WorldWideScience

Sample records for atic balloon experiment

  1. Beam tests of the balloon-borne ATIC experiment

    CERN Document Server

    Ganel, O; Ahn, H S; Ampe, J; Bashindzhagian, G L; Case, G; Chang, H; Ellison, S; Fazely, A; Gould, R; Granger, D; Gunasingha, R M; Guzik, T G; Han, Y J; Isbert, J; Kim, H J; Kim, K C; Kim, S K; Kwon, Y; Panasyuk, M Y; Panov, A; Price, B; Samsonov, G; Schmidt, W K H; Sen, M; Seo, E S; Sina, R; Sokolskaya, N; Stewart, M; Voronin, A; Wagner, D; Wang, J Z; Wefel, J P; Wu, J; Zatsepin, V

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurements from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide information about some of the most fundamental questions in astroparticle physics today. ATIC's design centers on an 18 radiation length (X0) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75λint graphite target. In September 1999, the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000–January 2001 and again in December 2002–January 2003, ATIC flew on the first two of a series of long-duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam tests, including energy resolutions for electrons and protons at several beam energies from 100 to 375 G...

  2. Albedo in the ATIC Experiment

    Science.gov (United States)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  3. Albedo in the ATIC Experiment: Results of Measurements and Simulation

    Science.gov (United States)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    Characteristics of albedo, or backscatter current, providing a 'background' for calorimeter experiments in high energy cosmic rays are analyzed. The comparison of experimental data obtained in the flights of the ATIC spectrometer is made with simulations performed using the GEANT 3.21 code. The influence of the backscatter on charge resolution in the ATIC experiment is discussed.

  4. Energy Spectra of Abundant Nuclei of Primary Cosmic Rays from the Data of ATIC-2 Experiment: Final Results

    CERN Document Server

    Panov, A D; Ahn, H S; Bashinzhagyan, G L; Watts, J W; Wefel, J P; Wu, J; Ganel, O; Guzik, T G; Zatsepin, V I; Isbert, I; Kim, K C; Christl, M; Kouznetsov, E N; Panasyuk, M I; Seo, E S; Sokolskaya, N V; Chang, J; Schmidt, W K H; Fazely, A R

    2011-01-01

    The final results of processing the data from the balloon-born experiment ATIC-2 (Antarctica, 2002-2003) for the energy spectra of protons and He, C, O, Ne, Mg, Si, and Fe nuclei, the spectrum of all particles, and the mean logarithm of atomic weight of primary cosmic rays as a function of energy are presented. The final results are based on improvement of the methods used earlier, in particular, considerably increased resolution of the charge spectrum. The preliminary conclusions on the significant difference in the spectra of protons and helium nuclei (the proton spectrum is steeper) and the non-power character of the spectra of protons and heavier nuclei (flattening of carbon spectrum at energies above 10 TeV) are confirmed. A complex structure of the energy dependence of the mean logarithm of atomic weight is found.

  5. Upturn observed in heavy nuclei to iron ratios by the ATIC-2 experiment

    CERN Document Server

    Panov, A D; Zatsepin, V I; Adams, J H; Ahn, H S; Bashindzhagyan, G L; Chang, J; Christl, M; Fazely, A R; Guzik, T G; Isbert, J; Kim, K C; Kouznetsov, E N; Panasyuk, M I; Seo, E S; Watts, J W; Wefel, J P; Wu, J; 10.1088/1742-6596/409/1/012036

    2013-01-01

    The ratios of fluxes of heavy nuclei from sulfur (Z=16) to chromium (Z=24) to the flux of iron were measured by the ATIC-2 experiment. The ratios are decreasing functions of energy from 5 GeV/n to approximately 80 GeV/n, as expected. However, an unexpected sharp upturn in the ratios are observed for energies above 100 GeV/n for all elements from Z=16 to Z=24. Similar upturn but with lower amplitude was also discovered in the ATIC-2 data for the ratio of fluxes of abundant even nuclei (C, O, Ne, Mg, Si) to the flux of iron. Therefore the spectrum of iron is significantly different from the spectra of other abundant even nuclei.

  6. Attitude determination for balloon-borne experiments

    CERN Document Server

    Gandilo, N N; Amiri, M; Angile, F E; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Devlin, M J; Dober, B; Dore, O P; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Fukui, Y; Galitzki, N; Gambrel, A E; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Klein, J; Korotkov, A L; Kuo, C L; MacTavish, C J; Mason, P V; Matthews, T G; Megerian, K G; Moncelsi, L; Morford, T A; Mroczkowski, T K; Nagy, J M; Netterfield, C B; Novak, G; Nutter, D; O'Brient, R; Pascale, E; Poidevin, F; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Savini, G; Scott, D; Shariff, J A; Soler, J D; Thomas, N E; Trangsrud, A; Truch, M D; Tucker, C E; Tucker, G S; Tucker, R S; Turner, A D; Ward-Thompson, D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of SPIDER, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. ...

  7. Upturn in the ratio of nuclei of Z=16–24 to iron observed in the ATIC experiment and the Local Bubble

    International Nuclear Information System (INIS)

    The ratios of heavy nuclei from Sulfur (Z=16) to Chromium (Z=24) fluxes to the flux of iron nuclei were measured recently in the ATIC-2 experiment. These ratios were the decreasing functions of energy from 5 GeV/n to approximately 50 GeV/n as expected. However, an unexpected sharp upturn in the ratios was observed at energy ∼ 50 GeV/n. In this paper, we revise the data and show that the statistical confidence of the observed upturn in the ATIC data is 99.7% and some additional arguments supporting the phenomenon are presented. A possible cause of the upturn is discussed and it is demonstrated that it can be partially understood within a model of ‘Closed Galaxy with Bubbles’ (CGB). Some features and problems of the CGB model are discussed

  8. High altitude balloon experiments at IIA

    Science.gov (United States)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  9. Microgravity combustion experiment using high altitude balloon.

    Science.gov (United States)

    Kan, Yuji

    In JAXA, microgravity experiment system using a high altitude balloon was developed , for good microgravity environment and short turn-around time. In this publication, I give an account of themicrogravity experiment system and a combustion experiment to utilize the system. The balloon operated vehicle (BOV) as a microgravity experiment system was developed from 2004 to 2009. Features of the BOV are (1) BOV has double capsule structure. Outside-capsule and inside-capsule are kept the non-contact state by 3-axis drag-free control. (2) The payload is spherical shape and itsdiameter is about 300 mm. (3) Keep 10-4 G level microgravity environment for about 30 seconds However, BOV’s payload was small, and could not mount large experiment module. In this study, inherits the results of past, we established a new experimental system called “iBOV” in order toaccommodate larger payload. Features of the iBOV are (1) Drag-free control use for only vertical direction. (2) The payload is a cylindrical shape and its size is about 300 mm in diameter and 700 mm in height. (3) Keep 10-3-10-4 G level microgravity environment for about 30 seconds We have "Observation experiment of flame propagation behavior of the droplets column" as experiment using iBOV. This experiment is a theme that was selected first for technical demonstration of iBOV. We are conducting the flame propagation mechanism elucidation study of fuel droplets array was placed at regular intervals. We conducted a microgravity experiments using TEXUS rocket ESA and drop tower. For this microgravity combustion experiment using high altitude balloon, we use the Engineering Model (EM) for TEXUS rocket experiment. The EM (This payload) consists of combustion vessel, droplets supporter, droplets generator, fuel syringe, igniter, digital camera, high-speed camera. And, This payload was improved from the EM as follows. (1) Add a control unit. (2) Add inside batteries for control unit and heater of combustion

  10. Cosmic ray abundance measurements with the CAKE balloon experiment

    CERN Document Server

    Cecchini, S; Giacomelli, G; Manzoor, S; Medinaceli, E; Patrizii, L; Togo, V

    2005-01-01

    We present the results from the CAKE (Cosmic Abundance below Knee Energy) balloon experiment which uses nuclear track detectors. The final experiment goal is the determination of the charge spectrum of CR nuclei with Z $>$ 30 in the primary cosmic radiation. The detector, which has a geometric acceptance of $\\sim$ 1.7 m$^2$sr, was exposed in a trans-mediterranean stratospheric balloon flight. Calibrations of the detectors used (CR39 and Lexan), scanning strategies and algorithms for tracking particles in an automatic mode are presented. The present status of the results is discussed

  11. Experiments with Helium-Filled Balloons

    Science.gov (United States)

    Zable, Anthony C.

    2010-01-01

    The concepts of Newtonian mechanics, fluids, and ideal gas law physics are often treated as separate and isolated topics in the typical introductory college-level physics course, especially in the laboratory setting. To bridge these subjects, a simple experiment was developed that utilizes computer-based data acquisition sensors and a digital gram…

  12. The data processor of the EUSO-Balloon experiment

    International Nuclear Information System (INIS)

    The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region being proposed for attachment to the Japanese Experiment Module (JEM) onboard International Space Station (ISS). The main scientific goal of the mission is the study of Extreme Energy Cosmic Rays (EECR) above 5 × 1019 eV. The instrument consists of high transmittance optical Fresnel lenses with a diameter of 2.5 m, a focal surface covered by ∼ 5000 Multi Anode Photo Multiplier Tubes of 64 pixels, front-end readout, trigger and system electronics. The EUSO-Balloon experiment is a pathfinder mission in which a telescope of smaller dimension than the one designed for the ISS will be mounted onboard a stratospheric balloon. The main objective of this pathfinder mission, planned for 2014, is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the global detection chain. Furthermore, EUSO-Balloon will measure the atmospheric and terrestrial UV background components, in different observational modes, fundamental for the development of the simulations. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-Balloon also has the potential to detect Extensive Air Showers from above, paving the way for any future large scale, space-based EECR observatory. In this paper we will present the Data Processor (DP) of EUSO-Balloon, which is the component of the Electronics System which performs the data management and the instrument control. More in detail, the DP controls the front-end electronics, performs the 2nd level trigger filtering, tags events with arrival time and payload position through a GPS system, manages the Mass Memory for data storage, measures live and dead time of the telescope, provides signals for time synchronization of the event, performs housekeeping monitor, and handles the interface to the telemetry system. The DP has to operate at high altitude

  13. Membranous duodenal stenosis: Initial experience with balloon dilatation in four children

    Energy Technology Data Exchange (ETDEWEB)

    Rijn, R.R. van [Department of Radiology, Academic Medical Centre Amsterdam (Netherlands); Lienden, K.P. van [Department of Radiology, Academic Medical Centre Amsterdam (Netherlands); Fortuna, T.L. [Dalhousie University, Medical school, Halifax (Canada); Department of Diagnostic Imaging, Hospital for Sick Children, Toronto (Canada); D' Alessandro, L.C.A. [University of Western Ontario, Schulich School of Medicine, London (Canada); Department of Diagnostic Imaging, Hospital for Sick Children, Toronto (Canada); Connolly, B. [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto (Canada); Chait, P.G. [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto (Canada)]. E-mail: peter.chait@rogers.com

    2006-07-15

    Introduction: We present a novel approach to the treatment of membranous duodenal stenosis (MDS). To our knowledge this is the first paper to describe balloon dilatation for this entity. Material and methods: Four children, 2 boys and 2 girls, aged between 8 and 28 days, underwent duodenal balloon dilatation. Balloon dilatation was performed under general anaesthesia using standard angiography balloons per os. Balloon diameters ranged from 6 to 14 mm. Results: All balloon dilatations were successful. None of the procedures showed procedural or post-procedural complications. None of the patients subsequently required surgical intervention. To date all children are doing well. Discussion: The initial experience with balloon dilation of MDS showed a 100% success rate, without procedural or post-procedural complications. The results obtained in this small group of patients suggest that the use of balloon dilatation in cases of MDS may be a safe technique that can be readily performed by an experienced interventional radiologist.

  14. Membranous duodenal stenosis: Initial experience with balloon dilatation in four children

    International Nuclear Information System (INIS)

    Introduction: We present a novel approach to the treatment of membranous duodenal stenosis (MDS). To our knowledge this is the first paper to describe balloon dilatation for this entity. Material and methods: Four children, 2 boys and 2 girls, aged between 8 and 28 days, underwent duodenal balloon dilatation. Balloon dilatation was performed under general anaesthesia using standard angiography balloons per os. Balloon diameters ranged from 6 to 14 mm. Results: All balloon dilatations were successful. None of the procedures showed procedural or post-procedural complications. None of the patients subsequently required surgical intervention. To date all children are doing well. Discussion: The initial experience with balloon dilation of MDS showed a 100% success rate, without procedural or post-procedural complications. The results obtained in this small group of patients suggest that the use of balloon dilatation in cases of MDS may be a safe technique that can be readily performed by an experienced interventional radiologist

  15. CMSSM Spectroscopy in light of PAMELA and ATIC

    CERN Document Server

    Gogoladze, Ilia; Shafi, Qaisar; Yuksel, Hasan

    2009-01-01

    Dark matter neutralinos in the constrained minimal supersymmetric model (CMSSM) may account for the recent cosmic ray electron and positron observations reported by the PAMELA and ATIC experiments either through self annihilation or via decay. However, to achieve this, both scenarios require new physics beyond the 'standard' CMSSM, and a unified explanation of the two experiments suggests a neutralino mass of order 700 GeV - 2 TeV. A relatively light neutralino with mass around 100 GeV (300 GeV) can accomodate the PAMELA but not the ATIC observations based on a model of annihilating (decaying) neutralinos. We study the implications of these scenarios for Higgs and sparticle spectroscopy in the CMSSM and highlight some benchmark points. An estimate of neutrino flux expected from the annihilating and decaying neutralino scenarios is provided.

  16. Multi object spectrograph of the Fireball balloon experiment

    Science.gov (United States)

    Grange, R.; Lemaitre, G. R.; Quiret, S.; Milliard, B.; Pascal, S.; Origné, A.

    2014-07-01

    Fireball is a NASA/CNES balloon-borne experiment to study the faint diffuse circumgalactic emission in the ultraviolet around 200 nm. The field of view of the 1 meter diameter parabola is enlarged using a two-mirror field corrector providing 1000 arcmin2 at the slit mask. The 0.1 nm resolution Multi Object Spectrograph is based on two identical Schmidt systems sharing a reflective aspherical grating. The aspherization of the grating is achieved using a double replication technique of a metallic deformable matrix. We will present the F/2.5 spectrograph design and the deformable matrix process to obtain the Schmidt grating with elliptical contours.

  17. Polar Balloon Experiment for Astrophysics Research (Polar BEAR)

    Science.gov (United States)

    Bashindzhagyan, G.; Adams, James H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A new balloon experiment is proposed for a long duration flight around the North Pole. The primary objective of the experiment is to measure the elemental energy spectra of high-energy cosmic rays in the region up to 10(exp 15) eV. The proposed instrument involves the combination of a large collecting area (approximately 1 x 1 square m) KLEM (Kinematic Lightweight Energy Meter) device with an ionization calorimeter having a smaller collecting area (approximately 0.5 x 0.5 square m) and integrated beneath the KLEM apparatus. This combination has several important advantages. Due to the large aperture (greater than 2 square m sr) of the KLEM device a large exposure factor can be achieved with a long duration balloon flight (2-4 weeks). The calorimeter will collect about 10% of the events already registered by KLEM and provide effective cross-calibration for both energy measurement methods. Details of the experiment and its astrophysical significance will be presented.

  18. The readout electronic of EUSO-Balloon experiment

    Science.gov (United States)

    Ahmad, S.; Barrillon, P.; Blaksley, C.; Blin-Bondil, S.; Ebersoldt, A.; Dagoret-Campagne, S.; de la Taille, C.; Dulucq, F.; Gorodetzky, P.; Miyamoto, H.; Moretto, C.; Prévôt, G.; Reina, J. A. R.

    2014-03-01

    The EUSO-Balloon experiment is a pathfinder for the satellite mission JEM-EUSO whose goal will be to observe Extensive Air Showers produced in the atmosphere by the passage can detect fluorescent UV photons released by the EAS thanks to Multi-anode photomultipliers (MAPMT) arranged in 6 × 6 matrices inside Photo Detector Modules (PDM). A set of lenses is used to focus the photons on the PDM which can be compared to a UV camera taking pictures every 2.5 μs period (GTU: Gate Time Unit). The experiment consists in launching a balloon, at an altitude of 40 km, equipped with complete PDM and Data Processing systems. This project, supported by CNES and constructed by the JEM-EUSO collaboration, is meant to prove that the technology of such an instrument is possible and that the performance is satisfying, raising the Technical Readiness Level (TRL) of JEM-EUSO. Moreover, complex trigger algorithms will be assessed and the main back ground (night glow plus star light) will be studied. A complex readout electronic chain has been designed for the EUSO-Balloon project. It contains two elements: the 9 EC units and the 6 EC-ASIC boards. The EC unit includes four 64-channel Multi-Anode Photomultipliers and a set of pcbs used to supply the 14 different high voltages needed by the MAPMTs and to read out the analog anode signals. These signals are transmitted to the EC-ASIC boards which contain 6 SPACIROC ASICs each. During the year 2012, prototypes of each board were produced and tested successfully, leading to the production of the flight model PCBs in 2013.

  19. The Balloon-Borne Exoplanet Experiment (EchoBeach)

    Science.gov (United States)

    Pascale, E.

    2013-09-01

    The Balloon-Borne Exoplanet Experiment (EchoBeach) is a proposed sub-orbital spectroscopic instrument. Its primary scientific goal is to detect and characterize the atmospheres of transiting exoplanets in the Mid-IR part of the electromagnetic spectrum from 4 to 20 μm using a 1.6m diameter telescope. It is in this wavelength range where the contrast between the star and planet emission grows exponentially, and this spectral region is key to answering important questions about the existence and composition of exp-atmospheres. Due to the Earth atmospheric absorption and emission, bservations at these wavelength are impossible from the ground or even at aircraft altitudes, but become available to balloon-born instrumentation flying in the upper stratosphere. At present we have high fidelity Mid-IR spectra of just two exoplanets of any type. EchoBeach can greatly improve on this by observing a multitude of transiting exoplanets, well in advance of any planned space-mission.

  20. The balloon-borne exoplanet spectroscopy experiment (BETSE)

    Science.gov (United States)

    Pascale, E.

    2015-10-01

    The balloon-borne exoplanet spectroscopy experiment (BETSE) is a proposed balloon spectrometer operating in the 1-5 μm band with spectral resolution of R = 100. Using a 50 cm diameter telescope, BETSE is desgnied to have sufficient sensitivity and control of systematics to measure the atmospheric spectra of representative sample of known hot Jupiters, few warm Neptunes, and some of the exoplanets TESS will soon begin to discover. This would for the first time allow us to place strict observational constraints on the nature of exo-atmospheres and on models of planetary formation. In a LDB flight from Antarctica, BETSE would be able to characterize the atmospheres of 20 planets. If a ULDB flight is available, the combination of a longer flight and night time operations would enable BETSE to ground-breakingly characterize the atmospheres of more than 40 planets. Prior to an LDB or ULDB flight, BETSE would be tested in a 24 hr flight from Fort Sumner, NM, in order to test all subsystems, also observing more than 4 planets with SNR greater than 5.

  1. Multiorder etalon sounder (MOES) development and test for balloon experiment

    Science.gov (United States)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    concept and laboratory experiments were worked on for the past several years. Both theoretical studies and laboratory prototype experiments showed that MOES is very competitive compared with other high resolution sounders in terms of complexity and performance and has great potential as a compact and rugged high resolution atmospheric temperature and trace species sounder from the polar platform or the geostationary platform. The logical next step is to convert our laboratory prototype to a balloon instrument, so that field test of MOES can be carried out to prove the feasibility and capability of this new technology. Some of the activities related to the development of MOES for a possible balloon flight demonstration are described. Those research activities include the imaging quality study on the CLIO, the design and construction of a MOES laboratory prototype, the test and calibration of the MOES prototype, and the design of the balloon flight gondola.

  2. Balloon and satellite experiments. Future prospects: from Balloons to NINA and PAMELA satellite experiments

    International Nuclear Information System (INIS)

    After a short description of the experimental situation about the most relevant items in cosmic ray research the situation for the research of the antimatter component in galactic cosmic rays is considered. The expectation for the new generation of experiments BESS, PAMELA and AMS in preparation for the next future are considered. In particular the PAMELA experiment is described from its origin in the framework of the WIZARD collaboration activities, its development, the performance and the present status of its realization

  3. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  4. EBEX: A balloon-borne CMB polarization experiment

    CERN Document Server

    Reichborn-Kjennerud, Britt; Ade, Peter; Aubin, Françcois; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, William; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Meng, Xiaofan; Miller, Amber; Milligan, Michael; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Sagiv, Ilan; Smecher, Graeme; Stivoli, Federico; Stompor, Radek; Tran, Huan; Tristram, Matthieu; Tucker, Gregory S; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-01-01

    EBEX is a NASA-funded balloon-borne experiment designed to measure the polarization of the cosmic microwave background (CMB). Observations will be made using 1432 transition edge sensor (TES) bolometric detectors read out with frequency multiplexed SQuIDs. EBEX will observe in three frequency bands centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each band, respectively. This broad frequency coverage is designed to provide valuable information about polarized foreground signals from dust. The polarized sky signals will be modulated with an achromatic half wave plate (AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky with 8' resolution, allowing for observation of the angular power spectrum from \\ell = 20 to 1000. This will allow EBEX to search for both the primordial B-mode signal predicted by inflation and the anticipated lensing B-mode signal. Calculations to predict EBEX constrain...

  5. Design of experiments and equipment to test the ballooning characteristics of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Experiments have been planned and an apparatus has been designed to enable creep testing of end-of-life pressure tube specimens in a LOCA environment. Effects that could be studied include: annealing of irradiation damage during transient heating; effects of hydride blisters on pressure tube ballooning strains; and, effects of uniformly-distributed hydrogen content on pressure tube ballooning strains. The proposed experimental program will consist of separate effects creep tests on pressure tube sections under transient heating conditions

  6. Proceedings of the 3rd workshop on balloon-borne experiments with superconducting magnet spectrometers

    International Nuclear Information System (INIS)

    The Third Work Shop on Balloon Borne Experiment with a Superconducting Magnet Spectrometer was held at National Laboratory for High Energy Physics (KEK), Tsukuba, Japan on February 24 - 25, 1992. The main effort for this workshop was focused on the progress of the BESS (Balloon Borne Experiment with a Superconducting Spectrometer) experiment and on the scope for scientific investigation with the BESS detector. The progress was reviewed and further investigation was discussed for the BESS further scientific collaboration among Univ. of Tokyo, Kobe University, KEK, ISAS and NMSU. (J.P.N.)

  7. Results from PAMELA, ATIC and FERMI: Pulsars or dark matter?

    Indian Academy of Sciences (India)

    Debtosh Chowdhury; Sudhir K Vempati; Chanda J Jog

    2011-01-01

    It is well known that dark matter dominates the dynamics of galaxies and clusters of galaxies. Its constituents remain a mystery despite an assiduous search for them over the past three decades. Recent results from the satellite-based PAMELA experiment show an excess in the positron fraction at energies between 10 and 100 GeV in the secondary cosmic ray spectrum. Other experiments, namely ATIC, HESS and FERMI, show an excess in the total electron (+ + −) spectrum for energies greater than 100 GeV. These excesses in the positron fraction as well as the electron spectrum can arise in local astrophysical processes like pulsars, or can be attributed to the annihilation of the dark matter particles. The latter possibility gives clues to the possible candidates for the dark matter in galaxies and other astrophysical systems. In this article, we give a report of these exciting developments.

  8. Balloon UV Experiments for Astronomical and Atmospheric Observations

    CERN Document Server

    Sreejith, A G; Sarpotdar, Mayuresh; Nirmal, K; Ambily, S; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-01-01

    The ultraviolet (UV) window has been largely unexplored through balloons for astronomy. We discuss here the development of a compact near-UV spectrograph with ?ber optics input for balloon ights. It is a modi?ed Czerny-Turner system built using o?-the-shelf components. The system is portable and scalable to di?erent telescopes. The use of re ecting optics reduces the transmission loss in the UV. It employs an image-intensi?ed CMOS sensor, operating in photon counting mode, as the detector of choice. A lightweight pointing system developed for stable pointing to observe astronomical sources is also discussed, together with the methods to improve its accuracy, e.g. using the in-house build star sensor and others. Our primary scienti?c objectives include the observation of bright Solar System objects such as visible to eye comets, Moon and planets. Studies of planets can give us valuable information about the planetary aurorae, helping to model and compare atmospheres of other planets and the Earth. The other ma...

  9. Percutaneous trigeminal ganglion balloon compression : experience in 40 patients.

    Directory of Open Access Journals (Sweden)

    Natarajan M

    2000-10-01

    Full Text Available Forty patients of trigeminal neuralgia were treated with percutaneous trigeminal ganglion balloon compression. Symptoms had been present since six months to twenty years. The age ranged between 23 years and 73 years. All the patients had immediate relief from pain. Two had already undergone trigeminal cistern rhizolysis. One patient had foramen ovale stenosis. After the procedure, all the patients had mild to moderate degree of ipsilateral facial sensory loss which included buccal mucosa and anterior 2/3rd of the tongue. Facial dysaesthesia (anaesthesia dolorosa was seen in only one case, who had mild involvement lasting one week. Thirty patients had altered taste sensation, probably due to general somatic sensory loss. Five patients had herpes perioralis. In this study group, two patients had already undergone microvascular decompression. All the patients were followed for a period ranging from one to eighteen months. Balloon compression technique seems to be better than injection of alcohol, glycerol or radio frequency lesion. Recurrence of pain was noted in 3 patients after one year.

  10. Ballooning of CANDU pressure tubes - experiments with degraded tube material

    International Nuclear Information System (INIS)

    Three as-received Zr-2.5% Nb pressure tube specimens and three specimens with eight 0.5 mm deep defects machined on the inside surface were tested in the ballooning test rig at Stern Laboratories Inc. The temperature ramp rate was controlled between 28 K s-1 and 35 K s-1. Temperatures on the outside and inside surfaces of the specimens, and circumferential and longitudinal strains were recorded during the transients. Post-test longitudinal, circumferential and wall thickness strains were measured. All as-received specimens ruptured full-length near the top, i.e., the hottest point. All defected specimens failed at either or both upper defects, one rupture being full-length and the others limited to one to three times the length of the defect. (author). 4 refs., 2 tabs., 15 figs

  11. Analysis of Data from the Balloon Borne Gamma RAy Polarimeter Experiment (GRAPE)

    Science.gov (United States)

    Wasti, Sambid K.; Bloser, Peter F.; Legere, Jason S.; McConnell, Mark L.; Ryan, James M.

    2016-04-01

    The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we present the calibration data and describe the analysis done on the GRAPE 2014 flight data.

  12. PAMELA and ATIC Anomalies in Decaying Gravitino Dark Matter Scenario

    OpenAIRE

    Ishiwata, Koji; Matsumoto, Shigeki; Moroi, Takeo

    2009-01-01

    Motivated by the recent results from the PAMELA and ATIC, we study the cosmic-ray electron and positron produced by the decay of gravitino dark matter. We calculate the cosmic-ray electron and positron fluxes and discuss implications to the PAMELA and ATIC data. In this paper, we will show that the observed anomalous fluxes by the PAMELA and ATIC can be explained in such a scenario. We will also discuss the synchrotron radiation flux from the Galactic center in such a scenario.

  13. An Overview of High-Altitude Balloon Experiments at the Indian Institute of Astrophysics

    CERN Document Server

    Safonova, Margarita; Sreejith, A G; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, S; Nirmal, K; Talnikar, Sameer; Hadigal, Shripathy; Prakash, Ajin; Murthy, Jayant

    2016-01-01

    The High-Altitude Ballooning programme began at Indian Institute of Astrophysics, Bangalore, in the year 2011 with the primary purpose of developing and flying low-cost scientific payloads on a balloon-borne platform. Some of the science goals are studies of the phenomena occurring in the upper atmosphere, of airglow and zodiacal light, and observations of extended astronomical objects such as, for example, comets, from near space (20 to 30 km). A brief summary and results of the tethered flights carried out at CREST campus are given in Ref.~1. Here we present a complete overview of the 9 free-flying balloon experiments conducted from March 2013 to November 2014. We describe the launch procedures, payloads, methods of tracking and recovery of the payloads. Since we fall in the light/medium balloon category, the weight of the payload is limited to less than 5 kg --- we use a 3-D printer to fabricate lightweight boxes and structures for our experiments. We are also developing in-house lightweight sensors and co...

  14. Suppression of the coal importation monopoly: ATIC Services succeeds to ATIC

    International Nuclear Information System (INIS)

    1994 has been a turning point in the history of ATIC organism in charge for 50 years of the coal importation monopoly for the French government. Anticipating the suppression of this monopoly, an anonymous society, ATIC Services, has been created with the principal coal consumers as shareholders. Nevertheless, ATIC maintains its missions of general interest such as: identification forms control, verification of solid mineral fuel technical characteristics, statistics and general information. The decay of coal importations has increased to reach 6.2% in 1994 (against 6.5% in 1993 and 9.3% in 1992). Importations from Australia have replace those from the United States and show a 6.3% increase due to the needs of metallurgy industry. 1994 importations represent 13121 kt with 1119 kt from CEE countries (Germany, Benelux, United Kingdom). Colombia remains the main productive for Electricite de France (500 Kt), followed by South Africa which remains the first productive for industry. Maritime transportation is the quasi-unique way of solid mineral fuels importation to France. (J.S.). 1 fig

  15. Double-action dark matter, PAMELA and ATIC

    CERN Document Server

    Cheung, Kingman; Yuan, Tzu-Chiang

    2009-01-01

    Motivated by a two-bump (or 1-peak plus 1-hump) structure in the ATIC data, we perform a statistical analysis fitting the PAMELA and ATIC data to a dark matter model, in which the dark matter particle can undergo both annihilation and decay. Using a chi-square analysis we show that both data can be simultaneously fitted better with such a double-action dark matter particle. We use an existing neutrino mass model in literature to illustrate the idea.

  16. Double-action dark matter, PAMELA and ATIC

    Energy Technology Data Exchange (ETDEWEB)

    Cheung Kingman [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China); Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of)], E-mail: cheung@phys.nthu.edu.tw; Tseng, P.-Y. [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Yuan, T.-C. [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)

    2009-07-20

    Motivated by a two-bump (or 1-peak plus 1-hump) structure in the ATIC data, we perform a statistical analysis fitting the PAMELA and ATIC data to a dark matter model, in which the dark matter particle can undergo both annihilation and decay. Using a chi-square analysis we show that both data can be simultaneously fitted better with such a double-action dark matter particle. We use an existing neutrino mass model in literature to illustrate the idea.

  17. Double-action dark matter, PAMELA and ATIC

    International Nuclear Information System (INIS)

    Motivated by a two-bump (or 1-peak plus 1-hump) structure in the ATIC data, we perform a statistical analysis fitting the PAMELA and ATIC data to a dark matter model, in which the dark matter particle can undergo both annihilation and decay. Using a chi-square analysis we show that both data can be simultaneously fitted better with such a double-action dark matter particle. We use an existing neutrino mass model in literature to illustrate the idea.

  18. GRAPE - A Balloon-Borne Gamma-Ray Polarimeter Experiment

    CERN Document Server

    Bloser, P F; Macri, J R; McConnell, M L; Narita, T; Ryan, J M

    2005-01-01

    This paper reviews the development status of GRAPE (the Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs), although GRAPE could also be employed in the study of other astrophysical sources. Accurately measuring the polarization of the emitted radiation will lead to a better understating of both emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. The azimuthal distribution of photon scatters from the plastic array into the central calorimeter provides a measure of the polarization fraction and polarization angle of the incident radiation. The design of the detector provides sensitivity over a large field-of-view (>pi steradian). The design facilitates the fabrication of large area arrays w...

  19. GRAINE project: The first balloon-borne, emulsion gamma-ray telescope experiment

    Science.gov (United States)

    Takahashi, Satoru; Aoki, Shigeki; Kamada, Keiki; Mizutani, Saki; Nakagawa, Ryo; Ozaki, Keita; Rokujo, Hiroki

    2015-04-01

    The GRAINE project (Gamma-Ray Astro-Imager with Nuclear Emulsion) has been developed for the observation of cosmic γ-rays in the energy range 10 MeV-100 GeV with a precise (0.08°} at 1-2 GeV), polarization-sensitive, large-aperture-area (˜10 m^2) emulsion telescope by repeated long-duration balloon flights. In 2011, the first balloon-borne experiment was successfully performed with a 12.5 × 10cm^2 aperture area and 4.6 hour flight duration for a feasibility and performance test. Systematic detection, energy reconstruction, and timestamping of γ-ray events were performed across the whole area of the emulsion film, up to 45° incident zenith angle, down to 50 MeV γ-ray energy, with 97% detection reliability, 0.2 sec timestamp accuracy, and 98% timestamp reliability. A γ-ray data checking and calibration method was created using the γ-rays produced in the converter. We measured the atmospheric γ-ray flux in the energy range 50-300 MeV and obtained a first understanding of the cosmic γ-ray background. By combining the attitude data, we established a procedure for determining the γ-ray arrival direction in celestial coordinates. The first flight of the balloon-borne emulsion telescope confirmed its potential as a high-performance cosmic γ-ray detector.

  20. Trans-catheter closure of atrial septal defect: Balloon sizing or no balloon sizing - single centre experience

    Directory of Open Access Journals (Sweden)

    Gupta Saurabh

    2011-01-01

    Full Text Available Background : Selecting the device size using a sizing balloon could oversize the ostium secundum atrial septal defect (OSASD with floppy margins and at times may lead to complications. Identifying the firm margins using trans-esophageal echocardiography (TEE and selecting appropriate-sized device optimizes ASD device closure. This retrospective study was undertaken to document the safety and feasibility of device closure without balloon sizing the defect. Methods : Sixty-one consecutive patients who underwent trans-catheter closure of OSASD guided by balloon sizing of the defect and intra procedural fluoroscopy (group I and 67 consecutive patients in whom TEE was used for defect sizing and as intraprocedural imaging during device deployment (group II were compared. The procedural success rate, device characteristics, and complications were compared between the two groups. Results : The procedure was successful in 79.7 % patients. The success rate in group II (60 of 67, 89.6% was significantly higher than in group I (41 of 61, 67.2 % (P = 0.002. Mean upsizing of ASD device was significantly lower in group II (P < 0.001. TEE also provided better success rate with smaller device in subjects with large ASD (>25 mm and in those who were younger than 14 years of age. There were four cases of device embolization (two in each group; of which one died in group II despite successful surgical retrieval. Conclusion : Balloon sizing may not be essential for successful ASD device closure. TEE-guided sizing of ASD and device deployment provides better success rate with relatively smaller sized device.

  1. The TopHat experiment: A balloon-borne instrument for mapping millimeter and submillimeter emission

    DEFF Research Database (Denmark)

    Silverberg, R.F.; Cheng, E.S.; Aguirre, J.E.;

    2005-01-01

    The TopHat experiment was designed to measure the anisotropy in the cosmic microwave background radiation on angular scales from 0.degrees 3 to 30 degrees and the thermal emission from both Galactic and extragalactic dust. The balloon-borne instrument had five spectral bands spanning frequencies...... from 175 to 630 GHz. The telescope was a compact, 1 m, on-axis Cassegrain telescope designed to scan the sky at a fixed elevation of 78 degrees. The radiometer used cryogenic bolometers coupled to a single feed horn via a dichroic filter system. The observing strategy was intended to efficiently cover...

  2. Meaurement of Cosmic Ray elemental composition from the CAKE balloon experiment

    CERN Document Server

    Cecchini, S; Giacomelli, G; Medinaceli, E; Patrizii, L; Sirri, G; Togo, V

    2009-01-01

    CAKE (Cosmic Abundances below Knee Energies) was a prototype balloon experiment for the determination of the charge spectra and of abundances of the primary cosmic-rays (CR) with Z$>$10. It was a passive instrument made of layers of CR39 and Lexan nuclear track detectors; it had a geometric acceptance of $\\sim$0.7 m$^2$sr for Fe nuclei. Here, the scanning and analysis strategies, the algorithms used for the off-line filtering and for the tracking in automated mode of the primary cosmic rays are presented, together with the resulting CR charge distribution and their abundances.

  3. Performance of Large Area X-ray Proportional Counters in a Balloon Experiment

    CERN Document Server

    Roy, J; Dedhia, D K; Manchanda, R K; Shah, P B; Chitnis, V R; Gujar, V M; Parmar, J V; Pawar, D M; Kurhade, V B

    2016-01-01

    ASTROSAT is India's first satellite fully devoted to astronomical observations covering a wide spectral band from optical to hard X-rays by a complement of 4 co-aligned instruments and a Scanning Sky X-ray Monitor. One of the instruments is Large Area X-ray Proportional Counter with 3 identical detectors. In order to assess the performance of this instrument, a balloon experiment with two prototype Large Area X-ray Proportional Counters (LAXPC) was carried out on 2008 April 14. The design of these LAXPCs was similar to those on the ASTROSAT except that their field of view (FOV) was 3$^{\\circ}$ $\\times$ 3$^{\\circ}$ versus FOV of 1$^{\\circ}$ $\\times$ 1$^{\\circ}$ for the LAXPCs on the ASTROSAT. The LAXPCs are aimed at the timing and spectral studies of X-ray sources in 3-80 keV region. In the balloon experiment, the LAXPC, associated electronics and support systems were mounted on an oriented platform which could be pre-programmed to track any source in the sky. A brief description of the LAXPC design, laborator...

  4. The High Altitude Balloon Experiment demonstration of acquisition, tracking, and pointing technologies (HABE-ATP)

    Science.gov (United States)

    Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.

    1995-01-01

    The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target

  5. Experience had with 36 balloon-expendable stents implanted in peripheral arteries of the lower extremities

    International Nuclear Information System (INIS)

    This is a report on 16-month-long experience (November 1999 - February 2001) with 36 balloon-expandable stents applied to 32 patients aged 46 to 72 years. Two stent per patient are implanted in 4 instances, and one stent each in the remainder. The atherosclerotic lesions are located in lower extremity arteries - 4 thromboses long 1-5 cm, and 32 stenoses reducing the vascular lumen by 60 to 90 per cent, long 23.5 cm. An immediate technical success is recorded in all patients, including five cases presenting stenosis of the distal anastomoses after femoropopliteat bypass reconstruction. The clinical and angiographic follow-up study shows very good results after 15 and 6 months, respectively. The obtained results and the absence of serious complications are good reasons to conclude that the use of balloon-expanding stents is a safe and effective procedure of treating atherosclerotic stenotic and thrombotic segments of the iliac and femoral arteries, with superior potentials compared to PTA, especially in lesions of longstanding. The obtained results in stenoses located in the zone of anastomoses associated with bypass confirm this conclusion. (authors)

  6. The HXR80M-balloon experiment: a microprocessor-controlled transatlantic payload

    International Nuclear Information System (INIS)

    Following the results obtained from the succesful transatlantic flight launched during the summer 1976 from the CNR Milo Base, Sicily, the Laboratorio di Astrofisica Spaziale has started a new program in the hard X-ray astronomy field. It basically consists in the development of high resolution large area Multiwire Proportional Chambers to be employed in long duration balloon flights to study and monitor galactic and extragalactic sources. This note will describe the flight configuration and performances of the HXR80M payload. The experiment is expected to fly during July 1980 from the Milo Base in the framework of the CNR experimental balloon campaign. The note will analyze the main characteristics of the detectors employed, of the data handling electronics and in particular of the hardware and the software of the on-board microprocessor controlled multichannel analyzer. In fact the limitation due to the low bit rate HF link (1.2kbit/s) and the long flight duration (about one week) make imperative the use of an on-board microprocessor system to handle and select in real time the scientific data and to control the housekeeping and the telecommand systems

  7. Data Acquisition and Prompt Analysis System for High Altitude Balloon Experiments

    Science.gov (United States)

    Sarkady, A. A.; Chupp, E. L.; Dickey, J. W.

    1968-01-01

    An inexpensive and simple data acquisition system has been developed for balloon borne experiments and has been tested with a gamma ray detector in a balloon flight launched from Palestine, Texas. The detector used for the test consisted of an NaI(T1) scintillation crystal encased in a 1/8 in. plastic scintillator-charged particle shield. The combination was viewed by a single photomultiplier and charged particle gating was accomplished by a conventional phoswich discriminator. The pulse height analysis of the NaI events, not associated with prompt charged particle interactions, is accomplished by converting to a time spectrum using an airborne height to time converter. A range of pulse widths from 5 microseconds to 250 microseconds corresponds to energy losses in NaI from 100 to 1000 keV. The time spectrum information, along with charged particle events and barometric pressure, is fed to a mixer which modulates a 252.4 Mc FM transmitter. The original scintillator spectrum is recovered on the ground utilizing conversion circuitry at the receiver video output and a 128 channel commercial pulse height analyzer. The charged particle events of standard time width are stored with the spectrum at a fixed channel position and are therefore represented by a sharp line riding on the lower part of the NaI energy loss spectrum. An energy loss greater than 1000 keV is presented by the maximum pulse width of the converter and stored in the last analyzer channel. Barometric pressure data is transmitted by low frequency modulation of the sme FM carrier. In flight operation, the receiver video output can be recorded on a wide band tape recorder and simultaneously analyzed by the 128 channel analyzer, or the telemetered data can be analyzed later. The flight system features high pulse resolution, essentially instantaneous time response, high data rate, and flexibility; and is of modest cost. A detailed description of the system and operating performance is discussed.

  8. Dark Matter Annihilation and the PAMELA, FERMI and ATIC Anomalies

    OpenAIRE

    El-Zant, A. A.; Khalil, S.; Okada, H.

    2009-01-01

    If dark matter (DM) annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic DM abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of non-standard cosmological scenarios; pla...

  9. Status of JEM-EUSO and its test experiments EUSO-Balloon and TA-EUSO

    International Nuclear Information System (INIS)

    The JEM-EUSO mission will explore the origin of the extreme energy cosmic rays (EECRs) through the observation of their arrival directions and energies. The super-wide-field telescope looks down from the International Space Station onto the night sky to detect UV photons fluorescence and Cherenkov photons) emitted from air showers generated by EECRs in the Atmosphere. Such a space detector offers the opportunity to observe a huge volume of atmosphere at once and will achieve unprecedented statistical accuracy within a few years of operation. The JEM-EUSO mission will be installed on the Japanese module of the International Space Station. Two test experiments are currently prepared; one to observe the fluorescence background from the edge of the Atmosphere (EUSO-Balloon), and the other to demonstrate, on ground, the capability of all sub-systems of the EUSO instrument (TA-EUSO). In this paper a short review on the scientific objectives and an update of the instrument definition, performances and status of the mission, as well as of the status of the two preceded test experiments will be given. (authors)

  10. Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s

    Science.gov (United States)

    Fishman, Gerald J.

    2008-01-01

    Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.

  11. Pulmonary valve regurgitation following balloon valvuloplasty for pulmonary valve stenosis: Single center experience

    Directory of Open Access Journals (Sweden)

    Asim Yousuf Al Balushi

    2013-01-01

    Full Text Available Background: Pulmonary valve regurgitation following balloon valvuloplasty for moderate to severe pulmonary valve stenosis is a known late outcome of this procedure. Objective: The aim of the study was to characterise the status of pulmonary regurgitation on follow up after pulmonary valve balloon dilatation (PVBD, and to study the determinant of the severity of PR. Materials and Methods: We retrospectively reviewed 50 consecutive patients, aged 2 days to 18 years, with isolated pulmonary valve stenosis, who had undergone PVBD in 2004-2009 and were assessed with follow-up Doppler echocardiography. The impact of balloon to annulus ratio, age, and valve anatomy on the late development of moderate and severe pulmonary valve regurgitation following balloon valvuloplasty was analysed. Results: Six patients (12% had no pulmonary valve regurgitation; 32 (64% had mild, 9 (18% had moderate, and 3 (6% had severe pulmonary valve regurgitation at a mean follow-up of 4 years. Balloon to annulus ratio, age, and valve anatomy were not statistically significant predictors for moderate and severe pulmonary valve regurgitation. Conclusions: The majority of patients in our population had mild pulmonary valve regurgitation. Moderate to severe pulmonary valve regurgitation was well tolerated at midterm follow-up. Age, balloon to annulus ratio, and valve anatomy were not statistically significant predictors for the late development of moderate and severe valve regurgitation. Large and longer follow-up studies are needed to address this question.

  12. PULSAR: a balloon-borne experiment to detect variable low energy gamma-ray

    International Nuclear Information System (INIS)

    The main goal of the balloon-borne 'PULSAR' experiment is to observe γ-ray photons of variable sources and pulsars in the energy range 0.1-5.0 MeV. The geometrical arrangement of the telescope has been designed according to detector sensitivity estimations for the pulsed radiation, which have been made by empirical and analytical methods. From the obtained results we expect to achieve a detection sensitivity of 3.7 x 10-7 photons cm-2 s-1 KeV-1 (0.1 - 0.5 MeV) and 4.5 x 10-6 photons cm-2 s-1 KeV-1 (1.0 - 5.0 MeV), for 5 hours integration time at 5 g cm-2 atmospheric depth, with 3σ statistical significance. It was developed an on-board electronics, compatible with the available telemetry capacity, that is able to process the data with a time resolution of approximatelly 4 miliseconds. (Author)

  13. A Neutron Detector for the Electron Calorimeter (ECAL) Long Duration Balloon Experiment

    Science.gov (United States)

    Adams, J. H., Jr.; Bashindzhagyan, G. L.; Binns, W. R.; Chang, J.; Cherry, M. L.; Christl, M. J.; Guzik, t. G.; Isbert, J.; Israel, M. H.; Korotkova, N.; Panasyuk, M. I.; Panov, A.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Zatsepin, V.

    2007-01-01

    The highest energy measurements of cosmic ray electrons extend just beyond 1 TeV. High energy electrons are of particular interest because energy losses during interstellar propagation insure that they arrive primarily from nearby sources. This may produce observable structure in their spectrum. Further, it is predicted that electrons and positrons result from the annihilation of many exotic particles deposited as dark matter candidates. These electrons may appear as excesses in the cosmic ray electron spectrum from 200 GeV to 1000 GeV. A new long duration balloon experiment, ECAL, is being planned to provide direct cosmic ray electron measurements from approx.50 GeV to >1 TeV. To make these measurements ECAL must discriminate strongly against showers from protons and heavier ions. One of the techniques used to make this discrimination may be based on measuring the secondary neutrons produced by events in the instrument. The neutron detector configuration and technique will be discussed along with its expected performance based on Monte Carlo simulations.

  14. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  15. Balloon Dilatation of Pediatric Subglottic Laryngeal Stenosis during the Artificial Apneic Pause: Experience in 5 Children

    Directory of Open Access Journals (Sweden)

    J. Lisý

    2014-01-01

    Full Text Available Introduction. Balloon dilatation is a method of choice for treatment of laryngeal stenosis in children. The aim of procedure in apneic pause is to avoid new insertion of tracheostomy cannula. Patients and Methods. The authors performed balloon dilatation of subglottic laryngeal strictures (SGS in 5 children (3 girls and 2 boys without tracheotomy. Two of them with traumatic and inflammatory SGS had a tracheal cannula removed in the past. The other 3 children with postintubation SGS had never had a tracheostomy before. The need for tracheostomy due to worsening stridor was imminent for all of them. Results. The total of seven laryngeal dilatations by balloon esophagoplasty catheter in apneic pause was performed in the 5 children. The procedure averted the need for tracheostomy placement in 4 of them (80%. Failure of dilatation in girl with traumatic stenosis and concomitant severe obstructive lung disease led to repeated tracheostomy. Conclusion. Balloon dilatation of laryngeal stricture could be done in the absence of tracheostomy in apneic pause. Dilatation averted threatening tracheostomy in all except one case. Early complication after the procedure seems to be a negative prognostic factor for the outcome of balloon dilatation.

  16. Development of new-type nuclear emulsion for a balloon-borne emulsion gamma-ray telescope experiment

    International Nuclear Information System (INIS)

    This study reports a new-type of nuclear emulsion that improves the track-finding efficiency of charged particle detection. The emulsion is applied to the GRAINE project, a balloon-borne experiment that observes cosmic γ-rays through an emulsion γ-ray telescope. The new emulsion film dramatically improves the detection efficiency for γ-rays. The nuclear emulsion gel and films for the second GRAINE balloon-borne experiment (GRAINE-2015) were fully self-produced by ourselves. New handling methods for the novel emulsion film have also been developed. Over time, the stored films gradually become desensitized to minimum ionizing particles, but the original sensitivity can be restored by a resetting process. Moreover, the fading of latent images can be arrested by a drying process. To sensitize the new-type films and avoid their fading, emulsion preprocessing was applied immediately prior to GRAINE-2015. A balloon flight with the emulsion γ-ray telescope was successfully completed in Australia on 12th May 2015. By scanning with automated optical microscopes and analyzing the penetrated tracks, we confirmed the high track-finding efficiency (97%) of the mounted films. The analysis of γ-ray event detection, aims at detecting Vela pulsar, is in progress

  17. Undergraduate Student-built Experiments in Sounding-Rocket and Balloon Campaign

    Science.gov (United States)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Lindon, M.; Lusk, G. D.

    2014-12-01

    Space physics and aerospace engineering experiments are becoming readily accessible to STEM undergraduates. A number of ionospheric physics experiments and guidance and navigation components were designed, built, integrated, and tested by STEM students at West Virginia University in the 2013-2014 academic year. A main payload was flown on NASA's annual RockSat-C two-stage rocket launched from Wallops Flight Facility in Chincoteague, VA on the morning of June 26, 2014. A high-altitude balloon with a reduced payload was released from Bruceton Mills, WV, prior to the rocket and reached 30,054 m. The geographic distance between the two launch points is small compared to the footprint of geomagnetic and solar-terrestrial disturbances. Aerospace sensors provided flight profiles for each of the two platforms. Daytime E region electron density was measured via a Langmuir probe as a function of altitude from 90 km to the apogee of 117 km. Geomagnetic activity was low (Dst>-7 nT, AEactivity included two high-plasma-density regions measured by NASA's ACE which impacted the magnetosphere producing two sudden impulses at midlatitudes (Dst=+19 and +13 nT). In an airglow experiment, the altitude range of the sodium layer was estimated to be 75-110 km based on in situ measurements of the D2emission line intensity. Acceleration, rotation-rate, and magnetic-field data are useful in reconstructing the trajectory and flight dynamics of the two vehicles and comparing with video from onboard cameras. Participation in RockSat and similar programs is useful in ushering space science and spaceflight concepts in the classroom and lab experience of STEM undergraduates. Lectures, homework, and progress reports were used to connect advanced topics of Earth's space environment and spaceflight to the students' core courses. In several cases the STEM students were guided by graduate students during lab work. Development of the flight payloads was supported by NASA's Undergraduate Student

  18. A self-contained 3He refrigerator suitable for long duration balloon experiments

    Science.gov (United States)

    Masi, S.; Aquilini, E.; Cardoni, P.; de Bernardis, P.; Martinis, L.; Scaramuzzi, F.; Sforna, D.

    We describe the design, development and test of a self-contained 3He fridge, aimed to cool at ≲0.3 K a bolometric detection system with a hold time of two weeks. The system is robust and suitable for operation on a long-duration stratospheric balloon payload. A physical model of the fridge has been developed, which describes the measured hold time, limiting temperature and load curve of the fridge. The system has been flight tested successfully during two balloon flights of the BOOMERanG payload in summer 1997.

  19. ELMs and constraints on the H-mode pedestal: peeling-ballooning stability calculation and comparison with experiment

    International Nuclear Information System (INIS)

    We review and test the peeling-ballooning model for edge localized modes (ELMs) and pedestal constraints, a model based upon theoretical analysis of magnetohydrodynamic (MHD) instabilities that can limit the pedestal height and drive ELMs. A highly efficient MHD stability code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including constraints on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependent on the density and temperature separately, rather than simply on the pressure. ELITE stability calculations are directly compared with experimental data for a series of plasmas in which the density is varied and ELM characteristics change. In addition, a technique is developed whereby peeling-ballooning pedestal constraints are calculated as a function of key equilibrium parameters via ELITE calculations using series of model equilibria. This technique is used to successfully compare the expected pedestal height as a function of density, triangularity and plasma current with experimental data. Furthermore, the technique can be applied for parameter ranges beyond the purview of present experiments, and we present a brief projection of peeling-ballooning pedestal constraints for burning plasma tokamak designs. (author)

  20. The Descending Helium Balloon

    Science.gov (United States)

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  1. Digital control of the High-Altitude Balloon Experiment auto-alignment system

    Science.gov (United States)

    Schulthess, Marcus R.; Baugh, Steven

    1995-05-01

    The High Altitude Balloon Experiments (HABE) control architecture design focuses on establishing an inertial stabilized line-of-sight (LOS) for the tracking and laser pointing subsystems. High bandwidth LOS stabilization is implemented with an inertial reference measurement system. The Inertial Pseudo Star Reference Unit (IPSRU), and inertially stabilized two degree of freedom platform, generates an inertially stabilized alignment reference beam which probes the multiple aperture system. Fast steering mirrors (FSM) in optical alignment loops track the alignment reference beam performing jitter stabilization and boresight alignment. The auto alignment system operates in the primary aperture beam path, stabilizing the fine tracking sensor imagery and surrogate high energy laser pointing subsystem. Due to the superior performance of the IPSRU stabilization platform, aggregate LOS stabilization system base motion and optical jitter rejection is directly traceable to the auto alignment system control dynamics and sensor noise performance. Performance requirements specify two axis FSM control bandwidths of 500 Hz with a positioning resolution better that 300 nano-radians in output space. The digital control law is implemented in high performance digital processors with sample rates in excess of 15 kHz. This paper presents the bench top integration and testing of the digital auto alignment system beginning with a discussion as to the reason behind choosing a digital implementation, a opposed to a much simple analog implementation. A description of the error budget requirements of the HABE digital auto alignment loop follows. The components comprising the auto alignment loop, including mirror and processor hardware and software are described. Experimental objectives are presented with a description of the laboratory setup. Simulation models are constructed from component test data to aid in the development of the alignment system control architecture and discrete time

  2. Contribution to the investigation of balloon experiments for the propagation functions of detonating hydrogen-air-mixtures with test examples

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate transient pressure loads from hydrogen combustion. Specially, the study relates to the analysis of the pressure time-history of detonating hydrogen-air-mixtures from balloon experiments. The study has shown that mesured pressure time-functions can be reproduced by numerical simulations with the detonation code DET. Furthermore, it was shown that edges and corners focus detonation waves in real enclosures with obsstacles which significantly increase pressure loads from normally reflected detonation waves. (orig.)

  3. Clinical experience of cerebral protection with balloon occlusion during carotid artery stenting

    International Nuclear Information System (INIS)

    Purpose: To asses the technical feasibility and the results of cerebral protection with the GuardWire Plus Temporary Occlusion and Aspiration System during carotid artery stenting for high-grade stenosis. Patients and Methods: In 20 patients 20 carotid artery stenoses were treated with stent placement under cerebral protection. A contralateral carotid occlusion was an exclusion criteria for the use of the protection device. In all cases only aspiration, but no flushing was used before deflation of the occlusion balloon. In 17 of 20 patients diffusion-weighted (DW-)MRT imaging of the brain was performed before and 24 hours after the procedure. Results: The stent implantation was successfully performed in all patients. In 3 patients neurologic symptoms occurred during the occlusion time. In these 3 patients the symptoms immediately disappeared after deflation of the balloon. In one case there was dilatation of the internal carotid artery at the site of the balloon inflation. In 3 of the 17 DW-MR images new ipsilateral cerebral lesions, in one case a new contralateral lesion occurred after the procedure. Conclusions: The cerebral protection procedure is technically feasible. The occlusion of the internal carotid artery was not tolerated by all patients. The DW-MR imaging demonstrated cerebral lesions indicating the occurrence of cerebral microemboli during the procedure. Further investigations are necessary to determine if the use of the cerebral protection device will improve the results of the carotid artery stenting for high-grade stenoses. (orig.)

  4. Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Penacchioni, A. V., E-mail: ana.penacchioni@inpe.br; Braga, J., E-mail: joao.braga@inpe.br; Castro, M. A., E-mail: manuel.castro@inpe.br; Sacahui, J. R., E-mail: rodrigo.sacahui@inpe.br; D’Amico, F., E-mail: flavio.damico@inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos (Brazil)

    2015-12-17

    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modelled the meridian transits of the Crab Nebula and the Galactic Centre (CG) region during balloon flights in Brazil (∼ −23° of latitude and an altitude of ∼40 km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and of three sources in the GC: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.

  5. Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    Science.gov (United States)

    Penacchioni, A. V.; Braga, J.; Castro Avila, M. A.; Amico, F. D.

    2016-04-01

    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modelled the meridian transits of the Crab Nebula and the Galactic Centre (GC) region during balloon flights in Brazil (∽ -23° of latitude and ∽ 40 km of altitude) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and of three sources in the GC region: IE 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.

  6. Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    CERN Document Server

    Penacchioni, A V; Castro, M A; D'Amico, F

    2015-01-01

    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modeled the meridian transits of the Crab Nebula and the Galatic Centre region during balloon flights in Brazil ($\\sim -23^{\\circ}$ of latitude and an altitude of $\\sim 40 \\thinspace$ km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and of three sources in the Galactic Centre region: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.

  7. BLASTbus electronics: general-purpose readout and control for balloon-borne experiments

    Science.gov (United States)

    Benton, S. J.; Ade, P. A.; Amiri, M.; Angilè, F. E.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Devlin, M. J.; Dober, B.; Doré, O. P.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Fukui, Y.; Galitzki, N.; Gambrel, A. E.; Gandilo, N. N.; Golwala, S. R.; Gudmundsson, J. E.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z. D.; Klein, J.; Korotkov, A. L.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Matthews, T. G.; Megerian, K. G.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; Nagy, J. M.; Netterfield, C. B.; Novak, G.; Nutter, D.; O'Brient, R.; Ogburn, R. W.; Pascale, E.; Poidevin, F.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Savini, G.; Scott, D.; Shariff, J. A.; Soler, J. D.; Thomas, N. E.; Trangsrud, A.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Tucker, R. S.; Turner, A. D.; Ward-Thompson, D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.

    2014-07-01

    We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and power systems. For accurate timing control to tie everything together, the system operates in a fully synchronous manner. BLASTbus electronics have been successfully deployed to the South Pole, and own on stratospheric balloons.

  8. Characterization of the supermirror hard-x-ray telescope for the InFOCμS balloon experiment

    International Nuclear Information System (INIS)

    A hard-x-ray telescope is successfully produced for balloon observations by making use of depth-graded multilayers, or so-called supermirrors, with platinum-carbon (Pt/C) layer pairs. It consists of four quadrant units assembled in an optical configuration with a diameter of 40 cm and a focal length of 8 m. Each quadrant is made of 510 pieces of coaxially and confocally aligned supermirrors that significantly enhance the sensitivity in an energy range of 20-40 keV. The configuration of the telescope is similar to the x-ray telescope onboard Astro-E, but with a longer focal length. The reflectivity of supermirrors is of the order of 40% in the energy range concerned at a grazing angle of 0.2 deg. The effective area of a fully assembled telescope is 50 cm2 at 30 keV. The angular resolution is 2.37 arc min at half-power diameter 8.0 keV. The field of view is 12.6 arc min in the hard-x-ray region, depending somewhat on x-ray energies. We discuss these characteristics, taking into account the figure errors of reflectors and their optical alignment in the telescope assembly. This hard-x-ray telescope is unanimously afforded in the International Focusing Optics Collaboration for μCrab Sensitivity balloon experiment

  9. Treatment of symptomatic high-grade intracranial stenoses with the balloon-expandable Pharos stent: initial experience

    International Nuclear Information System (INIS)

    We report our first clinical experience with a CE-marked flexible monorail balloon-expandable stent for treatment of high-grade intracranial stenoses. Between April 2006 and November 2007 21 patients with symptomatic intracranial stenoses (>70%) were treated with the PHAROS stent. In seven patients, the procedure was performed during acute stroke intervention. Procedural success, clinical complication rates and mid-term follow-up data were prospectively recorded. During a median follow-up period of 7.3 months one additional patient died of an unknown cause 3 months after the intervention. A patient with a significant residual stenosis presented with a new stroke after further progression of the residual stenosis. None of the successfully treated patients experienced ipsilateral stroke. Recanalization of intracranial stenoses with the balloon-expandable Pharos stent is technically feasible. The periprocedural complication rate and mid-term follow-up results were in the range of previously reported case series. This pilot study was limited by the small sample size and severe morbidity of the included patients. Final evaluation of the efficacy of Pharos stent treatment demands further investigation. (orig.)

  10. BLASTbus electronics: general-purpose readout and control for balloon-borne experiments

    CERN Document Server

    Benton, S J; Amiri, M; Angilè, F E; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Devlin, M J; Dober, B; Doré, O P; Dowell, C D; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Fukui, Y; Galitzki, N; Gambrel, A E; Gandilo, N N; Golwala, S R; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Klein, J; Korotkov, A L; Kuo, C L; MacTavish, C J; Mason, P V; Matthews, T G; Megerian, K G; Moncelsi, L; Morford, T A; Mroczkowski, T K; Nagy, J M; Netterfield, C B; Novak, G; Nutter, D; O'Brient, R; Ogburn, R W; Pascale, E; Poidevin, F; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Savini, G; Scott, D; Shariff, J A; Soler, J D; Thomas, N E; Trangsrud, A; Truch, M D; Tucker, C E; Tucker, G S; Tucker, R S; Turner, A D; Ward-Thompson, D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and powe...

  11. Experiments on ballooning in pressurized and transiently heated Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Single-rod burst tests were performed with Atucha I Zircaloy-4 cladding tubes in the REBEKA burst equipment of KfK. The objective was to investigate the ballooning and burst behavior of argentine cladding tubes obtained from NRG, Germany and CONVAR, Argentina. The burst data were compared with those of cladding tubes used in german PWR's. It was found that the burst data e.g. burst temperature, circumferential burst strain and its response to azimuthal temperature differences are identical for the Argentine and German tubing quality. The burst data are in good agreement with those of German PWR-Zircaloy tubes. Thus, the fuel rod behavior codes developed for German PWR's can also be used for the Argentine reactor Atucha I. (orig.)

  12. Preliminary experience with balloon kyphoplasty for the treatment of painful osteoporotic compression fractures

    International Nuclear Information System (INIS)

    Purpose: To describe the technique and to evaluate the safety and efficacy of percutaneous kyphoplasty as a new treatment in patients with painful osteoporotic vertebral body compression fractures of the lumbar and thoracic spine. Materials and Methods: In this prospective study balloon kyphoplasty was performed in 34 consecutive patients (25 females, 9 males; mean age 75 years) with 56 painful osteoporotic vertebral fractures (from T6-L5), of which 22 showed a posterior wall involvement and -retropulsion on preoperative CT. The median duration of symptoms was 9.7 weeks. Symtomatic levels were identified by correlating the clinical presentation with MRI, conventional radiographs and CT including bone-densitometry. Pre- and postoperative examinations (radiographs, CT) as well as Karnofsky and visual analogy pain scores (Visual Analog Scale=VAS) were documented and compared to evaluate the success of the procedure. Results: The median Karnofsky score improved from 40% (pre-) to 70% (post-treatment). Simultaneously, median pain scores (VAS) decreased from 64 (pre-) to 21 (post-treatment) (p<0.001). Perioperative morbidity included one transient L2 nerve root bruise. The procedure led to a partial restoration of the height of the vertebral body by reducing the median sagittal index from 11.5 to 5 . In none of our patients, the procedure led to worsening of the fracture-induced narrowing of the spinal canal. Clinically asymptomatic cement leakage occurred in 10 cases, with leakage 4 times into the paraspinal space, 3 times into the spinal canal and 3 times into the disc space. Conclusion: Balloon kyphoplasty is a safe and effective procedure. It is applicable even in fractures with posterior wall involvement since it is a low-pressure technique in contrast to vertebroplasty and restores vertebral body height partially. It results in immediate clinical improvement of mobility and pain relief. While short-term results are excellent, follow-up data have to be awaited for

  13. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    CERN Document Server

    Misawa, R; Ade, P; Andre, Y; deBernardis, P; Bouzit, M; Charra, M; Crane, B; Dubois, J P; Engel, C; Griffin, M; Hargrave, P; Leriche, B; Longval, Y; Maes, S; Marty, C; Marty, W; Masi, S; Mot, B; Narbonne, J; Pajot, F; Pisano, G; Ponthieu, N; Ristorcelli, I; Rodriguez, L; Roudil, G; Salatino, M; Savini, G; Tucker, C

    2014-01-01

    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project which will aim at characterizing one of these foreground sources, the polarization of the dust continuum emission in the diffuse interstellar medium. The PILOT experiment will also constitute a test-bed for using multiplexed bolometer arrays for polarization measurements. We present the results of ground tests obtained just before the first flight of the instrument.

  14. Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the NAIRAS Model

    Science.gov (United States)

    Norman, Ryan B.; Gronoff, Guillaume P.; Mertens, Christopher J.; Alston, Erica J.; Straume, Tore; Gersey, Brad; Lusby, Terry C.; Tobiska, W. Kent; Wilkins, Rick

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.

  15. Results of the ISEDE Experiment Encompassing Disaggregated Electronics on an all Inflatable Satellite on Board the BEXUS 16 Balloon

    Science.gov (United States)

    Sinn, T.; de Franca Queiroz, T.; Brownlie, F.; Allan, A.; Leite, L.; Rowan, A.; Gillespie, J.; Vasile, M.

    2015-09-01

    Traditional satellites have a rigid structure defining the basic configuration of the satellite and holding in place all subsystems. A variation of the shape or configuration of the satellite is normally achieved through the use of deployable structures or appendices (antennas, solar anays, booms, etc.). Although modern structural solutions are modular and multifunctional, the structure of a satellite still represents a significant portion of its mass and a limitation on the achievable configuration, extension of deployable components and packing efficiency during launch. The goal of this project is to design and build an initial prototype of an all-inflatable satellite with disaggregated electronics for deployment on-board a BEXUS balloon as proof of concept. The idea is to use inflatable cell structures as support for all the subsystems composing a typical nano-satellite. Each subsystem and component is mounted on a different cell. Cells are both individually inflated and individually controlled. The aim is to design and build an inflatable satellite, demonstrating the deployment, communication among components and local control enabling structure shape adaption via soft robotic actuators and micro pumps. The experiment will deploy two inflatable structures made of 5x2 cells which are packed in a lOxlOxlOcm3 cubesat reaching a size of 70x18x14cm3 once deployed. Flexible circuitry was used to mount all the electronic subsystems on the surface of the folded inflatable. The experiment was flown onboard the BEXUS16 stratospheric balloon to an altitude of 27,3km for 2 hours and 45mm from the Swedish space port ESRANGE on the 8th of October 2013 proving the functionality of the disaggregated electronics.

  16. Pre-test prediction and post-test analysis of PWR fuel rod ballooning in the MT-3 in-pile LOCA simulation experiment in the NRU reactor

    International Nuclear Information System (INIS)

    The USNRC and the UKAEA have jointly funded a series of in-pile LOCA simulation experiments in the Canadian NRU reactor in order to secure further information on the thermal hydraulic and clad deformation response of PWR fuel rod bundles. Test MT-3 in the series was performed using reflood rate and rod internal pressure conditions specified by the UK nuclear industry. The parameters were selected to ensure the development of a near-isothermal clad temperature history during which zircaloy was required to balloon and rupture near the alpha-alpha/beta phase transition. Specification of the reflood rate conditions was assisted by the performance of a precursor test on an unpressurised rod bundle and by complementary application of appropriate thermal hydraulic analyses. Identification of the rod internal pressure needed to cause ballooning and rupture was achieved using a creep deformation model, BALLOON, in conjunction with the clad thermal history defined by the prior thermal hydraulic test. This paper presents the basis of the BALLOON analysis and describes its application in calculating the fill gas pressure for rods MT-3, their axial ballooning profile and the clad temperature at peak radial strain elevations. (author)

  17. Comparison of Capsule Endoscopy Findings to Subsequent Double Balloon Enteroscopy: A Dual Center Experience

    Directory of Open Access Journals (Sweden)

    Amandeep S. Kalra

    2015-01-01

    Full Text Available Background. There has been a growing use of both capsule endoscopy (CE and double balloon enteroscopy (DBE to diagnose and treat patients with obscure gastrointestinal blood loss and suspected small bowel pathology. Aim. To compare and correlate sequential CE and DBE findings in a large series of patients at two tertiary level hospitals in Wisconsin. Methods. An IRB approved retrospective study of patients who underwent sequential CE and DBE, at two separate tertiary care academic centers from May 2007 to December 2011, was performed. Results. 116 patients were included in the study. The mean age ± SD was 66.6 ± 13.2 years. There were 56% males and 43.9% females. Measure of agreement between prior capsule and DBE findings was performed using kappa statistics, which gave kappa value of 0.396 with P<0.001. Also contingency coefficient was calculated and was found to be 0.732 (P<0.001. Conclusions. Our study showed good overall agreement between DBE and CE. Findings of angioectasia had maximum agreement of 69%.

  18. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Stiehl, gregory M.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  19. The BALLOON-borne and PAMELA experiments for the study of the antimatter component in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Spillantini, Piero E-mail: piero.spillantini@fi.infn.it

    2004-01-01

    The PAMELA experiment is based on a satellite-borne equipment actually in the final integration phase. It will be installed on board of the Russian satellite Resurs DK1 and launched in a quasi-polar orbit from the Baikonur cosmodrom at the beginning of next year. PAMELA will measure the antiproton and positron fluxes in cosmic rays with high statistics and in a large energy range (80 MeV-190 GeV for antiprotons and 50 MeV-270 GeV for positrons), extending to never investigated energies the measurements of several balloon borne experiments performed by the same PAMELA collaboration in last decade. This will make achievable sensitive tests of cosmic ray propagation models in the Galaxy and the search, in an energy range never investigated before, of possible structures in the fluxes. These structures, related to the presence of primary antiparticle sources, could be signals of 'new physics', connected with open problems like dark matter existence and matter/antimatter symmetry in the Universe. The detector consists of a very precise magnetic spectrometer, several scintillation counter hodoscopes to measure the energy losses and times of flight, and a high granularity and deep Si-W calorimeter, augmented by a very compact transition radiation detector and a He3 neutron detector hodoscope, and protected around and on the top by an anticoincidence system.

  20. Accurate Determination of the Volume of an Irregular Helium Balloon

    Science.gov (United States)

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  1. Initial Experience with Balloon-Occluded Trans-catheter Arterial Chemoembolization (B-TACE) for Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    PurposeThis study was performed to evaluate the accumulation of lipiodol emulsion (LE) and adverse events during our initial experience of balloon-occluded trans-catheter arterial chemoembolization (B-TACE) for hepatocellular carcinoma (HCC) compared with conventional TACE (C-TACE).MethodsB-TACE group (50 cases) was compared with C-TACE group (50 cases). The ratio of the LE concentration in the tumor to that in the surrounding embolized liver parenchyma (LE ratio) was calculated after each treatment. Adverse events were evaluated according to the Common Terminology Criteria for Adverse Effects (CTCAE) version 4.0.ResultsThe LE ratio at the level of subsegmental showed a statistically significant difference between the groups (t test: P < 0.05). Only elevation of alanine aminotransferase was more frequent in the B-TACE group, showing a statistically significant difference (Mann–Whitney test: P < 0.05). While B-TACE caused severe adverse events (liver abscess and infarction) in patients with bile duct dilatation, there was no statistically significant difference in incidence between the groups. Multivariate logistic regression analysis suggested that the significant risk factor for liver abscess/infarction was bile duct dilatation (P < 0.05).ConclusionThe LE ratio at the level of subsegmental showed a statistically significant difference between the groups (t test: P < 0.05). B-TACE caused severe adverse events (liver abscess and infarction) in patients with bile duct dilatation

  2. Initial Experience with Balloon-Occluded Trans-catheter Arterial Chemoembolization (B-TACE) for Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Mitsunari, E-mail: mitunari@med-shimane.u.ac.jp; Yoshizako, Takeshi, E-mail: yosizako@med.shimane-u.ac.jp; Nakamura, Tomonori, E-mail: t-naka@med.shimane-u.ac.jp; Nakamura, Megumi, E-mail: megumi@med.shimane-u.ac.jp; Yoshida, Rika, E-mail: yoshidar@med.shimane-u.ac.jp; Kitagaki, Hajime, E-mail: kitagaki@med.shimane-u.ac.jp [Shimane University Faculty of Medicine, Department of Radiology (Japan)

    2016-03-15

    PurposeThis study was performed to evaluate the accumulation of lipiodol emulsion (LE) and adverse events during our initial experience of balloon-occluded trans-catheter arterial chemoembolization (B-TACE) for hepatocellular carcinoma (HCC) compared with conventional TACE (C-TACE).MethodsB-TACE group (50 cases) was compared with C-TACE group (50 cases). The ratio of the LE concentration in the tumor to that in the surrounding embolized liver parenchyma (LE ratio) was calculated after each treatment. Adverse events were evaluated according to the Common Terminology Criteria for Adverse Effects (CTCAE) version 4.0.ResultsThe LE ratio at the level of subsegmental showed a statistically significant difference between the groups (t test: P < 0.05). Only elevation of alanine aminotransferase was more frequent in the B-TACE group, showing a statistically significant difference (Mann–Whitney test: P < 0.05). While B-TACE caused severe adverse events (liver abscess and infarction) in patients with bile duct dilatation, there was no statistically significant difference in incidence between the groups. Multivariate logistic regression analysis suggested that the significant risk factor for liver abscess/infarction was bile duct dilatation (P < 0.05).ConclusionThe LE ratio at the level of subsegmental showed a statistically significant difference between the groups (t test: P < 0.05). B-TACE caused severe adverse events (liver abscess and infarction) in patients with bile duct dilatation.

  3. Universal stratospheric balloon gradiometer

    Science.gov (United States)

    Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay

    , which should be not less than 10 m. A brief description of this instrument is provided in the report. The SBMG is certified for the use in Russia for "zero-pressure" balloon "VAL 120" capable of drifting at about 30 km height. The obtained data are used in solving the problems of deep sounding of the Earth’s crust magnetic structure - an extraction of magnetic anomalies, determination of a depth of bedding of magnetoactive rocks and others. Examples of the experiments (data) obtained by SBMG (including along the 9000 km flight track), as a new opportunities in geomagnetism for researchers that could use this device, are shown here. To avoid magnetic noise the sensor of the upper magnetometer is located at 35 meters above the main suspension basket of the balloon (in the small magnetic noise place). As we know, people have a problem to find such places (with a relatively low level of magnetic noise) at other types of balloons. So, for the other types of balloons we have developed and investigated balloon gradiometer with sensors located at a distance of 50 m down from the main suspension basket of the balloon. This decision is optimal for the "superpressure" balloons. The developed launching technology, deployment in flight, assembly, data processing, transfer and landing the containers with the equipment can be used for other similar problems of monitoring and sounding an environment. Useful flight weights of each of three instrumental containers (uniformly placed along a vertical 6 km line) may be reaching 50 kg. More than ten testing flights (1986-2013) at stratospheric altitudes (20-30 km) have proven the reliability of this system.

  4. Hyperspectral Polarimeter for Monitoring Balloon Strain Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's latest generation of superpressure, ultra long duration balloons (ULDB) extend the flight time for stratospheric experiments to levels previously...

  5. Obesity and gastric balloon

    OpenAIRE

    Yasawy, Mohammed I; Al-Quorain, Abdulaziz A.; Anas M Hussameddin; Yasawy, Zakia M.; Al-Sulaiman, Raid M.

    2014-01-01

    Background: The obesity epidemic, which is among the most common nutritional disorders, is rising rapidly worldwide. It leads to several health problems such as metabolic disorders, stroke, and even cancer. Efforts to control obesity with exercise and diet have a limited value in obese patients and different approaches to do this have been tried. In this paper, we share our experience with bioenteric intragastric balloon (BIB) in treating obesity: Its safety, tolerability, and its efficacy in...

  6. An implementation of Software Defined Radios for federated aerospace networks: Informing satellite implementations using an inter-balloon communications experiment

    Science.gov (United States)

    Akhtyamov, Rustam; Cruz, Ignasi Lluch i.; Matevosyan, Hripsime; Knoll, Dominik; Pica, Udrivolf; Lisi, Marco; Golkar, Alessandro

    2016-06-01

    Novel space mission concepts such as Federated Satellite Systems promise to enhance sustainability, robustness, and reliability of current missions by means of in-orbit sharing of space assets. This new paradigm requires the utilization of several technologies in order to confer flexibility and re-configurability to communications systems among heterogeneous spacecrafts. This paper illustrates the results of the experimental demonstration of the value proposition of federated satellites through two stratospheric balloons interoperating with a tracking ground station through Commercial Off-The-Shelf Software Defined Radios (SDRs). The paper reports telemetry analysis and characterizes the communications network that was realized in-flight. Furthermore, it provides details on an in-flight anomaly experienced by one of the balloons, which was recovered through the use of the federated technology that has been developed. The anomaly experienced led to the early loss of the directional link from the ground station to the affected stratospheric balloon node after 15 min in flight. Nevertheless, thanks to the federated approach among the systems, the ground station was still able to retrieve the balloon's data in real time through the network system, for which the other balloon operated as a federated relay for 45 min in flight, uninterrupted. In other words, the federated approach to the system allowed triplicating the useful lifetime of the defective system, which would have not been possible to realize otherwise. Such anomaly coincidentally demonstrated the value of the federated approach to space systems design. The paper paves the way for future tests on space assets.

  7. Decaying Hidden Gaugino as a Source of PAMELA/ATIC Anomalies

    CERN Document Server

    Shirai, Satoshi; Yanagida, T T

    2009-01-01

    We study a scenario that a U(1) hidden gaugino constitutes the dark matter in the Universe and decays into a lepton and slepton pair through a mixing with a U(1)B-L gaugino. We find that the dark-matter decay can account for the recent PAMELA and ATIC anomalies in the cosmic-ray positrons and electrons without an overproduction of antiprotons.

  8. Dosimetric experience with 2 commercially available multilumen balloon-based brachytherapy to deliver accelerated partial-breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Weihua, E-mail: fuw@upmc.edu; Kim, Jong Oh; Chen, Alex S.J.; Mehta, Kiran; Pucci, Pietro; Huq, M. Saiful

    2015-10-01

    The purpose of this work was to report dosimetric experience with 2 kinds of multilumen balloon (MLB), 5-lumen Contura MLB (C-MLB) and 4-lumen MammoSite MLB (MS-MLB), to deliver accelerated partial-breast irradiation, and compare the ability to achieve target coverage and control skin and rib doses between 2 groups of patients treated with C-MLB and MS-MLB brachytherapy. C-MLB has 5 lumens, the 4 equal-spaced peripheral lumens are 5 mm away from the central lumen. MS-MLB has 4 lumens, the 3 equal-spaced peripheral lumens are 3 mm away from the central lumen. In total, 43 patients were treated, 23 with C-MLB, and 20 with MS-MLB. For C-MLB group, 8 patients were treated with a skin spacing < 7 mm and 12 patients with rib spacing < 7 mm. For MS-MLB group, 2 patients were treated with a skin spacing < 7 mm and 5 patients with rib spacing < 7 mm. The dosimetric goals were (1) ≥ 95% of the prescription dose (PD) covering ≥ 95% of the target volume (V{sub 95%} ≥ 95%), (2) maximum skin dose ≤ 125% of the PD, (3) maximum rib dose ≤ 145% of the PD (if possible), and (4) the V{sub 150%} ≤ 50 cm{sup 3} and V{sub 200%} ≤ 10 cm{sup 3}. All dosimetric criteria were met concurrently in 82.6% of C-MLB patients, in 80.0% of MS-MLB patients, and in 81.4% of all 43 patients. For each dosimetric parameter, t-test of these 2 groups showed p > 0.05. Although the geometric design of C-MLB is different from that of MS-MLB, both applicators have the ability to shape the dose distribution and to provide good target coverage, while limiting the dose to skin and rib. No significant difference was observed between the 2 patient groups in terms of target dose coverage and dose to organs at risk.

  9. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    Science.gov (United States)

    Signorelli, G.; Baldini, A. M.; Bemporad, C.; Biasotti, M.; Cei, F.; Ceriale, V.; Corsini, D.; Fontanelli, F.; Galli, L.; Gallucci, G.; Gatti, F.; Incagli, M.; Grassi, M.; Nicolò, D.; Spinella, F.; Vaccaro, D.; Venturini, M.

    2016-07-01

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  10. Obesity and gastric balloon

    Directory of Open Access Journals (Sweden)

    Mohammed I Yasawy

    2014-01-01

    Full Text Available Background: The obesity epidemic, which is among the most common nutritional disorders, is rising rapidly worldwide. It leads to several health problems such as metabolic disorders, stroke, and even cancer. Efforts to control obesity with exercise and diet have a limited value in obese patients and different approaches to do this have been tried. In this paper, we share our experience with bioenteric intragastric balloon (BIB in treating obesity: Its safety, tolerability, and its efficacy in weight reduction. Materials and Methods: From January 2009 to September 2012, a total of 190 gastric balloons was inserted on patients at the endoscopy unit in King Fahd Hospital of the University, Al-Khobar. This is an evaluation of the first 100 patients. All the patients had a body mass index of over 30 kg/m 2 and were within the age range of 17-55 with a mean age of 32 years. After consent, preballoon investigation tests and anesthesia evaluation, BIB was inserted under monitored anesthesia care sedation in the endoscopy suite. The balloon was filled with 500-700 mls of stained saline. All patients′ were given an analgesic and antiemetic for a week and antisecretory proton pump inhibitor′s for 6 months. Diet and the importance of the exercise were part of the preballoon insertion phase and protocol. The balloon was removed after 6-12 months. Results: The weight loss response to BIB in the 100 patients are classified into four groups: In the uncooperative, noncompliant patients - the maximum weight loss was 7 kg, while in the most compliant patients the weight loss reached up to 39 kg. In addition, there was significant improvement into diabetes mellitus, hypertension, dyslipidemia, and fatty liveras. Its safety and tolerability were extremely acceptable. Conclusion: Our data indicates that in well-selected patients, BIB is an effective device, which with minimum complications helps to achieve body weight loss and resolve many obesity related

  11. New twist on excited dark matter: Implications for INTEGRAL, PAMELA/ATIC/PPB-BETS, DAMA

    International Nuclear Information System (INIS)

    We show that the 511 keV gamma ray excess observed by INTEGRAL/SPI can be more robustly explained by exciting dark matter (DM) at the center of the galaxy, if there is a peculiar spectrum of DM states χ0, χ1, and χ2, with masses M0∼500 GeV, M1 0+2me, and M2=M1+δM > or approx. M0+2me. The small mass splitting δM should be 1 is stable but can be excited to χ2 by low-velocity DM scatterings near the Galactic center, which are Sommerfeld-enhanced by two of the 100 MeV gauge boson exchanges. The excited state χ2 decays to χ0 and nonrelativistic e+e-, mediated by the third gauge boson, which mixes with the photon and Z. Although such a small 100 keV splitting has been independently proposed for explaining the DAMA annual modulation through the inelastic DM mechanism, the need for stability of χ1 (and hence sequestering it from the standard model) implies that our scenario cannot account for the DAMA signal. It can, however, address the PAMELA/ATIC positron excess via DM annihilation in the galaxy, and it offers the possibility of a sharper feature in the ATIC spectrum relative to previously proposed models. The data are consistent with three new gauge bosons, whose couplings fit naturally into a broken SU(2) gauge theory where the DM is a triplet of the SU(2). We propose a simple model in which the SU(2) is broken by new Higgs triplet and 5-plet vacuum expectation values, giving rise to the right spectrum of DM and mixing of one of the new gauge bosons with the photon and Z boson. A coupling of the DM to a heavy Z' may also be necessary to get the right relic density and PAMELA/ATIC signals.

  12. Successful technical and clinical outcome using a second generation balloon expandable coronary stent for transplant renal artery stenosis: Our experience

    Science.gov (United States)

    Salsamendi, Jason; Pereira, Keith; Baker, Reginald; Bhatia, Shivank S; Narayanan, Govindarajan

    2015-01-01

    Transplant renal artery stenosis (TRAS) is a vascular complication frequently seen because of increase in the number of renal transplantations. Early diagnosis and management is essential to optimize a proper graft function. Currently, the endovascular treatment of TRAS using angioplasty and/or stenting is considered the treatment of choice with the advantage that it does not preclude subsequent surgical correction. Treatment of TRAS with the use of stents, particularly in tortuous transplant renal anatomy presents a unique challenge to an interventional radiologist. In this study, we present three cases from our practice highlighting the use of a balloon-expandable Multi-Link RX Ultra coronary stent system (Abbott Laboratories, Abbott Park, Illinois, USA) for treating high grade focal stenosis along very tortuous renal arterial segments. Cobalt–Chromium alloy stent scaffold provides excellent radial force, whereas the flexible stent design conforms to the vessel course allowing for optimal stent alignment. PMID:26629289

  13. Successful technical and clinical outcome using a second generation balloon expandable coronary stent for transplant renal artery stenosis: Our experience.

    Science.gov (United States)

    Salsamendi, Jason; Pereira, Keith; Baker, Reginald; Bhatia, Shivank S; Narayanan, Govindarajan

    2015-10-01

    Transplant renal artery stenosis (TRAS) is a vascular complication frequently seen because of increase in the number of renal transplantations. Early diagnosis and management is essential to optimize a proper graft function. Currently, the endovascular treatment of TRAS using angioplasty and/or stenting is considered the treatment of choice with the advantage that it does not preclude subsequent surgical correction. Treatment of TRAS with the use of stents, particularly in tortuous transplant renal anatomy presents a unique challenge to an interventional radiologist. In this study, we present three cases from our practice highlighting the use of a balloon-expandable Multi-Link RX Ultra coronary stent system (Abbott Laboratories, Abbott Park, Illinois, USA) for treating high grade focal stenosis along very tortuous renal arterial segments. Cobalt-Chromium alloy stent scaffold provides excellent radial force, whereas the flexible stent design conforms to the vessel course allowing for optimal stent alignment. PMID:26629289

  14. Performance of latex balloons for optical computed tomography

    Science.gov (United States)

    Jordan, K.; Walsh, A.; Peng, M.; Battista, J.

    2013-06-01

    Latex balloons filled with radiation sensitive hydrogels were evaluated as 3D dosimeters with optical computed tomography (CT) readout. Custom balloons, with less than 10 cm diameters, were made from latex sheets. Commercial, 13 cm diameter, clear balloons were investigated for larger volumes. Ferrous-xylenol orange and genipin gelatin gels selected for 1 and 30 Gy experiments, respectively. The thin stretched latex membrane allowed optical imaging to within 1 mm of the interior balloon edge. Reconstructed dose distributions demonstrated valid measurements to within 2 mm of the balloon surface. The rubber membrane provides a hybrid approach to deforming hydrogels. Uniform irradiation of a deformed gel resulted in a uniform dose being measured when scanned in the relaxed, initial balloon shape. The 13 cm diameter balloons were also effective and inexpensive vessels for hydrogels due to their high clarity, thinness and mechanical strength. Latex balloons represent an inexpensive method to obtain useful information from nearly the entire dosimeter volume.

  15. Coarse-grained simulation of lipid vesicles with ``n-atic'' orientational order

    Science.gov (United States)

    Geng, Jun; Selinger, Jonathan; Selinger, Robin

    2012-02-01

    We perform coarse-grained simulation studies of fluid lipid vesicles with in-plane ``n-atic'' orientational order associated with the shape of lipid head group, to test the theoretical predictions of Park, Lubensky and MacKintosh [1] for resulting vesicle shape and defect structures. Our simulation model uses a single layer coarse-grained implicit-solvent approach proposed by Yuan et al [2], with addition of an extra vector degree of freedom representing in-plane orientational order. We carry out simulation studies for n=1 to 6, examining in each case the spatial distribution of defects and resulting deformation of the vesicle. An initially spherical vesicle (genus zero) with n-atic order has a ground state with 2n vortices of strength 1/n, as expected, but the observed equilibrium shapes are sometimes quite different from those predicted theoretically. For the n=1 case, we find that the vesicle may become trapped in a disordered, long-lived metastable state with extra +/- defects whose pair-annihilation is inhibited by local changes in membrane curvature, and thus may never reach its predicted ground state. [4pt] [1] J. Park, T. C. Lubensky, and F. C. MacKintosh, Europhys. Lett. 20, 279 (1992)[0pt] [2] H. Yuan, C. Huang, Ju Li, G. Lykotrafitis, and S. Zhang, Phys. Rev. E 82, 011905 (2010)

  16. Financial impact of reducing door-to-balloon time in ST-elevation myocardial infarction: a single hospital experience

    Directory of Open Access Journals (Sweden)

    Taillon Heather

    2009-07-01

    Full Text Available Abstract Background The impact of reducing door-to-balloon time on hospital revenues, costs, and net income is unknown. Methods We prospectively determined the impact on hospital finances of (1 emergency department physician activation of the catheterization lab and (2 immediate transfer of the patient to an immediately available catheterization lab by an in-house transfer team consisting of an emergency department nurse, a critical care unit nurse, and a chest pain unit nurse. We collected financial data for 52 consecutive ST-elevation myocardial infarction patients undergoing emergency percutaneous intervention from October 1, 2004–August 31, 2005 and compared this group to 80 consecutive ST-elevation myocardial infarction patients from September 1, 2005–June 26, 2006 after protocol implementation. Results Per hospital admission, insurance payments (hospital revenue decreased ($35,043 ± $36,670 vs. $25,329 ± $16,185, P = 0.039 along with total hospital costs ($28,082 ± $31,453 vs. $18,195 ± $9,242, P = 0.009. Hospital net income per admission was unchanged ($6962 vs. $7134, P = 0.95 as the drop in hospital revenue equaled the drop in costs. For every $1000 reduction in total hospital costs, insurance payments (hospital revenue dropped $1077 for private payers and $1199 for Medicare/Medicaid. A decrease in hospital charges ($70,430 ± $74,033 vs. $53,514 ± $23,378, P = 0.059, diagnosis related group relative weight (3.7479 ± 2.6731 vs. 2.9729 ± 0.8545, P = 0.017 and outlier payments with hospital revenue>$100,000 (7.7% vs. 0%, P = 0.022 all contributed to decreasing ST-elevation myocardial infarction hospitalization revenue. One-year post-discharge financial follow-up revealed similar results: Insurance payments: $49,959 ± $53,741 vs. $35,937 ± $23,125, P = 0.044; Total hospital costs: $39,974 ± $37,434 vs. $26,778 ± $15,561, P = 0.007; Net Income: $9984 vs. $9159, P = 0.855. Conclusion All of the financial benefits of reducing

  17. Nationwide Eclipse Ballooning Project

    Science.gov (United States)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  18. Global electrodynamics from superpressure balloons

    Science.gov (United States)

    Holzworth, R. H.; Hu, H.

    1995-01-01

    Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.

  19. Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.

    Science.gov (United States)

    Vasudevan, Rajagopalan

    2012-07-01

    The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.

  20. PEBS - Positron Electron Balloon Spectrometer

    CERN Document Server

    Von Doetinchem, P; Kirn, T; Yearwood, G R; Schael, S

    2007-01-01

    The best measurement of the cosmic ray positron flux available today was performed by the HEAT balloon experiment more than 10 years ago. Given the limitations in weight and power consumption for balloon experiments, a novel approach was needed to design a detector which could increase the existing data by more than a factor of 100. Using silicon photomultipliers for the readout of a scintillating fiber tracker and of an imaging electromagnetic calorimeter, the PEBS detector features a large geometrical acceptance of 2500 cm^2 sr for positrons, a total weight of 1500 kg and a power consumption of 600 W. The experiment is intended to measure cosmic ray particle spectra for a period of up to 20 days at an altitude of 40 km circulating the North or South Pole. A full Geant 4 simulation of the detector concept has been developed and key elements have been verified in a testbeam in October 2006 at CERN.

  1. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  2. Measurements of gondola motion on a stratospheric balloon flight

    CERN Document Server

    Safonova, Margarita; Sreejith, A G; Sarpotdar, Mayuresh; Ambily, S; Prakash, Ajin; Mathew, Joice; Murthy, Jayant; Anand, Devarajan; Kapardhi, B V N; Kumar, B Suneel; Kulkarni, P M

    2016-01-01

    Balloon experiments are an economically feasible method of conducting observations in astronomy that are not possible from the ground. The astronomical payload may include a telescope, a detector, and a pointing/stabilization system. Determining the attitude of the payload is of primary importance in such applications, to accurately point the detector/telescope to the desired direction. This is especially important in generally unstable lightweight balloon flights. However, the conditions at float altitudes, which can be reached by zero pressure balloons, could be more stable, enabling accurate pointings. We have used the Inertial Measurement Unit (IMU), placed on a stratospheric zero pressure balloon, to observe 3-axis motion of a balloon payload over a fight time of 4.5 hours, from launch to the float altitude of 31.2 km. The balloon was launched under nominal atmospheric conditions on May 8th 2016, from a Tata Institute of Fundamental Research Balloon Facility, Hyderabad.

  3. Bursting water balloons

    CERN Document Server

    Lund, Hugh M

    2011-01-01

    The impact and rupture of water-filled balloons upon a flat, rigid surface is studied experimentally, for which three distinct stages of the flow are observed. Due to the impact, waves are formed on the balloon's surface for which the restoring force is tension in the latex. Immediately following rupture of the membrane, a shear instability created by the retraction of the balloon is observed. At later times, a larger-scale growth of the interfacial amplitude is observed, that may be regarded as a manifestation of a phenomenon known as the Richtmyer-Meshkov instability. This flow is closely related to the classical understanding of the Richtmyer-Meshkov instability for when there exists a density difference between the fluids inside and outside the balloon. Further, it is shown experimentally that this growth of the interface may also occur when there is no density difference across the balloon, a situation that does not arise for the standard Richtmyer-Meshkov instability.

  4. Balloon Design Software

    Science.gov (United States)

    Farley, Rodger

    2007-01-01

    PlanetaryBalloon Version 5.0 is a software package for the design of meridionally lobed planetary balloons. It operates in a Windows environment, and programming was done in Visual Basic 6. By including the effects of circular lobes with load tapes, skin mass, hoop and meridional stress, and elasticity in the structural elements, a more accurate balloon shape of practical construction can be determined as well as the room-temperature cut pattern for the gore shapes. The computer algorithm is formulated for sizing meridionally lobed balloons for any generalized atmosphere or planet. This also covers zero-pressure, over-pressure, and super-pressure balloons. Low circumferential loads with meridionally reinforced load tapes will produce shapes close to what are known as the "natural shape." The software allows for the design of constant angle, constant radius, or constant hoop stress balloons. It uses the desired payload capacity for given atmospheric conditions and determines the required volume, allowing users to design exactly to their requirements. The formulations are generalized to use any lift gas (or mixture of gases), any atmosphere, or any planet as described by the local acceleration of gravity. PlanetaryBalloon software has a comprehensive user manual that covers features ranging from, but not limited to, buoyancy and super-pressure, convenient design equations, shape formulation, and orthotropic stress/strain.

  5. The TopHat Experiment: A Balloon-Borne Instrument for Mapping Millimeter and Sub-Millimeter Emission

    DEFF Research Database (Denmark)

    Silverberg, R. F.; Cheng, E. S.; Aguirre, J. E.;

    2005-01-01

    The TopHat experiment was designed to measure the anisotropy in the cosmic microwave background radiation on angular scales from 03 to 30° and the thermal emission from both Galactic and extragalactic dust. The balloon‐borne instrument had five spectral bands spanning frequencies from 175 to 630...... GHz. The telescope was a compact, 1 m, on‐axis Cassegrain telescope designed to scan the sky at a fixed elevation of 78°. The radiometer used cryogenic bolometers coupled to a single feed horn via a dichroic filter system. The observing strategy was intended to efficiently cover a region 48° in...

  6. Resistive ballooning mode equation

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.; Nelson, D. B.

    1978-10-01

    A second-order ordinary differential equation on each flux surface is derived for the high mode number limit of resistive MHD ballooning modes in tokamaks with arbitrary cross section, aspect ratio, and shear. The equation is structurally similar to that used to study ideal MHD ballooning modes computationally. The model used in this paper indicates that all tokamak plasmas are unstable, with growth rate proportional to resistivity when the pressure gradient is less than the critical value needed for ideal MHD stability.

  7. Feature of Dust Particles in the Spring Free Troposphere over Dunhuang in Northwestern China: Electron Microscopic Experiments on Individual Particles Collected with a Balloon-borne Impactor

    International Nuclear Information System (INIS)

    Free tropospheric aerosol particles were collected using a balloon-borne particle impactor in August of 2002 and March of 2003 at Dunhuang in northwestern China (40o00'N, 94o30'E), and the morphology and elemental composition of the aerosol particles were analyzed in order to understand the mixing state of coarse dust particles (diameter >1 μm) over the desert areas in the Asian continent in spring. Electron microscopic experiments on the particles revealed that dust particles were major constituents of coarse mode particles in the free troposphere over the Taklamakan Desert in spring and summer.Si-rich or Ca-rich particles are major components of dust particles collected in the free troposphere over dunhuang and the values of [number of Ca-rich particles]/[number of Si-rich particles] differs markedly between spring and summer, being about 0.3 in the spring of 2003 and about 1.0 in the summer of 2002 at heights 3-5 km above sea level. It is likely that the condition of the ground surface and the strength of vertical mixing in source areas of Asian dust are potential factors causing the difference in the chemical types of dust particles.Comparison of the elemental compositions of these particles with those of particles collected over Japan strongly suggests that these particles were chemically modified during their long-range transport in the free troposphere. Analysis of wind systems shows that both the predominating westerly wind in the free troposphere and the surface wind strongly controlled by the geographical structure of the Tarim Basin are important in the long-range transport of KOSA particles originating in the Taklamakan Desert

  8. The French Balloon Program 2013 - 2017

    Science.gov (United States)

    Dubourg, Vincent; Vargas, André; Raizonville, Philippe

    2016-07-01

    With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.

  9. Regular multivitamin supplement use, single nucleotide polymorphisms in ATIC, SHMT2 and SLC46A1 and risk of ovarian carcinoma

    Directory of Open Access Journals (Sweden)

    Linda E Kelemen

    2012-03-01

    Full Text Available ATIC, SHMT2 and SLC46A1 have essential roles in one-carbon (1-C transfer. The authors examined whether associations between ovarian carcinoma and 15 variants in these genes are modified by regular multivitamin use, a source of 1-C donors, among Caucasian participants from two U.S. case control studies. Using a phased study design, variant-by-multivitamin interactions were tested, and associations between variants and ovarian carcinoma were reported stratified by multivitamin supplement use. Per-allele risk associations were modified by multivitamin use at six variants among 655 cases and 920 controls (Phase 1. In a larger sample of 968 cases and 1,265 controls (Phases 1 and 2, interactions were significant (P≤0.03 for two variants, particularly among regular multivitamin users: ATIC rs7586969 (odds ratio [OR]=0.7, 95% confidence interval [CI]=0.6-0.9 and ATIC rs16853834 (OR=1.5, 95% CI=1.1-2.0. The two ATIC SNPs did not share the same haplotype; however, the haplotypes they comprised mirrored their SNP risk associations among regular multivitamin supplement users. A multi-variant analysis was also performed by comparing the observed likelihood ratio test statistic from adjusted models with and without the two ATIC variant-by-multivitamin interaction terms with a null distribution of test statistics generated by permuting case status 10,000 times. The corresponding observed P value of 0.001 was more extreme than the permutation-derived P value of 0.009, suggesting rejection of the null hypothesis of no association. In summary, there is little statistical evidence that the 15 variants are independently associated with risk of ovarian carcinoma. However, the statistical interaction of ATIC variants with regular multivitamin intake, when evaluated at both the SNP and gene level, may support these findings as relevant to ovarian health and disease processes.

  10. Venus Altitude Cycling Balloon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ISTAR Group ( IG) and team mate Thin Red Line Aerospace (TRLA) propose a Venus altitude cycling balloon (Venus ACB), an innovative superpressure balloon...

  11. Mars Solar Balloon Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  12. The comparison a 16-year follow-up results of balloon angioplasty for aortic coarctation in children of different age groups: a single-center experience

    OpenAIRE

    Yakup Ergül; Kemal Nişli; Aygün Dindar; Rukiye Eker Ömeroğlu; Ümrah Aydoğan

    2011-01-01

    Objective: Pediatric patients with different age groups who underwent balloon angioplasty for aortic coarctation were evaluated for recoarctation, aneurysm, peripheral arterial injuries and concomitant diseases. Methods: From January 1994 to 2010, 80 patients with aortic coarctation (native/recoarctation) were evaluated, retrospectively. According to age at angioplasty, patients were divided into three groups: Group A (0-3 months, n=29, 25 male/4 female, average weight 4±1.2 kg), Group B (3-1...

  13. Development of Ultra-Thin Polyethylene Balloons for High Altitude Research upto Mesosphere

    Science.gov (United States)

    Kumar, B. Suneel; Nagendra, N.; Ojha, D. K.; Peter, G. Stalin; Vasudevan, R.; Anand, D.; Kulkarni, P. M.; Reddy, V. Anmi; Rao, T. V.; Sreenivasan, S.

    Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 μm for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000-gram rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenization of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 μm for fabrication of balloons capable of penetrating mesosphere to meet the needs of user scientists working in the area of atmospheric dynamics commenced in 2011. Pursuant to the successful trials with 61,000-m3 balloon made of 3.8-μm Antrix film reaching stratopause (48 km) for the first time in the history of balloon facility in the year 2012, fine tuning of launch parameters like percentage free lift was carried out to take the same volume balloons to higher mesospheric altitudes. Three successful flights with a total suspended load of 10 kg using 61,000-m3 balloons were carried out in the month of January 2014 and all the three balloons crossed into the mesosphere reaching altitudes of over 51 km. All the balloons flown so far are closed system with no escape ducts. Balloon fabrication, development of launch hardware, flight control instruments and launch technique for these mesospheric balloon flights are discussed in this paper.

  14. Comments on ideal ballooning

    International Nuclear Information System (INIS)

    Ideal ballooning modes are investigated for the case of plane magnetized slab geometry. Toroidal effects are simulated by a gravitational acceleration periodically varying along magnetic field lines. High shear is shown to be very effective in stabilizing these modes even when field line curvature is most unfavorable to their stability

  15. Clad ballooning model in MELCOR

    International Nuclear Information System (INIS)

    Clad ballooning may substantially decrease the flow of fluids through the affected core region and may expose the inner cladding surface to oxidation in the vicinity of rupture sites. The cladding ballooning model was not included in MELCOR 1.8.4. and consideration of incorporating the cladding ballooning model is scheduled as a post-1.8.4 release activity. The purpose of this paper is to analyze the effect of the clad ballooning model by the modified MELCOR 1.8.4 with this model. The typical accident sequence of a large LOCA scenario is selected. The clad ballooning model accelerates the accident progression compared to that without the ballooning model. The amount of hydrogen does not change much and it may be caused by ignoring the effect of flow area change. Future study is planning to analyze the flow redistribution

  16. An investigation of electrostatically deposited radionuclides on latex balloons

    International Nuclear Information System (INIS)

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  17. An investigation of electrostatically deposited radionuclides on latex balloons

    Energy Technology Data Exchange (ETDEWEB)

    Price, T.; Caly, A., E-mail: Terry.Price@gmail.com [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2012-07-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  18. Space and Earth Observations from Stratospheric Balloons

    Science.gov (United States)

    Peterzen, Steven; Ubertini, Pietro; Masi, Silvia; Ibba, Roberto; Ivano, Musso; Cardillo, Andrea; Romeo, Giovanni; Dragøy, Petter; Spoto, Domenico

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78o N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultralight payloads and TM system ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program

  19. Breakthrough in Mars balloon technology

    Science.gov (United States)

    Kerzhanovich, V. V.; Cutts, J. A.; Cooper, H. W.; Hall, J. L.; McDonald, B. A.; Pauken, M. T.; White, C. V.; Yavrouian, A. H.; Castano, A.; Cathey, H. M.; Fairbrother, D. A.; Smith, I. S.; Shreves, C. M.; Lachenmeier, T.; Rainwater, E.; Smith, M.

    2004-01-01

    Two prototypes of Mars superpressure balloons were flight tested for aerial deployment and inflation in the Earth's stratosphere in June, 2002. One was an 11.3 m diameter by 6.8 m high pumpkin balloon constructed from polyethylene film and Zylon (PBO) tendons, the second was a 10 m diameter spherical balloon constructed from 12 μm thick Mylar film. Aerial deployment and inflation occurred under parachute descent at 34 km altitude, mimicing the dynamic pressure environment expected during an actual Mars balloon mission. Two on-board video cameras were used on each flight to provide real-time upward and downward views of the flight train. Atmospheric pressure and temperature were also recorded. Both prototypes successfully deployed from their storage container during parachute descent at approximately 40 m/s. The pumpkin balloon also successfully inflated with a 440 g charge of helium gas injected over a 1.5-min period. Since the helium inflation system was deliberately retained after inflation in this test, the pumpkin balloon continued to fall to the ocean where it was recovered for post-flight analysis. The less robust spherical balloon achieved only a partial (~70%) inflation before a structural failure occurred in the balloon film resulting in the loss of the vehicle. This structural failure was diagnosed to result from the vigorous oscillatory motion of the partially inflated balloon, possibly compounded by contact between the balloon film and an instrumentation box above it on the flight train. These two flights together represent significant progress in the development of Mars superpressure balloon technology and pave the way for future flight tests that will include post-deployment flight of the prototype balloons at a stable altitude.

  20. Titan Balloon Convection Model Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  1. Stratospheric Balloon Platforms for Near Space Access

    Science.gov (United States)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries

  2. Small Research Balloons in a Physics Course for Education Majors

    Science.gov (United States)

    Bruhweiler, F. C.; Verner, E.; Long, T.; Montanaro, E.

    2013-12-01

    At The Catholic Univ. of America, we teach an experimental physics course entitled Physics 240: The Sun-Earth Connection, which is designed for the undergraduate education major. The emphasis is on providing hands-on experience and giving the students an exciting experience in physics. As part of this course, in the Spring 2013 semester, we instituted a project to plan, build, launch, and retrieve a small (~1.3 kg) research balloon payload. The payload flown was a small GPS unit that sent its position to an Internet site, a small wide-angle high-resolution video camera, and an analog refrigerator thermometer placed in the field of view of the camera. All data were stored on the camera sim-card. Students faced the problems of flying a small research balloon in the congested, densely populated Northeast Corridor of the US. They used computer simulators available on the Web to predict the balloon path and flight duration given velocities for the Jet Stream and ground winds, as well as payload mass and amount of helium in the balloon. The first flight was extremely successful. The balloon was launched 140 km NW of Washington DC near Hagerstown, MD and touched down 10 miles (16 km) NW of York, PA, within 1.6 km of what was predicted. The balloon reached 73,000 ft (22,000 m) and the thermometer indicated temperatures as low as -70 degrees Fahrenheit (-57 C) during the flight. Further balloon flights are planned in conjunction with this course. Additional exercises and experiments will be developed centered around these flights. Besides learning that science can be exciting, students also learn that science is not always easily predictable, and that these balloon flights give an understanding of many of problems that go into real scientific space missions. This project is supported in part by an educational supplement to NASA grant NNX10AC56G

  3. Clinical experience of cerebral protection with balloon occlusion during carotid artery stenting; Zerebrale Protektion mit Ballonokklusion bei der Stentimplantation der A. carotis - Erste Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H.J.; Mathias, K.D.; Drescher, R.; Bockisch, G.; Hauth, E.; Demirel, E.; Gissler, H.M. [Staedtische Kliniken Dortmund (Germany). Radiologische Klinik; Witten/Herdecke Univ. (Germany). Lehrstuhl fuer Radiologie und Mikro-Therapie

    2001-02-01

    Purpose: To asses the technical feasibility and the results of cerebral protection with the GuardWire Plus Temporary Occlusion and Aspiration System during carotid artery stenting for high-grade stenosis. Patients and Methods: In 20 patients 20 carotid artery stenoses were treated with stent placement under cerebral protection. A contralateral carotid occlusion was an exclusion criteria for the use of the protection device. In all cases only aspiration, but no flushing was used before deflation of the occlusion balloon. In 17 of 20 patients diffusion-weighted (DW-)MRT imaging of the brain was performed before and 24 hours after the procedure. Results: The stent implantation was successfully performed in all patients. In 3 patients neurologic symptoms occurred during the occlusion time. In these 3 patients the symptoms immediately disappeared after deflation of the balloon. In one case there was dilatation of the internal carotid artery at the site of the balloon inflation. In 3 of the 17 DW-MR images new ipsilateral cerebral lesions, in one case a new contralateral lesion occurred after the procedure. Conclusions: The cerebral protection procedure is technically feasible. The occlusion of the internal carotid artery was not tolerated by all patients. The DW-MR imaging demonstrated cerebral lesions indicating the occurrence of cerebral microemboli during the procedure. Further investigations are necessary to determine if the use of the cerebral protection device will improve the results of the carotid artery stenting for high-grade stenoses. (orig.) [German] Ziel: Evaluation der Technik und der Ergebnisse der zerebralen Protektion mit dem temporaeren Okklusions- und Aspirationssystem GuardWire Plus bei der Stentimplantation der A. carotis bei hochgradigen Stenosen. Patienten und Methoden: Bei 20 Patienten wurden 20 Karotisstenosen mit Stentimplantation unter zerebraler Protektion behandelt. Ein kontralateraler Verschluss der A. carotis war ein Ausschlusskriterium

  4. News Conference: Bloodhound races into history Competition: School launches weather balloon Course: Update weekends inspire teachers Conference: Finland hosts GIREP conference Astronomy: AstroSchools sets up schools network to share astronomy knowledge Teaching: Delegates praise science events in Wales Resources: ELI goes from strength to strength International: South Sudan teachers receive training Workshop: Delegates experience universality

    Science.gov (United States)

    2011-11-01

    Conference: Bloodhound races into history Competition: School launches weather balloon Course: Update weekends inspire teachers Conference: Finland hosts GIREP conference Astronomy: AstroSchools sets up schools network to share astronomy knowledge Teaching: Delegates praise science events in Wales Resources: ELI goes from strength to strength International: South Sudan teachers receive training Workshop: Delegates experience universality

  5. High-Altitude Ballooning Program at the Indian Institute of Astrophysics

    CERN Document Server

    Nayak, A; Safonova, M; Murthy, Jayant

    2013-01-01

    We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bangalore. Recent advances in balloons as well as in electronics have made possible scientific payloads at costs accessible to university departments. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but to also explore phenomena occurring in the upper atmosphere, including sprites and meteorite impacts, using balloon-borne payloads. This paper discusses the results of three tethered balloon experiments carried out at the CREST campus of IIA, Hosakote and our plans for the future. We also describe the stages of payload development for these experiments.

  6. Initial Experience with Computed Tomography and Fluoroscopically Guided Placement of Push-Type Gastrostomy Tubes Using a Rupture-Free Balloon Catheter

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the safety and feasibility of percutaneous radiologic gastrostomy placement of push-type gastrostomy tubes using a rupture-free balloon (RFB) catheter under computed tomography (CT) and fluoroscopic guidance. A total of 35 patients (23 men and 12 women; age range 57–93 years [mean 71.7]) underwent percutaneous CT and fluoroscopically guided gastrostomy placement of a push-type gastrostomy tube using an RFB catheter between April 2005 and July 2008. Technical success, procedure duration, and complications were analyzed. Percutaneous radiologic gastrostomy placement was considered technically successful in all patients. The median procedure time was 39 ± 13 (SD) min (range 24–78). The average follow-up time interval was 103 days (range 7–812). No major complications related to the procedure were encountered. No tubes failed because of blockage, and neither tube dislodgement nor intraperitoneal leakage occurred during the follow-up period. The investigators conclude that percutaneous CT and fluoroscopically guided gastrostomy placement with push-type tubes using an RFB catheter is a safe and effective means of gastric feeding when performed by radiologists.

  7. Balloon catheter coronary angioplasty

    International Nuclear Information System (INIS)

    The author has produced a reference and teaching book on balloon angioplasty. Because it borders in surgery and is performed on an awake patient without circulatory assistance, it is a complex and demanding procedure that requires thorough knowledge before it is attempted. The text is divided into seven sections. The first section describes coronary anatomy and pathophysiology, defines the objectives and mechanisms of the procedure and lists four possible physiologic results. The next section describes equipment in the catheterization laboratory, catheters, guidewires and required personnel. The following section is on the procedure itself and includes a discussion of examination, testing, technique and follow-up. The fourth section details possible complications that can occur during the procedure, such as coronary spasms, occlusion, thrombosis, perforations and ruptures, and also discusses cardiac surgery after failed angioplasty. The fifth section details complex or unusual cases that can occur. The sixth and seventh sections discuss radiation, alternative procedures and the future of angioplasty

  8. Preliminary experience with balloon kyphoplasty for the treatment of painful osteoporotic compression fractures; Ballon-Kyphoplastie zur Behandlung schmerzhafter osteoporotischer Wirbelkoerperfrakturen - Technik und erste Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, K.; Urbach. H. [Bonn Univ. (Germany). Radiologische Klinik; Stoffel, M; Ringel, F.; Rao, G.; Roesseler, L.; Meyer, B. [Bonn Univ. (Germany). Neurochirurgische Klinik

    2003-12-01

    Purpose: To describe the technique and to evaluate the safety and efficacy of percutaneous kyphoplasty as a new treatment in patients with painful osteoporotic vertebral body compression fractures of the lumbar and thoracic spine. Materials and Methods: In this prospective study balloon kyphoplasty was performed in 34 consecutive patients (25 females, 9 males; mean age 75 years) with 56 painful osteoporotic vertebral fractures (from T6-L5), of which 22 showed a posterior wall involvement and -retropulsion on preoperative CT. The median duration of symptoms was 9.7 weeks. Symtomatic levels were identified by correlating the clinical presentation with MRI, conventional radiographs and CT including bone-densitometry. Pre- and postoperative examinations (radiographs, CT) as well as Karnofsky and visual analogy pain scores (Visual Analog Scale=VAS) were documented and compared to evaluate the success of the procedure. Results: The median Karnofsky score improved from 40% (pre-) to 70% (post-treatment). Simultaneously, median pain scores (VAS) decreased from 64 (pre-) to 21 (post-treatment) (p<0.001). Perioperative morbidity included one transient L2 nerve root bruise. The procedure led to a partial restoration of the height of the vertebral body by reducing the median sagittal index from 11.5 to 5 . In none of our patients, the procedure led to worsening of the fracture-induced narrowing of the spinal canal. Clinically asymptomatic cement leakage occurred in 10 cases, with leakage 4 times into the paraspinal space, 3 times into the spinal canal and 3 times into the disc space. Conclusion: Balloon kyphoplasty is a safe and effective procedure. It is applicable even in fractures with posterior wall involvement since it is a low-pressure technique in contrast to vertebroplasty and restores vertebral body height partially. It results in immediate clinical improvement of mobility and pain relief. While short-term results are excellent, follow-up data have to be awaited for

  9. US Air Force Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  10. [Balloon valvuloplasty in stenotic bioprosthesis].

    Science.gov (United States)

    Astudillo, R; Farell, J; Ariza, H; González Carmona, V M; Abundes, A; Tello, R; López Cuellar, M

    1992-01-01

    The results of balloon valvuloplasty performed on five patients with stenotic bioprosthesis treated in the Hospital de Cardiología Centro Médico Nacional Siglo XXI, are presented. All five bioprosthesis were right sided, two in tricuspid position, one in pulmonary valve position and two in valvulated conduits from right ventricle to pulmonary artery. In all cases a pressure gradient reduction was achieved, an improvement of clinical functional class and heart failure manifestations were obtained. Mansfields balloons were used. One in two patients, and two balloons in three. We had not complications with the procedure. We conclude that balloon valvuloplasty on bioprosthesis is a safe and dependable procedure to be used in right sided bioprosthesis. PMID:1482221

  11. A Balloon-Gondola Dedicated for Waterlanding

    Science.gov (United States)

    Evrard, J.; Roudil, G.; Catalano, C.; Von Ballmoos, P.

    2015-09-01

    As balloon flights over populated areas are increasingly considered a safety risk, new launch sites are chosen to ensure that sparsely inhabited regions are overflown. Particular vigilance is requested for the selection of the zones where flight termination and landing take place. While open sea would ideally fulfil the safety requirements for flight track and termination, traditional balloon experiments are lost or severely damaged on water landings. EUSO-Balloon, a pathfinder mission for Cosmic-Ray physics, has deliberately been designed as a water-landing gondola as the instrument eventually will observe Energetic Air Showers above open water. In order to maximize the chances for a dry recovery of all the sensitive equipment after a water-landing, the gondola features a number of special devices: inside a watertight capsule using a Fresnel lens as a porthole, the electronics is mounted on a ‘dry-shelf' with limber holes (drain holes). Also, the entire capsule is held above the waterline by a collar of floaters. To minimize damage to the payload and warrant the integrity of the leak-tight capsule at splashdown, efficient deceleration is achieved by using the instruments optical baffle (nadir-pointing) as a cylinder; the pressure of the air-cushion in the enclosed volume being passively controlled by calibrated evacuation-holes. Upon its maiden flight of August 25, 2014 from Timmins, Ontario, EUSO-Balloon not only accomplished its science goals, but it also accidentally landed in a small lake, validating the water-landing capacity it was designed for.

  12. Superpressure Tow Balloon for Extending Durations and Modifying Trajectories of High Altitude Balloon Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation involves the concept of using a Superpressure Tow Balloon (STB) with existing NASA high altitude balloon designs to form a tandem balloon...

  13. A cutting balloon for coronary angioplasty: new trend in the prevention of restenoses

    International Nuclear Information System (INIS)

    Results on application of angioplasty with a cutting balloon in 8 men with ischemia heart disease are presented all patients had injury of one coronary vessel. The first experience makes it possible to consider that application of a cutting balloon is not dangerous, the arteria wall traumatization is small and restonoses frequency should be consequently smaller. 7 refs.; 3 figs

  14. Development of ultra-thin polyethylene balloons for high altitude research upto mesosphere

    CERN Document Server

    Kumar, B Suneel; Ojha, D K; Peter, G Stalin; Vasudevan, R; Anand, D; Kulkarni, P M; Reddy, V Anmi; Rao, T V; Sreenivasan, S

    2014-01-01

    Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 microns for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000 grams rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenisation of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 microns for fabrication of balloons capable of penetrating mesosphere ...

  15. The challenge to balloon science

    Science.gov (United States)

    Jones, W. Vernon

    A thorough review of the NASA balloon program in 1995 confirmed both the inherent importance of balloon science investigations and their value for developing technology for future space missions. A follow-on study in 1996 looked into restructuring the entire suborbital program, in order to find more efficient and effective ways of doing business. These studies were mandated by the adverse impact of NASA's declining budgets and work force constraints on all aspects of space research. The challenge is to accomplish more with less. The balloon program began stepping up to this challenge several years ago with the advent of 10 - 20 day long-duration flights in Antarctica. We must now push ahead with enhanced flight capabilities and with new science instrument technologies, as we forge alliances with other modes of low-cost access to space. Specifically, the development of sealed superpressure balloons could extend flight duration by another order of magnitude, to about 100 days, making ballooning even more competitive with space missions.

  16. BLOCKING SUN WITH ORBITING BALLOONS

    Energy Technology Data Exchange (ETDEWEB)

    Chul Park [Department of Aerospace Engineering, Kor ea Advanced Institute of Science and Technology, Daejeon (Korea)

    2008-09-30

    Sun's radiation power reaching Earth's surface can be reduced by letting large balloons circle the Earth in orbits at approximately 1000 km altitude. These balloons, made of plastic films 1 mm in thickness, of a diameter of approximately 46 km, will weigh about 10,000 tons each. A balloon will consist of one hundred of 100 ton pieces. They are transported to the orbit piece by piece, and are assembled there into the spherical shape. They are kept inflated with the vapor pressure of potassium and the electrostatic forces. The inclination angles of these balloons with respect to the solar ecliptic plane can be varied from zero to 90 degrees, although efficiency is highest with the zero degree inclination. If zero degree inclination is chosen, twenty-three of these will reduce the average sun's radiation by 0.01%. In the 1000 km orbits, which are stable and are populated only by space debris, these balloons will serve also to remove the debris.

  17. Sensor System for Super-Pressure Balloon Performance Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-duration balloon flights are an exciting new area of scientific ballooning, enabled by the development of large super-pressure balloons. As these balloons...

  18. Balloon Exoplanet Nulling Interferometer (BENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  19. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    Science.gov (United States)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  20. Ballonnen in zee = balloons as marine litter

    NARCIS (Netherlands)

    Franeker, van J.A.

    2008-01-01

    Releasing balloons seems harmless. However, remains of balloons, especially valves and ribbons are becoming a common and persistent type of marine litter found on beaches. Following Dutch Queens day 2007, large numbers of Dutch balloons were found in Normandy, France. Animals may become entangled in

  1. Stability of infernal and ballooning modes in advanced tokamak scenarios

    NARCIS (Netherlands)

    Holties, H. A.; Huysmans, G. T. A.; Goedbloed, J. P.; Kerner, W.; Parail, V.V.; Soldner, F. X.

    1996-01-01

    A numerical parameter study has been performed in order to find MHD stable operating regimes for advanced tokamak experiments In this study we have concentrated on internal modes. Ballooning stability and stability with respect to infernal modes are considered. The calculations confirm that pressure

  2. Inquiry-Based Early Undergraduate Research Using High-Altitude Ballooning

    Science.gov (United States)

    Sibbernsen, K.; Sibbernsen, M.

    2012-12-01

    One common objective for undergraduate science classes is to have students learn how to do scientific inquiry. However, often in science laboratory classes, students learn to take data, analyze the data, and come to conclusions, but they are told what to study and do not have the opportunity to ask their own research questions, a crucial part of scientific inquiry. A special topics class in high-altitude ballooning (HAB) was offered at Metropolitan Community College, a large metropolitan two-year college in Omaha, Nebraska to focus on scientific inquiry for the participants through support of NASA Nebraska Space Grant. A weather balloon with payloads attached (balloonSAT) was launched to near space where the balloon burst and fell back to the ground with a parachute. Students worked in small groups to ask their research questions, they designed their payloads, participated in the launch and retrieval of equipment, analyzed data, and presented the results of their research. This type of experience has potential uses in physics, physical science, engineering, electronics, computer programming, meteorology, astronomy, and chemistry classes. The balloonSAT experience can act as a stepping-stone to designing sounding rocket payloads and it can allow students the opportunity to participate in regional competitions and present at HAB conferences. Results from the workshop are shared, as well as student responses to the experience and suggestions for administering a high-altitude ballooning program for undergraduates or extending inquiry-based ballooning experiences into high-school or middle-school.

  3. 基于系留气艇平台的红外辐射传输算法实验验证%Validation of Atmospheric Radiative Transfer Model with Field Experiments Using Tethered-balloon-borne Facilities

    Institute of Scientific and Technical Information of China (English)

    章文星; 吕达仁; 霍娟; 王勇; 孙宝来; 李立群

    2011-01-01

    validation mainly focuses on MODTRAN model and the thermal infrared window 8- 14 (urn (714 -1250 cm"1) band first of all. Due to little atmospheric absorption in the infrared window band and very low radiance, this band is a range of wavelengths to which the Earth's atmosphere is relatively transparent, and is an important band used for space,ground target recognition, and ground/satellite-based remote sensing as well. Because the spectral composition of radiation transfer varies greatly with varying local environmental conditions, such as aerosol characteristics, water vapor content, surface temperature, greenhouse gases and so on, the accuracy that MODTRAN demonstrates should be attained by making the comparisons between observed radiances and the radiances computed from coincident in situ profile data. For field experiment validation, a scheme is proposed, using a special patented tethered balloon as platform and a combined sensor system consisting of both meteorological (GPS radiosonde, aerosol particle spectrometer, ozonesonde) and radiation observation instruments (visible and broadband thermal infrared imager) , as well as wireless receiver,transmitter. Field experiments are conducted in August 2006 at IAP's Xianghe Observatory. During the process the tethered balloon going up and down in the atmosphere of boundary layer, measurements of both meteorological and radiation instruments at different height are carried out simultaneously. Using the observed meteorological parameters as input to RT model (MODTRAN 4. 0), comparisons between observed radiances and radiances output from the model are used to validate the accuracy of the RT algorithm. The balloon is launched and drawn back for 16 times to do the validation. Analysis on the experiment results show that in thermal infrared wave band, the statistical results of the root-mean-square error of relative error between model output (with real-time meteorological parameters as input) and simultaneous radiance

  4. Drug-Coated Balloon Venoplasty for In-Stent Restenosis in a Patient With Recurrent Pulmonary Vein Stenosis Post Ablation for Atrial Fibrillation: Initial Experience With a New Treatment Technique.

    Science.gov (United States)

    Rosenberg, Jonathan; Fisher, Westby G; Guerrero, Mayra; Smart, Steve; Levisay, Justin; Feldman, Ted; Salinger, Michael

    2016-05-01

    Pulmonary vein stenosis (PVS) is an uncommon but serious complication following radiofrequency ablation for atrial fibrillation. Occurrence of this complication has risen with increased rates of ablation procedures, with >50,000 AF ablation procedures performed per year, and can occur within weeks to months post procedure. Currently, the main therapies for PVS include percutaneous interventions with balloon angioplasty and stenting, but these treatments are complicated by a high rate of restenosis. The optimal treatment for recurrent pulmonary vein in-stent restenosis has not been determined. We describe the novel use of a paclitaxel drug-coated balloon for the treatment of in-stent restenosis of the pulmonary veins. PMID:27145055

  5. Prediction of pressure tube ballooning under non-uniform circumferential temperature gradients and high internal pressure

    International Nuclear Information System (INIS)

    In some accident scenarios in CANDU reactors the pressure tube is expected to reach sufficiently high temperature at high internal pressure such that the pressure tube expands radially, i.e., the pressure tube balloons.Under these conditions it is of importance to the assessment of fuel channel integrity to be able to accurately predict the timing and extent of pressure tube ballooning. If the circumferential temperature gradient on the pressure tube is non-uniform, the resulting transverse hoop stress is non-uniform and the pressure tube experiences a non-uniform ballooning. This could result in a failure of the pressure tube before it balloons into contact with the surrounding calandria tube. The fuel channel integrity code SMARTT (Simulation Method for Azimuthal and Radial Temperature Transients) is used to predict the ballooning of CANDU Zr-2.5wt%Nb pressure tubes. The pressure tube strain rate calculation in SMARTT was extracted and used as the basis for the code PTSTRAIN which was constructed to model pressure tube ballooning with the temperature of the pressure tube and the internal pressure specified as the boundary conditions for the calculation. The main objectives of this paper are to describe the comparison of the predictions of this code against two different sets of experiments which were performed with defected and non-defected pressure tubes, and to provide further validation of the pressure tube ballooning model against independent experiments. (author)

  6. Approaching the knee-balloon-borne observations of cosmic ray composition

    International Nuclear Information System (INIS)

    Below the knee in the cosmic ray spectrum, balloon and spacecraft experiments offer the capability of direct composition and energy measurements on the primary particles. A major difficulty is obtaining enough exposure to extend the range of direct measurements sufficiently high in energy to permit overlap with ground-based observations. Presently, balloon and space measurements extend only up to ∼100 TeV, well below the range of groundbased experiments. The prospect of Ultra-Long Duration Balloon missions offers the promise of multiple long flights that can build up exposure. The status of balloon measurements to measure the high energy proton and nuclear composition and spectrum is reviewed, and the statistical considerations involved in searching for a steepening in the spectrum are discussed. Given the very steeply falling spectrum, it appears unlikely that balloon experiments will be able to extend the range of direct measurements beyond 1000 TeV any time in the near future. Especially given the recent suggestions from KASCADE that the proton spectrum steepens only at 4000-5000 TeV, the chance of detecting the knee with direct measurements of protons to iron on balloons is not likely to occur without significant increases in the payload and flight duration capabilities of high altitude balloons

  7. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  8. 系留气球内囊氦空二元气体浓度分布特性试验研究%Research on tethered balloon's helium concentration distribution experiment

    Institute of Scientific and Technical Information of China (English)

    彭桂林; 赵林华

    2011-01-01

    长期的氦气漏损和空气渗透使得体积一定的系留气球剩余浮力下降,为保证系留气球安全性,必须进行氦气提纯.为了提高氦气纯化的费效比,有必要开展系留气球内囊氦气的气体浓度分布规律研究.基于系留气球内囊气体的组成分析和系统技术指标要求,文中提出了一种适用于系留气球内囊氦气浓度分布特性研究的试验,给出了详细的试验方法并分析试验结果.%Long - term helium leakage and air infiltration makes the volume of a certain residual buoyancy tethered balloon drop. To ensure the safety of tethered balloons, helium must be purified. In order to improve cost -effectiveness of purified helium, the research on tethered helium balloon of gas concentration distribution was needed. In this paper, According to Tethered balloon 's composition of the gas within the envelope and system technical requirements, A test for helium concentration distribution within the envelope was improved, which gave a detailed analysis of test methods and test results.

  9. AIAA Educator Academy: The Space Weather Balloon Module

    Science.gov (United States)

    Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.

    2013-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each

  10. A Mars 2011 Balloon Mission Trade Study

    Science.gov (United States)

    Smith, I.; Lew, T.; Perry, W.

    Mars Scouts are competitively selected PI-led missions to further Mars exploration in ways that satisfy NASA s overall objectives but are not currently in the planned line of missions The current 2006 Announcement of Opportunity AO for Mars Scouts has just closed The goal of this SwRI study was to develop a new balloon mission concept to where it could be credibly proposed for the AO The balloon system was defined in the study as consisting of two parts the balloon flight system BFS and the balloon deployment inflation system DIS The BFS includes the balloon envelope accessory hardware and gondola The balloon includes the envelope seams end fittings load core inflation tube diffusers payload tether shock attenuator and separation hardware The DIS includes the balloon container deployment hardware sequencer tankage gas and control hardware Trade studies were performed to better define the mission design space These studies included 1 effect of varied atmospheric thermal loads 2 effect of varying latitudes 3 effect of payload mass for varying altitudes 4 effect of radiative material properties on balloon size mass 5 effect of material areal densities on balloon size mass and 6 effect of inflation gas on system masses Results of the balloon trade study for the Mars 2011 mission opportunity will be presented

  11. Balloon sinuplasty — the first Indian experience

    OpenAIRE

    Raghunandhan, S.; Prashanth, Srividya; Natarajan, Kiran; Anand Kumar, R. S.; Kameswaran, Mohan

    2009-01-01

    The surgical management of sinusitis was revolutionized worldwide with the advent of the rigid Hopkins rod nasal endoscopes three decades ago. The traditional Messerklinger technique, was thus propagated worldwide by Prof. Stammberger, from the University of Graz in Austria and has come into vogue as functional endoscopic sinus surgery (FESS). The principal aim behind this procedure was the maximal preservation of the nasal mucosal integrity, while providing optimal disease clearance. Today, ...

  12. Long Duration Balloon flights development. (Italian Space Agency)

    Science.gov (United States)

    Peterzen, S.; Masi, S.; Dragoy, P.; Ibba, R.; Spoto, D.

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, earth observations, near space research and commercial component testing, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78º N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennial oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultra-light payloads and TM systems ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program. This paper discusses the development of the launch facilities and international LDB development.

  13. The development of coastal diffusion observation method with a captive balloon

    International Nuclear Information System (INIS)

    Apparatus whereby the dye cloud in a coastal area in diffusion experiment can be photographed was developed. It consists of a vinyl balloon two meters in diameter, a photographic device with the camera shutter released by wireless signals from the ground, and a winch to raise or lower the balloon. A maximum height of the balloon for taking photographs is 1000 m. During the single balloon flight, thirty photographs can be taken. With the balloon at a certain height, dye as the tracer in diffusion experiment is released at sea surface or a certain sea depth by dye-throwing means or pump, and then taking the photographs is started. Movement and diffusion of the dye are analyzed by means of the photographs taken. The apparatus is simple in mechanism and easy to transport. Dye experiment is possible in the surfe zone where a boat cannot enter. It is impossible, however, to raise the balloon in strong wind or sea breeze. Typical results of the dye diffusion experiment with the apparatus are given. (author)

  14. Balloon Borne Soundings of Water Vapor, Ozone and Temperature in the Upper Tropospheric and Lower Stratosphere as Part of the Second SAGE III Ozone Loss and Validation Experiment (SOLVE-2)

    Science.gov (United States)

    Voemel, Holger

    2004-01-01

    The main goal of our work was to provide in situ water vapor and ozone profiles in the upper troposphere and lower stratosphere as reference measurements for the validation of SAGE III water vapor and ozone retrievals. We used the NOAA/CMDL frost point hygrometer and ECC ozone sondes on small research balloons to provide continuous profiles between the surface and the mid stratosphere. The NOAA/CMDL frost point hygrometer is currently the only lightweight balloon borne instrument capable of measuring water vapor between the lower troposphere and middle stratosphere. The validation measurements were based in the arctic region of Scandinavia for northern hemisphere observations and in New Zealand for southern hemisphere observations and timed to coincide with overpasses of the SAGE III instrument. In addition to SAGE III validation we also tried to coordinate launches with other instruments and studied dehydration and transport processes in the Arctic stratospheric vortex.

  15. Spatial distribution of meteorological parameters around 900 hPa level over the Arabian Sea and Indian Ocean regions during the IFP-99 of the INDOEX programme as revealed from the constant altitude balloon experiments conducted from Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Appu, K.S.; Nair, S.M.; Kunhikrishnan, P.K.; Moorthy, K.K.; Sarode, P.R.; Rao, L.V.G.; Bajpai, S.R.; Prakash, L.H.; Viswanathan, G.; Mitra, A.P.; Sadourny, R.; Basdevant, C.; Ethe, C.; Ovarlez, H.; Chapuis, R.; Dartiguelongue, B.; Vianeys, P.

    Delhi 110 003, India 7INDOEX-India Programme Office, ISTRAC, Bangalore 560 058, India 8Nalional Physical Laboratory, New Delhi 110 012, India 9Laboratory for Dynamic Meteorology, Ecole Normale superieure, 75005 Paris, France 10Laboratory for Dynamic... Meteorology, Ecole Polytechnique, 91128 Palaiseau Cedex, France "Balloon Division, Toulouse Space Centre, DSO/ED/BANE, 18, Avenue Edouard Belin, 31401, Toulouse Cedex, France During the IFP-99 of the INDOEX programme, an Indo-French joint scientific team...

  16. Balloon dilatations of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Juhng, Seon Kwan; Kim, Jae Kyu; Chung, Hyon De [Chonnam National University College of Medicine, Seoul (Korea, Republic of)

    1990-04-15

    Most benign esophageal strictures can be successfully dilated with conventional bougienage technique. But occasionally strictures are so tight, lengthy, or sometimes irregular that this technique fail, and surgical intervention is required. Since 1974 Gruentzig balloon catheter has succeed when used for strictures in the cardiac and peripheral vasculatures, the biliary and urinary tracts, the colon of neonates after inflammatory disease and also in the esophagus. Fluoroscopically guided balloon catheters were used to dilate 30 esophageal strictures in 30 patients over 3 years at Department of Diagnostic Radiology, Chonnam University, College of Medicine. The distribution of age was from 7 years to 71 days and the ratio of male to female was 15:15. The causes of benign stricture (23 cases) were post-operative strictures (13), chemical (4), achalasia (3), chronic inflammation (2), esophageal rupture (1) and those of malignant stricture (7 cases) were post-radiation stricture of primary esophageal cancer (6) and metastatic esophageal cancer (1). The success rate of procedure was 93% (28/30). The causes of failure were the failure of passage of stricture due to markedly dilated proximal segment of esophagus (1 case) and too long segment of stricture (1 case). Complication of procedure was the diverticular-formation of esophagus in 3 cases, but has no clinical significance in follow-up esophagography. In conclusion, fluoroscopically guided balloon dilation of esophageal stricture appears to be safe, effective treatment and may be have theoretical advantages over conventional bougienage and also should be considered before other methods of treatment are used.

  17. Balloon dilatations of esophageal strictures

    International Nuclear Information System (INIS)

    Most benign esophageal strictures can be successfully dilated with conventional bougienage technique. But occasionally strictures are so tight, lengthy, or sometimes irregular that this technique fail, and surgical intervention is required. Since 1974 Gruentzig balloon catheter has succeed when used for strictures in the cardiac and peripheral vasculatures, the biliary and urinary tracts, the colon of neonates after inflammatory disease and also in the esophagus. Fluoroscopically guided balloon catheters were used to dilate 30 esophageal strictures in 30 patients over 3 years at Department of Diagnostic Radiology, Chonnam University, College of Medicine. The distribution of age was from 7 years to 71 days and the ratio of male to female was 15:15. The causes of benign stricture (23 cases) were post-operative strictures (13), chemical (4), achalasia (3), chronic inflammation (2), esophageal rupture (1) and those of malignant stricture (7 cases) were post-radiation stricture of primary esophageal cancer (6) and metastatic esophageal cancer (1). The success rate of procedure was 93% (28/30). The causes of failure were the failure of passage of stricture due to markedly dilated proximal segment of esophagus (1 case) and too long segment of stricture (1 case). Complication of procedure was the diverticular-formation of esophagus in 3 cases, but has no clinical significance in follow-up esophagography. In conclusion, fluoroscopically guided balloon dilation of esophageal stricture appears to be safe, effective treatment and may be have theoretical advantages over conventional bougienage and also should be considered before other methods of treatment are used

  18. Simulation of stratospheric balloon environment

    International Nuclear Information System (INIS)

    The behavior of materials used for the construction of stratospheric balloons is studied at DERTS by means of irradiations performed in reals time and simulating the exact flight environment. Two chambers were designed in the laboratory and are described together with the experimental procedure. In order to reduce cost and save time, it is worth accelerating the simulation when only a preliminary evaluation of the sample's properties is required. For this reason, a systematic study was undertaken in order to evaluate the respective effects of different parameters on the material degradation. The results of this study are given

  19. Early Cosmic Ray Research with Balloons

    International Nuclear Information System (INIS)

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster

  20. Integrating Balloon and Satellite Operation Data Centers for Technology Readiness Assessment

    Science.gov (United States)

    Mattiello-Francisco, Fátima; Fernandes, Jose Oscar

    2016-07-01

    Stratospheric balloon-borne experiments have been one of the most effective ways to validate innovative space technology, taking the advantage of reduced development cycles and low cost in launching and operation. In Brazil, the National Institute for Space Research (INPE) has balloon and satellite ground infrastructures since the 1970´s and the 1990´s, respectively. In the recent past, a strategic approach was adopted on the modernization of balloon ground operation facilities for supporting the protoMIRAX experiment, an X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The strategic target was to reuse the SATellite Control System (SATCS), a software framework developed to control and monitor INPÉs satellites, for balloon operation. This paper presents the results of that effort and the new ongoing project, a computer-based framework named I2Bso, which strategic target is to Integrate INPÉs Balloon and Satellite Operation data centers. The I2Bso major purpose is to support the continuous assessment of an innovative technology after different qualification flights either on board balloons or satellites in order to acquire growing evidence for the technology maturity.

  1. A Sensitivity Analysis of fMRI Balloon Model

    KAUST Repository

    Zayane, Chadia

    2015-04-22

    Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.

  2. Esophageal achalasia : results of balloon dilation

    International Nuclear Information System (INIS)

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia

  3. Esophageal achalasia : results of balloon dilation

    Energy Technology Data Exchange (ETDEWEB)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-08-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia.

  4. Airborne Internet Providing Tethered Balloon System

    Directory of Open Access Journals (Sweden)

    Suvriti Dhawan1

    2015-12-01

    Full Text Available In this paper we shall introduce a new system for providing wireless network communication over a specified area using ’lighter than air’ balloons. This technology will replace the existing fiber optic network system. This will be done by using a tethered balloon along with the payload (containing a receiver, a transmitter and a radio communication device.This payload will be suspended from the ground at an altitude (depending on the area of coverage required. Users under this area will be able to access this system directly for internet connectivity. This system can be used over large areas like universities, companies and societies to provide internet facility to their users through Wi-Fi or over an area where the user is specified (commercial purposes. Currently Google is working on similar idea called the ’Google Loon’ in which they use high altitude balloons which float at an altitude twice as high as air planes and the weather. They recently tested this system over New-Zealand by providing internet to their pilot testers on ground. Their balloons not being stationary, move with directional winds and have to be replaced one after the other to maintain consistency. This can be a huge problem over the areas where upper atmospheric winds are not in favorable direction. We can resolve this problem by using our stationary tethered balloon system which can communicate with the loon balloons to provide internet facility over a desired area. Moreover when our balloon will communicate with the loon balloon it will increase the coverage area as the loon balloon has to communicate to a point which is above the ground. Our system will not only replace the existing fiber optic system but it will also be selfsustaining i.e. It will generate its own power using solar panels.

  5. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    Science.gov (United States)

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  6. The balloon and the airship technological heritage

    Science.gov (United States)

    Mayer, N. J.

    1981-01-01

    The balloon and the airship are discussed with emphasis on the identification of commonalities and distinctions. The aerostat technology behind the shape and structure of the vehicles is reviewed, including a discussion of structural weight, internal pressure, buckling, and the development of a stable tethered balloon system. Proper materials for the envelope are considered, taking elongation and stress into account, and flight operation and future developments are reviewed. Airships and tethered balloons which are designed to carry high operating pressure with low gas loss characteristics are found to share similar problems in low speed flight operations, while possessing interchangeable technologies.

  7. Looners: Inside the world of balloon fetishism

    OpenAIRE

    McIntyre, Karen E

    2011-01-01

    In the spring of 1997, Shaun had just broken up with a boyfriend, and his roommate had moved out. Living alone for the first time and relieved of the fear that someone might walk in the door, he was finally able to indulge his fantasy. The young man sat on his couch and started blowing up balloons. Shaun had loved playing with balloons since he was a child. When he hit puberty, he felt his first orgasm rubbing against a balloon. It was then that his relationship with the object took ...

  8. Cutting Balloon angioplasty for cardiac transplant vasculopathy.

    OpenAIRE

    Takano, Y.; Currier, JW; Yeatman, LA; Kobashigawa, JA; Rogers, AD; Cianfichi, LJ; Fishbein, MC; Tobis, JM

    2002-01-01

    We performed Cutting Balloon angioplasty on 20 lesions in 11 heart transplant recipients 7.5 +/- 3.8 years after transplantation. The mean percentage of diameter stenosis decreased from 88.3% +/- 13.8% to 19.6% +/- 13.7% after Cutting Balloon angioplasty without complication. Seven patients underwent follow-up angiography at 4.9 +/- 1.7 months in a total of 12 lesions, and all lesions showed restenosis with a mean diameter stenosis of 84.4% +/- 19.2%. Cutting Balloon angioplasty can be used t...

  9. Real-time video using TDRSS during Ultra Long Duration high altitude scientific balloon missions

    Science.gov (United States)

    Stilwell, B.

    High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions, with durations of up to 100 days (Ultra Long), are in the planning stages. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRS System provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real-time command and control. With the development of higher gain antenna systems from NASA's Wallops Flight Facility (WFF), the data rates through TDRSS will be increased significantly on balloon flights. Data rates of up to 150 kbps through the TDRSS Multiple Access service can be accomplished. With these increased data rates, not only can scientists receive more real-time data throughput, but other important information can be multiplexed into the telemetry stream. One of these capabilities is video. For safety reasons, it is necessary to visually inspect the balloon envelope during the longer Ultra Long Duration Balloon missions. The duration of these missions can be up to 100 days through the use of a special super-pressure vehicle. The effects of the flight environment on the balloon materials are mostly unknown; therefore the need to monitor its condition is critical throughout the flight. As a result of the increased data bandwidth through TDRSS, a few frames per second of the balloon envelope

  10. Shielded Mars Balloon Launcher (SMBL) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences, along with its partner Vertigo Industries, proposes a novel approach to deployment of balloon-based payloads into the Martian atmosphere....

  11. Retrieving Balloon Data in Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration —   NASA has plans to fly stratospheric ULDBs for missions of 100 days or more in the next few years. As these balloons circumnavigate the globe multiple...

  12. Percutaneous transvenous balloon occlusion of arteriovenous fistula

    International Nuclear Information System (INIS)

    The closure of arteriovenous fistulas, using a balloon catheter introduced through the vein draining the fistula, is discussed. The application of this method to the closure of an iatrogenic vertebrovertebral fistula is described. (orig.)

  13. Magnetometer for Balloons and UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project will investigate a new, low-cost approach to atomic magnetometry that is suited for operation from UAVs and research balloons. Atomic...

  14. GRAPE: a balloon-borne gamma-ray polarimeter

    Science.gov (United States)

    McConnell, Mark L.; Bancroft, Christopher; Bloser, Peter F.; Connor, Taylor; Legere, Jason; Ryan, James M.

    2009-08-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50 - 500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module that has been calibrated at a polarized hard X-ray beam and flown on an engineering balloon test flight. A full-scale scientific balloon payload, consisting of up to 36 modules, is currently under development. The first flight, a one-day flight scheduled for 2011, will verify the expected scientific performance with a pointed observation of the Crab Nebula. We will then propose long-duration balloon flights to observe gamma-ray bursts and solar flares.

  15. Test ventilation with smoke, bubbles, and balloons

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs.

  16. A review of recent results in gamma-ray astronomy obtained from high-altitude balloons

    Science.gov (United States)

    Teegarden, B. J.

    1994-06-01

    This paper reviews recent results in gamma-ray astronomy obtained from experiments flown on high-altitude balloons. New generation balloon-borne imaging experiments have produced the first gamma-ray maps of the Galactic center (GC) region. Balloon flights of new gamma-ray spectrometers with improved sensitivity have provided important new information on the GC annihilation line. For the first time, the narrow 511 keV line as been resolved (FWHM approx. = 3 keV). A very interesting spectral feature at approximately 170 keV has been attributed to backscattered annihilation, probably from the vicinity of a compact object. New results from the Compton Gamma-Ray Observatory (CGRO)/OSSE and Granat/SIGMA experiments on the annihilation line, when considered together with the recent balloon results, have added greatly to our knowledge and understanding of the origin and distribution of this emission. Balloon-borne instruments have made important measurements of gamma-ray continuum and line emission from SN 1987A. The GRIS spectrometer unambiguously resolved the 847 and 1238 keV line emission from radioactive Co-56 synthesized during the explosion. This data indicated that simple spherically symmetric and homogeneous models did not provide an adequate description of the expanding SN shell.

  17. Balloon catheter dilatation of benign urethral strictures

    International Nuclear Information System (INIS)

    The authors report their experience of benign urethral stricture dilatation by balloon catheter in 11 male patients. Ten posterior and 2 anterior urethral strictures were treated; in 1 patients several narrowings coexisted at various levels. Etiology was inflammatory in 4 cases, iatrogen in 3, post-traumatic in 2, and equivocal in 2. The patients were studied both before and soon after dilatation by means of retrograde and voiding cystourethrogram and uroflowgraphy; the follow-up (2-14 months) was performed by urodynamic alone. In all cases, dilatation was followed by the restoration of urethral gauge, together with prompt functional improvement of urodynamic parameters. The latter result subsisted in time in 9 patients. In 2 cases recurrences were observed demonstrated at once by clinics and urodynamics. Both lesions were successfully re-treated. Neither early not late complication occurred. In spite of the limited material, the valuable results obtained, together with the absence of complications, the peculiar morphology of recurrences, and the chance of repeating it make the procedure advisable as a valid alternative to conventional techniques for these pathologies

  18. Gondola development for CNES stratospheric balloons

    Science.gov (United States)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance

  19. PoGOLino: a scintillator-based balloon-borne neutron detector

    CERN Document Server

    Kole, Merlin; Fukazawa, Yasushi; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mozsi; Moretti, Elena; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki

    2014-01-01

    PoGOLino is a balloon-borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors that make use of LiCAF, a novel neutron sensitive scintillator, sandwiched by BGO crystals for background reduction. The experiment was launched on March 20th 2013 from the Esrange Space Centre, Northern Sweden (geomagnetic latitude of $65^\\circ$), for a three hour flight during which the instrument took data up to an altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.

  20. PoGOLino: A scintillator-based balloon-borne neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Merlin, E-mail: merlin@particle.kth.se [KTH Royal Institute of Technology, Department of Physics, 106 91 Stockholm (Sweden); The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden); Chauvin, Maxime [KTH Royal Institute of Technology, Department of Physics, 106 91 Stockholm (Sweden); The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden); Fukazawa, Yasushi [Department of Physical Science, Hiroshima University, Hiroshima 739-8526 (Japan); Fukuda, Kentaro; Ishizu, Sumito [Tokuyama Corporation, Shunan, Yamaguchi (Japan); Jackson, Miranda [KTH Royal Institute of Technology, Department of Physics, 106 91 Stockholm (Sweden); The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden); Kamae, Tune [University of Tokyo, Department of Physics, 113-0033 Tokyo (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, Shunan, Yamaguchi (Japan); Kawano, Takafumi [Department of Physical Science, Hiroshima University, Hiroshima 739-8526 (Japan); Kiss, Mózsi; Moretti, Elena; Pearce, Mark; Rydström, Stefan [KTH Royal Institute of Technology, Department of Physics, 106 91 Stockholm (Sweden); The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 106 91 Stockholm (Sweden); Takahashi, Hiromitsu [Department of Physical Science, Hiroshima University, Hiroshima 739-8526 (Japan); Yanagida, Takayuki [Kyushu Institute of Technology, Kitakyushu, Fukuoka (Japan)

    2015-01-11

    PoGOLino is a balloon-borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors that make use of LiCAF, a novel neutron sensitive scintillator, sandwiched by BGO crystals for background reduction. The experiment was launched on March 20th 2013 from the Esrange Space Centre, Northern Sweden (geomagnetic latitude of 65°), for a three hour flight during which the instrument took data up to an altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.

  1. Measurements of cosmic-ray proton and helium spectra from the BESS-Polar long-duration balloon flights over Antarctica

    CERN Document Server

    Abe, K; Haino, S; Hams, T; Hasegawa, M; Horikoshi, A; Itazaki, A; Kim, K C; Kumazawa, T; Kusumoto, A; Lee, M H; Makida, Y; Matsuda, S; Matsukawa, Y; Matsumoto, K; Mitchell, J W; Myers, Z; Nishimura, J; Nozaki, M; Orito, R; Ormes, J F; Picot-Clemente, N; Sakai, K; Sasaki, M; Seo, E S; Shikaze, Y; Shinoda, R; Streitmatter, R E; Suzuki, J; Takasugi, Y; Takeuchi, K; Tanaka, K; Thakur, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2015-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.2-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.3-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from AMS-01, ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.3 GV to 160 GV a...

  2. Measurements of Cosmic-Ray Proton and Helium Spectra from the BESS-Polar Long-duration Balloon Flights over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Matsumoto, K.; Mitchell, J. W.; Myers, Z.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Picot-Clemente, N.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shikaze, Y.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Takasugi, Y.; Takeuchi, K.; Tanaka, K.; Thakur, N.; Yamagami, T.; Yamamoto, A.; Yoshida, T.; Yoshimura, K.

    2016-05-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160 GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.

  3. High energy cosmic rays

    International Nuclear Information System (INIS)

    I review here some of the physics we are learning and expect to learn in the near future through the observation of cosmic rays. The study of cosmic rays involves a combination of data from accelerators, ground arrays, atmospheric fluorescence detectors and balloon and satellite experiments. I will discuss the data of the Pierre Auger Observatory, PAMELA, ATIC and FST among other experiments.

  4. Near infrared multi-color photometry of red giants by a balloon-borne telescope

    International Nuclear Information System (INIS)

    Since 1974, near infrared photometry on fixed stars has been conducted with balloon-borne telescopes. The telescope was 15 cm in diameter. The purpose of the experiment is to observe the infrared spectra of red giants and super red giants at balloon altitude, and to study their atmospheric structure. In this experiment, the physical parameters of red giants and super red giants were determined, comparing the present data with line blanketed model atmosphere. The balloon was launched on September 16, 1977. The detector was PbS, and infrared in the wavelength range from 0.9 to 2.5 μm were observed. α Sco, α Her, epsilon Peg, delta Oph and low temperature stars were observed, and their effective temperature, surface gravity and turbulent velocity were determined. (Yoshimori, M.)

  5. Balloon dilatation of intrahepatic biliary strictures in liver transplantation

    International Nuclear Information System (INIS)

    Objective: To evaluate the efficacy of balloon dilatation in the treatment of intrahepatic biliary strictures in patients with liver transplantation. Methods: Of the 100 patients with liver transplantation, 16 patients had intrahepatic biliary strictures and received balloon dilatation treatment. Results: Initial technical balloon dilatation was successful in 14 caes but failed in 2 cases. There were no procedure-related complications. 4 restenosis occurred and they were treated with repeated balloon dilatation treatment. Conclusion: Balloon dilatation represented an effective and relatively safe treatment for biliary stricture in liver transplant recipients. For restenosis, balloon dilatation was also an effective treatment

  6. Large amplitude waves detected with balloons near the Andes Mountains

    Science.gov (United States)

    de la Torre, A.; Alexander, P.; Giraldez, A.

    Spectral results from a vertical sounding of temperature and wind velocity performed with an open stratospheric balloon in Argentina near the Andes mountains between 12 and 25 km of altitude, are reported. The use of sonic anemometers allows for a higher resolution than in previous experiments. The data records are studied in successive subintervals, yielding a good spectral correlation between the ascent and the descent around and below the tropopause. The possibilities of an orographic origin for large amplitude modes observed in the spectra and of wave generation by non linear interactions between them are discussed.

  7. Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks*

    Science.gov (United States)

    Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.

    2016-06-01

    The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments.

  8. Ballooning mode instability at the plasmapause

    Science.gov (United States)

    Lakhina, G. S.; Mond, M.; Hameiri, E.

    1990-01-01

    The ballooning mode instability, which can excite hydromagnetic waves at the plasmapause, is studied in the presence of azimuthal plasma flows induced during geomagnetically disturbed periods. A general sufficient criterion for the ballooning mode stability is derived, for a change in the potential energy greater than or equal to 0, which involves the integration over an entire field line. A local stability analysis at the equatorial plasmapause region shows that the ballooning modes could be spontaneously generated via instability under at least two conditions: one is similar to the usual interchange condition, and the second to the quasi-interchange modes. Both of these local instability conditions can be derived from the general stability criterion. Finally an exact solution for the equilibrium state with flow is derived analytically, and the change in the potential energy is computed numerically. It is found that, in the cases studied, the flow does not spontaneously excite the ballooning modes; it only further stabilizes (or destabilizes) the ballooning spectrum if originally the system is stable (or unstable). The analysis would be useful for the interpretation of some of the low-frequency modes observed at the ground and near the equatorial plasmapause.

  9. Recent Results and Near Term Outlook for the NASA Balloon Science Program

    Science.gov (United States)

    Jones, William Vernon

    Long-duration and conventional balloon flights in the traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines have continued in both polar and non-polar regions since the 39th COSPAR Assembly in Mysore, India. One of these established a new flight record of 55 days over Antarctica during the 2012-2013 austral season. That Super-TIGER science flight broke both the 42-day record of the CREAM science flight during the 2004-2005 season and the 54-day super pressure balloon test flight in 2008-2009. With two comets approaching the sun in 2013-2014, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System. All of the above science disciplines are interested in super pressure balloon (SPB) flights, which have been under development by NASA, and which were strongly supported by the Astro2010 Decadal Study. A 532,152 m3 (18.8 MCF) SPB with a major gamma ray astrophysics payload is planned for an ultra-long duration balloon (ULDB) test flight around and from Antarctica during the upcoming 2014-2015 season. Flights for SPB qualification to support 1000 kg science instruments to 33 km altitude have proceeded in parallel with planning for options to increase the altitude for less massive instruments that require less atmospheric overburden. The nearly constant SPB volume will provide stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Scientific ballooning continues to complement and enable space missions, while training young scientists and systems engineers for the workforce needed to conduct future missions. Highlights of results from past balloon-borne measurements and expected results from ongoing and planned balloon-borne experiments will be presented.

  10. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    Science.gov (United States)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    , resulting in easier engineering and development of the mission. The paper describes flight experiences on implementation of the flight tracking and recovery package over several balloon flights.

  11. New data analysis technique developed for the determination of the solar limb position in measurements of the solar diameter and oblateness, and application to observations obtained with the balloon-borne Solar Disk Sextant (SDS) experiment.

    Science.gov (United States)

    Djafer, D.; Sofia, S.; Irbah, A.; Thuillier, G.; Egidi, A.; Caccin, B.

    Solar diameter measurements performed from ground by several instruments during these last decades show variations which are not in agreement. In relation with solar activity, these measurements do not reveal consistent results. These results can be either attributed to Earth atmosphere effects or to instrumental ones especially in presence of noise. Noise affects directly the determination of the solar diameter defined as the zero crossing of the second derivative of the solar limb. Furthermore, presence of noise in data causes additional problems requiring appropriate data filtering without changing the solar limb slope. Several methods have been developed and used for a correct inflexion point position determination, among them, is the Fast Fourier Transform Definition (FFTD). We first present a complete description of the FFTD tool and in particular a new method to choose the filtering parameter (a) to be determined for applying FFDT. An alternative method by filtering using the wavelet analysis is also shown. The Solar Disk Sextant (SDS) is an instrument which has been flown on stratospheric balloons from 1992 to 1998 at 37 km altitude preventing all atmospheric effects. SDS uses a prism as angular reference. We present and discuss results obtained from SDS data analysis and compare them using others methods of inflexion point position detection. Finally, we discuss all other SDS experimental parameters able to cause solar diameter measurement variations.We show the relationship between the diameter variation and solar variability.

  12. Near ultraviolet spectrograph for balloon platform

    Science.gov (United States)

    Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2015-06-01

    Small and compact scientific payloads may be easily designed constructed and own on high altitude balloons. Despite the fact that large orbital observatories provide accurate observations and statistical studies of remote and/or faint space sources, small telescopes on board balloons or rockets are still attractive because of their low cost and rapid response time. We describe here a near ultraviolet (NUV) spectrograph designed to be own on a high{altitude balloon platform. Our basic optical design is a modified Czerny-Turner system using off the shelf optics. We compare different methods of aberration corrections in such a system. We intend the system to be portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in UV. We plan on using an image intensified CMOS sensor operating in photon counting mode as the detector of choice.

  13. Balloon catheter dilatation of esophageal strictures

    International Nuclear Information System (INIS)

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures

  14. Balloon catheter dilatation of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures.

  15. Performance of the EUSO-Balloon electronics

    Science.gov (United States)

    Barrillon, P.; Bacholle, S.; Bayer, J.; Blaksley, C.; Blin, S.; Cafagna, F.; Dagoret, S.; Fornaro, C.; Gorodetzky, P.; Jung, A.; Karczmarczyk, J.; De La Taille, C.; Medina Tanco, G.; Miyamoto, H.; Moretto, C.; Osteria, G.; Park, I.; Perfetto, F.; Prévôt, G.; Prat, P.; Rabanal Reina, J.; Rojas, J.; Santiago, L.; Scotti, V.; Silva, H.; Szabelski, J.

    2016-01-01

    The 24th of August 2014, the EUSO-Balloon instrument went for a night flight for several hours, 40 km above Timmins (Canada) balloon launching site, concretizing the hard work of an important part of the JEM-EUSO collaboration started 3 years before. This instrument consists of a telescope made of two lenses and a complex electronic chain divided in two main sub-systems: the PDM (Photo Detector Module) and the DP (Data Processor). Each of them is made of several innovative elements developed and tested in a short time. This paper presents their performances before and during the flight.

  16. Catalytic Generation of Lift Gases for Balloons

    Science.gov (United States)

    Zubrin, Robert; Berggren, Mark

    2011-01-01

    A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.

  17. Balloon dilatation of alimentary tract strictures

    International Nuclear Information System (INIS)

    From a series of balloon dilatations of alimentary tract strictures 11 patients with different types of gastric and oesophagogastric anastomotic stenoses are reported. The dilatation of gastric outflow tract obstructions was highly effective in the treatment of retention. In 7 out of 8 cases with gastric outflow stenosis surgery could be entirely avoided and replaced by balloon dilatation. The importance of eliminating retention in the healing of gastric ulcer is discussed. Fistulation in oesophagogastric anastomoses due to stenosis of the outflow portion was successfully treated. The importance of achieving a free outflow tract in order to prevent insufficiency of the anastomosis and formation of a fistula is stressed. (orig.)

  18. Particle Astrophysics in NASA's Long Duration Balloon Program

    International Nuclear Information System (INIS)

    A century after Viktor Hess' discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons

  19. Generalized math model for simulation of high-altitude balloon systems

    Science.gov (United States)

    Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.

    1985-01-01

    Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.

  20. The Cosmic Foreground Explorer (COFE): A balloon-borne microwave polarimeter to characterize polarized foregrounds

    CERN Document Server

    Leonardi, Rodrigo; Bersanelli, Marco; Ferreira, Ivan; Lubin, Philip M; Meinhold, Peter R; O'Neill, Hugh; Stebor, Nathan C; Villa, Fabrizio; Villela, Thyrso; Wuensche, Carlos A

    2006-01-01

    The COsmic Foreground Explorer (COFE) is a balloon-borne microwave polarime- ter designed to measure the low-frequency and low-l characteristics of dominant diffuse polarized foregrounds. Short duration balloon flights from the Northern and Southern Hemispheres will allow the telescope to cover up to 80% of the sky with an expected sensitivity per pixel better than 100 $\\mu K / deg^2$ from 10 GHz to 20 GHz. This is an important effort toward characterizing the polarized foregrounds for future CMB experiments, in particular the ones that aim to detect primordial gravity wave signatures in the CMB polarization angular power spectrum.

  1. Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope

    CERN Document Server

    Soler, J D; Amiri, M; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, C; Contaldi, C C; Crill, B P; Doré, O P; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Gambrel, A E; Gandilo, N N; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Kuo, C L; MacTavish, C J; Mason, P V; Megerian, K G; Moncelsi, L; Nagy, J M; Netterfield, C B; O'Brient, R; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Shariff, J A; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    We introduce the light-weight carbon fiber and aluminum gondola designed for the SPIDER balloon-borne telescope. SPIDER is designed to measure the polarization of the Cosmic Microwave Background radiation with unprecedented sensitivity and control of systematics in search of the imprint of inflation: a period of exponential expansion in the early Universe. The requirements of this balloon-borne instrument put tight constrains on the mass budget of the payload. The SPIDER gondola is designed to house the experiment and guarantee its operational and structural integrity during its balloon-borne flight, while using less than 10% of the total mass of the payload. We present a construction method for the gondola based on carbon fiber reinforced polymer tubes with aluminum inserts and aluminum multi-tube joints. We describe the validation of the model through Finite Element Analysis and mechanical tests.

  2. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol

    CERN Document Server

    Soler, J D; Angilè, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Galitzki, N; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Mroczkowski, A; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Thomas, N E; Truch, M D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    We present the thermal model of the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was successfully flown in two circumpolar flights from McMurdo, Antarctica in 2010 and 2012. During these two flights, BLASTPol obtained unprecedented information about the magnetic field in molecular clouds through the measurement of the polarized thermal emission of interstellar dust grains. The thermal design of the experiment addresses the stability and control of the payload necessary for this kind of measurement. We describe the thermal modeling of the payload including the sun-shielding strategy. We present the in-flight thermal performance of the instrument and compare the predictions of the model with the temperatures registered during the flight. We describe the difficulties of modeling the thermal behavior of the balloon-borne platform and establish landmarks that can be used in the design of future balloon-borne instruments.

  3. Increased Production of Sonic Hedgehog by Ballooned Hepatocytes

    OpenAIRE

    Rangwala, Fatima; Cynthia D Guy; Lu, Jiuyi; SUZUKI, Ayako; Burchette, James L.; Abdelmalek, Manal F; Chen, Wei; Diehl, Anna Mae

    2011-01-01

    Ballooned hepatocytes distinguish nonalcoholic steatohepatitis (NASH) from steatosis. Such cells contain dilated endoplasmic reticulum and ubiquitin aggregates, characteristics of endoplasmic reticulum stress. Hepatocyte ballooning increases risk for fibrosis in NASH, suggesting ballooned hepatocytes release pro-fibrogenic factors. Hedgehog ligands function as pro-fibrogenic factors in liver diseases, but mechanisms for Hedgehog ligand production remain poorly understood. We evaluated the hyp...

  4. Auditory Risk of Exploding Hydrogen-Oxygen Balloons

    Science.gov (United States)

    Gee, Kent L.; Vernon, Julia A.; Macedone, Jeffrey H.

    2010-01-01

    Although hydrogen-oxygen balloon explosions are popular demonstrations, the acoustic impulse created poses a hearing damage risk if the peak level exceeds 140 dB at the listener's ear. The results of acoustical measurements of hydrogen-oxygen balloons of varying volume and oxygen content are described. It is shown that hydrogen balloons may be…

  5. 21 CFR 884.5050 - Metreurynter-balloon abortion system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine...

  6. Wiktor stent implantation in patients with restenosis following balloon angioplasty of a native coronary artery

    NARCIS (Netherlands)

    P.W.J.C. Serruys (Patrick); M.E. Bertrand (Michel); V. Wiegand; G. Kober; J.F. Marquis; B. Valeix; R. Uebis; J. Piessen; P.P.T. de Jaegere (Peter)

    1992-01-01

    textabstractIntracoronary stenting has been introduced as an adjunct to balloon angioplasty aimed at overcoming its limitations, namely acute vessel closure and late restenosis. This study reports the first experience with the Wiktor stent implanted in the first 50 consecutive patients. All patients

  7. Performance research of filter in radon measurement with balloon method

    International Nuclear Information System (INIS)

    Background: Filter membrane is an important part of the balloon emanometer. The membrane of high filtration efficiency but little self-absorption can not only improve the sampling rate, but also reduce the measurement error effectively. Purpose: The experiment aims to compare the performance of three different filter membrane materials. Methods: Based on the radon and its progeny collecting physical processes on the membrane, we deduced the collection of radon in filters and its decay variation with time. Through the experiment, the filtration efficiency and self-absorption factor of the three different membranes have been tested. Results: When the thickness is almost the same, the filtration efficiency of Polytetrafluoroethylene (PTFE) filter and nylon filter is higher than that of commonly used glass fiber filter and its self-absorption is better than that of glass fiber membrane. The air resistance of PTFE filter is the best. It can effectively improve the performance by increasing thickness of the glass fiber filter membrane. Conclusion: This is not only a good reference for the selection of filter membrane in radon measurement with balloon method, but also applicable to radon-measuring devices with other methods. (authors)

  8. To higher energy: balloon and satellite investigations around the 'knee'

    International Nuclear Information System (INIS)

    The galactic cosmic radiation spans over 14 decades in energy and follows a power law spectrum in energy which shows two features, a steepening in the power law at a few times 1015 eV - the 'knee' - and a subsequent flattening in the power law at a few times 1018 eV - the 'ankle'. The 'knee' was discovered over 40 years ago through the measurement of cosmic ray initiated air showers, yet its origin and the underlying physics remain largely unknown. Experiments over the past four decades, from both balloon and space platforms, have pressed measurements to ever higher energy and to greater precision. This progression is briefly reviewed with emphasis on the current generation of experiments studying the high-energy regime up to the knee using direct particle-by-particle measurements. Prospects for understanding the 'knee' in terms of the acceleration of the cosmic rays and possible future experiments are included

  9. The effect of ballooning model in ISAAC

    International Nuclear Information System (INIS)

    The purpose of this paper is to analyze the ballooning effect in the fuel channel with the ISAAC (Integrated Severe Accident Analysis code for CANDU Plants) computer code which was developed for the severe accident analysis at CANDU plants. Cladding/PT ballooning model parameter in the ISAAC code is used to analyze its effect mainly on the hydrogen production from the fuel channel. According to the current ISAAC version, cladding failure occurs when the cladding temperature exceeds a user-specified failure temperature, resulting in a fission products release from the fuel rod to the primary system. The typical accident sequences of a loss of feed water (LOFW) and a large LOCA (LLOCA) scenario are selected. Unlike the PWRs, the ballooning effect in CANDU plants is not so clear during the low pressure sequences. Instead, pressure tube ballooning during the high pressure sequences decreases the amount of hydrogen generated from the fuel when pressure tube-calandria tube contact occurs, resulting in a cladding and pressure tube temperature decrease. (authors)

  10. Treatment of tuberculous bronchostenosis: balloon bronchoplasty

    International Nuclear Information System (INIS)

    The purpose of this study is to evaluate the efficacy of the balloon bronchoplasty in the treatment of the tuberculous bronchostenosis. Balloon bronchoplasty was performed in thirteen patients with stenosis of the left main bronchus (two with combined left upper and lower lobar bronchostenosis) using a inflatable balloon catheter under a fluoroscopic guide. We analysed the changes in the severity of dyspnea and wheezing, serial FEV1/FVC as a parameter of the airflow obstruction, and bronchial diameter and lung volume on chest radiographs. The extent of pulmonary tuberculosis was correlated with the improvement of FEV1/ FVC. There was an improvement of dyspnea in 69% (9/13), decrease of wheezing in 69% (9/13), significant increase of FEV1/FVC in 18% (2/11). The increase of the bronchial diameter and lung volume were seen in 84% (11/13) and 53% (7/13), respectively. The significant increase of FEV1/FVC was seen in 28% (2/7) of the patients with lung involvement of tuberculous less than one third of left upper lobe, whereas there was no increase in those of more than one third. The was no complication except transient leukocytosis, fever and blood-tinged sputum. In conclusion, balloon bronchoplasty is effective in the treatment of medically intractable tuberculous bronchostenosis, and can be considered as an initial method of treatment

  11. A case of balloon rupture during insertion of an intragastric balloon for treatment of morbid obesity

    OpenAIRE

    Bor, Serhat; TURAN, İlker; ÖZÜTEMİZ, Ömer

    2007-01-01

    The therapeutic options for treatment of morbid obesity are diet, exercise, behavioral modifications, medical treatment and bariatric surgery. An alternative approach to surgery is the endoscopic placement in the stomach of balloons which are filled with liquid, providing a sensation of fullness that decreases food consumption. The rate of complications associated with the placement of intragastric balloons is low. A significant late complication is deflation and/or displacement of the...

  12. Ballooning and rupture behavior of Zircaloy-4 cladding under transient-heating conditions

    International Nuclear Information System (INIS)

    Phenomena of fuel fragmentation, relocation and dispersal (FFRD) have been observed in several experiments on very-high-burnup fuels under simulated loss-of-coolant-accident (LOCA) conditions using a test reactor. In order to improve the prediction of the phenomena, ballooning and rupture behaviors of cladding under simulated LOCA conditions were investigated by performing laboratory-scale experiments in which internally pressurized non-irradiated Zircaloy-4 (Zry-4) claddings were heated to burst. The maximum circumferential strains of the ballooned claddings were strongly dependent on burst temperature and the trends seemed to depend on the heating rate in the experiment. Values of the maximum circumferential strain were normalized by dividing them by engineering hoop stress at the time of rupture. A correlation between the normalized values and the burst temperatures suggests that the fraction of β phase in Zry-4 cladding affects the extent of the strain of cladding ballooning and the embrittlement of cladding due to oxidation suppresses the ballooning of cladding. The length and width of rupture opening had the peak at ∼1073 K and decreased as the temperature increased from ∼1073 K in the case of the low heating rate while no specific trends were observed in the case of the high heating rate. These results suggest that the embrittlement of cladding due to oxidation affects the rupture behavior and results in small rupture openings. (author)

  13. NASA balloon design and flight - Philosophy and criteria

    Science.gov (United States)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  14. A new TDRSS Compatible Transceiver for Long Duration HIgh Altitude Scientific Balloon Missions

    Science.gov (United States)

    Stilwell, B.; Siemon, M.

    High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions with durations of up to 100 days (Ultra-Long) are on the drawing board. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRSS system provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real- time command and control. Early TDRSS communications equipment used by the National Scientific Balloon Facility was either unreliable or too expensive. The equipment must be a le tob endure the rigors of space flight including radiation exposure, high temperature extremes and the shock of landing and recovery. Since a payload may occasionally be lost, the cost of the TDRSS communications gear is a limiting factor in the number of missions that can be supported. Under sponsorship of the NSBF, General Dynamics Decision Systems has developed a new TDRSS compatible transceiver that reduces the size, weight and cost to approximately one half that of the prior generation of hardware. This paper describes the long and ultra-long balloon missions and the role that TDRSS communications plays in mission success. The new transceiver design is described, along with its interfaces, performance characteristics, qualification and production status. The transceiver can also be used in other space, avionics or

  15. The Balloon Experimental Twin Telescope for Infrared Interferometry

    Science.gov (United States)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  16. Electrodynamics of the Middle Atmosphere: Superpressure Balloon Program

    Science.gov (United States)

    Holzworth, Robert H.

    1990-01-01

    This project called Electrodynamics of the Middle Atmosphere (EMA): Superpressure Balloon Program was begun by the PI at the Aerospace Corporation in Los Angeles under joint NSF and NASA funding originally combined in one grant ATM80-17071 and has continued at the University of Washington under grants ATM8212283, ATM84-11326 and ATM86-15628 and NASA grants NAGW-724 and NAGS-635. In the EMA experiment a comprehensive set of electrical parameters was measured during eight long-duration balloon flights in the Southern Hemisphere stratosphere. These flights resulted in the largest vector electric field data set ever collected from the stratosphere which has been a treasure-trove of new phenomena. Since the stratosphere has never been electrodynamically sampled in this systematic manner before, it is perhaps not surprising that several new discoveries have been made and reported. Another way to measure the success of this first EMA project is to note that all together the total data rate was about 1 bit/sec/payload amounting to 12 MBytes (1/3 of 1 standard 1600 BPI magnetic tape) which nevertheless has resulted in 14 papers and 2 masters theses (so far! . Ten of these papers and one masters thesis specifically acknowledge the support by NASA grant NAGS-635 are discussed herein.

  17. Balloon-Borne Hard X-Ray Imaging and Future Surveys

    CERN Document Server

    Grindlay, J E

    1997-01-01

    Several payloads for hard X-ray (20-600 keV) imaging with coded aperture telescopes have been developed for balloon flight observations of cosmic x-ray sources. We briefly review the characteristics of these, particularly the EXITE2 system. The recent NASA program to develop an extended long duration (100d) balloon flight capability employing super-pressure balloons would allow a qualitatively new hard x-ray imaging experiment: the Energetic X-ray Imaging Survey Telescope-Long Integration Time Experiment (EXIST-LITE). The longer continuous viewing times (per source) available from an LDB platform than from low earth orbit would enable both surveys and objectives complementary to the EXIST mission proposed for a MIDEX satellite. We summarize the scientific objectives of EXIST-LITE, a possible instrumentation approach incorporating a large area array of Cd-Zn-Te (CZT) detectors, and our program for the development and balloon flight testing of relatively thick (5mm) CZT detector arrays.

  18. Modeling the Water Balloon Slingshot

    Science.gov (United States)

    Bousquet, Benjamin D.; Figura, Charles C.

    2013-01-01

    In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments,…

  19. Nonlinear ELM Simulations based on Peeling-Ballooning Modes using the BOUT/ BOUT++ Code

    International Nuclear Information System (INIS)

    Full text: A minimum set of equations based on the Peeling-Ballooning (P-B) mode with non-ideal physics effects (diamagnetic drift, E x B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of peeling-ballooning modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E x B drift, diamagnetic drift, resistivity, and anomalous electron viscosity on peeling-ballooning modes is being studied; we find that (1) the diamagnetic drift and E x B drift stabilize the peeling-ballooning mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the peeling-ballooning mode, leading to resistive peeling-ballooning mode; (3) anomalous electron viscosity destabilizes the peeling-ballooning mode, leading to a viscous peeling-ballooning mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5 - 10% of the pedestal stored energy. This is consistent with many observations of large ELMs. It is also shown that for high Lundquist number there are two distinct processes in the evolution of pressure profiles: a fast collapse greatly flattening the pressure profile near the peak pressure gradient on the order of tens of Alfven times after the onset of nonlinear P-B mode and a slow buildup of pressure gradient. We can characterize the fast collapse as a magnetic reconnection triggered by P-B modes → an island formation and magnetic braiding → bursting process and a slow collapse as a turbulence transport process. The estimated island size is consistent with the size of

  20. Sonic Thermometer for High-Altitude Balloons

    Science.gov (United States)

    Bognar, John

    2012-01-01

    The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment

  1. Pneumothorax, music and balloons: A case series

    OpenAIRE

    2013-01-01

    We describe two cases of spontaneous pneumothorax in young healthy adults with no underlying structural lung disease. The onset of pneumothorax was following physical activity including playing musical instruments and blowing of balloons. There is sparse data evaluating the pathophysiology of primary spontaneous pneumothorax in relation to increased mouth pressures. These cases highlight the possible physical effect of valsalva manoeuvre on transpulmonary pressures, and the potential risk of ...

  2. Lightweight Reusable Solar Array For Balloons

    Science.gov (United States)

    Aaron, K.; Tensor, P.; Nock, K.; Wyszkowski, C.

    We will discuss a new lightweight reusable solar array system, dubbed HighPower, which is being developed for the Ultra-Long Duration Balloon (ULDB) program using NASA/SBIR funding, but which is also applicable to other balloon systems. The system uses a vertically deployed stack of panels suspended from their corners by cables. The stack act likes a two-dimensional Venetian blind. By raising and lowering opposite corners, the array of parallel panels can be pointed over most of the upper hemisphere. This allows the panels to remain normal to the sun despite the slow rotation of the gondola and without requiring rotation of the system (no slip rings) or heavy cantilevered rotation joints. The system is sized to generate 2000 W using six 2m x 2m panels. The modularity of the system allows panels to be added or removed to tailored the power to the needs of the mission. Prior to cut -down of the balloon, the panels can be retracted and stowed compactly in the lower part of the gondola. This will protect the array during landing, allowing the array to be reused on subsequent flights.

  3. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  4. MAXIS Balloon Observations of Electron Microburst Precipitation

    Science.gov (United States)

    Millan, R. M.; Hunter, A. E.; McCarthy, M. P.; Lin, R. P.; Smith, D. M.

    2003-12-01

    Quantifying and understanding losses is an integral part of understanding relativistic electron variability in the radiation belts. SAMPEX observations indicate that electron microburst precipitation is a major loss mechanism during active periods; the loss of relativistic electrons during a six hour period due to microburst precipitation was recently estimated to be comparable to the total number of trapped electrons in the outer zone (Lorentzen et al., 2001). Microburst precipitation was first observed from a balloon (Anderson and Milton, 1964), but these early measurements were only sensitive to MAXIS 2000 long duration balloon campaign. MAXIS was launched from McMurdo Station in Antarctica carrying a germanium spectrometer, a BGO scintillator and two X-ray imagers designed to measure the bremsstrahlung produced by precipitating electrons. The balloon circumnavigated the south pole in 18 days covering magnetic latitudes ranging from 58o-90o South. During the week following a moderate geomagnetic storm (with Dst reaching -91 nT), MAXIS detected a total of over 16 hours of microburst precipitation. We present high resolution spectra obtained with the MAXIS germanium spectrometer which allow us to determine the precipitating electron energy distribution. The precipitating distribution will then be compared to the trapped distribution measured by the GPS and LANL satellites. We also examine the spatial distribution of the precipitation.

  5. Angry Birds realized: water balloon launcher for teaching projectile motion with drag

    International Nuclear Information System (INIS)

    A simple, collapsible design for a large water balloon slingshot launcher features a fully adjustable initial velocity vector and a balanced launch platform. The design facilitates quantitative explorations of the dependence of the balloon range and time of flight on the initial speed, launch angle, and projectile mass, in an environment where quadratic air drag is important. Presented are theory and experiments that characterize this drag, and theory and experiments that characterize the nonlinear elastic energy and hysteresis of the latex tubing used in the slingshot. The experiments can be carried out with inexpensive and readily available tools and materials. The launcher provides an engaging way to teach projectile motion and elastic energy to students of a wide variety of ages. (paper)

  6. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    International Nuclear Information System (INIS)

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful

  7. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won [Konyang University Hospital, Daejeon (Korea, Republic of)

    2005-12-15

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful.

  8. A Nominal Balloon Instrument Payload to Address Questions from the Planetary Decadal Survey

    Science.gov (United States)

    Young, Eliot; Kremic, Tibor; Dankanich, John

    The Planetary Science Decadal Survey (entitled "Visions and Voyages for Planetary Science in the Decade 2013 - 2022", available online at https://solarsystem.nasa.gov/2013decadal/) serves as a roadmap for activities to be pursued by the Planetary Science Division of NASA's Science Mission Directorate. This document outlines roughly 200 key research areas and questions in chapters covering different parts of the solar system (e.g., Mars, Small Bodies, etc.). We have reviewed the Decadal Survey to assess whether any of the key questions can be addressed by high altitude balloon-borne payloads. Although some questions can only be answered by in situ experiments, we found that approximately one quarter of the key questions were well suited to balloon payloads. In many of those cases, balloons were competitive or superior to other existing facilities, including HST, SOFIA or Keck telescopes. We will present specific telescope and instrument bench designs that are capable of addressing key questions in the Decadal Survey. The instrument bench takes advantage of two of the main benefits of high-altitude observations: diffraction-limited imaging in visible and UV wavelengths and unobstructed spectroscopy in near-IR (1 - 5 microns) wavelengths. Our optical prescription produces diffraction-limited PSFs in both visible and IR beams. We will discuss pointing and thermal stability, two of the main challenges facing a balloon-borne telescope.

  9. Peripheral Applications of Drug-Coated Balloons: Past, Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Krokidis, Miltiadis, E-mail: mkrokidis@hotmail.com; Spiliopoulos, Stavros, E-mail: stavspiliop@upatras.gr; Katsanos, Konstantinos, E-mail: katsanos@med.upatras.gr; Sabharwal, Tarun, E-mail: tarun_sabharwal@yahoo.co.uk [Guy' s and St. Thomas' Hospitals, NHS Foundation Trust, Department of Radiology (United Kingdom)

    2013-04-15

    Drug-coated balloon (DCB) technologies represent the latest and hottest development in the field of endovascular treatment of peripheral arterial disease. Initial experience with paclitaxel-coated balloon use in the femoral artery has demonstrated lower mid-term restenosis and superior mid-term clinical outcomes in terms of improved wound healing and reduced repeat angioplasty rates compared with standard balloon angioplasty. Many companies are presently developing and/or improving DCB catheters and therefore ongoing, technical improvements of the already existing platforms, new drugs, and innovative carriers are expected. The ongoing basic research studies and various multicenter randomized, controlled trials that are currently in progress will offer valuable scientific insights regarding the long-term effectiveness and other crucial issues, such as efficacy in various vascular beds, optimal balloon dosage, and post angioplasty antiplatelet therapy. Future applications of these devices also could include in-stent restenosis, anastomotic stenosis of surgical bypass, and benign stenoses of the central venous system. The authors envision that DCB angioplasty will evolve to a major paradigm shift in the endovascular treatment of occlusive vascular diseases.

  10. Prototype TIGRE Compton γ-ray balloon-borne telescope

    Science.gov (United States)

    Bhattacharya, D.; O'Neill, T. J.; Akyüz, A.; Samimi, J.; Zych, A. D.

    2004-02-01

    A prototype balloon-borne telescope is being constructed for γ-ray observations in the MeV energy range. The Tracking and Imaging Gamma-Ray Experiment (TIGRE) uses multi-layers of thin silicon detectors to track and measure the energy losses of Compton recoil electrons. When combined with the direction and energy of the Compton scattered γ-ray a unique incident direction for each photon event is determined. This facilitates background rejection, improved sensitivity and image reconstruction. The converter/tracker also serves as an electron-positron pair detector for γ-rays up to 100 MeV. The initial continental US flight will be used to determine the sub-orbital atmospheric backgrounds and search for polarized γ-emission for the Crab pulsar. Longer southern hemisphere flights with an enhanced instrument will map out the 26Al emissions from the galactic center region.

  11. A balloon-borne microwave limb sounder for stratospheric measurements

    International Nuclear Information System (INIS)

    The balloon-borne microwave limb sounder (BMLS) measures atmospheric thermal emission from millimeter wavelength spectral lines to determine vertical profiles of stratospheric species. The instrument flown to date operates at 205 GHz to measure C10, O3, and H2O2. A 63 GHz radiometer will be added to test the technique for determining tangent point pressure from the MLS experiment on the upper atmosphere research satellite (UARS). Many additional species could also be measured by the BMLS. A radiometer at 270 GHz would provide measurements of HO2, NO2, HNO3, N2O, 16O18O16O, and HCN. With this addition, the BMLS can test the current theory of O3 photochemical balance in the upper stratosphere

  12. Fluoroscopically Guided Balloon Dilation for Postintubation Tracheal Stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woong Hee; Kim, Jin Hyoung, E-mail: m1fenew@daum.net; Park, Jung-Hun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center (Korea, Republic of)

    2013-10-15

    Purpose: Little was known about the safety and long-term efficacy of fluoroscopically guided balloon dilation for postintubation tracheal stenosis. The purpose of this study was to evaluate the safety and long-term efficacy of fluoroscopically guided balloon dilation in patients with postintubation tracheal stenosis. Methods: From February 2000 to November 2010, 14 patients underwent fluoroscopically guided balloon dilation for postintubation tracheal stenosis. Technical success, clinical success, and complications were evaluated. Patients were followed up for recurrent symptoms. Results: In all patients, fluoroscopically guided balloon dilation was technically and clinically successful with no major complications. Following the initial procedure, six patients (43 %) remained asymptomatic during a follow-up period. Obstructive symptoms recurred in eight patients (57 %) within 6 months (mean, 1.7 months), who were treated with repeat balloon dilation (n = 4) and other therapies. Of the four patients who underwent repeat balloon dilation, three became asymptomatic. One patient became asymptomatic after a third balloon dilation. On long-term (mean, 74 months) follow-up, 71 % of patients experienced relief of symptoms following fluoroscopically guided balloon dilation. Conclusions: Fluoroscopically guided balloon dilation may be safe, is easy to perform, and resulted in effective treatment in patients with postintubation tracheal stenosis.

  13. Acoustical characterization of exploding hydrogen-oxygen balloons.

    Science.gov (United States)

    Vernon, Julia A; Gee, Kent L; Macedone, Jeffrey H

    2012-03-01

    Exploding hydrogen-oxygen balloons are popular chemistry demonstrations. Although initial research experimentally quantified potential hearing risk via analysis of peak levels [K. L. Gee et al., J. Chem. Educ. 87, 1039-1044 (2010)], further waveform and spectral analyses have been conducted to more fully characterize these impulsive noise sources. While hydrogen-only balloons produce inconsistent reactions and relatively low, variable levels, stoichiometrically mixed hydrogen-oxygen balloons produce consistent high-amplitude noise waveforms. Preliminary consideration is also given to the potential use of these exploding balloons in architectural acoustics applications. PMID:22423815

  14. The role of scientific ballooning for exploration of the magnetosphere

    International Nuclear Information System (INIS)

    The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics. (Author)

  15. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: First results from balloon and unmanned aerial vehicle flights

    Directory of Open Access Journals (Sweden)

    J.-B. Renard

    2015-09-01

    Full Text Available In the companion paper (Renard et al., 2015, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10–20 μm in diameter in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i tethered balloons deployed in urban environments in Vienna (Austria and Paris (France, (ii pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment – ChArMEx campaigns, (iii meteorological sounding balloons launched in the western Mediterranean region (ChArMEx and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign. More focus is put on measurements performed in the Mediterranean during (ChArMEx and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  16. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  17. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J. C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-09-01

    In the companion paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter) based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  18. Planetary Science with Balloon-Borne Telescopes

    Science.gov (United States)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some

  19. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    Science.gov (United States)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  20. A balloon borne telescope for planetary observations with a fine pointing technology

    Science.gov (United States)

    Shoji, Yasuhiro; Onishi, Tomoya; Battazzo, Steve; Yoshimura, Atsushi; Sakamoto, Yuji; Yoshida, Kazuya; Takahashi, Yukihiro; Taguchi, Makoto

    A balloon borne telescope is one of the effective observation methods for planets under space environment. A telescope is carried up to the stratosphere at an altitude of higher than 32 km where the air density is as thin as 1/100 of that at the ground. The thin atmosphere gives a telescope better observation conditions: fine seeing, stable weather, and high transmittance especially in the infrared region. Moreover there is a chance that a planet can be continuously seen for a window longer than 24 hours from the polar stratosphere. The authors have been developing a balloon borne telescope system for years to take finer images of planets in the solar system., The first object is Venus, of which atmospheric motions are derived by tracking the changes of cloud patterns with bands of UV, visible and NIR. Highly precise pointing control within the error of sub-arcseconds is required so that the balloon borne telescope achieves its diffraction-limited spatial resolution. The flight system is equipped with a three-stage attitude and pointing control system in order to realize the desired pointing control precision. In 2009, the flight system was built and tested in various ground tests and an actual balloon flight. Although the balloon experiment failed due to trouble with an onboard computer, the ground tests before the flight operation have verified that the pointing control system can achieve pointing error of less than 0.2 arcseconds. The balloon borne telescope is being redesigned for a sequential observation of Venus, Mars and Jupiter in the summer of 2011. This flight will be a step for a long-duration observation in the polar stratosphere. Additionally, an observation of the sodium tail of Mercury with a small telescope and a wide field of view has been under consideration. Mercury has very thin atmosphere called a surface-bounded exosphere. Past observations by spacecraft and ground-based telescopes revealed that one of the atmospheric components, gaseous

  1. Validation and retrieval of IASI measurements with IASI-balloon correlative measurements

    Science.gov (United States)

    Payan, Sébastien; Camy-Peyret, Claude; Pondrom, Marc; Té, Yao; Jeseck, Pascal; Bureau, Jérôme; Pépin, Isabelle

    2010-05-01

    Because of the increase of anthropogenic greenhouse gases and pollutants in the atmosphere since pre-industrial times and their impact on the environment (ozone hole, air quality, acid rains, greenhouse effect), in situ and remote-sensing measurements of atmospheric composition are carried out by a wide variety of instruments, using different measurement principles and different platforms (ground, aircrafts, balloons, satellites). The IASI (Infrared Atmospheric Sounding Interferometer) instrument, consisting of a nadir-looking thermal infrared Fourier transform spectrometer, which was launched onboard the MetOp-A platform on 19th October 2006, is dedicated to operational meteorology. However, IASI spectra have demonstrated a huge potential for retrieving trace gases such as ozone (O3), methane (CH4), carbon monoxide (CO) and many others. In this framework the LPMAA (Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique) developed a balloon-borne Fourier transform infrared (FTIR) spectrometer called IASI-balloon to record high resolution (0.1 cm-1 apodised) spectra of the atmosphere / surface system in the nadir looking geometry. Several flight of this balloon experiments have been performed allowing to provided a large number of thermal emission nadir looking FTIR spectra in the 650 - 3000 cm-1 region, recorded from float at about 35 km altitude. We retrieved profiles and/or columns of H2O, CO2, O3, N2O, CO and CH4. For a flight performed from Teresina, Brazil, the spectra recorded during the balloon flight are in good coincidence with IASI-MetOp measurements. We used this set of data to test the impact on the retrieval of a new cloud simulation module in our retrieval algorithm LARA (LPMA retrieval Atmospheric Algorithm). The results will be presented here.

  2. Ballooning Spiders: The Case for Electrostatic Flight

    CERN Document Server

    Gorham, Peter W

    2013-01-01

    We consider general aspects of the physics underlying the flight of Gossamer spiders, also known as ballooning spiders. We show that existing observations and the physics of spider silk in the presence of the Earth's static atmospheric electric field indicate a potentially important role for electrostatic forces in the flight of Gossamer spiders. A compelling example is analyzed in detail, motivated by the observed "unaccountable rapidity" in the launching of such spiders from H.M.S. Beagle, recorded by Charles Darwin during his famous voyage.

  3. Thrombus aspiration catheter is a Dottering balloon.

    Science.gov (United States)

    Sheshagiri Rao, D; Barik, Ramachandra; Prasad, Akula Siva

    2016-01-01

    Coronary angiogram in a young man with history of STEMI with delayed presentation revealed subtotal occlusion of left anterior descending artery (LAD) with large thrombotic filling defect distal to the critical lesion. PCI was preferred without delay because of ongoing chest pain. Several runs of thrombus aspiration failed to detect any visible thrombus. However, the immediate angiogram after thrombus aspiration showed complete distal embolization of the thrombus which could have been achieved by Dottering or balloon dilatation. In contrary to the general perception, does thrombus aspiration push more thrombus than it can aspirate? PMID:27543477

  4. Ballooning instability precursors to high β disruptions

    International Nuclear Information System (INIS)

    Strongly ballooning modes have been found as precursors to high β disruptions on TFTR. The modes are typically localized to a region spanning about 60 degree in the toroidal direction. The toroidal localization is associated with lower frequency, global Magneto-Hydro-Dynamic (MHD) activity, typically an ideal n = 1 kink mode. They have moderate to high frequency (f = 10--20 frot), implying toroidal mode numbers in the range n = 10--20. The growth rates for the modes are large, of order 104/sec

  5. General theory of kinetic ballooning modes

    International Nuclear Information System (INIS)

    The ballooning mode formalism, previously developed for the ideal MHD problem, is applied here to the kinetic problem in tokamaks. The general two-dimensional equation governing drift and trapped-electron eigenmodes reduces to a one-dimensional integral equation along the lines of force with the radial structure determined by a WKB procedure. Comparisons made between the present one-dimensional code and a previous two-dimensional code embodying identical physical assumptions indicate reasonable agreement. This correspondence holds both for the structure along the field line and for the radial structure in the special case of closely spaced turning points

  6. Double-balloon endoscopy: Who needs it?

    DEFF Research Database (Denmark)

    Hendel, J.W.; Vilmann, P.; Jensen, T.

    2008-01-01

    Objective. Double-balloon endoscopy (DBE) made the small bowel accessible to inspection and therapy in its entirety. However, DBE is a time-consuming procedure that requires a highly skilled endoscopist, several nurses and - more often than not - anesthesiological support. This makes the selection...... of patients for DBE a pivotal point. The mainstay of this screening examination of the small bowel is capsule endoscopy (CE). The aim of this study was to describe the results of this screening procedure and the subsequent DBE in patients with suspected mid-gastrointestinal bleeding (MGIB). Material...

  7. Pneumothorax, music and balloons: A case series

    Directory of Open Access Journals (Sweden)

    Shiferaw Dejene

    2013-01-01

    Full Text Available We describe two cases of spontaneous pneumothorax in young healthy adults with no underlying structural lung disease. The onset of pneumothorax was following physical activity including playing musical instruments and blowing of balloons. There is sparse data evaluating the pathophysiology of primary spontaneous pneumothorax in relation to increased mouth pressures. These cases highlight the possible physical effect of valsalva manoeuvre on transpulmonary pressures, and the potential risk of developing pneumothorax in otherwise healthy individuals. This aspect of pneumothorax development is worthy of further exploration, to better elucidate the mechanism and enhance our understanding of this common respiratory presentation.

  8. Pneumothorax, music and balloons: A case series.

    Science.gov (United States)

    Dejene, Shiferaw; Ahmed, Fahim; Jack, Kastelik; Anthony, Arnorld

    2013-07-01

    We describe two cases of spontaneous pneumothorax in young healthy adults with no underlying structural lung disease. The onset of pneumothorax was following physical activity including playing musical instruments and blowing of balloons. There is sparse data evaluating the pathophysiology of primary spontaneous pneumothorax in relation to increased mouth pressures. These cases highlight the possible physical effect of valsalva manoeuvre on transpulmonary pressures, and the potential risk of developing pneumothorax in otherwise healthy individuals. This aspect of pneumothorax development is worthy of further exploration, to better elucidate the mechanism and enhance our understanding of this common respiratory presentation. PMID:23922614

  9. Explosive Ballooning Flux Tubes in Tokamaks

    CERN Document Server

    Ham, C J; Brochard, G; Wilson, H R

    2016-01-01

    Tokamak stability to, potentially explosive, `ballooning' displacements of elliptical magnetic flux tubes is examined in large aspect ratio equilibrium. Above a critical pressure gradient the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure gradient, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from displaced flux tubes may result in rapid loss of confinement.

  10. Guidelines and Suggestions for Balloon Gondola Design

    Science.gov (United States)

    Franco, Hugo

    2016-01-01

    The Columbia Scientific Balloon Facility is responsible for ensuring that science payloads meet the appropriate design requirements. The ultimate goal is to ensure that payloads stay within the allowable launch limits as well as survive the termination event. The purpose of this presentation is to provide some general guidelines for Gondola Design. These include rules and reasons on why CSBF has a certain preference and location for certain components within the gondola as well as other suggestions. Additionally, some recommendations are given on how to avoid common pitfalls.

  11. Simultaneous stent expansion/balloon deflation technique to salvage failed balloon remodeling.

    Science.gov (United States)

    Ladner, Travis R; He, Lucy; Davis, Brandon J; Froehler, Michael T; Mocco, J

    2016-04-01

    Herniation, with possible embolization, of coils into the parent vessel following aneurysm coiling remains a frequent challenge. For this reason, balloon or stent assisted embolization remains an important technique. Despite the use of balloon remodeling, there are occasions where, on deflation of the balloon, some coils, or even the entire coil mass, may migrate. We report the successful use of a simultaneous adjacent stent deployment bailout technique in order to salvage coil prolapse during balloon remodeling in three patients. Case No 1 was a wide neck left internal carotid artery bifurcation aneurysm, measuring 9 mm×7.9 mm×6 mm with a 5 mm neck. Case No 2 was a complex left superior hypophyseal artery aneurysm, measuring 5.3 mm×4 mm×5 mm with a 2.9 mm neck. Case No 3 was a ruptured right posterior communicating artery aneurysm, measuring 4 mm×4 mm×4.5 mm with a 4 mm neck. This technique successfully returned the prolapsed coil mass into the aneurysm sac in all cases without procedural complications. The closed cell design of the Enterprise VRD (Codman and Shurtleff Inc, Raynham, Massachusetts, USA) makes it ideal for this bailout technique, by allowing the use of an 0.021 inch delivery catheter (necessary for simultaneous access) and by avoiding the possibility of an open cell strut getting caught on the deflated balloon. We hope this technique will prove useful to readers who may find themselves in a similar predicament. PMID:25801773

  12. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  13. The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    OpenAIRE

    Fissel, Laura M.; Ade, Peter A. R.; Angile, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Devlin, Mark J.; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; David H. Hughes; Klein, Jeffrey; Korotkov, Andrei L.; Marsden, Galen; Matthews, Tristan G.; Moncelsi, Lorenzo

    2010-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The...

  14. Recent developments in the scientific ballooning in India

    Science.gov (United States)

    Manchanda, R.; Sreenivasan, S.; Subbarao, J.; Kumar, P.

    RECENT DEVELOPMENTS IN THE SCIENTIFIC BALLOONING IN INDIA R. K. Manchanda1, S. Sreenivasan2, J. V. Subbarao2, P. R. Kumar2 1. Tata Institute of Fundamental Research Colaba, Mumbai-400 005, India. 2. TIFR Balloon Facility, PO Box 5, ECIL Post Office, Hyderabad-500 762, India ravi@tifr.res.in/FAX: +91-22-2152110 National Balloon facility operated by TIFR in Hyderabad, India is the only one of its kind in the world, which combines both, the in-house balloon production and a complete flight support for scientific ballooning. In the past few years we executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years and the results of the test flight conducted to qualify new sub systems will be presented.

  15. Methods for tracking of balloons and rockets at Esrange

    Science.gov (United States)

    Hedqvist, Tomas

    2001-08-01

    At Esrange several methods are used for tracking of balloons and rockets with help of radar, Vaisala sounding data, ARGOS and GPS information. Information from these different sources is fed into a computer system for processing, and for display on adapted systems. Data from balloon flights are displayed on a digital map, which includes population data and a system to predict impact point of the balloon. Data from rocket flights can be displayed either on a digital map, or in a system for range safety purpose. Signals from various sources are converted into a data format used in the new ATC (Air Traffic Control) transponder system in order to ease future integration into this system. Data from the GPS system in NMEA format can also be adopted directly into the tracking system for both balloon and rocket flight. Balloon tracking data is also transferred via Internet to ATCs centres for flight safety reasons. Future developments: A new system for wind measurements will be created from "throw away" GPS sondes. In air traffic transponders, the expensive altimeter will be replaced by an inexpensive GPS system. For recovery, Argos-GPS on balloons will be used for real-time tracking, position information via satellites and as a support system for recovery by helicopter. Balloons equipped with the Inmarsat system, for long duration balloon flights, will have their position displayed in the digital map system.

  16. The Evaluation of Endoscopic Balloon Dilation Treatment for

    Directory of Open Access Journals (Sweden)

    Shokri-Shirvani Javad

    2009-10-01

    Full Text Available Balloon dilatation of stricture is one of the new treatment methods among patients with gastric outlet obstruction (GOO. However, the prevalence and underlying etiologies of GOO in various populations are different. The goal of the present study was to determine the effectiveness of endoscopic balloon dilatation and factors that would affect its success rate patients with benign etiology for GOO. Forty-five patients with the symptoms of benign GOO were randomly selected. Gastric outlet was delineated using double channel videoendoscopy. The information of initial balloon dilation was collected from recorded files. Balloon dilatation was repeated during the mean follow up of 9.9 ± 5.8 months. The severity of gastric pain was measured immediately before balloon dilatation and one month after procedure and was rated on a 10 cm visual analogue scale. The mean age of patients was 43.7 ± 18.1 years and 86.7% of them were men. Furthermore, 71.1% were H pylori positive. Response rate to endoscopic balloon dilatation was 80% and 8 patients underwent surgical resection. Weight loss was more frequent in non-responding group. The pain severity was significantly reduced more in responding subjects. No meaningful relationships were found between the responses to balloon dilatation and positive H pylori and cigarette smoking. Endoscopic balloon dilation is safe and effective for most patients with benign gastric outlet obstruction and has favorable long-term outcome.

  17. Reversible transient apical ballooning syndrome with coronary lesions

    Institute of Scientific and Technical Information of China (English)

    Yunshan Cao; Min Zhang; Xiang Li; Ping Xie; Lynn Cronin

    2009-01-01

    Transient apical ballooning syndrome(Tako-Tsubo syndrome or ampulla cardiomyopathy) occurs predominantly in women over 60 years of age with a history of recent physical or psychological stress. We present a case of a male patient with reversible transient apical ballooning syndrome with significant coronary lesions and other ECG changes that did not explain the clinical symptoms.

  18. Spectrum of the ballooning Schroedinger equation

    International Nuclear Information System (INIS)

    The ballooning Schroedinger equation (BSE) is a model equation for investigating global modes that can, when approximated by a Wentzel-Kramers-Brillouin (WKB) ansatz, be described by a ballooning formalism locally to a field line. This second order differential equation with coefficients periodic in the independent variable θk is assumed to apply even in cases where simple WKB quantization conditions break down, thus providing an alternative to semiclassical quantization. Also, it provides a test bed for developing more advanced WKB methods: e.g. the apparent discontinuity between quantization formulae for open-quotes trappedclose quotes and open-quotes passingclose quotes modes, whose ray paths have different topologies, is removed by extending the WKB method to include the phenomena of tunnelling and reflection. The BSE is applied to instabilities with shear in the real part of the local frequency, so that the dispersion relation is inherently complex. As the frequency shear is increased, it is found that trapped modes go over to passing modes, reducing the maximum growth rate by averaging over θk

  19. Intravascular ultrasound imaging following balloon angioplasty.

    Science.gov (United States)

    Tobis, J M; Mahon, D J; Moriuchi, M; Honye, J; McRae, M

    1991-01-01

    Despite its long history and reliability, contrast angiography has several inherent limitations. Because it is a two-dimensional projection image of the lumen contour, the wall thickness cannot be measured and the plaque itself is not visualized. This results in an underestimation of the amount of atherosclerotic disease by angiography. An assessment of atherosclerosis could be improved by an imaging modality: (1) that has an inherent larger magnification than angiography and (2) that directly visualizes the plaque. Intravascular ultrasound fulfils these criteria. This presentation will provide evidence that intravascular ultrasound may prove complimentary or even superior to angiography as an imaging modality. Intravascular ultrasound demonstrates excellent representations of lumen and plaque morphology of in vitro specimens compared with histology. There is very close intraobserver and interobserver variability of measurements made from intravascular ultrasound images. Phantom studies of stenoses in a tube model demonstrate that angiography can misrepresent the severity of stenosis when the lumen contour is irregular and not a typical ellipse, whereas intravascular ultrasound reproduces the cross-sectional morphology more accurately since it images the artery from within. In vitro studies of the atherosclerotic plaque tissue characteristics compare closely with the echo representation of fibrosis, calcification, and lipid material. In addition, in vitro studies of balloon angioplasty demonstrate that intravascular ultrasound accurately represents the changes in the structure of artery segments following balloon dilatation. PMID:1833473

  20. EUSO-Balloon: The first flight

    Science.gov (United States)

    Scotti, Valentina; Osteria, Giuseppe

    2016-07-01

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the International Space Station (ISS). The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies of JEM-EUSO detectors and to measure the UV background. The JEM-EUSO instrument consists of UV telescope designed to focus the signal of the UV tracks generated by Extreme Energy Cosmic Rays propagating in Earth's atmosphere, onto a finely pixelized UV camera. The EUSO-Balloon instrument, smaller than the one designed for the ISS, was launched on August 2014 from Timmins (Ontario, Canada). The flight lasted about five hours and the instrument reached a float altitude of about 40 km. From this altitude the telescope registered, at a rate of 400 000 frames/s, the nightglow background on forests, lakes and clouds, as well as city lights and artificial air showers tracks generated by means of a laser installed on an helicopter flying inside its field of view. In this contribution we will describe the instrument and its performance during the first flight.

  1. Balloon concepts for scientific investigation of Mars and Jupiter

    Science.gov (United States)

    Ash, R. L.

    1979-01-01

    Opportunities for scientific investigation of the atmospheric planets using buoyant balloons have been explored. Mars and Jupiter were considered in this study because design requirements at those planets bracket nominally the requirements at Venus, and plans are already underway for a joint Russian-French balloon system at Venus. Viking data has provided quantitative information for definition of specific balloon systems at Mars. Free flying balloons appear capable of providing valuable scientific support for more sophisticated Martian surface probes, but tethered and powered aerostats are not attractive. The Jovian environment is so extreme, hot atmosphere balloons may be the only scientific platforms capable of extended operations there. However, the estimated system mass and thermal energy required are very large.

  2. ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes

    International Nuclear Information System (INIS)

    An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments. (author)

  3. ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes

    Science.gov (United States)

    Saarelma, S.; Günter, S.; Kurki-Suonio, T.; Zehrfeld, H.-P.

    2000-05-01

    An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments.

  4. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    Science.gov (United States)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; Maher, S. F.; Mentzell, J. E.; Mundy, L. G.; Rizzo, M. J.; Silverberg, R. F.; Staguhn, J. G.

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  5. A calculation of the plasma ballooning mode stability and the bootstrap current in negative magnetic shear configuration

    International Nuclear Information System (INIS)

    It is well known that reversed (negative)magnetic shear is favorable for the stability of ballooning mode in tokamak, and hence for the achievement of high β, large bootstrap current. In several recent experiment it has been seen that negative magnetic shear strongly enhanced plasma performance. Based on MHD ballooning model stability theory and Hirshman's expression for the flux surface averaged parallel bootstrap current density, marginal stability regions of plasma ballooning mode and bootstrap current density profile in negative magnetic shear configuration are calculated. The results shows negative magnetic shear configuration permit larger β value and produced larger bootstrap current fraction. If parameter q2R/Lp is nearly equivalent, when shear value between +-0.2--+-0.5, negative magnetic shear permit two times larger β than positive magnetic shear and corresponding bootstrap current fraction ≥70%. The results provide a reference for the feasible research of hybrid reactor core

  6. Percutaneous balloon mitral valvuloplasty by the Inoue balloon technique: the procedure of choice for treatment of mitral stenosis.

    Science.gov (United States)

    Cheng, T O; Holmes, D R

    1998-03-01

    The Inoue technique of percutaneous balloon mitral valvuloplasty, introduced in 1984, is a truly startling advance in cardiology in modern times. It is time to reeducate our colleagues that when they hear the opening snap in patients with mitral stenosis, they should automatically open these stenotic mitral valves with an Inoue balloon catheter rather than submit these patients to surgical correction. PMID:9514461

  7. Edge localized modes and the pedestal: A model based on coupled peeling-ballooning modes

    International Nuclear Information System (INIS)

    A model based on magnetohydrodynamic (MHD) stability of the tokamak plasma edge region is presented, which describes characteristics of edge localized modes (ELMs) and the pedestal. The model emphasizes the dual role played by large bootstrap currents driven by the sharp pressure gradients in the pedestal region. Pedestal currents reduce the edge magnetic shear, stabilizing high toroidal mode number (n) ballooning modes, while at the same time providing drive for intermediate to low n peeling modes. The result is that coupled peeling-ballooning modes at intermediate n (3< n<20) are often the limiting instability which constrains the pedestal and triggers ELMs. These modes are characterized in shaped tokamak equilibria using an efficient new numerical code, and simplified models are developed for pedestal limits and the ELM cycle. Results are compared to several experiments, and nonideal MHD effects are briefly discussed

  8. A Survey of Titan Balloon Concepts and Technology Status

    Science.gov (United States)

    Hall, Jeffery L.

    2011-01-01

    This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.

  9. Boston's balloon dilatation for treatment of cardiac achalasia

    International Nuclear Information System (INIS)

    Objective: To review and summarize effectiveness and method of the Boston's balloon dilation in cardiac achalasia. Methods: The intensified guide wire was inserted into stomach through mouth cavity under TV control. The Boston's balloon was inserted to the cardiac stricture through the guide wire and dilatated with 15% contrast medium with to a maximum diameter for five minutes and then the balloon was dilatated again for 3-5 minutes, all together for 3-4 times. The severe stricture must be pre-dilatated with 20-25 mm diameter balloon. Results: The balloon insertion was technically successful in all 26 patients. The once success of balloon dilation was achieved in 24 patients and twice in other 2. Follow-up time was from 2 weeks to 31 months (mean 10.6 months). Recurrent stenosis had not occurred in all patients. Remission rate of dysphagia was 100%. Esophageal reflux occurred in 3 patients. Conclusions: The Boston's balloon dilatation is simple and effective for treatment of cardiac achalasia. The method sometimes may replace surgical procedure

  10. Procoagulant platelet balloons: evidence from cryopreparation and electron microscopy.

    Science.gov (United States)

    Hess, M W; Siljander, P

    2001-05-01

    Visualisation of the procoagulant transformation of human platelets has recently become possible through use of an in vitro approach combined with fluorescence and phase contrast microscopy. Here, we extended these studies to the ultrastructural level by employing both rapid freezing/freeze-substitution and conventional ambient-temperature chemical fixation for transmission and scanning electron microscopy. Procoagulant transformation was only inducible by adhering platelets to collagen fibrils or to the collagen-related peptide and exposing them to physiological extracellular Ca2+ levels. Under these conditions prominent, 2- to 4-micron-wide balloon-like structures were regularly observed, regardless of the specimen fixation protocol. In strong contrast to normal platelets in their vicinity, the balloons' subcellular architecture proved remarkably poor: dilute cytoplasm, no cytoskeleton, only a few, randomly distributed organelles and/or their remnants. Cryofixed balloons displayed intact and smooth surfaces whereas conventional specimen processing caused plasma membrane perforations and shrinkage of the balloons. Our results clearly show that neither the balloons themselves, nor their simple ultrastructure reflect fixation artefacts caused by inadequate membrane stabilisation. The balloons are interpreted as to be transformed and/or fragmented procoagulant platelets. Thus, the generation of balloons represents a genuine, final stage of platelet ontogenesis, presumably occurring alternatively to aggregate formation. PMID:11449892

  11. Graph-Based Path-Planning for Titan Balloons

    Science.gov (United States)

    Blackmore, Lars James; Fathpour, Nanaz; Elfes, Alberto

    2010-01-01

    A document describes a graph-based path-planning algorithm for balloons with vertical control authority and little or no horizontal control authority. The balloons are designed to explore celestial bodies with atmospheres, such as Titan, a moon of Saturn. The algorithm discussed enables the balloon to achieve horizontal motion using the local horizontal winds. The approach is novel because it enables the balloons to use arbitrary wind field models. This is in contrast to prior approaches that used highly simplified wind field models, such as linear, or binary, winds. This new approach works by discretizing the space in which the balloon operates, and representing the possible states of the balloon as a graph whose arcs represent the time taken to move from one node to another. The approach works with arbitrary wind fields, by looking up the wind strength and direction at every node in the graph from an arbitrary wind model. Having generated the graph, search techniques such as Dijkstra s algorithm are then used to find the set of vertical actuation commands that takes the balloon from the start to the goal in minimum time. In addition, the set of reachable locations on the moon or planet can be determined.

  12. Ballooning of CANDU pressure tubes. Model assessment

    International Nuclear Information System (INIS)

    The transient creep equations used to analyze the possible ballooning and failure of Zr-2.5% Nb pressure tubes during a loss-of-coolant accident (LOCA) were developed and verified using as-received Zr-2.5% Nb pressure tube material. But in a CANDU reactor, the pressure tubes absorb deuterium and are exposed to a continuous neutron fluence. Consequently, a literature survey was done to determine how irradiation damage and deuterium might affect the creep rate and ductility of Zr-2.5% Nb pressure tubes in the temperature range from 600 to 800 degrees C. It was found that irradiation damage, dissolved deuterium and deuteride blisters could possibly affect the creep rate and ductility of ZR-2.5% Nb pressure tubes in this temperature range, but deuteride platelets are expected to have little effect. Further tests are required to determine the effect of irradiation damage and deuterium on the creep rate and ductility of pressure tubes

  13. Balloon brachytherapy: how I do it

    International Nuclear Information System (INIS)

    To describe the technical aspects of insertion of MammoSite Radiation System, cosmetic issues, patients selection for the procedure and their satisfaction. Seventy patients underwent brachytherapy after insertion of the MammoSite catheter and received a boost HDR totaling 1500 cGy in six fractions over a three day period. Each patient then received 5 weeks of external beam radiotherapy to the whole breast. Only T1-2 patients were treated. All patients had excellent cosmetic results. The complications (minimal skin erythema, hematoma, balloon leak, seroma, were minimal. The safety and effectiveness of the MammoSite Radiation Therapy System as a replacement for whole breast irradiation in the treatment of breast cancer has not yet been established. (author)

  14. Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning

    Science.gov (United States)

    Saad, Marissa Elizabeth

    The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the

  15. Migration of Bakri balloon through an unsuspected uterine perforation during the treatment of secondary postpartum hemorrhage.

    Science.gov (United States)

    Leparco, Soizic; Viot, Alexandre; Benachi, Alexandra; Deffieux, Xavier

    2013-06-01

    The current case describes an unreported complication of Bakri balloon placement: the migration of the Bakri balloon to the broad ligament through an unsuspected uterine rupture. Finally, a hysterectomy had been required. The Bakri balloon may be involuntary introduced in an unexpected uterine rupture, even if the balloon is placed with ultrasound guidance. PMID:23470856

  16. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Pretolesi, F.; Derchi, L.E. [Dept. of Radiology, University of Genoa (Italy); Redaelli, G.; Papagni, L. [IRCCS, Ist. Auxologico Italiano, Milan (Italy)

    2001-04-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  17. Effect of poloidally asymmetric sheared flow on resistive ballooning turbulence

    International Nuclear Information System (INIS)

    The shear flow induced through the Reynolds stress tensor by turbulence with ballooning character is poloidally asymmetric. For circular cross section tokamak plasmas, its main component is the (m=1, n=0). The effect of such a sheared flow on both linear and nonlinear instability is analyzed. Its effect on the linear stability properties of resistive ballooning modes is compared with the effect of poloidally symmetric sheared flows. It is shown that asymmetry in the flow does not reduce its effectiveness in stabilizing the linear resistive ballooning modes. It is also effective in reducing the turbulence level and decreasing the turbulence induced diffusivities. copyright 1999 American Institute of Physics

  18. Validation of IASI ozone profiles, using balloon sounding data

    OpenAIRE

    Delcloo, Andy; Hurtmans, Daniel; Coheur, Pierre-François; Clerbaux, Cathy

    2011-01-01

    Here we present a validation study of IASI vertical ozone profiles. This has been done using balloon ozone sonde data, which have a vertical resolution of about 100 m and measures ozone from the surface up to an altitude of about 30 km. IASI vertical ozone profiles are given as partial ozone columns [in DU per layer] between varying pressure levels. To validate the satellite derived ozone layers with the balloon ozone sounding data we integrate the ozone measured by the balloon ozone sounding...

  19. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    International Nuclear Information System (INIS)

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  20. Results of the first EUSO-Balloon flight

    Science.gov (United States)

    Miyamoto, H.; Bertaina, M.; JEM-EUSO Collaboration

    2016-05-01

    EUSO-Balloon, a balloon-borne diffractive fluorescence telescope, was launched by the French Space Agency ONES from the Timmins base in Ontario (Canada) on August 25th in 2014. After reaching the floating altitude of about 38 km, EUSO-Balloon imaged the UV background for more than 5 hours before descending to ground using the key technologies of JEM-EUSO. A detailed and precise measurement of the UV background in different atmospheric and ground conditions was achieved. The instrument proved the capability of detecting Extensive Air Showers (EAS) by observing laser tracks with similar characteristics. This contribution will summarise the first results obtained concerning all the topics described above.

  1. Demonstration of a Balloon Borne Arc-Second Pointer Design

    Science.gov (United States)

    DeWeese, Keith D.; Ward, Philip R.

    2006-01-01

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The test results of a demonstration prototype of the design with similar ability are also presented. Discussion of a high fidelity controller simulation for design analysis is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is utilized for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided. A unique bearing hub design is introduced that eliminates static friction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. Results from a generalized demonstration prototype are presented. Commercial off-the-shelf (COTS) hardware was used to demonstrate the efficacy and performance of the pointer design for a mock instrument. Sub-arcsecond pointing ability from a ground hang test setup

  2. Derivatives of the local ballooning growth rate with respect to surface label, field line label and ballooning parameter

    International Nuclear Information System (INIS)

    For comprehensive ballooning analysis in three-dimensional (stellarator) systems, an extensive set of ballooning eigenvalue calculations is generally required. For several applications, it is convenient to know how the local ballooning stability will change as a function of the surface label ψ, the field line label α and the angle-like ballooning parameter ηk. A particularly important application is in the ray tracing problem [Dewar and Glasser 1983], when results from the local ballooning analysis are extended to make predictions regarding global stability. This article presents an explicit method for calculating the derivatives of the ballooning eigenvalue with respect to (ψ, α,ηk). The required derivatives satisfy δλ = ∂λ/∂ψ|α,ηk δψ + ∂λ/∂α|ψ,ηk δα+ ∂λ/ ∂ηk| ψ,α δηk, (1) for infinitesimal variations δψ,δα and δηk. The method is an application of eigenvalue perturbation analysis. The ballooning equation, with eigenvalue λ and eigenfunction ξ, may be written ∂ηP∂ηξ + Qξ = λRξ, (2). A small change in (ψ, α, ηk) induces a change in the ballooning coefficients, and a corresponding variation in the ballooning eigenvalue. The eigenvalue derivatives are calculated ∂λ/∂ψ|α,ζ = ηδPψ∂ + δQψ - λδRψ|ξ> (3) where Pψ, Qψ, and Rψ are the changes in the coefficients due to a small change in ψ,with similar expressions for ∂λ/∂α and ∂λ/∂ηk. Preliminary results of ray-tracing calculations will be presented. (author)

  3. Intra-aortic balloon occlusion catheter for treating hemorrhagic shock after massive duodenal ulcer bleeding.

    Science.gov (United States)

    Shigesato, Shintaro; Shimizu, Tetsunosuke; Kittaka, Tadahiro; Akimoto, Hiroshi

    2015-03-01

    Clamping the descending aorta by emergency thoracotomy is a well-known effective procedure to stop bleeding from lesions under the diaphragm. We successfully treated a case of cardiopulmonary arrest resulting from a massive duodenal ulcer hemorrhage using an intraaortic balloon occlusion (IABO) catheter instead of the conventional technique. Our experience suggests that IABO catheters can be used to treat patients with hemorrhagic shock regardless of the presence of cardiopulmonary arrest. This can be a life-saving procedure, which prevents ischemic brain injury. This article describes the advantages of using IABO catheters and our experience with this case. PMID:25633531

  4. Low Cost Variable Conductance Heat Pipe for Balloon Payload Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While continuously increasing in complexity, the payloads of terrestrial high altitude balloons need a thermal management system to reject their waste heat and to...

  5. Current status of intragastric balloon for obesity treatment

    Science.gov (United States)

    Kim, Seung Han; Chun, Hoon Jai; Choi, Hyuk Soon; Kim, Eun Sun; Keum, Bora; Jeen, Yoon Tae

    2016-01-01

    Endoscopic bariatric therapy may be a useful alternative to pharmacological treatment for obesity, and it provides greater efficacy with lower risks than do conventional surgical procedures. Among the various endoscopic treatments for obesity, the intragastric balloon is associated with significant efficacy in body weight reduction and relief of comorbid disease symptoms. Anatomically, this treatment is based on gastric space-occupying effects that increase the feeling of satiety and may also affect gut neuroendocrine signaling. The simplicity of the intragastric balloon procedure may account for its widespread role in obesity treatment and its applicability to various degrees of obesity. However, advances in device properties and procedural techniques are still needed in order to improve its safety and cost-effectiveness. Furthermore, verification of the physiological outcomes of intragastric balloon treatment and the clinical predictive factors for treatment responses should be considered. In this article, we discuss the types, efficacy, safety, and future directions of intragastric balloon treatment. PMID:27350727

  6. Proposed techniques for launching instrumented balloons into tornadoes

    Science.gov (United States)

    Grant, F. C.

    1971-01-01

    A method is proposed to introduce instrumented balloons into tornadoes by means of the radial pressure gradient, which supplies a buoyancy force driving to the center. Presented are analytical expressions, verified by computer calculations, which show the possibility of introducing instrumented balloons into tornadoes at or below the cloud base. The times required to reach the center are small enough that a large fraction of tornadoes are suitable for the technique. An experimental procedure is outlined in which a research airplane puts an instrumented, self-inflating balloon on the track ahead of the tornado. The uninflated balloon waits until the tornado closes to, typically, 750 meters; then it quickly inflates and spirals up and into the core, taking roughly 3 minutes. Since the drive to the center is automatically produced by the radial pressure gradient, a proper launch radius is the only guidance requirement.

  7. 10 meter Sub-Orbital Large Balloon Reflector (LBR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Besides serving as a launch vehicle, the carrier balloon provides a stable mount for the enclosed telescope. Looking up, the LBR will serve as a telescope. Looking...

  8. GDC embolization of wide-necked cerebral aneurysms using balloon-assisted technique

    International Nuclear Information System (INIS)

    The main factor limiting endovascular treatment of intracranial aneurysms is the shape of the aneurysmal sac, especially the width of the neck. We describe an early experience and technical aspects of treating wide-necked cerebral aneurysm using a Guglielmi detachable coil (GDC) and simultaneous application of a temporary balloon. Four cases of unruptured wide-necked cerebral aneurysm were treated with GDC, with simultaneous application of a temporary balloon. Patients were aged between 29 and 49 years. On admission, clinical presentation was subarachnoid hemorrhage (SAH) in all cases. Hunt and Hess grade was 2 in two cases, 3 in one case, and traumatic SAH in one case. In all patients angiography revealed an asymptomatic aneurysm after rupture of another aneurysm or traumatic SAH. The aneurysms were occluded with GDC-10, and a Cirrus balloon occlusion system was used simultaneously. All procedures were performed under endotracheal general anesthesia and systemic heparinization. All cases were treated successfully, without parent artery compromise. The occlusion rate at the end of the procedure was total in three cases and subtotal in one. In one case a heparin-related hematoma occurred during post-procedural treatment and the patient eventually expired. One patient underwent follow-up angiography after 6 months, and the coil was not changed. An aneurysm may not be completely occluded, but with regard to coil compaction and parent artery preservation, the technique is an attractive alternative

  9. Isothermal pumping analysis for high-altitude tethered balloons

    OpenAIRE

    Kuo, Kirsty A.; Hunt, Hugh E.M.

    2015-01-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal...

  10. Percutaneous Transhepatic Balloon Dilatation of Benign Biliary Strictures

    OpenAIRE

    Trambert, Jonathan J.; Bron, Klaus M.; Zajko, Albert B.; Starzl, Thomas E.; Iwatsuki, Shunzaburo

    1987-01-01

    Between February 1981 and June 1984, 15 patients with benign biliary strictures were treated with percutaneous transhepatic balloon dilatation. Three of these patients had received liver transplants. The treatment began with a course of balloon dilatation therapy, after which a stent catheter was left across the stricture. Six weeks later, after duct patency had been shown by cholangiography, the stent catheter was removed from all but two patients, both of whom had intrahepatic sclerosing ch...

  11. How to Inflate the Balloon Can Be Dangerous?

    OpenAIRE

    Yürümez, Yusuf; Küçük, Egemen; YAVUZ, Yücel; Eşme, Hıdır; SOLAK, Okan; Yücel, Murat

    2013-01-01

    Spontaneous pneumomediastinum is a quite rare clinical condition. A variety of reasons are responsible from etiology thats are increases intra-alveolar pressure and leading to rupture of alveoli. In this study 38-year-old male patient has been submitted that he has crackling sensation and pain in the neck region, hoarseness and shortness of breath two hours after inflating the balloon. Inflating the balloon that not included in the literature and appear to be innocent should be included among...

  12. Balloon observations of solar ultraviolet irradiance at solar minimum

    International Nuclear Information System (INIS)

    Balloon observations of solar irradiance between 200 and 240 nm have been performed in 1976 and 1977 corresponding to minimum conditions of solar activity. Ultraviolet spectra have been recorded for different zenith angles at an altitude of 41 km by means of a spectrometer with a spectral bandpass of 0.4 nm. Solar irradiances at 1 a.u. confirm previous values obtained by balloon. They are compared with other measurements and discussed in terms of possible long-term variability. (author)

  13. Cosmic-Ray Background Flux Model based on a Gamma-Ray Large-Area Space Telescope Balloon Flight Engineering Model

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2004-09-03

    Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4{pi} sr), the sensitive energy range of the instrument ({approx} 10 MeV to 100 GeV) and abundant components (proton, alpha, e{sup -}, e{sup +}, {mu}{sup -}, {mu}{sup +} and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functions in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.

  14. Development of a tiny tandem balloon system for atmospheric observation

    Science.gov (United States)

    Saito, Yoshitaka; Yamada, Kazuhiko; Fujiwara, Masatomo

    2016-07-01

    A tandem balloon system with a combination of a zero-pressure balloon on top and a super-pressure balloon on the bottom has a unique trajectory characteristic, with different flight altitudes between day and night and thus with ascending and descending motions at dawn and dusk, respectively. This characteristic provides a unique opportunity to explore the atmosphere, e.g., the upper tropospheric and lower stratospheric region with cross-tropopause measurements twice a day. We started development of a tiny tandem balloon system using a 10 m^{3} super-pressure balloon and a 100 m^{3} zero-pressure balloon, with a capability of carrying 3 kg of payload. One of the scientific targets is to measure water vapor, cloud particles, and temperature around the tropical tropopause which is the entry point of the stratospheric and mesospheric meridional circulation. For the data transfer, the iridium satellite communication module, SBD9603 is used. In this paper, the current status of the development will be reported.

  15. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    CERN Document Server

    Pascale, E; Bock, J J; Chapin, E L; Chung, J; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; MacTavish, C J; Marsden, G; Martin, P G; Martin, T G; Mauskopf, P; Netterfield, C B; Olmi, L; Patanchon, G; Rex, M; Scott, D; Semisch, C; Thomas, N; Truch, M D P; Tucker, C; Tucker, G S; Viero, M P; Wiebe, D V

    2007-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital survey-experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250, 350, and 500 micron. The optical design is based on a 2m diameter Cassegrain telescope, providing a diffraction-limited resolution of 30" at 250 micron. The gondola pointing system enables raster-like maps of arbitrary geometry, with a repeatable positional accuracy of ~30" post-flight pointing reconstruction to ~<5" rms is also achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual intervention. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. Since a test-flight in ...

  16. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate global warming, and the excitement of taking measurements in a much uncharted

  17. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    Science.gov (United States)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the

  18. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  19. Ballooning mode spectrum in general toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R.L.; Glasser, A.H.

    1982-04-01

    A WKB formalism for constructing normal modes of short-wavelength ideal hydromagnetic, pressure-driven instabilities (ballooning modes) in general toroidal magnetic containment devices with sheared magnetic fields is developed. No incompressibility approximation is made. A dispersion relation is obtained from the eigenvalues of a fourth order system of ordinary differential equations to be solved by integrating along a line of force. Higher order calculations are performed to find the amplitude equation and the phase change at a caustic. These conform to typical WKB results. In axisymmetric systems, the ray equations are integrable, and semiclassical quantization leads to a growth rate spectrum consisting of an infinity of discrete eigenvalues, bounded above by an accumulation point. However, each eigenvalue is infinitely degenerate. In the nonaxisymmetric case, the rays are unbounded in a four dimensional phase space, and semiclassical quantization breaks down, leading to broadening of the discrete eigenvalues and accumulation point of the axisymmetric case into continuum bands. Analysis of a model problem indicates that the broadening of the discrete eigenvalues is numerically very small, the dominant effect being broadening of the accumulation point.

  20. Alpha particle effects on MHD ballooning

    International Nuclear Information System (INIS)

    During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs

  1. Observation of Diffuse Cosmic and Atmospheric Gamma Rays at Balloon Altitudes with an Electron-tracking Compton Camera

    CERN Document Server

    Takada, Atsushi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Mizuta, Eiichi; Nagayoshi, Tsutomu; Nonaka, Naoki; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru

    2011-01-01

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronomical Science/Japan Space Exploration Agency on September 1, 2006, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60 degrees. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm-2, we found that 50% and 21% ...

  2. ELMs and constraints on the H-mode pedestal: A model based on peeling-ballooning modes

    International Nuclear Information System (INIS)

    We propose a model for Edge Localized Modes (ELMs) and pedestal constraint based upon theoretical analysis of instabilities which can limit the pedestal height and drive ELMs. The sharp pressure gradients, and resulting bootstrap current, in the pedestal region provide free energy to drive peeling and ballooning modes. The interaction of peeling-ballooning coupling, ballooning mode second stability, and finite-Larmor-radius effects results in coupled peeling-ballooning modes of intermediate wavelength generally being the limiting instability. A highly efficient new MHD code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including con straits on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependant on the density and temperature separately, rather than simply on the pressure. A model of various ELM types is developed, and quantitatively compared to data. A number of observations agree with predictions, including ELM onset times, ELM depth and variation in pedestal height with collisionality and discharge shape. Stability analysis of series of model equilibria are used both o predict and interpret pedestal trends in existing experiments and to project pedestal constraints for future burning plasma tokamak designs. (author)

  3. Drive Mechanisms for Peeling-Ballooning Modes and Implications for Kinetic Ballooning Modes

    Science.gov (United States)

    Lunniss, Amelia; Wilson, Howard; Snyder, Phil

    2015-11-01

    The EPED model of the H-mode pedestal in tokamak plasmas combines a kinetic ballooning mode (KBM) criterion for the critical pressure gradient with a non-local peeling-ballooning (P-B) mode stability criterion to provide an integrated picture of pedestal structure and ELMs. Employing a set of model tokamak equilibria with pedestal gradients constrained by the KBM criterion, we explore the P-B stability for different pedestal widths. The narrowest widths, corresponding to early in the ELM cycle, are stable. Once a critical width is realised, an intermediate-n P-B mode is destabilised, which we show to be driven by a combination of the kink and curvature contributions to δW, exceeding field line bending. Although formally of O(n-1) , we show that the kink term survives to very large n because of steep current density gradients in the pedestal. This kink term is not presently retained in gyro-kinetic codes, but may be important for an accurate prediction of the KBM stability criterion in realistic low collisionality tokamak pedestals. This project has received part funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  4. An Undergraduate-Built Prototype Altitude Determination System (PADS) for High Altitude Research Balloons.

    Science.gov (United States)

    Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.

    2014-12-01

    In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented

  5. Development of a super-pressure balloon with a diamond-shaped net --- result of a ground inflation test of a 2,000 cubic-meter balloon ---

    Science.gov (United States)

    Saito, Yoshitaka; Nakashino, Kyoichi; Akita, Daisuke; Matsushima, Kiyoho; Shimadu, Shigeyuki; Goto, Ken; Hashimoto, Hiroyuki; Matsuo, Takuma

    2016-07-01

    A light super-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m^{3} balloon. Beginning from a demonstration test of the net-balloon with a 10 m^{3} balloon in 2010, we have been polished the net-balloon through ground inflation tests and flight tests, including a flight test of a 3,000 m ^{3} balloon in the tandem balloon configuration with a 15,000 m^{3} zero-pressure balloon in 2012, and a flight test of a 10 m^{3} balloon in the tandem balloon configuration with a 2 kg rubber balloon in 2013, as reported in the last COSPAR. In 2014, we developed a 5,000 m^{3} balloon and performed a ground inflation test to find that the balloon burst from a lip panel for termination with a differential pressure of 425 Pa. It was due to a stress concentration at the edge of a thick tape attached along the termination mechanism. In 2015, we modified the balloon by adding tapes on the lip panel to avoid the stress concentration, and also shorten the net length to leave some margin of the film and performed a ground inflation test again to find the balloon showed asymmetrical deployment and burst from the edge of the net with a differential pressure of 348 Pa. We consider it is due to the margin of the film along the circumferential direction, and proposed a gore shape which circumference length is kept as determined by the pumpkin shape of the balloon but setting meridian length longer than that. We developed a 10 m^{3} balloon with the gore design to find that the balloon deployed symmetrically and showed the burst pressure of 10,000 Pa. In 2016, we are going to develop a 2,000 m^{3} balloon with the gore design and perform its ground inflation test. In this paper, we are going to report its result with the sequence of the development.

  6. Material Properties Analysis of Structural Members in Pumpkin Balloons

    Science.gov (United States)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  7. Aerial Deployment and Inflation System for Mars Helium Balloons

    Science.gov (United States)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  8. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2006-01-01

    This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:

  9. Complexity Analysis of Balloon Drawing for Rooted Trees

    CERN Document Server

    Lin, Chun-Cheng; Poon, Sheung-Hung; Fan, Jia-Hao

    2010-01-01

    In a balloon drawing of a tree, all the children under the same parent are placed on the circumference of the circle centered at their parent, and the radius of the circle centered at each node along any path from the root reflects the number of descendants associated with the node. Among various styles of tree drawings reported in the literature, the balloon drawing enjoys a desirable feature of displaying tree structures in a rather balanced fashion. For each internal node in a balloon drawing, the ray from the node to each of its children divides the wedge accommodating the subtree rooted at the child into two sub-wedges. Depending on whether the two sub-wedge angles are required to be identical or not, a balloon drawing can further be divided into two types: even sub-wedge and uneven sub-wedge types. In the most general case, for any internal node in the tree there are two dimensions of freedom that affect the quality of a balloon drawing: (1) altering the order in which the children of the node appear in...

  10. Restenosis following balloon dilation of benign esophageal stenosis

    Institute of Scientific and Technical Information of China (English)

    Ying-Sheng Cheng; Ming-Hua Li; Ren-Jie Yang; Hui-Zhen Zhang; Zai-Xian Ding; Qi-Xin Zhuang; Zhi-Ming Jiang; Ke-Zhong Shang

    2003-01-01

    AIM: To elucidate the mechanism of restenosis following balloon dilation of benign esophageal stenosis.METHODS: A total of 49 rats with esophageal stenosis were induced in 70 rats using 5 ml of 50 % sodium hydroxide solution and the double-balloon method, and an esophageal restenosis (RS) model was developed by esophageal stenosis using dilation of a percutaneous transluminal coronary angioplasty (PTCA) balloon catheter. These 49 rats were divided into two groups: rats with benign esophageal stricture caused by chemical burn only (control group, n=21) and rats with their esophageal stricture treated with balloon catheter dilation (experimental group, n=28). Imaging analysis and immunohistochemistry were used for both quantitative and qualitative analyses of esophageal stenosis and RS formation in the rats, respectively.RESULTS: Cross-sectional areas and perimeters of the esophageal mucosa layer, muscle layer, and the entire esophageal layers increased significantly in the experimental group compared with the control group. Proliferating cell nuclear antigen (PCNA) was expressed on the 5th day after dilation, and was still present at 1 month. Fibronectin (FN)was expressed on the 1st day after dilation, and was still present at 1 month.CONCLUSION: Expression of PCNA and FN plays an important role in RS after balloon dilation of benign esophageal stenosis.

  11. Evaluation of radiation exposure dose at double-balloon endoscopy for the patients with small bowel disease

    Science.gov (United States)

    Nagura, Asuka; Nakamura, Masanao; Watanabe, Osamu; Yamamura, Takeshi; Funasaka, Kohei; Ohno, Eizaburo; Miyahara, Ryoji; Kawashima, Hiroki; Koyama, Shuji; Hinami, Tomoki; Goto, Hidemi; Hirooka, Yoshiki

    2016-01-01

    ABSTRACT Double-balloon endoscopy (DBE) is useful for the diagnosis and treatment of small bowel diseases. Although fluoroscopy is used to confirm the position of endoscope at DBE, the endoscopist does not have the knowledge with regard to the radiation exposure dose. In this study, we evaluated the absorbed dose during DBE in patients with suspected or established small bowel diseases. This was a retrospective study in which the estimated fluoroscopic radiation absorbed doses loaded on the small bowel and skin were determined according to the data of the referential X-ray experiment with a human body phantom. The subjects were 415 DBEs preformed in total. The mean small bowel absorbed doses on antegrade and retrograde DBEs were 42.2 and 53.8 mGy, respectively, showing that the organ dose applied in retrograde DBE was significantly higher (P<0.0001). The mean skin absorbed doses of them were 79.2 and 101.0 mGy, respectively, showing that the dose was also significantly higher on retrograde DBE (P<0.0001). Of 27 cases who were applied endoscopic balloon dilation, the mean fluoroscopy time was 16.0 minutes, and mean small bowel and skin absorbed doses were 121.9 and 228.9 mGy, respectively. In conclusion, endoscopist should be careful for reducing the organ exposure dose at DBE, particularly for the lower abdominal region. Abbreviations: Double-balloon enteroscopy (DBE), endoscopic balloon dilation (EBD), endoscopic mucosal resection (EMR), double-balloon endoscopic retrograde cholangiopancreatography (DBERCP), percutaneous coronary intervention (PCI) PMID:27578908

  12. High-n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An analytic study of stability against high-n ballooning modes is highly elongated axisymmetric plasmas is presented and compared with computational results. - From the equation for the marginal pressure gradient, it is found that local shear has an important effect on the stability of elongated plasmas, and that stability deteriorates through high elongation since the stabilizing effects of field line bending and local shear are reduced. The net contribution of the local shear to stability decreases with elongation for strong ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). - The computational study of high-n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for βsub(p) less than unity but severely reduce the marginal beta for βsub(p) larger than unity. (author)

  13. Review of the British scientific sounding rocket and balloon programmes

    International Nuclear Information System (INIS)

    This review describes the UK scientific sounding rocket programmes which have utilised Skylarks for 21 years, Petrels for 10 years and Fulmars for 2 years. The SRC's ongoing programme is now based on the Petrel and Fulmar rockets, and approved proposals by 5 UK scientific groups covering 1978 and 1979 are outlined. The British scientific balloon programme, which serves 14 scientific groups within UK universities, involves a planned 10 flights per annum using balloons of 3 M cu ft to 31 M cu ft capacity and payloads up to 2 tons in weight. The review outlines the balloon programme of flights planned mainly from Palestine in Texas and Alice Springs/Mildura in Australia. (author)

  14. Dynamic electromechanical instability of a dielectric elastomer balloon

    Science.gov (United States)

    Chen, Feifei; Zhu, Jian; Wang, Michael Yu

    2015-11-01

    Electromechanical instability, a significant phenomenon in dielectric elastomers, has been well studied in the literature. However, most previous work was based on the assumption that dielectric elastomers undergo quasi-static deformation. This letter investigates the dynamic electromechanical instability of a dielectric elastomer balloon which renders four types of oscillation subject to a parametric combination of DC and AC voltages. The simulated oscillations show that dynamic electromechanical instability occurs within quite a large range of excitation frequency, in the form of snap-through or snap-back, when the DC and AC voltages reach critical values. The balloon is at its most susceptible to dynamic electromechanical instability when the superharmonic, harmonic or subharmonic resonance is excited. Taking all excitation parameters into account, this letter analyzes the global critical condition which triggers the dynamic electromechanical instability of the balloon.

  15. Popping balloons: formation of a crack network in rubber membranes

    Science.gov (United States)

    Moulinet, Sebastien; Adda-Bedia, Mokhtar; Equipe Morphogenèse et phénomènes multi-échelle Team

    2015-03-01

    Everyone can make the observation: a rubber balloon inflated until it spontaneously pop breaks into a large number of shreds. In contrast, a balloon pierced with a needle at an early stage of its inflation breaks into two large pieces. Using model latex balloons, we have experimentally investigated the transition between these two breaking regimes. We have showed that, above a threshold stress in the latex membrane, a single crack become unstable and separates into two new cracks. Then, a cascade of tip-splitting generates a network of cracks that eventually form a large number of fragments. We have observed that the instability of the crack occurs when it reaches a limit velocity that could the speed of sound. By studying the energy balance during the explosion, we can determine the intrinsic fracture energy of rubber, a measurement difficult to achieve with usual tensile testing.

  16. Extrusion process optimization for toughness in balloon films

    Science.gov (United States)

    Cantor, K. M.; Harrison, I. R.

    1993-01-01

    An experimental optimization process for blown film extrusion is described and examined in terms of the effects of the technique on the toughness of balloon films. The optimization technique by Cantor (1990) is employed which involves the identification of key process variables including screw speed, nip speed, bubble diameter, and frost-line height for analysis to optimize the merit function. The procedure is employed in the extrusion of a low-density polyethylene polymer, and the resulting optimized materials are toughness- and puncture-tested. Balloon toughness is optimized in the analytical relationship, and the process parameters are modified to attain optimal toughness. The film produced is shown to have an average toughness of 24.5 MPa which is a good value for this key property of balloon materials for high-altitude flights.

  17. Tokamak resistive magnetohydrodynamic ballooning instability in the negative shear regime

    Institute of Scientific and Technical Information of China (English)

    Shi Bing-Ren; Lin Jian-Long; Li Ji-Quan

    2007-01-01

    Improved confinement of tokamak plasma with central negative shear is checked against the resistive ballooning mode. In the negative shear regime, the plasma is always unstable for purely growing resistive ballooning mode. For a simplest tokamak equilibrium model, the s-α model, characteristics of this kind of instability are fully clarified by numerically solving the high n resistive magnetohydrodynamic ballooning eigen-equation. Dependences of the growth rate on the resistivity, the absolute shear value, the pressure gradient are scanned in detail. It is found that the growth rate is a monotonically increasing function of a while it is not sensitive to the changes of the shear s, the initial phase θ0 and the resistivity parameter εR.

  18. Drug-Coated Balloons for Infrainguinal Peripheral Artery Disease.

    Science.gov (United States)

    Sethi, Sanjum S; Lee, Michael S

    2016-07-01

    Revascularization of infrainguinal peripheral artery disease has traditionally been accomplished via percutaneous transluminal angioplasty. However, long-term results have been hampered by high rates of restenosis. Along with the advent of stents, paclitaxel-coated balloons are an emerging therapeutic option for the invasive management of infrainguinal peripheral artery disease. Paclitaxel has been successful in inhibiting neointimal hyperplasia, the main mechanism for in-stent restenosis. Technological advances have facilitated the development of paclitaxel-coated balloons, which show promise in early trials for femoropopliteal stenosis relative to uncoated balloons. For infrapopliteal stenoses, the data remain scant and conflicted. Therefore, large-scale randomized clinical trials with long-term follow-up evaluating safety and effectiveness between various strategies need to be performed to determine the optimal invasive management strategy for infrainguinal peripheral artery disease. PMID:27342205

  19. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G.; Pirre, M.; Robert, C. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B.; Louvet, Y.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C.C. [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y. [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D. [Reims Univ., 51 (France). Faculte des Sciences

    1997-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  20. Balloon vetebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures

    NARCIS (Netherlands)

    Verlaan, JJ; van Helden, WH; Oner, FC; Verbout, AJ; Dhert, WJA

    2002-01-01

    Study Design. A human cadaveric model was used to evaluate balloon vertebroplasty in traumatic vertebral fractures. Objectives. To assess the feasibility and safety of balloon vertebroplasty followed by calcium phosphate cement augmentation to prevent recurrent kyphosis. Summary of Background Data.

  1. To sail the skies of Mars - Scientific ballooning on the red planet

    Science.gov (United States)

    Gaidos, Eric J.; Burke, James D.

    1988-01-01

    Balloons represent a novel approach to exploring the surface of Mars. One promising aerostat system incorporates a solar-powered balloon as a means of generating diurnally varying lift and so can 'hop' across the surface, obtaining detailed information at a large number of sites. Two important areas of research and testing are underway on solar balloon technology and balloon payload design. The solar balloon concept has been demonstrated on earth, but more work is needed on a 'flyable' version for Mars. Particular attention must be paid to radiation heat transfer and aerodynamic effects. A special 'snake' payload concept has been demonstrated that allows for balloon system traverses of the surface and provides a usable instrument platform. A balloon system of this type could obtain unique surface imaging and physical and chemical data. The flight of the balloon also provides in situ atmospheric boundary-layer and circulation measurements.

  2. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    Science.gov (United States)

    Rinehart, Stephen A.

    2010-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  3. Balloon-borne video cassette recorders for digital data storage

    International Nuclear Information System (INIS)

    A high-speed, high-capacity digital data storage system has been developed for a new balloon-borne gamma-ray telescope. The system incorporates sophisticated, yet easy to use and economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts

  4. Testing in a stratospheric balloon of a semiconductor detector altimeter

    International Nuclear Information System (INIS)

    An altimeter containing a semiconductor detector has been operated on flight. We have used a stratospheric balloon launched from AIRE-SUR-ADOUR with the C.N.E.S. collaboration. During this assay two apparatus have been used. The first allowed to follow the balloon during its ascension and descent, the second to follow its evolution at its maximum altitude. Informations transmitted by radio and recorded on Magnetophon, have been studied after the flight. Results are identical with these given by the barometer used by the C.N.E.S. in this essay. (authors)

  5. Nonlinear simulation of resistive ballooning modes in Large Helical Device

    International Nuclear Information System (INIS)

    Nonlinear simulations of a magneto-hydrodynamic (MHD) plasma in full three-dimensional geometry of the Large Helical Device (LHD) are conducted to study nonlinear evolution of pressure-driven instabilities. A series of simulations for a resistive plasma shows growth of resistive ballooning instability. The growth rate of the most unstable resistive ballooning mode is shown to be proportional to the one-third power of the resistivity. Nonlinear saturation of the instability and its slow decay are observed. After the nonlinear saturation, the pressure takes a profile similar to so-called pedestal. A possible scenario of nonlinear relaxation of a plasma toward a new equilibrated state is discussed. (author)

  6. Polymer blends for LDB applications. [Long Duration Ballooning

    Science.gov (United States)

    Lichkus, Andrew M.; Harrison, Ian R.

    1991-01-01

    A series of LCP/PE blends have been studied to determine the potential of such systems to produce a high modulus balloon film material which retains the balloon fabrication and low temperature flight advantages of the current PE films. Blown films of blends of 5 and 15 percent LCP in PE have been produced which show a 28 percent enhancement in modulus over the neat PE matrix. These results are substantially lower than anticipated and are explained in terms of the LCP reinforcement aspect ratio and fibril diameter.

  7. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry

    Science.gov (United States)

    Rinehart, Stephen

    2011-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  8. The BOOMERANG North America Instrument a balloon-borne bolometric radiometer optimized for measurements of cosmic background radiation anisotropies from 0.3 to 4 degrees

    CERN Document Server

    Piacentini, F; Bathia, R; Bock, J J; Boscaleri, A; Cardoni, P; Crill, B P; De Bernardis, P; Castillo, H D; De Troia, G; Farese, P; Giacometti, M; Hivon, E F; Hristov, V V; Iacoangeli, A; Lange, A E; Masi, S; Mauskopf, P D; Miglio, L; Netterfield, C B; Palangio, P; Pascale, E; Raccanelli, A; Rao, S; Romeo, G; Ruhl, J E; Scaramuzzi, F

    2001-01-01

    We describe the BOOMERANG North America (BNA) instrument, a balloon-borne bolometric radiometer designed to map the Cosmic Microwave Background (CMB) radiation with 0.3 deg resolution over a significant portion of the sky. This receiver employs new technologies in bolometers, readout electronics, millimeter-wave optics and filters, cryogenics, scan and attitude reconstruction. All these subsystems are described in detail in this paper. The system has been fully calibrated in flight using a variety of techniques which are described and compared. It has been able to obtain a measurement of the first peak in the CMB angular power spectrum in a single balloon flight, few hours long, and was a prototype of the BOOMERANG Long Duration Balloon (BLDB) experiment.

  9. Three dimensional intravascular ultrasonic assessment of the local mechanism of restenosis after balloon angioplasty

    NARCIS (Netherlands)

    M.A. Costa (Marco); P.J. de Feyter (Pim); K. Kozuma (Ken); A.L. Gaster; M. Sabaté (Manel); I.P. Kay (Ian Patrick); J.M.R. Ligthart (Jürgen); P. Thayssen; M.J.B.M. van den Brand (Marcel); P.W.J.C. Serruys (Patrick); D.P. Foley (David); W.J. van der Giessen (Wim)

    2001-01-01

    textabstractOBJECTIVE: To assess the mechanism of restenosis after balloon angioplasty. DESIGN: Prospective study. PATIENTS: 13 patients treated with balloon angioplasty. INTERVENTIONS: 111 coronary subsegments (2 mm each) were analysed after balloon angioplasty and at a six month follow up using th

  10. Long-term follow-up after embolization of pulmonary arteriovenous malformations with detachable silicone balloons

    DEFF Research Database (Denmark)

    Andersen, Poul Erik; Kjeldsen, Anette D

    2007-01-01

    ) with pulmonary angiography. Fifty-four percent of the balloons were deflated at latest radiographic chest film follow-up, but at pulmonary angiographic follow-up all embolized malformations were without flow irrespective of whether or not the balloons were visible. Detachable silicone balloons are not...

  11. Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform

    Science.gov (United States)

    Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Kasdin, Jeremy; Krist, John; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Roberts, Lewis C. Jr; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2012-01-01

    Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagrap, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope experiment based on the Zodiac II design that would undertake compelling studies of a sample of debris disks.

  12. Preparation and characterisation of polyamide 11/montmorillonite (MMT) nanocomposites for use in angioplasty balloon applications

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Khairul Anwar A. [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland); School of Materials Engineering, Universiti Malaysia Perlis, Perlis (Malaysia); Farrell, Joseph B. [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland)

    2013-12-16

    With increased demands on catheter balloon functionality, there is an emphasis to blend new materials which can improve mechanical performance. Polymer nanocomposites were prepared by melt blending polyamide 11 (PA 11) with organically modified montmorillonite nanoclay. The effects of incorporating the nanoclay on the short-term mechanical properties of PA 11 were assessed using a design of experiments (DoEs) approach. X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis techniques (DMA) were used to characterise the morphology of the nanocomposites. Design of experiments studies revealed that the optimum nanocomposites properties can be achieved by carefully controlling the melt compounding parameters. XRD and TEM data proved that exfoliated clay morphologies existed within the matrix at low clay loading (2%). Whereas the interaction between the polymer matrix and nanoclay was quantified in the DMA spectra, showed a significant increase in storage modulus (up to 80%). The reinforcing effect of nanoclay within the PA 11 was further investigated using mechanical testing, where significant increases in the ultimate tensile strength and strain at break of reinforced tri-layer balloon tubing were observed. - Highlights: • TEM reveals the coexistence of exfoliated and intercalated nanostructures. • Isothermal crystallisation studies found that the nano-clays reduced the crystallisation time. • Significant increase in the storage modulus was due to the reinforcing effect of the nano-clay platelets. • It was observed that the activation energy values decreased due to the presence of nanoclay.

  13. SMILE-II: Balloon-Borne Telescope for Background-Suppressed Soft Gamma-Ray Imaging

    Science.gov (United States)

    Sawano, T.; Tanimori, T.; Kubo, H.; Takada, A.; Parker, J. D.; Mizumoto, T.; Sonoda, S.; Mizumura, Y.; Tomono, D.; Nakamura, K.; Matsuoka, Y.; Komura, S.; Sato, Y.; Nakamura, S.; Miuchi, K.; Kabuki, S.; Kishimoto, Y.; Kurosawa, S.; Iwaki, S.; Tanaka, M.; Ikeno, M.; Uchida, T.

    We have developed an Electron-Tracking Compton Camera (ETCC) for an all-sky survey at the MeV gamma-ray band. The ETCC consists of a gaseous tracker and a position sensitive scintillation camera to measure the momentum of the Compton-recoil electron and the scattering gamma ray so that we can reconstruct the energy and momentum of the incident gamma ray photon by photon. Also the ETCC has strong background rejection methods using tracking information such as the dE/dx particle identification and theCompton kinematics test. To confirm feasibility of observing celestial objects in space, we performed a balloon experiment to successfully observe the diffuse cosmic and atmospheric gamma rays, which confirmed the effectiveness of the background rejection capability. Based on the first balloon experiment result, we are developing a large ETCC and plan to launch it for the test of the imaging property. The performance of the SMILE-II ETCC is simulated and then it will obtain an effective area of 1.1 cm2 for 200 keV by improving the electron track reconstruction efficiency by a factor of about 10, which results in the detection of Crab nebula at >5σ level for several-hour observation in the middle latitude with an altitude of 40 km.

  14. Design and implementation of the Photo-Detector Module electronics for the EUSO-Balloon, prototype of the JEM-EUSO telescope

    International Nuclear Information System (INIS)

    A key feature of the JEM-EUSO observatory for Ultra High Energy Cosmic Rays (UHECRs) search is the electronics, and in particular the Photo-Detector Module (PDM) on the focal surface of an advanced diffractive optical system. As a pathfinder experiment for this space-based mission, over the last 3 years the EUSO-Balloon project has been developed to observe the ultraviolet background from the edge of the atmosphere on board a stratospheric balloon. August 2014, the EUSO Balloon was successfully operated 8-hour balloon flight over Timmins, Ontario, Canada. The EUSO-Balloon experiment uses a detector consisting of one Photo-Detector Module, identical to the 137 modules that will be present on the JEM-EUSO focal surface. UV light generated by ultra high-energy air showers passes the optics, UV filter, and impacts the Multi Anode Photo Multiplier Tubes (MAPMTs). UV photons are converted by the MAPMT photocathode into electrons, which are multiplied by the MAPMTs dynode and fed into a Elementary Cell - Application Specific Integrated Circuit (EC-ASIC) boards. These EC-ASIC boards in turn perform the photon counting and charge estimation, by counting the single photoelectron emitted during each Gate Time Unit (of 2.5 us each). The PDM board interfaces with these ASIC boards, providing them with power and configuration parameters as well as collecting data from the external trigger. In this paper, I will describe the details of the design and the fabrication of the PDM, as well as its EUSO-Balloon flight results

  15. Assessment of the "long sheath" technique for percutaneous aortic balloon valvuloplasty.

    Science.gov (United States)

    Plante, S; Beatt, K J; van den Brand, M; Di Mario, C; Meier, B; Serruys, P W

    1990-02-01

    A 100 cm-long 16.5 F valvuloplasty catheter introducer was assessed as an adjunct for percutaneous transluminal aortic valvuloplasty (PTAV) via the femoral artery in 31 patients with severe aortic stenosis. Observed improvements in peak systolic gradient (81.6 +/- 29.9 mm Hg vs. 35.5 +/- 16.0 mm Hg, P less than 0.000001) and aortic valve area (0.6 +/- 0.4 cm2 vs. 1.0 +/- 0.6 cm2, P less than 0.00001) were similar to those achieved in a control group (C) of 17 patients in which no femoral sheath was used. However, a shorter procedure duration (211 +/- 81 min vs. 117 +/- 30 min, P less than 0.001) and a reduced rate of vascular complications at the femoral puncture site (41% vs. 6.5%) were observed in patients in whom the long sheath (LS) technique was used. The frequency of other PTAV-related complications was comparable (C = 35%, LS = 29%, P = n.s.). Other technical advantages of this device are: 1) prevention of looping and bending of the balloon catheter in tortuous vessels and easy positioning of the balloon across the aortic orifice provided by the LS trackability, 2) stabilisation of the balloon during inflation, 3) monitoring of supravalvular aortic pressure provided by the side-arm of the LS and reliable measurement of systolic gradient, and 4) the ability to perform aortograms without the need of another catheter in the ascending aorta. Thus, in our experience, the long sheath technique is a valuable adjunct for PTAV. PMID:2306775

  16. Metallic stent placement in hemodialysis graft patients after insufficient balloon dilation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Huei-Lung; Pan, Huay-Ben; Lin, Yih-Huie; Chen, Chiung-Yu; Lai, Pin-Hong; Yang, Chien-Fang [Kaohsiung Veterans General Hospital, Kaohsiung (China); Chung, Hsiao-Min; Wu, Tung-Ho; Chou, Kang-Ju [National Yangming University, Taipei (China)

    2006-06-15

    We wanted to report our experience of metallic stent placement after insufficient balloon dilation in graft hemodialysis patients. Twenty-three patients (13 loop grafts in the forearm and 10 straight grafts in the upper arm) underwent metallic stent placement due to insufficient flow after urokinase thrombolysis and balloon dilation. The indications for metallic stent deployment included 1) recoil and/or kinked venous stenosis in 21 patents (venous anastomosis: 17 patients, peripheral outflow vein: four patients); and 2) major vascular rupture in two patients. Metallic stents 8-10mm in diameter and 40-80 mm in length were used. Of them, eight stents were deployed across the elbow crease. Access patency was determined by clinical follow-up and the overall rates were calculated by Kaplan-Meier survival analysis. No procedure-related complications (stent fracture or central migration) were encountered except for a delayed Wallstent shortening/migration at the venous anastomosis, which resulted in early access failure. The overall primary and secondary patency rates ({+-}standard error) of all the vascular accesses in our 23 patients at 3, 6, 12 and 24 months were 69%{+-}9 and 88%{+-}6,41% {+-}10 and 88%{+-}6, 30%{+-}10 and 77%{+-}10, and 12%{+-}8 and 61%{+-}13, respectively. For the forearm and upper-arm grafts, the primary and secondary patency rates were 51%{+-}16 and 86%{+-}13 vs 45%{+-}15 and 73%{+-}13 at 6 months, and 25%{+-}15 and 71%{+-}17 vs 23%{+-}17 and 73%{+-}13 at 12 months ({rho} = .436 and .224), respectively. Metallic stent placement is a safe and effective means for treating peripheral venous lesions in dialysis graft patients after insufficient balloon dilation. No statistically difference in the patency rates between the forearm and upper-arm patient groups was seen.

  17. High Energy Replicated Optics to Explore the Sun Balloon-Borne Telescope: Astrophysical Pointing

    Science.gov (United States)

    Gaskin, Jessica; Wilson-Hodge, Colleen; Ramsey, Brian; Apple, Jeff; Kurt, Dietz; Tennant, Allyn; Swartz, Douglas; Christe, Steven D.; Shih, Albert

    2014-01-01

    On September 21, 2013, the High Energy Replicated Optics to Explore the Sun, or HEROES, balloon-borne x-ray telescope launched from the Columbia Scientific Balloon Facility's site in Ft. Summer, NM. The flight lasted for approximately 27 hours and the observational targets included the Sun and astrophysical sources GRS 1915+105 and the Crab Nebula. Over the past year, the HEROES team upgraded the existing High Energy Replicated Optics (HERO) balloon-borne telescope to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES Project is a multi-NASA Center effort with team members at both Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), and is led by Co-PIs (one at each Center). The HEROES payload consists of the hard X-ray telescope HERO, developed at MSFC, combined with several new systems. To allow the HEROES telescope to make observations of the Sun, a new solar aspect system was added to supplement the existing star camera for fine pointing during both the day and night. A mechanical shutter was added to the star camera to protect it during solar observations and two alignment monitoring systems were added for improved pointing and post-flight data reconstruction. This mission was funded by the NASA HOPE (Hands-On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  18. [Expansion dilatation balloons for cervical ripening in obstetric practice].

    Science.gov (United States)

    Ducarme, G; Grange, J; Vital, M

    2016-02-01

    During recent decades, mechanical devices have been substituted by pharmacological methods. Their place in the therapeutic arsenal remains important with a renewed obstetrical interest for these devices. Due to a lack of data they are still not recommended as first-line. This review thus attempted to examine the use of expansion dilatation balloons (Foley catheter and double-balloons) to analyze their effectiveness in case of native uterus and previous cesarean section. Twenty-seven clinical trials had compared balloons catheter and prostaglandins in patients without a history of uterine scar. The risk of cesarean section did not differ. Mechanical methods seemed to be more effective in achieving delivery within 24hours, with fewer episodes of excessive uterine contractions, but they necessitated more oxytocin during labor. Ten clinical trials analyzed dilatation balloons in patients with previous cesarean section. More than 70% women had favorable cervical ripening (Bishop score>6), and vaginal delivery was reported between 35 and 70% of patients. The risk of uterine rupture was low between 0.64 and 0.72%, with neither increased risk of severe neonatal and maternal morbidity nor increased risk of infectious morbidity. Mechanical methods are effective and safe for third trimester cervical ripening, mainly in women with previous cesarean section. Potential advantages may include wide availability and reduction of some of the side effects. PMID:26774842

  19. High-Altitude Balloon Observatories for Planetary Science

    Science.gov (United States)

    Arnold, S. P.; Tibor, K.; Cheng, A. F.; Hibbitts, C.; Young, E. F.; Andrews, J.; Landis, R.

    2013-12-01

    Recent studies have shown that progress can be made on over 20% of the key questions called out in the current Planetary Science Decadal Survey by a high-altitude balloon borne observatory. Therefore NASA has been assessing concepts for a gondola based observatory that would achieve the most possible science in a low risk and cost effective manner. As a first application of the concept, a stratospheric balloon mission to observe the newly discovered comet ISON is being developed and planned to fly in late 2013. This flight will demonstrate some of the characteristic features of balloon borne observatories and how those impact planetary science observations. That flight will result in mission proven instrument payloads which can be applied to future flights and science investigations. This paper documents the current status of stratospheric balloon applications to planetary science and some of the contributions that BRRISON will provide for a potential future planetary observatory system. The paper will also discuss the science benefits to be expected if larger aperture telescopes are flown, better pointing systems are realized, or different instruments are utilized with the telescopes. The paper concludes with a high level summary of ways to interface and utilize the potential platform for the readers own scientific interests.

  20. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  1. Balloon atrial septostomy under echocardiographic guide: case series

    Directory of Open Access Journals (Sweden)

    SM Meraji

    2012-12-01

    Full Text Available Background: Balloon atrial septostomy is an emergent procedure in pediatric cardiology. Nowadays, most patients in need of the procedure have acceptable outcomes after surgical repair. Thus, it is important to perform this procedure as safe as possible. By performing early arterial switch operation and prostaglandin infusion, the rate of balloon atrial septostomy has markedly decreased. However, not all centers performing early arterial switch repairs have abandoned atrial septostomy, even in patients who respond favorably to prostaglandin infusion.Case presentation: In total, eight 1- to 15-day old term neonates admitted in Shahid Rajaee Heart Center in Tehran, Iran from October 2009 to February 2011, with congenital heart diseases were scheduled for balloon atrial septostomy. In six cases the procedure was done exclusively under echocardiographic guidance and in two cases with the help of fluoroscopy. Success was defined as the creation of an atrial septal defect with a diameter equal to or more than 5 mm and ample mobility of its margins.Results: Male sex was predominant (87% and the mean age of the neonates was six days. The diagnosis in all cases was simple transposition of great arteries. The procedure was successful in all patients with any cardiovascular complication.Conclusion: Balloon atrial septostomy is an emergent procedure that can be done safely and effectively under echocardiographic guidance. According to the feasibility of this technique it could be performed fast, safe and effective at bedside, avoiding patient transportation to hemodynamic laboratory or referral center.

  2. [Intra-graft balloon pumping--a clinical case report].

    Science.gov (United States)

    Nagata, M; Tashiro, T; Tanaka, K; Haruta, Y; Todo, K

    1991-12-01

    A 29-year-old female underwent tube graft replacement of distal aortic arch and descending aorta for dissecting aneurysm. After 42 minutes of aortic cross-clamping the patient was initially weaned satisfactorily from cardiopulmonary bypass (CPB). However, cardiac arrhythmia and cardiac arrest necessitated reestablishment of CPB. Electro-cardiography showed inferior myocardial infarction. To wean CPB intraaortic balloon pumping (IABP) was mandatory. But because of dissecting aortic aneurysm IABP in conventional method was contra-indicated. Intra graft balloon pumping (IGBP) was initiated while the patient was on full CPB. A low-porosity woven Dacron tube graft (22 mm) was anastomosed end-to-side to ascending aorta. A balloon was inserted into the tube graft to establish IGBP. This IGBP provided effective circulatory assist. The patient was weaned from CPB 1 hours after reestablishment of IGBP. Postoperative course was stable. The patient was returned to the operating room for removal of the balloon 3 days postoperatively. We reported the case for whom IGBP was effective. IGBP was effective circulatory support for the patient when conventional use of IABP was contra-indicated. PMID:1774515

  3. Balloon dacryocystoplasty study in the management of adult epiphora.

    LENUS (Irish Health Repository)

    Fenton, S

    2012-02-03

    PURPOSE: To determine the efficacy of dacryocystoplasty with balloon dilation in the treatment of acquired obstruction of the nasolacrimal system in adults. METHODS: Balloon dacryocystoplasty was performed in 52 eyes of 42 patients under general anaesthetic. A Teflon-coated guidewire was introduced through the canaliculus and manipulated through the nasolacrimal system and out of the nasal aperture. A 4 mm wide 3 cm coronary angioplasty balloon catheter was threaded over the guidewire in a retrograde fashion and dilated at the site of obstruction. RESULTS: There was complete obstruction in 30% of cases and partial obstruction in 70%. The most common site of obstruction was the nasolacrimal duct. The procedure was technically successful in 94% of cases. The overall re-obstruction rate was 29% within 1 year of the procedure. There was an anatomical failure rate of 17% for partial obstruction and 69% for complete obstruction within 1 year. CONCLUSIONS: Balloon dacryocystoplasty has a high recurrence rate. There may be a limited role for this procedure in partial obstructions. Further refinements of the procedure are necessary before it can be offered as a comparable alternative to a standard surgical dacryocystorhinostomy.

  4. Balloon-borne gamma-ray telescope with nuclear emulsion

    OpenAIRE

    Takahashi, Satoru; Group, for the Emulsion Gamma-ray Telescope

    2010-01-01

    By detecting the beginning of electron pairs with nuclear emulsion, precise gamma-ray direction and gamma-ray polarization can be detected. With recent advancement in emulsion scanning system, emulsion analyzing capability is becoming powerful. Now we are developing the balloon-borne gamma-ray telescope with nuclear emulsion. Overview and status of our telescope is described.

  5. 75 FR 77673 - National Environmental Policy Act: Scientific Balloon Program

    Science.gov (United States)

    2010-12-13

    ... E Street, SW., Washington, DC 20546-0001 (202-358-0168). On the Internet at: http://sites.wff.nasa... and draft FONSI on the Internet; 4. Consultations with Federal, State, and local agencies; and 5... positive economic impact each year during balloon campaigns at CSBF Fort Sumner from the purchase of...

  6. Balloon dilatation of the esophageal stricture in infants and children

    International Nuclear Information System (INIS)

    Balloon dilatation has been applied in treating of various pathologic narrowing of the hollow viscus. It is now accepted as a very effective modality especially in treating esophageal stenosis obviating surgical procedure. We performed 128 balloon dilatations in 29 patients with the number of dilatations in each patient ranging from once to 12 times. The age distribution of the patients was from 3 weeks to 6 years, with the median age of 3 months. Twenty nine patients consisted of 25 postoperative esophageal strictures (21 esophageal atresia with tracheoesophageal fistula, 1 congenital esophageal stenosis, 2 tracheobronchial remnant, and 1 congenital esophageal stenosis with esophageal atresia), 2 achalasia, 1 congenital esophageal stenosis, and 1 corrosive esophagitis. We had successful dilatation in 22 patients, who showed subsequent relief of symptoms and improvement in the diameter of stenotic segment. In 14 patients, esophageal perforation occurred during the procedure, one requiring emergency thoracotomy and the other three conservative management. Seven patients had no improvement in stenotic sites after several balloon dilatations. Failed cases were congenital stenosis, achalasia, corrosive esophagitis and four postoperative strictures. We believe that balloon dilatation is the procedure of choice in the treatment of postoperative esophageal stricture in infants and children and is a safe method as the perforation which can complicate the procedure could be managed conservatively

  7. Balloon dilatation of the esophageal stricture in infants and children

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Sung Wook; Kim, In One; Kim, Woo Sun; Yeon, Kyung Mo; Kim, Woo Ki; Park, Kwi Won; Han, Man Chung [Seoul Natioal University College of Medicine, Seoul (Korea, Republic of); Lee, Gi Jae [Inje University Paik Hospital, Seoul (Korea, Republic of); Yu, Pil Mun [Dankuk University College of Medicine, Seoul (Korea, Republic of)

    1992-09-15

    Balloon dilatation has been applied in treating of various pathologic narrowing of the hollow viscus. It is now accepted as a very effective modality especially in treating esophageal stenosis obviating surgical procedure. We performed 128 balloon dilatations in 29 patients with the number of dilatations in each patient ranging from once to 12 times. The age distribution of the patients was from 3 weeks to 6 years, with the median age of 3 months. Twenty nine patients consisted of 25 postoperative esophageal strictures (21 esophageal atresia with tracheoesophageal fistula, 1 congenital esophageal stenosis, 2 tracheobronchial remnant, and 1 congenital esophageal stenosis with esophageal atresia), 2 achalasia, 1 congenital esophageal stenosis, and 1 corrosive esophagitis. We had successful dilatation in 22 patients, who showed subsequent relief of symptoms and improvement in the diameter of stenotic segment. In 14 patients, esophageal perforation occurred during the procedure, one requiring emergency thoracotomy and the other three conservative management. Seven patients had no improvement in stenotic sites after several balloon dilatations. Failed cases were congenital stenosis, achalasia, corrosive esophagitis and four postoperative strictures. We believe that balloon dilatation is the procedure of choice in the treatment of postoperative esophageal stricture in infants and children and is a safe method as the perforation which can complicate the procedure could be managed conservatively.

  8. Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis

    Science.gov (United States)

    Ferguson, Doug

    2016-01-01

    The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.

  9. Using Hydrogen Balloons to Display Metal Ion Spectra

    Science.gov (United States)

    Maynard, James H.

    2008-01-01

    We have optimized a procedure for igniting hydrogen-filled balloons containing metal salts to obtain the brightest possible flash while minimizing the quantity of airborne combustion products. We report air quality measurements in a lecture hall immediately after the demonstration. While we recommend that this demonstration be done outdoors or in…

  10. Balloon-assisted coiling through a 5-French system

    International Nuclear Information System (INIS)

    We present a catheter technique that utilizes a 5F system for the purpose of balloon-assisted coiling in the setting of intracranial aneurysms. A standard 5F short sheath is placed in the common femoral artery, and a 5F diagnostic catheter is placed through the sheath and used for selective vessel angiography. When endovascular intervention is pursued, the diagnostic catheter is placed in the appropriate vessel and systemic heparinization is ensured. Over an exchange length wire, the 5F vertebral catheter and 5F short sheath are exchanged for a 5F Shuttle (Cook) sheath. We then routinely place a 10, 14 or 18 microcatheter over an appropriately gauged microguidewire into the aneurysm. As needed, balloon catheters are then placed across the neck of the aneurysm for remodeling purposes. During the course of the procedure, control angiography is performed through the Shuttle sheath. Following the placement of coils, the microcatheter and balloon catheter are removed and a final biplane image is obtained via the 5F Shuttle sheath. This technique has been employed in 15 patients who required balloon-assisted coiling of an intracranial aneurysm. There were no technical difficulties or arterial access site complications from the procedures. Catheter mobility and torque were not affected, nor was the quality of our imaging. We conclude that this small-diameter system provides ample ''room'' for catheter placement and interventional treatment while reducing the known risks of postprocedural complications. Angiographic images remain excellent and are comparable to those obtained by larger catheters. (orig.)

  11. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    Science.gov (United States)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  12. Experimental study for the effects of ballooned rod bundle on the convective heat transfer by single-phase steam flow

    International Nuclear Information System (INIS)

    For a large break loss-of-coolant accident (LBLOCA) conditions in a pressurized-water reactor, the cladding temperature increases until the reflood phase and the increased temperature can make a ballooned fuel rods. As a result, the flow passage area of sub-channel is reduced and it leads the redistribution of flow and heat transfer in sub-channels. During the single-phase steam flow in the early phase of the reflood, the cladding temperature may increase and have a peak value due to low heat transfer from the fuel to the steam. If a LBLOCA condition and ballooned fuel rods are occurred, the effect of reduced flow passage on the convective heat transfer by single-phase steam flow is important phenomena to analyze the safety of a reactor. The present experiments were performed in various Reynolds numbers (about 2600∼13000) to investigate the effect of the Ballooned fuel rods on heat transfer phenomena by single-phase steam flow. The experiments were performed in two rod bundles in KAERI reflood ATHER test facility. One is a non-deformed 6x6 rod bundle, which consists of 36 non-deformed heater rods. The other is a deformed 5x5 rod bundle that consists of 9 deformed heater rods and 16 non-deformed heater rods. The cladding temperature and convective heat transfer for two rod bundles are compared for each flow conditions and the effects of experimental parameters are analyzed. (author)

  13. Cryo-balloon catheter position planning using AFiT

    Science.gov (United States)

    Kleinoeder, Andreas; Brost, Alexander; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2012-02-01

    Atrial fibrillation (AFib) is the most common heart arrhythmia. In certain situations, it can result in life-threatening complications such as stroke and heart failure. For paroxsysmal AFib, pulmonary vein isolation (PVI) by catheter ablation is the recommended choice of treatment if drug therapy fails. During minimally invasive procedures, electrically active tissue around the pulmonary veins is destroyed by either applying heat or cryothermal energy to the tissue. The procedure is usually performed in electrophysiology labs under fluoroscopic guidance. Besides radio-frequency catheter ablation devices, so-called single-shot devices, e.g., the cryothermal balloon catheters, are receiving more and more interest in the electrophysiology (EP) community. Single-shot devices may be advantageous for certain cases, since they can simplify the creation of contiguous (gapless) lesion sets around the pulmonary vein which is needed to achieve PVI. In many cases, a 3-D (CT, MRI, or C-arm CT) image of a patient's left atrium is available. This data can then be used for planning purposes and for supporting catheter navigation during the procedure. Cryo-thermal balloon catheters are commercially available in two different sizes. We propose the Atrial Fibrillation Planning Tool (AFiT), which visualizes the segmented left atrium as well as multiple cryo-balloon catheters within a virtual reality, to find out how well cryo-balloons fit to the anatomy of a patient's left atrium. First evaluations have shown that AFiT helps physicians in two ways. First, they can better assess whether cryoballoon ablation or RF ablation is the treatment of choice at all. Second, they can select the proper-size cryo-balloon catheter with more confidence.

  14. NDT techniques for strain characterization on zircaloy clad during ballooning under simulated LOCA conditions

    International Nuclear Information System (INIS)

    Zirconium alloys have been widely used as fuel cladding for most of the water reactors. Considerable attention has been given to study of its behaviour under abnormal reactor conditions such as Loss of Coolant Accident (LOCA). In order to obtain benchmark data on ballooning that could occur in such conditions in PHWR, simulated experiments are planned by heating the clad and pressurizing it internally. A system has been designed and fabricated at Atomic Fuels Division for applying different heating rates and pressures upto 100 bar on zircaloy clad. The objective of the experiments is to collect, amongst other parameters, data on ballooning behaviour and strain rate till burst. On line, in-situ measurement of strain rate accurately to assist fuel design and safety analysis has been a challenging task. Different systems have been employed for this purpose by different laboratories engaged in similar work. An extensive literature survey had revealed that various workers have adopted different techniques to suit their specific requirement which are based on the design codes followed by them. An in-depth study of the problem was carried out and several possible methods were considered. Some of them were evaluated for their possible application in our set up. Wherever required experiments were carried out for this purpose. The paper discusses the in-situ strain rate measurement techniques for Zircaloy clad and problems of each of them. Feasible techniques are further elaborated and results of experiments are described. It also compares the advantages and limitations of X-ray radiography, fluoroscopy, optical films, electronic recordings, laser scanning and Acoustic Emission (AE) methods for strain rate measurement of zircaloy. Data on experiments conducted with AE techniques are analysed. Based on the data collected, possibility of its use for in-service inspection (ISI) of zircaloy components is explored. (author). 3 refs., 4 figs

  15. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Science.gov (United States)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  16. Tracking technology for optoelectronic imaging platform of tethered balloon based on DGPS/INS

    Science.gov (United States)

    Wang, Y. W.; Wang, Z. Y.; Zhou, W. H.; Han, X. Q.

    2011-06-01

    In this paper, a tracking method for optoelectronic imaging platform of tethered balloon based on difference global positioning system/inertial navigation system is presented in detail. The location and attitude information of optoelectronic imaging platform, the azimuth and elevation angles of camera's line of sight are used by this method to locate the ground target at the centre point of the camera's field of view through corresponding coordinate transformation. And then, the method makes use of the update position and attitude information to solve the theoretical point of camera's line of sight inversely. Finally, an angle control commend will be sent to the inertially-stabilized turntable on the optoelectronic imaging platform, which will adjust its azimuth and elevation angle to make the camera's line of sight to the ground target. A lot of experiments are conducted, and the results show that the initial ground target is always in the centre of camera's field of view no matter how the balloon's position and attitude change, and the new location data of ground target has little difference with the initial location data, while the difference between them is close to 0.

  17. The Half Wave Plate Rotator for the BLAST-TNG Balloon-Borne Telescope

    Science.gov (United States)

    Setiawan, Hananiel; Ashton, Peter; Novak, Giles; Angilè, Francesco E.; Devlin, Mark J.; Galitzki, Nicholas; Ade, Peter; Doyle, Simon; Pascale, Enzo; Pisano, Giampaolo; Tucker, Carole E.

    2016-01-01

    The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is an experiment designed to map magnetic fields in molecular clouds in order to study their role in the star formation process. The telescope will be launched aboard a high-altitude balloon in December 2016 for a 4-week flight from McMurdo station in Antarctica. BLAST-TNG will measure the polarization of submillimeter thermal emission from magnetically aligned interstellar dust grains, using large format arrays of kinetic inductance detectors operating in three bands centered at 250, 350, and 500 microns, with sub-arcminute angular resolution. The optical system includes an achromatic Half Wave Plate (HWP), mounted in a Half Wave Plate rotator (HWPr). The HWP and HWPr will operate at 4 K temperature to reduce thermal noise in our measurements, so it was crucial to account for the effects of thermal contraction at low temperature in the HWPr design. It was also equally important for the design to meet torque requirements while minimizing the power from friction and conduction dissipated at the 4 K stage. We also discuss our plan for cold testing the HWPr using a repurposed cryostat with a Silicon Diode thermometer read out by an EDAS-CE Ethernet data acquisition system.

  18. Balloon Flight Background Measurement with Actively-Shielded Planar and Imaging CZT Detectors

    CERN Document Server

    Bloser, P F; Jenkins, J A; Perrin, M; Murray, R; Grindlay, J E

    2001-01-01

    We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as ``CZT1,'' consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator surrounded by plastic scintillator and a thick BGO crystal in the rear. The second detector, ``CZT2,'' comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Products high pressure Bridgman material and the other of IMARAD horizontal Bridgman material, each fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch. The pixellated detectors were flip-chip-mounted side by side and read out by a 32-channel ASIC. This detector was also shielded by a passive/plastic collimator in the front, but used only additional passive/plastic shielding in the rear. Both experiments were flown from Ft. Sumner, NM on September 19, 2000 on a 24 hour balloon flight. CZT1 recorded a non-vetoed backgro...

  19. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    International Nuclear Information System (INIS)

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times 2) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity

  20. Precise Pointing and Stabilization Performance for the Balloon-borne Imaging Testbed (BIT): 2015 Test Flight

    CERN Document Server

    Romualdez, L J; Damaren, C J; Galloway, M N; Hartley, J W; Li, L; Massey, R J; Netterfield, C B

    2016-01-01

    Balloon-borne astronomy offers an attractive option for experiments that require precise pointing and attitude stabilization, due to a large reduction in the atmospheric interference observed by ground-based systems as well as the low-cost and short development time-scale compared to space-borne systems. The Balloon-borne Imaging Testbed (BIT) is an instrument designed to meet the technological requirements of high precision astronomical missions and is a precursor to the development of a facility class instrument with capabilities similar to the Hubble Space Telescope. The attitude determination and control systems (ADCS) for BIT, the design, implementation, and analysis of which are the focus of this paper, compensate for compound pendulation effects and other sub-orbital disturbances in the stratosphere to within 1-2$^{\\prime\\prime}$ (rms), while back-end optics provide further image stabilization down to 0.05$^{\\prime\\prime}$ (not discussed here). During the inaugural test flight from Timmins, Canada in S...

  1. Evaluation of Experimental Data from the GAINS Balloon GPS Surface Reflection Instrument

    Science.gov (United States)

    Gance, George G.; Johnson, Thomas A.

    2004-01-01

    The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in September 2001. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the 48-hour flight over the Northwest US, the instrument will measure surface reflections that can be detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and results of the science data analyses for the 48-hour mission.

  2. Fine-scale turbulence soundings in the stratosphere with the new balloon-borne instrument LITOS

    Directory of Open Access Journals (Sweden)

    A. Theuerkauf

    2010-08-01

    Full Text Available We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere for high resolution wind turbulence soundings up to 35 km altitude. The wind measurements are performed applying a constant temperature anemometer (CTA with a vertical resolution of ~2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit the payload weighs less than 5 kg and can be launched at any radiosonde station. Since autumn 2007 LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP in Kühlungsborn, Germany (54° N, 12° E. Two additional soundings were carried out in 2008 and 2009 at Kiruna, Sweden (67° N, 21° E as part of the BEXUS program (Balloon-borne EXperiments for University Students. We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. First case studies allow a clear distinction between non-turbulent layers and turbulent layers with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.

  3. Data processing algorithms for inferring stratospheric gas concentrations from balloon-based solar-occultation data. Technical memo

    International Nuclear Information System (INIS)

    In three high-altitude balloon experiments, the authors inferred concentrations of ozone, water vapor, and other gases in the stratosphere, using the technique of solar occultation. The objective was to demonstrate feasibility of a new technique before implementing it on a satellite, and to gain experience with handling the data. The technical report documents detail the methods developed for processing the data. It presents the equations that describe the atmospheric physics of the measurement and the algorithms to solve them. It also presents practical aspects of applying the algorithms to real data, methods for overcoming aberrations and problems inherent in the occultation technique, and sample results

  4. Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission

    CERN Document Server

    Park, I H; Bok, J B; Ganel, O; Hahn, J H; Han, W; Hyun, H J; Kim, H J; Kim, M Y; Kim, Y J; Lee, J K; Lutz, L; Malinine, A; Min, K W; Nam, S W; Nam, W; Park, H; Park, N H; Seo, E S; Seon, K I; Sone, J H; Yang, J; Zinn, S Y

    2004-01-01

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to measure cosmic ray elemental spectra to help understand the source and acceleration mechanisms of ultra-high-energy cosmic rays. The payload is planned to launch in December 2004 from McMurdo Station, Antarctica as a balloon mission. A Silicon Charge Detector (SCD) was designed and constructed for the CREAM experiment to provide precision charge measurements of incident cosmic rays with a resolution of 0.2 charge unit or better. The SCD was exposed to heavy ion beams at CERN's H2 beam line in November 2003. The results reported here show the SCD performs as designed.

  5. Feasibility of Endovascular Radiation Therapy Using Holmium-166 Filled Balloon Catheter in a Swine Hemodialysis Fistula Model: Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Yun; Lee, Kwang Hun; Lee, Do Yun [Dept. of Radiology, Research Institute of Radiological Science, Yensei University College of Medicine, Seoul (Korea, Republic of); Kim, Myoung Soo [Dept. of Radiology, Yensei University College of Medicine, Seoul (Korea, Republic of); Kang, Byung Chul [Dept. of Radiology, Internal Medicine, EwhaWoman' s University School of Medicine, Seoul (Korea, Republic of); Kim, Seung Jung [Dept. of Internal Medicine, EwhaWoman' s University School of Medicine, Seoul (Korea, Republic of)

    2011-08-15

    To describe how to make a swine hemodialysis fistula model and report our initial experience to test the feasibility of endovascular radiation therapy with Holmium-166 filled balloon catheters. The surgical formation of arterio-venous fistula (AVF) was performed by end-to-side anastomosis of the bilateral jugular vein and carotid artery of 6 pigs. After 4 weeks, angiograms were taken and endovascular radiation was delivered to the venous side of AVF with Holmium-166 filled balloon catheters. Pigs were sacrificed 4 weeks after the radiation and AVFs were harvested for histological examination. All animals survived without any morbidity during the experimental periods. The formation of fistula on the sides of necks was successful in 11 of the 12 pigs (92%). One AVF failed from the small jugular vein. On angiograms, 4 of the 11 AVFs showed total occlusion or significant stenosis and therefore, endovascular radiation could not be performed. Of 7 eligible AVFs, five underwent successful endovascular radiation and two AVFs did not undergo radiation for the control. Upon histologic analysis, one non-radiated AVF showed total occlusion and others showed intimal thickening from the neointimal hyperplasia. Formation of the swine carotid artery-jugular vein hemodialysis fistula model was successful. Endovascular radiation using a Holmium-166 filled balloon catheter was safe and feasible.

  6. Low-pressure balloon angioplasty with adjuvant pharmacological therapy in patients with acute ischemic stroke caused by intracranial arterial occlusions

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Raul G. [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Endovascular Neurosurgery/Interventional Neuroradiology Section, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Neurosurgery, Endovascular Neurosurgery/Interventional Neuroradiology Section, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Neurocritical Care and Vascular Neurology Section, Boston, MA (United States); Massachusetts General Hospital, Boston, MA (United States); Schwamm, Lee H.; Buonanno, Ferdinando S.; Koroshetz, Walter J. [Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Neurocritical Care and Vascular Neurology Section, Boston, MA (United States); Yoo, Albert J.; Rabinov, James D.; Pryor, Johnny C.; Hirsch, Joshua A. [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Endovascular Neurosurgery/Interventional Neuroradiology Section, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Neurosurgery, Endovascular Neurosurgery/Interventional Neuroradiology Section, Boston, MA (United States)

    2008-04-15

    The use of coronary balloons in the cerebral vasculature is limited due to their poor trackability and increased risk of vessel injury. We report our experience using more compliant elastomer balloons for thrombus resistant to intraarterial (IA) pharmacological and mechanical thrombolysis in acute stroke. We retrospectively analyzed 12 consecutive patients with an occluded intracranial artery treated with angioplasty using a low-pressure elastomer balloon. Angiograms were graded according to the Thrombolysis in Cerebral Infarction (TICI) and Qureshi grading systems. Outcomes were categorized as independent (modified Rankin scale, mRS, score {<=}2), dependent (mRS score 3-5), or dead (mRS score 6). Included in the study were 12 patients (mean age 66{+-}17 years, range 31-88 years; mean baseline National Institutes of Health stroke scale score 17{+-}3, range 12-23). The occlusion sites were: internal carotid artery (ICA) terminus (five patients, including two concomitant cervical ICA occlusions), M1 segment (two patients), and basilar artery (two patients). Pharmacological treatment included intravenous (IV) t-PA only (two patients), IA urokinase only (nine patients), both IV t-PA and IA urokinase (one patient), and IV and/or IA eptifibatide (eight patients). Mean time to treatment was 5.9{+-}3.9 h (anterior circulation) and 11.0{+-}7.2 h (posterior circulation). Overall recanalization rate (TICI grade 2/3) was 91.6%. Procedure-related morbidity occurred in one patient (distal posterior inferior cerebellar artery embolus). There were no symptomatic hemorrhages. Outcomes at 90 days were independent (five patients), dependent (three patients) and dead (four patients, all due to progression of stroke with withdrawal of care). Angioplasty of acutely occluded intracranial arteries with low-pressure elastomer balloons results in high recanalization rates with an acceptable degree of safety. Prior use of thrombolytics may increase the chances of recanalization, and

  7. A Balloon-Borne Telescope System for Planetary Atmosphere and Plasma Studies

    Science.gov (United States)

    Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Kanazawa, T.; Shoji, Y.; Sawakami, T.; Takahashi, Y.; Hoshino, N.; Sato, T.; Sakanoi, T.

    2007-12-01

    three paths with different colors: the first one with wavelengths less than 450 nm, the second one with 550-630 nm, and the last one more than 750 nm. The first and last paths are utilized for imagery of UV and NIR with bandpass filters and analog and digital CCD video cameras, respectively. The second path is for tracking error detection. The first experiment was scheduled in June, 2007 at Sanriku Balloon Center (SBC), Japan, but it was postponed until late August because of delay in final testing of the system. As of submission of this abstract the gondola has been ready for launch but has not yet been launched. The result of experiment will be presented.

  8. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted-circle model is used to elucidate the physics, and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency, ωA = VA/qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode. (author). 9 refs, 3 figs

  9. The Balloon Experimental Twin Telescope for Infrared Interferometry

    Science.gov (United States)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  10. [Adherence and fidelity in patients treated with intragastric balloon].

    Science.gov (United States)

    Mazure, R A; Cancer, E; Martínez Olmos, M A; De Castro, M L; Abilés, V; Abilés, J; Bretón, I; Álvarez, V; Peláez, N; Culebras, J M

    2014-01-01

    A correct treatment of obesity needs a program of habits modification regardless of the selected technique, especially if it is minimally invasive as the intragastric balloon (BIG). The adherence of the obese patients with regard to recommended drugs measures to medium- and long-term is less than 50%. Given that the results obtained using the technique of gastric balloon must be seen influenced by adherence to the modification of habits program and its fulfillment, we reviewed series published in attention to the program proposed with the BIG. The series published to date provide few details about the used Therapeutic Programs as well as the adherence of patients to them, and even less concerning the Monitoring Plan and the loyalty of the patient can be seen. We conclude the convenience to agree on a follow-up strategy, at least the 6 months during which the BIG remain in the stomach. PMID:24483961

  11. Saturated gravity wave spectra measured with balloons in Mendoza (Argentina)

    Science.gov (United States)

    de la Torre, A.; Giraldez, A.; Alexander, P.

    1994-09-01

    Spectral results from a sounding of temperature and wind velocity between 11.9 and 23.1 km performed with an open type stratospheric balloon near the Andes Mountains, are reported. The use of this kind of balloons and high performance instruments, allowed to attain better spatial resolution (around 2.5 meters during the descent) than previous results and other sounding techniques. This high resolution permitted to study the complete interval of altitude data in three consecutive subintervals (below, around and above the tropopause). Each of these subintervals shows different saturation characteristics. Some differences have been found with the general pattern of power spectral densities reported by different theories. A large amplitude wave of around 1.8 km and possibly originated in the mountain relief, is clearly observed in the temperature, vertical and shear wind velocity components.

  12. Developing International Standards for Meteorological Balloon to Facilitate Industrial Progress

    Institute of Scientific and Technical Information of China (English)

    Deng Yizhi

    2011-01-01

    Meteorological balloon is made of natural rubber latex with a special process.On natural conditions,it carries the air sounding instrument into the high air to detect the meteorological elements in the air.As a means of delivery used in the aerological sounding,it is widely used in the meteorological,sailing,aeronautical,aerospace and other fields,and plays an extremely important role in the weather report,disaster prevention,disaster relief,guaranteeing ships and aircrafts to leave ports safely,and scientific research in relevant spaces,etc.Especially,the role of meteorological balloons is not ignorable in the forecast of extremely adverse weather frequently occurring around the world in recent years.

  13. Designing the Balloon Experimental Twin Telescope for Infrared Interferometry

    Science.gov (United States)

    Rinehart, Stephen

    2011-01-01

    While infrared astronomy has revolutionized our understanding of galaxies, stars, and planets, further progress on major questions is stymied by the inescapable fact that the spatial resolution of single-aperture telescopes degrades at long wavelengths. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter boom interferometer to operate in the FIR (30-90 micron) on a high altitude balloon. The long baseline will provide unprecedented angular resolution (approx. 5") in this band. In order for BETTII to be successful, the gondola must be designed carefully to provide a high level of stability with optics designed to send a collimated beam into the cryogenic instrument. We present results from the first 5 months of design effort for BETTII. Over this short period of time, we have made significant progress and are on track to complete the design of BETTII during this year.

  14. Electrodynamics of the stratosphere using 5000 cu m superpressure balloons

    Science.gov (United States)

    Holzworth, R. H.

    1983-01-01

    The Electrodynamics of the Middle Atmosphere research project encompasses the design of a microprocessor-controlled payload and the launch of up to eight small superpressure balloons in the 1982-1984 period. The primary payload instrument will measure the vector electric field from dc to 10 kHz, and the payloads will include instruments measuring local ionization, electrical conductivity, magnetic field, and temperature and pressure fluctuations. In addition, optical lightning will be recorded. The simultaneous measurement of these stratospheric parameters by several balloons, for periods extending over several solar rotations, will allow the study of electrical coupling between atmosphere and magnetosphere, of global current systems, and of global response to solar flares and magnetospheric storms.

  15. Zodiac II: Debris Disk Science from a Balloon

    OpenAIRE

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how a...

  16. Intraaortic Balloon Pump Counterpulsation and Cerebral Autoregulation: an observational study

    OpenAIRE

    Boots Rob; Barnett Adrian G; Timms Daniel; Dunster Kimble; Geng Shureng; Bellapart Judith; Fraser John F

    2010-01-01

    Abstract Background The use of Intra-aortic counterpulsation is a well established supportive therapy for patients in cardiac failure or after cardiac surgery. Blood pressure variations induced by counterpulsation are transmitted to the cerebral arteries, challenging cerebral autoregulatory mechanisms in order to maintain a stable cerebral blood flow. This study aims to assess the effects on cerebral autoregulation and variability of cerebral blood flow due to intra-aortic balloon pump and in...

  17. Effect of Externally Driven Magnetic Islands on Resistive Ballooning Turbulence

    OpenAIRE

    NISHIMURA, Seiya; Yagi, Masatoshi

    2011-01-01

    Turbulent transport in the edge region of tokamak plasmas is simulated using a reduced set of magnetohydrodynamic equations. Repetitive and intermittent transport bursts driven by resistive ballooning turbulence with external heating are observed. The effect of a resonant magnetic perturbation (RMP) on turbulent heat transport is examined, where the electromagnetic response of the plasma to the RMP is solved consistently. The penetration of the RMP excites a magnetic island chain and damps th...

  18. Asymptotic stability boundaries of ballooning modes in circular tokamaks

    International Nuclear Information System (INIS)

    The model ballooning mode equation of Connor, Hastie, and Taylor for large-aspect-ratio circular tokamaks is analyzed in the limit of large pressure gradient, and corresponding expressions for stability boundaries are derived. In particular, it is found that for a fixed radial wave number, there exists an infinite sequence of unstable bands, and that minimizing over the radial wave numbers leads to asymptotic merging between the neighboring bands

  19. Semi hemi antenna. [balloon parachuted microwave antenna for stratospheric testing

    Science.gov (United States)

    Repucci, T. A.; Ferris, J. E.

    1978-01-01

    The University of Michigan minipod, which is released from a balloon and floats down on a parachute, is designed for stratospheric testing. The present paper briefly describes the evolution of antenna designs for the minipod 1.5 GHz transceiver, which communicates with and relays information to an aircraft and ground station. The following stages are noted: ordinary monopole, crossed dipole, capacitative antenna, fat monopole, the addition of parasitic elements, and a thinner monopole with taper.

  20. Development of long-duration ballooning in Antarctica

    International Nuclear Information System (INIS)

    Following four successful long-duration test flights from Australia to South America, a new flight support system with global tracking, command, and telemetry capability is being developed to support long-duration balloon flights of relatively sophisticated instruments at both mid-latitudes and in Antarctica. The first test flight for the joint NASA-NSF program to support flights in Antarctica is scheduled from McMurdo in December 1989, with operational capability two years later

  1. Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms

    OpenAIRE

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc

    2014-01-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a...

  2. Double-balloon enteroscopy in detecting small intestinal bleeding

    Institute of Scientific and Technical Information of China (English)

    ZHI Fa-chao; PAN De-shou; ZHOU Dian-yuan; XIAO Bing; JIANG Bo; WAN Tian-mo; GUO Yu; ZHOU Dan; WANG Li-hui; CHEN Jin-feng; XIE Lu

    2005-01-01

    @@ Digestive tract hemorrhage is a common disease of the digestive system, but about 0.4%-5% intestinal bleeding can not be detected with gastroscope or colonscope.1 Since the intestine is long, tortuous, far away from both ends of the digestive tract and unfixed in position, clinical diagnosis of the bleeding is relatively difficult. Yamamoto and Sugano2 reported the clinical application of double-balloon enteroscope at American DDW in 2003.

  3. Balloon Cell Urethral Melanoma: Differential Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    M. McComiskey

    2015-01-01

    Full Text Available Introduction. Primary malignant melanoma of the urethra is a rare tumour (0.2% of all melanomas that most commonly affects the meatus and distal urethra and is three times more common in women than men. Case. A 76-year-old lady presented with vaginal pain and discharge. On examination, a 4 cm mass was noted in the vagina and biopsy confirmed melanoma of a balloon type. Preoperative CT showed no distant metastases and an MRI scan of the pelvis demonstrated no associated lymphadenopathy. She underwent anterior exenterative surgery and vaginectomy also. Histology confirmed a urethral nodular malignant melanoma. Discussion. First-line treatment of melanoma is often surgical. Adjuvant treatment including chemotherapy, radiotherapy, or immunotherapy has also been reported. Even with aggressive management, malignant melanoma of the urogenital tract generally has a poor prognosis. Recurrence rates are high and the mean period between diagnosis and recurrence is 12.5 months. A 5-year survival rate of less than 20% has been reported in balloon cell melanomas along with nearly 20% developing local recurrence. Conclusion. To the best of our knowledge, this case is the first report of balloon cell melanoma arising in the urethra. The presentation and surgical management has been described and a literature review provided.

  4. Bilateral vertebral artery balloon occlusion for giant vertebrobasilar aneurysms

    International Nuclear Information System (INIS)

    We describe the clinical presentation, radiological and clinical results in six consecutive patients with a giant vertebrobasilar aneurysm treated by bilateral vertebral artery balloon occlusion. Five patients presented with headache and signs of brain-stem compression and one with subarachnoid haemorrhage. In all patients vertebral artery balloon occlusion was performed. In four, this followed successful test occlusion. In one patient, who did not tolerate the test occlusion, a bypass from the external carotid to the posterior cerebral artery preceded definitive vertebral artery occlusion. One patient underwent bypass surgery prior to test occlusion. At 6-22 months follow-up three patients had a good functional outcome and showed unchanged size or shrinkage of the aneurysm on MRI. Three other patients died; one from recurrent haemorrhage, and two probably from delayed brain-stem ischaemia. The presence of two large posterior communicating arteries predicted good functional outcome, which was also related to the clinical condition at presentation, and the degree of brain-stem compression and oedema on MRI. Bilateral vertebral artery balloon occlusion can be considered in patients with otherwise untreatable giant vertebrobasilar aneurysms. If test occlusion is not tolerated, a surgical bypass to the posterior circulation can be considered. (orig.)

  5. The balloon-borne electron telescope with scintillating fibers (BETS)

    International Nuclear Information System (INIS)

    We describe a new detector system developed for high-altitude balloon flights to observe the cosmic-ray electrons above 10 GeV. The Balloon borne Electron Telescope with Scintillating (BETS) fibers instrument is an imaging calorimeter which is capable of selecting electrons against the large background of protons. The calorimeter is composed of a sandwich of scintillating optical-fiber belts and lead plates with a combination of three plastic scintillators for shower trigger. The total thickness of lead is 40 mm (∼ 7.1 r.l.) and the number of fiber belts is nine. In each belt, alternating layers are oriented in orthogonal (x and y) directions. Two sets of an intensified CCD camera are adopted for read-out of the scintillating fibers in the x and y direction, respectively. The accelerator beam tests were carried out to study the performance of detector for electrons in 1996 and for protons in 1997 at CERN-SPS. The instrument was successfully flown aboard high-altitude balloon in 1997 and 1998. It is demonstrated by the flight data that a reliable identification of the electron component has been achieved in 10-100 GeV and the energy spectrum has been obtained

  6. Can the Non-linear Ballooning Model describe ELMs?

    Science.gov (United States)

    Henneberg, S. A.; Cowley, S. C.; Wilson, H. R.

    2015-11-01

    The explosive, filamentary plasma eruptions described by the non-linear ideal MHD ballooning model is tested quantitatively against experimental observations of ELMs in MAST. The equations describing this model were derived by Wilson and Cowley for tokamak-like geometry which includes two differential equations: the linear ballooning equation which describes the spatial distribution along the field lines and the non-linear ballooning mode envelope equation, which is a two-dimensional, non-linear differential equation which can involve fractional temporal-derivatives, but is often second-order in time and space. To employ the second differential equation for a specific geometry one has to evaluate the coefficients of the equation which is non-trivial as it involves field line averaging of slowly converging functions. We have solved this system for MAST, superimposing the solutions of both differential equations and mapping them onto a MAST plasma. Comparisons with the evolution of ELM filaments in MAST will be reported in order to test the model. The support of the EPSRC for the FCDT (Grant EP/K504178/1), of Euratom research and training programme 2014-2018 (No 633053) and of the RCUK Energy Programme [grant number EP/I501045] is gratefully acknowledged.

  7. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    Science.gov (United States)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  8. Inverted Meckel's diverticulum preoperatively diagnosed using double-balloon enteroscopy.

    Science.gov (United States)

    Takagaki, Kosuke; Osawa, Satoshi; Ito, Tatsuhiro; Iwaizumi, Moriya; Hamaya, Yasushi; Tsukui, Hiroe; Furuta, Takahisa; Wada, Hidetoshi; Baba, Satoshi; Sugimoto, Ken

    2016-05-01

    An inverted Meckel's diverticulum is a rare gastrointestinal congenital anomaly that is difficult to diagnose prior to surgery and presents with anemia, abdominal pain, or intussusception. Here, we report the case of 57-year-old men with an inverted Meckel's diverticulum, who was preoperatively diagnosed using double-balloon enteroscopy. He had repeatedly experienced epigastric pain for 2 mo. Ultrasonography and computed tomography showed intestinal wall thickening in the pelvis. Double-balloon enteroscopy via the anal route was performed for further examination, which demonstrated an approximately 8-cm, sausage-shaped, submucosal tumor located approximately 80 cm proximal to the ileocecal valve. A small depressed erosion was observed at the tip of this lesion. Forceps biopsy revealed heterotopic gastric mucosa. Thus, the patient was diagnosed with an inverted Meckel's diverticulum, and single-incision laparoscopic surgery was performed. This case suggests that an inverted Meckel's diverticulum should be considered as a differential diagnosis for a submucosal tumor in the ileum. Balloon-assisted enteroscopy with forceps biopsy facilitate a precise diagnosis of this condition. PMID:27158212

  9. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    Science.gov (United States)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  10. A Low Cost Weather Balloon Borne Solar Cell Calibration Payload

    Science.gov (United States)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .

  11. Early clinical outcome and complications related to balloon kyphoplasty

    Directory of Open Access Journals (Sweden)

    Martin Bergmann

    2012-06-01

    Full Text Available The treatment of painful osteoporotic vertebral compression fractures using transpedicular cement augmentation has grown significantly over the last two decades. The benefits of balloon kyphoplasty compared to conservative treatment remain controversial and are discussed in the literature. The complication rates of vertebroplasty and kyphoplasty are considered to be low. The focus of this study was the analysis of acute and clinically relevant complications related to this procedure. In our department, all patients treated between February 2002 and February 2011 with percutaneous cement augmentation (372 patients, 522 augmented vertebral bodies were prospectively recorded. Demographic data, comorbidities, fracture types, intraoperative data and all complications were documented. The pre- and postoperative pain-level and neurological status (Frankel-Score were evaluated. All patients underwent a standardized surgical procedure. Two hundred and ninety-seven patients were treated solely by balloon kyphoplasty; 216 females (72.7% and 81 males (27.3%. Average patient age was 76.21 years (±10.71, range 35-98 years. Average American Society Anestesiologists score was 3.02. According to the Orthopedic Trauma Association classification, there were 69 A 1.1 fractures, 177 A 1.2 fractures, 178 A 3.1.1 fractures and 3 A 3.1.3 fractures. Complications were divided into preoperative, intraoperative and postoperative events. There were 4 pre-operative complications: 3 patients experienced persistent pain after the procedure. In one case, the pedicles could not be visualized during the procedure and the surgery was terminated. One hundred and twenty-nine (40.06% of the patients showed intraoperative cement leaking outside the vertebras, one severe hypotension and tachycardia as reaction to the inflation of the balloons, and there was one cardiac arrest during surgery. Postoperative subcutaneous hematomas were observed in 3 cases, 13 patients developed a

  12. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    Science.gov (United States)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  13. An overview of the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale, roadmap and highlights

    Directory of Open Access Journals (Sweden)

    F. Cairo

    2009-09-01

    Full Text Available A multi-platform field measurement campaign involving aircraft and balloons took place over West Africa between 26 July and 25 August 2006, in the frame of the concomitant AMMA Special Observing Period and SCOUT-O3 African tropical activities.

    Specifically aiming at sampling the upper troposphere and lower stratosphere, the high-altitude research aircraft M55 Geophysica was deployed in Ouagadougou (12.3° N, 1.7° W, Burkina Faso, in conjunction with the German D-20 Falcon, while a series of stratospheric balloon and sonde flights were conducted from Niamey (13.5° N, 2.0° E, Niger.

    The stratospheric aircraft and balloon flights intended to gather experimental evidence for a better understanding of large scale transport, assessing the effect of lightning on NOx production, and studying the impact of intense mesoscale convective systems on water, aerosol, dust and chemical species in the upper troposphere and lower stratosphere. The M55 Geophysica carried out five local and four transfer flights between southern Europe and the Sahel and back, while eight stratospheric balloons and twenty-nine sondes were flown from Niamey.

    These experiments allowed a characterization of the tropopause and lower stratosphere of the region. We provide here an overview of the campaign activities together with a description of the general meteorological situation during the flights and a summary of the observations accomplished.

  14. Intestinal cholesterol embolism resulting from intra-aortic balloon pumping: a case report

    OpenAIRE

    Yamaguchi, Satoshi; Kakazu, Masanori; Osamu, Arasaki

    2014-01-01

    Introduction Intra-aortic balloon pumping is used in elective percutaneous coronary intervention for increasing coronary blood flow. However, intra-aortic balloon pumping may decrease visceral blood flow and cause mesenteric ischemia by visceral artery obstruction. Case presentation We report the case of a 79-year-old Asian man in whom elective percutaneous coronary intervention was performed with intra-aortic balloon pumping. He died from mesenteric ischemia 25 hours after the procedure. Mic...

  15. Efficacy of Intrauterine Bakri Balloon Tamponade in Cesarean Section for Placenta Previa Patients

    OpenAIRE

    Cho, Hee Young; Park, Yong Won; Kim, Young Han; Jung, Inkyung; Kwon, Ja-Young

    2015-01-01

    Purpose The aims of this study were to analyze the predictive factors for the use of intrauterine balloon insertion and to evaluate the efficacy and factors affecting failure of uterine tamponade with a Bakri balloon during cesarean section for abnormal placentation. Methods We reviewed the medical records of 137 patients who underwent elective cesarean section for placenta previa between July 2009 and March 2014. Cesarean section and Bakri balloon insertion were performed by a single qualifi...

  16. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    International Nuclear Information System (INIS)

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  17. The Interpretation of Saturated Spectra as Obtained from Atmospheric Balloon Measurements.

    Science.gov (United States)

    Alexander, P.; de La Torre, A.

    1999-03-01

    Transformations that take into account the characteristics of balloon motion and wave propagation to infer the `real' vertical wavelengths from the `apparent' ones measured during soundings were derived in a first paper. These results are now used to estimate the deviation of the saturated spectra obtained with balloon measurements from the theoretically expected shape. It is found that data stemming from slowly ascending or descending balloons may lead to a significant distortion of spectra.

  18. Flight performance of EXAM - a balloon-borne detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    We describe the performance of the EXAM detector during its five hour balloon flight in 1988. EXAM is an experiment designed to search for cosmic rays of extragalactic origin which are made of antimatter. The EXAM technique to identify antinuclei is unique, being based on higher order corrections to electronic stopping power of charged particles, and on the response characteristics of CR-39 track-etch detectors, plastic scintillators, and Cherenkov radiators. Included in the present paper are the completed analysis of the electronic detectors, and preliminary results of the analysis of the track-etch detectors, including a demonstration of our ability to match particles identified with the drift tube tracking elements during the flight with their tracks found in the passive CR-39 detectors. When the CR-39 analysis is complete, we will have approximately 10 000 events for which antimatter analysis can be made. ((orig.))

  19. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  20. Treatment of visual defects in empty sella syndrome with detachable balloon

    International Nuclear Information System (INIS)

    Full text: To report a detachable balloon chiasmopexy treatment of a patient with significant visual defects, with descent of the optic chiasm into an empty sella. A 48 year old female had pituitary adenoma surgery in 1990, presents with severe deterioration of vision in the three months prior to therapy. MRI revealed descent of the optic chiasm into an empty sella. Intra-operatively, a window was made into the bone of the anterior sella turcica. An ITC detachable balloon (Target) 1cm long, 0.6cm wide was placed into the base of the sella. The balloon was filled with iso-osmolar non-ionic contrast. The patient's vision improved, but the balloon deflated after one day. At re-operation, a longitudinal tear was found in the balloon, presumably from pressure from the edge of the bone window. Another detachable balloon was inserted, now filled with 0.6mls of solution of 80% lipiodol and 20% histo-acryl glue (Braun).The balloon stayed inflated, and her vision improved. Check CT at 3 months revealed good balloon position and inflation. There have been two previous literature reports in using detachable balloon chiasmopexy to treat this rare problem. Co-operation between radiology and surgery has successfully treated significant visual impairment in an empty sella syndrome patient. Copyright (2002) Blackwell Science Pty Ltd

  1. The Response of an Open Stratospheric Balloon to the Presence of Inertio-Gravity Waves.

    Science.gov (United States)

    Alexander, P.; Cornejo, J.; de La Torre, A.

    1996-01-01

    Analytic solutions for the vertical response of an open stratospheric balloon to the presence of inertio-gravity waves during its descent are obtained. Monochromatic waves with simultaneous variations in density, velocity, and temperature are considered. Two extreme cases for the thermal conductivity of the balloon are analyzed: perfect and null. In the first case the velocity variations of the wave dominate the balloon's behavior, but in the second one the air density oscillations also become significant. It is concluded that open stratospheric balloons may behave more adiabatic than perfect conducting.

  2. Thromboembolic events associated with single balloon-, double balloon-, and stent-assisted coil embolization of asymptomatic unruptured cerebral aneurysms: evaluation with diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takigawa, Tomoji; Suzuki, Kensuke; Sugiura, Yoshiki; Suzuki, Ryotaro; Takano, Issei; Shimizu, Nobuyuki; Tanaka, Yoshihiro; Hyodo, Akio [Dokkyo Medical University Koshigaya Hospital, Department of Neurosurgery, Koshigaya, Saitama (Japan)

    2014-12-15

    The introduction of the balloon remodeling and stent-assisted technique has revolutionized the approach to coil embolization for wide-neck aneurysms. The purpose of this study was to determine the frequency of thromboembolic events associated with single balloon-assisted, double balloon-assisted, and stent-assisted coil embolization for asymptomatic unruptured aneurysms. A retrospective review was undertaken by 119 patients undergoing coiling with an adjunctive technique for unruptured saccular aneurysms (64 single balloon, 12 double balloon, 43 stent assisted). All underwent diffusion-weighted imaging (DWI) within 24 h after the procedure. DWI showed hyperintense lesions in 48 (40 %) patients, and ten (21 %) of these patients incurred neurological deterioration (permanent, two; transient, eight). Hyperintense lesions were detected significantly more often in procedures with the double balloon-assisted technique (7/12, 58 %) than with the single balloon-assisted technique (16/64, 25 %, p = 0.05). Occurrence of new lesions was significantly higher with the use of stent-assisted technique (25/43, 58 %) than with the single balloon-assisted technique (p = 0.001). Symptomatic ischemic rates were similar between the three groups. The increased number of microcatheters was significantly related to the DWI abnormalities (two microcatheters, 15/63 (23.8 %); three microcatheters, 20/41 (48.8 %) (p = 0.008); four microcatheters, 12/15 (80 %) (p = 0.001)). Thromboembolic events detected on DWI related to coil embolization for unruptured aneurysms are relatively common, especially in association with the double balloon-assisted and stent-assisted techniques. Furthermore, the number of microcatheters is highly correlated with DWI abnormalities. The high rate of thromboembolic events suggests the need for evaluation of platelet reactivity and the addition or change of antiplatelet agents. (orig.)

  3. An experimental investigation of the effect of clad ballooning on the effectiveness of PWR emergency cooling

    International Nuclear Information System (INIS)

    A series of single phase cooling, forced reflood, gravity reflood and level swell experiments has been performed on a full length, electrically heated 7x7 rod fuel cluster (in the THETIS Rig) containing a blockage simulating very severe clad ballooning. The single phase cooling experiments provided data on the level of heat transfer within the cluster and the enhancement produced by turbulence created by the spacer grids. The forced reflood experiments have led to a better understanding of the rewetting processes during bottom reflooding, the very important influence of spacer grids in two-phase flow and the complicated heat transfer processes within the blockage. The insight obtained has been used to develop a mechanistic model. The gravity reflood experiments investigated steam binding and inlet flow oscillation effects. The variation in inlet flow produced by the variations in system parameters was the dominant influence. The inlet flow oscillations which occurred in gravity reflood appeared not to influence overall rewetting or heat removal performance. The level swell experiments investigated the relationship between void fraction and superficial steam velocity at pressures up to 40 bar and compared the data with various correlations. The correlation of Gardner was found to be most satisfactory. 107 refs., 252 figs.

  4. Zodiac: A Balloon Facility for Exoplanet Debris Disk Observations

    Science.gov (United States)

    Unwin, Stephen C.; Traub, W.; Bryden, G.

    2011-01-01

    Zodiac is a telescope-coronagraph system, operating at visible wavelengths, mounted on a balloon-borne gondola in the stratosphere. The science objective is to image debris disks around nearby stars. Debris disks, usually found in the outer reaches of a planetary system, are significant for exoplanet science because (a) they tell us that planet formation did actually get started around a star, (b) they are a contributing source of potentially obscuring dust to the inner part of the disk where we will someday start searching for terrestrial planets, and (c) for a disk with an inner edge, this feature is a signpost for a shepherding planet and thus a sign that planet formation did indeed proceed to completion around that star. The telescope has a 1-m diameter, clear-aperture primary mirror, designed to operate in the cold stratospheric environment. The coronagraph is designed to suppress starlight, including its diffracted and scattered components, and allow a faint surrounding debris disk to be imaged. We will control the speckle background to be about 7 orders of magnitude fainter than the star, with detection sensitivity about one more order of magnitude fainter, in order to comfortably image the expected brightness of typical debris disks. Zodiac will be designed to make scientifically useful measurements on a conventional overnight balloon flight, but would also be fully compatible with future Ultra Long Duration Balloon flights. Zodiac has a technical objective of advancing the technology levels of future mission components from the lab to near-space flight status. These components include deformable mirrors, wavefront sensors, coronagraph masks, lightweight mirrors, precision pointing, and speckle rejection by wavefront control. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged.

  5. Modeling plaque fissuring and dissection during balloon angioplasty intervention.

    Science.gov (United States)

    Gasser, T Christian; Holzapfel, Gerhard A

    2007-05-01

    Balloon angioplasty intervention is traumatic to arterial tissue. Fracture mechanisms such as plaque fissuring and/or dissection occur and constitute major contributions to the lumen enlargement. However, these types of mechanically-based traumatization of arterial tissue are also contributing factors to both acute procedural complications and chronic restenosis of the treatment site. We propose physical and finite element models, which are generally useable to trace fissuring and/or dissection in atherosclerotic plaques during balloon angioplasty interventions. The arterial wall is described as an anisotropic, heterogeneous, highly deformable, nearly incompressible body, whereas tissue failure is captured by a strong discontinuity kinematics and a novel cohesive zone model. The numerical implementation is based on the partition of unity finite element method and the interface element method. The later is used to link together meshes of the different tissue components. The balloon angioplasty-based failure mechanisms are numerically studied in 3D by means of an atherosclerotic-prone human external iliac artery, with a type V lesion. Image-based 3D geometry is generated and tissue-specific material properties are considered. Numerical results show that in a primary phase the plaque fissures at both shoulders of the fibrous cap and stops at the lamina elastica interna. In a secondary phase, local dissections between the intima and the media develop at the fibrous cap location with the smallest thickness. The predicted results indicate that plaque fissuring and dissection cause localized mechanical trauma, but prevent the main portion of the stenosis from high stress, and hence from continuous tissue damage. PMID:17385047

  6. Anisotropic Alfven-ballooning modes in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P perpendicular > P parallel. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value βoB ∼ 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P parallel > P perpendicular, or due to increased ballooning-mirror destabilization when P perpendicular > P parallel. We use a ''β-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters bar β and δ, where bar β = (1/3)(βparallel + 2 β perpendicular) is an average beta value and δ = 1 - P parallel/P perpendicular is a measure of the plasma anisotropy

  7. Balloon-borne and ground-based aerosol measurements with the aerosol counter LOAC during the ChArMEx 2013 campaign

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Durand, Pierre; Mallet, Marc; Totems, Julien; Chazette, Patrick; Sciare, Jean; Barret, Brice; Jambert, Corrine; Verdier, Nicolas

    2014-05-01

    LOAC (Light Optical Aerosol Counter) is a small optical particle counter/sizer of ~250 grams that can fly under all kinds of balloons. The measurements are conducted at two scattering angles: the first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 micrometers. The second angle is at 60°, is used to discriminate between the different types of particles dominating the different size classes. The sensor particularly discriminates wet or liquid particles, mineral dust and carbon particles. 30 flights of LOAC have been conducted during the ChAMEx campaign (Chemistry Aerosol Mediterranean Experiment) on summer 2013, from Minorca Island (Spain) and Ile du Levant (south of France): 19 flights under meteorological balloons and 12 flights under low altitude drifting balloons. Most of the flights were also coupled with ozone concentration measurements. LOAC balloons were especially, but not only, dedicated to study the various Saharan dust events that occurred during the campaign. In particular, flights were conducted every 12 hours during the 15-19 June dust event. Turbid air masses from North America were also sampled in late June over Minorca. The flights allow us to determine the vertical extent of the dust plume and various aerosol layers, and to follow the particle size distribution and the concentration evolution along the vertical. The low altitude drifting balloons, which stayed at constant altitude (between 0.4 and 3 km) for several hours, allow us to study the time-evolution of the aerosol concentrations in the same air mass. Under both balloon types, LOAC has detected larges particles up to ~30 micrometers in diameter. The flights drifting within dust layers indicate that there is a relatively stable particle size distribution during transport over the sea, with no clear sedimentation loss of large particles. LOAC is used to tentatively identify the various kinds of particles (marine

  8. Balloon dilatation in children for oesophageal strictures other than those due to primary repair of oesophageal atresia, interposition or restrictive fundoplication

    Energy Technology Data Exchange (ETDEWEB)

    Fasulakis, Stephen [Royal Children' s Hospital, Melbourne (Australia); Andronikou, Savvas [Royal Children' s Hospital, Melbourne (Australia); Department of Paediatric Radiology, Red Cross Children' s Hospital, Klipfontein Road, Rondebosch, 7700, Cape Town (South Africa)

    2003-10-01

    Balloon dilatation of the oesophagus in children has been performed predominantly for treating strictures, which are the result of primary repair of oesophageal atresia, interposition surgery or restrictive Nissen's fundoplication. Reports of the use of this technique for alternative causes of stricture are few. To report our experience and success with balloon dilatation of strictures due to caustic ingestion, achalasia, oesophagitis, congenital stenosis, and epidermolysis bullosa (EB) and to make comparisons with our treatment of patients with primary repair of oesophageal atresia (OA), as well as with reports in the English language literature. Retrospective review of fluoroscopically guided balloon oesophageal dilatation procedures in 19 patients over a 5-year period, and comparison of those performed for OA repair complications with those due to other diseases. The average radiation dose, per procedure, was calculated by a medical physicist. Ten patients had strictures as a result of primary repair of OA. Three patients had stricture as a result of EB, two from achalasia, two from caustic injury, one due to an oesophageal web and one from reflux oesophagitis. Our results show that the technique can also be curative for the last group and that it may be used intermittently to alleviate symptoms in ongoing diseases. We have not experienced any complications and have also calculated that, even with prolonged use of multiple procedures, the radiation exposure is comparable to other radiological techniques. Patients with alternative causes for oesophageal stricture may be treated to resolution within 2 years using balloon dilatation. Ongoing diseases such as EB require ongoing dilatation, but balloon dilatation of strictures has been successful in alleviating swallowing difficulty. Patients with stricture from OA repair sometimes need ongoing dilatation. Radiation exposure for multiple procedures, over an extended period, is comparable to that from a single

  9. Balloon dilatation in children for oesophageal strictures other than those due to primary repair of oesophageal atresia, interposition or restrictive fundoplication

    International Nuclear Information System (INIS)

    Balloon dilatation of the oesophagus in children has been performed predominantly for treating strictures, which are the result of primary repair of oesophageal atresia, interposition surgery or restrictive Nissen's fundoplication. Reports of the use of this technique for alternative causes of stricture are few. To report our experience and success with balloon dilatation of strictures due to caustic ingestion, achalasia, oesophagitis, congenital stenosis, and epidermolysis bullosa (EB) and to make comparisons with our treatment of patients with primary repair of oesophageal atresia (OA), as well as with reports in the English language literature. Retrospective review of fluoroscopically guided balloon oesophageal dilatation procedures in 19 patients over a 5-year period, and comparison of those performed for OA repair complications with those due to other diseases. The average radiation dose, per procedure, was calculated by a medical physicist. Ten patients had strictures as a result of primary repair of OA. Three patients had stricture as a result of EB, two from achalasia, two from caustic injury, one due to an oesophageal web and one from reflux oesophagitis. Our results show that the technique can also be curative for the last group and that it may be used intermittently to alleviate symptoms in ongoing diseases. We have not experienced any complications and have also calculated that, even with prolonged use of multiple procedures, the radiation exposure is comparable to other radiological techniques. Patients with alternative causes for oesophageal stricture may be treated to resolution within 2 years using balloon dilatation. Ongoing diseases such as EB require ongoing dilatation, but balloon dilatation of strictures has been successful in alleviating swallowing difficulty. Patients with stricture from OA repair sometimes need ongoing dilatation. Radiation exposure for multiple procedures, over an extended period, is comparable to that from a single

  10. The GRAD high-altitude balloon flight over Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, G. (Space Astronomy Laboratory, University of Florida, Gainesville, FL 32609 (US)); Coldwell, R.L.; Dunnam, F.E.; Rester, A.C. (Institute of Astrophysics and Planetary Exploration, University of Florida, Alachua, FL 32615 (US)); Trombka, J.I.; Starr, R. (NASA Goddard Spaceflight Center, Greenbelt, MD 20771 (US)); Lasche, G.P. (DARPA/NMO, Arlington, VA (US))

    1989-05-15

    The Gamma Ray Advanced Detector(GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high altitude balloon at 36 km altitude at a latitude of 78{degree} S over Antarctica for observations of gamma radiation emitted by the radioactive decay of {sup 56}Co in the Supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software.

  11. The GRAD high-altitude balloon flight over Antarctica

    Science.gov (United States)

    Eichhorn, G.; Coldwell, R. L.; Dunnam, F. E.; Rester, A. C.; Trombka, J. I.; Starr, R.

    1989-01-01

    The Gamma Ray Advanced Detector (GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high-altitude balloon at 36 km altitude at a latitude of 78 deg S over Antarctica for observations of gamma radiation emitted by the radioactive decay of Co-56 in the supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software.

  12. Simulation of peeling-ballooning modes with pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. Y. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Huang, J.; Sun, T. T.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2014-11-15

    The influence of pellet ablation on the evolution of peeling-ballooning (P-B) modes is studied with BOUT++ code. The atoms coming from pellet ablation can significantly reshape the plasma pressure profile, so the behaviors of P-B modes and edge localized mode (ELM) are modified dramatically. This paper shows that the energy loss associated with an ELM increases substantially over that without the pellet, if the pellet is deposited at the top of the pedestal. On the contrary, for pellet deposition in the middle of the pedestal region the ELM energy loss can be less.

  13. Simulation of peeling-ballooning modes with pellet injection

    International Nuclear Information System (INIS)

    The influence of pellet ablation on the evolution of peeling-ballooning (P-B) modes is studied with BOUT++ code. The atoms coming from pellet ablation can significantly reshape the plasma pressure profile, so the behaviors of P-B modes and edge localized mode (ELM) are modified dramatically. This paper shows that the energy loss associated with an ELM increases substantially over that without the pellet, if the pellet is deposited at the top of the pedestal. On the contrary, for pellet deposition in the middle of the pedestal region the ELM energy loss can be less

  14. The GRAD high-altitude balloon flight over Antarctica

    International Nuclear Information System (INIS)

    The Gamma Ray Advanced Detector(GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high altitude balloon at 36 km altitude at a latitude of 78 degree S over Antarctica for observations of gamma radiation emitted by the radioactive decay of 56Co in the Supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software

  15. European activities in balloon-borne infrared astronomy

    International Nuclear Information System (INIS)

    Infrared and submillimeter astronomy contributes essentially to the understanding of basic astrophysical processes (e.g. formation and evolution of stars and galaxies, origin of the universe). Atmospheric emission and absorption place severe constraints on the wavelength range and sensitivity of corresponding ground-based measurements. Since no infrared astronomical satellite is in operation yet, balloon-borne instruments are the ones with the highest sensitivity. Approximately ten European groups are active in this field and have produced important scientific results within the last ten years. Their work can be divided into four groups: investigation of the solar system; stellar evolution; galactic evolution and origin of the universe. (Auth.)

  16. Detachable balloon embolization of an aneurysmal gastroduodenal arterioportal fistula

    Energy Technology Data Exchange (ETDEWEB)

    Defreyne, Luc; De Schrijver, Ignace; Vanlangenhove, Peter; Kunnen, Marc [Department of Radiology and Medical Imaging, Ghent University Hospital (Belgium)

    2002-01-01

    Extrahepatic arteriovenous fistulas involving the gastroduodenal artery and the portal venous system are rare and almost always a late complication of gastric surgery. Secondary portal hypertension and mesenteric ischemia may provoke abdominal pain, upper and lower gastrointestinal hemorrhage, diarrhea, and weight loss. Until recently, surgical excision has been the therapy of choice with excellent results. The authors report a case of gastroduodenal arterioportal fistula with a rare large interpositioned aneurysm in a cardiopulmonary-compromised patient who was considered a non-surgical candidate. The gastroduodenal arterioportal fistula was occluded endovascularly by means of a detachable balloon. A survey of the literature of this rare type of arterioportal fistula is included. (orig.)

  17. Effect of externally driven magnetic islands on resistive ballooning turbulence

    International Nuclear Information System (INIS)

    Turbulent transport in the edge region of tokamak plasmas is simulated using a reduced set of magnetohydrodynamic equations. Repetitive and intermittent transport bursts driven by resistive ballooning turbulence with external heating are observed. The effect of a resonant magnetic perturbation (RMP) on turbulent heat transport is examined, where the electromagnetic response of the plasma to the RMP is solved consistently. The penetration of the RMP excites a magnetic island chain and damps the poloidal flow near the magnetic islands. The transport bursts are found to be replaced by more moderate and continuous transport. The change in the transport pattern is associated with the effect of the RMP on nonlinear coupling of fluctuations. (author)

  18. Ion temperature gradient driven ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    The ion temperature gradient driven ballooning mode is investigated using two-fluid, gyrofluid and gyrokinetic descriptions. The linear eigenmode equation is solved numerically in a model equilibrium with shifted circular magnetic surfaces. The localization of the eigenmodes, which persist in the magnetohydrodynamic (MHD) second stability region, and the mode structure are displayed. The role of finite-Larmor radius (FLR) and magnetic drift resonance effects on the growth rate are elucidated. Negative magnetic shear is found to have a stabilizing effect on the mode. 24 refs, 7 figs

  19. Pointing System for the Balloon-Borne Astronomical Payloads

    CERN Document Server

    Nirmal, K; Mathew, Joice; Sarpotdar, Mayuresh; Suresh, Ambily; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-01-01

    We describe the development and implementation of a light-weight, fully autonomous 2-axis pointing and stabilization system designed for balloon-borne astronomical payloads. The system is developed using off-the-shelf components such as Arduino Uno controller, HMC 5883L magnetometer, MPU-9150 Inertial Measurement Unit (IMU) and iWave GPS receiver unit. It is a compact and rugged system which can also be used to take images/video in a moving vehicle, or in areal photography. The system performance is evaluated from the ground, as well as in conditions simulated to imitate the actual flight by using a tethered launch.

  20. Fine tracking system for balloon-borne telescopes

    OpenAIRE

    Ricci, M.; Pedichini, F.; Lorenzetti, D.

    2011-01-01

    We present the results of a study along with a first prototype of a high precision system (? 1 arcsec) for pointing and tracking light (near-infrared) telescopes on board stratospheric balloons. Such a system is essentially composed by a star sensor and by a star tracker, able to recognize the field and to adequately track the telescope, respectively. We present the software aimed at processing the star sensor image and the predictive algorithm that allows the fine tracking of the source at a...

  1. Application of double-balloon enteroscopy in jejunal diverticular bleeding

    Institute of Scientific and Technical Information of China (English)

    Tsung-Hsing; Chen; Cheng-Tang; Chiu; Chen-Ming; Hsu

    2010-01-01

    AIM:To evaluate the efficacy of endoscopic diagnosis and therapy for jejunal diverticular bleeding.METHODS:From January 2004 to September 2009,154 patients underwent double-balloon enteroscopy (DBE) for obscure gastrointestinal bleeding.Ten consecutive patients with jejunal diverticula (5 males and 5 females) at the age of 68.7 ± 2.1 years (range 1995 years) at Chang Gung Memorial Hospital,Academic Tertiary Referral Center,were enrolled in this study.RESULTS:Of the 10 patients,5 had melena,2 had hematochezi...

  2. 10 astronomy experiments for kids

    Science.gov (United States)

    Gater, Will

    2007-09-01

    10 experiments for young and old: Sketch the Moon's craters; Measure the distance to the stars; Recreating an asteroid impact; Go on a meteor watch; Record the phases of the Moon; Why the stars are all different brightnesses; Use the Faulkes Telescopes; The incredible expanding Universe balloon; Create a scale model of the Solar System; Visit an observatory or a planetarium.

  3. Meta-Analysis of the Effect of Mesenchymal Stem Cell Transplantation on Vascular Remodeling after Carotid Balloon Injury in Animal Models

    OpenAIRE

    Ju, Xinxin; Zou, Hong; Liu, Kejian; Duan, Juncang; Li, Shugang; Zhou, Zheng; Qi, Yan; Zhao, Jin; Hu, Jianming; Wang, Lianghai; Jia, Wei; Wei, Yutao; Wang, Yixun; Zhang, Wenjie; Pang, Lijuan

    2015-01-01

    Aim A meta-analysis was conducted to assess the efficacy of mesenchymal stem cell (MSC) transplantation in small animal coronary vessels after balloon injury, to provide data for the design of future pre-clinical experiments and human clinical trials. Methods The search strategy included the PubMed, EMBASE, Chinese Biomedical Literature (CBM), and China National Knowledge Infrastructure (CKNI) databases. The endpoint was the ratio of vascular neointima/media (I/M). Moreover, neointimal area, ...

  4. Science measurements and instruments for a planetary science stratospheric balloon platform

    Science.gov (United States)

    Hibbitts, C. A.; Young, E.; Kremic, T.; Landis, R.

    Balloon platforms operating in Earth's upper stratosphere offer a unique platform to conduct new, high value planetary science observations of our solar system and exoplanets. There are compelling science drivers for conducting observations from such a balloon platform, with several potential high value science measurements that can be accomplished with one of several instrument concepts. Observations from 100,000 to 120,000 feet, which can last from hours to months, night and day, offer significant advantages over observations from ground and aircraft platforms. The stability of the airmass at float altitude is indistinguishable from space so that diffraction-limited performance can be obtained without adaptive optics, resulting in performance at visible wavelengths better than many ground based assets with larger apertures. With > 99% of the atmosphere, and almost all the telluric water and CO2, beneath the platform, previously obscured spectral windows are also now open (e.g. water, CO2, and the organic fingerprint region of 5-8 μ m), others are now fully free from telluric contributions, and observations in the mid through thermal infrared (IR), as well as shortward into the near ultraviolet (NUV), experience more than an order of magnitude less downwelling radiance than do ground based measurements enabling longer integration times and higher contrast observations. Instrument types that would support high value science include broadband and multispectral high spatial resolution NUV-NIR imagers, multispectral and hyper spectral imagers in the 2.5-5 μ m range, as well as in the 5-8 μ m range.

  5. Gamma Ray and Very Low Frequency Radio Observations from a Balloon-Borne Platform

    Science.gov (United States)

    Quinn, C.; Sheldon, A.; Cully, C. M.; Davalos, A.; Osakwe, C.; Galts, D.; Delfin, J.; Duffin, C.; Mansell, J.; Russel, M.; Bootsma, M.; Williams, R.; Patrick, M.; Mazzino, M. L.; Knudsen, D. J.

    2015-12-01

    The University of Calgary's Student Organization for Aerospace Research (SOAR) built an instrument to participate in the High Altitude Student Platform (HASP) initiative organized by Louisiana State University and supported by the NASA Balloon Program Office (BPO) and the Louisiana Space Consortium (LaSPACE). The HASP platform will be launched in early September 2015 from Fort Sumner, New Mexico and will reach heights of 36 kilometers with a flight duration of 15 to 20 hours. The instrument, Atmospheric Phenomenon Observer Gamma/VLF Emissions Experiment (APOGEE), measures Terrestrial Gamma-Ray Flashes (TGF) and sferics from lightning strikes with the use of Geiger tubes and a VLF detector. TGFs, which are quick bursts of high energy radiation that can occur alongside lightning, are believed to be the result of Relativistic Runaway Electron Avalanche (RREA). RREA occurs when a large number of relativistic electrons overcome atmospheric frictional forces and accelerate to relativistic velocities which excite secondary electrons that collide with the atmosphere causing bremsstrahlung radiation. Lightning strikes also produce sferics within the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands which can be detected and used to locate the strikes. The goal of APOGEE is to further investigate the link between TGFs and RREA. These phenomena are very difficult to measure together as Bremsstrahlung radiation is easily detected from space but ionospheric reflection facilitates surface detection of sferics. A high altitude balloon provides a unique opportunity to study both phenomena using one instrument because both phenomena can easily be detected from its altitude. APOGEE has been designed and built by undergraduate students at the University of Calgary with faculty assistance and funding, and is equipped with three devices for data collection: a camera to have visual conformation of events, a series of Geiger Tubes to obtain directional gamma readings, and

  6. Measurements of atmospheric electrical parameters and ELF electromagnetic emissions during a meteorological balloon flight.

    Science.gov (United States)

    Benda, Robert; Dujany, Matthieu; Berthomieu, Roland; Boissier, Mathilde; Bruneel, Pierre; Fischer, Lucie; Focillon, William; Gullo, Robin; Hubert, Valentin; Lafforgue, Gaétan; Loe-Mie, Marichka; Messager, Adrien; Roy, Felix; Auvray, Gérard; Bertrand, Fabrice; Coulomb, Romain; Deprez, Gregoire; Berthelier, Jean-Jacques

    2016-04-01

    Measurements of electric field and atmospheric conductivity were performed onboard a small payload flown under a meteorological balloon during a fair weather period. This experiment is part of a project to study thunderstorms and TLE organized in the frame of the engineering cursus at Ecole Polytechnique. The payload is equipped with 4 electrodes to measure the 3 components of the DC and AC electric fields up to 3.2 kHz. Dedicated sequences of operation, when one electrode is operated in the relaxation mode, have been used to determine the positive and negative electrical conductivities. Altitude profiles of the DC vertical electric field and conductivities in agreement with expected fair weather parameters were obtained from ~ 3.5 to ~ 13 km before the failure of a battery. At an altitude of ~ 9 km slight disturbances in the electric field suggest the traversal of thin clouds with disturbed electrical characteristics. Schumann resonances were observed up to the fifth harmonics at levels that are typical of a quiet period over Europe with most thunderstorms located over remote longitudinal sectors. EM waves due the power lines at 50Hz are detected during the whole measuring period and their altitude and horizontal variations will be presented as a function of the position of the balloon over the ground power network. A surprising and interesting observation was made of a Russian transmitter at 82 Hz located in Murmansk region and used for sub-marine communications. We shall present an initial analysis of the amplitude and polarization of the corresponding signal.

  7. National Report Switzerland: Sounding Rocket and Balloon Activities and Related Research in Switzerland 2013-2015

    Science.gov (United States)

    Egli, M.

    2015-09-01

    During the period from 2013 to 2015, many Swiss researchers conducted studies on research platforms such as balloons or sounding rockets, or at the high altitude research stations of Jungfraujoch and Gornergrat. Researchers ‘ increased interest in sounding rockets during the two-year period is especially noteworthy. The use of the high altitude research stations, in contrast, has a long tradition in Switzerland and is, thus, frequently occupied by scientists. An advantage of these stations is the ideal set-up for researchers interested in the long-term measurement of the upper atmosphere, for example. Therefore, numcrous experiments in this particular research field were conducted and published in scientific journals. After a pause, several Swiss scientists became engaged in sounding rocket experiments. RUAG Space in Nyon, for instance, in collaboration with the Swedish Space Corporation (SSC) and University of Freiburg, is focusing on the effect of gravity on plant roots. In order to investigate a gravity-dependent influence, two experiments on Arabidopsis thaliana seedlings are being planned for execution during the upcoming MASTER 1 3 campaign. A team of students from HES-SO Geneva were chosen to participate in the REXUS program with their experiment called CAESAR. A new concept of a propellant management device for space vehicles was introduced and tested on the REXUS 14 rocket by the team from Geneva in the spring of 20 1 3 . Last year, another student team, now from the Lucerne University of Applied Sciences and Arts, was selected to fly their experiment on another REXUS rocket. Their proposed biological study is called CEMIOS and pertains to biochemical properties of the cell membrane. Once more the high altitude research stations of Jungfraujoch and Gornergrat welcomed many national—as well as international—scientists in the past two years. The hours that the researchers spent in either station reached a record high despite the poor weather conditions

  8. The balloon system with stabilized platform and oriented submillimeter telescope: Design

    Science.gov (United States)

    Lapshin, V.; Leonov, V.; Levshuk, B.; Shekshnya, V.

    1994-02-01

    A large number of scientific ballooning programs in the interests both of fundamental sciences (astrophysics, solar physics, etc.) and applied research require fine spatial orientation in inertial space of scientific instruments installed on balloons. Among these, some of the actual programs are the investigations of astophysical objects in gamma- and X-ray, far-infrared/submillimeter regions, as are also high precision magnetometric measurements, the research of the Earth's atmosphere and related ecological problems. As an applied problem, the development of modern balloon-based communication systems is pointed out. A rather large amount of different balloon platforms is developed and used in modern practice of ballooning. The Academy of Sciences of Russia (ASR) provides the design of the balloon-borne oriented and stabilized platform from 1991 (Lebedev Physical Institute, ASR). We have designed and built the balloon platform, that is considered a universal device for future balloon research, where spatial orientation is required. At the first stage of this project, the design of the far-infared version of this platform was performed. The platform is equipped with an 1-meter Cassegrain type telescope (on scheme Nesmith). The primary mirror of spherical form (f/0.5) is made from special aluminum alloy: the construction of telescope is lightweight.

  9. Active Learning in the Atmospheric Science Classroom and beyond through High-Altitude Ballooning

    Science.gov (United States)

    Coleman, Jill S. M.; Mitchell, Melissa

    2014-01-01

    This article describes the implementation of high-altitude balloon (HAB) research into a variety of undergraduate atmospheric science classes as a means of increasing active student engagement in real-world, problem-solving events. Because high-altitude balloons are capable of reaching heights of 80,000-100,000 ft (24-30 km), they provide a…

  10. Attitude determination of a high altitude balloon system. Part 1: Development of the mathematical model

    Science.gov (United States)

    Nigro, N. J.; Elkouh, A. F.; Shen, K. S.; Nimityongskul, P.; Jhaveri, V. N.; Sethi, A.

    1975-01-01

    A mathematical model for predicting the three dimensional motion of the balloon system is developed, which includes the effects of bounce, pendulation and spin of each subsystem. Boundary layer effects are also examined, along with the aerodynamic forces acting on the balloon. Various simplified forms of the system mathematical model were developed, based on an order of magnitude analysis.

  11. Adjustable Intragastric Balloons: A 12-Month Pilot Trial in Endoscopic Weight Loss Management

    NARCIS (Netherlands)

    E. Machytka; P. Klvana; A. Kornbluth; S. Peikin; L.E.M. Mathus-Vliegen; C. Gostout; G. Lopez-Nava; S. Shikora; J. Brooks

    2011-01-01

    Intragastric balloons are associated with (1) early period intolerance, (2) diminished effect within 3-4 months, and (3) bowel obstruction risk mandating removal at 6 months. The introduction of an adjustable balloon could improve comfort and offer greater efficacy. A migration prevention function,

  12. Malignant lymphoma in the ileum diagnosed by double-balloon enteroscopy

    Institute of Scientific and Technical Information of China (English)

    Kazuko Beppu; Nobuhiro Sato; Toshiki Kamano; Yasuo Hayashida; Sumio Watanabe; Taro Osada; Akihito Nagahara; Naoto Sakamoto; Tomoyoshi Shibuya; Masato Kawabe; Takeshi Terai; Toshifumi Ohkusa; Tatsuo Ogihara

    2007-01-01

    A 73-year old man presented with abdominal pain. A tumor with central ulceration was observed in the ileum using double-balloon enteroscopy. Histological findings of the biopsy specimens were consistent with malignant lymphoma. Double-balloon enteroscopy confirmed the diagnosis of a malignant lymphoma tumor which was surgically resected. The patient is still in complete remission now.

  13. Single Balloon Enteroscopy for Endoscopic Retrograde Cholangiography in a Patient with Hepaticojejunostomy after Liver Transplant

    OpenAIRE

    Salvatore Gruttadauria; Riccardo Volpes; Roberto Miraglia; Marta Di Pisa; Mario Traina

    2010-01-01

    We report a case of a post-transplant patient with hepaticojejunostomy in whom we used a single balloon enteroscopy to access the biliary tree. This procedure seems to be safe and feasible for approaching the biliary anastomosis by means of the overtube and fixation of the small bowel by the balloon.

  14. Balloon dilatation of post-surgical ano-rectal strictures in two infants

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, W.M.; Melhem, R.E.

    1989-08-01

    Balloon dilatation of ano-rectal strictures offers an alternative to surgical repair of such lesions. This procedure has been described in higher colonic strictures secondary to necrotizing enterocolitis in infants but not in post-surgical ano-rectal strictures. Two cases of successful balloon dilatation are reported. Anal sphincter injury resulting in fecal incontinence, as previously reported, did not occur. (orig.).

  15. Local drug-delivery balloon for proliferative occlusive in-stent restenosis after drug-eluting stent

    Institute of Scientific and Technical Information of China (English)

    Gianluca Rigatelli; Paolo Cardaioli; Fabio Dell'Avvocata; Massimo Giordan

    2011-01-01

    Drug-coated balloon has been developed as an alternative to drug-eluting stents for in-stent restenosis but the performance of drug infusion balloon in such setting has not been previously described. We present a case of particularly aggressive in-stent restenosis after drug eluting stent implantation treated with a new kind of drug infusion balloon developed in order to overcome the impossibility to inflate regular drug-coated balloon for several dilatation.

  16. Background Measurements from Balloon-Borne CZT Detectors

    CERN Document Server

    Jenkins, J A; Grindlay, J E; Bloser, P F; Stahle, C K; Parker, B; Barthelmy, S D; Jenkins, Johnathan A; Narita, Tomohiko; Grindlay, Jonathan E.; Bloser, Peter F.; Stahle, Carl; Parker, Brad; Barthelmy, Scott

    2002-01-01

    We report detector characteristics and background measurements from two prototype imaging CZT detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10mm x 10mm x 5mm CZT crystals, each with a 4 $\\times$ 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman material. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE VA/TA ASIC preamp/shaper. We enclosed the detectors in the same 40deg field-of-view collimator (comprisinga graded passive shield and plastic scintillator) used in our previously-reported September 2000 flight. I-V curves for the detectors are diode-like, and we find that the platinum contacts adhere significantly better to the CZT surfaces than gold to previous detectors. The detectors and instrumentation performed well in a 20-hour balloon flight on 23/24 May 2001. Although we discovered a significant instrumental back...

  17. Hemodynamic evaluation of transluminal iliac artery balloon dilatation.

    Science.gov (United States)

    Breslau, P J; van Soest, M; Janevski, B; Jörning, P J

    1985-10-01

    In order to document the hemodynamic results of transluminal iliac artery balloon dilatation, 23 aortoiliac segments were evaluated before and after treatment. Hemodynamic parameters were: intra-arterial common femoral pressure measurements, indirect ankle pressure measurements and femoral velocity waveform analysis. The segments were divided into group (a) aortoiliac segments with an open superficial femoral artery (n = 8), and group (b) aortoiliac segments with an occluded superficial femoral artery (n = 15). In group (a) all patients were free of symptoms and ankle pressure improved significantly six months after dilatation. Velocity waveform analysis of the common femoral artery did not correlate with this improvement. In group (b) intra-arterial pressure measurements showed improvement in 60% (9/15) after six months. Ankle pressure measurements and velocity waveform analysis did not correlate with the intra-arterial pressure changes. Transluminal iliac artery balloon dilatation of iliac stenosis in patients with an open superficial femoral artery can be evaluated by indirect ankle pressure measurements. In patients with iliac stenosis in combination with occluded superficial femoral arteries intra-arterial pressure measurements are needed to demonstrate hemodynamic improvement. PMID:2932658

  18. The Use of Zylon Fibers in ULDB Balloons

    Science.gov (United States)

    Zimmerman, M.; Seely, L.; McLaughlin, J.

    Early in the development of the ULDB balloon, Zylon (PBO) was selected as the tendon material due to its favorable stress-strain properties. It is a next generation super fiber whose strength and modulus are almost double those of the p-Aramid fibers. In addition there are two versions of the Zylon, As Spun (AS) and High Modulus (HM). Data will be presented on why the HM was chosen. Early in the development process, it was learned that this material exhibited an unusual sensitivity to degradation by ambient light. This is in addition to the expected sensitivity to UV radiation (Ultraviolet). The fiber manufacturer reported all of these properties in their literature. Due to the operating environment of the ULDB (Ultra Long Duration Balloon) it is necessary to protect the tendons from both visible and UV radiation. Methods to protect the tendons will be discussed. In addition, information on the long term exposure of the braided tendon over a thirty-six month period in a controlled manufacturing plant will be provided.

  19. Balloon sinuplasty: a new concept in the endoscopic nasal surgery

    Directory of Open Access Journals (Sweden)

    Nogueira Júnior, João Flávio

    2008-12-01

    Full Text Available Introduction: Sinus diseases affect millions of people annually. Clinical treatment is effective in most patients, but in case of failure of this therapy the functional endoscopic surgery is currently the treatment choice for surgical treatment. The objective of the functional endoscopic surgery is to increase the aeration and drainage of the involved paranasal sinuses, which allows for the adequate functioning of the nasal mucosa mucociliary clearance. However, this method still has some limitations, mainly because it removes the nasal mucosa and bone tissue, and it may lead to physiologic alterations of the nasosinusal mucosa and cicatricial fibrosis. Many of these patients could be benefited from less invasive methods, with larger nasal mucosa preservation. Since 2006, an even less invasive procedure was remarked in our specialty: the balloon dilatation of the paranasal sinus ostia. Objective: The objective of this article is to define the concept of sinuplasty, its action mechanism, and present the necessary material for the procedures performance; to describe the techniques with the equipment in a nasosinusal endoscopic surgery simulator model and review the current literature about the indications, complications, results, and follow-up of patients submitted to this procedure. Balloon sinuplasty is safe and appears to be effective in the improvement of the quality of life of patients not responsive to conventional clinical therapy. New applications and indications for this equipment should be described and researched.

  20. Barrage balloons against aircraft threat: A well proven concept revisited

    International Nuclear Information System (INIS)

    Since the event of September 11, 2001 in New York City, many people started to speculate that the same type of attack could in future be brought against other installations. Indeed, the U.S. Nuclear Regulatory Commission decided to require for future plants to assess their resistance to the impact of a large civil airliner. Nuclear plant control authorities of other countries decided in a similar direction. The solutions to the technical problem is usually pursued in the direction of a reinforcement of external plant structures and, in some case, they may not be sufficient. Other solutions of more psychological nature have also been adopted. This paper aims at the demonstration that the use of barrage balloons, already adopted with success in both World Wars and also occasionally after these events, can afford a satisfactory solution to the protection problem at a reasonable cost. This solution is also applicable to existing plants. The history of barrage balloons is summarized. Modern technology offers electronic devices capable to detect in time an approaching threat and the paper describes a new barrage system based also on such new possibilities. If the aircraft crash problem is a real one or not for the next years, nobody knows for sure; however some considerations should be kept in mind: ·The fact that an accident of this kind 'anywhere' is an accident 'everywhere' as usual; ·The extremely uncertain political outlook worldwide, the peculiarities of the oil market and the possible nuclear renaissance.

  1. Treatment of urethral strictures with balloon dilation: A forgotten tale

    Directory of Open Access Journals (Sweden)

    Konstantinos Stamatiou

    2015-09-01

    Full Text Available Urethral stricture is a common condition that can lead to serious complications such as urinary infections and renal insufficiency secondary to urinary retention. Treatment options include catheterization and dilation, urethroplasty and endoscopic internal urethrotomy as well. Although treatment option depends on the type, length and aetiology of stricture, the choice can be influenced to varying degrees by the simplicity of the method, the preferences of the patient the available accoutrements and the patient health condition. Both urethroplasty and endoscopic internal urethrotomy require anaesthesia and thus are not suitable for many elder and unfit for surgical treatment patients. On the other hand, dilations are easy to perform in every day clinical practice however they have been associated with iatrogenic urethral trauma. In contrast, balloon dilation under vision dilates by radial application of forces against the stricture, avoiding the potentially shearing forces associated with sequential rigid dilation. Since it reduces the possibility of an iatrogenic urethral trauma and the subsequent spongiofibrosis may lead into improved therapeutic outcomes. In this report we describe a technique for the treatment of urethral strictures with balloon dilation in elder and unfit for surgical treatment patients.

  2. Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms

    Science.gov (United States)

    Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.

    2003-01-01

    Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this regon. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.

  3. A case of asymptomatic fungal and bacterial colonization of an intragastric balloon

    Institute of Scientific and Technical Information of China (English)

    Halil Coskun; Suleyman Bozkurt

    2009-01-01

    Intragastric balloon therapy, as a part of a multidisciplinary weight management program, is an effective short-term intervention for weight loss. Although the insertion procedure is easy and generally well tolerated by patients, a few complications can occur. We report here a heavy smoker with intragastric balloon insertion complicated by colonization with opportunistic organisms. The 27-year-old female, body mass index 35.5 kg/m2, had a BioEnterics. Intragastric Balloon inserted under conscious sedation without any perioperative complications. Six months later, when the standard removal time arrived, the balloon was seen to be covered with a necrotic white-gray material. Microbiological examination revealed Enterobacter cloacae and Candida species yeast colonies. We recommend that asymptomatic fungal and/or bacterial colonization should be considered among the complications of the intragastric balloon procedure, despite its rarity.

  4. Balloon catheter dilatation in esophageal achalasia: long term follow-up

    International Nuclear Information System (INIS)

    To evaluate the clinical efficacy of balloon catheter dilatation in the treatment of esophageal achalasia. Seven patients(three males and four females) with esopha-geal achalasia were treated with balloon catheter dilatation. Balloon catheters of variable sizes were used depending on patient's conditions. The patients were followed up over a period of 12-39 months. Balloon catheter dilatation in esophageal achalasia was successful in all patients without esophageal perforation. All patients were relieved from dysphagia. Recurrence was not found in 5 patients on long term follow-up study, but was seen in 2 patients after 18 and 21 months, respectively. Balloon catheter dilatation was a safe and effective method in the treatment of esophageal achalasia with low recurrence rate of 29% on follow-up study

  5. Balloon catheter dilatation in esophageal achalasia: long term follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Yong; Park, Hyun Mee; Kim, So Eun; Lee, Shin Hyung; Kim, Seung Hyeon; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    1994-12-15

    To evaluate the clinical efficacy of balloon catheter dilatation in the treatment of esophageal achalasia. Seven patients(three males and four females) with esopha-geal achalasia were treated with balloon catheter dilatation. Balloon catheters of variable sizes were used depending on patient's conditions. The patients were followed up over a period of 12-39 months. Balloon catheter dilatation in esophageal achalasia was successful in all patients without esophageal perforation. All patients were relieved from dysphagia. Recurrence was not found in 5 patients on long term follow-up study, but was seen in 2 patients after 18 and 21 months, respectively. Balloon catheter dilatation was a safe and effective method in the treatment of esophageal achalasia with low recurrence rate of 29% on follow-up study.

  6. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    International Nuclear Information System (INIS)

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (Pperpendicular/Pparallel > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy

  7. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Qian, Q.; Takahashi, K.; Lui, A.T.Y.

    1994-03-01

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (P{sub {perpendicular}}/P{sub {parallel}} > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy.

  8. Rupture of the Renal Artery After Cutting Balloon Angioplasty in a Young Woman With Fibromuscular Dysplasia

    International Nuclear Information System (INIS)

    A 24-year-old woman with uncontrollable high blood pressure for 3 months had significant stenosis of the left renal artery caused by fibromuscular dysplasia (FMD). The lesion was resistant to percutaneous transluminal angioplasty at 18 atm with a semicompliant balloon. Angioplasy with a 6 x 10 mm cutting balloon (CB) caused rupture of the artery. Low-pressure balloon inflation decreased but did not stop the leak. An attempt to place a stent-graft (Jostent; Jomed, Rangendingen, Germany) failed, and a bare, 6-mm balloon-expandable stent (Express SD; Boston Scientific, MN) was deployed to seal the leak, which had decreased considerably after long-duration balloon inflation. The bleeding continued, and the patient underwent emergent surgical revascularization of the renal artery with successful placement of a 6-mm polytetrafluoroethylene bypass graft. CBs should be used very carefully in the treatment of renal artery stenosis, particularly in patients with FMD

  9. Prospective multi-centre randomised trial comparing induction of labour with a double-balloon catheter versus dinoprostone

    DEFF Research Database (Denmark)

    Løkkegaard, E; Lundstrøm, M; Kjær, Michael;

    2015-01-01

    randomised to double-balloon or vaginal dinoprostone (3 mg) groups. There was a significantly higher failure rate for labour induction in the balloon group (relative risk: 1.25, 95% confidence interval [CI]: 1.02-1.49). Median induction time was 27.3 h in the balloon group and 29.8 h in the dinoprostone...

  10. Efficacy of Intrauterine Bakri Balloon Tamponade in Cesarean Section for Placenta Previa Patients.

    Directory of Open Access Journals (Sweden)

    Hee Young Cho

    Full Text Available The aims of this study were to analyze the predictive factors for the use of intrauterine balloon insertion and to evaluate the efficacy and factors affecting failure of uterine tamponade with a Bakri balloon during cesarean section for abnormal placentation.We reviewed the medical records of 137 patients who underwent elective cesarean section for placenta previa between July 2009 and March 2014. Cesarean section and Bakri balloon insertion were performed by a single qualified surgeon. The Bakri balloon was applied when blood loss during cesarean delivery exceeded 1,000 mL.Sixty-four patients (46.7% required uterine balloon tamponade during cesarean section due to postpartum bleeding from the lower uterine segment, of whom 50 (78.1% had placenta previa totalis. The overall success rate was 75% (48/64 for placenta previa patients. Previous cesarean section history, anterior placenta, peripartum platelet count, and disseminated intravascular coagulopathy all significantly differed according to balloon success or failure (all p<0.05. The drainage amount over 1 hour was 500 mL (20-1200 mL in the balloon failure group and 60 mL (5-500 mL in the balloon success group (p<0.01.Intrauterine tamponade with a Bakri balloon is an adequate adjunct management for postpartum hemorrhage following cesarean section for placenta previa to preserve the uterus. This method is simple to apply, non-invasive, and inexpensive. However, possible factors related to failure of Bakri balloon tamponade for placenta previa patients such as prior cesarean section history, anterior placentation, thrombocytopenia, presence of DIC at the time of catheter insertion, and catheter drainage volume more than 500 mL within 1 hour of catheter placement should be recognized, and the next-line management should be prepared in advance.

  11. Safety and effectiveness of gastric balloons associated with hypocaloric diet for the treatment of obesity

    Directory of Open Access Journals (Sweden)

    M.ª Luisa de Castro

    2013-10-01

    Full Text Available Introduction: intragastric balloons provide early satiety and thereby induce short-term weight loss. The aim of this study was to evaluate safety and short and medium-term effectiveness of gastric balloons associated to hypocaloric diet in obesity. Material and methods: from May 2004 to June 2011 91 obese patients, body mass index [BMI] 45.2 ± 7.2 kg/m² were prospectively followed after endoscopic implantation of a gastric balloon associated to restricted diet. Successful therapy was defined as percent loss of total weight (%LTW ≥ 5% at six months after balloon placement and 6 and 12 months after their withdrawal. All analyses followed intention-to treat principles considering significant p-values < 0.05. Results: we placed 73 fluid-filled balloons (80.2% and 18 air-filled ones (19.8%. Compared to baseline values, at 6-month 73.7% subjects succeeded, showing significant reductions in weight (13.3 ± 8.8 kg, BMI (5 ± 3.4 kg/m² (p < 0.0001, with% LTW 11 ± 7%. Six and twelve months after retrieval 45.1% and 28.6% patients reached% LTW ≥ 5%. Short-term and medium-term effectiveness was negatively associated to obesity in first-grade relatives (p = 0.003 and p = 0.04. Higher weight loss 6 months after balloon placement independently predicted medium-term effectiveness (p = 0.0001. Mortality was absent but there were two spontaneous deflations of air-filled balloons and severe withdrawal difficulties in 8 patients, leading to surgery in one case. Retrieval complications associated to air-filled balloons (p = 0.0005. Conclusions: in obesity, effectiveness of gastric balloons associated to hypocaloric diet decreases over time. Complications occurred mainly in the retrieval endoscopic procedure and related to air-filled balloons.

  12. Hot-Air Balloon Tours: Crash Epidemiology in the United States, 2000-2011

    Science.gov (United States)

    Ballard, Sarah-Blythe; Beaty, Leland P.; Baker, Susan P.

    2016-01-01

    Introduction Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. Methods National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. Results During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. Discussion The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces. PMID:24279231

  13. Overview of balloon-borne aerosol measurements with the aerosol counter LOAC, with focus on the ChArMEx 2013 campaign

    Science.gov (United States)

    Dulac, François; Renard, Jean-Baptiste

    LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of 250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles: the first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.2-100 mm; the second angle, at 60°, is used to discriminate between different types of particles dominating different size classes. The sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with measurements from other sensors at the surface are shown. We shall give a quick review of balloon-borne experiences since 2011 with LOAC under all kinds of balloons including tethered, sounding, open stratospheric, and new boundary-layer pressurized drifting balloons (BLBP) from CNES. Observation domains include the atmospheric surface layer, the boundary layer, the free troposphere and the lower stratosphere up to more than 35 km in altitude. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Results from the various campaigns will be illustrated including the study of fog events, urban aerosols, Saharan dust transport over France, stratospheric soot... Emphasis will be put on the ChArMEx campaign (the Chemistry-Aerosol Mediterranean Experiment) performed in summer 2013 in the Mediterranean basin: 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August. Most of the flights were coupled with ozone concentration measurements (see presentation by F. Gheusi et al.). LOAC balloons were especially, but not

  14. Technical considerations and outcome assessment in retrogasserian balloon compression for treatment of trigeminal neuralgia. Series of 901 patients

    Directory of Open Access Journals (Sweden)

    Benaissa Abdennebi

    2014-01-01

    Full Text Available Background: The aim of our study was to describe the retrogasserian balloon compression (RGBC procedure with some personal tricks and to assess the long-term results. Methods: Between 1985 and 2012, 901 patients, suffering from refractory trigeminal neuralgia (TN, underwent RGBC procedure in our department. Concerning the surgical technique, the introducer was in close contact with the posterior extremity of the horizontal plate of the palatine bone and had the direction of the bisector of the angle clivus-superior edge of the petrous bone on an X-rays sagittal view. No metallic material was inserted intracranially. The balloon was inflated with 0.7 cc of contrast medium for 6 min. Results: At 1 month follow up, appreciable pain relief was obtained in 835 patients (92.7%. At 1 year, results were excellent in 605 patients (67.1%, satisfactory in 109 patients (12.1%, poor in 57 patients (6.3%, fair in 66 patients (7.3%, whereas recurrences were observed in the remaining 64 patients (7.2%. At mean follow up of 16,5 years, 559 (62% patients remained pain free. Twenty six patients (2,8% continued to experience severe pain. Recurrences occurred in two hundred and fifty patients (27,8%. Fifty two of them were operated on a third time and 22 underwent four procedures. Conclusion: RGBC is an appropriate and effective procedure for treatment of refractory TN, ensuring a long lasting pain relief predicted on three factors: pear shape of the balloon, its volume, and duration as mentioned earlier.

  15. Efficient simulation of high-n turbulence in ballooning coordinates

    International Nuclear Information System (INIS)

    The high-n ballooning structure (kparallel much-lt kperpendicular) of many instabilities of interest in tokamak plasmas can be exploited to greatly reduce the computer time required for nonlinear simulations. If V, θ, and ζ are radial, poloidal and toroidal straight-field-line coordinates, then one can use the open-quotes ballooning coordinatesclose quotes V, θ, β ≡ ζ - q(V)θ, with a coarse grid in θ. Here q(V) is the safety factor. The main complication that arises is in the implementation of the correct periodicity conditions φ(V,θ,β) = φ(V,θ,β+1) = φ(V,θ+1,β-q). Three schemes for implementing these periodicity conditions are proposed and studied: (1) By using a grid that has uniform spacing in q and θ (i.e., taking the radial coordinate to be q), the β = const. grid lines at θ and θ+1 can be meshed exactly, without discontinuity. This is the preferred method if the q profile in the region of interest does not become too flat. (2) The fields on β = const. grid lines at θ = 0 can be connected to values obtained by interpolation between grid lines at θ = 1, and vice versa. This method can be used for arbitrary q profiles, but creates a numerical boundary layer at θ = 0 and 1, which must be minimized by careful choices of interpolation scheme and grid spacing in β. (3) In the domain θ element-of [0,1], β element-of [0,1], one can write φ(V,θ,β) = ψ(V,θ,β)+ψ(V,θ+1,β-q), where ψ(V,θ,β) and ψ(V,0,β) = ψ(V,2,β) = 0. Results from 3-D fluid simulations of ηi-driven turbulence using method 1 are presented, along with calculations of the linear ballooning mode structure of some relevant instabilities to test the applicability of method 3

  16. Collection of Stratospheric Samples using Balloon-Borne Payload System

    Science.gov (United States)

    Prakash, Ajin; Safonova, Margarita; Murthy, Jayant; Sreejith, A. G.; Kumble, Sheshashayi; Mathew, Joice; Sarpotdar, Mayuresh; Kj, Nirmal; Suresh, Ambily; Chakravortty, Dipshikha; Rangarajan, Annapoorni

    2016-07-01

    Earth's atmosphere at stratospheric altitudes contains dust particles from soil lifted by weather, volcanic dust, man-made aerosols, IDP (Interplanetary Dust Particles) - remnants of comets and asteroids, and even interstellar dust. Satellite observations suggest that approximately 100--300 tons of cosmic dust enter Earth's atmosphere every day. However, very little is known about the microbial life in the upper atmosphere, where conditions are very much similar to that on Mars and possibly on some exoplanets. Stratosphere provides a good opportunity to study the existence or survival of biological life in these conditions. Despite the importance of this topic to astrobiology, stratospheric microbial diversity/survival remains largely unexplored, probably due to significant difficulties in the access and ensuring the absence of contamination of the samples. To conduct a detailed study into this, we are developing the balloon-borne payload system SAMPLE (Stratospheric Altitude Microbiology Probe for Life Existence) to collect dust samples from stratosphere and bring them in an hygienic and uncontaminated manner to a suitable laboratory environment, where further study will be conducted to establish the possibility of microbial life in the upper atmosphere. This balloon-borne payload system will rise through the atmosphere till it reaches an altitude of about 25-30 km above sea level. The payload consists of detachable pre-sterilized sampling chambers designed to collect and contain the dust samples and get them back to the surface without contamination during the flight, a microprocessor and a controller which will determine the altitude of the payload system to actively monitor the opening and closing of the sample collection chambers. For contamination control, we will have two extra chambers, one of which will fly but not open, and one will remain closed on the ground. Other onboard devices include environmental sensors, GPS tracking devices, cameras to monitor

  17. Five-field Peeling-Ballooning Modes Simulation with BOUT++

    International Nuclear Information System (INIS)

    Full text: In this paper we report the simulations on ELMs with 5-field peeling-ballooning model using BOUT++ code. A minimum set of three-field two-fluid equations based on the peeling-ballooning (P-B) model with non-ideal physics effects is found to simulate pedestal collapse when using the BOUT++ simulation code [1]. Based on this 3-field model, we investigate the effects of perturbed parallel velocity first. The perturbed parallel velocity can decrease the growth rate by 20.0%, and the energy loss caused by ELMs is decreased by 12.1%. After this work, in order to study the particle and energy transport at the pedestal region, we extend the previous two-fluid 3-field model of the pedestal collapse by separating the pressure into ion density, ion and electron temperature equations. Through the simulation, we find that the equilibrium density ni0 does not affect the normalized linear growth rate in the ideal MHD model because the dispersion relationship for normalized growth rate has nothing to do with density. With diamagnetic effects, the growth rate is inversely proportional to ni0. The reason is that the diamagnetic effects, which are inversely proportional to ni0, increase the threshold of the growth of perturbation. For the same pressure profile, constant T0 cases increase the growth rate by 6.2% compared with constant ni0 cases in ideal MHD model. With diamagnetic effects, the growth rate is increased by 31.43% for toroidal mode number n = 15. This is because that the gradient of ni0 introduces the cross term in the vorticity equation. This cross term has the destabilizing effect on peeling-ballooning mode. For the nonlinear simulation, the gradient of ni0 in the pedestal region can increase the energy loss of ELMs and drive the perturbation to go into the core region. In order to simulate the recovering phase of ELMs, the edge transport barrier (ETB) is necessary. Therefore, besides the parallel viscosity, the parallel thermal conductivities of ions and

  18. Kinetic Ballooning Instability as a Substorm Onset Mechanism

    International Nuclear Information System (INIS)

    A new scenario of substorm onset and current disruption and the corresponding physical processes are presented based on the AMPTE/CCE spacecraft observation and a kinetic ballooning instability theory. During the growth phase of substorms the plasma beta is larger than unity (20 greater than or equal to beta greater than or equal to 1). Toward the end of the late growth phase the plasma beta increases from 20 to greater than or equal to 50 in approximately 3 minutes and a low-frequency instability with a wave period of 50 - 75 sec is excited and grows exponentially to a large amplitude at the current disruption onset. At the onset, higher-frequency instabilities are excited so that the plasma and electromagnetic field form a turbulent state. Plasma transport takes place to modify the ambient pressure profile so that the ambient magnetic field recovers from a tail-like geometry to a dipole-like geometry. A kinetic ballooning instability (KBI) theory is proposed to explain the low-frequency instability (frequency and growth rate) and its observed high beta threshold (beta subscript c is greater than or equal to 50). Based on the ideal-MHD theory beta subscript c, superscript MHD approximately equals 1 and the ballooning modes are predicted to be unstable during the growth phase, which is inconsistent with observation that no appreciable magnetic field fluctuation is observed. The enhancement beta subscript c over beta subscript c, superscript MHD is due to the kinetic effects of trapped electrons and finite ion-Larmor radii which provide a large stabilizing effect by producing a large parallel electric field and hence a parallel current that greatly enhances the stabilizing effect of field line tension. As a result, beta subscript c is greatly increased over beta subscript c, superscript MHD by a factor proportional to the ratio of the total electron density to the untrapped electron density (n subscript e divided by n subscript eu) which is greater than or equal to

  19. "SP.ACE" 2013-2015: ASGARD Balloon and BIFROST Parabolic Flights: Latest Developments in Hands-On Space Education Projects for Secondary School Students

    Science.gov (United States)

    de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.

    2015-09-01

    Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.

  20. LISA: a java API for performing simulations of trajectories for all types of balloons

    Science.gov (United States)

    Conessa, Huguette

    2016-07-01

    LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.

  1. MR imaging evaluation for percutaneous balloon valvuloplasty of mitral stenosis

    International Nuclear Information System (INIS)

    This paper discusses MR imaging performed in 23 patients undergoing percutaneous balloon valvuloplasty (PBV) of mitral stenosis to evaluate cardiac anatomy and postprocedural changes. A 2.0-T MR system was used (Spectro-20000, Gold Star, Korea). The valvuloplasty procedure was successful in all cases. MR imaging was performed 1--2 days before and atrium decreased from 8.5 cm ± 1.2 to 8.2 cm ± 1.1 (P < .01) and from 4.9 cm ± 1.0 to 4.3 cm ± 0.9 (P < .01), respectively. The high signal due to slow flow in the left atrial cavity completely disappeared in 13 cases and decreased in intensity in four cases. Pericardial effusion was detected in one case

  2. Neutral beam effects on tokamak ballooning mode stability

    International Nuclear Information System (INIS)

    An equation is derived that gives a necessary, as well as sufficient, stability criterion for the guiding center plasma to instabilities of large toroidal mode number. It is found that quasi-perpendicular injection induces a displacement of the psub(perpendicular to) contours with respect to the flux surfaces away from the destabilizing curvature region, which enhances the stability of tensor pressure equilibria over comparable scalar pressure equilibria. Also found is a distinct difference between the necessary and sufficient stability limits when the most unstable modes concentrate in regions of relatively high pressure. Both stability criteria coalesce when ballooning modes, which appear near the edge of the plasma where the pressure is low, dominate. (author)

  3. A high performance anticoincidence rejection system for balloon borne MWPC

    International Nuclear Information System (INIS)

    The supernova SN1987A have been observed in the range of hard X-rays (15 / 180 KeV) and high energy γ-rays (50 / 500 MeV) with a payload launched from the balloon facility of Alice Springs (Australia) during April 1987 and 1988. The low energy detector based on a MWPC had a sensitive area of 500 cm/sup 2/. In the second flight a complete plastic shield was added for the first time to the Multiwire Proportional Counter (MWPC). In this way, switching on the active shield, the background counting rate dropped from 4.2 to 2.8 x 10/sup -4/ ct/cm/sup 2/ s keV with no change in the dead time of the counter. This clearly demonstrates the advantage of the use of a multitechnique rejection system for this kind of gaseous detectors

  4. Absence of Bacteria on Coronary Angioplasty Balloons from Unselected Patients

    DEFF Research Database (Denmark)

    Hansen, Gorm Mørk; Nilsson, Martin; Nielsen, Claus Henrik;

    2015-01-01

    Periodontitis is a chronic, bacterially-induced inflammatory disease of the tooth-supporting tissues, which may result in transient bacteremia and a systemic inflammatory response. Periodontitis is associated with coronary artery disease independently of established cardiovascular risk factors, and...... translocation of bacteria from the oral cavity to the coronary arteries may play a role in the development of coronary artery disease. Very few studies have used angioplasty balloons for in vivo sampling from diseased coronary arteries, and with varying results. Therefore, the aim of this study was to assess if...... patients with stable angina, unstable angina/non-ST elevation myocardial infarction, and ST-elevation myocardial infarction (n = 15 in each group) were collected and analyzed using a PCR assay with high sensitivity and specificity for 16S rRNA genes of the oral microbiome. Despite elimination of extraction...

  5. Initial Results from the ANITA 2006-2007 Balloon Flight

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, P.W.; /Hawaii U.; Allison, P.; /Hawaii U.; Barwick, S.W.; /UC, Irvine; Beatty, J.J.; /Ohio State U.; Besson, D.Z.; /Kansas U.; Binns, W.R.; /Washington U., St. Louis; Chen, C.; /SLAC; Chen, P.; /SLAC; Clem, J.M.; /Delaware U.; Connolly, A.; /University Coll. London; Dowkontt, P.F.; /Washington U., St. Louis; DuVernois, M.A.; /Minnesota U.; Field, R.C.; /SLAC; Goldstein, D.; /UC, Irvine; Goodhue, A.; /UCLA; Hast, C.; /SLAC; Hebert, C.L.; /Hawaii U.; Hoover, S.; /UCLA; Israel, M.H.; /Washington U., St. Louis; Kowalski, J.; /Hawaii U.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /Hawaii U. /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U. /UC, Irvine

    2011-11-16

    We report initial results of the Antarctic Impulsive Transient Antenna (ANITA) 2006-2007 Long Duration Balloon flight, which searched for evidence of the flux of cosmogenic neutrinos. ANITA flew for 35 days looking for radio impulses that might be due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. In our initial high-threshold robust analysis, no neutrino candidates are seen, with no physics background. In a non-signal horizontal-polarization channel, we do detect 6 events consistent with radio impulses from extensive air showers, which helps to validate the effectiveness of our method. Upper limits derived from our analysis now begin to eliminate the highest cosmogenic neutrino models.

  6. Ballooning of pressure tubes - Construction of a test facility

    International Nuclear Information System (INIS)

    The test facility has been built to enable creep testing of reactor pressure tube specimens under conditions which represent those likely to be encountered in a reactor loss-of-coolant accident. The facility has been designed to be capable of specimen heating rates up to 30 K.s-1, temperatures up to 1200 C and internal pressurization up to 6 MPa with either argon or steam. Pressure tube temperature, strain rate, and pressure instrumentation have been provided for collection of data required for analysis of creep behaviour. The facility has been designed to be suitable for testing irradiated specimens in a hot cell. The report provides a detailed description of the test rig and results from two commissioning ballooning tests. (author). 2 refs., 1 tab., 4 figs

  7. Balloon mitral valvotomy in youngest documented rheumatic mitral stenosis patient.

    Science.gov (United States)

    Sarkar, Achyut; Patil, Shailesh; Ahmed, Imran

    2015-11-01

    Juvenile rheumatic mitral stenosis (MS) is common in the Indian subcontinent. Early recognition and management is essential. Rarely rheumatic MS may occur in saving intervention in these cases unless contraindicated, although the procedure entails considerable technical issues in this age group. Herein, we report a successful balloon mitral valvotomy in a 4-year-old child with severe rheumatic MS (documented since 2 years 6 months of age) presenting with repeated pulmonary edema. To the best of our knowledge, this child is the youngest documented case of established rheumatic heart disease and also one of the youngest PTMC procedure performed. This report supports the clinical usefulness of PTMC in childhood MS; however, pertinent technical issues are raised, which needs a proper consensus. PMID:26012486

  8. Reflood Phenomena in a 5 x 5 Ballooned Rod Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae; Kim, Jong Rok; Kim, Kihwan; Moon, S. K. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Various experimental programs were carried out for the coolability of an assembly containing a partial blockage in a group of ballooned fuel rods under LOCA conditions. A review on these experimental programs is well documented in. One key distinguished feature of KAERI research activities is the consideration of local power increase owing to fuel relocation, whereas the past experimental program did not consider the effect of fuel relocation. The purpose of this study is to investigate the reflood phenomena in the partial blocked 5 x 5 rod bundle. A series of the forced reflood tests were performed with/without consideration of local power increase by fuel relocation. The experimental data were evaluated with numerical predictions using MARS code. The flow blockage alone has little effect on the peak wall temperature. However, the local power increase by fuel relocation affects considerably the peak wall temperature and the time period during which high wall temperatures continue.

  9. Fine tracking system for balloon-borne telescopes

    CERN Document Server

    Ricci, M; Lorenzetti, D

    2011-01-01

    We present the results of a study along with a first prototype of a high precision system (? 1 arcsec) for pointing and tracking light (near-infrared) telescopes on board stratospheric balloons. Such a system is essentially composed by a star sensor and by a star tracker, able to recognize the field and to adequately track the telescope, respectively. We present the software aimed at processing the star sensor image and the predictive algorithm that allows the fine tracking of the source at a sub-pixel level. The laboratory tests of the system are described and its performance is analyzed. We demonstrate how such a device, when used at the focal plane of enough large telescopes (2-4m, F/10), is capable to provide (sub-)arcsec diffraction limited images in the near infrared bands.

  10. Reflood Phenomena in a 5 x 5 Ballooned Rod Bundle

    International Nuclear Information System (INIS)

    Various experimental programs were carried out for the coolability of an assembly containing a partial blockage in a group of ballooned fuel rods under LOCA conditions. A review on these experimental programs is well documented in. One key distinguished feature of KAERI research activities is the consideration of local power increase owing to fuel relocation, whereas the past experimental program did not consider the effect of fuel relocation. The purpose of this study is to investigate the reflood phenomena in the partial blocked 5 x 5 rod bundle. A series of the forced reflood tests were performed with/without consideration of local power increase by fuel relocation. The experimental data were evaluated with numerical predictions using MARS code. The flow blockage alone has little effect on the peak wall temperature. However, the local power increase by fuel relocation affects considerably the peak wall temperature and the time period during which high wall temperatures continue

  11. The University of Toronto's balloon-borne Fourier transform spectrometer

    Science.gov (United States)

    Wunch, D.; Drummond, J. R.; Midwinter, C.; Taylor, J. R.; Fu, D.; Walker, K. A.; McElroy, C. T.; Strong, K.; Bernath, P.; Fast, H.

    The University of Toronto s Fourier transform spectrometer U of T FTS derived from a Bomem DA5 Michelson-type interferometer was rebuilt and flown on the Middle Atmosphere Nitrogen TRend Assessment MANTRA high-altitude balloon platform in September 2004 The U of T FTS has a resolution of 0 02 cm -1 a spectral range covering 1200-5000 cm -1 and InSb and MCT detectors that measure simultaneously The spectrometer was originally built in the 1980s and purchased by the Meteorological Service of Canada To prepare the instrument for flight the original software was replaced with new LabVIEW control software creating a robust and easily-controlled instrument adaptable to either remote control or lab-based work As a result of replacing the software most of the electronics had to be replaced creating a lighter lower-power more robust instrument A description of the refurbishment will be presented Despite balloon launch and gondola pointing system failures during the MANTRA 2004 campaign two spectra were recorded on each detector during sunset from a float height of 35 km The data indicate that the instrument performed well throughout the flight and had the payload pointing been under control would have retrieved a full set of occultation data The data that were acquired will be shown The U of T FTS has since participated in a ground-based FTS inter-comparison campaign with two other FTS instruments the University of Toronto s Toronto Atmospheric Observatory TAO FTS a complementary NDACC station Network for the Detection of

  12. Zodiac II: debris disk science from a balloon

    Science.gov (United States)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rahman, Zahidul; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vaischt, Gautam

    2011-10-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visiblewavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  13. Characteristic mechanical properties of balloon-expandable peripheral stent systems

    International Nuclear Information System (INIS)

    Purpose: To measure in vitro geometric-mechanical characteristics of balloon-expandable peripheral stent systems for determining suitability for specific vascular regions. Materials and Methods: Balloon-expandable stents including their delivery systems manufactured by Guidant (OTW MegalinkTM), Inflow Dynamics (Antares), Medtronic (AVE BridgeTM), Biotronik (PeironTM) and Cordis (Corinthian IQTM) were selected for this study. When expanded, all stents had a nominal diameter of 8 mm. The length was 38-40 mm. Stent profile, trackability, length change on expansion, stiffness, elastic recoil, and radio-opacity in the crimped and expanded state of these stent systems were determined with specially developed test methods. Results: The Corinthian IQTM, MegalinkTM and PeironTM required the smallest force to pass through the vascular model. While the BridgeTM system had the largest profile with a diameter of 2.430 mm, all other stent systems had a significantly smaller diameter ranging from 1.970 mm for the PeironTM to 2.078 mm for the Corinthian IQTM. In the distal region of the stent delivery system, the MegalinkTM was the most flexible and the BridgeTM system the stiffest. Elastic recoil for all stents was in the range of 2.5% to 3.5%, with the exception of the BridgeTM stent, which had an elastic recoil of 4.79%. The Corinthian IQTM stent had noticeably the highest radial stiffness. In the expanded condition, the PeironTM was the most flexible while the Corinthian IQTM and AntaresTM were found to be the stiffest. Length change (shrinkage on expansion) ranged from 0.54 to 6.57%, with the exception of the Corinthian IQ, which shrunk >7 mm (18.5%) on expansion. All stent systems in the crimped and expanded state were readily visible radiographically. (orig.)

  14. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550757

  15. Clinical Usefulness of Bakri Balloon Tamponade in the Treatment of Massive Postpartum Uterine Hemorrhage.

    Science.gov (United States)

    Nagai, Sayori; Kobayashi, Hiroaki; Nagata, Tomomi; Hiwatashi, Sayuri; Kawamura, Toshihiko; Yokomine, Daisaku; Orita, Yuji; Oki, Toshimichi; Yoshinaga, Mitsuhiro; Douchi, Tsutomu

    2016-01-01

    Intrauterine globe-shaped metreurynter tamponade has been used for some time to treat massive postpartum hemorrhage (PPH). More recently, the Bakri balloon has come into use to treat PPH. It is made of silicon, possesses a drainage lumen, and has a sausage-like spindle shape. The aim of the present study was to investigate the clinical usefulness of Bakri balloon tamponade for massive PPH. Subjects in the present study comprised 5 patients with uterine atony, 3 with placenta previa, and 2 with low-lying placenta. All patients exhibited massive PPH and resistance to conventional hemostatic managements. Bakri balloon tamponade was appliedto these 10 patients. The mean amounts of uterine bleeding (average ± SD) before and after Bakri insertion were2,732 ± 1,397 mL and 380 ± 376 mL, respectively. The median (third-first quartile ranges) volume of salineinflating the balloon was 200 mL (300-150 mL). The median (third-first quartile ranges) indwelling duration of Bakri balloon was 24 hours (24-11 hrs). The overall success rate of Bakri balloon tamponade was 90% (9/10).There were no cases of slipping out or complications regarding balloon placement. Our findings suggest that Bakri balloon tamponade may be applied to the treatment of massive PPH in uterine atony and placenta previa.The Bakri balloon appears to have the following merits: (1) easy insertion into the uterine cavity and low rate of slipping out, (2) proper conformability to the hemorrhagic area due to its spindle shape, (3) ability to monitor blood loss through the drainage lumen even after insertion. PMID:26935443

  16. Low-pressure balloon angioplasty with adjuvant pharmacological therapy in patients with acute ischemic stroke caused by intracranial arterial occlusions

    International Nuclear Information System (INIS)

    The use of coronary balloons in the cerebral vasculature is limited due to their poor trackability and increased risk of vessel injury. We report our experience using more compliant elastomer balloons for thrombus resistant to intraarterial (IA) pharmacological and mechanical thrombolysis in acute stroke. We retrospectively analyzed 12 consecutive patients with an occluded intracranial artery treated with angioplasty using a low-pressure elastomer balloon. Angiograms were graded according to the Thrombolysis in Cerebral Infarction (TICI) and Qureshi grading systems. Outcomes were categorized as independent (modified Rankin scale, mRS, score ≤2), dependent (mRS score 3-5), or dead (mRS score 6). Included in the study were 12 patients (mean age 66±17 years, range 31-88 years; mean baseline National Institutes of Health stroke scale score 17±3, range 12-23). The occlusion sites were: internal carotid artery (ICA) terminus (five patients, including two concomitant cervical ICA occlusions), M1 segment (two patients), and basilar artery (two patients). Pharmacological treatment included intravenous (IV) t-PA only (two patients), IA urokinase only (nine patients), both IV t-PA and IA urokinase (one patient), and IV and/or IA eptifibatide (eight patients). Mean time to treatment was 5.9±3.9 h (anterior circulation) and 11.0±7.2 h (posterior circulation). Overall recanalization rate (TICI grade 2/3) was 91.6%. Procedure-related morbidity occurred in one patient (distal posterior inferior cerebellar artery embolus). There were no symptomatic hemorrhages. Outcomes at 90 days were independent (five patients), dependent (three patients) and dead (four patients, all due to progression of stroke with withdrawal of care). Angioplasty of acutely occluded intracranial arteries with low-pressure elastomer balloons results in high recanalization rates with an acceptable degree of safety. Prior use of thrombolytics may increase the chances of recanalization, and glycoprotein IIb

  17. Superconducting Cold-Electron Bolometers with JFET Readout for OLIMPO Balloon Telescope

    International Nuclear Information System (INIS)

    The OLIMPO experiment is a 2.6 m balloon-borne telescope, aimed at measuring the Sunyaev- Zeldovich effect in clusters of Galaxies. OLIMPO will carry out surveys in four frequency bands centered at 140, 220, 410 and 540 GHz. The detector system consists of four bolometer arrays and incorporates new detector technologies that are potential candidates for future space missions. One of these technologies is the Capacitively Coupled Cold-Electron Bolometer (CEB) with JFET readout. The JFET readout coupled to semiconductor-based high-impedence bolometers has been developed already for the BOOMERanG and Planck-HFI experiments. The CEB is a planar antenna-coupled superconductong detector with high sensitivity and high dynamic range. Here, we discuss a scheme to match the relatively moderate dynamic resistance of CEB (∼1kOhm) to the high noise equivalent resistance of JFET (1 MΩ). To achieve noise matching with JFET, a Cold-Electron Bolometer with a weak Superconducting Absorber (SCEB) has been proposed. In voltage-biased mode with voltage higher than (Delta 1-Delta 2) the IV of SIS' junctions has considerably increased dynamic resistance up to the level of Rj = 1000*Rn. Electron cooling will be still very effective for the incoming power. Simulations show that photon noise level can be achieved at 300 mK for a structure with Ti absorber and Al/Ti tunnel junctions for all frequency ranges with the estimated in-flight optical power load for OLIMPO

  18. Access to second stability region for coupled peeling-ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    The peeling mode restricts access to the second stability region of the ideal ballooning mode at the tokamak plasma edge. Using a two-dimensional, high toroidal mode number eigenmode code employing a model tokamak equilibrium, it is shown that a window to second stability exists for a sufficiently deep magnetic well. The different mode structures of the various eigenmode branches are studied. In particular, when access to second ballooning stability exists, a ballooning mode perturbation at the first stability boundary can extend deep into the plasma core, and then instability is likely to result in large scale loss of plasma energy. copyright 1999 American Institute of Physics

  19. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    Science.gov (United States)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  20. Influence of pressure-gradient and shear on ballooning stability in stellarators

    International Nuclear Information System (INIS)

    Pressure driven, ideal ballooning stability calculations are often used to predict the achievable plasma β in stellarator configurations. In this paper, the sensitivity of ballooning stability to plasmas profile variations is addressed. A simple, semi-analytic method for expressing the ballooning growth rate, for each field line, as a polynomial function of the variation in the pressure-gradient and the average magnetic shear from an original equilibrium has recently been introduced [Phys. Plasmas, 11(9):L53, 2004.]. This paper will apply the expression to various stellarator configurations and comment on the validity of various truncated forms of the polynomial expression. (author)

  1. Randomised comparison of coronary stenting with and without balloon predilatation in selected patients

    OpenAIRE

    Le Breton, H; Boschat, J; Commeau, P; Brunel, P.; Gilard, M; Breut, C; Bar, O.; Geslin, P; Tirouvanziam, A; Maillard, L.; Moquet, B; Barragan, P.; Dupouy, P.; Grollier, G; Berland, J.

    2001-01-01

    BACKGROUND—The SWIBAP (stent without balloon predilatation) prospective randomised trial was designed to compare direct coronary stenting with stenting preceded by lesion predilatation with an angioplasty balloon.
OBJECTIVE—To determine the feasibility and safety of direct stenting in non-complex coronary lesions in a prospective study.
PATIENTS AND DESIGN—All patients  3.0 mm, who granted their informed consent, were randomised into the trial. In group I, the stent was placed without balloon...

  2. Effect of energetic particle distribution on bounce resonance excitation of the ideal ballooning mode

    International Nuclear Information System (INIS)

    The kinetic effect of energetic trapped particles on the stability of magnetohydrodynamic (MHD) ballooning mode is studied in a tokamak with the circular cross section. The bounce resonance contribution of trapped energetic particles is found to play an important role in the outer inertial region of the ballooning mode perturbation, and destabilizes the ballooning mode when the shear effect is not strong. The inhomogeneity of a model slowing down energetic particle distribution in velocity space, δF/δE, is effective to stabilize the bounce resonant mode. (author)

  3. Monitoring of gadolinium-BOPTA uptake into the vessel wall during magnetic resonance (MR)-guided angioplasty of the peripheral arteries with a paclitaxel/gadolinium-BOPTA-coated balloon. An experimental study at 3 Tesla

    International Nuclear Information System (INIS)

    Purpose: The success of paclitaxel distribution within the vessel wall during paclitaxel-coated balloon angioplasty to prevent restenosis cannot be monitored under X-ray guidance. The aim of this pilot study was to demonstrate the feasibility of monitoring Gadolinium-BOPTA delivery within the vessel wall during magnetic resonance (MR)-guided paclitaxel/Gadolinium-BOPTA-coated balloon angioplasty of the peripheral arteries. Materials and methods: 6 pigs (47 ± 2 kg) were investigated. All experiments were performed using a 3 Tesla MR scanner. MR-guided bilaterial angioplasty of the iliac arteries was performed using a paclitaxel/MR contrast agent-coated balloon catheter. The feasibility of monitoring the delivery of Gadolinium-BOPTA to the vessel was assessed in 4 animals. In two additional animals, bilateral stenosis was surgically induced in the iliac arteries. Delivery of paclitaxel to the vessel wall was monitored using a 3 D T1-weighted gradient echo (GE) sequence for delineation of the vessel wall. Normalized signal intensity (SI) of the vessel wall was measured before and repeatedly after the intervention for 45 min. in all animals. Results: Paclitaxel/gadolinium-BOPTA-coated balloon angioplasty was successfully accomplished in all iliac arteries (n = 12). In animals with stenosis MR-angiography demonstrated successful dilatation (n = 4). The normalized SI of the vessel wall on T1-weighted GE images significantly increased after the intervention in all animals with and without stenosis for more than 45 min. (p < 0.001). Conclusion: Monitoring of Gadolinium-BOPTA into the vessel wall during MR-guided coated balloon angioplasty is feasible. This is a first step towards providing a tool for the online control of homogenous drug delivery after paclitaxel-coated balloon angioplasty. (orig.)

  4. Monitoring of gadolinium-BOPTA uptake into the vessel wall during magnetic resonance (MR)-guided angioplasty of the peripheral arteries with a paclitaxel/gadolinium-BOPTA-coated balloon. An experimental study at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Neizel, M.; Kelm, M. [University Hospital Duesseldorf (Germany). Dept. of Cardiology, Pneumology and Angiology; Ruebben, A.; Weiss, N. [Aachen Resonance, Aachen (Germany); Guenther, R.W. [University Hospital Aachen (Germany). Dept. of Radiology; Krombach, G.A. [University Hospital Giessen (Germany). Dept. of Radiology

    2014-04-15

    Purpose: The success of paclitaxel distribution within the vessel wall during paclitaxel-coated balloon angioplasty to prevent restenosis cannot be monitored under X-ray guidance. The aim of this pilot study was to demonstrate the feasibility of monitoring Gadolinium-BOPTA delivery within the vessel wall during magnetic resonance (MR)-guided paclitaxel/Gadolinium-BOPTA-coated balloon angioplasty of the peripheral arteries. Materials and methods: 6 pigs (47 ± 2 kg) were investigated. All experiments were performed using a 3 Tesla MR scanner. MR-guided bilaterial angioplasty of the iliac arteries was performed using a paclitaxel/MR contrast agent-coated balloon catheter. The feasibility of monitoring the delivery of Gadolinium-BOPTA to the vessel was assessed in 4 animals. In two additional animals, bilateral stenosis was surgically induced in the iliac arteries. Delivery of paclitaxel to the vessel wall was monitored using a 3 D T1-weighted gradient echo (GE) sequence for delineation of the vessel wall. Normalized signal intensity (SI) of the vessel wall was measured before and repeatedly after the intervention for 45 min. in all animals. Results: Paclitaxel/gadolinium-BOPTA-coated balloon angioplasty was successfully accomplished in all iliac arteries (n = 12). In animals with stenosis MR-angiography demonstrated successful dilatation (n = 4). The normalized SI of the vessel wall on T1-weighted GE images significantly increased after the intervention in all animals with and without stenosis for more than 45 min. (p < 0.001). Conclusion: Monitoring of Gadolinium-BOPTA into the vessel wall during MR-guided coated balloon angioplasty is feasible. This is a first step towards providing a tool for the online control of homogenous drug delivery after paclitaxel-coated balloon angioplasty. (orig.)

  5. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    Science.gov (United States)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  6. LITOS – a new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere

    Directory of Open Access Journals (Sweden)

    A. Theuerkauf

    2011-01-01

    Full Text Available We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere for high resolution wind turbulence soundings in the stratosphere up to 35 km altitude. The wind measurements are performed using a constant temperature anemometer (CTA with a vertical resolution of ~2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit, the payload weighs less than 5 kg and can be launched from any radiosonde station. Since autumn 2007, LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP in Kühlungsborn, Germany (54° N, 12° E. Two additional soundings were carried out in 2008 and 2009 in Kiruna, Sweden (67° N, 21° E as part of the BEXUS program (Balloon-borne EXperiments for University Students. We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. A first case study allows a clear distinction between non-turbulent regions and a turbulent layer with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.

  7. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    Science.gov (United States)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  8. Novel Ultralow-Weight Metal Rubber Sensor System for Ultra Long-Duration Scientific Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, ultralow mass density, and non-intrusive sensor system for ultra long duration balloons that will operate in the most...

  9. Strong 'Quantum' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas

    International Nuclear Information System (INIS)

    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a k-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to ballooning-unstable plasma equilibria in the H-1NF helical axis stellarator and the Large Helical Device (LHD)

  10. A Relationship Between Skin Thermal Conductivity and Gas Polytropic Index in an Open Atmospheric Balloon.

    Science.gov (United States)

    de La Torre, A.; Alexander, P.; Cornejo, J.

    2003-02-01

    With the assumption of a polytropic evolution for the lifting gas, the response of an ascending open atmospheric balloon to a monochromatic gravity wave is specified among other parameters by the heat balance with the surrounding air. If one considers the bubble of gas inside the open balloon as a thermodynamic system in contact through the balloon skin with a uniform thermal source (isothermic atmosphere), a relationship between the skin thermal conductivity and the polytropic index for the lifting gas [hydrogen (H2) or helium (He)] may be found. The results for both gases are extended to the case of a typical tropospheric linearly decreasing temperature profile. Constant and variable balloon skin thicknesses are studied for both background temperature profiles. The polytropic index is found to be lower for the changing skin and shows a sensitive difference between the two temperature profiles. The relationship between the thermal conductivity and polytropic index becomes abrupt only when the latter approaches the isothermal or adiabatic values.

  11. Ballooning instability of the earth's plasma sheet region in the presence of parallel flow

    Science.gov (United States)

    Lakhina, G. S.; Hameiri, E.; Mond, M.

    1990-01-01

    Stability of the plasma sheet and plasma sheet boundary layer against the ballooning mode instability is investigated. The equilibrium state of a two-dimensional plasma sheet configuration with parallel sheared flow is modeled. This equilibrium is shown to be ballooning unstable when delta-W is not positive definite, where delta-W is the potential energy. The eigenmode structure of the ballooning mode is found by imposing the boundary conditions that the waves are totally reflected from the ionosphere, and that no waves are coming in from infinity. The eigenmode structure of the unstable balloning modes is highly oscillatory, extending beyond about 100 R(E). The ballooning modes are thus a possible candidate for explaining the MHD waves and other dynamical events observed in the magnetotail by ISEE 3 and other spacecraft.

  12. Deflation of the ′obstinate′ Foley′s urinary catheter balloon : a new technique.

    Directory of Open Access Journals (Sweden)

    Ramakantan R

    1989-01-01

    Full Text Available We have successfully deflated "obstinate" Foley′s urinary catheter balloons in 15 cases in the last six months with the help of a simple bedside procedure using an angiographic guide-wire.

  13. Integrating BalloonSAT and Atmospheric Dynamic Concepts into the Secondary Classroom

    Science.gov (United States)

    Fong, B. N.; Kennon, J. T.; Roberts, E.

    2016-05-01

    Arkansas BalloonSAT is an educational outreach and scientific research program that is part of Arkansas State University in Jonesboro, AR. The following is a unit of instruction to incorporate BalloonSAT measurements into secondary science classes. Students interpret graphs and identify several atmospheric trends and properties of a typical balloon flight. Students engage critical thinking skills in developing and answering their own questions relevant to the BalloonSAT program. Prerequisite concepts students should know are how to interpret graphs and unit conversions. Students should have a basic understanding of gravity, units of temperature and distance, and error in measurements. The unit is designed for one week after end-of-course exams and before the end of school. The unit may take two to five 50-minute periods, depending on how many activities are completed.

  14. The prevention and management of complications during and immediately after percutaneous balloon mitral valvuloplasty

    International Nuclear Information System (INIS)

    Objective: To approach the cause and treatment of complication during and immediately after percutaneous balloon mitral valvuloplasty. Methods: One thousand three hundred and eleven patients with mitral stenosis were treated by percutaneous transseptal balloon mitral valvuloplasty. Among them, 42 patients with complications were retrospectively analyzed. Results: The overall complications rate was 3.2% (42/1311) including atrial fibrillation 0.8% (10/1311), acute pericardial tamponade 0.31% (4/1311), severe mitral insufficiency 0.46% (6/1311), femoral arterial venous fistula 0.69% (9/1311), acute pulmonary edema and iatrogenic atrial septal defect 0.23% (3/1311), respectively. Coronary air embolism, arterial thrombosis and transient cerebrovascular accident was 0.15% (2/1311) for every other one. Balloon rupture was 0.08%(1/1311). Conclusions: The complications of percutaneous balloon mitral valvuloplasty rarely occur. It is a safe and efficient nonsurgical method for treating rheumatic mitral stenosis

  15. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-altitude balloon flights are an inexpensive method used to lift payloads to high altitudes. Federal Aviation Administration (FAA) regulations permit payloads...

  16. Utility of birefringence changes due to collagen thermal denaturation rate process analysis: vessel wall temperature estimation for new short term heating balloon angioplasty

    Science.gov (United States)

    Kaneko, Kenji; Shimazaki, Natsumi; Gotoh, Maya; Nakatani, Eriko; Arai, Tsunenori

    2007-02-01

    Our photo thermal reaction heating architecture balloon realizes less than 10 s short term heating that can soften vessel wall collagen without damaging surrounding tissue thermally. New thermal balloon angioplasty, photo-thermo dynamic balloon angioplasty (PTDBA) has experimentally shown sufficient opening with 2 atm low pressure dilation and prevention of chronic phase restenosis and acute phase thrombus in vivo. Even though PTDBA has high therapeutic potential, the most efficient heating condition is still under study, because relationship of treatment and thermal dose to vessel wall is not clarified yet. To study and set the most efficient heating condition, we have been working on establishment of temperature history estimation method from our previous experimental results. Heating target of PTDBA, collagen, thermally denatures following rate process. Denaturation is able to be quantified with measured collagen birefringence value. To express the denaturation with equation of rate process, the following ex vivo experiments were performed. Porcine extracted carotid artery was soaked in two different temperature saline baths to enforce constant temperature heating. Higher temperature bath was set to 40 to 80 degree Celsius and soaking duration was 5 to 40 s. Samples were observed by a polarizing microscope and a scanning electron microscope. The birefringence was measured by polarizing microscopic system using Brace-Koehler compensator 1/30 wavelength. The measured birefringence showed temperature dependency and quite fit with the rate process equation. We think vessel wall temperature is able to be estimated using the birefringence changes due to thermal denaturation.

  17. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-06-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study in the orographically unperturbed mid-latitude middle troposphere.

  18. 24 Hour ST Segment Analysis in Transient Left Ventricular Apical Ballooning

    OpenAIRE

    Frank Bode; Christof Burgdorf; Heribert Schunkert; Volkhard Kurowski

    2013-01-01

    OBJECTIVE: The etiologic basis of transient left ventricular apical ballooning, a novel cardiac syndrome, is not clear. Among the proposed pathomechanisms is coronary vasospasm. Long-term ST segment analysis may detect vasospastic episodes but has not been reported. METHODS: 30 consecutive patients with transient left ventricular apical ballooning, left ventricular dysfunction and normal or near-normal coronary arteries were investigated. A 24-hour Holter ECG was obtained after emergency admi...

  19. Arthroscopy assisted balloon osteoplasty of a tibia plateau depression fracture: A case report

    OpenAIRE

    Kleanthis Ziogas; Evangelos Tourvas; Ioannis Galanakis; George Kouvidis

    2015-01-01

    Context: A clinical case of a tibia plateau fracture is presented which was treated with balloon osteoplasty and arthroscopy guidance. Balloon Tibioplasty has been shown to be a very useful method for the management of tibial plateau fractures. The use of calcium phosphate has been described in the literature for management and restoration of bone defects in tibial plateau fractures. Case Report: A 45-years-old Caucasian woman was presented after a fall from a ladder. The patient sustained a ...

  20. Migration of BTEX and phthalates from natural rubber latex balloons obtained from the Sri Lankan market

    OpenAIRE

    Jayawardena, Imanda; Godakumbura, Pahan I.; Prashantha, M. A. B.

    2016-01-01

    The current study evaluates the migration of benzene, toluene, ethylbenzene, xylene (BTEX) and phthalates into artificial saliva from natural rubber latex (NRL) balloons available for sale in Sri Lanka. It was discovered that at least one BTEX compound migrated from almost all the brands. The migration of four phthalates; diethyl phthalate, dibutyl phthalate, di-isobutyl phthalate and butyl benzyl phthalate were also observed. Migratory levels of BTEX and phthalates in most of the balloon bra...