanism. We examine two mechanisms responsible for the contraction of the precipitation under global warming : i. the reduction of the seasonal cycle of energy input to the atmosphere due to sea ice retreat that results in the tropical precipitation remaining closer to the equator during the solsticial seasons and; ii. the increased gross moist stability of the tropical atmosphere as the surface warms resulting in a weaker cross-equatorial Hadley circulation during the solsticial seasons.

  7. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum

    OpenAIRE

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander; Gagan, M. K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alex; Esat, T. M.; Thompson, William G.; Tiwari, Manish; Potts, Don; Mudelsee, Manfred; Yokoyama, Y.; Webster, Jody M.

    2014-01-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and d18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1–2 C larger temperaturedecrease between 17 and 20S about 20,000 to 13,...

  8. Atlantic Multidecadal Oscillation footprint on global high cloud cover

    Science.gov (United States)

    Vaideanu, Petru; Dima, Mihai; Voiculescu, Mirela

    2017-12-01

    Due to the complexity of the physical processes responsible for cloud formation and to the relatively short satellite database of continuous data records, cloud behavior in a warming climate remains uncertain. Identifying physical links between climate modes and clouds would contribute not only to a better understanding of the physical processes governing their formation and dynamics, but also to an improved representation of the clouds in climate models. Here, we identify the global footprint of the Atlantic Multidecadal Oscillation (AMO) on high cloud cover, with focus on the tropical and North Atlantic, tropical Pacific and on the circum-Antarctic sector. In the tropical band, the sea surface temperature (SST) and high cloud cover (HCC) anomalies are positively correlated, indicating a dominant role played by convection in mediating the influence of the AMO-related SST anomalies on the HCC field. The negative SST-HCC correlation observed in North Atlantic could be explained by the reduced meridional temperature gradient induced by the AMO positive phase, which would be reflected in less storms and negative HCC anomalies. A similar negative SST-HCC correlation is observed around Antarctica. The corresponding negative correlation around Antarctica could be generated dynamically, as a response to the intensified upward motion in the Ferrel cell. Despite the inherent imperfection of the observed and reanalysis data sets, the AMO footprint on HCC is found to be robust to the choice of dataset, statistical method, and specific time period considered.

  9. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  10. Meridional lenticular astigmatism associated with bilateral concurrent uveal metastases in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Priluck JC

    2012-11-01

    Full Text Available Joshua C Priluck, Sandeep Grover, KV ChalamDepartment of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USAPurpose: To demonstrate a case illustrating meridional lenticular astigmatism as a result of renal cell carcinoma uveal metastases.Methods: Case report with images.Results: Clinical findings and diagnostic testing of a patient with acquired meridional lenticular astigmatism are described. The refraction revealed best-corrected visual acuity of 20/20–1 OD (−2.50 + 0.25 × 090 and 20/50 OS (−8.25 + 3.25 × 075. Bilateral concurrent renal cell carcinoma metastases to the choroid and ciliary body are demonstrated by utilizing ultrasonography, ultrawidefield fluorescein angiography, and unique spectral-domain optical coherence tomography.Conclusions: Metastatic disease should be included in the differential of acquired astigmatism. Spectral-domain optical coherence tomography, ultrawidefield fluorescein angiography, and ultrasonography have roles in delineating choroidal metastases.Keywords: astigmatism, metastasis, optical coherence tomography, renal cell carcinoma

  11. Meridional distribution and seasonal variation of stable oxygen isotope ratio of precipitation in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Kayo Nakamura

    2010-07-01

    Full Text Available The stable oxygen isotope ratio(δ^O in precipitation is known to have important meridional and seasonal variations, but there are almost no measurements of δ^O in precipitation over polar oceans. The present research took advantage of 4 opportunities for in situ observations in summer and winter at high latitudes in the Southern Ocean. In addition, we analyzed samples of precipitation at Syowa Station in 2008 to obtain year-round data. Based on these data, we consider the meridional and seasonal variations of δ^O in precipitation over the Southern Ocean. In general, δ^O decreases with increasing latitude, and is lower in winter than in summer. The latitude gradient is stronger in winter. At 60°S, δ^O is -5.4‰ and -11.3‰ in summer and winter, respectively, while the corresponding figures at 66°S are -10.5‰ and -20.8‰. These results will help us understand the mechanisms of the salinity distribution and its variation in the Antarctic Ocean.

  12. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum

    Science.gov (United States)

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander W.; Gagan, Michael K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L.; Esat, Tezer M.; Thompson, William G.; Tiwari, Manish; Potts, Donald C.; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M.

    2014-01-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1–2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought. PMID:24937320

  13. Erratum: Evidence That a Deep Meridional Flow Sets the Sunspot Cycle Period

    Science.gov (United States)

    Hathaway, David H.; Nandy, Dibyendu; Wilson, Robert M.; Reichmann, Edwin J.

    2004-01-01

    An error was made in entering the data. This changes the results concerning the length of the time lag between the variations in the meridional flow speed and those in the cycle amplitude. The final paragraph on page 667 should read: Finally, we study the relationship between the drift velocities and the amplitudes of the hemisphere/cycles. We compare the drift velocity at the maximum of the cycle to the amplitude of that cycle for that hemisphere. There is a positive (0.5) and significant (95%) correlation between the two. However, an even stronger relationship is found between the drift velocity and the amplitude of the N + 2 cycle. The correlation is stronger (0.7) and more significant (99%), as shown. This relationship is suggestive of a "memory" in the solar cycle, again a property of dynamo models that use meridional circulation. Indeed, the two-cycle lag is precisely the relationship found by Charbonneau & Dikpati. This behavior is, however, more difficult to interpret, and we elaborate on this in the next section. In either case, these correlations only explain part of the variance in cycle amplitude (25% for the current cycle and 50% for the N + 2 cycle). Obviously, other mechanisms, such as variations in the gradient in the rotation rate, also contribute to the cycle amplitude variations. Our investigation of possible connections between drift rates and the amplitudes of the N + 1 and N + 3 cycles gives no significant correlations at these alternative time lags.

  14. Dynamics of the global meridional ice flow of Europa's icy shell

    Science.gov (United States)

    Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli

    2018-01-01

    Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.

  15. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics

    Directory of Open Access Journals (Sweden)

    Jean H. Bédard

    2018-01-01

    Full Text Available The lower plate is the dominant agent in modern convergent margins characterized by active subduction, as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight. This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle. As geological and geochemical data seem inconsistent with the existence of modern-style ridges and arcs in the Archaean, a periodically-destabilized stagnant-lid crust system is proposed instead. Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle, perturbing Earth's heat generation/loss balance, eventually triggering mantle overturns. Archaean basalts were derived from fertile mantle in overturn upwelling zones (OUZOs, which were larger and longer-lived than post-Archaean plumes. Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods, allowing basal crustal cannibalism, garnetiferous crustal restite delamination, and coupled development of continental crust and sub-continental lithospheric mantle. Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB (mid-ocean ridge basalt mantle. Only after the start of true subduction did sequestration of subducted slabs at the core-mantle boundary lead to the development of the depleted MORB mantle source. During Archaean mantle overturns, pre-existing continents located above OUZOs would be strongly reworked; whereas OUZO-distal continents would drift in response to mantle currents. The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion, imbrication, subcretion and anatexis of unsubductable oceanic lithosphere. As Earth cooled and the background oceanic lithosphere became denser and stiffer, there would be an increasing

  16. CHANGES OF THE SOLAR MERIDIONAL VELOCITY PROFILE DURING CYCLE 23 EXPLAINED BY FLOWS TOWARD THE ACTIVITY BELTS

    International Nuclear Information System (INIS)

    Cameron, R. H.; Schuessler, M.

    2010-01-01

    The solar meridional flow is an important ingredient in Babcock-Leighton type models of the solar dynamo. Global variations of this flow have been suggested to explain the variations in the amplitudes and lengths of the activity cycles. Recently, cycle-related variations in the amplitude of the P 1 2 term in the Legendre decomposition of the observed meridional flow have been reported. The result is often interpreted in terms of an overall variation in the flow amplitude during the activity cycle. Using a semi-empirical model based upon the observed distribution of magnetic flux on the solar surface, we show that the reported variations of the P 1 2 term can be explained by the observed localized inflows into the active region belts. No variation of the overall meridional flow amplitude is required.

  17. Interannual Variability of the Meridional Width of the Baiu Rainband in June and the Associated Large-Scale Atmospheric Circulations

    Science.gov (United States)

    Tsuji, K.; Tomita, T.

    2016-12-01

    Baiu front, which is defined as a boundary between tropical and polar air masses in the East Asia-western North Pacific sector in boreal early summer, slowly migrates northward with the daily meridional swings. Thus, the interannual variability of meridional width of the baiu rainband reflects the slow northward migration and the daily meridional swings of the baiu front. This study focuses on the meridional width of baiu rainband only in June when the baiu front extends on Japan, and investigates how the width is related to the rainfall of Japan with discussions of associated anomalous large-scale atmospheric circulations. The meridional width of baiu rainband is defined based on the monthly-mean precipitation rate of June, whose threshold is 5mm day-1 that is averaged in 130°-150°E. There is a significant positive correlation between the variations of southern and northern edges of the baiu rainband in June. However, the interannual variance of the southern edge is almost twice larger than that of the northern one. That is, the interannual variability of the meridional width is chiefly caused by the variations of southern edge, and the contribution of northern ones is small. When the meridonal width is narrow (wide), an anomalous anticyclonic (cyclonic) circulation appears to the south of Japan, and the precipitation rate increases (decreases) in the western part of Japan while decreases (increases) in the counterpart. In other words, a local dipole with a node at 140°E appears around Japan in the baiu rainfall anomalies. The anomalous anticyclonic (cyclonic) circulation to the south of Japan, which controls the interannual variability of meridional width of the baiu rainband, is induced by the strength of Indian summer monsoon. When the convective activity of Indian summer monsoon is strong (week), the Tibetan high in the upper troposphere extends more (less) eastward. The induced stronger (weaker) descent leads stronger (weaker) Bonin high in the western

  18. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    Science.gov (United States)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  19. Pliocene shallow water paleoceanography of the North Atlantic ocean based on marine ostracodes

    Science.gov (United States)

    Cronin, T. M.

    1991-01-01

    Middle Pliocene marine ostracodes from coastal and shelf deposits of North and Central America and Iceland were studied to reconstruct paleotemperatures of shelf waters bordering portions of the Western Boundary Current System (including the Gulf Loop Current, Florida Current, Gulf Stream and North Atlantic Drift). Factor analytic transfer functions provided Pliocene August and February bottom-water temperatures of eight regions from the tropics to the subfrigid. The results indicate: (1) meridional temperature gradients in the western North Atlantic were less steep during the Pliocene than either today or during Late Pleistocene Isotope Stage 5e; (2) tropical and subtropical shelf waters during the Middle Pliocene were as warm as, or slightly cooler than today; (3) slightly cooler water was on the outer shelf off the southeastern and mid-Atlantic coast of the U.S., possibly due to summer upwelling of Gulf Stream water; (4) the shelf north of Cape Hatteras, North Carolina may have been influenced by warm water incursions from the western edge of the Gulf Stream, especially in summer; (5) the northeast branch of the North Atlantic Drift brought warm water to northern Iceland between 4 and 3 Ma; evidence from the Iceland record indicates that cold East Greenland Current water did not affect coastal Iceland between 4 and 3 Ma; (6) Middle Pliocene North Atlantic circulation may have been intensified, transporting more heat from the tropics to the Arctic than it does today. ?? 1991.

  20. Increased ventilation of Antarctic deep water during the warm mid-Pliocene.

    Science.gov (United States)

    Zhang, Zhongshi; Nisancioglu, Kerim H; Ninnemann, Ulysses S

    2013-01-01

    The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.

  1. Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering

    Science.gov (United States)

    Dai, Z.; Weisenstein, D. K.; Keith, D. W.

    2018-01-01

    We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.

  2. The South American Meridional B-field Array (SAMBA) and Pc4-5 Wave Studies

    Science.gov (United States)

    Sterner, N. L.; Zesta, E.; Boudouridis, A.; Moldwin, M.; Yizengaw, E.; Chi, P. J.

    2010-12-01

    The Antarctic continent, the only landmass in the southern polar region, offers the unique opportunity for observations that geomagnetically range from polar latitudes to well into the inner magnetosphere, thus enabling conjugate observations in a wide range of geomagnetic latitudes. The SAMBA (South American Meridional B-field Array) chain is a meridional chain of 12 magnetometers, 11 of them at L=1.1 to L=2.5 along the coast of Chile and in the Antarctica peninsula, and one auroral station along the same meridian. SAMBA is conjugate to the northern hemisphere MEASURE and McMAC chains, offering unique opportunities for inter-hemispheric studies. In particular, we study asymmetries in the power of ULF waves and the role of the ionosphere in such observed asymmetries. Utilizing conjugate magnetometer stations at L=1.7 and L=2.3, we previously demonstrated that the northern hemisphere consistently shows higher ULF wave power. One possible reason for the asymmetry is solar zenith angles differences with the northern hemisphere station being closer to the ecliptic plain and having a higher power ratio. These hemispheric differences were also observed with TEC measurements indicating that the north and south conjugate ionospheres are similarly asymmetric. The initial study was done with Pc3 waves, which include the resonance frequencies for the flux tubes of our conjugate stations. We now extend the study to Pc4 and Pc5 waves that reach the lower latitudes via different mechanisms and compare these waves to the resonant Pc3 waves.

  3. Does δ18O of O2 record meridional shifts in tropical rainfall?

    Directory of Open Access Journals (Sweden)

    A. M. Seltzer

    2017-10-01

    Full Text Available Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔεLAND from discrete gas measurements in the WAIS Divide (WD and Siple Dome (SD Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔεLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 – periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production, we propose a simple mechanism by which ΔεLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔεLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔεLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔεLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔεLAND.

  4. Does δ18O of O2 record meridional shifts in tropical rainfall?

    Science.gov (United States)

    Seltzer, Alan M.; Buizert, Christo; Baggenstos, Daniel; Brook, Edward J.; Ahn, Jinho; Yang, Ji-Woong; Severinghaus, Jeffrey P.

    2017-10-01

    Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔɛLAND) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔɛLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 - periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production), we propose a simple mechanism by which ΔɛLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔɛLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔɛLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔɛLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔɛLAND.

  5. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  6. GARP Atlantic Tropical Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GARP Atlantic Tropical Experiment (GATE) was the first major international experiment of the Global Atmospheric Research Program (GARP). It was conducted over...

  7. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part II: Pacific and Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available The effect of viscosity, non linearities, incident wave period and realistic eastern coastline geometry on energy fluxes are investigated using a shallow water model with a spatial resolution of 1/4 degree in both meridional and zonal directions. Equatorial and mid-latitude responses are considered. It is found that (1 the influence of the coastline geometry and the incident wave period is more important for the westward energy flux than for the poleward flux, and (2 the effect of the inclination of the eastern ocean boundary on the poleward energy flux, for the Pacific and Atlantic Oceans, decline as the period of the incident wave increases. Furthermore, the model simulations suggest that the poleward energy fluxes from meridional boundaries give plausible results for motions of seasonal and annual periods. For comparatively shorter periods, a realistic coastline geometry has to be included for more accurate results. It is recommended that any numerical model involving the reflection of baroclinic Rossby waves (of intraseasonal, seasonal or annual periods on the eastern Pacific or Atlantic Oceans, should consider the effect of the coastline geometry in order to improve the accuracy of the results.Key words. Oceanography: general (climate and interannual variability; equatorial oceanography. Oceanography: physical (eastern boundary currents.

  8. Large-Scale Controls on Atlantic Tropical Cyclone Activity on Seasonal Time Scales

    Science.gov (United States)

    Lim, Young-Kwon; Schubert, Siegfried D.; Reale, Oreste; Molod, Andrea M.; Suarez, Max J.; Auer, Benjamin M.

    2016-01-01

    Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally-constrained simulations with the NASA Goddard Earth Observing System version (GEOS-5) atmospheric general circulation model. The climate modes investigated are El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic Meridional Mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well- known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic), led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Nio index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low-latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes, and not just to ENSO alone. Examination of seasonal predictability reveals that predictive skill of the three modes is limited over tropics to sub-tropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.

  9. 4M Overturned Pyramid (MOP Model Utilization: Case Studies on Collision in Indonesian and Japanese Maritime Traffic Systems (MTS

    Directory of Open Access Journals (Sweden)

    Wanginingastuti Mutmainnah

    2016-07-01

    Full Text Available 4M Overturned Pyramid (MOP model is a new model, proposed by authors, to characterized MTS which is adopting epidemiological model that determines causes of accidents, including not only active failures but also latent failures and barriers. This model is still being developed. One of utilization of MOP model is characterizing accidents in MTS, i.e. collision in Indonesia and Japan that is written in this paper. The aim of this paper is to show the characteristics of ship collision accidents that occur both in Indonesian and Japanese maritime traffic systems. There were 22 collision cases in 2008–2012 (8 cases in Indonesia and 14 cases in Japan. The characteristics presented in this paper show failure events at every stage of the three accident development stages (the beginning of an accident, the accident itself, and the evacuation process.

  10. Isopycnal diffusivity in the tropical North Atlantic oxygen minimum zone

    Science.gov (United States)

    Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim

    2017-04-01

    Isopycnal diffusivity plays an important role in the ventilation of the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ). Lateral tracer transport is described by isopycnal diffusivity and mean advection of the tracer (e.g. oxygen), together they account for up to 70% of the oxygen supply for the OMZ. One of the big challenges is to separate diffusivity from advection. Isopycnal diffusivity was estimated to be Ky=(500 ± 200) m2 s-1 and Kx=(1200 ± 600) m2 s-1 by Banyte et. al (2013) from a Tracer Release Experiment (TRE). Hahn et al. (2014) estimated a meridional eddy diffusivity of 1350 m2 s-1 at 100 m depth decaying to less than 300 m2 s-1 below 800 m depth from repeated ship sections of CTD and ADCP data in addition with hydrographic mooring data. Uncertainties of the estimated diffusivities were still large, thus the Oxygen Supply Tracer Release Experiment (OSTRE) was set up to estimate isopycnal diffusivity in the OMZ using a newly developed sampling strategy of a control volume. The tracer was released in 2012 in the core of the OMZ at approximately 410 m depth and mapped after 6, 15 and 29 months in a regular grid. In addition to the calculation of tracer column integrals from vertical tracer profiles a new sampling method was invented and tested during two of the mapping cruises. The mean eddy diffusivity during OSTRE was found to be about (300 ± 130) m2 s-1. Additionally, the tracer has been advected further to the east and west by zonal jets. We compare different analysis methods to estimate isopycnal diffusivity from tracer spreading and show the advantage of the control volume surveys and control box approach. From the control box approach we are estimating the strength of the zonal jets within the OMZ core integrated over the TRE time period. References: Banyte, D., Visbeck, M., Tanhua, T., Fischer, T., Krahmann, G.,Karstensen, J., 2013. Lateral Diffusivity from Tracer Release Experiments in the Tropical North Atlantic Thermocline

  11. Role of the circulation on the anthropogenic CO2 inventory in the North-East Atlantic: A climatological analysis

    Science.gov (United States)

    Carracedo, L. I.; Pérez, F. F.; Gilcoto, M.; Velo, A.; Padín, A.; Rosón, G.

    2018-02-01

    Climatology-based storage rate of anthropogenic CO2 (Cant, referred to year 2000) in the North-East Atlantic (53 ± 9 kmol s-1, 0.020 ± 0.003 Pg-C yr-1) is described on annual mean terms. Cant advection (32 ± 14 kmol s-1) occurs mostly in the upper 1800 m and contributes to 60% of the Cant storage rate. The Azores and Portugal Currents act as 'Cant streams' importing 389 ± 90 kmol s-1, most of which recirculates southwards with the Canary Current (-214 ± 34 kmol s-1). The Azores Counter Current (-79 ± 36 kmol s-1) and the northward-flowing Mediterranean Water advective branch (-31 ± 12 kmol s-1) comprise secondary Cant export routes. By means of Cant transport decomposition, we find horizontal circulation to represent 11% of the Cant storage rate, while overturning circulation is the main driver (48% of the Cant storage rate). Within the domain of this study, overturning circulation is a key mechanism by which Cant in the upper layer (0-500 dbar) is drawdown (74 ± 14 kmol s-1) to intermediate levels (500-2000 dbar), and entrained (37 ± 7 kmol s-1) into the Mediterranean Outflow Water to form Mediterranean Water. This newly formed water mass partly exports Cant to the North Atlantic at a rate of -39 ± 9 kmol s-1 and partly contributes to the Cant storage in the North-East Atlantic (with up to 0.015 ± 0.006 Pg-C yr-1). Closing the Cant budget, 40% of the Cant storage in the North-East Atlantic is attributable to anthropogenic CO2 uptake from the atmosphere (21 ± 10 kmol s-1).

  12. Evaluation of overturning capacity of low level radioactive waste drum during earthquake. Part 2. Investigation of drum weight distribution effect and drum columns interaction by numerical analysis

    International Nuclear Information System (INIS)

    Tochigi, Hitoshi

    2011-01-01

    Numerical analysis case study is carried out for three layered and four layered low level radioactive waste drums by numerical models based on the results of shaking table test. First of all, numerical analysis results about drums displacement due to uplift and sliding on pallets during earthquake are compared with the experimental results and it is shown good agreement in both results. By this analytical model effects of drum weight distribution along height direction and drum columns interaction followed by each other drum's collisions on overturning capacity during earthquake are researched. From numerical analysis results the limit acceleration which is minimum value of input acceleration at storage building floor when three layered or four layered waste drums overturn is researched. It is shown that overturning capacity during earthquake decline when height of gravity center of three layered and four layered drums get large. So it is available to get down height of gravity center by controlling drum weight distribution along height direction. And as effect of drum columns interaction it is indicated that overturning capacity of single column arrangement drums is larger than that of many columns arrangement drums because phase deference between drum columns occur and decrease vibration amplitude by each other collisions. (author)

  13. The South American Meridional B-field Array (SAMBA) and opportunities for inter- hemispheric studies

    Science.gov (United States)

    Zesta, E.; Boudouridis, A.; Moldwin, M. B.; Weygand, J. M.; Chi, P. J.

    2009-05-01

    The Antarctic continent, the only landmass in the southern polar region, offers the unique opportunity for observations that geomagnetically range from polar latitudes to well into the inner magnetosphere, thus enabling conjugate observations in a wide range of geomagnetic latitudes. The SAMBA (South American Meridional B-field Array) chain is a meridional chain of 12 magnetometers, 11 of them at L=1.1 to L=2.5 along the coast of Chile and in the Antarctica peninsula, and one auroral station along the same meridian. SAMBA is ideal for low and mid-latitude studies of geophysical events and ULF waves. It is conjugate to the northern hemisphere MEASURE and McMAC chains, offering unique opportunities for inter-hemispheric studies. We use 5 of the SAMBA stations and a number of conjugate stations from the Northern hemisphere to determine the field line resonance (FLR) frequency of closely spaced flux tubes in the inner magnetosphere. Standard inversion techniques are used to derive the equatorial mass density of these flux tubes from the FLRs. From our conjugate pairs we find, surprisingly, that the derived mass density of closely spaced flux tubes, from L=1.6 to L=2.5, drops at a rate that cannot be predicted by any of the existing models or agree with past observations. We also study asymmetries in the power of Pc3 waves. We find that during northern summer solstice the waves are significantly stronger at the northern conjugate point, while during northern winter solstice the wave power is comparable over both conjugate points. Finally, using the SAMBA auroral station, WSD, along with all available southern auroral stations we calculate a southern AE index and its direct conjugate northern AE index and compare both with the standard AE index. We explore under what conditions the north-south asymmetries in the AE calculation are due to the significant gap of auroral stations in the Southern hemisphere and under what conditions the asymmetries have a geophysical source.

  14. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    Science.gov (United States)

    van Hengstrum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  15. Identification of Holocene millennial-scale forcing in the North Atlantic area: Ocean/atmosphere contribution

    Science.gov (United States)

    Debret, M.; Masson-Delmotte, V.; Christophe, C.; de Vernal, A.; Massei, N.; Eynaud, F.; Nicolle, M.; Frank, N.; Mary, Y.; Magny, M.

    2017-12-01

    Millennial (1500-year) cycles were evidenced decades ago from the advance and retreat of glaciers but many subsequent studies failed to demonstrate the unequivocal character of such oscillation from paleoclimate time series. Hence, the identification of a persistent 1500 year periodicity remains controversial both for the last glacial episode and the Holocene. Applying wavelet analysis to Holocene climate records, we have identified synchronous millennial-scale oscillations which permit to establish a North Atlantic millennial variability index (NAV-Index), maximum at 5330 ± 245, 3560 ± 190, 1810 ± 160 cal years BP and minimum at 4430 ± 250, 2640 ± 225 and 970 ± 200 years before present. This NAV-index was compared with the millennial variability of cosmogenic 10Be isotope, a proxy of solar activity. Differences between the two sets of records suggest that an internal mechanism (Ocean/atmosphere) must be at the origin of the North Atlantic millennial scale variability. Our data document an increased coherence and magnitude of the North Atlantic millennial variability since 6000 cal. years BP, with a frequency of 1780 ± 240 years. During the early Holocene, deglacial meltwater fluxes had strong regional impact and the coupling between subpolar gyre migration and Atlantic meridional oceanic circulation observed since afterward seems to be related to the end of the Laurentide and Inuitian ice sheet meltwater discharge. Hence, we may conclude that the evolution of this millennial oscillation in the future will depend upon the Greenland stability or melting.

  16. Variability of Atlantic Ocean heat transport and its effects on the atmosphere

    Directory of Open Access Journals (Sweden)

    R. T. Sutton

    2003-06-01

    Full Text Available The variability of the Atlantic meridional Ocean Heat Transport (OHT has been diagnosed from a simulation of a coupled ocean-atmosphere general circulation model, and the mechanisms responsible for this variability have been elucidated. It has been demonstrated that the interannual variability in Atlantic OHT is dominated by windstress-driven Ekman fluctuations. In contrast, the decadal and multidecadal variability is associated with the fluctuations of the Thermohaline Circulation (THC, driven by the fluctuations in deep convection over the Greenland-Iceland-Norwegian (GIN Sea. The fluctuations of OHT induce Ocean Heat Content (OHC, and Sea Surface Temperature (SST anomalies over the tropical and subtropical North Atlantic. The SST anomalies, in turn, have an impact on the atmosphere. The lead-lag relationships between the fluctuations of THC-related OHT and those of OHC and SST raise the possibility that a knowledge of OHT fluctuations could be used to predict variations in Atlantic Sea surface temperatures, and perhaps aspects of climate, several years in advance. A comparison of results from a second, independent, coupled model simulation is also presented, and similar conclusions reached.

  17. Atlantic menhaden adult tagging study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atlantic menhaden are a schooling forage fish species, which are subject to a large commercial purse seine fishery. Atlantic menhaden are harvested for reduction...

  18. Asymmetric Relationship between the Meridional Displacement of the Asian Westerly Jet and the Silk Road Pattern

    Science.gov (United States)

    Hong, Xiaowei; Lu, Riyu; Li, Shuanglin

    2018-04-01

    In previous work, a significant relationship was identified between the meridional displacement of the Asian westerly jet (JMD) and the Silk Road Pattern (SRP) in summer. The present study reveals that this relationship is robust in northward JMD years but absent in southward JMD years. In other words, the amplitude of the SRP increases with northward displacement of the jet but shows little change with southward displacement. Further analysis indicates that, in northward JMD years, the Rossby wave source (RWS) anomalies, which are primarily contributed by the planetary vortex stretching, are significantly stronger around the entrance of the Asian jet, i.e., the Mediterranean Sea-Caspian Sea area, with the spatial distribution being consistent with that related to the SRP. By contrast, in southward JMD years, the RWS anomalies are much weaker. Therefore, this study suggests that the RWS plays a crucial role in inducing the asymmetry of the JMD-SRP relationship. The results imply that climate anomalies may be stronger in strongly northward-displaced JMD years due to the concurrence of the JMD and SRP, and thus more attention should be paid to these years.

  19. Meridional circulation in rotating stars. VII. The effects of chemical inhomogeneities

    International Nuclear Information System (INIS)

    Tassoul, M.; Tassoul, J.

    1984-01-01

    In this paper we discuss the effects of a gradient of mean molecular weight μ on the rotationally driven currents that pervade the radiative zone of a single, nonmagnetic, main-sequence star. Detailed numerical calculations are made for the hydrogen-burning core of a solar-type star, assuming that departures from spherical symmetry are not too large. It is found that meridional streaming virtually dies out from the center outward as the μ-gradient grows in a leisurely fashion. This prevents a substantial mixing of matter between the inner (inhomogeneous) and outer (homogeneous) regions in the radiative zone, although the inner region may be penetrated to some degree. To first order in the ratio of the centrifugal force to gravity at the equator, this pattern of circulation is independent of the mean angular velocity. To this order, then, there is no critical rotation rate above which unimpeded mixing may take place. These quantitative results are compared with diverse statements that can be found in the phenomenological literature on rotational mixing

  20. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    Science.gov (United States)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  1. Diversity and distribution of hyperiid amphipods along a latitudinal transect in the Atlantic Ocean

    Science.gov (United States)

    Burridge, Alice K.; Tump, Marloes; Vonk, Ronald; Goetze, Erica; Peijnenburg, Katja T. C. A.

    2017-11-01

    As commensals and parasitoids of gelatinous plankton, hyperiid amphipods play unique and important ecological roles in pelagic food webs. Because the diversity and biogeography of this group in oceanic waters is poorly known, we examined diversity and distribution patterns of hyperiids along a basin-scale meridional transect in the Atlantic Ocean (Atlantic Meridional Transect cruise 22). Hyperiids were collected from epipelagic and upper mesopelagic depths at 27 stations between 39°N and 45°S. A total of 70 species in 36 genera and 17 families were identified, the majority of which belonged to the epipelagic Physocephalata infraorder. We observed maximum species and genus richness in the equatorial upwelling region (up to 35 species, 27 genera per station; 7°N-8°S), which appeared largely driven by increased diversity in the superfamily Platysceloidea, as well as a significant and positive relationship between species richness and sea surface temperature. Cluster analyses of hyperiid species assemblages along the transect broadly supported a division into gyral, equatorial, transitional, and subantarctic assemblages, congruent with Longhurst's biogeochemical provinces. Steepest transitions in hyperiid species composition occurred at the southern subtropical convergence zone (34-38°S). The majority of zooplankton groups show maximal diversity in subtropical waters, and our observations of equatorial maxima in species and genus richness for hyperiids suggest that the mechanisms controlling diversity in this group are distinct from other zooplanktonic taxa. These patterns may be driven by the distribution and diversity of gelatinous hosts for hyperiids, which remain poorly characterized at ocean basin scales. The data reported here provide new distributional records for epipelagic and upper mesopelagic hyperiids across six major oceanic provinces in the Atlantic Ocean.

  2. Equinoctial asymmetry of a low-latitude ionosphere-thermosphere system and equatorial irregularities: evidence for meridional wind control

    Directory of Open Access Journals (Sweden)

    T. Maruyama

    2009-05-01

    Full Text Available Nocturnal ionospheric height variations were analyzed along the meridian of 100° E by using ionosonde data. Two ionosondes were installed near the magnetic conjugate points at low latitudes, and the third station was situated near the magnetic equator. Ionospheric virtual heights were scaled every 15 min and vertical E×B drift velocities were inferred from the equatorial station. By incorporating the inferred equatorial vertical drift velocity, ionospheric bottom heights with the absence of wind were modeled for the two low-latitude conjugate stations, and the deviation in heights from the model outputs was used to infer the transequatorial meridional thermospheric winds. The results obtained for the September and March equinoxes of years 2004 and 2005, respectively, were compared, and a significant difference in the meridional wind was found. An oscillation with a period of approximately 7 h of the meridional wind existed in both the equinoxes, but its amplitude was larger in September as compared to that in March. When the equatorial height reached the maximum level due to the evening enhancement of the zonal electric field, the transequatorial meridional wind velocity reached approximately 10 and 40 m/s for the March and September equinoxes, respectively. This asymmetry of the ionosphere-thermosphere system was found to be associated with the previously reported equinoctial asymmetry of equatorial ionospheric irregularities; the probability for equatorial irregularities to occur is higher in March as compared to that in September at the Indian to Western Pacific longitudes. Numerical simulations of plasma bubble developments were conducted by incorporating the transequatorial neutral wind effect, and the results showed that the growth time (e-folding time of the bubble was halved when the wind velocity changed from 10 to 40 m/s.

  3. Rotational atmospheric circulation during North Atlantic-European winter: the influence of ENSO

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [UCM, Departamento de Geofisica y Meteorologia, Madrid (Spain); Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Rodriguez-Fonseca, B.; Zurita-Gotor, P.; Camara, A. de la [UCM, Departamento de Geofisica y Meteorologia, Madrid (Spain); Blade, I. [UB, Departament d' Astronomia i Meteorologia, Barcelona (Spain)

    2011-11-15

    The dominant variability modes of the North Atlantic-European rotational flow are examined by applying a principal component analysis (PCA/EOF) to the 200 hPa streamfunction mid-winter anomalies (Jan-Feb monthly means). The results reveal that, when this norm is used, the leading mode (EOF1) does not correspond to the traditional North Atlantic Oscillation (NAO, which appears in our analysis as the second leading mode, EOF2) but is the local manifestation of the leading hemispheric streamfunction EOF. The regression of this regional mode onto the global SST field exhibits a clear El Nino signature, with no signal over the Atlantic, while the associated upper height anomalies resemble the Tropical/Northern Hemisphere (TNH) pattern. East of North America, this TNH-like wavetrain produces a meridional dipole-like pattern at lower levels. Although in some ways this pattern resembles the NAO (EOF2), the dynamics of these two modes are very different in that only EOF2 is associated with a latitudinal shift of the North Atlantic stormtrack. Thus, the choice of the streamfunction norm in the EOF analysis allows the separation of two different phenomena that can produce similar dipolar surface pressure anomalies over the North Atlantic but that have different impact on European climate. These two modes also differ on their contribution to variability at lower levels: while NAO-EOF2 is mostly confined to the North Atlantic, TNH-EOF1 has a more annular, global character. At upper levels NAO-EOF2 also produces a global pattern but with no annular structure, reminiscent of the ''circumglobal'' teleconnection. (orig.)

  4. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    Science.gov (United States)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  5. A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing

    Directory of Open Access Journals (Sweden)

    K. M. Lau

    2009-10-01

    Full Text Available The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM, coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerly flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer over the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single

  6. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    Science.gov (United States)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  7. First description of a Lophelia pertusa reef complex in Atlantic Canada

    Science.gov (United States)

    Buhl-Mortensen, Pål; Gordon, Don C.; Buhl-Mortensen, Lene; Kulka, Dave W.

    2017-08-01

    For the first time, we describe a cold-water coral reef complex in Atlantic Canada, discovered at the shelf break, in the mouth of the Laurentian Channel. The study is based on underwater video and sidescan sonar. The reef complex covered an area of approximately 490×1300 m, at 280-400 m depth. It consisted of several small mounds (coral (rubble and blocks), dominated (88% of all coral observations). Extensive signs of damage by bottom-fishing gear were observed: broken and tilted coral colonies, over-turned boulders and lost fishing gear. Fisheries observer data indicated that the reef complex was subjected to heavy otter trawling annually between 1980 and 2000. In June 2004, a 15 km2 conservation area excluding all bottom-fishing was established. Current bottom fisheries outside the closure include otter trawling for redfish and anchored longlines for halibut. Vessel monitoring system data indicate that the closure is generally respected by the fishing industry.

  8. Effect of sporadic destratification, seasonal overturn, and artificial mixing on CH4 emissions from a subtropical hydroelectric reservoir

    Science.gov (United States)

    Guérin, Frédéric; Deshmukh, Chandrashekhar; Labat, David; Pighini, Sylvie; Vongkhamsao, Axay; Guédant, Pierre; Rode, Wanidaporn; Godon, Arnaud; Chanudet, Vincent; Descloux, Stéphane; Serça, Dominique

    2016-06-01

    Inland waters in general and freshwater reservoirs specifically are recognized as a source of CH4 into the atmosphere. Although the diffusion at the air-water interface is the most studied pathway, its spatial and temporal variations are poorly documented. We measured temperature and O2 and CH4 concentrations every 2 weeks for 3.5 years at nine stations in a subtropical monomictic reservoir which was flooded in 2008 (Nam Theun 2 Reservoir, Lao PDR). Based on these results, we quantified CH4 storage in the water column and diffusive fluxes from June 2009 to December 2012. We compared diffusive emissions with ebullition from Deshmukh et al. (2014) and aerobic methane oxidation and downstream emissions from Deshmukh et al. (2016). In this monomictic reservoir, the seasonal variations of CH4 concentration and storage were highly dependent on the thermal stratification. Hypolimnic CH4 concentration and CH4 storage reached their maximum in the warm dry season (WD) when the reservoir was stratified. Concentration and storage decreased during the warm wet (WW) season and reached its minimum after the reservoir overturned in the cool dry (CD) season. The sharp decreases in CH4 storage were concomitant with extreme diffusive fluxes (up to 200 mmol m-2 d-1). These sporadic emissions occurred mostly in the inflow region in the WW season and during overturn in the CD season in the area of the reservoir that has the highest CH4 storage. Although they corresponded to less than 10 % of the observations, these extreme CH4 emissions (> 5 mmol m-2 d-1) contributed up to 50 % of total annual emissions by diffusion. During the transition between the WD and WW seasons, a new emission hotspot was identified upstream of the water intake where diffusive fluxes peaked at 600 mmol m-2 d-1 in 2010 down to 200 mmol m-2 d-1 in 2012. The hotspot was attributed to the mixing induced by the water intakes (artificial mixing). Emissions from this area contributed 15-25 % to total annual emissions

  9. Multi-point optimization on meridional shape of a centrifugal pump impeller for performance improvement

    International Nuclear Information System (INIS)

    Pei, Ji; Wang, Wen Jie; Yuan, Shouqi

    2016-01-01

    A wide operating band is important for a pump to safely perform at maximum efficiency while saving energy. To widen the operating range, a multi-point optimization process based on numerical simulations in order to improve impeller performance of a centrifugal pump used in nuclear plant applications is proposed by this research. The Reynolds average Navier Stokes equations are utilized to perform the calculations. The meridional shape of the impeller was optimized based on the following four parameters; shroud arc radius, hub arc radius, shroud angle, and hub angle as the design variables. Efficiencies calculated under 0.6Qd, 1.0Qd and 1.62Qd were selected as the three optimized objectives. The Design of experiment method was applied to generate various impellers while 35 impellers were generated by the Latin hypercube sampling method. A Response surface function based on a second order function was applied to construct a mathematical relationship between the objectives and design variables. A multi-objective genetic algorithm was utilized to solve the response surface function to obtain the best optimized objectives as well as the best combination of design parameters. The results indicated that the pump performance predicted by numerical simulation was in agreement with the experimental performance. The optimized efficiencies based on the three operating conditions were increased by 3.9 %, 6.1 % and 2.6 %, respectively. In addition, the velocity distribution, pressure distribution, streamline and turbulence kinetic energy distribution of the optimized and reference impeller were compared and analyzed to illustrate the performance improvement

  10. Estudios sobre la vegetación del estado de Paraná (Brasil meridional

    Directory of Open Access Journals (Sweden)

    de Bolòs, Oriol

    1991-12-01

    Full Text Available Contribution to knowledge about the vegetation of the state of Paraná in southern Brazil (Serra do Mar, Planaltos, Iguaçu Valley. Numerous plant associations are described and grouped together in the following classes: Pistio-Eichhornietea (communities of floating cormophytes Xyrido-Typhetea (helophytic herbaceous vegetation Polypodio-Tillandsietea (epiphytic and comophytic vegetation Ruderali-Manihotetea (ruderal and segetal vegetation Andropogono-Baccharidetea (savanoid vegetation Rhizophoretea (mangroves Lantano-Chusqueetea (woody marginal communities of the forest Cedrelo-Ocoteetea (rain and mesophilous forest. Special attention is paid to the study of the physiognomy, structure and dynamism of the vegetation and its biogeographical significance.

    Aportación al conocimiento de la vegetación del estado de Paraná en el Brasil meridional (Serra do Mar, Planaltos, valle del Iguaçu. Se describen numerosas asociaciones vegetales agrupadas en las clases siguientes: Pistio-Eichhornietea (comunidades de cormófitos flotantes. Xyrido-Typhetea (vegetación herbácea helofítica. Polypodio-Tillandsietea (vegetación epifítica y comofítica. Ruderali-Manihotetea (vegetación ruderal, viaria y arvense. Andropogono-Baccharidetea (vegetación sabanoide. Rhizophoretea (manglar. Lantano-Chusqueetea (manto marginal leñoso de la selva. Cedrelo-Ocoteetea (selva pluvial y mesófila. Se dedica atención especial al estudio de la fisionomía, estructura y dinamismo de la vegetación y a su significación biogeográfica.

  11. Effects of Solar Geoengineering on Meridional Energy Transport and the ITCZ

    Science.gov (United States)

    Russotto, R. D.; Ackerman, T. P.; Frierson, D. M.

    2016-12-01

    The polar amplification of warming and the ability of the intertropical convergence zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering, but also for understanding how these processes work under increased CO2. Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. In this study we examine changes in MSE transport in 10 fully coupled GCMs in Experiment G1 of the Geoengineering Model Intercomparison Project, in which the solar constant is reduced to compensate for abruptly quadrupled CO2 concentrations. In this experiment, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the CMIP5 abrupt4xCO2 experiment, in which poleward MSE transport increases. The increase in poleward MSE transport under increased CO2 is due to latent heat transport, as specific humidity increases faster in the tropics than at the poles; this mechanism is not present under G1 conditions, so the reduction in dry static energy transport due to a weakened equator-to-pole temperature gradient leads to weaker energy transport overall. Changes in cross-equatorial MSE transport in G1, meanwhile, are anticorrelated with shifts in the ITCZ. The northward ITCZ shift in G1 is 0.14 degrees in the multi-model mean and ranges from -0.33 to 0.89 degrees between the models. We examine the specific forcing and feedback terms responsible for changes in MSE transport in G1 by running experiments with a moist energy balance model. This work will help identify the largest sources of uncertainty regarding ITCZ shifts under solar geoengineering, and will help improve our understanding of the reasons for the residual polar amplification that occurs in the G1 experiment.

  12. MAPEAMENTO DE UNIDADES DE RELEVO NA MÉDIA SERRA DO ESPINHAÇO MERIDIONAL - MG

    Directory of Open Access Journals (Sweden)

    Éric Andrade Rezende

    2011-04-01

    Full Text Available O presente trabalho propõe um mapeamento de unidades de relevo para a porção sul do terço médio da Serra do Espinhaço Meridional. As unidades de relevo foram delimitadas a partir da análise integrada de cartas temáticas e imagens de satélite que permitiram observar variações na morfologia, na altimetria, na declividade, na litoestrutura e na organização da rede de drenagem. A etapa de cartografia digital, processada no software ArcGis 9.2, se baseou na utilização de produtos SRTM (Shuttle Radar Topography Mission. Os procedimentos metodológicos também incluíram trabalhos de campo e pesquisa bibliográfica. Foi empregada a taxonomia do mapeamento geomorfológico proposta pelo IBGE (2009, através da qual foram individualizadas quatorze Unidades Geomorfológicas. As unidades estão distribuídas entre cinco diferentes compartimentos do seguinte modo: dois planaltos, duas escarpas, seis depressões, três conjuntos de cristas e um conjunto de patamares. Foi possível observar que a disposição geral das unidades reflete o forte controle litoestrutural imposto ao relevo regional. Destaca-se a resistência diferenciada das diversas litologias frente aos processos denudacionais e a influência da neotectônica na geomorfogênese.

  13. Novel Control Scheme of Power Assisted Wheelchair for Preventing Overturn (Part I)-Adjustment of Assisted Torque and Performance Evaluation From Field Test-

    Science.gov (United States)

    Seki, Hirokazu; Hata, Naoki; Koyasu, Yuichi; Hori, Yoichi

    Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. In this paper, control method to prevent power assisted wheelchair from overturning is proposed. It is found the front wheels rising is caused by magnitude and rapid increase of assisted torque. Therefore, feedforward control method to limit the assisted torque by tuning its magnitude or time constant is proposed. In order to emphasize safety and feeling of security, these methods make the front wheels no rise. The effectiveness of the proposed method is verified by the practical experiments and field test based performance evaluation using many trial subjects.

  14. Atlantic Nessologies: Image, Territory, Value

    Directory of Open Access Journals (Sweden)

    Francisco-]. Hernández Adrián

    2006-01-01

    Full Text Available This essay addresses the emerging field of Atlantic Studies and questions the status of "the Atlantic" as an object of study. Rather than assuming a self-evident grid where Atlantic cultural phenomena oscillate between such poles as "centers and peripheries," or "the colonizer and the colonized," I consider a different formulation of the Atlantic. Taking as a starting point an analysis of a poem by Tomás Morales, a modernista poet from the Canary Islands, my essay outlines the notion of "Atlantic nessologies." Three parallel departures are offered from this analysis: image (or the realm of the imaginary; territory (or spatial and geopolitical inscriptions of the Atlantic in western space-time; and value (or those ethical and political dimensions that can be drawn from Atlantic specificities. Critical engagements with the Atlantic, my essay concludes, can be anchored in "nessological" readings in which neither local, singular perspectives contained in islands, nor wider, more panoramic views of the Atlantic, ought to escape critics. Instead, the work of engaging the Atlantic from multiple perspectives and locations should express itself as a field of critical/political strategies coordinated against perennial re-inscriptions of Eurocentric totality.

  15. 78 FR 59878 - Atlantic Highly Migratory Species; Commercial Atlantic Aggregated Large Coastal Shark (LCS...

    Science.gov (United States)

    2013-09-30

    ... Species; Commercial Atlantic Aggregated Large Coastal Shark (LCS), Atlantic Hammerhead Shark, Atlantic Blacknose Shark, and Atlantic Non-Blacknose Small Coastal Shark (SCS) Management Groups AGENCY: National... hammerhead sharks in the Atlantic region, and blacknose sharks and non-blacknose SCS in the Atlantic region...

  16. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    Science.gov (United States)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells 2 μm to total

  17. Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition

    OpenAIRE

    Sepulcre, S.; Vidal, L.; Tachikawa, K.; Rostek, F.; Bard, E.

    2011-01-01

    By reconstructing past hydrologic variations in the Northern Caribbean Sea and their influence on the stability of the Atlantic Meridional Overturning Circulation (AMOC) during the last 940 ka, we seek to document climate changes in this tropical area in response to the Mid-Pleistocene Transition (MPT). Using core MD03-2628, we estimated past changes in sea surface salinity (SSS) using Δδ18O, the difference between the modern, and the past &delta...

  18. Evidence for a bi-partition of the Younger Dryas Stadial in East Asia associated with inversed climate characteristics compared to Europe

    OpenAIRE

    Schlolaut Gordon; Brauer Achim; Nakagawa Takeshi; Lamb Henry F; Tyler Jonathan J; Staff Richard A; Marshall Michael H; Bronk Ramsey Christopher; Bryant Charlotte L; Tarasov Pavel E

    2017-01-01

    The Younger Dryas Stadial (YDS) was an episode of northern hemispheric cooling which occurred within the Last Glacial Interglacial Transition (LGIT). A major driver for the YDS climate was a weakening of the Atlantic Meridional Overturning Circulation (AMOC). It has been inferred that the AMOC began to strengthen mid-YDS, producing a bipartite structure of the YDS in records from continental Europe. These records imply that the polar front and westerlies shifted northward, producing a warmer ...

  19. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11.

    Science.gov (United States)

    Kandiano, Evgenia S; van der Meer, Marcel T J; Schouten, Stefan; Fahl, Kirsten; Sinninghe Damsté, Jaap S; Bauch, Henning A

    2017-04-10

    Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.

  20. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  1. Two Distinct Roles of Atlantic SSTs in ENSO Variability: North Tropical Atlantic SST and Atlantic Nino

    Science.gov (United States)

    Ham, Yoo-Geun; Kug, Jong-Seong; Park, Jong-Yeon

    2013-01-01

    Two distinct roles of the Atlantic sea surface temperatures (SSTs), namely, the North Tropical Atlantic (NTA) SST and the Atlantic Nino, on the El Nino-Southern Oscillation (ENSO) variability are investigated using the observational data from 1980 to 2010 and coupled model experiments. It appears that the NTA SST and the Atlantic Nino can be used as two independent predictors for predicting the development of ENSO events in the following season. Furthermore, they are likely to be linked to different types of El Nino events. Specifically, the NTA SST cooling during February, March, and April contributes to the central Pacific warming at the subsequent winter season, while the negative Atlantic Nino event during June, July, and August contributes to enhancing the eastern Pacific warming. The coupled model experiments support these results. With the aid of a lagged inverse relationship, the statistical forecast using two Atlantic indices can successfully predict various ENSO indices.

  2. De Indios “Bárbaros” a Vasallos en la Frontera Meridional Chilena Durante el Reformismo Borbónico.

    OpenAIRE

    Chauca García, Jorge

    2017-01-01

    Con la presente Tesis Doctoral abordamos críticamente la visión ilustrada del indígena de la frontera meridional chilena como marco geográfico y la centuria de la Ilustración como coordenada temporal, especialmente su segunda mitad. Un análisis de sus tres familias básicas que no contempla por razones cronológicas a los picunches o gentes del norte, pero sí a los mapuches –gente de la tierra–, huilliches –gente...

  3. Tuning facial-meridional isomerisation in monometallic nine-co-ordinate lanthanide complexes with unsymmetrical tridentate ligands.

    Science.gov (United States)

    Le Borgne, Thierry; Altmann, Peter; André, Nicolas; Bünzli, Jean-Claude G; Bernardinelli, Gérald; Morgantini, Pierre-Yves; Weber, Jacques; Piguet, Claude

    2004-03-07

    The unsymmetrical tridentate benzimidazole-pyridine-carboxamide units in ligands L1-L4 react with trivalent lanthanides, Ln(III), to give the nine-co-ordinate triple-helical complexes [Ln(Li)3]3+ (i = 1-4) existing as mixtures of C3-symmetrical facial and C1-symmetrical meridional isomers. Although the beta13 formation constants are 3-4 orders of magnitude smaller for these complexes than those found for the D3-symmetrical analogues [Ln(Li)3]3+ (i = 5-6) with symmetrical ligands, their formation at the millimolar scale is quantitative and the emission quantum yield of [Eu(L2)3]3+ is significantly larger. The fac-[Ln(Li)3]3+ mer-[Ln(Li)3]3+ (i = 1-4) isomerisation process in acetonitrile is slow enough for Ln = Lu(III) to be quantified by 1H NMR below room temperature. The separation of enthalpic and entropic contributions shows that the distribution of the facial and meridional isomers can be tuned by the judicious peripheral substitution of the ligands affecting the interstrand interactions. Molecular mechanics (MM) calculations suggest that one supplementary interstrand pi-stacking interaction stabilises the meridional isomers, while the facial isomers benefit from more favourable electrostatic contributions. As a result of the mixture of facial and meridional isomers in solution, we were unable to obtain single crystals of 1:3 complexes, but the X-ray crystal structures of their nine-co-ordinate precursors [Eu(L1)2(CF3SO3)2(H2O)](CF3SO3)(C3H5N)2(H2O) (6, C45H54EuF9N10O13S3, monoclinic, P2(1)/c, Z = 4) and [Eu(L4)2(CF3SO3)2(H2O)](CF3SO3)(C4H4O)(1.5) (7, C51H66EuF9N8O(15.5)S3, triclinic, P1, Z = 2) provide crucial structural information on the binding mode of the unsymmetrical tridentate ligands.

  4. Sensitivity of the North Atlantic climate to Greenland Ice Sheet melting during the Last Interglacial

    Directory of Open Access Journals (Sweden)

    P. Bakker

    2012-06-01

    Full Text Available During the Last Interglacial (LIG; ~130 000 yr BP, part of the Greenland Ice Sheet (GIS melted due to a warmer than present-day climate. However, the impact of this melting on the LIG climate in the North Atlantic region is relatively unknown. Using the LOVECLIM Earth system model of intermediate complexity, we have systematically tested the sensitivity of the LIG climate to increased freshwater runoff from the GIS. In addition, experiments have been performed to investigate the impact of an idealized reduction of both surface elevation and extent of the GIS on the LIG climate. Based on changes in the maximum sea-ice cover and the strength of the overturning circulation, three regimes have been identified, which are characterized by a specific pattern of surface temperature change in the North Atlantic region. By comparing the simulated deep ocean circulation with proxy-based reconstructions, the most realistic simulated climate could be discerned. The resulting climate is characterized by a shutdown of deep convection and a subsequent ~4 °C cooling in the Labrador Sea. Furthermore, a cooling of ~1 °C over the North Atlantic Ocean between 40° N and 70° N is seen. The prescribed reduction in surface elevation and extent of the GIS results in a local warming of up to 4 °C and amplifies the freshwater-forced reduction in deep convection and the resultant cooling in the Nordic Seas. A further comparison of simulated summer temperatures with both continental and oceanic proxy records reveals that the partial melting of the GIS during the LIG could have delayed maximum summer temperatures in the western part of the North Atlantic region relative to the insolation maximum.

  5. LA PROYECCIÓN TALASOPOLÍTICA DE CHINA Y LAS DISPUTAS TERRITORIALES EN EL MAR MERIDIONAL

    Directory of Open Access Journals (Sweden)

    Lucas Pavez Rosales

    2017-04-01

    Full Text Available Este trabajo investigativo se funda en el objetivo de analizar la proyección talasopolítica de la República Popular China ( RPCh, en relación a las tensiones en el mar de la China meridional como yuxtaposición de intereses económicos y políticos entre los Estados involucrados. Siendo objetivos específicos: 1 dimensionar costos y factibilidad del creciente esfuerzo chino de configurarse como potencia marítima; 2 develar la unidad fragmentación de la postura de los miembros ASEAN frente a China, en la disputa; y 3 evidenciar la estrategia de EUA para hacer frente al cuestionamiento a su hegemonía en la región. A partir de esta base, el escrito busca dilucidar la forma en que el mar meridional se ha convertido en la nueva zona geopolítica caliente en el Sistema-mundo, y en la cual se puede producir una vorágine de conflictividad que desestabilice a la región.

  6. Enhanced Influence of the Tropical Atlantic SST on the Western North Pacific Subtropical High after late 1970s

    Science.gov (United States)

    Hong, C. C.

    2015-12-01

    The western North Pacific subtropical high (WNPSH) in boreal summer shows a remarkable enhancement after the late 1970s. Whereas the sea surface temperature (SST) in the North Indian Ocean (NIO) and the equatorial eastern Pacific (EEP) had been noted to have remarkable local or remote effects on enhancing the WNPSH, the influence of the Atlantic SST, so far, is hardly explored. This article reports a new finding: enhanced relationship between the tropical Atlantic (TA)-SST and the WNPSH after the late 1970s. Regression study suggests that the warm TA-SST produced a zonally overturning circulation anomaly, with descending over the central equatorial Pacific and ascending over the tropical Atlantic/eastern Pacific. The anomalous descending over the central equatorial Pacific likely induced low-level anticyclonic anomaly to the west and therefore enhanced the WNPSH. One implication of this new finding is for predictability. The well-known "spring predictability barrier" (i.e., the influence of El Niño and Southern Oscillation (ENSO) falls dramatically during boreal spring) does not apply to the TA-SST/WNPSH relationship. Conversely, the TA-SST shows consistently high correlation starting from boreal spring when the ENSO influence continues declining. The TA-SST pushes the predictability of the WNPSH in boreal summer approximately one season earlier to boreal spring.

  7. Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation

    Science.gov (United States)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Mitra, A. K.; Pandithurai, G.

    2017-10-01

    This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.

  8. Mean zonal and meridional accelerations and mean heating induced by solar tides for equinox and solstice conditions

    International Nuclear Information System (INIS)

    Groves, G.V.; Forbes, J.M.

    1985-01-01

    Evaluations are presented of the momentum and energy flux divergences of the diurnal and semidiurnal tidal fields calculated by Forbes from 0 to 400 km altitude. Results are presented in the form of meridional cross-sections from 0 to 78 0 N or S latitude with a 6 0 latitude interval. Comparisons are made with evaluations of the momentum flux divergences of the diurnal tide by Miyahara and good agreement is obtained in the lower thermosphere (below about 130 km) but a large disparity arises in the upper thermosphere. In the lower thermosphere momentum flux divergences of the semidiurnal tide are comparable with those of the diurnal tide and should be included in general circulation calculations of the 90-120 km region. (author)

  9. L'«Atles lingüístic del valencià meridional i alacantí» (ALVA

    Directory of Open Access Journals (Sweden)

    Josep Tormo Colomina

    2015-07-01

    Full Text Available This paper is the official presentation, since the project was first started in 1978, of the forthcoming «Atles Lingüístic del Valencià Meridional i Alacantí» (ALVA (Linguistic Atlas of Southern Valencian and Alacantí, which so far had not been explicitly publicized. This paper, divided in two sections, includes the background of the author, the birth of the Atlas, the original questionnaire and its evolution, the network of towns studied, the aims of the project, the research method, the present questionnaire, the findings beyond the questionnaire, the cartographic representation and a brief set of maps and comments showing the importance that microatles with a very specific questionnaire may have in reduced contexts in certain peripheral areas.

  10. Dynamical relationship between wind speed magnitude and meridional temperature contrast: Application to an interannual oscillation in Venusian middle atmosphere GCM

    Science.gov (United States)

    Yamamoto, Masaru; Takahashi, Masaaki

    2018-03-01

    We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.

  11. Inter-comparison of stratospheric mean-meridional circulation and eddy mixing among six reanalysis data sets

    Directory of Open Access Journals (Sweden)

    K. Miyazaki

    2016-05-01

    Full Text Available The stratospheric mean-meridional circulation (MMC and eddy mixing are compared among six meteorological reanalysis data sets: NCEP-NCAR, NCEP-CFSR, ERA-40, ERA-Interim, JRA-25, and JRA-55 for the period 1979–2012. The reanalysis data sets produced using advanced systems (i.e., NCEP-CFSR, ERA-Interim, and JRA-55 generally reveal a weaker MMC in the Northern Hemisphere (NH compared with those produced using older systems (i.e., NCEP/NCAR, ERA-40, and JRA-25. The mean mixing strength differs largely among the data products. In the NH lower stratosphere, the contribution of planetary-scale mixing is larger in the new data sets than in the old data sets, whereas that of small-scale mixing is weaker in the new data sets. Conventional data assimilation techniques introduce analysis increments without maintaining physical balance, which may have caused an overly strong MMC and spurious small-scale eddies in the old data sets. At the NH mid-latitudes, only ERA-Interim reveals a weakening MMC trend in the deep branch of the Brewer–Dobson circulation (BDC. The relative importance of the eddy mixing compared with the mean-meridional transport in the subtropical lower stratosphere shows increasing trends in ERA-Interim and JRA-55; this together with the weakened MMC in the deep branch may imply an increasing age-of-air (AoA in the NH middle stratosphere in ERA-Interim. Overall, discrepancies between the different variables and trends therein as derived from the different reanalyses are still relatively large, suggesting that more investments in these products are needed in order to obtain a consolidated picture of observed changes in the BDC and the mechanisms that drive them.

  12. O HORST DA MANTIQUEIRA MERIDIONAL: PROPOSTA DE COMPARTIMENTAÇÃO MORFOESTRUTURAL PARA SUA PORÇÃO MINEIRA

    Directory of Open Access Journals (Sweden)

    Roberto Marques Neto

    2017-08-01

    Full Text Available A Mantiqueira Meridional perfaz o sistema orográfico contínuo mais elevado de todo o Brasil Oriental. Sua gênese está ligada à reativação tectônica que acometeu a Plataforma Brasileira entre o Cretáceo e o Paleógeno orquestrada pela separação da paleoplaca Afro-brasileira e processos geodinâmicos associados, com posteriores reativações vinculadas à dinâmica neotectônica intraplaca e outros efeitos diastróficos oriundos de tectônica ressurgente e ativa. Dessa forma, a compartimentação morfoestrutural da Serra da Mantiqueira integra uma série de feições passivas a um vasto rol de evidências de controle morfotectônico sobrepostos às estruturas preexistentes. O presente artigo consiste numa proposta de compartimentação morfoestrutural para a porção da Mantiqueira Meridional contida no estado de Minas Gerais, enfatizando o controle morfoestrutural, o papel dos níveis de base regionais, e as estruturas tectônicas ativas afetando os diferentes compartimentos discernidos. A análise integrada entre os litotipos, os lineamentos estruturais, a rede de drenagem e os padrões de formas de relevo discerniu os seguintes compartimentos morfoestruturais: Patamares de Cimeira da Mantiqueira (desmembrados em sete subcompartimentos, Patamares Escalonados da Mantiqueira (dois subcompartimentos, Cristas Quartzíticas Festonadas e Rebordos Erosivos Dissecados.

  13. Virginia Atlantic Coast Recreational Use

    Data.gov (United States)

    Virginia Department of Environmental Quality — As a member of the Mid-Atlantic Regional Council on the Ocean (MARCO), Virginia, through its Coastal Zone Management (CZM) Program, collected information on how the...

  14. VA Atlantic Coast Recreational Use

    Data.gov (United States)

    Virginia Department of Environmental Quality — As a member of the Mid-Atlantic Regional Council on the Ocean (MARCO), Virginia, through its Coastal Zone Management (CZM) Program, collected information on how the...

  15. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    International Nuclear Information System (INIS)

    Balistrieri, Laurie S.; Tempel, Regina N.; Stillings, Lisa L.; Shevenell, Lisa A.

    2006-01-01

    stirring, convective overturn, shear, and eddy diffusion). Inputs to the model include the size and shape of the lake, daily meteorological data (short wave radiation, long wave radiation or cloud cover, air temperature, vapor pressure, wind speed, and rainfall), rates for water inputs and outputs, the composition of inflowing water, and initial profiles of temperature and salinity. Predicted temperature profiles, which are influenced by seasonal changes in the magnitude of solar radiation, are in good agreement with observations and show the development of a strong thermocline in the summer, erosion of the thermocline during early fall, and turnover in late fall. Predicted salinity profiles are in reasonable agreement with observations and are affected by the hydrologic balance, particularly inflow of surface and groundwater and, to a lesser degree, evaporation. Defining the hydrodynamics model for Dexter pit lake is the first step in using a coupled physical - biogeochemical model (Dynamic Reservoir Simulation Model-Computational Aquatic Ecosystem Dynamics Model or DYRESM-CAEDYM) to predict the behavior of non-conservative elements (e.g., dissolved O 2 , Mn, and Fe) and their effect on water quality in this system

  16. Salinity changes relative to the response to anthropogenic forcing and internal variability in the North Atlantic

    Science.gov (United States)

    Vinogradova, Nadya; Buckley, Martha

    2017-04-01

    Over the past few decades, surface waters in the subpolar North Atlantic have experienced substantial fluctuations, including periods of rapid cooling and freshening alternating with the periods of enhanced warming, salinification, and decreased circulation of the gyre. Since these waters feed the North Atlantic thermohaline circulation, such changes have the potential to impact the global ocean circulation and future climate states. A number of potential causes for the observed changes have been suggested, including those related to the strength of the ocean circulation and heat transports, as well as other factors, such as anthropogenic aerosol forcing or changes in surface fluxes. Here we assess how the observed warming/salinification events fit into the long-term picture, focusing on variations in upper-ocean salinity. Salinification of the subpolar North Atlantic may seem counter-intuitive to the reported long-term increase in freshwater supply to the region from river discharge and ice melting, sparking debates about whether the freshening of the subpolar gyre has ceased, and whether the recent salinification, if continued, will be able to forestall the projected slowdown of the overturning circulation. Using a suite of in situ salinity observations spanning the last 60 years, modern satellite salinity observations from Aquarius and SMOS missions, and multi-decadal realizations from global climate models, we estimate the likelihood of such salinity changes in the context of the historical record, contemporary estimates, and future projections. Results are discussed in terms of the probability of occurrence of a decade-long salinification in the presence of the background freshening in response to anthropogenic forcing. In particular, computed probabilities suggest that such "unusual" salinification events are plausible under the strong influence of internal, decadal-to-interdecadal variability.

  17. The impacts of the atmospheric annular mode on the AMOC and its feedback in an idealized experiment

    Science.gov (United States)

    Santis, Wlademir; Aimola, Luis; Campos, Edmo J. D.; Castellanos, Paola

    2018-03-01

    The interdecadal variability of the atmospheric and oceanic meridional overturning circulation is studied, using a coupled model with two narrow meridional barriers representing the land and a flat bottomed Aquaplanet. Empirical orthogonal function (EOF) analysis are used in the atmospheric and oceanic meridional overturning cells, revealing the atmospheric interdecadal variability is dominated by an annular mode, in both hemispheres, which introduces in the ocean a set of patterns of variability. The most energetic EOFs in the ocean are the barotropic responses from the annular mode. The interaction between the heat anomalies, due to the barotropic response, and the thermohaline circulation of each basin leads to a resonance mechanism that feeds back to the atmospheric forcing, modulating the annular mode spectrum. Besides the barotropic response, the annular mode introduces anomalies of salinity and temperature in the subtropical Atlantic that affects its upper buoyancy. These anomalies are incorporated within the ocean circulation and advected until the areas of deep sinking in the northern Atlantic, impacting on its overturning circulation as well.

  18. La heterogeneidad interna del español meridional o atlántico: variación diasistemática vs. pluricentrismo

    Directory of Open Access Journals (Sweden)

    Araceli López Serena

    2013-07-01

    Full Text Available ResumenEste trabajo se propone mostrar la idoneidad del marco teórico de la Lingüística de las variedades desarrollado por la Escuela de Friburgo para abordar el problema de la heterogeneidad interna del llamado español meridional o atlántico. Dicha heterogeneidad concierne a las diferencias de estatus que unos mismos rasgos lingüísticos manifiestan en las variedades andaluzas y americanas de la lengua; de ahí que su abordaje precise un marco de análisis que permita describir el funcionamiento discursivo de los distintos fenómenos de variación que afloran en el español hablado en Andalucía y en América desde una perspectiva dinámica, respetuosa con la extraordinaria complejidad de la interacción que, en el discurso, tiene lugar entre hechos de variación de distinta naturaleza (diatópica, diastrática o diafásica. Gracias a la modelización del comportamiento lingüístico diferenciado de los hablantes en situaciones de comunicación diversas que permite llevar a cabo el aparato conceptual de la Lingüística de las variedades, podremos dirimir cómo, por encima de la posible identidad material de algunos hechos lingüísticos compartidos por andaluz, canario y español de América, es necesario atribuir a fenómenos, en principio equivalentes, un estatus, sin embargo, muy desigual: diasistemáticamente marcado en unas comunidades, pero no marcado o estándar en otras, en las que el rasgo lingüístico en cuestión tenga, por tanto, el rango de norma diferenciada en el seno de una lengua policéntrica como es la española. AbstractThis paper claims that the inner heterogeneity of the so-called Southern or Atlantic Spanish can be best analyzed under the theoretical framework commonly known as German Varieties Linguistics developed by the Fribourg School. This heterogeneity is shown in the diverse status of materially identical linguistic facts in the Andalusian and American varieties of the Spanish language. The paper argues

  19. Possible North Atlantic origin for changes in ENSO properties during the 1970s

    Science.gov (United States)

    Dima, Mihai; Lohmann, Gerrit; Rimbu, Norel

    2015-02-01

    The most intense El Niño episodes in more than a century occurred after the 1970s climate shift. Previous studies show that the characteristics of the El Niño-Southern Oscillation (ENSO) phenomenon changed synchronously with the shift, but the associated causes are not fully understood. An analysis of the observed tropical Pacific sea surface temperature (SST) anomalies shows that their increase in the eastern part of the basin after the 1970s is not related to the canonical ENSO pattern, but to the tropical Pacific meridional mode (TPMM). We present observational evidence which supports the hypothesis that the change in the TPMM was triggered by the great salinity anomaly (GSA), which manifested in the North Atlantic during the late 1960s. The GSA induced a weak Labrador convection and a SST dipole south of Greenland. The associated atmospheric structure includes a North Pacific Oscillation sea level pressure dipole in the Pacific sector. This excites the TPMM which contributes to the intense El Niño events and to the enhanced ENSO's asymmetry, observed after the shift. Our results imply that, if the GSA has not an anthropic origin, as was suggested, then the tropical Pacific climate shift has a natural origin. This is supported by the end of the North Atlantic regime in the 1990s and by the rebound of the tropical Pacific after 1998.

  20. North Atlantic Energy Structures

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S. [North Atlantic Energy Structures Inc., St. John' s, NL (Canada); Derradji, A. [National Research Council of Canada, St. John' s, NL (Canada). Inst. for Ocean Technology

    2005-07-01

    North Atlantic Energy Structures Inc. is in the process of designing a tidal fence for a site near the Straits of Belle Isle. This presentation provided details of both the design and the location in which the wave energy plant will be installed. Design constraints included a short seasonal work window, and a harsh but pristine environment. Design specifications of the paddlewheels and caissons were presented. The paddlewheel is iceberg and slab ice resistant, and has portals below the wheel axis, a water-free upper chamber, and bi-directional power generation. The planned installation sequence was presented, as well as details of a hydrodynamic simulation examining torque on the turbines in the tidal energy chamber. Results of the study indicated that 20 paddlewheels per caisson provided the equivalent of 12 MW of energy. A tidal fence of 70 to 80 caissons provided the equivalent of 1.2 GW of energy. A slab ice simulation study was outlined, and details of the pumping station, inlet and hydro-generation station were provided. A map of the proposed siting of the tidal fence was presented. It was concluded that financing for the pilot project has been granted. However, further financing for research and development is required. refs., tabs., figs.

  1. Reconstruction of the North Atlantic end-member of the thermohaline circulation across the Mid-Pleistocene Transition

    Science.gov (United States)

    Kim, J.; Seguí, M. J.; Yehudai, M.; Goldstein, S. L.; Pena, L. D.; Raymo, M. E.; Ford, H. L.; Haynes, L.; Farmer, J. R.; Hoenisch, B.

    2016-12-01

    The dominant periodicity of glacial and interglacial cycles shifted from 41 ky to 100 ky at 1.2-0.8 Ma, marking the Mid-Pleistocene Transition (MPT). Pena and Goldstein (Science, 2014) investigated changes in the Earth's global thermohaline circulation (THC), focusing on South Atlantic cores, and concluded that the THC experienced major disruptions between 950-850 ka (MIS 25 to 21), which generated the climatic conditions that intensified cold periods, prolonged their duration, and stabilized 100 ky cycles. However, knowledge of the coeval North Atlantic is key for interpreting data from the Middle and South Atlantic. We report Nd isotope ratios on Fe-Mn oxide encrusted foraminifera and fish debris from DSDP Site 607 (41.001N; 32.957W, 3427m) between 1.2-0.4 Ma, as a representative of the deep North Atlantic. Pre-MPT results (MIS 35-25) show interglacial ɛNd-values of -13.5 to -14.0, similar to today, and glacial-interglacial variability of 1 ɛNd-unit. Post-MPT results after MIS 19 also show interglacial ɛNd-values of -13.5 to -14.0, but greater glacial-interglacial variability of 2 ɛNd-units. Interglacial-to-glacial transitions throughout the core shift to higher ɛNd-values indicative of weakening THC, except for MIS 26, which is uniquely more negative than the neighboring interglacials, with ɛNd reaching -14.5. During the critical MPT interval of MIS 25-21 recognized by Pena and Goldstein (2014), and continuing beyond it through MIS 19, DSDP 607 ɛNd shows higher values of -11.5 to -12.5, like post-MPT glacials. Thus for the North Atlantic, from the point of view of ɛNd in DSDP 607, post-MPT and pre-MPT interglacials are similar, and post-MPT glacials and MPT glacials are similar. Moreover, comparison to the Pena and Goldstein (2014) South Atlantic data indicates that disruptions to North Atlantic overturning may have begun as early as MIS 27, and the recovery to the pre-MPT interglacial conditions may have been delayed beyond MIS 19.

  2. 76 FR 72383 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures

    Science.gov (United States)

    2011-11-23

    ... Administration 50 CFR Part 635 RIN 0648-BA17 Atlantic Highly Migratory Species; Atlantic Shark Management...) and fishery management plan (FMP) amendment that would consider catch shares for the Atlantic shark... design elements for potential catch shares programs in the Atlantic shark fisheries. Additionally, NMFS...

  3. Atlantic menhaden processing plant test tagging data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atlantic menhaden are a schooling forage fish species, which are subject to a large commercial purse seine fishery. Atlantic menhaden are harvested for reduction...

  4. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  5. Evidence of local and regional freshening of Northeast Greenland coastal waters

    DEFF Research Database (Denmark)

    Sejr, Mikael K.; Stedmon, Colin A; Bendtsen, Jørgen

    2017-01-01

    coast and providing evaluation basis for ocean models. Here we present 13 years of summer measurements along a 120 km transect in Young Sound, Northeast Greenland and show that sub-surface coastal waters are decreasing in salinity with an average rate of 0.12 ± 0.05 per year. This is the first...... coastal currents thus reducing density of water masses influencing major deep water formation areas in the Subarctic Atlantic Ocean. Ultimately, the observed freshening could have implications for the Atlantic meridional overturning circulation....

  6. Underwater gliders as virtual moorings; lessons from the RAPID program

    Science.gov (United States)

    Smeed, David; McCarthy, Gerard; White, David

    2013-04-01

    The RAPID program measures the Atlantic Meridional Overturning Circulation in the sub tropical Atlantic using an array of moored instruments. We have made trials using autonomous underwater gliders as a replacement for one of the RAPID moorings. The mooring is located on the continental slope at a water depth of 1000m. Six glider deployments have been made concurrent with mooring deployments. In this presentation data from the moorings and from the gliders are compared; different glider sampling strategies are considered; and the advantages and disadvantages of gliders are described. The capability of gliders to resolve tidal motion and to quantify geostrophic currents is examined.

  7. Atlantic Seaduck Project

    Science.gov (United States)

    Perry, M.C.; Hanson, Alan; Kerekes, Joseph; Paquet, Julie

    2006-01-01

    Atlantic Seaduck Project is being conducted to learn more about the breeding and moulting areas of seaducks in northern Canada and more about their feeding ecology on wintering areas, especially Chesapeake Bay. Satellite telemetry is being used to track surf scoters wintering in Chesapeake Bay, Maryland and black scoters on migrational staging areas in New Brunswick, Canada to breeding and moulting areas in northern Canada. Various techniques used to capture the scoters included mist netting, night-lighting, and net capture guns. All captured ducks were transported to a veterinary hospital where surgery was conducted following general anaesthesia procedures. A PTT100 transmitter (39 g) manufactured by Microwave, Inc., Columbia, Maryland was implanted into the duck?s abdominal cavity with an external (percutaneous) antenna. Eight of the surf scoters from Chesapeake Bay successfully migrated to possible breeding areas in Canada and all 13 of the black scoters migrated to suspected breeding areas. Ten of the 11 black scoter males migrated to James Bay presumably for moulting. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on the Patuxent Website. Habitat cover types of locations using GIS (Geographical Information Systems) and aerial photographs (in conjunction with remote sensing software) are currently being analyzed to build thematic maps with varying cosmetic layer applications. Many factors related to human population increases have been implicated in causing changes in the distribution and abundance of wintering seaducks. Analyses of the gullet (oesophagus and proventriculus) and the gizzard of seaducks are currently being conducted to determine if changes from historical data have occurred. Scoters in the Bay feed predominantly on the hooked mussel and several species of clams. The long-tailed duck appears to select the gem clam in greater amounts than other seaducks, but exhibits a diverse diet of

  8. Surface mapping, organic matter and water stocks in peatlands of the Serra do Espinhaço meridional - Brazil

    Directory of Open Access Journals (Sweden)

    Márcio Luiz da Silva

    2013-10-01

    Full Text Available Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water, low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000 by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1 of organic matter and 142,138,262 m³ (9,948 m³ ha-1 of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric organic matter predominate, followed by the intermediate stage (hemic. The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation

  9. Uptake by the Atlantic Ocean of excess atmospheric carbon dioxide and radiocarbon

    International Nuclear Information System (INIS)

    Bolin, B.; Bjorkstrom, A.

    1989-01-01

    Inverse methods have been used to deduce water circulation, spatial patterns of turbulent exchange and biological activity in the Atlantic Ocean, by using a set of stationary tracers and a condition of quasi-geostrophic flow. The solution yields a direct meridional circulation cell with descending motion in the northern Atlantic with an intensity of 20-25 Sverdrup, a reasonable distribution of vertical turbulent transfer in the uppermost ocean layers and comparatively large rates of detritus formation, about 4.5 Pg C yr -1 . The solution is used to compute the invasion of tritium 1955-1983, and the uptake of excess radiocarbon and carbon dioxide during the period 1760-1983. A fair agreement between computed and observed changes of tritium and 14 C is obtained, but the period of observations is too short to serve as a conclusive test model. The uptake of carbon dioxide during the 220 years period into the Atlantic Ocean is 33 ± 5 Pg and it is further found that significant variations of the uptake fraction of the CO 2 emissions may have occurred due to varying rates of emissions in gorce of time. The conclusion is drawn that the ocean and its carbonate system may not have been the only sink for anthropogenic emissions of carbon dioxide into the atmosphere. Means for how to further improve the model and its capability to reproduce the ocean behaviour are discussed. Burning of fossil fuels, deforestation and changing land use have changed the global carbon cycle very significant during the last two centuries

  10. Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability

    Science.gov (United States)

    Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.

    2018-02-01

    Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.

  11. How Well Do Neodymium Isotopes Trace AMOC Mixing? A Test in the Southwest Atlantic

    Science.gov (United States)

    Wu, Y.; Goldstein, S. L.; Pena, L.; Hartman, A. E.; Rijkenberg, M. J. A.; De Baar, H. J. W.

    2014-12-01

    Neodymium (Nd) isotope ratios are used to trace past AMOC circulation, based on observations that seawater Nd isotope ratios effectively "fingerprint" water masses, and that over long water mass transport distances in deep seawater they reflect values expected from water mass mixing. Over the past several years, studies have increasingly focused on the potential of external addition of Nd along water mass transport paths (for example through "boundary exchange" with particulates or addition from groundwaters), thus challenging the idea that Nd isotopes behave "quasi-conservatively" in the oceans. The SW Atlantic, with the major water masses involved in the AMOC (southward flowing NADW, northward flowing AAIW and AABW), is arguably the best place on Earth to evaluate how well Nd isotopes trace water mass mixing, in order to clarify its value for following the AMOC through time. We will report Nd isotope ratios of seawater collected on the SW Atlantic meridional transect of the NIOZ West Atlantic GEOTRACES Cruise Leg 3 (RRS James Cook 057), which sampled seawater profiles and the sediment surface at 18 stations between 0-50°S. Most stations are sampled in the open ocean, providing a test of whether Nd isotopes show quasi-conservative mixing systematics away from continental margins. The cruise section also provides several opportunities to test the potential effects of external Nd input. For example, it transects the continental shelf in the far south, the Rio Grande Rise, volcanic seamounts, and the major geological age boundaries of South America. It also crosses the major Southern Hemisphere wind zones, allowing us to test the impacts of aeolian input, and inputs from major rivers (Parana-Paraguay, Sao Francisco, Amazon). All of these features have the potential to modify the seawater Nd isotope ratios, allowing us to determine if they add significant external Nd.

  12. The NAO Influence on the Early to Mid-Holocene North Atlantic Coastal Upwelling

    Science.gov (United States)

    Hernandez, A.; Cachão, M.; Sousa, P.; Trigo, R. M.; Freitas, M. C.

    2017-12-01

    Coastal upwelling regions yield some of the oceanic most productive ecosystems, being crucial for the worldwide social and economic development. Most upwelling systems, emerging cold nutrient-rich deep waters, are located in the eastern boundaries of the Atlantic and Pacific basins, and are driven by meridional wind fields parallel to the coastal shore. These winds are associated with the subsiding branch of the large-scale Anticyclonic high pressure systems that dominate the subtropical ocean basins, and therefore can be displaced or intensified within the context of past and future climate changes. However, the role of the current global warming influencing the coastal upwelling is, as yet, unclear. Therefore it is essential to derive a long-term perspective, beyond the era of instrumental measurements, to detect similar warm periods in the past that have triggered changes in the upwelling patterns. In this work, the upwelling dynamics in the Iberian North Atlantic margin during the early and mid-Holocene is reconstructed, using calcareous nannofossils from a decadally resolved estuarine sediment core located in southwestern Portugal. Results suggest that the coastal dynamics reflects changes in winds direction likely related to shifts in the NAO-like conditions. Furthermore, the reconstructed centennial-scale variations in the upwelling are synchronous with changes in solar irradiance, a major external forcing factor of the climate system that is known to exert influence in atmospheric circulation patterns. In addition, these proxy-based data interpretations are in agreement with wind field and solar irradiance simulation modelling for the mid-Holocene. Therefore, the conclusion that the solar activity via the NAO modulation controlled the North Atlantic upwelling of western Iberia during the early and mid-Holocene at decadal to centennial timescales can be derived. The financial support for attending this meeting was possible through FCT project UID/GEO/50019

  13. Novel Control Scheme of Power Assisted Wheelchair for Preventing Overturn (Part II)-Variable Assistance Ratio Control Based on Estimation of Center-of-Gravity Angle and Phase Plane-

    Science.gov (United States)

    Hata, Naoki; Seki, Hirokazu; Koyasu, Yuichi; Hori, Yoichi

    Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of a power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. This paper proposes a novel control method to prevent power assisted wheelchair from overturning. The man-wheelchair system can be regarded as an inverse pendulum model when the front wheels are rising. The center-of-gravity (COG) angle of the model is the most important information directly-linked to overturn. Behavior of the system can be analyzed using phase plane as shown in this paper. The COG angle cannot be directly measured using a sensor, therefore, COG observer based on its velocity is proposed. On the basis of the analysis on phase plane, a novel control method with variable assistance ratio to prevent a dangerous overturn is proposed. The effectiveness of the proposed method is verified by the practical experiments on the flat ground and uphill slope.

  14. Impacts of the Pacific meridional mode on rainfall over the maritime continent and australia: potential for seasonal predictions

    Science.gov (United States)

    Zhang, Wei; Villarini, Gabriele; Vecchi, Gabriel A.

    2017-11-01

    This study assesses whether, the extent to which and why the Pacific Meridional Mode (PMM) modulates rainfall in Australia and the Maritime Continent. We find a statistically significant time-lagged association between March-to-May (MAM) PMM and September-to-November (SON) rainfall in the Maritime Continent and Australia. The association is largely caused by the contribution of PMM to the El Niño Southern Oscillation (ENSO). Positive (negative) MAM PMM is generally followed by El Niño (La Niña) events in the following SON and December-to-February (DJF), which then suppresses (enhances) rainfall in the Maritime Continent and Australia. The suppression (enhancement) of rainfall is closely tied to the dynamical changes of moisture flux using moisture flux potential and its divergent components. Following the positive (negative) PMM phases, there is a strong moisture flux potential sink (source) in SON over the Maritime Continent and Australia, which act to suppress (enhance) rainfall there. Using MAM PMM as a predictor for SON rainfall in the Maritime Continent and Australia, the prediction skill is comparable to the North American Multimodel Ensemble project (NMME) forecasts initialized in June over the period 1981-2014. This suggests that MAM PMM may be used as a predictor for SON rainfall in the Maritime Continent and Australia.

  15. Afganistán pos-2014: las implicaciones para la estabilidad de la periferia meridional de Rusia

    Directory of Open Access Journals (Sweden)

    Tracey German

    2015-08-01

    Full Text Available Afganistán y la amplia región de Asia central constituyen parte del «punto sensible meridional» de Rusia, un término que subraya el sentido de vulnerabilidad que siente a lo largo de la frontera del Sur. Las preocupaciones rusas en seguridad en la región se centran en la inestabilidad transfronteriza, incluyendo la proliferación del extremismo religioso y el tráfico de drogas. Moscú está inquieta por la posibilidad de un mayor deterioro en la situación interna de Afganistán tras la retirada de las fuerzas internacionales en 2014, y por lo tanto ha tomado medidas para reforzar de diversos modos la seguridad tanto de Afganistán como de sus vecinos de Asia central. Este artículo analiza los conductores de la política rusa y valora sus percepciones sobre la amenaza y seguridad en la región, centrándose en particular en las implicaciones para Rusia del retiro de la operación internacional de estabilidad (ISAF en Afganistán.

  16. Interdecadal Change in the Relationship Between the North Pacific Oscillation and the Pacific Meridional Mode and Its Impact on ENSO

    Science.gov (United States)

    Shin, So-Jung; An, Soon-Il

    2018-02-01

    Two leading but independent modes of Northern Pacific atmospheric circulation: the North Pacific Oscillation (NPO) and the Pacific Meridional Mode (PMM), are known external triggers of the El Niño-Southern Oscillation (ENSO) by the sequential migration of sea surface temperature (SST) anomalies into the tropics possibly by means of wind-evaporation-SST (WES) feedbacks. Because of the similar roles of NPO and PMM, most previous studies have explored them with no separation. Here, we investigate their independent and combined effects in triggering ENSO, and find that when the NPO and PMM occur simultaneously during spring, ENSO or ENSO-like SST anomalies are generated during the following winter; whereas when either the NPO or PMM occur alone, ENSO events rarely occur. Furthermore, the relationship between NPO and PMM shows noticeable interdecadal variability, which is related to decadal changes in the mean upper-level jet stream over the North Pacific. Changes in the upper-level jet stream modify the location of the center of the Aleutian Low, which plays a role in bridging the NPO and PMM processes, especially when it migrates to the southwest. The period when NPO and PMM are well correlated coincides somewhat with the active ENSO period, and vice versa, indicating that a more efficient trigger due to combined NPO-PMM processes results in a higher variation of ENSO. Finally, analysis of the coupled model control simulations strongly supports our observational analysis results.

  17. On the collapse of the meridional SST gradient in the eastern tropical South Pacific during Heinrich stadial 1

    Science.gov (United States)

    Kienast, S. S.; Dubois, N.; Kienast, M.; Francois, R. H.; Hill, P. S.

    2011-12-01

    The equatorial Pacific plays a crucial role in the present-day climate system. The El Nino-Southern Oscillation (ENSO) Phenomenon , which originates from perturbations of the ocean atmosphere system in this region, affects climate and the carbon cycle worldwide. One of the factors controlling ENSO variability is the meridional temperature gradient across the equator. Here we present multiproxy records of several cores located strategically across the frontal system separating the tropical warm pool north of the equator from the cold tongue off Peru. Alkenone-based sea surface temperature (SST) reconstructions display a 50% reduction in the temperature gradient across this front during Heinrich stadial 1 (H1). This dramatic change in sea surface conditions is paralleled by a) perturbations of the marine nitrogen cycle as recorded by d15N of bulk sediment and b) a maximum in continental input as recorded by 232-thorium. While 232-thorium fluxes clearly indicate an increase in overall continental input during H1, grain- size analyses suggest that the proportion of dust-sized particles in the continental fraction did not vary significantly between the last glacial maximum, H1, and the Holocene. Implications for ocean atmosphere dynamics and comparisons to model predictions for this time period will be discussed.

  18. Meridional transport of magnetic flux in the solar wind between 1 and 10 AU: a theoretical analysis

    International Nuclear Information System (INIS)

    Pizzo, V.J.; Goldstein, B.E.

    1987-01-01

    Pioneer 10 observations suggest that the mean (longitudinally averaged) solar wind azimuthal field strength, B/sub phi/, near the ecliptic plane falls off more rapidly with heliocentric distance than would be expected in a classic Parker expansion, showing a deficit of 10--20% (as compared to the projected 1-AU value) by 10 AU. Though this observational interpretation has been challenged by subsequent analyses of Voyager data, it has nevertheless stimulated efforts to explain the inferred deficit on the basis of systematic north-south magnetic pressure gradients generated by the differential spiral wrapping of magnetic field lines in interplanetary space. We reexamine this issue from the theoretical perspective using a three-dimensional MHD nonlinear numerical model for steady, corotating flow. For realistic solar wind parameters we find that a purely axisymmetric expansion is capable of producing sizable magnetic flux deficits only when there are substantial meridional gradients in mean flow conditions localized about the ecliptic plane near the sun. Even then the match between plausible flow states and significant mean B/sub phi/ deficit is achieved over such a limited parameter range that it is unlikely this mechanism alone can produce deficits of the magnitude inferred from the Pioneer data

  19. Initial forces values in the double-layer metal dome in case of elimination of normal and meridional imperfections of installation

    Directory of Open Access Journals (Sweden)

    Grigoryan Artem Akopovich

    2016-01-01

    Full Text Available OF INSTALLATION Computer analysis of the values of the initial forces due to force elimination of assembly errors of double-layer framed metal dome has been performed. The position errors of nodes of pair meridional ribs were considered in the normal and meridional directions at installation of the dome frame with temporary central support. For selected nodes concentrated forces were applied to eliminate the relative deviations of adjacent ribs and the resulting internal forces in the bars were registered. The values of these internal forces were compared to the forces in bars resulting from the dead load and design load. The results of the investigation are presented in the form of figures, diagrams, tables and graphs. Based on the analysis of the data obtained, conclusions are made about the influence of initial forces on the stress state of the frame of the dome.

  20. Synthesis and characterization of meridional isomer of uns-cis-(ethylenediamine-N-N'-di-3-propionato-(S-norleucinatocobalt(III semihydrate

    Directory of Open Access Journals (Sweden)

    SRECKO R. TRIFUNOVIC

    2000-07-01

    Full Text Available The meridional geometrical isomer of uns-cis-(ethylenediamine-N-N'-di-3-propionato(S-norleucinatocobalt(III complex has been prepared by the reaction of sodium uns-cis-(ethylenediamine-N-N'-di-3-propionato(carbonatocobaltate(III with S-norleucine at 75°C. The complex was isolated choromatographically and characterized by elemental analyses, electron absorption and infrared spectroscopy.

  1. «Theater of Sorrows»: Rhetoric and Space in Francisco Romero's «Llanto Sagrado de la América Meridional»

    Directory of Open Access Journals (Sweden)

    Jorge Martín García

    2016-11-01

    Full Text Available This article aims to analyze the text entitled Llanto sagrado de la América Meridional written by the Augustinian friar Francisco Romero. The work presents a kind of spiritual mapping of american land. Therefore, the text divides the territory of the continent according to their proximity or remoteness from the true faith. Our main objective will be to examine the rhetorical mechanisms that lie behind this description of the Indian space.

  2. SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, A. G. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Duvall, T. L. Jr. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-04-10

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s{sup -1} slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  3. Meridional Motions and Reynolds Stress Determined by Using Kanzelhöhe Drawings and White Light Solar Images from 1964 to 2016

    Science.gov (United States)

    Ruždjak, Domagoj; Sudar, Davor; Brajša, Roman; Skokić, Ivica; Poljančić Beljan, Ivana; Jurdana-Šepić, Rajka; Hanslmeier, Arnold; Veronig, Astrid; Pötzi, Werner

    2018-04-01

    Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.

  4. Systematic Center-To-Limb Variation in Measured Helioseismic Travel Times and Its Effect on Inferences of Solar Interior Meridional Flows

    Science.gov (United States)

    Zhao, Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, Alexander; Duvall, T. L., Jr.

    2012-01-01

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s-1 slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  5. SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS

    International Nuclear Information System (INIS)

    Zhao Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, A. G.; Duvall, T. L. Jr.

    2012-01-01

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s –1 slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  6. Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development

    Science.gov (United States)

    Wu, Yi-Kai; Chen, Lin; Hong, Chi-Cherng; Li, Tim; Chen, Cheng-Ta; Wang, Lu

    2018-03-01

    In the boreal spring of 2014, the oceanic and atmospheric conditions were favorable for an El Niño's development. It was predicted that in 2014, a super El Niño or at least a regular El Niño with normal magnitude, would initiate. However, the growth rate of the sea surface temperature anomaly (SSTA) in the equatorial eastern Pacific suddenly declined in the boreal summer. The physical processes responsible for the termination of the 2014 El Niño were addressed in this study. We hypothesized that a meridional dipole of SSTA, characterized by a pronounced warm SSTA over the eastern North Pacific (ENP) and cold SSTA over the eastern South Pacific (ESP), played a crucial role in blocking the 2014 El Niño's development. The observational analysis revealed that the meridional dipole of SSTA and the relevant anomalous cross-equatorial flow in the tropical eastern Pacific, induced anomalous westward ({u^' }0) currents in the equatorial eastern Pacific, leading to negative anomalous zonal advection term (- {u^' }partial \\overline T /partial xchanges of the oceanic dynamic terms collectively caused negative SSTA tendency in the boreal summer, and thus killed off the budding 2014 El Niño. The idealized numerical experiments further confirmed that the 2014 El Niño's development could be suppressed by the meridional dipole of SSTA, and both the ENP pole and ESP pole make a contribution.

  7. NOAA/EcoFOCI Chukchi Sea ADCP Mooring time-series data, stations C1, C2, and C3, 2010-08-29 to 2012-08-22, including zonal (U) and meridional (V) current measurements (NCEI Accession 0149848)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Acoustic Doppler Current Profiler (ADCP) time-series data sets, consist of zonal current (U) and meridional current (V) measurements from moored instruments at...

  8. NAO-ocean circulation interactions in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, S.; Navarra, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Scoccimarro, E. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2008-12-15

    The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean-atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode. (orig.)

  9. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content

    Science.gov (United States)

    Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro

    2017-09-01

    The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.

  10. Effect of sporadic destratification, seasonal overturn and artificial mixing on CH4 emissions at the surface of a subtropical hydroelectric reservoir (Nam Theun 2 Reservoir, Lao PDR)

    Science.gov (United States)

    Guérin, F.; Deshmukh, C.; Labat, D.; Pighini, S.; Vongkhamsao, A.; Guédant, P.; Rode, W.; Godon, A.; Chanudet, V.; Descloux, S.; Serça, D.

    2015-07-01

    Inland waters in general and specifically freshwater reservoirs are recognized as source of CH4 to the atmosphere. Although the diffusion at the air-water interface is the most studied pathway, its spatial and temporal variations are poorly documented. We measured fortnightly CH4 concentrations and physico-chemical parameters at nine stations in a subtropical monomictic reservoir which was flooded in 2008 (Nam Theun 2 Reservoir, Lao PDR). Based on these results, we quantified CH4 storage in the water column and diffusive fluxes from June 2009 to December 2012. We also compared emissions with aerobic methane oxidation calculated from Deshmukh et al. (2015). In this monomictic reservoir, the seasonal variations of CH4 concentration and storage were highly dependant of the thermal stratification. Hypolimnic CH4 concentration and CH4 storage reached their maximum in the warm dry season (WD) when the reservoir was stratified. They decreased during the warm wet (WW) season and reached its minimum after the reservoir overturned in the cool dry season (CD). The sharp decreases of the CH4 storage were concomitant with sporadic extreme diffusive fluxes (up to 200 mmol m-2 d-1). These hot moments of emissions occurred mostly in the inflow region in the WW season and during the overturn in the CD season in the area of the reservoir that has the highest CH4 storage. Although they corresponded to less than 10 % of the observations, these CH4 extreme emissions (> 5 mmol m-2 d-1) contributed up to 50 % of total annual emissions by diffusion. Based on our fortnightly monitoring, we determined that accurate estimation of the emissions can be determined from measurements made at least at a monthly frequency. During the transition between the WD and WW seasons, a new hotspot of emissions was identified upstream of the water intake where diffusive fluxes peaked at 600 mmol m-2 d-1 in 2010 down to 200 mmol m-2 d-1 in 2012. In the CD season, diffusive fluxes from this area were the

  11. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    Science.gov (United States)

    Tilstone, Gavin H.; Lange, Priscila K.; Misra, Ankita; Brewin, Robert J. W.; Cain, Terry

    2017-11-01

    Micro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m-2 d-1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)-1 h-1) followed by nano- (∼4 mg C (mg Chl a)-1 h-1) and pico- (∼2 mg C (mg Chl a)-1 h-1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998-2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC

  12. 77 FR 25144 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meetings

    Science.gov (United States)

    2012-04-27

    .... The Council will consider input from the workgroup and workshops during its June meeting in Orlando... Atlantic; South Atlantic Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries... public meeting and public workshop. SUMMARY: The South Atlantic Fishery Management Council (Council) will...

  13. 77 FR 58982 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-09-25

    ... the South Atlantic; South Atlantic Fishery Management Council; Public Meeting AGENCY: National Marine... of a public meeting. SUMMARY: The South Atlantic Fishery Management Council (Council) will hold a... October 18, 2012. ADDRESSES: The meeting will be held at the Radisson Resort at the Port, 8701 Astronaut...

  14. 75 FR 44938 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Science.gov (United States)

    2010-07-30

    ... 0648-XX28 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark... cancellation of the Federal moratorium on fishing for Atlantic coastal sharks in the State waters of New Jersey... Sharks (Coastal Shark Plan). DATES: Effective July 30, 2010. ADDRESSES: Emily Menashes, Acting Director...

  15. 75 FR 35432 - Atlantic Highly Migratory Species; North and South Atlantic Swordfish Quotas

    Science.gov (United States)

    2010-06-22

    ... Conservation of Atlantic Tunas (ICCAT) recommendations 09-02 and 09-03, which maintain the U.S. allocation of... fishing for swordfish in the Atlantic Ocean, including the Caribbean Sea and Gulf of Mexico, by.... 1801 et seq., and the Atlantic Tunas Convention Act (ATCA), 16 U.S.C. 971 et seq. Regulations issued...

  16. 75 FR 57407 - Atlantic Highly Migratory Species; North and South Atlantic Swordfish Quotas

    Science.gov (United States)

    2010-09-21

    ... Conservation of Atlantic Tunas (ICCAT) Recommendations 09-02 and 09-03, which maintain the U.S. allocation of... fishing for swordfish in the Atlantic Ocean, including the Caribbean Sea and Gulf of Mexico, by...., and the Atlantic Tunas Convention Act (ATCA), 16 U.S.C. 971 et seq. Regulations issued under the...

  17. Turfeiras da Serra do Espinhaço Meridional - MG: I - caracterização e classificação Peat bogs of the Serra do Espinhaço Meridional - Minas Gerais, Brazil: I - characterization and classification

    Directory of Open Access Journals (Sweden)

    Alexandre Christófaro Silva

    2009-10-01

    Full Text Available As turfeiras são ambientes especiais para estudos relacionados com a dinâmica da matéria orgânica, evolução das paisagens, mudanças climáticas e ciclos de poluição atmosférica locais, regionais e globais. Elas contribuem para o sequestro global de carbono, funcionam como reservatórios de água e constituem o ambiente de uma biodiversidade endêmica. A Serra do Espinhaço Meridional (SdEM, "Reserva da Biosfera Terrestre", apresenta uma área significativa formada por diferentes tipos de turfeira, que foram descritas em três perfis, situados a 1.250 m (P1, 1.800 m (P2 e 1.350 m (P4 de altitude e classificados respectivamente como Organossolo Háplico Sáprico térrico (P1, Organossolo Háplico Fíbrico típico (P2 e Organossolo Háplico Hêmico típico (P4, de acordo com o Sistema Brasileiro de Classificação de Solos. Os três perfis foram caracterizados morfologicamente e, nas amostras coletadas, foram realizadas análises químicas, físicas e microbiológicas. Verificou-se que a localização, a altitude e a drenagem influenciaram os atributos morfológicos, físicos, químicos e microbiológicos das turfeiras da SdEM. O estádio de decomposição da matéria orgânica é mais avançado com a melhoria da drenagem nas turfeiras. O teor de metais pesados está relacionado com o teor e a composição granulométrica da fração mineral e com a localização das turfeiras. O perfil P1 apresentou os mais elevados teores médios de Ti, Zr e Pb; em P2 foram detectados os teores médios mais elevados de Mn, Zn e Cu; e o teor médio de Fe é mais elevado em P4. A intensidade da atividade microbiológica das turfeiras P2 e P4 relacionou-se com sua drenagem e com o teor de metais pesados de suas camadas.Peat bogs are a special environment for studies related with the dynamics of organic matter, landscape evolution and climatic changes and with local, regional and global cycles of atmospheric pollution. Peat bogs contribute to the global C

  18. Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014

    Science.gov (United States)

    Wilson, Robert M.

    2016-01-01

    ) oceanic Nino index (); (2) Atlantic multi-decadal oscillation () index; (3) Atlantic meridional mode () index; (4) global land-ocean temperature index (); and (5) quasi-biennial oscillation () index. Lastly, the associational aspects (using both linear and nonparametric statistical tests) between selected tropical cyclone parameters and the climatic factors are examined based on their 10-year moving average trend values.

  19. Divergencia genética en poblaciones prehistóricas del área andina centro meridional

    Directory of Open Access Journals (Sweden)

    Varela, Héctor Hugo

    2007-01-01

    Full Text Available La historia del poblamiento del Área Andina Centro Meridional estuvo determinada por un conjunto de factores culturales, económicos y biológicos que influyeron en la estructura de la población y determinaron una particular dispersión de las frecuencias génicas. En este trabajo se presenta el análisis de una extensa muestra representada por 1586 individuos de ambos sexos del Norte de Chile, N.O. Argentino, y los Valles del este de Bolivia (ca 3000 aC-1500 dC. La variación dentro y entre poblaciones es evaluada dentro del marco de la teoría de la genética de poblaciones mediante caracteres cuantitativos del cráneo y la aplicación de diferentes técnicas estadísticas de análisis multivariado. Los resultados indican que los habitantes de los valles de Cochabamba (Bolivia estuvieron más emparentados con los del Norte de Chile y N.O. Argentino que los de estas subáreas entre sí. Se observa una divergencia genética promedio para el Área Andina Centro Sur de 0.195, presentando el NOA el mayor aislamiento espacial (FST= 0.143 y el Norte de Chile el más bajo (FST= 0.043. Además, se demuestra un mayor aislamiento temporal de los grupos que habitaron los oasis de Atacama (FST= 0.031 y la Costa de Azapa (FST= 0.04 que los del Valle de Azapa (FST= 0.026. Estas evidencias confirman un proceso de poblamiento basado en la dispersión de varias líneas a partir de una misma población ancestral, las cuales se diferenciaron en el espacio y el tiempo dependiendo del tamaño efectivo y de la tasa de flujo génico entre ellas.

  20. El Cretácico del borde meridional del Sistema Central: unidades litoestratigráficas y secuencias deposicionales

    Directory of Open Access Journals (Sweden)

    García, A.

    1996-04-01

    Full Text Available The Central System is an alpine rejuvenation of the hercinian base of the Iberian Plateo The landward ends of the cretaceous carbonate platforms of the Iberian Basin croup out along the southern margino Near to the Iberian Range (NE, the cretaceous sediments are composed of shallow marine and litoral carbonate deposits. They grade towards the basin boundary (Central System into a litoral and continental terrigenous facies. An important reduction southward of the thickness of the sedimentary succession is recognized. The stratigraphic record is organized in sixteen lithostratigraphic units and in nine depositional sequence, that can be correlationed with the chart of cycles global of Haq et al. The age of the studied deposits are Cenomanian to Campanian. The stacking pattern is agradational, with a onlap not very marked in the base, a truncation and an internal uncorformity in the Santonian age. The thickness and facies changing is due to sinsedimentary faults within a distensive context, that have a little vertical displacement. They are younger outward of the sedimentary basin.El Sistema Central es un rejuvenecimiento alpino del zócalo hercínico de la Placa Ibérica. En su borde meridional afloran las terminaciones hacia el continente de las plataformas carbonatadas cretácicas del Surco Ibérico. Los depósitos cretácicos, en las proximidades de la Cordillera Ibérica (NE son carbonatados, de ambientes litorales y marinos someros; mientras que hacia el interior de la Placa Ibérica, pasan a depósitos terrígenos, de medios litorales y continentales. Hay también una importante reducción de los espesores en esa misma dirección. El registro estratigráfico se organiza en dieciséis unidades litoestratigráficas y en ocho secuencias deposicionales, que se correlacionan con la carta de ciclos globales de Haq et al. Los materiales estudiados abarcan desde el Cenomanense al Campaniense. La estructura de apilamiento es agradacional, con un

  1. The effect on Arctic climate of atmospheric meridional energy-transport changes studied based on the CESM climate model

    Science.gov (United States)

    Grand Graversen, Rune

    2017-04-01

    The Arctic amplification of global warming, and the pronounced Arctic sea-ice retreat constitute some of the most alarming signs of global climate change. These Arctic changes are likely a consequence of a combination of several processes, for instance enhanced uptake of solar radiation in the Arctic due to a decrease of sea ice (the ice-albedo feedback), and increase in the local Arctic greenhouse effect due to enhanced moister flux from lower latitudes. Many of the proposed processes appear to be dependent on each other, for instance an increase in water-vapour advection to the Arctic enhances the greenhouse effect in the Arctic and the longwave radiation to the surface, leading to sea-ice melt and enhancement of the ice-albedo feedback. The effects of albedo changes and other radiative feedbacks have been investigated in earlier studies based on model experiments designed to examine these effects specifically. Here we instead focus on the effects of meridional transport changes into the Arctic, both of moister and dry-static energy. Hence we here present results of model experiments with the CESM climate model designed specifically to extract the effects of the changes of the two transport components. In the CESM model the moister transport to the Arctic increases, whereas the dry-static transport decreases in response to a doubling of CO2. This is in agreement with other model results. The model is now forced with these transport changes of water-vapour and dry-static energy associated with a CO2 doubling. The results show that changes of the water-vapour transport lead to Arctic warming. This is partly a consequence of the ice-albedo feedback due to sea-ice melt caused by the change of the water-vapour advection. The changes of the dry-static transport lead to Arctic cooling, which however is smaller than the warming induced by the water-vapour component. Hence this study support the hypothesis that changes in the atmospheric circulation contribute to the

  2. A seasonal study on the role of h'F/meridional winds in influencing the development of ESF irregularities over Indian sector

    Science.gov (United States)

    Sreekumar, Sreeba; Sripathi, S.

    2017-08-01

    In this paper, we present the seasonal variation of nighttime thermospheric meridional winds over Hyderabad as derived using dual ionosonde observations located at Tirunelveli (8.7°N, 77.7°E, Dip Lat = 0.3°N), an equatorial station and Hyderabad (17.38°N, 78.45°E, Dip Lat = 12°N), a low latitude station, respectively, over the period of April-December 2013 using h'F data as discussed in (Sreekumar and Sripathi, 2016). The calculated winds has been compared with HWM14 wind model. The results show that trends of the derived winds from the ionosonde h'F data matches well with model wind near to midnight hours in all the seasons. However, some dissimilarities were observed during early night hours. Especially, the poleward winds during early night hours for different seasons were not well reproduced by the model. Later, the study is extended to understand the role of meridional winds in causing the variability of ESF occurrence vis a vis h'F. The histogram analysis of h'F vs wind values just before ESF onset reveals that the most probable combination of wind and h'F on the ESF days are centered around 350 km and 50 m/s. Additionally, we also performed Superposed Epoch Analysis (SEA) based on longer and shorter duration ESF events. The analysis reveals the distinct differences in the longer and shorter duration ESF events of Summer and Autumn equinox where the values of h'F as well as meridional winds where such that a steep change in reduction of poleward winds prior to ESF onset supported the longer duration ESF events in both seasons. However, this steep reduction is not so significant for the shorter duration ESF events indicating that meridional winds could play a crucial role in extending the spread F durations in longer duration events. The observations clearly demonstrate the reduction of poleward wind velocities during vernal equinox as compared to Autumn equinox, where larger poleward winds were present around ESF onset times. These observations are

  3. ASPECTOS SOCIO-ECONÓMICOS DE LAS MIGRACIONES RECIENTES EN ESPAÑA EN EL CONTEXTO DE LA EUROPA MERIDIONAL. ELEMENTOS PARA UNA POSIBLE TEORÍA

    Directory of Open Access Journals (Sweden)

    Gaetano Ferrieri

    1996-01-01

    Full Text Available Se analizan la s características geográficas y la s implicaciones socio-económicas de los recientes flujos inmigratorios que re cibe España, relacionando las tendencias econó- micas y las tendencias migratorias; el ejempl o español se estudia en el contexto de la Europa meridional, como nueva meta de las migraciones internacionales. El estudio concluye con la propuesta de una posible te oría sobre el ciclo migratorio-económico.

  4. Intraseasonal variability of the Atlantic Intertropical Convergence Zone during austral summer and winter

    Science.gov (United States)

    Tomaziello, Ana Carolina Nóbile; Carvalho, Leila M. V.; Gandu, Adilson W.

    2016-09-01

    The Atlantic Intertropical Convergence Zone (A-ITCZ) exhibits variations on several time-scales and plays a crucial role in precipitation regimes of northern South America and western Africa. Here we investigate the variability of the A-ITCZ on intraseasonal time-scales during austral summer (November-March) and winter (May-September) based on a multivariate index that describes the main atmospheric features of the A-ITCZ and retains its variability on interannual, semiannual, and intraseasonal time-scales. This index is the time coefficient of the first combined empirical orthogonal function mode of anomalies (annual cycle removed) of precipitation, and zonal and meridional wind components at 850 hPa from the climate forecast system reanalysis (1979-2010). We examine associations between the intraseasonal variability of the A-ITCZ and the activity of the Madden-Julian oscillation (MJO). We show that during austral summer intraseasonal variability of the A-ITCZ is associated with a Rossby wave train in the Northern Hemisphere. In austral winter this variability is associated with the propagation of a Rossby wave in the Southern Hemisphere consistent with the Pacific-South American pattern. Moreover, we show that intense A-ITCZ events on intraseasonal time-scales are more frequent during the phase of MJO characterized by convection over western Pacific and suppression over the Indian Ocean. These teleconnection patterns induce anomalies in the trade winds and upper level divergence over the equatorial Atlantic that modulate the intensity of the A-ITCZ.

  5. Simple climatic indices for the tropical Atlantic Ocean and some applications

    Science.gov (United States)

    Servain, Jacques

    1991-08-01

    Two indices related to the sea surface temperature (SST) variability in the tropical Atlantic are proposed. One index describes the SST averaged over the whole basin (30°N to 20°S, 60°W to 15°E), and the other illustrates a meridional dipole between the northern and southern hemispheres. The computational method for obtaining these indices is intentionally kept simple, the objective being to reproduce the signature of the main results previously provided from more complicated statistical analyses. Monthly time series for both indices are produced from 1964 up to the present time. The whole basin index exhibits principally a sustained warming which has intensified since about 1975, and it has a significant periodicity close to that of the quasi-biennial oscillation. The dipole index exhibits a decadal-scale variation, and its building up seems to be related to other worldwide climatic changes, as for instance El Niño / Southern Oscillation extreme episodes, rainfall variabilities over the Brazilian Nordeste and African Sahel.

  6. Atlantic interdecadal ocean-atmosphere interaction

    International Nuclear Information System (INIS)

    Kushnir, Y.

    1994-01-01

    We study the climatic scale fluctuation of North Atlantic sea surface temperature (SST), and related atmospheric variability. Time series of North Atlantic SST, based on marine observations, display an almost century long swing from cold condition before 1925 to warm conditions between 1930 and the early 1960s, and back to cold conditions after 1965 or so

  7. The American South in the Atlantic World

    DEFF Research Database (Denmark)

    , emphasizing black and white racial binaries and outdated geographical boundaries, The American South and the Atlantic World seeks larger thematic and spatial contexts. This is the first book to focus explicitly on how contacts with the peoples, cultures, ideas, and economies of the Atlantic World have...... when there is growing emphasis on globalizing southern studies the collection both demonstrates and critiques the value of Atlantic World perspectives on the region. Equally important, the mix of case studies and state-of-the field essays combines the latest historical thinking on the South’s myriad...... Atlantic World connections with the kinds of innovative cultural and literary scholarship associated with developments in the New Southern Studies. Ultimately, the volume reveals that there is still much to be learned about both the Atlantic World and the American South by considering them in tandem...

  8. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  9. An Atlantic influence on Amazon rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Zeng, Ning [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States); University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States)

    2010-02-15

    Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Nino/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon's dry season (July-October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest. (orig.)

  10. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn

    Directory of Open Access Journals (Sweden)

    A. F. Ríos

    2010-05-01

    Full Text Available A total of fourteen hydrographic cruises from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean under the framework of the Spanish research project FICARAM. The underway measurements were processed and analysed to describe the meridional air-sea CO2 fluxes (FCO2 in the covered sector of the Atlantic Ocean. The data has been grouped into different biogeochemical oceanographic provinces based on thermohaline characteristics. The spatial and temporal distributions of FCO2 followed expected distributions and annual trends reproducing the recent climatological ΔfCO2 estimations with a mean difference of −3 ± 18 μatm (Takahashi et al., 2009. The reduction in the CO2 saturation along the meridional FICARAM cruises represented an increase of 0.02 ± 0.14 mol m−2 yr−1 in the ocean uptake of atmospheric CO2. The subtropical waters in both Hemispheres acted as a sink of atmospheric CO2 during the successive spring seasons and as a source in autumn. The coarse reduction of the ocean uptake of atmospheric CO2 observed in the North Atlantic Ocean was linked to conditions of negative phase of the North Atlantic Oscillation that prevailed during the FICARAM period. Surface waters in the North Equatorial Counter Current revealed a significant long-term decrease of sea surface salinity of −0.16 ± 0.01 yr−1 coinciding with a declination of −3.5 ± 0.9 μatm yr−1 in the air–sea disequilibrium of CO2 fugacity and a rise of oceanic CO2 uptake of −0.09 ± 0.03 mol m−2 yr−1. The largest CO2 source was located in the equatorial upwelling system. These tropical waters that reached emissions of 0.7 ± 0.5 and 1.0 ± 0.7 mol m−2 y−1 in spring and autumn, respectively, showed an interannual warming of 0.11 ± 0.03 °C yr−1 and a wind speed decrease of −0.58 ± 0.14 m s−1 yr−1 in spring cruises which suggest the weakening of upwelling events associated with warm El Niño – Southern

  11. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14 and their implications for the thermohaline circulation

    Directory of Open Access Journals (Sweden)

    A. H. L. Voelker

    2010-08-01

    between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.

  12. Interdecadal changes in the storm track activity over the North Pacific and North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Seon; Ha, Kyung-Ja; Heo, Ki-Young [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of); Lee, June-Yi; Wang, Bin; Jin, Fei-Fei [University of Hawaii, Department of Meteorology and International Pacific Research Center, Honolulu, Hawaii (United States); Straus, David M.; Shukla, Jagadish [George Mason University, Fairfax, VA (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2012-07-15

    Analysis of NCEP-NCAR I reanalysis data of 1948-2009 and ECMWF ERA-40 reanalysis data of 1958-2001 reveals several significant interdecadal changes in the storm track activity and mean flow-transient eddy interaction in the extratropics of Northern Hemisphere. First, the most remarkable transition in the North Pacific storm track (PST) and the North Atlantic storm track (AST) activities during the boreal cold season (from November to March) occurred around early-to-mid 1970s with the characteristics of global intensification that has been noticed in previous studies. Second, the PST activity in midwinter underwent decadal change from a weak regime in the early 1980s to a strong regime in the late 1980s. Third, during recent decade, the PST intensity has been enhanced in early spring whereas the AST intensity has been weakened in midwinter. Finally, interdecadal change has been also noted in the relationship between the PST and AST activities and between the storm track activity and climate indices. The variability of storm track activity is well correlated with the Pacific Decadal Oscillation and North Atlantic Oscillation prior to the early 1980s, but this relationship has disappeared afterward and a significant linkage between the PST and AST activity has also been decoupled. For a better understanding of the mid-1970s' shift in storm track activity and mean flow-transient eddy interaction, further investigation is made by analyzing local barotropic and baroclinic energetics. The intensification of global storm track activity after the mid-1970s is mainly associated with the enhancement of mean meridional temperature gradient resulting in favorable condition for baroclinic eddy growth. Consistent with the change in storm track activity, the baroclinic energy conversion is significantly increased in the North Pacific and North Atlantic. The intensification of the PST and AST activity, in turn, helps to reinforce the changes in the middle-to-upper tropospheric

  13. Advective loss of overwintering Calanus finmarchicus from the Faroe-Shetland Channel

    DEFF Research Database (Denmark)

    Rullyanto, Arief; Jonasdottir, Sigrun H.; Visser, Andre W.

    2015-01-01

    , a regionally important secondary producer. Using a high resolution hydrodynamic model, MIKE 3 FM, we simulate the overflow of deep water and estimate the associated loss rate of C. finmarchicus as a function of the water depth strata within which they reside. We estimate a net advective loss from the Norwegian......The flow of deep water from the Norwegian Sea to the North Atlantic via the Faroe-Shetland Channel is one of the critical bottlenecks in the meridional overturn circulation. It is also a flow that potentially carries with it a large number of the overwintering copepod, Calanus finmarchicus...

  14. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  15. Atlantic energy and the strategic outlook

    Directory of Open Access Journals (Sweden)

    Paul Isbell

    2013-09-01

    Full Text Available Sweeping changes are beginning to transform energy scenarios around the world. The gas revolution, a renaissance in petroleum technology and exploration, and a chaotic but powerful movement toward the goal of low-carbon economies are three of the principal energy trends currently interacting with structural changes in the geo-economics of the Atlantic world to present new perspectives and opportunitiesfor the diverse actors in the ‘Atlantic Basin’. This article explores how changes in the energy landscape are contributing to a reassessment of the strategic horizon. The potential impacts of the shale revolution, deep-offshore oil, biofuels and other modern renewable energies on the geopolitics of the Atlantic Basin will be assessed, and the hypothesis that an Atlantic Basin energy system is now taking shape will be evaluated, along with an analysis of anticipated impacts.

  16. Atlantic Surfclam and Ocean Quahog Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Atlantic Surfclam and Ocean Quahog Survey has covered an area from Cape Hatteras to Georges Bank. The survey was conducted every two or three...

  17. Temperature fluctuations in the Atlantic Ocean

    International Nuclear Information System (INIS)

    Hjoello, Solfrid Saetre

    2005-01-01

    The article discusses the temperature fluctuations in connection with drought in Africa, the climate in North America, the European heat waves and the frequent tropical hurricanes in the Atlantic Ocean. Problems with climate modelling and some pollution aspects are mentioned

  18. Building the energy infrastructure in Atlantic Canada

    International Nuclear Information System (INIS)

    Curry, T.

    2007-01-01

    This paper discusses the energy infrastructure in Atlantic Canada. The energy development is poised to help transform the economy of New Brunswick. Planning for energy projects and supporting infrastructure are under way and regional opportunities are emerging

  19. Atlantic Sharpnose Shark Reproductive Biology Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Reproductive data from Atlantic sharpnose sharks were collected from specimens captured throughout the northern Gulf of Mexico on various research vessels. Data...

  20. Atlantic Marine Mammal Assessment Vessel Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data sets are a compilation of large vessel surveys for marine mammal stock assessments in South Atlantic (Florida to Maryland) waters from 1994 to the...

  1. Atlantic-THORpex Observing System Test

    Data.gov (United States)

    National Aeronautics and Space Administration — Atlantic - THORpex Observing System Test (ATOST) is part of an international research program to accelerate improvements in the accuracy of 1 to 14 day weather...

  2. Northwest Atlantic Regional Climatology (NCEI Accession 0155889)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Northwest Atlantic Ocean, NCEI Regional Climatology Team...

  3. The low-resolution CCSM2 revisited: new adjustments and a present-day control run

    Directory of Open Access Journals (Sweden)

    M. Prange

    2008-05-01

    Full Text Available The low-resolution (T31 version of the Community Climate System Model CCSM2.0.1 is revisited and adjusted by deepening the Greenland-Scotland ridge, changing oceanic mixing parameters, and applying a regional freshwater flux adjustment at high northern latitudes. The main purpose of these adjustments is to maintain a robust Atlantic meridional overturning circulation which collapses in the original model release. The paper describes the present-day control run of the adjusted model (referred to as "CCSM2/T31x3a" which is brought into climatic equilibrium by applying a deep-ocean acceleration technique. The accelerated integration is extended by a 100-year synchronous phase. The simulated meridional overturning circulation has a maximum of 14×106 m3 s−1 in the North Atlantic. The CCSM2/T31x3a control run is evaluated against observations and simulations with other climate models. Most shortcomings found in the CCSM2/T31x3a control run are identified as "typical problems" in global climate modelling. Finally, examples (simulation of North Atlantic hydrography, West African monsoon are shown in which CCSM2/T31x3a has a better simulation skill than the latest low-resolution Community Climate System Model release, CCSM3/T31.

  4. Global warming and abrupt climate change

    Science.gov (United States)

    Weaver, A. J.; Hillaire-Marcel, C.

    2004-05-01

    Despite recent the recent IPCC (2001) assessment that "Most models show weakening of the Northern Hemisphere Thermohaline Circulation (THC), which contributes to a reduction of surface warming in the northern North Atlantic. Even in models where the THC weakens, there is still a warming over Europe due to increased greenhouse gases." there is still a widespread misunderstanding of the possible consequence of climate change on the Atlantic Ocean Meridional Overturning. In particular, it is often touted, especially in the media that a possible consequence of anthropogenic greenhouse gas emissions is: "Global warming will cause the onset of the next ice age". Here we document the history from where this misconception arose and quantitatively show how it is impossible for an ice age to ensue as a consequence of global warming. Through analysis of the paleoclimate record as well as a number of climate model simulations, we also suggest that it is very unlikely that the Atlantic Meridional Overturning will cease to be active in the near future. We further suggest that a region where intermediate water formation may shut down is in the Labrador Sea, although this has more minor consequences for climate than if deep water formation in the Nordic Seas were to cease.

  5. Tropical SST forcing on the anomalous WNP subtropical high during July-August 2010 and the record-high SST in the tropical Atlantic

    Science.gov (United States)

    Hong, Chi-Cherng; Lee, Ming-Ying; Hsu, Huang-Hsiung; Lin, Nai-Hsin; Tsuang, Ben-Jei

    2015-08-01

    In summer of 2010, the western North Pacific subtropical high (WNPSH) was extremely strong and exhibited unusual westward extension, which resulted in record-breaking warmth in Japan and considerably below-normal and westward-shifted tropical cyclone activity in the western North Pacific (WNP). Although a moderate La Niña occurred, the sea surface temperature (SST) in the northern Indian Ocean (NIO) and tropical Atlantic (TA) was considerably high. In this study, we argued that the La Niña cold SST alone was not sufficient to maintain the strong WNPSH of 2010, and that the unusually warm SSTs in the NIO and TA markedly contributed to the enhancement and westward shift of the WNPSH in the boreal summer of that year. We focused on the effects of sea surface temperature anomalies in the tropical Atlantic (TA-SSTAs), which have been seldom explored and are poorly understood compared with the effects of SSTAs in the tropical Pacific and NIO. The warm TA-SST forced a westward-extending overturning circulation, with a sinking branch over the central Pacific Ocean, which produced a remote response similar to the La Niña condition and enhanced the WNPSH. The warm TA-SST also induced the cyclonic anomaly in the tropical eastern North Pacific, a distinct phenomenon not observed in a canonical La Niña event. Furthermore, we demonstrated that the anomalous near-surface circulation associated with the negative North Atlantic Oscillation might play a more dominant role than that of the 2009 El Niño in inducing the record-high SST in the TA in 2010.

  6. Arqueologia da Região Meridional da Península de Setúbal : breve síntese baseada nos principais testemunhos arqueológicos

    OpenAIRE

    Cardoso, João Luís

    1998-01-01

    Brief synthesis of the archaeological remains found in the meridional area of the Setúbal Península. The author introduces information from recent discoveries and presents a new approach to facts already known. In this summary, archaeological remains from the Paleolithic to the Early Medieval Age are analysed.

  7. 76 FR 37788 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-06-28

    ... meeting of its Law Enforcement AP in Orlando, FL. DATES: The meeting will take place July 20, 2011. See SUPPLEMENTARY INFORMATION. ADDRESSES: The meeting will be held at the Marriott Renaissance Orlando Hotel, 5445... the South Atlantic; South Atlantic Fishery Management Council; Public Meeting AGENCY: National Marine...

  8. The role of Atlantic-Arctic exchange in North Atlantic multidecadal climate variability

    NARCIS (Netherlands)

    Frankcombe, L.M.; Dijkstra, H.A.

    2011-01-01

    It has recently been suggested that multidecadal variability in North Atlantic sea surface temperature occurs with two dominant periods. In this paper we investigate the origin of these two time scales in a 500 year control run of the GFDL CM2.1 model. We focus on the exchange between the Atlantic

  9. 76 FR 65673 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures; Correction

    Science.gov (United States)

    2011-10-24

    ...-BB29 Atlantic Highly Migratory Species; Atlantic Shark Management Measures; Correction AGENCY: National... Consolidated Highly Migratory Species (HMS) Fishery Management Plan (FMP) via the rulemaking process to rebuild... Tuesday, October 11, 2011. ADDRESSES: The scoping meeting was held at the Dolce Seaview Resort at 401...

  10. 78 FR 54195 - Atlantic Highly Migratory Species; Atlantic Commercial Shark Fisheries

    Science.gov (United States)

    2013-09-03

    ... Species; Atlantic Commercial Shark Fisheries AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: NMFS is transferring 68 metric tons (mt) dressed weight (dw) of non-blacknose small coastal shark... adjustments, and applies to commercial Atlantic shark permitted vessels. DATES: The quota transfer is...

  11. 77 FR 35357 - Atlantic Highly Migratory Species; Commercial Atlantic Region Non-Sandbar Large Coastal Shark...

    Science.gov (United States)

    2012-06-13

    ...; Commercial Atlantic Region Non-Sandbar Large Coastal Shark Fishery Opening Date AGENCY: National Marine...-sandbar large coastal shark fishery. This action is necessary to inform fishermen and dealers about the fishery opening date. DATES: The commercial Atlantic region non-sandbar large coastal shark fishery will...

  12. 78 FR 28758 - Atlantic Highly Migratory Species; North and South Atlantic 2013 Commercial Swordfish Quotas

    Science.gov (United States)

    2013-05-16

    ... International Commission for the Conservation of Atlantic Tunas (ICCAT) Recommendations 11-02 and 12-01. This..., including the Caribbean Sea and Gulf of Mexico. This action implements ICCAT recommendations, consistent with the Atlantic Tunas Convention Act (ATCA), and furthers domestic management objectives under the...

  13. 78 FR 20258 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries

    Science.gov (United States)

    2013-04-04

    ... Species; Atlantic Bluefin Tuna Fisheries AGENCY: National Marine Fisheries Service (NMFS), National... Atlantic bluefin tuna (BFT) daily retention limit that applies to vessels permitted in the Highly Migratory... 73 inches). This retention limit is effective in all areas, except for the Gulf of Mexico, where NMFS...

  14. 77 FR 45273 - Atlantic Highly Migratory Species; North and South Atlantic Swordfish Quotas and Management Measures

    Science.gov (United States)

    2012-07-31

    ... Tunas (Commission) Recommendation 11-02, which maintains the U.S. North Atlantic swordfish base quota... Caribbean Sea and Gulf of Mexico. DATES: Effective on August 30, 2012. ADDRESSES: Copies of the supporting... (Magnuson-Stevens Act), and the Atlantic Tunas Convention Act (ATCA). Under ATCA, the Secretary shall...

  15. 76 FR 2640 - Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2011 Atlantic Bluefish...

    Science.gov (United States)

    2011-01-14

    ... information about fishery participation in South Carolina, Georgia, or Florida. South Atlantic Trip Ticket... Northeast dealer reports and South Atlantic Trip Ticket reports. Under Alternative 1, the recommended... percent had gross sales of $1,000 or less, and 80 percent had gross sales of $10,000 or less. This likely...

  16. 76 FR 47563 - Fisheries of the South Atlantic; Southeast Data, Assessment, and Review (SEDAR); South Atlantic...

    Science.gov (United States)

    2011-08-05

    ... Outlet Boulevard, North Charleston, SC 29418, telephone: (843) 740-7028. FOR FURTHER INFORMATION CONTACT... unchanged. The Gulf of Mexico, South Atlantic, and Caribbean Fishery Management Councils, in conjunction... Workshops are appointed by the Gulf of Mexico, South Atlantic, and Caribbean Fishery Management Councils and...

  17. 78 FR 57534 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic

    Science.gov (United States)

    2013-09-19

    ... lobster, South Atlantic coral, South Atlantic snapper-grouper, South Atlantic shrimp, Atlantic dolphin and... installation, use, operation, or maintenance of a vessel monitoring system (VMS) unit or communication service...

  18. Influence of the Atlantic subpolar gyre on the thermohaline circulation.

    Science.gov (United States)

    Hátún, Hjálmar; Sandø, Anne Britt; Drange, Helge; Hansen, Bogi; Valdimarsson, Hedinn

    2005-09-16

    During the past decade, record-high salinities have been observed in the Atlantic Inflow to the Nordic Seas and the Arctic Ocean, which feeds the North Atlantic thermohaline circulation (THC). This may counteract the observed long-term increase in freshwater supply to the area and tend to stabilize the North Atlantic THC. Here we show that the salinity of the Atlantic Inflow is tightly linked to the dynamics of the North Atlantic subpolar gyre circulation. Therefore, when assessing the future of the North Atlantic THC, it is essential that the dynamics of the subpolar gyre and its influence on the salinity are taken into account.

  19. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Frieling, Joost; Reichart, Gert-Jan; Middelburg, Jack J.; Röhl, Ursula; Westerhold, Thomas; Bohaty, Steven M.; Sluijs, Appy

    2018-01-01

    The Paleocene-Eocene Thermal Maximum (PETM, 56 Ma) was a phase of rapid global warming associated with massive carbon input into the ocean-atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP) Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst) assemblage analysis. The PETM at Site 959 was previously found to be marked by a ˜ 3.8 ‰ negative carbon isotope excursion (CIE) and a ˜ 4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which ˜ 1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply sustained export production, likely driven by prokaryotes. In

  20. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum

    Directory of Open Access Journals (Sweden)

    J. Frieling

    2018-01-01

    Full Text Available The Paleocene–Eocene Thermal Maximum (PETM, 56 Ma was a phase of rapid global warming associated with massive carbon input into the ocean–atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst assemblage analysis. The PETM at Site 959 was previously found to be marked by a  ∼  3.8 ‰ negative carbon isotope excursion (CIE and a  ∼  4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which  ∼  1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply

  1. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    Science.gov (United States)

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-03

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  2. Stress of life at the ocean's surface: Latitudinal patterns of UV sunscreens in plankton across the Atlantic

    Science.gov (United States)

    Fileman, Elaine S.; White, Daniel A.; Harmer, Rachel A.; Aytan, Ülgen; Tarran, Glen A.; Smyth, Tim; Atkinson, Angus

    2017-11-01

    The near-surface layer of the ocean is a habitat in which plankton are subjected to very different stresses to those in deeper layers. These include high turbulence and illumination, allowing increased visibility to predators, and exposure to harmful UV radiation. To provide insights into stress caused by UV, we examined the occurrence of protective UV-absorbing compounds called mycosporine-like amino acids (MAAs) in seston and zooplankton along an Atlantic Meridional Transect (AMT) between 45°S and 50°N. Seston contained most MAAs per unit phytoplankton carbon in the northern Atlantic gyre and equatorial region and this coincided with distribution of the nitrogen fixing cyanobacterium Trichodesmium spp. and increased UV transparency but not irradiance. Asterina-330 was the most abundant MAA in the seston. MAAs were detected in a third of the zooplankton tested and these taxa varied greatly both in the amount and diversity of the MAAs that they contained with copepods in temperate regions containing highest concentration of MAAs. Most commonly found MAAs in zooplankton were palythine and shinorine. Juvenile copepods were found not to contain any MAAs. We determined abundance and richness of zooplankton inhabiting the top 50 cm of the ocean. Zooplankton abundance and genera richness was low in the surface waters in contrast to the dome-shaped latitudinal trend in genera richness commonly found from depth-integrated zooplankton sampling. The lack of any measurable MAA compounds in nauplii across the whole transect was concomitant with their severe (3-6-fold) reduction in nauplii densities in the near-surface layer, as compared to the underlying water column. Overall we suggest that the UV stress on life near the surface, particularly in the warmer, oligotrophic and brightly-lit low latitudes, imposes radically different pressures on zooplankton communities compared to the rest of the epipelagic.

  3. Characterization of the Temporal-Spatial Variability of Trans-Atlantic Dust Transport Based on CALIPSO Lidar Measurements

    Science.gov (United States)

    Yu, Hongbin

    2015-01-01

    The trans-Atlantic dust transport has important implications for human and ecosystem health, the terrestrial and oceanic biogeochemical cycle, weather systems, and climate. A reliable assessment of these influences requires the characterization of dust distributions in three dimensions and over long time periods. We provide an observation-based multiyear estimate of trans-Atlantic dust transport by using a 7-year (2007 - 2013) lidar record from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in both cloud-free and above-cloud conditions. We estimate that on a basis of the 7-year average and integration over 10S - 30N, 182 Tg a-1 dust leaves the coast of North Africa at 15W, of which 132 Tg a-1 and 43 Tg a-1 reaches 35W and 75W, respectively. These flux estimates have an overall known uncertainty of (45 - 70). The 7-year average of dust deposition into the Amazon Basin is estimated to be 28 (8 - 48) Tg a-1 or 29 (8 - 50) kg ha-1 a-1. This imported dust could provide about 0.022 (0.006 - 0.037) Tg P of phosphorus per year, equivalent to 23 (7 - 39) g P ha-1 a-1 to fertilize the Amazon rainforest, which is comparable to the loss of phosphorus to rainfall. Significant seasonal variations are observed in both the magnitude of total dust transport and its meridional and vertical distributions. The observed large interannual variability of annual dust transport is highly anti-correlated with the prior-year Sahel Precipitation Index. Comparisons of CALIPSO measurements with surface-based observations and model simulations will also be discussed.

  4. How does dynamical downscaling affect model biases and future projections of explosive extratropical cyclones along North America's Atlantic coast?

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.; Hodges, K. I.; Scinocca, J. F.

    2018-01-01

    Explosive extratropical cyclones (EETCs) are rapidly intensifying low pressure systems that generate severe weather along North America's Atlantic coast. Global climate models (GCMs) tend to simulate too few EETCs, perhaps partly due to their coarse horizontal resolution and poorly resolved moist diabatic processes. This study explores whether dynamical downscaling can reduce EETC frequency biases, and whether this affects future projections of storms along North America's Atlantic coast. A regional climate model (CanRCM4) is forced with the CanESM2 GCM for the periods 1981 to 2000 and 2081 to 2100. EETCs are tracked from relative vorticity using an objective feature tracking algorithm. CanESM2 simulates 38% fewer EETC tracks compared to reanalysis data, which is consistent with a negative Eady growth rate bias (-0.1 day^{-1}). Downscaling CanESM2 with CanRCM4 increases EETC frequency by one third, which reduces the frequency bias to -22%, and increases maximum EETC precipitation by 22%. Anthropogenic greenhouse gas forcing is projected to decrease EETC frequency (-15%, -18%) and Eady growth rate (-0.2 day^{-1}, -0.2 day^{-1}), and increase maximum EETC precipitation (46%, 52%) in CanESM2 and CanRCM4, respectively. The limited effect of dynamical downscaling on EETC frequency projections is consistent with the lack of impact on the maximum Eady growth rate. The coarse spatial resolution of GCMs presents an important limitation for simulating extreme ETCs, but Eady growth rate biases are likely just as relevant. Further bias reductions could be achieved by addressing processes that lead to an underestimation of lower tropospheric meridional temperature gradients.

  5. Seasonal predictability of the North Atlantic Oscillation

    Science.gov (United States)

    Vellinga, Michael; Scaife, Adam

    2015-04-01

    Until recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.

  6. 77 FR 31330 - South Atlantic Fishery Management Council; Public Meetings

    Science.gov (United States)

    2012-05-25

    ... National Oceanic and Atmospheric Administration RIN 0648-XC042 South Atlantic Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The South Atlantic Fishery...

  7. No evidence of polar warming during penultimate interglacial

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-07-01

    The Atlantic Meridional Overturning Circulation (AMOC), driven by temperature and salinity gradients, is an important component of the climate system; it transfers an enormous amount of heat via ocean currents and atmospheric circulation to high northern latitudes and hence has bearing on climate in the region. Freshening of the surface ocean could weaken AMOC. But during warm interglacial periods the effect of a fresh surface ocean on AMOC may be muted. In fact, climate models predict that heat transfer from the North Atlantic to the Arctic may increase over the 21st century. A series of interconnected processes in the North Atlantic, known as polar amplification, could cause the Arctic to warm up faster compared to the rest of the world. It could even lead to ice-free conditions in the Arctic.

  8. Carotenoid dynamics in Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2006-04-01

    Full Text Available Abstract Background Carotenoids are pigment molecules produced mainly in plants and heavily exploited by a wide range of organisms higher up in the food-chain. The fundamental processes regulating how carotenoids are absorbed and metabolized in vertebrates are still not fully understood. We try to further this understanding here by presenting a dynamic ODE (ordinary differential equation model to describe and analyse the uptake, deposition, and utilization of a carotenoid at the whole-organism level. The model focuses on the pigment astaxanthin in Atlantic salmon because of the commercial importance of understanding carotenoid dynamics in this species, and because deposition of carotenoids in the flesh is likely to play an important life history role in anadromous salmonids. Results The model is capable of mimicking feed experiments analyzing astaxanthin uptake and retention over short and long time periods (hours, days and years under various conditions. A sensitivity analysis of the model provides information on where to look for possible genetic determinants underlying the observed phenotypic variation in muscle carotenoid retention. Finally, the model framework is used to predict that a specific regulatory system controlling the release of astaxanthin from the muscle is not likely to exist, and that the release of the pigment into the blood is instead caused by the androgen-initiated autolytic degradation of the muscle in the sexually mature salmon. Conclusion The results show that a dynamic model describing a complex trait can be instrumental in the early stages of a project trying to uncover underlying determinants. The model provides a heuristic basis for an experimental research programme, as well as defining a scaffold for modelling carotenoid dynamics in mammalian systems.

  9. Late Quaternary Hydroclimate of Arid Northeastern Mexico: Response of Millennial-scale Global Climate Change and the Atlantic Warm Pool

    Science.gov (United States)

    Roy, P. D.; Shanahan, T. M.; Sánchez Zavala, J. L.; Lozano-SantaCruz, R.; Vera-Vera, G.

    2017-12-01

    Model projections suggest that drought-prone northeastern Mexico could experience an increase of more than 2 ºC in mean annual temperature and precipitation could decrease at least by 10-20% over the 21st century. The combination of drought and warmth would enhance the dryness of this water-stressed region in the coming decades. However, because of the lack of long continuous records from the region, little is known about the past controls on climate variability in northeast Mexico. In order to better understand the susceptibility of this climatically sensitive but data-poor region, we present a new multi-proxy record of past hydrological changes from paleo-lacustrine deposits in the Sandia Basin ( 24°N) over the last 32 cal ka BP. We reconstruct runoff from changes in the abundance of Al-bearing clastic minerals and local hydrological changes from the oxygen isotope composition of lacustrine carbonates, as well as gypsum/calcite abundances. During the cooler Heinrich Stadials (HS3, HS2 and HS1) and Younger Dryas, the basin received less runoff and the lake was more saline, though hydrological conditions varied significantly throughout these stadial events. The wettest interval in the record occurred coincident with the Bølling-Allerød (B/A) interstadial. Arid conditions returned during the Holocene, with low sedimentation rates, reduced proxy runoff indicators, and enhanced gypsum deposition suggesting this was the driest interval of the last 30 ka. Our observations are consistent with a growing number of records from across both northeastern Mexico and the southern Great Plains suggesting dry conditions associated with North Atlantic stadials and a sudden but transient shift to wetter conditions accompanying the strengthening of the overturning circulation during the B/A. We will evaluate the possible influence of Atlantic Warm Pool on hydroclimate of the region by comparing the different proxy records to the sea-surface temperature of Gulf of Mexico

  10. An interannual link between Arctic sea-ice cover and the North Atlantic Oscillation

    Science.gov (United States)

    Caian, Mihaela; Koenigk, Torben; Döscher, Ralf; Devasthale, Abhay

    2018-01-01

    This work investigates links between Arctic surface variability and the phases of the winter (DJF) North Atlantic Oscillation (NAO) on interannual time-scales. The analysis is based on ERA-reanalysis and model data from the EC-Earth global climate model. Our study emphasizes a mode of sea-ice cover variability that leads the NAO index by 1 year. The mechanism of this leading is based on persistent surface forcing by quasi-stationary meridional thermal gradients. Associated thermal winds lead a slow adjustment of the pressure in the following winter, which in turn feeds-back on the propagation of sea-ice anomalies. The pattern of the sea-ice mode leading NAO has positive anomalies over key areas of South-Davis Strait-Labrador Sea, the Barents Sea and the Laptev-Ohkostsk seas, associated to a high pressure anomaly over the Canadian Archipelago-Baffin Bay and the Laptev-East-Siberian seas. These anomalies create a quasi-annular, quasi-steady, positive gradient of sea-ice anomalies about coastal line (when leading the positive NAO phase) and force a cyclonic vorticity anomaly over the Arctic in the following winter. During recent decades in spite of slight shifts in the modes' spectral properties, the same leading mechanism remains valid. Encouraging, actual models appear to reproduce the same mechanism leading model's NAO, relative to model areas of persistent surface forcing. This indicates that the link between sea-ice and NAO could be exploited as a potential skill-source for multi-year prediction by addressing the key problem of initializing the phase of the NAO/AO (Arctic Oscillation).

  11. Evolutionary diversity among Atlantic coast mangroves

    Science.gov (United States)

    Dodd, Richard S.; Rafii, Zara A.; Fromard, François; Blasco, François

    1998-06-01

    Current knowledge of intraspecific variation of mangrove species is limited in terms of rangewide distributions and is mostly restricted to morphological analyses, which have indicated a high degree of homogeneity. However, our analyses of the aliphatic hydrocarbon and triterpenoid fraction of foliar waxes (by gas chromatography and mass spectroscopy) of mangrove species ( Rhizophora mangle, Avicennia germinans and Laguncularia racemosa) from Gabon in West Africa and French Guiana in South America show significant genetic differentiation between eastern and western Atlantic provenances. The greater diversity in lipid composition, and the tendency for longer carbon chain lengths in all taxa from Africa, may suggest that American mangroves exhibit derived characteristics. A consequence of this hypothesis would be that Atlantic mangroves are unlikely to have dispersed from the Tethys via the Pacific, as has been proposed by some authors. More widespread sampling within the Atlantic and east Pacific region is needed to support and confirm these results.

  12. 78 FR 76107 - Fisheries of the South Atlantic and the Gulf of Mexico; South Atlantic Fishery Management Council...

    Science.gov (United States)

    2013-12-16

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Fisheries of the South Atlantic and the Gulf of Mexico; South Atlantic Fishery Management Council (SAFMC) and Gulf of Mexico Fishery Management Council (GMFMC); Public Meeting AGENCY: National Marine Fisheries Service (NMFS...

  13. 50 CFR 600.520 - Northwest Atlantic Ocean fishery.

    Science.gov (United States)

    2010-10-01

    ... Northwest Atlantic Ocean fishery. (a) Purpose. Sections 600.520 and 600.525 regulate all foreign fishing... purposes of the Northwest Atlantic Ocean fishery, fishing areas are that portion of the EEZ shown inside... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Northwest Atlantic Ocean fishery. 600.520...

  14. Perfis de carbono orgânico do solo nas regiões Sul e Serra do Espinhaço Meridional, Minas Gerais: modelagem em profundidade

    Directory of Open Access Journals (Sweden)

    Yuri Lopes Zinn

    2012-11-01

    Full Text Available Apesar de o interesse no comportamento espacial de atributos-chave do solo, só recentemente a variação em profundidade passou a receber mais atenção na literatura. O carbono orgânico do solo (COS é talvez o atributo que mais varie em profundidade, o que dificulta seu estudo. A partir de dados de levantamentos de solos de duas regiões de Minas Gerais (Sul e Serra do Espinhaço Meridional, foram modelados os teores de COS em profundidade, buscando identificar quais fatores mais os influenciam. Os perfis de COS foram mais bem descritos por funções logarítmicas neperianas em ambas as regiões. Houve efeito da classe de solo, uma vez que Latossolos apresentaram menores teores superficiais, mas menor decréscimo no perfil, do que Argissolos, Neossolos, Cambissolos e Nitossolos. Essas tendências podem ser devidas à maior profundidade, permeabilidade e teor de argila+silte dos Latossolos. A variação regular dos parâmetros intercepto (teor médio na superfície e fator logarítmico (taxa de decréscimo das equações obtidas para diferentes faixas de teor de argila+silte permitiu ainda obter funções de pedotransferência em perfil para descrever teores de COS em profundidade em qualquer classe de solo, confirmando a hipótese de que a textura é um controle importante dos teores de COS nessas duas regiões. Na região Sul de MG, os perfis de COS puderam também ser descritos em função de teores de Fe2O3 (ataque sulfúrico, evidenciando controle mineralógico do COS. Ainda na região Sul, solos entre 1.000 e 1.200 m de altitude apresentaram maiores teores de COS do que os de altitudes menores. Latossolos e Nitossolos das duas regiões mostraram perfis muito semelhantes de COS - similaridade atribuída ao efeito positivo de maiores teores de argila na região Sul e maior altitude na Serra do Espinhaço Meridional.

  15. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from MELVILLE, KNORR and other platforms in the NE Atlantic, NW Atlantic and South Atlantic Ocean from 1972-07-24 to 1989-01-13 (NODC Accession 9500080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Eight data sets of Temperature, Depth, Salinity, dissolved Oxygen (CTD) data collected in South Atlantic Ocean, NE Atlantic (limit-40 W), NW Atlantic (limit-40 W)...

  16. Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: climatology and interannual variability

    Science.gov (United States)

    Harlaß, Jan; Latif, Mojib; Park, Wonsun

    2018-04-01

    We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.

  17. 75 FR 35767 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-06-23

    ... (SERMA) in the South Atlantic, and receive updates on state enforcement efforts of 2010 snapper grouper... ] Conservation Biology Institute (MCBI) which addresses the challenges of enforcing regulations within the vast...

  18. 76 FR 62331 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures

    Science.gov (United States)

    2011-10-07

    ... Species; Atlantic Shark Management Measures AGENCY: National Marine Fisheries Service (NMFS), National... blacknose sharks, NMFS is declaring the following stock status determinations. Sandbar sharks are still overfished, but no longer experiencing overfishing. Dusky sharks are still overfished and still experiencing...

  19. 76 FR 56120 - Atlantic Highly Migratory Species; North and South Atlantic Swordfish Quotas

    Science.gov (United States)

    2011-09-12

    ... recreational fishing for swordfish in the Atlantic Ocean, including the Caribbean Sea and Gulf of Mexico, by... http://www.iccat.int/en/ . One swordfish measure adopted at the 2010 meeting, and one swordfish measure...

  20. Persistent influence of tropical North Atlantic wintertime sea surface temperature on the subsequent Atlantic hurricane season

    Science.gov (United States)

    Wang, Xidong; Liu, Hailong; Foltz, Gregory R.

    2017-08-01

    This study explores the seasonally lagged impact of wintertime sea surface temperature (SST) in the Atlantic main development region (MDR) on the subsequent Atlantic hurricane season. It is found that wintertime SST anomalies in the MDR can persist into the summer, explaining 42% of the variance in the subsequent hurricane season's SST during 1951-2010. An anomalously warm wintertime in the MDR is usually followed by an anomalously active hurricane season. Analysis shows an important constraint on the seasonal evolution of the MDR SST by the water vapor feedback process, in addition to the well-known wind-evaporation-SST and cloud-SST feedback mechanisms over the tropical North Atlantic. The water vapor feedback influences the seasonal evolution of MDR SST by modulating seasonal variations of downward longwave radiation. This wintertime thermal control of hurricane activity has significant implications for seasonal predictions and long-term projections of hurricane activity over the North Atlantic.

  1. 77 FR 64317 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-10-19

    ... Crowne Plaza Hotel, 4831 Tanger Outlet Blvd., North Charleston, SC 29418; telephone: (843) 744- 4422; fax... the Gulf of Mexico Fishery Management Council to the South Atlantic Fishery Management Council and...

  2. 76 FR 14378 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-03-16

    ..., 4831 Tanger Outlet Blvd., North Charleston, SC 29418; telephone: (866) 358- 6255. Council address... Migratory Pelagics Fishery Management Plan (FMP) for the South Atlantic and Gulf of Mexico addressing Annual...

  3. Energia e Liberdade: Aspectos de Economia Política e Energia na Região da Amazônia Meridional de Mato Grosso

    Directory of Open Access Journals (Sweden)

    José Manuel Carvalho Marta

    2011-06-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE A Amazônia Meridional é formada por cinco estados brasileiros, nos quais está Mato Grosso. Nessa região, com densa mata, a energia elétrica apresenta impactos sociais e ambientais para sua implantação, mas é essencial no processo da transformação, dadas as características da população: pobre e isolada. O artigo procura interpretar, à luz de métodos de análise dialética, institucional e de economia solidária, os resultados de uma pesquisa realizada parcialmente entre 2004-2006 e suas consequências. Considera-se o desmatamento e a manutenção das linhas de transmissão, em face da geração distribuída. buscando implantar uma vida melhor para os assentados em Guariba, município de Colniza-MT.

  4. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  5. EROSÃO, DENUDAÇÃO E EVOLUÇÃO DO RELEVO DA MÉDIA SERRA DO ESPINHAÇO MERIDIONAL, MINAS GERAIS

    Directory of Open Access Journals (Sweden)

    Marina Ribeiro Leão

    2012-10-01

    Full Text Available O presente trabalho investigou a evolução do relevo da média Serra do Espinhaço Meridional (SdEM, região que delimita três das mais importantes bacias hidrográficas do sudeste brasileiro: à oeste, a do rio São Francisco e, à leste, as dos rios Doce e Jequitinhonha. Os procedimentos metodológicos basearam-se na utilização de dois tipos de análises. A primeira baseou-se em observações de campo e em análises cartográficas e visou reconhecer áreas onde os processos erosivos eram mais ativos. A segunda objetivou mensurar a atual denudação geoquímica em 16 bacias hidrográficas que se localizam nas duas vertentes da média SdEM. Os resultados demonstram que a litologia predominante – quartzito – é extremamente resistente aos processos intempéricos e desnudacionais e que o arcabouço litoestrutural controla os processos desnudacionais da área investigada. Demonstram ainda que, embora a vertente leste apresente relevo mais dissecado, fato que indica que no passado nesta vertente os processos desnudacionais eram mais intensos, é na vertente oeste que, atualmente, os processos desnudacionais geoquímicos são mais agressivos.

  6. The 226Ra isotope activities in ground water samples drawn of two wells from the Meridional Pluton, Morungaba Granitoids, eastern Sao Paulo State; Atividades do 226Ra em aguas subterraneas extraidas de dois pocos localizados no pluton meridional, granitoides de Morungaba, SP

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Fabio de Oliveira; Silva Junior, Mario Goncalves da; Bertolla, Luciana; Ribeiro, Fernando Brenha [Sao Paulo Univ., SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas. Dept. de Geofisica]. E-mail: brenha@iag.usp.br

    2005-07-01

    The 226Ra activities, both in solution and associated with suspended solids, were measured in ground water samples drawn from two wells drilled in a fractured granitic aquifer from the Meridional Pluton, Morungaba Granitoids, eastern Sao Paulo State. The 226Ra isotope activities were measured in a sequence of samples collected about one month apart between March, 2003 and April 2004. The 226Ra activities were measured by radon gas emanometry. The mean dissolved 226Ra activity concentration activities observed in the two wells were (44.9 {+-} 7.1) mBq/L and (51.6 {+-} 8.8) mBq/L. The 226Ra activity of the suspend solids in a liter of these waters varied between (0,6 {+-} 0,1) mBq and (13 {+-} 1) mBq, respectively. (author)

  7. Coccolithophores in the equatorial Atlantic Ocean

    DEFF Research Database (Denmark)

    Kinkel, Hanno; Baumann, K.-H.; Cepek, M.

    2000-01-01

    The present study was initiated to ascertain the significance of coccolithophores as a proxy for paleoceanographic and paleoproductivity studies in the equatorial Atlantic. Data from a range of different samples, from the plankton, surface sediments as well as sediment cores are shown and compare...

  8. Coccolithophores in the equatorial Atlantic Ocean

    DEFF Research Database (Denmark)

    Kinkel, Hanno; Baumann, K.-H.; Cepek, M.

    2000-01-01

    tenuis are strongly diminished, causing an increase in relative abundance of the lower photic zone taxa Florisphaera profunda and Gladiolithus flabellatus. During the past 140,000 years the surface water circulation of the equatorial Atlantic has changed drastically, as can be seen from changes...

  9. Atlantic hurricane activity during the last millennium

    Science.gov (United States)

    Burn, Michael J.; Palmer, Suzanne E.

    2015-01-01

    Hurricanes are a persistent socio-economic hazard for countries situated in and around the Main Development Region (MDR) of Atlantic tropical cyclones. Climate-model simulations have attributed their interdecadal variability to changes in solar and volcanic activity, Saharan dust flux, anthropogenic greenhouse gas and aerosol emissions and heat transport within the global ocean conveyor belt. However, the attribution of hurricane activity to specific forcing factors is hampered by the short observational record of Atlantic storms. Here, we present the Extended Hurricane Activity (EHA) index, the first empirical reconstruction of Atlantic tropical cyclone activity for the last millennium, derived from a high-resolution lake sediment geochemical record from Jamaica. The EHA correlates significantly with decadal changes in tropical Atlantic sea surface temperatures (SSTs; r = 0.68; 1854–2008), the Accumulated Cyclone Energy index (ACE; r = 0.90; 1851–2010), and two annually-resolved coral-based SST reconstructions (1773–2008) from within the MDR. Our results corroborate evidence for the increasing trend of hurricane activity during the Industrial Era; however, we show that contemporary activity has not exceeded the range of natural climate variability exhibited during the last millennium. PMID:26243340

  10. Subpolar North Atlantic glider observations for OSNAP

    Science.gov (United States)

    Zhou, C.; Hodges, B.; Bower, A. S.; Yang, J.; Lin, X.

    2016-02-01

    OSNAP is an international program designed to provide a continuous record of the full-water-column, trans-basin fluxes of heat, mass, and freshwater in the subpolar North Atlantic. The observational efforts of this program are focused largely along lines connecting Labrador to Greenland, and Greenland to Scotland. The OSNAP experimental plan includes continuous sampling by Slocum G2 gliders along the latter (easternmost) of these two sections, specifically across the northeastward-flowing North Atlantic Current in the Iceland Basin. The glider observations, a collaboration between the Ocean University of China and Woods Hole Oceanographic Institution, provide higher spatial resolution of water properties than is possible from moorings alone. These observations commenced in June 2015 with a mission to fly back and forth along a section between two OSNAP moorings, profiling from the surface to 1000-m depth. As of September 2015, five sections (including over 240 profiles) have been recorded. As expected, the data indicates energetic intraseasonal variability at smaller scales than can be captured by the OSNAP mooring array. We are investigating how this variability may impact calculated fluxes of heat, mass, and freshwater. The glider repeatedly crossed a cyclonic eddy between the two moorings, enabling study of fine thermohaline structure during the development and dissipation of mesoscale eddies in the subpolar North Atlantic. With additional sensors measuring fluorescence, dissolved oxygen, nitrate, and multispectral light, the dataset also has the potential to significantly advance our understanding of the biogeochemical processes of mesoscale and submesoscale eddies in the subpolar North Atlantic.

  11. Atlantic hurricane activity during the last millennium

    Science.gov (United States)

    Burn, Michael J.; Palmer, Suzanne E.

    2015-08-01

    Hurricanes are a persistent socio-economic hazard for countries situated in and around the Main Development Region (MDR) of Atlantic tropical cyclones. Climate-model simulations have attributed their interdecadal variability to changes in solar and volcanic activity, Saharan dust flux, anthropogenic greenhouse gas and aerosol emissions and heat transport within the global ocean conveyor belt. However, the attribution of hurricane activity to specific forcing factors is hampered by the short observational record of Atlantic storms. Here, we present the Extended Hurricane Activity (EHA) index, the first empirical reconstruction of Atlantic tropical cyclone activity for the last millennium, derived from a high-resolution lake sediment geochemical record from Jamaica. The EHA correlates significantly with decadal changes in tropical Atlantic sea surface temperatures (SSTs; r = 0.68 1854-2008), the Accumulated Cyclone Energy index (ACE; r = 0.90 1851-2010), and two annually-resolved coral-based SST reconstructions (1773-2008) from within the MDR. Our results corroborate evidence for the increasing trend of hurricane activity during the Industrial Era; however, we show that contemporary activity has not exceeded the range of natural climate variability exhibited during the last millennium.

  12. Population structure of Atlantic Mackerel (Scomber scombrus)

    DEFF Research Database (Denmark)

    Jansen, Teunis; Gislason, Henrik

    2013-01-01

    model where the population structure of mackerel is described as a dynamic cline, rather than as connected contingents. Temporal changes in hydrography and mackerel behavior may affect the steepness of the cline at various locations. The new interpretation of the population structure of Atlantic...

  13. Atlantic hurricane activity during the last millennium.

    Science.gov (United States)

    Burn, Michael J; Palmer, Suzanne E

    2015-08-05

    Hurricanes are a persistent socio-economic hazard for countries situated in and around the Main Development Region (MDR) of Atlantic tropical cyclones. Climate-model simulations have attributed their interdecadal variability to changes in solar and volcanic activity, Saharan dust flux, anthropogenic greenhouse gas and aerosol emissions and heat transport within the global ocean conveyor belt. However, the attribution of hurricane activity to specific forcing factors is hampered by the short observational record of Atlantic storms. Here, we present the Extended Hurricane Activity (EHA) index, the first empirical reconstruction of Atlantic tropical cyclone activity for the last millennium, derived from a high-resolution lake sediment geochemical record from Jamaica. The EHA correlates significantly with decadal changes in tropical Atlantic sea surface temperatures (SSTs; r = 0.68; 1854-2008), the Accumulated Cyclone Energy index (ACE; r = 0.90; 1851-2010), and two annually-resolved coral-based SST reconstructions (1773-2008) from within the MDR. Our results corroborate evidence for the increasing trend of hurricane activity during the Industrial Era; however, we show that contemporary activity has not exceeded the range of natural climate variability exhibited during the last millennium.

  14. Tsunami Forecasting in the Atlantic Basin

    Science.gov (United States)

    Knight, W. R.; Whitmore, P.; Sterling, K.; Hale, D. A.; Bahng, B.

    2012-12-01

    The mission of the West Coast and Alaska Tsunami Warning Center (WCATWC) is to provide advance tsunami warning and guidance to coastal communities within its Area-of-Responsibility (AOR). Predictive tsunami models, based on the shallow water wave equations, are an important part of the Center's guidance support. An Atlantic-based counterpart to the long-standing forecasting ability in the Pacific known as the Alaska Tsunami Forecast Model (ATFM) is now developed. The Atlantic forecasting method is based on ATFM version 2 which contains advanced capabilities over the original model; including better handling of the dynamic interactions between grids, inundation over dry land, new forecast model products, an optional non-hydrostatic approach, and the ability to pre-compute larger and more finely gridded regions using parallel computational techniques. The wide and nearly continuous Atlantic shelf region presents a challenge for forecast models. Our solution to this problem has been to develop a single unbroken high resolution sub-mesh (currently 30 arc-seconds), trimmed to the shelf break. This allows for edge wave propagation and for kilometer scale bathymetric feature resolution. Terminating the fine mesh at the 2000m isobath keeps the number of grid points manageable while allowing for a coarse (4 minute) mesh to adequately resolve deep water tsunami dynamics. Higher resolution sub-meshes are then included around coastal forecast points of interest. The WCATWC Atlantic AOR includes eastern U.S. and Canada, the U.S. Gulf of Mexico, Puerto Rico, and the Virgin Islands. Puerto Rico and the Virgin Islands are in very close proximity to well-known tsunami sources. Because travel times are under an hour and response must be immediate, our focus is on pre-computing many tsunami source "scenarios" and compiling those results into a database accessible and calibrated with observations during an event. Seismic source evaluation determines the order of model pre

  15. AtlantOS - Optimizing and Enhancing the Integrated Atlantic Ocean Observing System

    Science.gov (United States)

    Reitz, Anja; Visbeck, Martin; AtlantOS Consortium, the

    2016-04-01

    Atlantic Ocean observation is currently undertaken through loosely-coordinated, in-situ observing networks, satellite observations and data management arrangements of heterogeneous international, national and regional design to support science and a wide range of information products. Thus there is tremendous opportunity to develop the systems towards a fully integrated Atlantic Ocean Observing System consistent with the recently developed 'Framework of Ocean Observing'. The vision of AtlantOS is to improve and innovate Atlantic observing by using the Framework of Ocean Observing to obtain an international, more sustainable, more efficient, more integrated, and fit-for-purpose system. Hence, the AtlantOS initiative will have a long-lasting and sustainable contribution to the societal, economic and scientific benefit arising from this integrated approach. This will be delivered by improving the value for money, extent, completeness, quality and ease of access to Atlantic Ocean data required by industries, product supplying agencies, scientist and citizens. The overarching target of the AtlantOS initiative is to deliver an advanced framework for the development of an integrated Atlantic Ocean Observing System that goes beyond the state-of -the-art, and leaves a legacy of sustainability after the life of the project. The legacy will derive from the following aims: i) to improve international collaboration in the design, implementation and benefit sharing of ocean observing, ii) to promote engagement and innovation in all aspects of ocean observing, iii) to facilitate free and open access to ocean data and information, iv) to enable and disseminate methods of achieving quality and authority of ocean information, v) to strengthen the Global Ocean Observing System (GOOS) and to sustain observing systems that are critical for the Copernicus Marine Environment Monitoring Service and its applications and vi) to contribute to the aims of the Galway Statement on Atlantic

  16. Kinematics of the South Atlantic rift

    Science.gov (United States)

    Heine, C.; Zoethout, J.; Müller, R. D.

    2013-08-01

    The South Atlantic rift basin evolved as a branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final break-up of western Gondwana. While the relative motions between South America and Africa for post-break-up times are well resolved, many issues pertaining to the fit reconstruction and particularly the relation between kinematics and lithosphere dynamics during pre-break-up remain unclear in currently published plate models. We have compiled and assimilated data from these intraplated rifts and constructed a revised plate kinematic model for the pre-break-up evolution of the South Atlantic. Based on structural restoration of the conjugate South Atlantic margins and intracontinental rift basins in Africa and South America, we achieve a tight-fit reconstruction which eliminates the need for previously inferred large intracontinental shear zones, in particular in Patagonian South America. By quantitatively accounting for crustal deformation in the Central and West African Rift Zones, we have been able to indirectly construct the kinematic history of the pre-break-up evolution of the conjugate west African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic pre-salt sag basin and the São Paulo High. We model an initial E-W-directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities from 140 Ma until late Hauterivian times (≈126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial ≈14 Myr-long stretching episode the pre-salt basin width on the conjugate Brazilian and west African margins is generated. An intermediate stage between ≈126 Ma and base Aptian is characterised by strain localisation, rapid lithospheric weakening in the

  17. Bandidaje y piratería en la Anatolia meridional. Definición y circunstancias en el marco de las guerras mitridáticas

    Directory of Open Access Journals (Sweden)

    Isaías ARRAYÁS MORALES

    2011-03-01

    Full Text Available El presente trabajo trata sobre el fenómeno pirático en el mundo greco-romano. Su estudio resulta muy complejo, teniendo en cuenta que el vocabulario y la mentalidad de los autores antiguos interfieren de tal manera que es extremadamente complicado ir más allá y precisar el germen de los procesos históricos que fomentan las actividades piráticas, así como el tipo y la naturaleza de las diferentes acciones descritas. En este sentido, resulta casi imposible diferenciar a los piratas, de corsarios, de mercenarios o incluso de simples mercaderes armados, algo habitual considerando el primigenio vínculo entre piratería y comercio. Tan sólo el análisis del contexto histórico nos va a permitir una aproximación a la realidad descrita y, en muchos casos, maquillada, que nos presentan las fuentes literarias antiguas. En nuestro cometido, la evidencia arqueológica apenas puede ayudarnos, pues las trazas dejadas por una banda de piratas no se diferencian de las generadas por un destacamento de soldados o de mercenarios, revestidos de la oficialidad que los diferencia de los bandidos. Con el objetivo de ahondar en la problemática, abordamos las causas del auge del fenómeno pirático en los territorios de la Anatolia meridional en la primera mitad del s. I a. C., calibrando el impacto que tuvieron las guerras mitridáticas en el proceso.

  18. Spatiotemporal relationships between earthquakes of the mid-Atlantic Ridge and the Atlantic continental margins

    Science.gov (United States)

    Bolarinwa, Oluwaseyi J.

    The seismicity of the mid Atlantic Ridge (MAR) was compared in space and time with the seismicity along the Atlantic continental margins of Europe, Africa, North America, the Carribean and South America in a bid to appraise the level of influence of the ridge push force at the MAR on the Atlantic coastal seismicity. By analyzing the spatial and temporal patterns of many earthquakes (along with the patterns in their stress directions) in diverse places with similar tectonic settings, it is hoped that patterns that might be found indicate some of the average properties of the forces that are causing the earthquakes. The spatial analysis of the dataset set used shows that areas with higher seismic moment release along the north MAR spatially correlate with areas with relatively lower seismic moment release along the north Atlantic continental margins (ACM) and vice versa. This inverse spatial correlation observed between MAR seismicity and ACM seismicity might be due to the time (likely a long time) it takes stress changes from segments of the MAR currently experiencing high seismic activity to propagate to the associated passive margin areas presently experiencing relatively low seismic activity. Furthermore, the number of Atlantic basin and Atlantic coast earthquakes occurring away from the MAR is observed to be independent of the proximity of earthquake's epicenters from the MAR axis. The effect of local stress as noted by Wysession et al. (1995) might have contributed to the independence of Atlantic basin and Atlantic coast earthquake proximity from the MAR. The Latchman (2011) observation of strong earthquakes on a specific section of the MAR being followed by earthquakes on Trinidad and Tobago was tested on other areas of the MAR and ACM. It was found that that the temporal delay observed by Latchman does not exist for the seismicity along other areas along the MAR and ACM. Within the time window used for this study, it appears that seismicity is occurring

  19. From Europe to America: Pliocene to Recent trans-Atlantic expansion of cold-water North Atlantic molluscs

    Science.gov (United States)

    Vermeij, Geerat J

    2005-01-01

    Data on the geographical distribution, phylogeny and fossil record of cool-temperate North Atlantic shell-bearing molluscs that live in waters shallower than 100 m depth belong to two biogeographic provinces, one in eastern North America north of Cape Cod, the other in northern Europe. Amphi-Atlantic species, which are found in both provinces, comprise 30.8% of the 402 species in the northeastern Atlantic and 47.3% of the 262 species in the northwestern Atlantic. Some 54.8% of these amphi-Atlantic species have phylogenetic origins in the North Pacific. Comparisons among fossil Atlantic faunas show that amphi-Atlantic distributions became established in the Middle Pliocene (about 3.5 million years ago), and that all represent westward expansions of European taxa to North America. No American taxa spread eastward to Europe without human assistance. These results are in accord with previous phylogeographic studies among populations within several amphi-Atlantic species. Explanations for the unidirectional expansion of species across the Atlantic remain uncertain, but may include smaller size and greater prior extinction of the North American as compared to the European fauna and biased transport mechanisms. Destruction of the European source fauna may jeopardize faunas on both sides of the Atlantic. PMID:16271981

  20. Displaced fracture through the anterior atlantal synchondrosis

    Energy Technology Data Exchange (ETDEWEB)

    Thakar, Chrishan; Allibone, James [Royal National Orthopaedic Hospital NHS Trust, Department of Spinal Deformity, Stanmore, Middlesex (United Kingdom); Harish, Srinivasan [Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, Stanmore, Middlesex (United Kingdom); Saifuddin, Asif [Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, Stanmore, Middlesex (United Kingdom); University College, The Institute of Orthopaedics and Musculoskeletal Sciences, London (United Kingdom)

    2005-09-01

    In the acute setting, accurate radiological interpretation of paediatric cervical spine trauma can be difficult due to a combination of normal variants and presence of multiple synchondroses. We present a rare case of a fracture through the anterior atlantal synchondrosis in a paediatric spine. A five-year-old boy, who fell backwards onto the top of his head while swinging across on a monkey bar frame, presented with neck pain, cervical muscle spasm and decreased right lateral rotation and extension of his neck. Computed tomography showed a displaced diastatic fracture through right anterior atlantal synchondrosis. There are only 12 cases of paediatric C1 fractures reported in the world literature. The importance of considering this diagnosis in the appropriate clinical setting, and the normal variants in the paediatric atlas that can cause diagnostic dilemma to the interpreting radiologist, are discussed in this case report. (orig.)

  1. Displaced fracture through the anterior atlantal synchondrosis

    International Nuclear Information System (INIS)

    Thakar, Chrishan; Allibone, James; Harish, Srinivasan; Saifuddin, Asif

    2005-01-01

    In the acute setting, accurate radiological interpretation of paediatric cervical spine trauma can be difficult due to a combination of normal variants and presence of multiple synchondroses. We present a rare case of a fracture through the anterior atlantal synchondrosis in a paediatric spine. A five-year-old boy, who fell backwards onto the top of his head while swinging across on a monkey bar frame, presented with neck pain, cervical muscle spasm and decreased right lateral rotation and extension of his neck. Computed tomography showed a displaced diastatic fracture through right anterior atlantal synchondrosis. There are only 12 cases of paediatric C1 fractures reported in the world literature. The importance of considering this diagnosis in the appropriate clinical setting, and the normal variants in the paediatric atlas that can cause diagnostic dilemma to the interpreting radiologist, are discussed in this case report. (orig.)

  2. South Atlantic paleobathymetry since early Cretaceous.

    Science.gov (United States)

    Pérez-Díaz, Lucía; Eagles, Graeme

    2017-09-18

    We present early Cretaceous to present paleobathymetric reconstructions and quantitative uncertainty estimates for the South Atlantic, offering a strong basis for studies of paleocirculation, paleoclimate and paleobiogeography. Circulation in an initially salty and anoxic ocean, restricted by the topography of the Falkland Plateau, Rio Grande Ridge and Walvis Rise, favoured deposition of thick evaporites in shallow water of the Brazilian-Angolan margins. This ceased as seafloor spreading propagated northwards, opening an equatorial gateway to shallow and intermediate circulation. This gateway, together with subsiding volcano-tectonic barriers would have played a key role in Late Cretaceous climate changes. Later deepening and widening of the South Atlantic, together with gateway opening at Drake Passage would lead, by mid-Miocene (∼15 Ma) to the establishment of modern-style thermohaline circulation.

  3. NOAA Research Vessel Explores Atlantic Ocean Seamounts

    Science.gov (United States)

    Showstack, Randy

    2014-10-01

    Mike Ford, a biological oceanographer with the National Oceanic and Atmospheric Administration (NOAA), sat rapt in front of a bank of high-definition monitors. They provided live video and data feeds from a tethered pair of instrument-laden remotely operated vehicles (ROVs) that were descending 4692 meters on their deepest dive ever. Their target: an unnamed and unexplored New England seamount discovered in the North Atlantic last year.

  4. Brazil and the Vital South Atlantic

    Science.gov (United States)

    1988-09-01

    1984. Moneta, Carlos J. "Aspectos Conflictivos de las Relaciones Afro Latinoamericanas: Las Vivculaciones Politicas , Economicas y Militares de la...Descartes. Politica y Estrategia (No ataco, critico) Buenos Aires, Argentina. 1953 Douglas, Martin. "Naval Lessons from the South Atlantic " Jane’s Defence...January 1984 91 Goshko, John M. ’Australia deals a new blow to Anzus alliance. Washington Post, p. Al 7 February 1985. Grabendorff, Wolf. La Politica

  5. Atlantic and indian oceans pollution in africa

    Science.gov (United States)

    Abubakar, Babagana

    Africa is the second largest and most populated continent after Asia. Geographically it is located between the Atlantic and Indian Oceans. Most of the Africa's most populated and industrialized cities are located along the coast of the continent facing the Atlantic and Indian Oceans, example of such cities include Casablanca, Dakar, Accra, Lagos, Luanda and Cape town all facing the Atlantic Ocean and cities like East London, Durban, Maputo, Dar-es-salaam and Mogadishu are all facing the Indian Ocean. As a result of the geographical locations of African Coastal Cities plus increase in their population, industries, sea port operations, petroleum exploration activities, trafficking of toxic wastes and improper waste management culture lead to the incessant increase in the pollution of the two oceans. NATURE OF POLLUTION OF THE ATLANTIC OCEAN i. The petroleum exploration activities going on along the coast of "Gulf of Guinea" region and Angola continuously causes oil spillages in the process of drilling, bunkering and discharging of petroleum products in the Atlantic Ocean. ii. The incessant degreasing of the Sea Ports "Quay Aprons" along the Coastal cities of Lagos, Luanda, Cape Town etc are continuously polluting the Atlantic Ocean with chemicals. iii. Local wastes generated from the houses located in the coastal cities are always finding their ways into the Atlantic Ocean. NATURE OF POLLUTION OF THE INDIAN OCEAN i. Unlike the Atlantic ocean where petroleum is the major pollutant, the Indian Ocean is polluted by Toxic / Radioactive waste suspected to have been coming from the developed nations as reported by the United Nations Environmental Programme after the Tsunami disaster in December 2004 especially along the coast of Somalia. ii. The degreasing of the Quay Aprons at Port Elizabeth, Maputo, Dar-es-Salaam and Mongolism Sea Ports are also another major source polluting the Indian Ocean. PROBLEMS GENERATED AS A RESULT OF THE OCEANS POLLUTION i. Recent report

  6. NEFSC 2007 Atlantic Herring Acoustic/Midwater Trawl Survey (DE0710, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  7. NEFSC 2005 Atlantic Herring Acoustic/Midwater Trawl Survey (DE0512, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  8. NEFSC 2010 Atlantic Herring Acoustic/Midwater Trawl Survey (DE1010, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  9. NEFSC 2011 Atlantic Herring Acoustic/Midwater Trawl Survey (DE1108, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  10. NEFSC 2000 Atlantic Herring Acoustic/Midwater Trawl Survey (DE0008, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  11. NEFSC 2001 Atlantic Herring Acoustic/Midwater Trawl Survey (DE0109, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  12. NEFSC 2012 Atlantic Herring Acoustic/Midwater Trawl Survey (PC1206, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  13. NEFSC 1998 Atlantic Herring Acoustic/Midwater Trawl Survey (DE9810, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  14. NEFSC 2006 Atlantic Herring Acoustic/Midwater Trawl Survey (DE0615, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  15. NEFSC 2002 Atlantic Herring Acoustic/Midwater Trawl Survey (DE0208, EK500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Atlantic herring acoustic survey is a fisheries independent survey that provides scientific data for Atlantic herring assessments in the U.S. mid-Atlantic...

  16. Atlantic water flow through the Faroese Channels

    Directory of Open Access Journals (Sweden)

    B. Hansen

    2017-11-01

    Full Text Available Through the Faroese Channels – the collective name for a system of channels linking the Faroe–Shetland Channel, Wyville Thomson Basin, and Faroe Bank Channel – there is a deep flow of cold waters from Arctic regions that exit the system as overflow through the Faroe Bank Channel and across the Wyville Thomson Ridge. The upper layers, in contrast, are dominated by warm, saline water masses from the southwest, termed Atlantic water. In spite of intensive research over more than a century, there are still open questions on the passage of these waters through the system with conflicting views in recent literature. Of special note is the suggestion that there is a flow of Atlantic water from the Faroe–Shetland Channel through the Faroe Bank Channel, which circles the Faroes over the slope region in a clockwise direction. Here, we combine the observational evidence from ship-borne hydrography, moored current measurements, surface drifter tracks, and satellite altimetry to address these questions and propose a general scheme for the Atlantic water flow through this channel system. We find no evidence for a continuous flow of Atlantic water from the Faroe–Shetland Channel to the Faroe Bank Channel over the Faroese slope. Rather, the southwestward-flowing water over the Faroese slope of the Faroe–Shetland Channel is totally recirculated within the combined area of the Faroe–Shetland Channel and Wyville Thomson Basin, except possibly for a small release in the form of eddies. This does not exclude a possible westward flow over the southern tip of the Faroe Shelf, but even including that, we estimate that the average volume transport of a Circum-Faroe Current does not exceed 0.5 Sv (1 Sv  =  106 m3 s−1. Also, there seems to be a persistent flow of Atlantic water from the western part of the Faroe Bank Channel into the Faroe–Shetland Channel that joins the Slope Current over the Scottish slope. These conclusions will affect

  17. Atlantic water flow through the Faroese Channels

    Science.gov (United States)

    Hansen, Bogi; Poulsen, Turið; Margretha Húsgarð Larsen, Karin; Hátún, Hjálmar; Østerhus, Svein; Darelius, Elin; Berx, Barbara; Quadfasel, Detlef; Jochumsen, Kerstin

    2017-11-01

    Through the Faroese Channels - the collective name for a system of channels linking the Faroe-Shetland Channel, Wyville Thomson Basin, and Faroe Bank Channel - there is a deep flow of cold waters from Arctic regions that exit the system as overflow through the Faroe Bank Channel and across the Wyville Thomson Ridge. The upper layers, in contrast, are dominated by warm, saline water masses from the southwest, termed Atlantic water. In spite of intensive research over more than a century, there are still open questions on the passage of these waters through the system with conflicting views in recent literature. Of special note is the suggestion that there is a flow of Atlantic water from the Faroe-Shetland Channel through the Faroe Bank Channel, which circles the Faroes over the slope region in a clockwise direction. Here, we combine the observational evidence from ship-borne hydrography, moored current measurements, surface drifter tracks, and satellite altimetry to address these questions and propose a general scheme for the Atlantic water flow through this channel system. We find no evidence for a continuous flow of Atlantic water from the Faroe-Shetland Channel to the Faroe Bank Channel over the Faroese slope. Rather, the southwestward-flowing water over the Faroese slope of the Faroe-Shetland Channel is totally recirculated within the combined area of the Faroe-Shetland Channel and Wyville Thomson Basin, except possibly for a small release in the form of eddies. This does not exclude a possible westward flow over the southern tip of the Faroe Shelf, but even including that, we estimate that the average volume transport of a Circum-Faroe Current does not exceed 0.5 Sv (1 Sv = 106 m3 s-1). Also, there seems to be a persistent flow of Atlantic water from the western part of the Faroe Bank Channel into the Faroe-Shetland Channel that joins the Slope Current over the Scottish slope. These conclusions will affect potential impacts from offshore activities in the

  18. 76 FR 10887 - Fisheries of the South Atlantic and Gulf of Mexico; South Atlantic Fishery Management Council...

    Science.gov (United States)

    2011-02-28

    ... Mexico; South Atlantic Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries... at the Crowne Plaza Hotel, 4831 Tanger Outlet Boulevard, North Charleston, SC 29418; telephone: (843...

  19. 77 FR 58981 - Fisheries of the South Atlantic and Gulf of Mexico; South Atlantic Fishery Management Council...

    Science.gov (United States)

    2012-09-25

    ... Mexico; South Atlantic Fishery Management Council (SAFMC); Public Meeting AGENCY: National Marine... Plaza, 4831 Tanger Outlet Boulevard, North Charleston, SC 29418; telephone: (843) 744- 4422. FOR FURTHER...

  20. 77 FR 60967 - Fisheries of the South Atlantic and Gulf of Mexico; South Atlantic Fishery Management Council...

    Science.gov (United States)

    2012-10-05

    ... Mexico; South Atlantic Fishery Management Council (Council) Scientific and Statistical Committee (SSC... Tanger Outlet Boulevard, North Charleston SC; telephone: (877) 744-4422. FOR FURTHER INFORMATION CONTACT...

  1. Accelerated sea level rise and Florida Current transport

    Directory of Open Access Journals (Sweden)

    J. Park

    2015-07-01

    Full Text Available The Florida Current is the headwater of the Gulf Stream and is a component of the North Atlantic western boundary current from which a geostrophic balance between sea surface height and mass transport directly influence coastal sea levels along the Florida Straits. A linear regression of daily Florida Current transport estimates does not find a significant change in transport over the last decade; however, a nonlinear trend extracted from empirical mode decomposition (EMD suggests a 3 Sv decline in mean transport. This decline is consistent with observed tide gauge records in Florida Bay and the straits exhibiting an acceleration of mean sea level (MSL rise over the decade. It is not known whether this recent change represents natural variability or the onset of the anticipated secular decline in Atlantic meridional overturning circulation (AMOC; nonetheless, such changes have direct impacts on the sensitive ecological systems of the Everglades as well as the climate of western Europe and eastern North America.

  2. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale Univ., New Haven, CT (United States)

    2017-09-06

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability and predictability, directly relevant to the questions of climate predictability, were at the center of the research work.

  3. Agulhas leakage as a key process in the modes of Quaternary climate changes.

    Science.gov (United States)

    Caley, Thibaut; Giraudeau, Jacques; Malaizé, Bruno; Rossignol, Linda; Pierre, Catherine

    2012-05-01

    Heat and salt transfer from the Indian Ocean to the Atlantic Ocean (Agulhas leakage) has an important effect on the global thermohaline circulation and climate. The lack of long transfer record prevents elucidation of its role on climate changes throughout the Quaternary. Here, we present a 1,350-ka accumulation rate record of the planktic foraminiferal species Globorotalia menardii. We demonstrate that, according to previous assumptions, the presence and reseeding of this fauna in the subtropical southeast Atlantic was driven by interocean exchange south of Africa. The Agulhas transfer strengthened at glacial ice-volume maxima for every glacial-interglacial transition, with maximum reinforcements organized according to a 400-ka periodicity. The long-term dynamics of Agulhas leakage may have played a crucial role in regulating meridional overturning circulation and global climate changes during the Mid-Brunhes event and the Mid-Pleistocene transition, and could also play an important role in the near future.

  4. La divergencia genética entre poblaciones del Área Andina Centro Meridional evaluada mediante rasgos no métricos del cráneo

    Directory of Open Access Journals (Sweden)

    Cocilovo, José Alberto

    2009-01-01

    Full Text Available Durante más de 10.000 años el Area Andina Centro Meridional proporcionó un escenario ideal para el desarrollo de distintas poblaciones y entidades culturales, interactuando a través de una amplia red de intercambio y distribución de productos. A pesar de este nivel de interacción, la información métrica disponible (Bolivia, Norte de Chile y Noroeste Argentino, reveló un fuerte proceso de divergencia genética (FST = 0.195 entre subregiones (Varela et al., 2008. Esta evidencia es contrastada en el presente trabajo a partir del análisis de una muestra integrada por 1416 individuos de ambos sexos, cubriendo un intervalo de 4.500 años. Se emplearon 12 atributos (rasgos no métricos del cráneo registrados como presencia-ausencia. Las diferencias entre subáreas fueron evaluadas mediante la estadística MMDS y D2 de Mahalanobis calculada a partir de componentes principales. Ambas matrices de distancias fenotípicas presentaron una alta correlación, destacando una significativa diferenciación a nivel regional. La mayor distancia se registra entre el Noroeste Argentino y el Norte de Chile, ocupando Bolivia una posición equidistante entre ambas regiones. Dentro de cada región las muestras están más relacionadas entre si ((Cochabamba, (Puna, Quebrada, Valliserrana y Pampa Grande, (Arica, Pisagua, Norte Semiárido. Hay mayor vinculación entre Cochabamba y el Noroeste Argentino y mayor divergencia entre los grupos de Chile. Se confi rma un modelo de poblamiento a partir de la subdivisión de una población ancestral en dos ramas que ocuparon: una el Norte de Chile y otra el Noroeste Argentino. En cada una de ellas el proceso dispersivo originó varias líneas que se diferenciaron gradualmente hacia el sur, durante la exploración de nuevos ambientes cuya conquista y colonización garantizó la subsistencia de la población.

  5. A consistent structure of phytoplankton communities across the warm-cold regions of the water mass on a meridional transect in the East/Japan Sea

    Science.gov (United States)

    Kwak, Jung Hyun; Han, Eunah; Lee, Sang Heon; Park, Hyun Je; Kim, Kyung-Ryul; Kang, Chang-Keun

    2017-09-01

    Three cruises were undertaken along a meridional transect in the East/Japan Sea (EJS) in spring (May 2007), summer (July 2009), and fall (October 2012) to determine the geographic variations in phytoplankton biomass and community composition. This study revealed a gradient of surface temperature and a fluctuation of hydrographic conditions along the transect. Although a subpolar front (SPF) formed between the warm- and cold-water masses (37-40°N), no significant differences in phytoplankton biomass and community composition were detected between the southern and northern parts of the EJS. These results disprove our initial hypothesis that different water masses may contain differently structured phytoplankton communities. In the present study, isothermal layers (≤ 12 °C) fluctuated over a depth of 50 m in both warm- and cold-water masses, depending on the SPF. In contrast, the nitracline (i.e. 2.5 μM nitrate isopleth) depth was recorded within a limited range of 20-40 m in spring, 30-50 m in summer, and 40-60 m in fall. The chlorophyll a concentrations at the subsurface chlorophyll maxima (SCM) were significantly higher in spring and summer (356 ± 233 and 270 ± 182 ng L-1, respectively) than in fall (117 ± 89 ng L-1). The relative contributions of individual phytoplankton groups to the depth-integrated chlorophyll a concentration conformed to the composition of the phytoplankton community in the SCM layer, showing a dominance of diatoms (58 ± 19% in spring, 48 ± 11% in summer, and 30 ± 20% in fall). Canonical correspondence analysis revealed that the geographic structures of phytoplankton communities were strongly associated with the vertical structures of water temperature and nutrient concentration in the water column rather than with horizontal gradients of hydrographic conditions. Finally, our findings suggest that water column stability and light-nutrient availability in the euphotic zone play a key role in determining geographical consistency of

  6. Análisis estructural y metamórfico de la deformación hercinica del borde meridional de la Sierra de la Demanda

    Directory of Open Access Journals (Sweden)

    Nieto, F.

    1990-08-01

    Full Text Available The paleozoic stratigraphic sequence outcropping on the southern border of the Sierra de la Demanda, whose age ranges from the Cambrian to the Ordovician, has been divided into six different formations. According to their facies, these are equivalent to the those outcropping in the westernmost sector of the West Asturian-Leonese Zone (WALZ. The rocks have been affected by two hercynian deformation phases and a late hercynian fracturation. The first hercynian phase originated folds and all knids associated with a primary foliation; the second phase gave rise to overridings and occasionally a crenulation cleavage. The deformation is accompanied by low and very low-grade regional metamorphism with intensity decreasing in the general terms towards the SE. Cristallochemical data of the samples obtained by means of X-ray powder diffractometry, have revealed the epizone-anchizone limit and, in sorne cases, have evidenced the metamorphic jump produced by the faults.La sucesión estratigráfica paleozoica que aflora en el borde meridional de la Sierra de la Demanda, cuya edad abarca desde el Cámbrico al Ordovícico, ha sido dividida en seis formaciones diferentes que son equivalentes por facies, a las que afloran en el sector más occidental de la Zona Asturoccidental-Leonesa. Estos materiales han sido afectados por dos fases de deformación hercínicas y una fracturación tardihercínica. La primera fase hercínica origina pliegues de todos los órdenes que llevan asociada una esquistosidad primaria; la segunda fase da lugar a cabalgamientos y, ocasionalmente, a una esquistosidad de crenulación. La deformación va acompañada de un metamorfismo regional de grado bajo y muy bajo cuya intensidad, en términos generales, decrece hacia el SE. Los datos cristaloquímicos obtenidos del estudio de las muestras pizarrosas mediante difractogrametría de Rayos X, han permitido localizar el límite epizona-anquizona y, en algún caso, poner de manifiesto el

  7. Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N2O isotope distribution

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2006-01-01

    Full Text Available A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O. Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68° N, mid-latitude (southern France, 44° N and tropical sites (Hyderabad/India, 18° N. Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional (3-D models for further data interpretation. In general, the magnitude of the apparent fractionation constants (i.e., apparent isotope effects increases continuously with altitude and decreases from the equator to the North Pole. Only the latter observation can be understood qualitatively by the interplay between the time-scales of N2O photochemistry and transport in a Rayleigh fractionation framework. Deviations from Rayleigh fractionation behavior also occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winters of 2003 and possibly 1992. Aircraft observations in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and two

  8. The influence of orography on modern ocean circulation

    Science.gov (United States)

    Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick; Sepulchre, Pierre; Goddéris, Yves

    2018-02-01

    The effects of orography on climate are investigated with a coupled ocean-atmosphere general circulation model (IPSL-CM5). Results are compared with previous investigations in order to dig out robust consequences of the lack of orography on the global scale. Emphasis is made on the thermohaline circulation whose sensitivity to orography has only been subject to a very limited number of studies using coupled models. The removal of the entire orography switches the Meridional Overturning Circulation from the Atlantic to the Pacific, following freshwater transfers from the latter to the former that reverse the salinity gradient between these oceans. This is in part due to the increased freshwater export from the Pacific to the Atlantic through North America in the absence of the Rocky Mountains and the consecutive decreased evaporation in the North Atlantic once the Atlantic MOC weakens, which cools the northern high-latitudes. In addition and unlike previous model studies, we find that tropical freshwater transfers are a major driver of this switch. More precisely, the collapse of the Asian summer monsoon, associated with westward freshwater transfer across Africa, is critical to the freshening of the Atlantic and the increased salt content in the Pacific. Specifically, precipitations are increasing over the Congo catchment area and induce a strong increase in runoff discharging into the tropical Atlantic. In addition, the removal of the Andes shifts the area of strong precipitation toward the Amazonian catchment area and results in a larger runoff discharging into the Tropical Atlantic.

  9. The influence of orography on modern ocean circulation

    Science.gov (United States)

    Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick; Sepulchre, Pierre; Goddéris, Yves

    2017-04-01

    The effects of orography on climate are investigated with a coupled ocean-atmosphere general circulation model (IPSL-CM5). Results are compared with previous investigations in order to dig out robust consequences of the lack of orography on the global scale. Emphasis is made on the thermohaline circulation whose sensitivity to orography has only been subject to a very limited number of studies using coupled models. The removal of the entire orography switches the Meridional Overturning Circulation from the Atlantic to the Pacific, following freshwater transfers from the latter to the former that reverse the salinity gradient between these oceans. This is in part due to the increased freshwater export from the Pacific to the Atlantic through North America in the absence of the Rocky Mountains and the consecutive decreased evaporation in the North Atlantic once the Atlantic MOC weakens, which cools the northern high-latitudes. In addition and unlike previous model studies, we find that tropical freshwater transfers are a major driver of this switch. More precisely, the collapse of the Asian summer monsoon, associated with westward freshwater transfer across Africa, is critical to the freshening of the Atlantic and the increased salt content in the Pacific. Specifically, precipitations are increasing over the Congo catchment area and induce a strong increase in runoff discharging into the tropical Atlantic. In addition, the removal of the Andes shifts the area of strong precipitation toward the Amazonian catchment area and results in a larger runoff discharging into the Tropical Atlantic.

  10. Long-term trends of salinity along the AMOC upper branch, linked to changing surface freshwater fluxes and ocean freshwater transports

    Science.gov (United States)

    Marsh, R.; Zika, J. D.; Skliris, N.; McDonagh, E.; Drijfhout, S. S.

    2016-02-01

    The Atlantic exports a substantial quantity of moisture to the Pacific, principally via the trade winds that are part of the atmospheric Walker cell, leading to a 2.0 psu contrast between high salinity in the North Atlantic and low salinity in the North Pacific. This maintains relatively high salinities along the upper branch of the Atlantic meridional overturning circulation (AMOC), which favors dense water formation in the North Atlantic and a vigorous AMOC. Over 1950-2010, the Atlantic-Pacific surface salinity contrast increased by 0.2 psu, part of a "pattern amplification" in the global salinity field. This is consistent with some evidence, in reanalysis data, for increases in net evaporation over the Atlantic and in net precipitation in the Pacific. Meanwhile, a decade of RAPID observations at 26°N indicate that southward freshwater transport is strongly correlated with AMOC strength in the subtropical North Atlantic. The relative influence of changing surface freshwater fluxes and ocean freshwater transports on upper branch salinity is investigated, and implications for the strength and stability of the AMOC are considered.

  11. The North Atlantic Oscillation: variability and interactions with the North Atlantic ocean and Artic sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jung, T.

    2000-07-01

    The North Atlantic oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region and describes the strengthening and weakening of the midlatitude westerlies. In this study, variability of the NAO during wintertime and its relationship to the North Atlantic ocean and Arctic sea ice is investigated. For this purpose, observational data are analyzed along with integrations of models for the Atlantic ocean, Arctic sea ice, and the coupled global climate system. From a statistical point of view, the observed NAO index shows unusually high variance on interdecadal time scales during the 20th century. Variability on other time scales is consistent with realizations of random processes (''white noise''). Recurrence of wintertime NAO anomalies from winter-to-winter with missing signals during the inbetween nonwinter seasons is primarily associated with interdecadal variability of the NAO. This recurrence indicates that low-frequency changes of the NAO during the 20th century were in part externally forced. (orig.)

  12. 76 FR 7547 - Atlantic Highly Migratory Species; Meeting of the Atlantic Highly Migratory Species Advisory Panel

    Science.gov (United States)

    2011-02-10

    ... of 2010 ICCAT measures, an update on recreational monitoring methods for HMS fisheries, vessel monitoring systems and potential regulatory changes, a summary of the Future of the Shark Fishery workshops... of Atlantic HMS fisheries, including electronic dealer reporting, revitalizing the swordfish fishery...

  13. 78 FR 65974 - Atlantic Highly Migratory Species; Advisory Panel for Atlantic Highly Migratory Species Southeast...

    Science.gov (United States)

    2013-11-04

    ... Organization, Practices, and Procedures by any of the following methods: Email: [email protected] . Mail... environmental community active in the conservation and management of Atlantic sharks, and the academic community... qualifications; and 4. A written commitment that the applicant or nominee shall participate actively and in good...

  14. 77 FR 69596 - Atlantic Highly Migratory Species; Advisory Panel for Atlantic Highly Migratory Species Southeast...

    Science.gov (United States)

    2012-11-20

    ... Organization, Practices, and Procedures by any of the following methods: Email: [email protected] . Mail... conservation and management of Atlantic sharks, and the academic community that have relevant expertise either... shall participate actively and in good faith in the tasks of the SEDAR Pool, as requested. C. Meeting...

  15. 76 FR 70064 - Atlantic Highly Migratory Species; Update to Information on the Effective Date of Atlantic...

    Science.gov (United States)

    2011-11-10

    ... provisions, and only after ESA Section 7 consultation is completed. Notice of the effective date will be.... 110912579-1627-01] RIN 0648-BB43 Atlantic Highly Migratory Species; Update to Information on the Effective.... SUMMARY: NMFS is updating the anticipated effective date of smoothhound shark management measures...

  16. 77 FR 44161 - Atlantic Highly Migratory Species; 2012 Atlantic Bluefin Tuna Quota Specifications

    Science.gov (United States)

    2012-07-27

    ... fighting among themselves while eastern Atlantic and Mediterranean BFT fishermen benefit. Some commenters... that assume the number of BFT yearlings (one-year- old fish) in 2011 would be reduced by 20 percent... conducted projections using the `MAST' model (Multistock Age-Structured Tag-Integrated assessment model...

  17. 78 FR 24148 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures

    Science.gov (United States)

    2013-04-24

    ... Species; Atlantic Shark Management Measures AGENCY: National Marine Fisheries Service (NMFS), National... Plan (FMP) to address the results of recent shark stock assessments for several shark species, including dusky sharks. In that notice, based on the 2010/2011 Southeast Data, Assessment and Review (SEDAR...

  18. 75 FR 50715 - Atlantic Highly Migratory Species; Atlantic Shark Management Measures; Amendment 3

    Science.gov (United States)

    2010-08-17

    ... Migratory Species; Atlantic Shark Management Measures; Amendment 3 AGENCY: National Marine Fisheries Service.... This change ensures that the process is preserved for adjusting annual shark quotas based on over- and..., among other things, pelagic shark quotas and annual quota adjustments. The instructions, however...

  19. 78 FR 11809 - Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2013-2014 Atlantic...

    Science.gov (United States)

    2013-02-20

    ... Ticket reports were used to identify 768 vessels that landed bluefish in North Carolina and 791 vessels... alternative, using Northeast dealer reports and South Atlantic Trip Ticket reports. Under Alternative 1, the... impacted with revenue reductions of 5 percent or more, 22 percent had gross sales of $1,000 or less and 44...

  20. 77 FR 8776 - Fisheries of the Northeastern United States; Atlantic Bluefish Fishery; 2012 Atlantic Bluefish...

    Science.gov (United States)

    2012-02-15

    .... South Atlantic Trip Ticket reports were used to identify 732 vessels \\1\\ that landed bluefish in North... Ticket reports. Under Alternative 1, the recommended commercial quota for 2012 is approximately 40... likely to be impacted with revenue reductions of 5 percent or more, 34 percent had gross sales of $1,000...

  1. 75 FR 10450 - Fisheries of the Northeastern United States; Atlantic Bluefish Fisheries; 2010 Atlantic Bluefish...

    Science.gov (United States)

    2010-03-08

    ... fishery participation in South Carolina, Georgia, or Florida. South Atlantic Trip Ticket reports were used... Ticket reports. The analysis projected that there would be no revenue change for 493 vessels, while 124... vessels that may experience revenue losses of more than 5 percent, 56 percent had gross sales of $1,000 or...

  2. The Equatorial Undercurrent in the central Atlantic and its relation to tropical Atlantic variability

    NARCIS (Netherlands)

    Brandt, Peter; Funk, Andreas; Tantet, Alexis; Johns, William E.; Fischer, Jürgen

    2014-01-01

    Seasonal to interannual variations of the Equatorial Undercurrent (EUC) in the central Atlantic at 23?Ware studied using shipboard observation taken during the period 1999–2011 as well as moored velocity time series covering the period May 2005–June 2011. The sea- sonal variations are dominated by

  3. MeshAtlantic - Mapping Atlantic Area Seabed Habitats For Better Marine Management

    Science.gov (United States)

    McGrath, F.

    2016-02-01

    MeshAtlantic is an EU funded project (INTERREG IVB, 2010-2013) which has provided a harmonised seabed habitat map of the coastal and shelf areas of the Northeast Atlantic. The primary aim of the project was to aid the development of sustainable marine management plans at both regional and European levels. It involved the collation of habitat mapping information across several countries, including Ireland, France, Spain and Portugal as well as acquisition of new data in MPAs in each country. MeshAtlantic has acted as a focal point for collation and standardization of these datasets at an international level. It has also resulted in improved interaction between the European agencies responsible for seabed mapping and stakeholders. The collation of these data has also resulted in close collaboration with other EU funded projects (e.g. EMODNET). The key outputs of the project are three different sets of maps harmonized and classified using EUNIS across the project area. These are: 1. Pre-existing habitat maps that have been enhanced and harmonized 2. Detailed national and transnational habitat maps covering a limited set of Natura 2000 sites 3. A broad-scale modelled habitat map extending from Ireland to Potrtugal (including the Azores) The outputs of the project in Ireland include acquisition of new data in Kenmare Bay, a EUNIS habitat map for Kenmare Bay, direct support of monitoring work in the WFD, a collated habitat map for a significant part of Irelands seabed, and collation of existing habitat maps and source data. MeshAtlantic was supported by INFOMAR, Irelands national seabed mapping programme. Involvement in MeshAtlantic has facilitated leveraging of extra resources in order to discharge a programme of data collation which otherwise could not have been carried out. This paper will focus on how MeshAtlantic promoted harmonised production and use of marine habitat maps covering the Atlantic Area, and look at the approaches adopted to delivering habitat maps for

  4. The North Atlantic Oscillation, Surface Current Velocities, and SST Changes in the Subpolar North Atlantic.

    Science.gov (United States)

    Flatau, Maria K.; Talley, Lynne; Niiler, Pearn P.

    2003-07-01

    Changes in surface circulation in the subpolar North Atlantic are documented for the recent interannual switch in the North Atlantic Oscillation (NAO) index from positive values in the early 1990s to negative values in 1995/96. Data from Lagrangian drifters, which were deployed in the North Atlantic from 1992 to 1998, were used to compute the mean and varying surface currents. NCEP winds were used to calculate the Ekman component, allowing isolation of the geostrophic currents. The mean Ekman velocities are considerably smaller than the mean total velocities that resemble historical analyses. The northeastward flow of the North Atlantic Current is organized into three strong cores associated with topography: along the eastern boundary in Rockall Trough, in the Iceland Basin (the subpolar front), and on the western flank of the Reykjanes Ridge (Irminger Current). The last is isolated in this Eulerian mean from the rest of the North Atlantic Current by a region of weak velocities on the east side of the Reykjanes Ridge.The drifter results during the two different NAO periods are compared with geostrophic flow changes calculated from the NASA/Pathfinder monthly gridded sea surface height (SSH) variability products and the Advanced Very High Resolution Radiometer (AVHRR) SST data. During the positive NAO years the northeastward flow in the North Atlantic Current appeared stronger and the circulation in the cyclonic gyre in the Irminger Basin became more intense. This was consistent with the geostrophic velocities calculated from altimetry data and surface temperature changes from AVHRR SST data, which show that during the positive NAO years, with stronger westerlies, the subpolar front was sharper and located farther east. SST gradients intensified in the North Atlantic Current, Irminger Basin, and east of the Shetland Islands during the positive NAO phase, associated with stronger currents. SST differences between positive and negative NAO years were consistent with

  5. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  6. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  7. Spatial and temporal distribution of North Atlantic tropical cyclones ...

    African Journals Online (AJOL)

    month of genesis and their lifecycles and to study the role of African Easterly Waves (AEWs) in North Atlantic cyclogenesis. Between 1980 and 2004, 269 tropical cyclones (TCs) were formed over the North Atlantic, 77% of which occurred during the August-October period and 95% of major hurricanes (TCs in which the ...

  8. North Atlantic octocorals: Distribution, Ecology and Phylogenetics

    OpenAIRE

    Morris, Kirsty Janet

    2011-01-01

    Most studies of deep-sea benthic fauna have concentrated on soft sediments with little sampling in rocky areas and even less on non-vent mid-ocean ridges and within submarine canyons, mainly as a result of difficulty accessing them. To assess the distribution and abundance of cold-water corals along an Axial Volcanic Ridges along the Mid-Atlantic ridge at 45oN 27oW, and within the Whittard Canyon along the Irish Margin video footage from the ROV Isis taken during a three scientific cruises wa...

  9. Whales before whaling in the North Atlantic.

    Science.gov (United States)

    Roman, Joe; Palumbi, Stephen R

    2003-07-25

    It is well known that hunting dramatically reduced all baleen whale populations, yet reliable estimates of former whale abundances are elusive. Based on coalescent models for mitochondrial DNA sequence variation, the genetic diversity of North Atlantic whales suggests population sizes of approximately 240,000 humpback, 360,000 fin, and 265,000 minke whales. Estimates for fin and humpback whales are far greater than those previously calculated for prewhaling populations and 6 to 20 times higher than present-day population estimates. Such discrepancies suggest the need for a quantitative reevaluation of historical whale populations and a fundamental revision in our conception of the natural state of the oceans.

  10. The Use of PIES Data to Observe South Atlantic Subtropical Mode Water

    Science.gov (United States)

    Cortezi, M. V.; Sato, O. T.; Meinen, C. S.

    2016-02-01

    Subtropical mode water is a voluminous body of water in the ocean whose main feature is the homogeneity in both vertical structure and horizontal extension. The subtropical mode water (STMW) of the southwest Atlantic is formed between the months of July and October near the Brazil-Malvinas confluence and along the Brazil Current recirculation gyre. The formation region extends on the order of 3000 km zonally, from 20°W to 50°W, and 1000 km meridionally, from 30°S to 40°S , and it is typically about 170 m thick. In situ data from pressure-equipped inverted echo sounders (PIES) installed in the western portion of the basin, along 34.5°S, are available from 2009 to the present. These data when properly treated and calibrated can provide an unprecedented description of the STMW involving processes since its formation at the surface until the final stage of its residence in the interior of the ocean.Temperature and salinity data estimated by the PIES are based on an empirical look-up tables that relate the acoustic travel time with the baroclinic structure of the ocean. This technique is known as the Gravest Empirical Mode (GEM) method, and here it is used to recognize profiles containing homogeneous segments of temperature and salinity that characterize the mode water. From the easternmost mooring data of the PIES array, the STMW was detected below the surface at depths ranging between 150 m to 500 m, with a typical layer thickness of 140 m, and temperature range between 14.1 and 15.9°C and salinity between 35.4 and 35.8. The GEM method will further be adapted to help us detect the STMW in its formation stage. The main hypothesis to be tested in this study is that variations at interannual scale in the formation of STMW are linked to variations in the intensity of its interaction with the Brazil Current.

  11. Tropospheric mid-latitude geopotential wave characteristics associated with strong wind events in the North Atlantic/European region

    Science.gov (United States)

    Wild, Simon; Simmonds, Ian; Leckebusch, Gregor C.

    2015-04-01

    The variability of strong synoptic scale wind events in the mid-latitudes have long been linked to baroclinic wave activity in the mid troposphere. Previous studies have also shown that greater amplitudes of planetary waves in the mid troposphere are likely to increase the occurrence of regional extremes in temperature and precipitation. In this study we examine whether characteristics of planetary and synoptic mid-latitude waves show systematic anomalies in the North Atlantic/ European region which can be related to the occurrence of a strong surface wind event. We will mainly focus on two questions: 1) Do amplitudes for waves with different wave lengths show a systematic anomaly when a strong wind event occurs? 2) Can phases of the individual wave components be detected that favour strong wind events? In order to decompose the mid-tropospheric flow into longitudinal waves we employ the fast Fourier transform to the meridional mean of the geopotential height in 500hPa between 35° and 60°N for i) the entire latitude belt and ii) for a North Atlantic/European sector (36°W to 36°E). Our definition of strong wind events is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. First results using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM) for the 50 most intense strong wind systems with respect to the SSI reveal a greater amplitude for all investigated wave numbers. Especially waves with wave lengths below 2000km show an increase of about 25% of the daily standard deviation on average. The distribution of wave phases for the different wave numbers with respect to the location of a strong wind event shows a less homogenous picture. There is however a high proportion of events that can be associated with phases around 3π/4 and 5π/4 of waves with lengths of around 6000km, equivalent to wave number 5 on a planetary scale

  12. The Global Monsoon as Seen through the Divergent Atmospheric Circulation.

    Science.gov (United States)

    Trenberth, Kevin E.; Stepaniak, David P.; Caron, Julie M.

    2000-11-01

    20% of the variance, features relatively shallow but vigorous overturning with the maximum vertical velocities near 800 mb, outflow from 750 to 350 mb, and inflow peaking at 925 mb. It is especially strong over Africa where the shallow, mostly meridional overturning migrates back and forth across the equator with the seasons. It influences the Middle East, has a signature over Australia, and is also an important component of the overturning in the tropical eastern Pacific and Atlantic, and thus of the convergence zones in these regions.The relationship of the global monsoon to the regional monsoons is described over six zonal sectors: Africa, Australia-Asia, North America, South America, and the Pacific and Atlantic Oceans. Only the two ocean areas do not undergo a seasonal reversal required for monsoons, although they have direct overturning cells and they nevertheless participate in the global monsoon through the changes in large-scale overturning. The regional meridional cross sections highlight the importance of the shallow overturning cell in lower-troposphere monsoon activity. The steadiness of the overturning circulation is determined by comparing the signal of the seasonal mean vertical motions at 500 mb with the standard deviation of the transient daily variations. Locations where this signal exceeds 60% of the daily noise correspond closely with the regional centers of the monsoon.

  13. The enigmatic whale: the North Atlantic humpback

    Directory of Open Access Journals (Sweden)

    Tim D Smith

    2009-09-01

    Full Text Available We know more about the North Atlantic humpback whale (Megaptera novaeangliae than we do for virtually any other cetacean, yet attempts to use this information to describe the status of the populations in this ocean basin have not proven satisfactory. The North Atlantic humpback has been the subject of extensive research over the past few decades, resulting in a substantial amount of knowledge about what has proven to be a species with a very complex life history and population structure. While several population models have been developed to integrate the available information, the data overall are not well described by any of the models. This has left considerable uncertainty about population status, and has raised questions about the interpretation of some of the data. We describe 7 specific areas where puzzling or ambiguous observations have been made; these require closer attention if population status is to be determined. These areas raise several fundamental questions, including: How many breeding populations are there? How much do the populations mix on the feeding grounds? How has the distribution of animals on both feeding and breeding grounds changed? We identify additional research needed to address the 7 areas and these questions in particular, so that population status might be determined.

  14. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  15. Otolaryngology in Atlantic Canada: practitioners' perspectives.

    Science.gov (United States)

    Pelausa, E O

    1999-02-01

    A survey was conducted to assess practice conditions in Atlantic Canada for 1996. Otolaryngologists in Nova Scotia, New Brunswick, Prince Edward Island, and Newfoundland/Labrador with at least 1 year of practice experience in the area were canvassed regarding general work concerns, office and OR waiting lists, income, support services, job satisfaction, future plans and personal recommendations for improvement. Nineteen of 40 surveyed responded (47.5%). The results revealed that Atlantic Canadians had to wait considerably longer than average Canadians for ENT services. This was particularly true for Nova Scotians who had to wait often more than double the national average. Forty-seven and a half percent of practitioners were dissatisfied with the practice climate, with many merely trying to maintain status quo. Increasing government constraints and budget cuts have led to practice protectionism and the loss of collegiality. There is little optimism for the future, with 42% predicting continued deterioration in the next 5 years. As a result, up to 58% are considering relocating elsewhere. Despite diminishing returns, these specialists continue to provide the best possible care for their patient patients--hoping for a better tomorrow.

  16. Uso do produto MOD13Q1 do sensor Modis para análise temporal e mapeamento das florestas nas Serras do Sudeste e Campanha Meridional do Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Ana Caroline Paim Benedetti

    2013-06-01

    Full Text Available Imagens NDVI (Índice de Vegetação por Diferença Normalizada do sensor Modis foram utilizadas para mapear as classes de uso e cobertura da terra nas Serras do Sudeste e Campanha Meridional do Rio Grande do Sul. A metodologia compreendeu a elaboração de um banco de dados espaciais e a aplicação de técnicas de processamento digital (contraste linear, classificação digital e operações aritméticas sobre imagens dos satélites Landsat e Terra de diversas datas. Os resultados indicaram que a cobertura florestal passou de 8,6% para 11,6% e 14,3% da área total da microrregião Serras do Sudeste, entre os anos 2000, 2004 e 2008. Na Campanha Meridional, a expansão da cobertura florestal passou de 11,1% para 11,2% e 11,5% da área total no mesmo período. Conclui-se que imagens MOD13Q1, de baixa resolução espacial (250 m, podem ser usadas em grandes áreas para mapear florestas e os demais temas adequadamente.

  17. Dynamical reconstruction of the global ocean state during the Last Glacial Maximum

    Science.gov (United States)

    Kurahashi-Nakamura, Takasumi; Paul, André; Losch, Martin

    2017-04-01

    The global ocean state for the modern age and for the Last Glacial Maximum (LGM) was dynamically reconstructed with a sophisticated data assimilation technique. A substantial amount of data including global seawater temperature, salinity (only for the modern estimate), and the isotopic composition of oxygen and carbon (only in the Atlantic for the LGM) were integrated into an ocean general circulation model with the help of the adjoint method, thereby the model was optimized to reconstruct plausible continuous fields of tracers, overturning circulation and water mass distribution. The adjoint-based LGM state estimation of this study represents the state of the art in terms of the length of forward model runs, the number of observations assimilated, and the model domain. Compared to the modern state, the reconstructed continuous sea-surface temperature field for the LGM shows a global-mean cooling of 2.2 K, and the reconstructed LGM ocean has a more vigorous Atlantic meridional overturning circulation, shallower North Atlantic Deep Water (NADW) equivalent, stronger stratification, and more saline deep water.

  18. A direct estimate of poleward volume, heat and fresh water flux at 59.5°N between Greenland and Scotland

    Science.gov (United States)

    Rossby, Thomas; Reverdin, Gilles; Chafik, Leon; Søiland, Henrik

    2017-04-01

    The meridional overturning circulation (MOC) in the North Atlantic plays a major role in the transport of heat from low latitudes to high. In this study we combine recent measurements of currents from the surface to >700 m from a shipboard acoustic Doppler current profiler on the Nuka Arctica, a freighter in regular service between Greenland and Denmark with Argo profiles (to 2000 m) to estimate poleward volume, heat and freshwater flux at 59.5°N between Greenland and Scotland. For the period late 2012 to early 2016 the de-seasoned mean meridional overturning circulation reaches a 14.9±1.7 Sv maximum at the σθ = 27.55 kg m-3 isopycnal, which varies in depth from near the surface in the western Irminger Sea to 1000 m in Rockall Trough. The surface to bottom transport has a -0.44 Sv (southward) residual, which is not significantly different from zero. The total heat and fresh water fluxes across 59.5°N = 307 PW and 0.15 Sv, both with a 12% uncertainty principally due to uncertainties of the MOC. Comparing this ADCP dataset with an earlier one of comparable size from 1999-2002 (to 400 m depth only) shows strikingly similar transports in both west and east of the Reykjanes Ridge suggesting at least for these two periods 13 years apart very little difference in the strength of the MOC.

  19. A direct estimate of poleward volume, heat, and freshwater fluxes at 59.5°N between Greenland and Scotland

    Science.gov (United States)

    Rossby, T.; Reverdin, Gilles; Chafik, Leon; Søiland, Henrik

    2017-07-01

    The meridional overturning circulation (MOC) in the North Atlantic plays a major role in the transport of heat from low to high latitudes. In this study, we combine recent measurements of currents from the surface to >700 m from a shipboard acoustic Doppler current profiler with Argo profiles (to 2000 m) to estimate poleward volume, heat, and freshwater flux at 59.5°N between Greenland and Scotland. This is made possible thanks to the vessel Nuka Arctica that operates on a 3 week schedule between Greenland and Denmark. For the period late 2012 to early 2016, the deseasoned mean meridional overturning circulation reaches a 18.4 ± 3.4 Sv maximum at the σθ = 27.55 kg m-3 isopycnal, which varies in depth from near the surface in the western Irminger Sea to 1000 m in Rockall Trough. The total heat and freshwater fluxes across 59.5°N = 399 ± 74 TW and -0.20 ± 0.04 Sv, where the uncertainties are principally due to that of the MOC. Analysis of altimetric sea surface height variations along exactly the same route reveals a somewhat stronger geostrophic flow north during this period compared to the 23 year mean suggesting that for a long-term mean the above flux estimates should be reduced slightly to 17.4 Sv, 377 TW, and -0.19 Sv, respectively, with the same estimate uncertainties. The ADCP program is ongoing.

  20. A influência litológica nas taxas de denudação geoquímica do médio Espinhaço Meridional – MG / Lithological influence on rates of geochemical denudation in the middle Espinhaço Meridional – MG

    Directory of Open Access Journals (Sweden)

    Éric Andrade Rezende, , , ,

    2010-12-01

    Full Text Available O presente trabalho visa investigar a influência da litologia nas atuais taxas de denudação geoquímica na média Serra do Espinhaço Meridional. As taxas de denudação correspondem ao volume de material proveniente da alteração das rochas retirado de uma determinada área em um dado período de tempo (Souch, 2004. Estas taxas são intensamente controladas pelo substrato geológico, notadamente em bacias hidrográficas de menor extensão. O método adotado baseia-se na coleta de amostras das águas superficiais de dezesseis sub-bacias hidrográficas – que apresentam baixa interferência antrópica e estão sobre substrato geológico predominantemente quartzítico – e na medição da vazão dos canais amostrados. Análises químicas de águas superficiais, coletadas nos períodos úmido e seco do ano, foram utilizadas no cálculo da taxa de denudação geoquímica, que, de modo geral, apresentou-se baixa devido a alta resistência dos quartzitos - litologia predominante. Os resultados demonstraram que, apesar da relativa homogeneidade litológica, a área apresenta uma denudação geoquímica diferencial, onde: (i bacias que drenam rochas carbonáticas possuem taxas mais elevadas de denudação, confirmando a alta solubilidade desse material, (ii bacias que drenam unidades quartzíticas apresentam taxas baixas de denudação, principalmente aquelas sobre as formações Galho do Miguel e Sopa-Brumadinho.