WorldWideScience

Sample records for athermal silicon microring

  1. Linear signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Ding, Yunhong; Ou, Haiyan

    2012-01-01

    We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping.......We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping....

  2. Athermal Photonic Devices and Circuits on a Silicon Platform

    Science.gov (United States)

    Raghunathan, Vivek

    In recent years, silicon based optical interconnects has been pursued as an effective solution that can offer cost, energy, distance and bandwidth density improvements over copper. Monolithic integration of optics and electronics has been enabled by silicon photonic devices that can be fabricated using CMOS technology. However, high levels of device integration result in significant local and global temperature fluctuations that prove problematic for silicon based photonic devices. In particular, high temperature dependence of Si refractive index (thermo-optic (TO) coefficient) shifts the filter response of resonant devices that limit wavelength resolution in various applications. Active thermal compensation using heaters and thermo-electric coolers are the legacy solution for low density integration. However, the required electrical power, device foot print and number of input/output (I/O) lines limit the integration density. We present a passive approach to an athermal design that involves compensation of positive TO effects from a silicon core by negative TO effects of the polymer cladding. In addition, the design rule involves engineering the waveguide core geometry depending on the resonance wavelength under consideration to ensure desired amount of light in the polymer. We develop exact design requirements for a TO peak stability of 0 pm/K and present prototype performance of 0.5 pm/K. We explore the material design space through initiated chemical vapor deposition (iCVD) of 2 polymer cladding choices. We study the effect of cross-linking on the optical properties of a polymer and establish the superior performance of the co-polymer cladding compared to the homo-polymer. Integration of polymer clad devices in an electronic-photonic architecture requires the possibility of multi-layer stacking capability. We use a low temperature, high density plasma chemical vapor deposition of SiO2/SiN x to hermetically seal the athermal. Further, we employ visible light for

  3. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  4. Deep glass etched microring resonators based on silica-on-silicon technology

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rottwitt, Karsten; Philipp, Hugh Taylor

    2006-01-01

    Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented.......Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented....

  5. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi

    2010-01-01

    We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator...

  6. Label-free virus detection using silicon photonic microring resonators.

    Science.gov (United States)

    McClellan, Melinda S; Domier, Leslie L; Bailey, Ryan C

    2012-01-15

    Viruses represent a continual threat to humans through a number of mechanisms, which include disease, bioterrorism, and destruction of both plant and animal food resources. Many contemporary techniques used for the detection of viruses and viral infections suffer from limitations such as the need for extensive sample preparation or the lengthy window between infection and measurable immune response, for serological methods. In order to develop a method that is fast, cost-effective, and features reduced sample preparation compared to many other virus detection methods, we report the application of silicon photonic microring resonators for the direct, label-free detection of intact viruses in both purified samples as well as in a complex, real-world analytical matrix. As a model system, we demonstrate the quantitative detection of Bean pod mottle virus, a pathogen of great agricultural importance, with a limit of detection of 10 ng/mL. By simply grinding a small amount of leaf sample in buffer with a mortar and pestle, infected leaves can be identified over a healthy control with a total analysis time of less than 45 min. Given the inherent scalability and multiplexing capability of the semiconductor-based technology, we feel that silicon photonic microring resonators are well-positioned as a promising analytical tool for a number of viral detection applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection

    International Nuclear Information System (INIS)

    Qiu Chen; Hu Ting; Wang Wan-Jun; Yu Ping; Jiang Xiao-Qing; Yang Jian-Yi

    2012-01-01

    A channel-selectable optical link based on a silicon microring resonator is proposed and demonstrated. This optical link consists of the wavelength-tunable microring modulators and the filters, defined on a silicon-on-insulator (SOI) platform. With a p—i—n junction embedded in the microring modulator, light at the resonant wavelength of the ring resonator is modulated. The 2 nd -order microring add-drop filter routes the modulated light. The channel selectivity is demonstrated by heating the microrings. With a thermal tuning efficiency of 5.9 mW/nm, the filter drop port response was successfully tuned with 0.8 nm channel spacing. We also show that modulation can be achieved in these channels. This device aims to offer flexibility and increase the bandwidth usage efficiency in optical interconnection

  8. Linear all-optical signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2016-01-01

    Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...

  9. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  10. Cascadability of Silicon Microring Resonators for40-Gbit/s OOK and DPSK Optical Signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; An, Yi; Lali-Dastjerdi, Zohreh

    2012-01-01

    The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators.......The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators....

  11. Illuminating the future of silicon photonics: optical coupling of carbon nanotubes to microrings

    International Nuclear Information System (INIS)

    Kato, Y K

    2015-01-01

    Advances in carbon nanotube material quality and processing techniques have led to an increased interest in nanotube photonics. In particular, emission in the telecommunication wavelengths makes nanotubes compatible with silicon photonics. Noury et al (2014 Nanotechnology 25 215201) have reported on carbon nanotube photoluminescence coupled to silicon microring resonators, underscoring the advantage of combining carbon nanotube emitters with silicon photonics. Their results open up the possibility of using nanotubes in other waveguide-based devices, taking advantage of well-established technologies. (viewpoint)

  12. Compact high-efficiency vortex beam emitter based on a silicon photonics micro-ring

    DEFF Research Database (Denmark)

    Li, Shimao; Ding, Yunhong; Guan, Xiaowei

    2018-01-01

    Photonic integrated devices that emit vortex beam carrying orbital angular momentum are becoming key components for multiple applications. Here we propose and demonstrate a high-efficiency vortex beam emitter based on a silicon micro-ring resonator integrated with a metal mirror. Such a compact...

  13. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Ding, Yunhong; Ou, Haiyan

    2016-01-01

    Wavelength conversion based on degenerate four-wave mixing (FWM) was demonstrated and compared between silicon nanowire and microring resonator (MRR). 15 dB enhancement of conversion efficiency (CE) with relatively low input pump power (5 mW) was achieved experimentally in an MRR. The impacts...

  14. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Hu, Hao; Galili, Michael

    2011-01-01

    in a highly nonlinear fiber. Second, RZ-to-NRZ format conversion is achieved in a specially designed silicon microring resonator with FSR of 1280 GHz, Q value of 638, high extinction ratio and low coupling loss to optical fiber. A 640 Gbit/s NRZ OTDM signal with very clear eye-diagram and narrower bandwidth...

  15. All-optical 10 Gb/s AND logic gate in a silicon microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Lei, Lei; Ding, Yunhong

    2013-01-01

    An all-optical AND logic gate in a single silicon microring resonator is experimentally demonstrated at 10 Gb/s with 50% RZ-OOK signals. By setting the wavelengths of two intensity-modulated input pumps on the resonances of the microring resonator, field-enhanced four-wave mixing with a total inp...... power of only 8.5 dBm takes place in the ring, resulting in the generation of an idler whose intensity follows the logic operation between the pumps. Clear and open eye diagrams with a bit-error- ratio below 10−9 are achieved....

  16. Analysis of silicon on insulator (SOI) optical microring add-drop filter based on waveguide intersections

    Science.gov (United States)

    Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic

    2008-04-01

    We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally

  17. Compact temperature-insensitive modulator based on a silicon microring assistant Mach—Zehnder interferometer

    International Nuclear Information System (INIS)

    Zhang Xue-Jian; Feng Xue; Zhang Deng-Ke; Huang Yi-Dong

    2012-01-01

    On the silicon-on-insulator platform, an ultra compact temperature-insensitive modulator based on a cascaded microring assistant Mach—Zehnder interferometer is proposed and demonstrated with numerical simulation. According to the calculated results, the tolerated variation of ambient temperature can be as high as 134 °C while the footprint of such a silicon modulator is only 340 μm 2 . (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. RZ-to-NRZ format conversion at 50 Gbit/s based on a silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We demonstrate RZ-to-NRZ format conversion at 50 Gbit/s based on silicon microring resonator with FSR of 100 GHz. Bit error rate measurements show a low power penalty compared to electrical NRZ signal for error free operation.......We demonstrate RZ-to-NRZ format conversion at 50 Gbit/s based on silicon microring resonator with FSR of 100 GHz. Bit error rate measurements show a low power penalty compared to electrical NRZ signal for error free operation....

  19. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  20. Flat-top passband filter based on parallel-coupled double microring resonators in silicon

    Science.gov (United States)

    Huang, Qingzhong; Xiao, Xi; Li, Yuntao; Li, Zhiyong; Yu, Yude; Yu, Jinzhong

    2009-08-01

    Optical filters with box-like response were designed and realized based on parallel-coupled double microrings in silicon-on-insulator. The properties of this design are simulated, considering the impact of the center-to-center distance of two rings, and coupling efficiency. Flat-top passband in the drop channel of the fabricated device was demonstrated with a 1dB bandwidth of 0.82nm, a 1dB/10dB bandwidth ratio of 0.51, an out of band rejection ratio of 14.6dB, as well as a free spectrum range of 13.6nm.

  1. Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Ozolins, Oskars; Ding, Yunhong

    2012-01-01

    Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZDPSK modulation format conversion in a single silicon microring resonator with free spectral range equal to twice the signal bit rate is experimentally demonstrated for the first time at 41.6 Gb/s. By utilizing an optimized custom-made microring...

  2. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-oninsulator microring resonator

    DEFF Research Database (Denmark)

    Lloret, Juan; Sancho, Juan; Pu, Minhao

    2011-01-01

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploit...

  3. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    Science.gov (United States)

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  4. Development of silicon photonic microring resonator biosensors for multiplexed cytokine assays and in vitro diagnostics

    Science.gov (United States)

    Luchansky, Matthew Sam

    In order to guide critical care therapies that are personalized to a patient's unique disease state, a diagnostic or theranostic medical device must quickly provide a detailed biomolecular understanding of disease onset and progression. This detailed molecular understanding of cellular processes and pathways requires the ability to measure multiple analytes in parallel. Though many traditional sensing technologies for biomarker analysis and fundamental biological studies (i.e. enzyme-linked immunosorbent assays, real-time polymerase chain reaction, etc.) rely on single-parameter measurements, it has become increasingly clear that the inherent complexity of many human illnesses and pathways necessitates quantitative and multiparameter analysis of biological samples. Currently used analytical methods are deficient in that they often provide either highly quantitative data for a single biomarker or qualitative data for many targets, but methods that simultaneously provide highly quantitative analysis of many targets have yet to be adequately developed. Fields such as medical diagnostics and cellular biology would benefit greatly from a technology that enables rapid, quantitative and reproducible assays for many targets within a single sample. In an effort to fill this unmet need, this doctoral dissertation describes the development of a clinically translational biosensing technology based on silicon photonics and developed in the chemistry research laboratory of Ryan C. Bailey. Silicon photonic microring resonators, a class of high-Q optical sensors, represent a promising platform for rapid, multiparameter in vitro measurements. The original device design utilizes 32-ring arrays for real-time biomolecular sensing without fluorescent labels, and these optical biosensors display great potential for more highly multiplexed (100s-1000s) measurements based on the impressive scalability of silicon device fabrication. Though this technology can be used to detect a variety of

  5. Integrated reconfigurable microring based silicon WDM receiver for on-chip optical interconnect

    International Nuclear Information System (INIS)

    Shen, Ao; Yang, Long-Zhi; Dai, Ting-Ge; Hao, Yin-Lei; Jiang, Xiao-Qing; Yang, Jian-Yi; Qiu, Chen

    2015-01-01

    We demonstrate an integrated reconfigurable wavelength division multiplexing receiver on the silicon-on-insulator (SOI) platform. The receiver is composed of a 1 × 8 thermally tunable microring resonator filter and Ge–Si photodetectors. With low thermal tuning powers the channel allocation of the receiver can be reconfigured with high accuracy and flexibility. The thermal tuning efficiency is approximately 8 mW nm −1 . We show eight-channel configurations with channel spacing of 100 GHz and 50 GHz and a configuration in which all eight channels cover an entire free spectral range of the ring with uniform channel spacing of 1.2 nm. Each channel can receive high-quality signals with a data rate of up to 13.5 Gb s −1 ; thus an aggregate data rate higher than 100 Gb s −1 can be achieved. (paper)

  6. Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material.

    Science.gov (United States)

    Namnabat, Soha; Kim, Kyung-Jo; Jones, Adam; Himmelhuber, Roland; DeRose, Christopher T; Trotter, Douglas C; Starbuck, Andrew L; Pomerene, Andrew; Lentine, Anthony L; Norwood, Robert A

    2017-09-04

    Silicon photonics has gained interest for its potential to provide higher efficiency, bandwidth and reduced power consumption compared to electrical interconnects in datacenters and high performance computing environments. However, it is well known that silicon photonic devices suffer from temperature fluctuations due to silicon's high thermo-optic coefficient and therefore, temperature control in many applications is required. Here we present an athermal optical add-drop multiplexer fabricated from ring resonators. We used a sol-gel inorganic-organic hybrid material as an alternative to previously used materials such as polymers and titanium dioxide. In this work we studied the thermal curing parameters of the sol-gel and their effect on thermal wavelength shift of the rings. With this method, we were able to demonstrate a thermal shift down to -6.8 pm/°C for transverse electric (TE) polarization in ring resonators with waveguide widths of 325 nm when the sol-gel was cured at 130°C for 10.5 hours. We also achieved thermal shifts below 1 pm/°C for transverse magnetic (TM) polarization in the C band under different curing conditions. Curing time compared to curing temperature shows to be the most important factor to control sol-gel's thermo-optic value in order to obtain an athermal device in a wide temperature range.

  7. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect.

    Science.gov (United States)

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-10-03

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

  8. Athermal and wavelength-trimmable photonic filters based on TiO₂-cladded amorphous-SOI.

    Science.gov (United States)

    Lipka, Timo; Moldenhauer, Lennart; Müller, Jörg; Trieu, Hoc Khiem

    2015-07-27

    Large-scale integrated silicon photonic circuits suffer from two inevitable issues that boost the overall power consumption. First, fabrication imperfections even on sub-nm scale result in spectral device non-uniformity that require fine-tuning during device operation. Second, the photonic devices need to be actively corrected to compensate thermal drifts. As a result significant amount of power is wasted if no athermal and wavelength-trimmable solutions are utilized. Consequently, in order to minimize the total power requirement of photonic circuits in a passive way, trimming methods are required to correct the device inhomogeneities from manufacturing and athermal solutions are essential to oppose temperature fluctuations of the passive/active components during run-time. We present an approach to fabricate CMOS backend-compatible and athermal passive photonic filters that can be corrected for fabrication inhomogeneities by UV-trimming based on low-loss amorphous-SOI waveguides with TiO2 cladding. The trimming of highly confined 10 μm ring resonators is proven over a free spectral range retaining athermal operation. The athermal functionality of 2nd-order 5 μm add/drop microrings is demonstrated over 40°C covering a broad wavelength interval of 60 nm.

  9. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    Science.gov (United States)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  10. Rectangular optical filter based on high-order silicon microring resonators

    Science.gov (United States)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  11. Rectangular optical filter based on high-order silicon microring resonators

    Institute of Scientific and Technical Information of China (English)

    BAO Jia-qi; YU Kan; WANG Li-jun; YIN Juan-juan

    2017-01-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network.The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response.In general,the spectrum response rectangular degree of the single MRR is very low,so it cannot be used in the DWDM system.Using the high-order MRRs,the bandwidth of flat-top pass band,the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously.In this paper,a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated.Using 15 coupled race-track MRRs with 10 μm in radius,the 3 dB flat-top pass band of 2 nm,the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  12. Comparison of microrings and microdisks for high-speed optical modulation in silicon photonics

    Science.gov (United States)

    Ying, Zhoufeng; Wang, Zheng; Zhao, Zheng; Dhar, Shounak; Pan, David Z.; Soref, Richard; Chen, Ray T.

    2018-03-01

    The past several decades have witnessed the gradual transition from electrical to optical interconnects, ranging from long-haul telecommunication to chip-to-chip interconnects. As one type of key component in integrated optical interconnect and high-performance computing, optical modulators have been well developed these past few years, including ultrahigh-speed microring and microdisk modulators. In this paper, a comparison between microring and microdisk modulators is well analyzed in terms of dimensions, static and dynamic power consumption, and fabrication tolerance. The results show that microdisks have advantages over microrings in these aspects, which gives instructions to the chip design of high-density integrated systems for optical interconnects and optical computing.

  13. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We comprehensively analyze multiple WDM channels RZ-to- NRZ format conversion using a single microring resonator. The scheme relies on simultaneous suppression of the first order harmonic components in the spectra of all the RZ channels. An optimized silicon microring resonator with free spectral...... range of 100 GHz and Q value of 7900 is designed and fabricated for this purpose. Multi-channel RZ-to-NRZ format conversion is demonstrated experimentally at 50 Gbit/s for WDM channels with 200 GHz channel spacing using the fabricated device. Bit error rate (BER)measurements show very good conversion...

  14. Silicon photonic micro-ring resonators to sense strain and ultrasound

    NARCIS (Netherlands)

    Westerveld, W.J.

    2014-01-01

    We demonstrated that photonic micro-ring resonators can be used in micro-machined ultrasound microphones. This might cause a breakthrough in array transducers for ultrasonography; first because optical multiplexing allows array interrogation via one optical fiber and second because the

  15. Quantum Dot Laser for a Light Source of an Athermal Silicon Optical Interposer

    Directory of Open Access Journals (Sweden)

    Nobuaki Hatori

    2015-04-01

    Full Text Available This paper reports a hybrid integrated light source fabricated on a silicon platform using a 1.3 μm wavelength quantum dot array laser. Temperature insensitive characteristics up to 120 °C were achieved by the optimum quantum dot structure and laser structure. Light output power was obtained that was high enough to achieve an optical error-free link of a silicon optical interposer. Furthermore, we investigated a novel spot size convertor in a silicon waveguide suitable for a quantum dot laser for lower energy cost operation of the optical interposer.

  16. Silicon-Based Asymmetric Add-Drop Microring Resonators with Ultra-Large Through-Port Extinctions

    International Nuclear Information System (INIS)

    Xi, Xiao; Yun-Tao, Li; Yu-De, Yu; Jin-Zhong, Yu

    2010-01-01

    We theoretically simulate and experimentally demonstrate ultra-large through-port extinctions in silicon-based asymmetrically-coupled add-drop microring resonators (MRs). Through-port responses in an add-drop MR are analyzed by simulations and large extinctions are found when the MR is near-critically coupled. Accurate fabrication techniques are applied in producing a series of 20 μm-radii add-drop microrings with drop-side gap-widths in slight differences. A through-port extinction of about 42.7 dB is measured in an MR with through- and drop-side gap-width to be respectively 280nm and 295nm. The large extinction suggests about a 20.5 dB improvement from the symmetrical add-drop MR of the same size and the through-side gap-width. The experimental results are finally compared with the post-fabrication simulations, which show a gap-width tolerance of > 30 am for the through-port extinction enhancement

  17. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film.

    Science.gov (United States)

    Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel

    2010-05-24

    Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.

  18. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator.

    Science.gov (United States)

    Shahoei, Hiva; Dumais, Patrick; Yao, Jianping

    2014-05-01

    We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.

  19. Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-06-20

    Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.

  20. On-Chip All-Optical Passive 3.55 Gbit/s NRZ-to-PRZ Format Conversion Using a High-Q Silicon-Based Microring Resonator

    International Nuclear Information System (INIS)

    Yao, Zhai; Shao-Wu, Chen; Guang-Hui, Ren

    2010-01-01

    We report the experimental result of all-optical passive 3.55 Gbit/s non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) format conversion using a high-quality-factor (Q-factor) silicon-based microring resonator notch filter on chip. The silicon-based microring resonator has 23800 Q-factor and 22 dB extinction ratio (ER), and the PRZ signals has about 108ps width and 4.98 dB ER

  1. Multiplexed evaluation of capture agent binding kinetics using arrays of silicon photonic microring resonators.

    Science.gov (United States)

    Byeon, Ji-Yeon; Bailey, Ryan C

    2011-09-07

    High affinity capture agents recognizing biomolecular targets are essential in the performance of many proteomic detection methods. Herein, we report the application of a label-free silicon photonic biomolecular analysis platform for simultaneously determining kinetic association and dissociation constants for two representative protein capture agents: a thrombin-binding DNA aptamer and an anti-thrombin monoclonal antibody. The scalability and inherent multiplexing capability of the technology make it an attractive platform for simultaneously evaluating the binding characteristics of multiple capture agents recognizing the same target antigen, and thus a tool complementary to emerging high-throughput capture agent generation strategies.

  2. GaN microring waveguide resonators bonded to silicon substrate by a two-step polymer process.

    Science.gov (United States)

    Hashida, Ryohei; Sasaki, Takashi; Hane, Kazuhiro

    2018-03-20

    Using a polymer bonding technique, GaN microring waveguide resonators were fabricated on a Si substrate for future hybrid integration of GaN and Si photonic devices. The designed GaN microring consisted of a rib waveguide having a core of 510 nm in thickness, 1000 nm in width, and a clad of 240 nm in thickness. A GaN crystalline layer of 1000 nm in thickness was grown on a Si(111) substrate by metal organic chemical vapor deposition using a buffer layer of 300 nm in thickness for the compensation of lattice constant mismatch between GaN and Si crystals. The GaN/Si wafer was bonded to a Si(100) wafer by a two-step polymer process to prevent it from trapping air bubbles. The bonded GaN layer was thinned from the backside by a fast atom beam etching to remove the buffer layer and to generate the rib waveguides. The transmission characteristics of the GaN microring waveguide resonators were measured. The losses of the straight waveguides were measured to be 4.0±1.7  dB/mm around a wavelength of 1.55 μm. The microring radii ranged from 30 to 60 μm, where the measured free-spectral ranges varied from 2.58 to 5.30 nm. The quality factors of the microring waveguide resonators were from 1710 to 2820.

  3. Multiplex detection of pathogen biomarkers in human blood, serum, and saliva using silicon photonic microring resonators

    Science.gov (United States)

    Estrada, I. A.; Burlingame, R. W.; Wang, A. P.; Chawla, K.; Grove, T.; Wang, J.; Southern, S. O.; Iqbal, M.; Gunn, L. C.; Gleeson, M. A.

    2015-05-01

    Genalyte has developed a multiplex silicon photonic chip diagnostics platform (MaverickTM) for rapid detection of up to 32 biological analytes from a drop of sample in just 10 to 20 minutes. The chips are manufactured with waveguides adjacent to ring resonators, and probed with a continuously variable wavelength laser. A shift in the resonant wavelength as mass binds above the ring resonators is measured and is directly proportional to the amount of bound macromolecules. We present here the ability to multiplex the detection of hemorrhagic fever antigens in whole blood, serum, and saliva in a 16 minute assay. Our proof of concept testing of a multiplex antigencapture chip has the ability to detect Zaire Ebola (ZEBOV) recombinant soluble glycoprotein (rsGP), Marburg virus (MARV) Angola recombinant glycoprotein (rGP) and dengue nonstructural protein I (NS1). In parallel, detection of 2 malaria antigens has proven successful, but has yet to be incorporated into multiplex with the others. Each assay performs with sensitivity ranging from 1.6 ng/ml to 39 ng/ml depending on the antigen detected, and with minimal cross-reactivity.

  4. Athermal channeled spectropolarimeter

    Science.gov (United States)

    Jones, Julia Craven

    2015-12-08

    A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.

  5. Advanced Athermal Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed innovative athermal telescope design uses advanced lightweight and high-stiffness material of Beryllium-Aluminum (Be-38Al). Peregrine's expertise with...

  6. Coupled microrings data buffer using fast light

    Science.gov (United States)

    Scheuer, Jacob; Shahriar, Selim

    2013-03-01

    We present a theoretical study of a trap-door optical buffer based on a coupled microrings add/drop filter (ADF) utilizing the white light cavity (WLC). The buffer "trap-door" can be opened and closed by tuning the resonances of the microrings comprising the ADF and trap/release optical pulses. We show that the WLC based ADF yields a maximally flat filter which exhibits superior performances in terms of bandwidth and flatness compared to previous design approaches. We also present a realistic, Silicon-over-Insulator based, design and performance analysis taking into consideration the realistic properties and limitations of the materials and the fabrication process, leading to delays exceeding 850ps for 80GHz bandwidth, and a corresponding delay-bandwidth product of approximately 70.

  7. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  8. Two-pole microring weight banks.

    Science.gov (United States)

    Tait, Alexander N; Wu, Allie X; Ferreira de Lima, Thomas; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2018-05-15

    Weighted addition is an elemental multi-input to single-output operation that can be implemented with high-performance photonic devices. Microring (MRR) weight banks bring programmable weighted addition to silicon photonics. Prior work showed that their channel limits are affected by coherent inter-channel effects that occur uniquely in weight banks. We fabricate two-pole designs that exploit this inter-channel interference in a way that is robust to dynamic tuning and fabrication variation. Scaling analysis predicts a channel count improvement of 3.4-fold, which is substantially greater than predicted by incoherent analysis used in conventional MRR devices. Advances in weight bank design expand the potential of reconfigurable analog photonic networks and multivariate microwave photonics.

  9. Transmission Property of Directly Modulated Signals Enhanced by a Micro-ring Resonator

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Seoane, Jorge

    2012-01-01

    A silicon micro-ring resonator is used to enhance the modulation speed of a 10-Gbit/s directly modulated laser to 40 Gbit/s. The generated signal is transmitted error free over 4.5 km SSMF. Dispersion tolerance is also studied....

  10. Protein detection on biotin-derivatized polyallylamine by optical microring resonators

    NARCIS (Netherlands)

    Ullien, D.; Harmsma, P.J.; Chakkalakkal Abdulla, S.M.C.; Boer, B.M. de; Bosma, D.; Sudhölter, E.J.R.; Smet, L.C.P.M. de; Jager, W.F.

    2014-01-01

    Silicon optical microring resonators (MRRs) are sensitive devices that can be used for biosensing. We present a novel biosensing platform based on the application of polyelectrolyte (PE) layers on such MRRs. The top PE layer was covalently labeled with biotin to ensure binding sites for antibodies

  11. Hollow nanotubular toroidal polymer microrings.

    Science.gov (United States)

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  12. 41.6 Gb/s RZ-DPSK to NRZ-DPSK Format Conversion in a Microring Resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Ozolins, Oskars; Ding, Yunhong

    2012-01-01

    RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator is demonstrated experimentally for the first time at 41.6 Gb/s. The converted signal eye diagrams and bit-error-rate measurements show the good performance of the scheme........RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator is demonstrated experimentally for the first time at 41.6 Gb/s. The converted signal eye diagrams and bit-error-rate measurements show the good performance of the scheme.....

  13. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  14. Athermal kinetics in low alloy steels

    International Nuclear Information System (INIS)

    Leiva, Jorge A Vega; Valencia Morales, Eduardo; Villar Cociña, Ernesto; Hernández Ruiz, Jesús; Donis, Carlos

    2008-01-01

    Athermic analyses for the kinetic study of the reactions in the solid state are preferred because they consume much less experimental work time than the isothermal tests, and lead to more accurate calculations of the energies of activation of reactions that have occurred. In the present work are required conditions where you can apply the equation of speed of an athermal reaction in a low alloy in solid steel. From records of steel (AISI 1050) dilatometric triples were calculated kinetics (E, Ko, n) that characterize the reactions that occurred during the tempering of samples using different methods of iso conversion, one of which is a new modification of the method of Friedman. Also, has shown that during the formation of carbide Epsilon in the first stage of the tempering has occurred a saturation of sites, which validates the use of some methods. Finally, the orders of the reactions occurred during tempering of steel studied treatment are calculated.

  15. Design of a compact athermalized infrared seeker

    Science.gov (United States)

    Gao, Qing-jia; Wang, Jian; Sun, Qiang

    2017-07-01

    In order to meet the application requirement of a certain long wavelength infrared (LWIR) seeker, a small volume, light weight and passively athermalized infrared (IR) objective is designed in this paper. The two-lens telephoto structure is adopted by merely using aluminum alloy as the housing material. By balancing the thermo-optical coefficient and thermal expansion coefficient of materials, an athermalized IR seeker with effective focal length of 90 mm and F number of 1.2 is achieved. The whole optical length is 75 mm, and the weight is only 234 g. The objective can remain fine imaging quality under temperature range from -40 °C to 60 °C, which is beneficial to the lightweight design of IR seekers.

  16. SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications

    Czech Academy of Sciences Publication Activity Database

    De Vos, D.; Girones, J.; Popelka, Štěpán; Schacht, E. H.; Baets, R.; Bienstman, P.

    2009-01-01

    Roč. 24, č. 8 (2009), s. 2528-2533 ISSN 0956-5663 Institutional research plan: CEZ:AV0Z40500505 Keywords : silicon-on-insulator * microring resonator * optical biosensor Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.429, year: 2009

  17. Flexible optical network components based on densely integrated microring resonators

    NARCIS (Netherlands)

    Geuzebroek, D.H.

    2005-01-01

    This thesis addresses the design, realization and characterization of reconfigurable optical network components based on multiple microring resonators. Since thermally tunable microring resonators can be used as wavelength selective space switches, very compact devices with high complexity and

  18. Silicon Nano-Photonic Devices

    DEFF Research Database (Denmark)

    Pu, Minhao

    with the couplers, a silicon ridge waveguide is utilized in nonlinear all-optical signal processing for optical time division multiplexing (OTDM) systems. Record ultra-highspeed error-free optical demultiplexing and waveform sampling are realized and demonstrated for the rst time. Microwave phase shifters and notch...... lters based on tunable microring resonators are proposed and analyzed. Based on a single microring resonator, a maximum radio frequency (RF) phase shift of 336degrees is obtained, but with large power variation. By utilizing a dual-microring resonator, a RF phase shifting range larger than 2pi...

  19. Sedimentation of athermal particles in clay suspensions

    Science.gov (United States)

    Clotet, Xavier; Kudrolli, Arshad

    2015-03-01

    We discuss sedimentation of athermal particles in dense clay suspensions which appear liquid-like to glass-like. These studies are motivated by the physics important to a diverse range of problems including remediation of oil sands after the extraction of hydrocarbons, and formation of filter cakes in bore wells. We approach this problem by first considering collective sedimentation of athermal spherical particles in a viscous liquid in quasi-two dimensional and three dimensional containers. We examine the system using optical and x-ray tomography techniques which gives particle level information besides global information on the evolution of the volume fraction. Unlike sediments in the dilute limit - which can be modeled as isolated particles that sediment with a constant velocity and slow down exponentially as they approach the bottom of the container - we find interaction between the particles through the viscous fluids leads to qualitatively differences. We find significant avalanching behavior and cooperative motion as the grains collectively settle, and non-exponential increase in settling time. We discuss the effect of stirring caused by the sedimenting particles on their viscosity and consequently the sedimentation rates as a function of particle concentration. Supported by Petroleum Research Fund Grant PRF # 54045-ND9.

  20. Inline microring reflector for photonic applications

    Science.gov (United States)

    Kang, Young Mo

    The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation

  1. Microring Diode Laser for THz Generation

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.

    2013-01-01

    We report on the modeling and optical characterization of AlGaAs/InAs quantum-dot microring diode lasers designed for terahertz (THz) difference frequency generation (DFG) between two whispering gallery modes (WGMs) around 1.3 $\\mu$m. In order to investigate the spectral features of this active...

  2. Echoes of the Glass Transition in Athermal Soft Spheres.

    Science.gov (United States)

    Morse, Peter K; Corwin, Eric I

    2017-09-15

    Recent theoretical advances have led to the creation of a unified phase diagram for the thermal glass and athermal jamming transitions. This diagram makes clear that, while related, the mode-coupling-or dynamic-glass transition is distinct from the jamming transition, occurring at a finite temperature and significantly lower density than the jamming transition. Nonetheless, we demonstrate a prejamming transition in athermal frictionless spheres which occurs at the same density as the mode-coupling transition and is marked by percolating clusters of locally rigid particles. At this density in both the thermal and athermal systems, individual motions of an extensive number of particles become constrained, such that only collective motion is possible. This transition, which is well below jamming, exactly matches the definition of collective behavior at the dynamical transition of glasses. Thus, we reveal that the genesis of rigidity in both thermal and athermal systems is governed by the same underlying topological transition in their shared configuration space.

  3. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system

    Science.gov (United States)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong

    2017-08-01

    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  4. Passive athermalization of doublets in 8-13 micron waveband

    Science.gov (United States)

    Schuster, Norbert

    2014-10-01

    Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.

  5. Analytical solutions of coupled-mode equations for microring ...

    Indian Academy of Sciences (India)

    equivalent to waveguide and single microring coupled system. The 3 × 3 coupled system is equivalent to waveguide and double microring coupled system. In this paper, we adopt a novel approach for obtaining coupled-mode equations for linearly distributed and circularly distributed multiwaveguide systems with different ...

  6. Systematic comparison of FWM conversion efficiency in silicon waveguides and MRRs

    DEFF Research Database (Denmark)

    Xiong, Meng; Ding, Yunhong; Ou, Haiyan

    2013-01-01

    Wavelength conversion based on four-wave mixing is theoretically compared in silicon micro-ring resonators and nanowires under the effect of nonlinear loss. The impact of the bus waveguide length and MRR position are also quantified....

  7. Organic printed photonics: From microring lasers to integrated circuits.

    Science.gov (United States)

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-09-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

  8. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) has developed new silicon carbide (SiC) foam-based optics with hybrid skins that are composite, athermal and lightweight (FOCAL) that...

  9. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to manufacture new silicon carbide (SiC) foam-based optics that are composite, athermal and lightweight (FOCAL) that provide...

  10. Athermal avalanche in bilayer superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B., E-mail: verma@nist.gov; Lita, A. E.; Stevens, M. J.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2016-03-28

    We demonstrate that two superconducting nanowires separated by a thin insulating barrier can undergo an avalanche process. In this process, Joule heating caused by a photodetection event in one nanowire and the associated production of athermal phonons which are transmitted through the barrier cause the transition of the adjacent nanowire from the superconducting to the normal state. We show that this process can be utilized in the fabrication of superconducting nanowire single photon detectors to improve the signal-to-noise ratio, reduce system jitter, maximize device area, and increase the external efficiency over a very broad range of wavelengths. Furthermore, the avalanche mechanism may provide a path towards a superconducting logic element based on athermal gating.

  11. A-thermal elastic behavior of silicate glasses.

    Science.gov (United States)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-24

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  12. Thermal and athermal crackling noise in ferroelastic nanostructures

    International Nuclear Information System (INIS)

    Zhao, Z; Salje, E K H; Ding, X; Sun, J

    2014-01-01

    The evolution of ferroelastic microstructures under external shear is determined by large-scale molecular dynamics simulations in two and three dimensions. Ferroelastic pattern formation was found to be almost identical in two and three dimensions, with only the ferroelastic transition temperature changing. The twin patterns generated by shear deformation depend strongly on temperature, with high wall densities nucleating under optimized temperature conditions. The dynamical tweed and mobile kink movement inside the twin walls is continuous and thermally activated at high temperatures, and becomes jerky and athermal at low temperatures. With decreasing temperature, the statistical distributions of dynamical tweed and kinks vary from a Vogel–Fulcher law P(E)   -tilde  exp−(E/(T−T VF )) to an athermal power-law distribution P(E)   -tilde  E −ϵ . During the yield event, the nucleation of needles and kinks is always jerky, and the energy of the jerks is power-law distributed. Low-temperature yield proceeds via one large avalanche. With increasing temperature, the large avalanche is thermally broken up into a multitude of small segments. The power-law exponents reflect the changes in temperature, even in the athermal regime. (fast track communications)

  13. Athermal design and analysis of glass-plastic hybrid lens

    Science.gov (United States)

    Yang, Jian; Cen, Zhaofeng; Li, Xiaotong

    2018-01-01

    With the rapid development of security market, the glass-plastic hybrid lens has gradually become a choice for the special requirements like high imaging quality in a wide temperature range and low cost. The reduction of spherical aberration is achieved by using aspherical surface instead of increasing the number of lenses. Obviously, plastic aspherical lens plays a great role in the cost reduction. However, the hybrid lens has a priority issue, which is the large thermal coefficient of expansion of plastic, causing focus shift and seriously affecting the imaging quality, so the hybrid lens is highly sensitive to the change of temperature. To ensure the system operates normally in a wide temperature range, it is necessary to eliminate the influence of temperature on the hybrid lens system. A practical design method named the Athermal Material Map is summarized and verified by an athermal design example according to the design index. It includes the distribution of optical power and selection of glass or plastic. The design result shows that the optical system has excellent imaging quality at a wide temperature range from -20 ° to 70 °. The method of athermal design in this paper has generality which could apply to optical system with plastic aspherical surface.

  14. Double positive effect of adding hexaethyelene glycol when optimizing the hybridization efficiency of a microring DNA detection assay

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeghem, Anabelle, E-mail: anabelle.vaneeghem@gmail.com [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium); Werquin, Sam [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Hoste, Jan-Willem, E-mail: janwillem.hoste@ugent.be [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Goes, Arne [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Agrosavfe NV, Technologiepark 4 (Bio-incubator), Zwijnaarde (Belgium); Vanderleyden, Els [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium); Bienstman, Peter [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium)

    2017-05-31

    Highlights: • The hybridization efficiency of a DNA assay was investigated based on SOI microring resonators. • A 4-fold increase in efficiency was obtained by using HEG as backfilling agent, as well as improving robustness. • The dual polarization microring technique shows that HEG reorients the DNA in an upright position. • Hybridizing at 35 °C and with a buffer containing 50 v/v% of formamide greatly improves the robustness. - Abstract: In this paper, a method for detection of DNA molecules using silicon-on-insulator (SOI) microring resonators is described. The influence of temperature and the use of formamide on the hybridization efficiency were studied. It was shown that 50 v/v% of formamide in the hybridization buffer can ensure hybridization when working close to physiological temperature. Furthermore, the use of hexaethylene glycol (HEG) as backfilling agent was studied in order to resolve issues of non-specific adsorption to the surface. The results indicated that not only non-specific binding was reduced significantly but also that HEG improves the orientation of the DNA probes on the surface. This led to a 4-fold increase in hybridization efficiency and thus in an equal decrease in the detection limit, compared to hybridization without the use of HEG. An improvement in robustness of the assay was also observed. This DNA reorientation hypothesis was confirmed by studying the thickness and density of the layers by using dual polarization microring sensing. Finally, the different steps in the sensing experiment were characterized in more detail by static contact angle (SCA) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed quantitatively that the surface modifications were successful.

  15. Highly sensitive detection using microring resonator and nanopores

    Science.gov (United States)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  16. Coherent light squeezing states within a modified microring system

    Science.gov (United States)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Amiri, I. S.; Chaiwong, K.; Chiangga, S.; Singh, G.; Yupapin, P.

    2018-06-01

    We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM). When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  17. Coherent light squeezing states within a modified microring system

    Directory of Open Access Journals (Sweden)

    J. Ali

    2018-06-01

    Full Text Available We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM. When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  18. Low-power DAC-less PAM-4 transmitter using a cascaded microring modulator.

    Science.gov (United States)

    Dubé-Demers, Raphaël; LaRochelle, Sophie; Shi, Wei

    2016-11-15

    Future super-computer interconnect systems and data centers request ultrahigh data rate links at low cost and power consumption, for which transmitters with a high level of integration and spectral efficient formats are key components. We report 60 Gb/s pulse-amplitude modulation (PAM-4) of an optical signal using a dual-microring silicon photonics circuit, making a low-power, digital-to-analog converter (DAC)-less PAM modulator. The power consumption is evaluated below 100 fJ/bit, including thermal adjustments. To the best of our knowledge, these results feature the lowest reported power consumption for PAM signaling in a DAC-less scheme for data rate beyond 40 Gb/s.

  19. The NJOY nuclear data processing system: The MICROR module

    International Nuclear Information System (INIS)

    Mathews, D.R.; Stepanek, J.; Pelloni, S.; Higgs, C.E.

    1984-12-01

    The NJOY nuclear data processing system is a comprehensive computer code package for producing pointwise and multigroup neutron and photon cross sections and related nuclear parameters from ENDF/B-IV and V evaluated nuclear data. The MICROR overlay is a reformatting module that produces cross sections library files for the MICROX, MICROX-2 and MICROBURN postprocessor codes. Using the data on the pointwise and groupwise NJOY tapes, MICROR produces the tapes containing basic nuclear data, FDTAPE, GAR and GGTAPE used by two-region spectrum codes MICROX and MICROX-2 and by two-region spectrum burn-up code MICROBURN. (author)

  20. Athermal brittle-to-ductile transition in amorphous solids.

    Science.gov (United States)

    Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2011-10-01

    Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.

  1. 110 °C range athermalization of wavefront coding infrared imaging systems

    Science.gov (United States)

    Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong

    2017-09-01

    110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.

  2. Athermalization of resonant optical devices via thermo-mechanical feedback

    Science.gov (United States)

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  3. Athermal metal optics made of nickel plated AlSi40

    Science.gov (United States)

    Gebhardt, Andreas; Kinast, Jan; Rohloff, Ralf-Rainer; Seifert, Walter; Beier, Matthias; Scheiding, Sebastian; Peschel, Thomas

    2017-11-01

    Metal optics is an inherent part of space instrumentation for years. Diamond turned aluminum (Al6061) mirrors are widely used for application in the mid- and near-infrared (mid-IR and NIR, respectively) spectral range. Aluminum mirrors plated with electroless nickel (NiP) expand the field of application towards multispectral operating instruments down to the ultraviolet wavelengths. Due to the significant mismatch in the coefficient of thermal expansion (CTE) between aluminum and NiP, however, this advantage occurs at the cost of bimetallic bending. Challenging requirements can be met by using bare beryllium or aluminum beryllium composites (AlBeMet) as a CTE tailored substrate material and amorphous NiP as polishable layer. For health reasons, the use of beryllium causes complications in the process chain. Thus, the beryllium approach is subjected to specific applications only. Metal optics has proven to be advantageous in respect of using conventional CNC and ultra-precision fabrication methods to realize complex and light-weighted instrument structures. Moreover, the mirror designs can be effectively optimized for a deterministic system assembly and optimization. Limitations in terms of dimensional stability over temperature and time are mainly given by the inherent material properties (figures of merit) of the substrate material in interaction with the polishing layer. To find an optimal compromise, a thermal matched aluminum-silicon alloy (silicon contents ≍ 40 wt%) plated with NiP (AlSi40/NiP ) was investigated in a joined project of the Max Planck Institute for Astronomy MPIA and the Fraunhofer Institute for Applied Optics and Precision Engineering IOF. The main tasks of the project were the minimization of the bimetallic bending, the development of reliable stabilizing and aging procedures, and the establishment of a proven fabrication method. This paper describes fundamental results regarding the optimization of the athermal material combination

  4. Athermal design for mid-wave infrared lens with long EFFL

    Science.gov (United States)

    Bai, Yu; Xing, Tingwen

    2016-10-01

    When the environment temperature has changed, then each parameter in infrared lens has also changed, thus the image quality became bad, so athermal technology is one of key technology in designing infrared lens. The temperature influence of each parameter in infrared lens is analyzed in the paper. In the paper, an athermal mid-wave infrared optical system with long focal length by Code-v optical design software was presented. The parameters of the athermal infrared system are 4.0 f/number, 704mm effective focal length (EFL) , 1° field of view and 3.7-4.8 μm spectrum region 100% cold shield efficiency. When the spatial frequency is 16lp/mm, the Modulation Transfer Function (MTF) of all the field of view was above 0.5 from the working temperature range -40° to 60°. From the image quality and thermal analysis result, we knew that the lens had good athermal performance.

  5. A Microring Resonator Based Negative Permeability Metamaterial Sensor

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Lan

    2011-08-01

    Full Text Available Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs. The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.

  6. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  7. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  8. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  9. Properties of regular polygons of coupled microring resonators.

    Science.gov (United States)

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2007-11-01

    The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

  10. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator.

    Science.gov (United States)

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-07-04

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.

  11. Optical solver for a system of ordinary differential equations based on an external feedback assisted microring resonator.

    Science.gov (United States)

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2017-06-15

    Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.

  12. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    Science.gov (United States)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  13. Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.

    Science.gov (United States)

    Lydiate, Joseph

    2017-07-01

    This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.

  14. Effective temperature and fluctuation-dissipation theorem in athermal granular systems: A review

    International Nuclear Information System (INIS)

    Chen Qiong; Hou Mei-Ying

    2014-01-01

    The definition and the previous measurements of a dynamics-relevant temperature-like quantity in granular media are reviewed for slow and fast particle systems. Especially, the validity of the fluctuation-dissipation theorem in such an athermal system is explored. Experimental evidences for the fluctuation-dissipation theorem relevant effect temperature support the athermal statistical mechanics, which has been widely explored in recent years by physicists. Difficulties encountered in defining temperature or establishing thermodynamics or statistical mechanics in non-equilibrium situations are discussed. (topical review - statistical physics and complex systems)

  15. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer

    NARCIS (Netherlands)

    Lam, Nghi Q.; Balakrishnan, M.; Faccini, M.; Diemeer, Mart; Klein, E.J.; Sengo, G.; Sengo, G.; Driessen, A.; Verboom, Willem; Reinhoudt, David

    2008-01-01

    A laterally coupled microring resonator was fabricated by direct photodefinition of negative photoresist SU8, containing tricyanovinylidenediphenylaminobenzene chromophore, by exploiting the low ultraviolet absorption window of this chromophore. The ring resonator was first photodefined by slight

  16. Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows

    NARCIS (Netherlands)

    Lerner, E.; Bailey, N.P.; Dyre, J.C.

    2014-01-01

    Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the distributions of energy drops, stress drops, and strain intervals between the

  17. Use of microring resonators for biospecific interaction analysis

    Science.gov (United States)

    Chalyan, Tatevik; Besselink, Geert A. J.; Heideman, Rene G.; Pavesi, Lorenzo

    2017-08-01

    Integrated optical biosensors based on Mach-Zehnder Interferometers and Microring Resonators are widely used for food/drug monitoring and protein studies thank to their high intrinsic sensitivity, easy integration and miniaturization, and low cost.1, 2 In this study, we present a system to perform antibody interaction analysis using a photonic chip made of an array of six microring resonators (MRRs) based on the TriPleX platform. A compact system is presented where the input light is provided by a Vertical Cavity Surface Emitting Laser (VCSEL) pigtailed to a single mode fiber and operating at a ≍ 850nm wavelength. The output signal is detected by PIN photodetectors placed in the optical signal read-out module (the so-called OSROM) and processed by an easy-to-use Fourier Transform algorithm. Bulk sensitivity (Sb=98+/-2.1 nm/RIU) and Limit of Detection (LOD=(7.5+/- 0.5) x10-6 RIU) are measured and appeared to be very similar for the six MRRs on the same chip,3 which is an important property for multianalyte detection. An analysis of the anti-biotin interaction with immobilized biotin is performed by using different concentrations of anti-biotin antibody. The dependence of the resonance wavelength shift from the antibody concentration, as well as the association and the dissociation rate constants are calculated. For the average dissociation constant (KD) of anti-biotin antibody toward immobilized biotin, a value of (1.9+/-0.5) x10-7M is estimated, which is of the same order of magnitude of other published data.4 Furthermore, the specificity of the interaction is confirmed by using negative control antibodies and by performing competition with free, i.e., dissolved, biotin. In addition, the functional surface of the sensors could be regenerated for repeated measurements up to eight times by using 10 mM glycine/HCl pH 1.5.

  18. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases

    Science.gov (United States)

    Gupta, Ronak; Alam, Meheboob

    2018-01-01

    The nature of particle-wall interactions is shown to have a profound impact on the well-known "Knudsen paradox" [or the "Knudsen minimum" effect, which refers to the decrease of the mass-flow rate of a gas with increasing Knudsen number Kn, reaching a minimum at Kn˜O (1 ) and increasing logarithmically with Kn as Kn→∞ ] in the acceleration-driven Poiseuille flow of rarefied gases. The nonmonotonic variation of the flow rate with Kn occurs even in a granular or dissipative gas in contact with thermal walls. The latter result is in contradiction with recent work [Alam et al., J. Fluid Mech. 782, 99 (2015), 10.1017/jfm.2015.523] that revealed the absence of the Knudsen minimum in granular Poiseuille flow for which the flow rate was found to decrease at large values of Kn. The above conundrum is resolved by distinguishing between "thermal" and "athermal" walls, and it is shown that, for both molecular and granular gases, the momentum transfer to athermal walls is much different than that to thermal walls which is directly responsible for the anomalous flow-rate variation with Kn in the rarefied regime. In the continuum limit of Kn→0 , the athermal walls are shown to be closely related to "no-flux" ("adiabatic") walls for which the Knudsen minimum does not exist either. A possible characterization of athermal walls in terms of (1) an effective specularity coefficient for the slip velocity and (2) a flux-type boundary condition for granular temperature is suggested based on simulation results.

  19. Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis

    Science.gov (United States)

    Plata, Carlos; Prados, Antonio

    2017-10-01

    We analyse the emergence of Kovacs-like memory effects in athermal systems within the linear response regime. This is done by starting from both the master equation for the probability distribution and the equations for the physically relevant moments. The general results are applied to a general class of models with conserved momentum and non-conserved energy. Our theoretical predictions, obtained within the first Sonine approximation, show an excellent agreement with the numerical results.

  20. Integrated GaN photonic circuits on silicon (100) for second harmonic generation

    OpenAIRE

    Xiong, Chi; Pernice, Wolfram; Ryu, Kevin K.; Schuck, Carsten; Fong, King Y.; Palacios, Tomas; Tang, Hong X.

    2014-01-01

    We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The \\{chi}(2) nonlinear susceptibility is measured to be as high as 16 plus minus 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and ...

  1. Micro-ring sensor used in the diagnosis of gastric cancer

    Science.gov (United States)

    Shi, Sichao; Cheng, Qing; Lin, Rong; Su, Da; Huang, Ying

    2016-01-01

    To find a detecting method that can be applied to the clinical screening and diagnosis, the cascaded micro-ring sensor with Vernier effect was used to distinguish gastric cancerous and normal cells. The simulation by FDTD of the cascaded microring sensor with different refractive indexes of the analyte (normal cells and gastric cancer cells) will be presented. In the simulation, with the refractive index's change Δn=0.02 for the two different analyte, the shift of sensor's resonant wavelength is 6.71nm. And the cascaded micro-ring sensor's sensitivity S is 335.5nm/RIU, and it is much larger compared to 19nm/RIU for a single ring sensor.

  2. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  3. Neuromorphic photonic networks using silicon photonic weight banks.

    Science.gov (United States)

    Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2017-08-07

    Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  4. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    Science.gov (United States)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  5. Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows

    DEFF Research Database (Denmark)

    Lerner, Edan; Bailey, Nicholas; Dyre, J. C.

    2014-01-01

    Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the distributions of energy drops, stress drops, and strain intervals between...... the flow events. We show that simulations at a single density in conjunction with an equilibrium-liquid simulation at the same density allow one to predict the plastic flow-event statistics at other densities. This is done by applying the recently established “hidden scale invariance” of simple liquids...

  6. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  7. Low insertion loss SOI microring resonator integrated with nano-taper couplers

    DEFF Research Database (Denmark)

    Pu, Minhao; Frandsen, Lars Hagedorn; Ou, Haiyan

    2009-01-01

    We demonstrate a microring resonator working at TM mode integrated with nano-taper couplers with 3.6dB total insertion loss. The measured insertion loss of the nano-taper coupler was only 1.3dB for TM mode....

  8. Athermalization of infrared dual field optical system based on wavefront coding

    Science.gov (United States)

    Jiang, Kai; Jiang, Bo; Liu, Kai; Yan, Peipei; Duan, Jing; Shan, Qiu-sha

    2017-02-01

    Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40° to 60°. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.

  9. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates.

    Science.gov (United States)

    Hsiao, Amy Y; Tung, Yi-Chung; Kuo, Chuan-Hsien; Mosadegh, Bobak; Bedenis, Rachel; Pienta, Kenneth J; Takayama, Shuichi

    2012-04-01

    Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis.

  10. Identification of near surface events using athermal phonon signals in low temperature Ge bolometers for the EDELWEISS experiment

    International Nuclear Information System (INIS)

    Marnieros, S.; Juillard, A.; Berge, L.; Collin, S.; Dumoulin, L.

    2004-01-01

    We present a study of a 100 g low temperature Ge detector, allowing identification of surface events down to the energy threshold. The bolometer is fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Analysis of the athermal signals amplitudes allows us to identify and reject all events occurring in the first millimeter under the electrodes

  11. Identification of near surface events using athermal phonon signals in low temperature Ge bolometers for the EDELWEISS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marnieros, S. E-mail: marniero@csnsm.in2p3.fr; Juillard, A.; Berge, L.; Collin, S.; Dumoulin, L

    2004-03-11

    We present a study of a 100 g low temperature Ge detector, allowing identification of surface events down to the energy threshold. The bolometer is fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Analysis of the athermal signals amplitudes allows us to identify and reject all events occurring in the first millimeter under the electrodes.

  12. Athermalization and achromatization of visible/SWIR optics using instantaneous Abbe number

    Science.gov (United States)

    Ramsey, J. L.

    2017-11-01

    With the move to more and more lightweight and cost-effective design, a move to multiband or multi-spectral optics is required. These systems are becoming more prevalent in the market as new detector technologies have been developed. However, the lens designs are only starting to be considered with the addition of new materials in the MWIR and the LWIR. For the VIS/SWIR region the designs have been possible, but a lack of detector technology has resulted in few designs being considered for actual manufacturing. These designs are also difficult due to changes in the Abbe number in the different wavebands. Where the glass map is robust in the visible region, there exists a lack of crown glasses in the SWIR, and one is left with mostly flint glasses. This proves challenging from a chromatic perspective. The challenge becomes even more difficult if one wants to incorporate athermalization.

  13. Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Tang, M.; Woodward, C.

    2008-01-01

    Recent experimental studies have revealed that micrometer-scale face-centered cubic (fcc) crystals show strong strengthening effects, even at high initial dislocation densities. We use large-scale three-dimensional discrete dislocation simulations (DDS) to explicitly model the deformation behavior of fcc Ni microcrystals in the size range of 0.5-20 μm. This study shows that two size-sensitive athermal hardening processes, beyond forest hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and high initial strain-hardening rates, similar to experimental observations for various materials. One mechanism, source-truncation hardening, is especially potent in micrometer-scale volumes. A second mechanism, termed exhaustion hardening, results from a breakdown of the mean-field conditions for forest hardening in small volumes, thus biasing the statistics of ordinary dislocation processes

  14. Optical micro-cavities on silicon

    Science.gov (United States)

    Dai, Daoxin; Liu, Erhu; Tan, Ying

    2018-01-01

    Silicon-based optical microcavities are very popular for many applications because of the ultra-compact footprint, easy scalability, and functional versatility. In this paper we give a discussion about the challenges of the optical microcavities on silicon and also give a review of our recent work, including the following parts. First, a near-"perfect" high-order MRR optical filter with a box-like filtering response is realized by introducing bent directional couplers to have sufficient coupling between the access waveguide and the microrings. Second, an efficient thermally-tunable MRR-based optical filter with graphene transparent nano-heater is realized by introducing transparent graphene nanoheaters. Thirdly, a polarization-selective microring-based optical filter is realized to work with resonances for only one of TE and TM polarizations for the first time. Finally, a on-chip reconfigurable optical add-drop multiplexer for hybrid mode- /wavelength-division-multiplexing systems is realized for the first time by monolithically integrating a mode demultiplexer, four MRR optical switches, and a mode multiplexer.

  15. The Electromechanical Behavior of a Micro-Ring Driven by Traveling Electrostatic Force

    Science.gov (United States)

    Ye, Xiuqian; Chen, Yibao; Chen, Da-Chih; Huang, Kuo-Yi; Hu, Yuh-Chung

    2012-01-01

    There is no literature mentioning the electromechanical behavior of micro structures driven by traveling electrostatic forces. This article is thus the first to present the dynamics and stabilities of a micro-ring subjected to a traveling electrostatic force. The traveling electrostatic force may be induced by sequentially actuated electrodes which are arranged around the flexible micro-ring. The analysis is based on a linearized distributed model considering the electromechanical coupling effects between electrostatic force and structure. The micro-ring will resonate when the traveling speeds of the electrostatic force approach some critical speeds. The critical speeds are equal to the ratio of the natural frequencies to the wave number of the correlative natural mode of the ring. Apart from resonance, the ring may be unstable at some unstable traveling speeds. The unstable regions appear not only near the critical speeds, but also near some fractions of some critical speeds differences. Furthermore the unstable regions expand with increasing driving voltage. This article may lead to a new research branch on electrostatic-driven micro devices. PMID:22438705

  16. Label-free, single-object sensing with a microring resonator: FDTD simulation.

    Science.gov (United States)

    Nguyen, Dan T; Norwood, Robert A

    2013-01-14

    Label-free, single-object sensing with a microring resonator is investigated numerically using the finite difference time-domain (FDTD) method. A pulse with ultra-wide bandwidth that spans over several resonant modes of the ring and of the sensing object is used for simulation, enabling a single-shot simulation of the microring sensing. The FDTD simulation not only can describe the circulation of the light in a whispering-gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important factors of the sensing system, such as scattering and radiation losses. The FDTD results show that the simulation can yield a resonant shift of the WGM cavity modes. Furthermore, it can also extract eigenmodes of the sensing object, and therefore information from deep inside the object. The simulation method is not only suitable for a single object (single molecule, nano-, micro-scale particle) but can be extended to the problem of multiple objects as well.

  17. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Zhu, Xiaolong; Xiao, Sanshui

    2015-01-01

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical modula......Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro...... with an extinction ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with a 4 V peak-to-peak voltage....

  18. Compact silicon photonic resonance-sssisted variable optical attenuator.

    Science.gov (United States)

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-11-28

    A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

  19. Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Ottaviano, Luisa; Pu, Minhao; Semenova, Elizaveta

    2016-01-01

    AlGaAs is a promising material for integrated nonlinearphotonics due to its intrinsic high nonlinearity. However,the challenging fabrication of deep etched AlGaAs devices makes it difficult to realize high-performance devices such as low-loss dispersion engineered waveguides and high quality...... microring resonators. Here, we report a process tomake high-quality AlGaAs-on-insulator (AlGaAsOI) waferswhere high confinement waveguides can be realized. Using optimized patterning processes, we fabricated AlGaAsOI waveguides with propagation losses as low as 1 dB/cmand microring resonators with quality...

  20. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  1. Study of an athermal quasi static plastic deformation in a 2D granular material

    Science.gov (United States)

    Zhang, Jie

    2017-11-01

    In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.

  2. Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores

    Science.gov (United States)

    Poon, Joyce K. S.; Huang, Yanyi; Paloczi, George T.; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.

    2004-11-01

    We present a simple and effective method for the postfabrication trimming of optical microresonators. We photobleach CLD-1 chromophores to tune the resonance wavelengths of polymer microring resonator optical notch filters. A maximum wavelength shift of -8.73 nm is observed. The resonators are fabricated with a soft-lithography molding technique and have an intrinsic Q value of 2.6×10^4 and a finesse of 9.3. The maximum extinction ratio of the resonator filters is -34 dB, indicating that the critical coupling condition has been satisfied.

  3. Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators

    Science.gov (United States)

    Huang, Yanyi; Poon, Joyce K. S.; Liang, Wei; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.

    2005-08-01

    By combining a solid-state photoreaction model with the modal solutions of an optical waveguide, we simulate the refractive index change due to the photobleaching of CLD-1 chromophores in an amorphous polycarbonate microring resonator. The simulation agrees well with experimental results. The photobleaching quantum efficiency of the CLD-1 chromophores is determined to be 0.65%. The combined modeling of the electromagnetic wave propagation and photoreaction precisely illustrates the spatial and temporal evolution of the optical properties of the polymer material as manifested in the refractive index and their effects on the modal and physical properties of the optical devices.

  4. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer

    Science.gov (United States)

    Balakrishnan, M.; Faccini, M.; Diemeer, M. B. J.; Klein, E. J.; Sengo, G.; Driessen, A.; Verboom, W.; Reinhoudt, D. N.

    2008-04-01

    A laterally coupled microring resonator was fabricated by direct photodefinition of negative photoresist SU8, containing tricyanovinylidenediphenylaminobenzene chromophore, by exploiting the low ultraviolet absorption window of this chromophore. The ring resonator was first photodefined by slight cross-linking. Thereafter, poling (to align the chromophores) and further cross-linking (to increase the glass transition temperature) were simultaneously carried out. The material showed excellent photostability and the electro-optic modulation with an r33 of 11pm/V was demonstrated at 10MHz.

  5. A Novel high-speed polymeric EO modulator based on a combination of a microring resonator and an MZI

    NARCIS (Netherlands)

    Leinse, Arne; Diemeer, Mart; Rousseau, A.; Driessen, A.

    2005-01-01

    A Mach-Zehnder interferometer with an electrooptic polymer microring resonator adjacent to one of its branches is realized in a polymer layer stack. The microresonator is defined by reactive ion etching in the nonlinear PMMA-DR1 polymer and waveguide definition is done without etching, by using a

  6. Naked-eye 3D imaging employing a modified MIMO micro-ring conjugate mirrors

    Science.gov (United States)

    Youplao, P.; Pornsuwancharoen, N.; Amiri, I. S.; Thieu, V. N.; Yupapin, P.

    2018-03-01

    In this work, the use of a micro-conjugate mirror that can produce the 3D image incident probe and display is proposed. By using the proposed system together with the concept of naked-eye 3D imaging, a pixel and a large volume pixel of a 3D image can be created and displayed as naked-eye perception, which is valuable for the large volume naked-eye 3D imaging applications. In operation, a naked-eye 3D image that has a large pixel volume will be constructed by using the MIMO micro-ring conjugate mirror system. Thereafter, these 3D images, formed by the first micro-ring conjugate mirror system, can be transmitted through an optical link to a short distance away and reconstructed via the recovery conjugate mirror at the other end of the transmission. The image transmission is performed by the Fourier integral in MATLAB and compares to the Opti-wave program results. The Fourier convolution is also included for the large volume image transmission. The simulation is used for the manipulation, where the array of a micro-conjugate mirror system is designed and simulated for the MIMO system. The naked-eye 3D imaging is confirmed by the concept of the conjugate mirror in both the input and output images, in terms of the four-wave mixing (FWM), which is discussed and interpreted.

  7. On the interpretation of differential scanning calorimetry results for thermoelastic martensitic transformations: Athermal versus thermally activated kinetics

    International Nuclear Information System (INIS)

    Van Humbeeck, J.; Planes, A.

    1996-01-01

    Experimentally, two distinct classes of martensitic transformations are considered: athermal and isothermal. In the former class, on cooling, at some well-defined start temperature (M s ), isolated small regions of the martensitic product begin to appear in the parent phase. The transformation at any temperature appears to be instantaneous in practical time scales, and the amount of transformed material (x) does not depend on time, i.e., it increases at each step of lowering temperature. The transition is not completed until the temperature is lowered below M f (martensite finish temperature). The transformation temperatures are only determined by chemical (composition and degree of order) and microstructural factors. The external controlling parameter (T or applied stress) determines the free energy difference between the high and the low temperature phases, which provides the driving force for the transition. In the development of athermal martensite activation kinetics is secondary. Athermal martensite, as observed in the well known shape memory alloys Cu-Zn-Al, Cu-Al-Ni and Ni-Ti, cannot be attributed to a thermally activated mechanism for which kinetics are generally described by the Arrhenius rate equation. However, the latter has been applied by Lipe and Morris to results for the Martensitic Transformation of Cu-Al-Ni-B-Mn obtained by conventional Differential Scanning Calorimetry (DSC). It is the concern of the authors of this letter to point out the incongruences arising from the analysis of calorimetric results, corresponding to forward and reverse thermoelastic martensitic transformations, in terms of standard kinetic analysis based on the Arrhenius rate equation

  8. Silicon photonics: some remaining challenges

    Science.gov (United States)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  9. Improved models for the prediction of activity coefficients in nearly athermal mixtures: Part I. Empirical modifications of free-volume models

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.; Coutsikos, Philipos; Tassios, Dimitrios

    1994-01-01

    Mixtures containing exclusively normal, branched and cyclic alkanes, as well as saturated hydrocarbon polymers (e.g. poly(ethylene) and poly(isobutylene)), are known to exhibit almost athermal behavior. Several new activity coefficient models containing both combinatorial and free-volume contribu......Mixtures containing exclusively normal, branched and cyclic alkanes, as well as saturated hydrocarbon polymers (e.g. poly(ethylene) and poly(isobutylene)), are known to exhibit almost athermal behavior. Several new activity coefficient models containing both combinatorial and free...

  10. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lanlan [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Hongzhong, E-mail: hzliu@mail.xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Jiang, Weitao, E-mail: wtjiang@mail.xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Gao, Wei [Key Laboratory of Mechanics on Western Disasters and Environment, Lanzhou University, Lanzhou 730000 (China); Chen, Bangdao [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Li, Xin [Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049 (China); Ding, Yucheng [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); An, Ningli [Department of Packaging Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2014-12-15

    Graphical abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA), in which the dimension of each micro-ring is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness is successfully fabricated, as shown in the SEM image of figure (a). Due to the MRA with ultrahigh aspect ratio of dielectric-metal sidewall, the FUN-membrane can be transferred to either rigid or flexible substrate to be used as the cathode for lightweight display panel, as shown in the schematic of figure (b). - Highlights: • Exploring a new fabrication method for the freestanding ultrathin nano-membrane (FUN-membrane). • FUN-membrane is composed of micro-ring array with ultrahigh aspect ratio of the insulator-metal sidewall. • The sharp metal edge of each micro-ring is preferred to be served as the micro-emitter. - Abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 10{sup 4} and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due

  11. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    International Nuclear Information System (INIS)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-01-01

    Graphical abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA), in which the dimension of each micro-ring is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness is successfully fabricated, as shown in the SEM image of figure (a). Due to the MRA with ultrahigh aspect ratio of dielectric-metal sidewall, the FUN-membrane can be transferred to either rigid or flexible substrate to be used as the cathode for lightweight display panel, as shown in the schematic of figure (b). - Highlights: • Exploring a new fabrication method for the freestanding ultrathin nano-membrane (FUN-membrane). • FUN-membrane is composed of micro-ring array with ultrahigh aspect ratio of the insulator-metal sidewall. • The sharp metal edge of each micro-ring is preferred to be served as the micro-emitter. - Abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 10 4 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the

  12. Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing

    Science.gov (United States)

    Zhao, Chao Ying; Zhang, Lei; Zhang, Cheng Mei

    2018-05-01

    We propose a novel sensor structure composed of a slot microring and a phase-shifted sidewall Bragg gratings in a slot waveguide. We first present a theoretical analysis of transmission by using the transfer matrix. Then, the mode-field distributions of transmission spectrum obtained from 3D simulations based on FDTD method demonstrates that our sensor exhibit theoretical sensitivity of 297 . 13 nm / RIU, a minimum detection limit of 1 . 1 × 10-4 RIU, the maximum extinction ratio of 20 dB, the quality factor of 2 × 103 and a compact dimension-theoretical structure of 15 μm × 8 . 5 μm. Finally, the sensor's performance is simulated for NaCl solution.

  13. III-V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2-4 μm Wavelength Range.

    Science.gov (United States)

    Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther

    2017-08-04

    The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.

  14. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range

    Science.gov (United States)

    Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther

    2017-01-01

    The availability of silicon photonic integrated circuits (ICs) in the 2–4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy. PMID:28777291

  15. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  16. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    Science.gov (United States)

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  17. Calculation of light delay for coupled microrings by FDTD technique and Padé approximation.

    Science.gov (United States)

    Huang, Yong-Zhen; Yang, Yue-De

    2009-11-01

    The Padé approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Padé approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Padé approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Padé approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials.

  18. Comments on the interpretation of differential scanning calorimetry results for thermoelastic martensitic transformations: Athermal versus thermally activated kinetics

    International Nuclear Information System (INIS)

    Morris, A.; Lipe, T.

    1996-01-01

    In a previous article Van Humbeeck and Planes have made a number of criticisms of the authors' recent paper concerning the interpretation of the results obtained by Differential Scanning Calorimetry (DSC) from the Martensitic Transformation of Cu-Al-Ni-Mn-B alloys. Although the martensitic transformation of these shape memory alloys is generally classified as athermal, it has been confirmed that the capacity of the alloys to undergo a more complete thermoelastic transformation (i.e. better reversibility of the transformation) increased with the Mn content. This behavior has been explained by interpreting the DSC results obtained during thermal cycling in terms of a thermally activated mechanism controlling the direct and reverse transformations. When the heating rate increases during the reverse transformation the DSC curves shift towards higher temperatures while they shift towards the lower temperatures when the cooling rate was increased during the direct transformation. Since the starting transformation temperatures (As, Ms) do not shift, Van Humbeeck and Planes state that there is no real peak shift and assume that the DCS experiments were carried out without taking into account the thermal lag effect between sample and cell. On the following line they deduce a time constant, τ, of 60 seconds because the peak maximum shifts. In fact the assumption made by Van Humbeeck and Planes is false

  19. Shape effects on time-scale divergence at athermal jamming transition of frictionless non-spherical particles

    Science.gov (United States)

    Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang

    2017-10-01

    The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the "time-scale" for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.

  20. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  1. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    Science.gov (United States)

    Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.

    2006-02-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.

  2. Tens of GHz Tantalum pentoxide-based micro-ring all-optical modulator for Si photonics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chung-Lun; Chi, Wen-Chun; Chiu, Yi-Jen; Lin, Yuan-Yao; Hung, Yung-Jr; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Hsieh, Cheng-Hsuan; Lin, Gong-Ru [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei (China); Shih, Min-Hsiung [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan (China); Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lee, Chao-Kuei [Department of Photonics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2017-03-15

    A tantalum pentoxide-based (Ta{sub 2}O{sub 5}-based) micro-ring all-optical modulator was fabricated. The refractive index inside the micro-ring cavity was modified using the Kerr effect by injecting a pumped pulse. The transmittance of the ring resonator was controlled to achieve all-optical modulation at the wavelength of the injected probe. When 12 GHz pulses with a peak power of 1.2 W were coupled in the ring cavity, the transmission spectrum of the Ta{sub 2}O{sub 5} resonator was red-shifted by 0.04 nm because of the Kerr effect. The relationship between the modulation depth and gap of the Ta{sub 2}O{sub 5} directional coupler is discussed. An optimized gap of 1100 nm was obtained, and a maximum buildup factor of 11.7 with 84% modulation depth was achieved. The nonlinear refractive index of Ta{sub 2}O{sub 5} at 1.55 μm was estimated as 3.4 x 10{sup -14} cm{sup 2}/W based on the Kerr effect, which is almost an order of magnitude higher than that of Si{sub 3}N{sub 4}. All results indicate that Ta{sub 2}O{sub 5} has potential for use in nonlinear waveguide applications with modulation speeds as high as tens of GHz. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    Science.gov (United States)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-12-01

    A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 104 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the rational design and material versatility, the FUN-membrane thus could be transferred to either rigid or flexible substrate, even curved surface, such as the skin of bio-robot's arm or leg. Additionally, the FUN-membrane composed of MRA with extremely high aspect ratio of insulator-metal sidewall, also provides potential applications in optical devices, lightweight and flexible display devices, and electronic eye imagers.

  4. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing.

    Science.gov (United States)

    Chen, Yu; Lin, Hongtao; Hu, Juejun; Li, Mo

    2014-07-22

    Besides being the foundational material for microelectronics, crystalline silicon has long been used for the production of infrared lenses and mirrors. More recently, silicon has become the key material to achieve large-scale integration of photonic devices for on-chip optical interconnect and signal processing. For optics, silicon has significant advantages: it offers a very high refractive index and is highly transparent in the spectral range from 1.2 to 8 μm. To fully exploit silicon’s superior performance in a remarkably broad range and to enable new optoelectronic functionalities, here we describe a general method to integrate silicon photonic devices on arbitrary foreign substrates. In particular, we apply the technique to integrate silicon microring resonators on mid-infrared compatible substrates for operation in the mid-infrared. These high-performance mid-infrared optical resonators are utilized to demonstrate, for the first time, on-chip cavity-enhanced mid-infrared spectroscopic analysis of organic chemicals with a limit of detection of less than 0.1 ng.

  5. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  6. Silicon photonic integrated circuits with electrically programmable non-volatile memory functions.

    Science.gov (United States)

    Song, J-F; Lim, A E-J; Luo, X-S; Fang, Q; Li, C; Jia, L X; Tu, X-G; Huang, Y; Zhou, H-F; Liow, T-Y; Lo, G-Q

    2016-09-19

    Conventional silicon photonic integrated circuits do not normally possess memory functions, which require on-chip power in order to maintain circuit states in tuned or field-configured switching routes. In this context, we present an electrically programmable add/drop microring resonator with a wavelength shift of 426 pm between the ON/OFF states. Electrical pulses are used to control the choice of the state. Our experimental results show a wavelength shift of 2.8 pm/ms and a light intensity variation of ~0.12 dB/ms for a fixed wavelength in the OFF state. Theoretically, our device can accommodate up to 65 states of multi-level memory functions. Such memory functions can be integrated into wavelength division mutiplexing (WDM) filters and applied to optical routers and computing architectures fulfilling large data downloading demands.

  7. Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon

    Science.gov (United States)

    Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg

    2013-05-01

    Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.

  8. Design and optimization of high-performance slot-microring Si-photodetector based on internal photoemission effect

    Science.gov (United States)

    Hosseinifar, Mitra; Ahmadi, Vahid; Ebnali-Heidari, Majid

    2017-08-01

    This paper presents the design and optimization of a microring resonator enhanced-internal photoemission effect-photodetectors (MRRE-IPE-PDs) suitable for optical communication. Two PD configurations are considered: the first consists of an MRR that is partially surrounded by a nanolayer of silicide with a single Schottky barrier on p-Si MRR; and the second consists of a silicide film buried in the width midpoints of a Si-based MRR where photoemission occurs over the two Schottky barriers. Several silicides are considered for the stripe (PtSi, Pd2Si, TaSi2 and CoSi2). The important features of the device, such as quantum efficiency (QE), responsivity, CW sensitivity and dark current are discussed and the trade-off between 3 dB bandwidth and QE are analyzed for nanoscaled absorption layer. In this regard, some design curves are presented for the optimized MRRE-IPE-PDs. Additionally, this paper reveals substantial improvement via comparisons with QE and responsivity measurements reported in the literature. Bandwidth-efficiency product of 61-71 GHz, responsivities of 0.8-0.9 and QE of 64-71% and the minimum receiver sensitivity of -65 to -66 dBm are also predicted for single and double Schottky barriers, respectively.

  9. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  10. Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback

    International Nuclear Information System (INIS)

    Xiang Xing-Ye; Wang Kui-Ru; Yuan Jin-Hui; Jin Bo-Yuan; Sang Xin-Zhu; Yu Chong-Xiu

    2014-01-01

    We propose a novel high-performance digital optical sensor based on the Mach—Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of a conventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case

  11. Evaluación de los niveles de estrés crónico del recurso humano de la Microrred de Pachacamac, mayo 2012

    OpenAIRE

    Collado, Noemí; Figueroa, Jazmín

    2013-01-01

    Objetivos: Medir los niveles de estrés crónico en el recurso Humano de la Microrred de Pachacamac. Definir la relación entre los niveles de satisfacción laboral y los niveles de estrés o agotamiento. Comparar los niveles de estrés entre los trabajadores asistenciales y administrativos. Diseño: Estudio descriptivo, trasversal. Institución: Facultad de Medicina, UNMSM. Participantes: Trabajadores de salud. Intervenciones: En 54 trabajadores de salud -8 administrativos, 42 asistenciales y 4 que ...

  12. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding.

    Science.gov (United States)

    Lin, Jeng-Shane; Lin, Chih-Ching; Lin, Hsin-Hung; Chen, Yu-Chi; Jeng, Shih-Tong

    2012-10-01

    MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  13. Fast all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Yuan, Guohui

    2013-01-01

    We investigate all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell based on a time-domain multi-mode nonlinear model. Each state is written by the corresponding 100 ps-width input non-return-to-zero (NRZ) pulse carrying the directional and wavelength information, and the cell remains in the written state until another trigger arrives. The effects of key parameters including the detuning frequency and injection power ratio on the injection locking and flipping regions of different modes in both directions of the micro-ring device are studied. By optimizing the operation conditions, we simulate the minimal switching speed for each mode. The fast switching speed of less than 20 ps and up to ten mode flip-flop operation indicate that this single optical memory cell can support ten states at a data rate of at least 10 Gbps, which is particularly valuable for the realization of future all-optical networking and functional sub-system technology. (letter)

  14. Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss

    Directory of Open Access Journals (Sweden)

    Jeff Chiles

    2017-11-01

    Full Text Available We propose and experimentally demonstrate a photonic routing architecture that can efficiently utilize the space of multi-plane (3D photonic integration. A wafer with three planes of amorphous silicon waveguides was fabricated and characterized, demonstrating < 3 × 1 0 − 4 dB loss per out-of-plane waveguide crossing, 0.05 ± 0.02 dB per interplane coupler, and microring resonators on three planes with a quality factors up to 8.2 × 1 0 4 . We also explore a phase velocity mapping strategy to mitigate the cross talk between co-propagating waveguides on different planes. These results expand the utility of 3D photonic integration for applications such as optical interconnects, neuromorphic computing and optical phased arrays.

  15. Geochemistry of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  16. Optical interconnects based on VCSELs and low-loss silicon photonics

    Science.gov (United States)

    Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian

    2018-02-01

    Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.

  17. High-Sensitivity Temperature-Independent Silicon Photonic Microfluidic Biosensors

    Science.gov (United States)

    Kim, Kangbaek

    Optical biosensors that can precisely quantify the presence of specific molecular species in real time without the need for labeling have seen increased use in the drug discovery industry and molecular biology in general. Of the many possible optical biosensors, the TM mode Si biosensor is shown to be very attractive in the sensing application because of large field amplitude on the surface and cost effective CMOS VLSI fabrication. Noise is the most fundamental factor that limits the performance of sensors in development of high-sensitivity biosensors, and noise reduction techniques require precise studies and analysis. One such example stems from thermal fluctuations. Generally SOI biosensors are vulnerable to ambient temperature fluctuations because of large thermo-optic coefficient of silicon (˜2x10 -4 RIU/K), typically requiring another reference ring and readout sequence to compensate temperature induced noise. To address this problem, we designed sensors with a novel TM-mode shallow-ridge waveguide that provides both large surface amplitude for bulk and surface sensing. With proper design, this also provides large optical confinement in the aqueous cladding that renders the device athermal using the negative thermo-optic coefficient of water (~ --1x10-4RIU/K), demonstrating cancellation of thermo-optic effects for aqueous solution operation near 300K. Additional limitations resulting from mechanical actuator fluctuations, stability of tunable lasers, and large 1/f noise of lasers and sensor electronics can limit biosensor performance. Here we also present a simple harmonic feedback readout technique that obviates the need for spectrometers and tunable lasers. This feedback technique reduces the impact of 1/f noise to enable high-sensitivity, and a DSP lock-in with 256 kHz sampling rate can provide down to micros time scale monitoring for fast transitions in biomolecular concentration with potential for small volume and low cost. In this dissertation, a novel

  18. Improved models for the prediction of activity coefficients in nearly athermal mixtures .2. A theoretically-based G(E)-model based on the van der Waals partition function

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Georgios, Nikolopoulos; Fredenslund, Aage

    1997-01-01

    of the generalized van der Waals partition function and attempts to account for all non-energetic effects of solutions of both short- and long-chain alkanes, including alkane polymers. Both the free-volume effects and the density-dependent rotational degrees of freedom are considered. The resulting G(E)-model which......, despite its derivation from a partition function resembles the Flory-Huggins formula, is suitable for vapor-liquid and solid-liquid equilibrium calculations for nearly athermal polymer solutions as well as for alkane systems. We show that using plausible assumptions for the free-volume and the external...

  19. 4-PAM Dispersion-Uncompensated Transmission with Micro-Ring Resonator Enhanced 1.55-µm DML

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Cristofori, Valentina; Ozolins, Oskars

    2017-01-01

    Real-time transmission of 14-GBd 4-PAM signal is demonstrated by combining a commercial 1.55-µm DML with a silicon MRR. BER below the HD-FEC threshold is measured after 26-km SSMF transmission without offline digital signal processing.......Real-time transmission of 14-GBd 4-PAM signal is demonstrated by combining a commercial 1.55-µm DML with a silicon MRR. BER below the HD-FEC threshold is measured after 26-km SSMF transmission without offline digital signal processing....

  20. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  1. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  2. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  3. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  4. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  5. Broadband biphoton generation and statistics of quantum light in the UV-visible range in an AlGaN microring resonator.

    Science.gov (United States)

    De Leonardis, Francesco; Soref, Richard A; Soltani, Mohammad; Passaro, Vittorio M N

    2017-09-12

    We present a physical investigation on the generation of correlated photon pairs that are broadly spaced in the ultraviolet (UV) and visible spectrum on a AlGaN/AlN integrated photonic platform which is optically transparent at these wavelengths. Using spontaneous four wave mixing (SFWM) in an AlGaN microring resonator, we show design techniques to satisfy the phase matching condition between the optical pump, the signal, and idler photon pairs, a condition which is essential and is a key hurdle when operating at short wavelength due to the strong normal dispersion of the material. Such UV-visible photon pairs are quite beneficial for interaction with qubit ions that are mostly in this wavelength range, and will enable heralding the photon-ion interaction. As a target application example, we present the systematic AlGaN microresonator design for generating signal and idler photon pairs using a blue wavelength pump, while the signal appears at the transition of ytterbium ion ( 171 Yb + , 369.5 nm) and the idler appears in the far blue or green range. The photon pairs have minimal crosstalk to the pump power due to their broad spacing in spectral wavelength, thereby relaxing the design of on-chip integrated filters for separating pump, signal and idler.

  6. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si.

    Science.gov (United States)

    Wan, Yating; Jung, Daehwan; Norman, Justin; Shang, Chen; MacFarlane, Ian; Li, Qiang; Kennedy, M J; Gossard, Arthur C; Lau, Kei May; Bowers, John E

    2017-10-30

    We report statistical comparisons of lasing characteristics in InAs quantum dot (QD) micro-rings directly grown on on-axis (001) GaP/Si and V-groove (001) Si substrates. CW thresholds as low as 3 mA and high temperature operation exceeding 80 °C were simultaneously achieved on the GaP/Si template template with an outer-ring radius of 50 µm and a ring width of 4 μm, while a sub-milliamp threshold of 0.6 mA was demonstrated on the V-groove Si template with a smaller cavity size of 5-μm outer-ring radius and 3-μm ring width. Evaluations were also made with devices fabricated simultaneously on native GaAs substrates over a significant sampling analysis. The overall assessment spotlights compelling insights in exploring the optimum epitaxial scheme for low-threshold lasing on industry standard Si substrates.

  7. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit; Chen, Ray T.

    2015-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  8. Chiral silicon nanostructures

    International Nuclear Information System (INIS)

    Schubert, E.; Fahlteich, J.; Hoeche, Th.; Wagner, G.; Rauschenbach, B.

    2006-01-01

    Glancing angle ion beam assisted deposition is used for the growth of amorphous silicon nanospirals onto [0 0 1] silicon substrates in a temperature range from room temperature to 475 deg. C. The nanostructures are post-growth annealed in an argon atmosphere at various temperatures ranging from 400 deg. C to 800 deg. C. Recrystallization of silicon within the persisting nanospiral configuration is demonstrated for annealing temperatures above 800 deg. C. Transmission electron microscopy and Raman spectroscopy are used to characterize the silicon samples prior and after temperature treatment

  9. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  10. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  11. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  12. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  13. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  14. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  15. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  16. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  17. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  18. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  19. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  20. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  1. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  2. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  3. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  4. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  5. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  6. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  7. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice.......g. in high-bit-rate optical communication circuits and networks, it is vital that the nonlinear optical effects of silicon are being strongly enhanced. This can among others be achieved in photonic-crystal slow-light waveguides and in nano-engineered photonic-wires (Fig. 1). In this talk I shall present some...... recent advances in this direction. The efficient coupling of light between optical fibers and the planar silicon devices and circuits is of crucial importance. Both end-coupling (Fig. 1) and grating-coupling solutions will be discussed along with polarization issues. A new scheme for a hybrid III...

  8. Integrated silicon optoelectronics

    CERN Document Server

    Zimmermann, Horst

    2000-01-01

    'Integrated Silicon Optoelectronics'assembles optoelectronics and microelectronics The book concentrates on silicon as the major basis of modern semiconductor devices and circuits Starting from the basics of optical emission and absorption and from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included The book, furthermore, contains a review of the state of research on eagerly expected silicon light emitters In order to cover the topic of the book comprehensively, integrated waveguides, gratings, and optoelectronic power devices are included in addition Numerous elaborate illustrations promote an easy comprehension 'Integrated Silicon Optoelectronics'will be of value to engineers, physicists, and scientists in industry and at universities The book is also recommendable for graduate students speciali...

  9. Silicon microfabricated beam expander

    International Nuclear Information System (INIS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-01-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed

  10. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  11. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  12. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  13. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  14. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  15. Subwavelength silicon photonics

    International Nuclear Information System (INIS)

    Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.-X.; Densmore, A.; Delage, A.; Lamontagne, B.; Florjanczyk, M.; Ma, R.

    2011-01-01

    With the goal of developing photonic components that are compatible with silicon microelectronic integrated circuits, silicon photonics has been the subject of intense research activity. Silicon is an excellent material for confining and manipulating light at the submicrometer scale. Silicon optoelectronic integrated devices have the potential to be miniaturized and mass-produced at affordable cost for many applications, including telecommunications, optical interconnects, medical screening, and biological and chemical sensing. We review recent advances in silicon photonics research at the National Research Council Canada. A new type of optical waveguide is presented, exploiting subwavelength grating (SWG) effect. We demonstrate subwavelength grating waveguides made of silicon, including practical components operating at telecom wavelengths: input couplers, waveguide crossings and spectrometer chips. SWG technique avoids loss and wavelength resonances due to diffraction effects and allows for single-mode operation with direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6 - 3.5 simply by lithographic patterning. The light can be launched to these waveguides with a coupling loss as small as 0.5 dB and with minimal wavelength dependence, using coupling structures similar to that shown in Fig. 1. The subwavelength grating waveguides can cross each other with minimal loss and negligible crosstalk which allows massive photonic circuit connectivity to overcome the limits of electrical interconnects. These results suggest that the SWG waveguides could become key elements for future integrated photonic circuits. (authors)

  16. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  17. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  18. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  19. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  20. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  1. Measurements of the ballistic-phonon component resulting from nuclear and electron recoils in crystalline silicon

    International Nuclear Information System (INIS)

    Lee, A.T.; Cabrera, B.; Dougherty, B.L.; Penn, M.J.; Pronko, J.G.; Tamura, S.

    1996-01-01

    We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7 Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024 +0.041 -0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)

  2. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  3. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  4. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  5. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  6. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  7. Floating Silicon Method

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  8. The LHCb Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Mark, E-mail: Mark.Tobin@epfl.ch

    2016-09-21

    The LHCb experiment is dedicated to the study of heavy flavour physics at the Large Hadron Collider (LHC). The primary goal of the experiment is to search for indirect evidence of new physics via measurements of CP violation and rare decays of beauty and charm hadrons. The LHCb detector has a large-area silicon micro-strip detector located upstream of a dipole magnet, and three tracking stations with silicon micro-strip detectors in the innermost region downstream of the magnet. These two sub-detectors form the LHCb Silicon Tracker (ST). This paper gives an overview of the performance and operation of the ST during LHC Run 1. Measurements of the observed radiation damage are shown and compared to the expectation from simulation.

  9. Removal of inclusions from silicon

    Science.gov (United States)

    Ciftja, Arjan; Engh, Thorvald Abel; Tangstad, Merete; Kvithyld, Anne; Øvrelid, Eivind Johannes

    2009-11-01

    The removal of inclusions from molten silicon is necessary to satisfy the purity requirements for solar grade silicon. This paper summarizes two methods that are investigated: (i) settling of the inclusions followed by subsequent directional solidification and (infiltration by ceramic foam filters. Settling of inclusions followed by directional solidification is of industrial importance for production of low-cost solar grade silicon. Filtration is reported as the most efficient method for removal of inclusions from the top-cut silicon scrap.

  10. Silicon photonic integration in telecommunications

    Directory of Open Access Journals (Sweden)

    Christopher Richard Doerr

    2015-08-01

    Full Text Available Silicon photonics is the guiding of light in a planar arrangement of silicon-based materials to perform various functions. We focus here on the use of silicon photonics to create transmitters and receivers for fiber-optic telecommunications. As the need to squeeze more transmission into a given bandwidth, a given footprint, and a given cost increases, silicon photonics makes more and more economic sense.

  11. Silicon Tracking Upgrade at CDF

    International Nuclear Information System (INIS)

    Kruse, M.C.

    1998-04-01

    The Collider Detector at Fermilab (CDF) is scheduled to begin recording data from Run II of the Fermilab Tevatron in early 2000. The silicon tracking upgrade constitutes both the upgrade to the CDF silicon vertex detector (SVX II) and the new Intermediate Silicon Layers (ISL) located at radii just beyond the SVX II. Here we review the design and prototyping of all aspects of these detectors including mechanical design, data acquisition, and a trigger based on silicon tracking

  12. Silicon microphones - a Danish perspective

    DEFF Research Database (Denmark)

    Bouwstra, Siebe; Storgaard-Larsen, Torben; Scheeper, Patrick

    1998-01-01

    Two application areas of microphones are discussed, those for precision measurement and those for hearing instruments. Silicon microphones are under investigation for both areas, and Danish industry plays a key role in both. The opportunities of silicon, as well as the challenges and expectations......, are discussed. For precision measurement the challenge for silicon is large, while for hearing instruments silicon seems to be very promising....

  13. CMS silicon tracker developments

    International Nuclear Information System (INIS)

    Civinini, C.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2002-01-01

    The CMS Silicon tracker consists of 70 m 2 of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors

  14. Silicon hybrid integration

    International Nuclear Information System (INIS)

    Li Xianyao; Yuan Taonu; Shao Shiqian; Shi Zujun; Wang Yi; Yu Yude; Yu Jinzhong

    2011-01-01

    Recently,much attention has concentrated on silicon based photonic integrated circuits (PICs), which provide a cost-effective solution for high speed, wide bandwidth optical interconnection and optical communication.To integrate III-V compounds and germanium semiconductors on silicon substrates,at present there are two kinds of manufacturing methods, i.e., heteroepitaxy and bonding. Low-temperature wafer bonding which can overcome the high growth temperature, lattice mismatch,and incompatibility of thermal expansion coefficients during heteroepitaxy, has offered the possibility for large-scale heterogeneous integration. In this paper, several commonly used bonding methods are reviewed, and the future trends of low temperature wafer bonding envisaged. (authors)

  15. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  16. Elite silicon and solar power

    International Nuclear Information System (INIS)

    Yasamanov, N.A.

    2000-01-01

    The article is of popular character, the following issues being considered: conversion of solar energy into electric one, solar batteries in space and on the Earth, growing of silicon large-size crystals, source material problems relating to silicon monocrystals production, outlooks of solar silicon batteries production [ru

  17. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  18. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto; Sevilla, Galo T.; Ghoneim, Mohamed T.; Inayat, Salman Bin; Ahmed, Sally; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2014-01-01

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100

  19. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  20. OPAL Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  1. Silicon graphene Bragg gratings.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-03-10

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  2. On nanostructured silicon success

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard; Frandsen, Lars Hagedorn

    2016-01-01

    Recent Letters by Piggott et al. 1 and Shen et al. 2 claim the smallest ever dielectric wave length and polarization splitters. The associated News & Views article by Aydin3 states that these works “are the first experimental demonstration of on-chip, silicon photonic components based on complex...

  3. Silicon oxynitride based photonics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Klein, E.J.; Hussein, M.G.; Driessen, A.; Marciniak, M.; Jaworski, M.; Zdanowicz, M.

    2008-01-01

    Silicon oxynitride is a very attractive material for integrated optics. Besides possessing excellent optical properties it can be deposited with refractive indices varying over a wide range by tuning the material composition. In this contribution we will summarize the key properties of this material

  4. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  5. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  6. DELPHI Silicon Tracker

    CERN Multimedia

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The silicon tracking detector was nearest to the collision point in the centre of the detector. It was used to pinpoint the collision and catch short-lived particles.

  7. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  8. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  9. Fluorescence and thermoluminescence in silicon oxide films rich in silicon

    International Nuclear Information System (INIS)

    Berman M, D.; Piters, T. M.; Aceves M, M.; Berriel V, L. R.; Luna L, J. A.

    2009-10-01

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 Ω-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N 2 at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  10. The CMS silicon tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2000-01-01

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction

  11. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  12. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  13. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  14. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Electrometallurgy of Silicon

    Science.gov (United States)

    1988-01-01

    wind, plants, and water impounded in elevated reservoirs. Photovoltaic or solar cells, which convert sunlight directly to electricity, belongs tc, the...on record is that of St. Claire DeVille, who claimed that silicon was produced by electrolysing an impure melt of NaAlC14, but his material did not...this composition and purified melts were electrolysed at about 14500C in graphite crucible and using graphite electrodes. Applied potentials were

  16. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    Number 15/696,426 Filing Date 6 September 2017 Inventor Charles J. Patrissi et al Address any questions concerning this matter to the...silicon-based anodes during cycling, lithium insertion and deinsertion. Mitigation of this problem has long been sought and will result in improved...design shown. [0032] It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been

  17. The CMS silicon tracker

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Biggeri, U.; Bruzzi, M.; Catacchini, E.; Civinini, C.; Focardi, E.; Lenzi, M.; Loreti, M.; Meschini, M.; Parrini, G.; Pieri, M.; Albergo, S.; Boemi, D.; Potenza, R.; Tricomi, A.; Angarano, M.; Creanza, D.; Palma, M. de; Fiore, L.; Maggi, G.; My, S.; Raso, G.; Selvaggi, G.; Tempesta, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Candelori, A.; Castro, A.; Da Rold, M.; Giraldo, A.; Martignon, G.; Paccagnella, A.; Stavitsky, I.; Babucci, E.; Bartalini, P.; Bilei, G.M.; Checcucci, B.; Ciampolini, P.; Lariccia, P.; Mantovani, G.; Passeri, D.; Santocchia, A.; Servoli, L.; Wang, Y.; Bagliesi, G.; Basti, A.; Bosi, F.; Borello, L.; Bozzi, C.; Castaldi, R.; Dell'Orso, R.; Giassi, A.; Messineo, A.; Palla, F.; Raffaelli, F.; Sguazzoni, G.; Starodumov, A.; Tonelli, G.; Vannini, C.; Verdini, P.G.; Xie, Z.; Breuker, H.; Caner, A.; Elliott-Peisert, A.; Feld, L.; Glessing, B.; Hammerstrom, R.; Huhtinen, M.; Mannelli, M.; Marchioro, A.; Schmitt, B.; Stefanini, G.; Connotte, J.; Gu, W.H.; Luebelsmeyer, K.; Pandoulas, D.; Siedling, R.; Wittmer, B.; Della Marina, R.; Freudenreich, K.; Lustermann, W.; Viertel, G.; Eklund, C.; Karimaeki, V.; Skog, K.; French, M.; Hall, G.; Mc Evoy, B.; Raymond, M.; Hrubec, J.; Krammer, M.; Piperov, S.; Tuuva, T.; Watts, S.; Silvestris, L.

    1998-01-01

    The new silicon tracker layout (V4) is presented. The system aspects of the construction are discussed together with the expected tracking performance. Because of the high radiation environment in which the detectors will operate, particular care has been devoted to the study of the characteristics of heavily irradiated detectors. This includes studies on performance (charge collection, cluster size, resolution, efficiency) as a function of the bias voltage, integrated fluence, incidence angle and temperature. (author)

  18. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  19. Silicon and Civilization,

    Science.gov (United States)

    1980-11-04

    of a diamond. 7. The particular physical and chemical properties of silicon resulted in the fact that in the periodic system it was found in the III...small quantities. Silica is found in blades of grass and grain, in reed and bamboo shoots, where it serves to stiffen the stalk. 2. Diatomite ... properties desired in technology. Quartz glass is very resistant to temperature change since it has a very small coefficient of thermal expansion, is

  20. Porous silicon: silicon quantum dots for photonic applications

    International Nuclear Information System (INIS)

    Pavesi, L.; Guardini, R.

    1996-01-01

    Porous silicon formation and structure characterization are briefly illustrated. Its luminescence properties rae presented and interpreted on the basis of exciton recombination in quantum dot structures: the trap-controlled hopping mechanism is used to describe the recombination dynamics. Porous silicon application to photonic devices is considered: porous silicon multilayer in general, and micro cavities in particular are described. The present situation in the realization of porous silicon LEDs is considered, and future developments in this field of research are suggested. (author). 30 refs., 30 figs., 13 tabs

  1. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  2. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  3. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  4. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  5. Characterization of Czochralski Silicon Detectors

    OpenAIRE

    Luukka, Panja-Riina; Haerkoenen, Jaakko

    2012-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmenteddetectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It isshown that the radiation hardness (RH) of the protons of these detectors is higher thanthat of devices made of traditional materials such as Float Zone (FZ) silicon or DiffusionOxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 x1017 cm-3). The MCZ devices therefore present an interesting alter...

  6. Laboratory course on silicon sensors

    CERN Document Server

    Crescio, E; Roe, S; Rudge, A

    2003-01-01

    The laboratory course consisted of four different mini sessions, in order to give the student some hands-on experience on various aspects of silicon sensors and related integrated electronics. The four experiments were. 1. Characterisation of silicon diodes for particle detection 2. Study of noise performance of the Viking readout circuit 3. Study of the position resolution of a silicon microstrip sensor 4. Study of charge transport in silicon with a fast amplifier The data in the following were obtained during the ICFA school by the students.

  7. Silicon processing for photovoltaics II

    CERN Document Server

    Khattak, CP

    2012-01-01

    The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the

  8. 110 GHz hybrid mode-locked fiber laser with enhanced extinction ratio based on nonlinear silicon-on-insulator micro-ring-resonator (SOI MRR)

    International Nuclear Information System (INIS)

    Liu, Yang; Hsu, Yung; Chow, Chi-Wai; Yang, Ling-Gang; Lai, Yin-Chieh; Yeh, Chien-Hung; Tsang, Hon-Ki

    2016-01-01

    We propose and experimentally demonstrate a new 110 GHz high-repetition-rate hybrid mode-locked fiber laser using a silicon-on-insulator microring-resonator (SOI MRR) acting as the optical nonlinear element and optical comb filter simultaneously. By incorporating a phase modulator (PM) that is electrically driven at a fraction of the harmonic frequency, an enhanced extinction ratio (ER) of the optical pulses can be produced. The ER of the optical pulse train increases from 3 dB to 10 dB. As the PM is only electrically driven by the signal at a fraction of the harmonic frequency, in this case 22 GHz (110 GHz/5 GHz), a low bandwidth PM and driving circuit can be used. The mode-locked pulse width and the 3 dB spectral bandwidth of the proposed mode-locked fiber laser are measured, showing that the optical pulses are nearly transform limited. Moreover, stability evaluation for an hour is performed, showing that the proposed laser can achieve stable mode-locking without the need for optical feedback or any other stabilization mechanism. (letter)

  9. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  10. Light emitting structures porous silicon-silicon substrate

    International Nuclear Information System (INIS)

    Monastyrskii, L.S.; Olenych, I.B.; Panasjuk, M.R.; Savchyn, V.P.

    1999-01-01

    The research of spectroscopic properties of porous silicon has been done. Complex of photoluminescence, electroluminescence, cathodoluminescence, thermostimulated depolarisation current analyte methods have been applied to study of geterostructures and free layers of porous silicon. Light emitting processes had tendency to decrease. The character of decay for all kinds of luminescence were different

  11. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  12. The LHCb Silicon Tracker

    CERN Document Server

    Elsasser, Ch; Gallas Torreira, A; Pérez Trigo, A; Rodríguez Pérez, P; Bay, A; Blanc, F; Dupertuis, F; Haefeli, G; Komarov, I; Märki, R; Muster, B; Nakada, T; Schneider, O; Tobin, M; Tran, M T; Anderson, J; Bursche, A; Chiapolini, N; Saornil, S; Steiner, S; Steinkamp, O; Straumann, U; Vollhardt, A; Britsch, M; Schmelling, M; Voss, H; Okhrimenko, O; Pugatch, V

    2013-01-01

    The aim of the LHCb experiment is to study rare heavy quark decays and CP vio- lation with the high rate of beauty and charmed hadrons produced in $pp$ collisions at the LHC. The detector is designed as a single-arm forward spectrometer with excellent tracking and particle identification performance. The Silicon Tracker is a key part of the tracking system to measure the particle trajectories to high precision. This paper reports the performance as well as the results of the radiation damage monitoring based on leakage currents and on charge collection efficiency scans during the data taking in the LHC Run I.

  13. Photovoltaics: sunshine and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Stirzaker, Mike

    2006-05-15

    Spain's photovoltaic sector grew rapidly in 2004 only to slow down in 2005. While a State-guaranteed feed-in tariff is in place to drive a take-off, some of the smaller administrative cogs are buckling under the pressure. Projects are being further slowed by soaring world silicon prices and module shortages. Nevertheless, market volume is higher than ever before, and bio capital from both home and abroad is betting that the Spanish take-off is around the corner. (Author)

  14. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  15. Magnetically retained silicone facial prosthesis

    African Journals Online (AJOL)

    2013-06-09

    Jun 9, 2013 ... Prosthetic camouflaging of facial defects and use of silicone maxillofacial material are the alternatives to the surgical retreatment. Silicone elastomers provide more options to clinician for customization of the facial prosthesis which is simple, esthetically good when coupled with bio magnets for retention.

  16. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  17. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  18. Recent developments in silicon calorimetry

    International Nuclear Information System (INIS)

    Brau, J.E.

    1990-11-01

    We present a survey of some of the recent calorimeter applications of silicon detectors. The numerous attractive features of silicon detectors are summarized, with an emphasis on those aspects important to calorimetry. Several of the uses of this technology are summarized and referenced. We consider applications for electromagnetic calorimetry, hadronic calorimetry, and proposals for the SSC

  19. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  20. Flowmeter with silicon flow tube

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Marcel; Haneveld, J.; Lötters, Joost Conrad

    2009-01-01

    A flowmeter comprising a system chip with a silicon substrate provided on a carrier, in an opening whereof at least one silicon flow tube is provided for transporting a medium whose flow rate is to be measured, said tube having two ends that issue via a wall of the opening into channels coated with

  1. Luneburg lens in silicon photonics.

    Science.gov (United States)

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  2. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  3. Chalcogen donnors in silicon

    International Nuclear Information System (INIS)

    Scolfaro, L.M.R.

    1985-01-01

    The electronic stucture of chalcogen impurities in silicon which give rise to deep levels in the forbidden band gap of that semiconductor is studied. The molecular cluster model within the formalism of the multiple scattering method in the Xα local density approximation was used . The surface orbitals were treated by using the Watson sphere model. Studies were carried out for the isolated substitutional sulfur and selenium impurities (Si:S and Si:Se). A pioneer investigation was performed for the nearest-neighbor impurity pairs of sulfur and selenium (Si:S 2 and Si:Se 2 ). All the systems were also analysed in the positive charge states (Si:S + , Si:Se + and Si:Se 2 + ) and for the isolated impurities the calculations were carried out to the spin polarized limit. The obtained results were used to interpret recent photoconductivity, photocapitance, EPR and DLTS data on these centers. It was observed that the adopted model is able to provide a satisfactory description of the electronic structure of the chalcogen impurity centers in silicon. (autor) [pt

  4. Flexible silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Blakers, A.W.; Armour, T. [Centre for Sustainable Energy Systems, The Australian National University, Canberra ACT 0200 (Australia)

    2009-08-15

    In order to be useful for certain niche applications, crystalline silicon solar cells must be able to sustain either one-time flexure or multiple non-critical flexures without significant loss of strength or efficiency. This paper describes experimental characterisation of the behaviour of thin crystalline silicon solar cells, under either static or repeated flexure, by flexing samples and recording any resulting changes in performance. Thin SLIVER cells were used for the experiment. Mechanical strength was found to be unaffected after 100,000 flexures. Solar conversion efficiency remained at greater than 95% of the initial value after 100,000 flexures. Prolonged one-time flexure close to, but not below, the fracture radius resulted in no significant change of properties. For every sample, fracture occurred either on the first flexure to a given radius of curvature, or not at all when using that radius. In summary, for a given radius of curvature, either the flexed solar cells broke immediately, or they were essentially unaffected by prolonged or multiple flexing. (author)

  5. ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra; The ATLAS collaboration

    2010-01-01

    The SemiConductor Tracker (SCT), made up from silicon micro-strip detectors is the key precision tracking device in ATLAS, one of the experiments at CERN LHC. The completed SCT is in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector and observed problems, with stress on the sensor and electronics performance. TWEPP Summary In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton- proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data i...

  6. Research on SOI-based micro-resonator devices

    Science.gov (United States)

    Xiao, Xi; Xu, Haihua; Hu, Yingtao; Zhou, Liang; Xiong, Kang; Li, Zhiyong; Li, Yuntao; Fan, Zhongchao; Han, Weihua; Yu, Yude; Yu, Jinzhong

    2010-10-01

    SOI (silicon-on-insulator)-based micro-resonator is the key building block of silicon photonics, which is considered as a promising solution to alleviate the bandwidth bottleneck of on-chip interconnects. Silicon-based sub-micron waveguide, microring and microdisk devices are investigated in Institute of Semiconductors, Chinese Academy of Sciences. The main progress in recent years is presented in this talk, such as high Q factor single mode microdisk filters, compact thirdorder microring filters with the through/drop port extinctions to be ~ 30/40 dB, fast microring electro-optical switches with the switch time of 10 Gbit/s high speed microring modulators.

  7. Relationship between silicon concentration and creatinine clearance

    International Nuclear Information System (INIS)

    Miura, Y.; Nakai, K.; Itoh, C.; Horikiri, J.; Sera, K.; Sato, M.

    1998-01-01

    Silicon levels in dialysis patients are markedly increasing. Using PIXE we determined the relationship between silicon concentration and creatinine clearance in 30 samples. Urine silicon concentration were significantly correlated to creatinine clearance (p<0.001). And also serum silicon concentration were significantly correlated to creatinine clearance (p<0.0001). (author)

  8. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  9. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  10. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  11. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  12. Zirconates heteroepitaxy on silicon

    Science.gov (United States)

    Fompeyrine, Jean; Seo, Jin Won; Seigwart, Heinz; Rossel, Christophe; Locquet, Jean-Pierre

    2002-03-01

    In the coming years, agressive scaling in CMOS technology will probably trigger the transition to more advanced materials, for example alternate gate dielectrics. Epitaxial thin films are attractive candidates, as long as the difficult chemical and structural issues can be solved, and superior properties can be obtained. Since very few binary oxides can match the electrical, physical and structural requirements which are needed, a combination of those binaries are used here to investigate other lattice matched oxides. We will report on the growth of crystalline zirconium oxide thin films stabilized with different cationic substitutions. All films have been grown in an oxide-MBE system by direct evaporation of the elements on silicon substrates and exposure to molecular or atomic oxygen. The conditions required to obtain epitaxial thin films will be discussed, and successful examples will be presented.

  13. Silicon in cereal straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko

    Silicon (Si) is known to be a beneficial element for plants. However, when plant residues are to be used as feedstock for second generation bioenergy, Si may reduce the suitability of the biomass for biochemical or thermal conversion technologies. The objective of this PhD study was to investigate......, a mutant in Si influx transporter BdLsi1 was identified. BdLsi1 belongs to the major intrinsic protein family. The mutant BdLsi1 protein had an amino acid change from proline to serine in the highly conserved NPA motif. The mutation caused a defect in channeling of Si as well as other substrates...... such as germanium and arsenite. The Si concentration in the mutant plant was significantly reduced by more than 80 %. Rice mutants defective in Si transporters OsLsi1 and OsLsi2 also showed significantly lower straw Si concentration. It is concluded that the quality of straw biomass for bioenergy purposes can...

  14. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  15. Muonium states in silicon carbide

    International Nuclear Information System (INIS)

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  16. Characterization of Czochralski silicon detectors

    OpenAIRE

    Luukka, Panja-Riina

    2006-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmented detectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It is shown that the radiation hardness (RH) of the protons of these detectors is higher than that of devices made of traditional materials such as Float Zone (FZ) silicon or Diffusion Oxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 × 1017 cm−3). The MCZ devices therefore present an interesting ...

  17. Polycrystalline Silicon Gettered by Porous Silicon and Heavy Phosphorous Diffusion

    Institute of Scientific and Technical Information of China (English)

    LIU Zuming(刘祖明); Souleymane K Traore; ZHANG Zhongwen(张忠文); LUO Yi(罗毅)

    2004-01-01

    The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utilization is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the cost, is to increase the minority carrier lifetime by controlling the material defects. The main defects in grain boundaries of polycrystalline silicon gettered by porous silicon and heavy phosphorous diffusion have been studied. The porous silicon was formed on the two surfaces of wafers by chemical etching. Phosphorous was then diffused into the wafers at high temperature (900℃). After the porous silicon and diffusion layers were removed, the minority carrier lifetime was measured by photo-conductor decay. The results show that the lifetime's minority carriers are increased greatly after such treatment.

  18. Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

    OpenAIRE

    Zahra Ostadmahmoodi Do; Tahereh Fanaei Sheikholeslami; Hassan Azarkish

    2016-01-01

    Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are prepared using wet chemical etching method which is commonly used as a simple and low cost method fo...

  19. Efficiency Enhancement of Silicon Solar Cells by Porous Silicon Technology

    Directory of Open Access Journals (Sweden)

    Eugenijus SHATKOVSKIS

    2012-09-01

    Full Text Available Silicon solar cells produced by a usual technology in p-type, crystalline silicon wafer were investigated. The manufactured solar cells were of total thickness 450 mm, the junction depth was of 0.5 mm – 0.7 mm. Porous silicon technologies were adapted to enhance cell efficiency. The production of porous silicon layer was carried out in HF: ethanol = 1 : 2 volume ratio electrolytes, illuminating by 50 W halogen lamps at the time of processing. The etching current was computer-controlled in the limits of (6 ÷ 14 mA/cm2, etching time was set in the interval of (10 ÷ 20 s. The characteristics and performance of the solar cells samples was carried out illuminating by Xenon 5000 K lamp light. Current-voltage characteristic studies have shown that porous silicon structures produced affect the extent of dark and lighting parameters of the samples. Exactly it affects current-voltage characteristic and serial resistance of the cells. It has shown, the formation of porous silicon structure causes an increase in the electric power created of solar cell. Conversion efficiency increases also respectively to the initial efficiency of cell. Increase of solar cell maximum power in 15 or even more percent is found. The highest increase in power have been observed in the spectral range of Dl @ (450 ÷ 850 nm, where ~ 60 % of the A1.5 spectra solar energy is located. It has been demonstrated that porous silicon technology is effective tool to improve the silicon solar cells performance.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2428

  20. Radiation resistant passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Swanson, R.M.; Gan, J.Y.; Gruenbaum, P.E.

    1991-01-01

    This patent describes a silicon solar cell having improved stability when exposed to concentrated solar radiation. It comprises a body of silicon material having a major surface for receiving radiation, a plurality of p and n conductivity regions in the body for collecting electrons and holes created by impinging radiation, and a passivation layer on the major surface including a first layer of silicon oxide in contact with the body and a polycrystalline silicon layer on the first layer of silicon oxide

  1. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  2. Imprinted silicon-based nanophotonics

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn

    2007-01-01

    We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern ...

  3. Ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H. F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N.; Marchetto, F. [INFN Torino, Torino (Italy); Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A. [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, Firenze (Italy)

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R and D topics are discussed. -- Highlights: •We are proposing thin pixel silicon sensors with 10's of picoseconds time resolution. •Fast charge collection is coupled with internal charge multiplication. •The truly 4-D sensors will revolutionize imaging and particle counting in many applications.

  4. Vibrational modes of porous silicon

    International Nuclear Information System (INIS)

    Sabra, M.; Naddaf, M.

    2012-01-01

    On the basis of theoretical and experimental investigations, the origin of room temperature photoluminescence (PL) from porous silicon is found to related to chemical complexes constituted the surface, in particular, SiHx, SiOx and SiOH groups. Ab initio atomic and molecular electronic structure calculations on select siloxane compounds were used for imitation of infrared (IR) spectra of porous silicon. These are compared to the IR spectra of porous silicon recorded by using Fourier Transform Infrared Spectroscopy (FTIR). In contrast to linear siloxane, the suggested circular siloxane terminated with linear siloxane structure is found to well-imitate the experimental spectra. These results are augmented with EDX (energy dispersive x-ray spectroscopy) measurements, which showed that the increase of SiOx content in porous silicon due to rapid oxidation process results in considerable decrease in PL peak intensity and a blue shift in the peak position. (author)

  5. Silicon pressure transducers: a review

    International Nuclear Information System (INIS)

    Aceves M, M.; Sandoval I, F.

    1994-01-01

    We present a review of the pressure sensors, which use the silicon piezo resistive effect and micro machining technique. Typical pressure sensors, applications, design and other different structures are presented. (Author)

  6. Scattering characteristics from porous silicon

    Directory of Open Access Journals (Sweden)

    R. Sabet-Dariani

    2000-12-01

    Full Text Available   Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet.   In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.

  7. Silicon Solar Cell Turns 50

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  8. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  9. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  10. Quasimetallic silicon micromachined photonic crystals

    International Nuclear Information System (INIS)

    Temelkuran, B.; Bayindir, Mehmet; Ozbay, E.; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.

    2001-01-01

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  11. Industrial Silicon Wafer Solar Cells

    OpenAIRE

    Neuhaus, Dirk-Holger; Münzer, Adolf

    2007-01-01

    In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future e...

  12. Silicon nanowires: structure and properties

    International Nuclear Information System (INIS)

    Nezhdanov, A.V.; Mashin, A.I.; Razuvaev, A.G.; Ershov, A.V.; Ignatov, S.K.

    2006-01-01

    An attempt to grow silicon nanowires has been made by electron beam evaporation on highly oriented pyrolytic substrate. Needle-like objects are located along the normal to a substrate (density 2 x 10 11 cm -2 ). For modeling quasi-one-dimensional objects calculations of nuclear structure and energy spectra have been accomplished. A fullerene-like structure Si 24 is proposed as a basic atomic configuration of silicon nanowires [ru

  13. Laser tests of silicon detectors

    International Nuclear Information System (INIS)

    Dolezal, Zdenek; Escobar, Carlos; Gadomski, Szymon; Garcia, Carmen; Gonzalez, Sergio; Kodys, Peter; Kubik, Petr; Lacasta, Carlos; Marti, Salvador; Mitsou, Vasiliki A.; Moorhead, Gareth F.; Phillips, Peter W.; Reznicek, Pavel; Slavik, Radan

    2007-01-01

    This paper collects experiences from the development of a silicon sensor laser testing setup and from tests of silicon strip modules (ATLAS End-cap SCT), pixel modules (DEPFET) and large-area diodes using semiconductor lasers. Lasers of 1060 and 680 nm wavelengths were used. A sophisticated method of focusing the laser was developed. Timing and interstrip properties of modules were measured. Analysis of optical effects involved and detailed discussion about the usability of laser testing for particle detectors are presented

  14. Direct Production of Silicones From Sand

    Energy Technology Data Exchange (ETDEWEB)

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  15. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  16. Silicon Photomultiplier charaterization

    Science.gov (United States)

    Munoz, Leonel; Osornio, Leo; Para, Adam

    2014-03-01

    Silicon Photo Multiples (SiPM's) are relatively new photon detectors. They offer many advantages compared to photo multiplier tubes (PMT's) such as insensitivity to magnetic field, robustness at varying lighting levels, and low cost. The SiPM output wave forms are poorly understood. The experiment conducted collected waveforms of responses of Hamamatsu SiPM to incident laser pulse at varying temperatures and bias voltages. Ambient noise was characterized at all temperatures and bias voltages by averaging the waveforms. Pulse shape of the SiPM response was determined under different operating conditions: the pulse shape is nearly independent of the bias voltage but exhibits strong variation with temperature, consistent with the temperature variation of the quenching resistor. Amplitude of responses of the SiPM to low intensity laser light shows many peaks corresponding to the detection of 1,2,3 etc. photons. Amplitude of these pulses depends linearly on the bias voltage, enabling determination of the breakdown voltage at each temperature. Poisson statistics has been used to determine the average number of detected photons at each operating conditions. Department of Education Grant No. P0315090007 and the Department of Energy/ Fermi National Accelerator Laboratory.

  17. Collimation: a silicon solution

    CERN Multimedia

    2007-01-01

    Silicon crystals could be used very efficiently to deflect high-energy beams. Testing at CERN has produced conclusive results, which could pave the way for a new generation of collimators. The set of five crystals used to test the reflection of the beams. The crystals are 0.75 mm wide and their alignment is adjusted with extreme precision. This figure shows the deflection of a beam by channelling and by reflection in the block of five crystals. Depending on the orientation of the crystals: 1) The beam passes without "seeing" the crystals and is not deflected 2) The beam is deflected by channelling (with an angle of around 100 μrad) 3) The beam is reflected (with an angle of around 50 μrad). The intensity of the deflected beam is illustrated by the intensity of the spot. The spot of the reflected beam is clearly more intense than that one of the channelled beam, demonstrating the efficiency of t...

  18. Next generation structural silicone glazing

    Directory of Open Access Journals (Sweden)

    Charles D. Clift

    2015-06-01

    Full Text Available This paper presents an advanced engineering evaluation, using nonlinear analysis of hyper elastic material that provides significant improvement to structural silicone glazing (SSG design in high performance curtain wall systems. Very high cladding wind pressures required in hurricane zones often result in bulky SSG profile dimensions. Architectural desire for aesthetically slender curtain wall framing sight-lines in combination with a desire to reduce aluminium usage led to optimization of silicone material geometry for better stress distribution.To accomplish accurate simulation of predicted behaviour under structural load, robust stress-strain curves of the silicone material are essential. The silicone manufacturer provided physical property testing via a specialized laboratory protocol. A series of rigorous curve fit techniques were then made to closely model test data in the finite element computer analysis that accounts for nonlinear strain of hyper elastic silicone.Comparison of this advanced design technique to traditional SSG design highlights differences in stress distribution contours in the silicone material. Simplified structural engineering per the traditional SSG design method does not provide accurate forecasting of material and stress optimization as shown in the advanced design.Full-scale specimens subject to structural load testing were performed to verify the design capacity, not only for high wind pressure values, but also for debris impact per ASTM E1886 and ASTM E1996. Also, construction of the test specimens allowed development of SSG installation techniques necessitated by the unique geometry of the silicone profile. Finally, correlation of physical test results with theoretical simulations is made, so evaluation of design confidence is possible. This design technique will introduce significant engineering advancement to the curtain wall industry.

  19. Colloidal characterization of silicon nitride and silicon carbide

    Science.gov (United States)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  20. Silicon-to-silicon wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Lindahl, M.

    1998-01-01

    Anodic bending of silicon to silicon 4-in. wafers using an electron-beam evaporated glass (Schott 8329) was performed successfully in air at temperatures ranging from 200 degrees C to 450 degrees C. The composition of the deposited glass is enriched in sodium as compared to the target material....... The roughness of the as-deposited films was below 5 nm and was found to be unchanged by annealing at 500 degrees C for 1 h in air. No change in the macroscopic edge profiles of the glass film was found as a function of annealing; however, small extrusions appear when annealing above 450 degrees C. Annealing...... of silicon/glass structures in air around 340 degrees C for 15 min leads to stress-free structures. Bonded wafer pairs, however, show no reduction in stress and always exhibit compressive stress. The bond yield is larger than 95% for bonding temperatures around 350 degrees C and is above 80% for bonding...

  1. Silicon-micromachined microchannel plates

    International Nuclear Information System (INIS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ∼0.5 to ∼25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented

  2. Implantation damage in silicon devices

    International Nuclear Information System (INIS)

    Nicholas, K.H.

    1977-01-01

    Ion implantation, is an attractive technique for producing doped layers in silicon devices but the implantation process involves disruption of the lattice and defects are formed, which can degrade device properties. Methods of minimizing such damage are discussed and direct comparisons made between implantation and diffusion techniques in terms of defects in the final devices and the electrical performance of the devices. Defects are produced in the silicon lattice during implantation but they are annealed to form secondary defects even at room temperature. The annealing can be at a low temperature ( 0 C) when migration of defects in silicon in generally small, or at high temperature when they can grow well beyond the implanted region. The defect structures can be complicated by impurity atoms knocked into the silicon from surface layers by the implantation. Defects can also be produced within layers on top of the silicon and these can be very important in device fabrication. In addition to affecting the electrical properties of the final device, defects produced during fabrication may influence the chemical properties of the materials. The use of these properties to improve devices are discussed as well as the degradation they can cause. (author)

  3. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-01-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart

  4. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  5. The LHCb Silicon Tracker Project

    International Nuclear Information System (INIS)

    Agari, M.; Bauer, C.; Baumeister, D.; Blouw, J.; Hofmann, W.; Knoepfle, K.T.; Loechner, S.; Schmelling, M.; Pugatch, V.; Bay, A.; Carron, B.; Frei, R.; Jiminez-Otero, S.; Tran, M.-T.; Voss, H.; Adeva, B.; Esperante, D.; Lois, C.; Vasquez, P.; Bernhard, R.P.; Bernet, R.; Ermoline, Y.; Gassner, J.; Koestner, S.; Lehner, F.; Needham, M.; Siegler, M.; Steinkamp, O.; Straumann, U.; Vollhardt, A.; Volyanskyy, D.

    2006-01-01

    Two silicon strip detectors, the Trigger Tracker(TT) and the Inner Tracker(Italy) will be constructed for the LHCb experiment. Transverse momentum information extracted from the TT will be used in the Level 1 trigger. The IT is part of the main tracking system behind the magnet. Both silicon detectors will be read out using a custom-developed chip by the ASIC lab in Heidelberg. The signal-over-noise behavior and performance of various geometrical designs of the silicon sensors, in conjunction with the Beetle read-out chip, have been extensively studied in test beam experiments. Results from those experiments are presented, and have been used in the final choice of sensor geometry

  6. A silicon tracker for Christmas

    CERN Multimedia

    2008-01-01

    The CMS experiment installed the world’s largest silicon tracker just before Christmas. Marcello Mannelli: physicist and deputy CMS project leader, and Alan Honma, physicist, compare two generations of tracker: OPAL for the LEP (at the front) and CMS for the LHC (behind). There is quite a difference between 1m2 and 205m2.. CMS received an early Christmas present on 18 December when the silicon tracker was installed in the heart of the CMS magnet. The CMS tracker team couldn’t have hoped for a better present. Carefully wrapped in shiny plastic, the world’s largest silicon tracker arrived at Cessy ready for installation inside the CMS magnet on 18 December. This rounded off the year for CMS with a major event, the crowning touch to ten years of work on the project by over five hundred scientists and engineers. "Building a scientific instrument of this size and complexity is a huge technical a...

  7. Belle II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others

    2016-09-21

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  8. The CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Bartalini, P.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Raffaelli, F.; Raso, G.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Wang, Y.; Watts, S.; Wittmer, B.

    1999-01-01

    The Silicon Strip Tracker (SST) is the intermediate part of the CMS Central Tracker System. SST is based on microstrip silicon devices and in combination with pixel detectors and the Microstrip Gas Chambers aims at performing pattern recognition, track reconstruction and momentum measurements for all tracks with p T ≥2 GeV/c originating from high luminosity interactions at √s=14 TeV at LHC. We aim at exploiting the advantages and the physics potential of the precise tracking performance provided by the microstrip silicon detectors on a large scale apparatus and in a much more difficult environment than ever. In this paper we describe the actual SST layout and the readout system. (author)

  9. Waveguide silicon nitride grating coupler

    Science.gov (United States)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  10. The effect of silicon crystallographic orientation on the formation of silicon nanoclusters during anodic electrochemical etching

    International Nuclear Information System (INIS)

    Timokhov, D. F.; Timokhov, F. P.

    2009-01-01

    Possible ways for increasing the photoluminescence quantum yield of porous silicon layers have been investigated. The effect of the anodization parameters on the photoluminescence properties for porous silicon layers formed on silicon substrates with different crystallographic orientations was studied. The average diameters for silicon nanoclusters are calculated from the photoluminescence spectra of porous silicon. The influence of the substrate crystallographic orientation on the photoluminescence quantum yield of porous silicon is revealed. A model explaining the effect of the substrate orientation on the photoluminescence properties for the porous silicon layers formed by anode electrochemical etching is proposed.

  11. Surface Effects in Segmented Silicon Sensors

    OpenAIRE

    Kopsalis, Ioannis

    2017-01-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO2 layers at the surface, thus changing the sensor properties and limiting their...

  12. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  13. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  14. Silicon photonics for multicore fiber communication

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices.......We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices....

  15. Simulation of atomistic processes during silicon oxidation

    OpenAIRE

    Bongiorno, Angelo

    2003-01-01

    Silicon dioxide (SiO2) films grown on silicon monocrystal (Si) substrates form the gate oxides in current Si-based microelectronics devices. The understanding at the atomic scale of both the silicon oxidation process and the properties of the Si(100)-SiO2 interface is of significant importance in state-of-the-art silicon microelectronics manufacturing. These two topics are intimately coupled and are both addressed in this theoretical investigation mainly through first-principles calculations....

  16. Thermophysical spectroscopy of defect states in silicon

    International Nuclear Information System (INIS)

    Igamberdyev, Kh.T.; Mamadalimov, A.T.; Khabibullaev, P.K.

    1989-01-01

    The present work deals with analyzing the possibilities of using the non-traditional thermophysical methods to study a defect structure in silicon. For this purpose, the temperature dependences of thermophysical properties of defect silicon are investigated. A number of new, earlier unknown physical phenomena in silicon are obtained, and their interpretation has enabled one to establish the main physical mechanisms of formation of deep defect states in silicon

  17. Laser wafering for silicon solar

    International Nuclear Information System (INIS)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-01-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W p (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs (∼20%), embodied energy, and green-house gas GHG emissions (∼50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 (micro)m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  18. Laser wafering for silicon solar.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-03-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  19. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  20. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlögl, Udo

    2010-06-17

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  1. Extrinsic doping in silicon revisited

    KAUST Repository

    Schwingenschlö gl, Udo; Chroneos, Alexander; Grimes, R. W.; Schuster, Cosima

    2010-01-01

    Both n-type and p-type doping of silicon is at odds with the charge transfer predicted by Pauling electronegativities and can only be reconciled if we no longer regarding dopant species as isolated atoms but rather consider them as clusters consisting of the dopant and its four nearest neighbor silicon atoms. The process that gives rise to n-type and p-type effects is the charge redistribution that occurs between the dopant and its neighbors, as we illustrate here using electronic structure calculations. This view point is able to explain why conventional substitutional n-type doping of carbon has been so difficult.

  2. Large volume cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Braggio, C.; Boscardin, M.; Bressi, G.; Carugno, G.; Corti, D.; Galeazzi, G.; Zorzi, N.

    2009-01-01

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm 3 , cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  3. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  4. Production of silicon carbide bodies

    International Nuclear Information System (INIS)

    Parkinson, K.

    1981-01-01

    A body consisting essentially of a coherent mixture of silicon carbide and carbon for subsequent siliconising is produced by casting a slip comprising silicon carbide and carbon powders in a porous mould. Part of the surface of the body, particularly internal features, is formed by providing within the mould a core of a material which retains its shape while casting is in progress but is compressed by shrinkage of the cast body as it dries and is thereafter removable from the cast body. Materials which are suitable for the core are expanded polystyrene and gelatinous products of selected low elastic modulus. (author)

  5. High-End Silicon PDICs

    Directory of Open Access Journals (Sweden)

    H. Zimmermann

    2008-05-01

    Full Text Available An overview on integrated silicon photodiodes and photodiode integrated circuits (PDICs or optoelectronic integrated circuits (OEICs for optical storage systems (OSS and fiber receivers is given. It is demonstrated, that by using low-cost silicon technologies high-performance OEICs being true competitors for some III/V-semiconductor OEICs can be realized. OSS-OEICs with bandwidths of up to 380 MHz and fiber receivers with maximum data rates of up to 11 Gbps are described. Low-cost data comm receivers for plastic optical fibers (POF as well as new circuit concepts for OEICs and highly parallel optical receivers are described also in the following.

  6. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  7. High yield silicon carbide prepolymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Prepolymers which exhibit good handling properties, and are useful for preparing ceramics, silicon carbide ceramic materials and articles containing silicon carbide, are polysilanes consisting of 0 to 60 mole% (CH 3 ) 2 Si units and 40 to 100 mole% CH 3 Si units, all Si valences being satisfied by CH 3 groups, other Si atoms, or by H atoms, the latter amounting to 0.3 to 2.1 weight% of the polysilane. They are prepared by reducing the corresponding chloro- or bromo-polysilanes with at least the stoichiometric amount of a reducing agent, e.g. LiAlH 4 . (author)

  8. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  9. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  10. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  11. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads

    2008-01-01

    of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  12. Process Research on Polycrystalline Silicon Material (PROPSM)

    Science.gov (United States)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  13. ePIXfab - The silicon photonics platform

    NARCIS (Netherlands)

    Khanna, A.; Drissi, Y.; Dumon, P.; Baets, R.; Absil, P.; Pozo Torres, J.M.; Lo Cascio, D.M.R.; Fournier, M.; Fedeli, J.M.; Fulbert, L.; Zimmermann, L.; Tillack, B.; Aalto, T.; O'Brien, P.; Deptuck, D.; Xu, J.; Gale, D.

    2013-01-01

    ePIXfab-The European Silicon Photonics Support Center continues to provide state-of-the-art silicon photonics solutions to academia and industry for prototyping and research. ePIXfab is a consortium of EU research centers providing diverse expertise in the silicon photonics food chain, from training

  14. Silicon-Based Nanoscale Composite Energetic Materials

    Science.gov (United States)

    2013-02-01

    1193-1211. 9. Krishnamohan, G., E.M. Kurian, and H.R. Rao, Thermal Analysis and Inverse Burning Rate Studies on Silicon-Potassium Nitrate System...reported in a journal paper and appears in the Appendix. Multiscale Nanoporous Silicon Combustion Introduction for nanoporous silicon effort While

  15. Process of preparing tritiated porous silicon

    Science.gov (United States)

    Tam, Shiu-Wing

    1997-01-01

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  16. Porous silicon: X-rays sensitivity

    International Nuclear Information System (INIS)

    Gerstenmayer, J.L.; Vibert, Patrick; Mercier, Patrick; Rayer, Claude; Hyvernage, Michel; Herino, Roland; Bsiesy, Ahmad

    1994-01-01

    We demonstrate that high porosity anodically porous silicon is radioluminescent. Interests of this study are double. Firstly: is the construction of porous silicon X-rays detectors (imagers) possible? Secondly: is it necessary to protect silicon porous based optoelectronic systems from ionising radiations effects (spatial environment)? ((orig.))

  17. Formation and photoluminescence of "Cauliflower" silicon nanoparticles

    NARCIS (Netherlands)

    Tang, W.; Eilers, J.J.; Huis, van M.A.; Wang, D.; Schropp, R.E.I.; Vece, Di M.

    2015-01-01

    The technological advantages of silicon make silicon nanoparticles, which can be used as quantum dots in a tandem configuration, highly relevant for photovoltaics. However, producing a silicon quantum dot solar cell structure remains a challenge. Here we use a gas aggregation cluster source to

  18. Silicon vertex detector for superheavy elements identification

    Directory of Open Access Journals (Sweden)

    Bednarek A.

    2012-07-01

    Full Text Available Silicon vertex detector for superheavy elements (SHE identification has been proposed. It will be constructed using very thin silicon detectors about 5 μm thickness. Results of test of 7.3 μm four inch silicon strip detector (SSD with fission fragments and α particles emitted by 252Cf source are presented

  19. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  20. Ordered silicon nanostructures for silicon-based photonics devices

    Czech Academy of Sciences Publication Activity Database

    Fojtík, A.; Valenta, J.; Pelant, Ivan; Kálal, M.; Fiala, P.

    2007-01-01

    Roč. 5, Suppl. (2007), S250-S253 ISSN 1671-7694 R&D Projects: GA AV ČR IAA1010316 Grant - others:GA MŠk(CZ) ME 933 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystals * silicon * self-assembled monolayers Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Berger, S.; Quoizola, S.; Fave, A.; Kaminski, A.; Perichon, S.; Barbier, D.; Laugier, A.

    2001-01-01

    The aim of this experiment is to grow a thin silicon layer ( 2 atmosphere, and finally LPE silicon growth with different temperature profiles in order to obtain a silicon layer on the sacrificial porous silicon (p-Si). We observed a pyramidal growth on the surface of the (100) porous silicon but the coalescence was difficult to obtain. However, on a p-Si (111) oriented wafer, homogeneous layers were obtained. (orig.)

  2. 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2016-02-16

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process. The research conducted during Project Silicon led to the first industrial scaling of 1366’s Direct Wafer™ process – an innovative, US-friendly (efficient, low-labor content) manufacturing process that destroys the main cost barrier limiting silicon PV cost-reductions: the 35-year-old grand challenge of making quality wafers (40% of the cost of modules) without the cost and waste of sawing. The SunPath program made it possible for 1366 Technologies to build its demonstration factory, a key and critical step in the Company’s evolution. The demonstration factory allowed 1366 to build every step of the process flow at production size, eliminating potential risk and ensuring the success of the Company’s subsequent scaling for a 1 GW factory to be constructed in Western New York in 2016 and 2017. Moreover, the commercial viability of the Direct Wafer process and its resulting wafers were established as 1366 formed key strategic partnerships, gained entry into the $8B/year multi-Si wafer market, and installed modules featuring Direct Wafer products – the veritable proving grounds for the technology. The program also contributed to the development of three Generation 3 Direct Wafer furnaces. These furnaces are the platform for copying intelligently and preparing our supply chain – large-scale expansion will not require a bigger machine but more machines. SunPath filled the

  3. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  4. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  5. Method For Producing Mechanically Flexible Silicon Substrate

    KAUST Repository

    Hussain, Muhammad Mustafa

    2014-08-28

    A method for making a mechanically flexible silicon substrate is disclosed. In one embodiment, the method includes providing a silicon substrate. The method further includes forming a first etch stop layer in the silicon substrate and forming a second etch stop layer in the silicon substrate. The method also includes forming one or more trenches over the first etch stop layer and the second etch stop layer. The method further includes removing the silicon substrate between the first etch stop layer and the second etch stop layer.

  6. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  7. Hybrid Integrated Platforms for Silicon Photonics

    Science.gov (United States)

    Liang, Di; Roelkens, Gunther; Baets, Roel; Bowers, John E.

    2010-01-01

    A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  8. Method For Producing Mechanically Flexible Silicon Substrate

    KAUST Repository

    Hussain, Muhammad Mustafa; Rojas, Jhonathan Prieto

    2014-01-01

    A method for making a mechanically flexible silicon substrate is disclosed. In one embodiment, the method includes providing a silicon substrate. The method further includes forming a first etch stop layer in the silicon substrate and forming a second etch stop layer in the silicon substrate. The method also includes forming one or more trenches over the first etch stop layer and the second etch stop layer. The method further includes removing the silicon substrate between the first etch stop layer and the second etch stop layer.

  9. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  10. Hybrid Integrated Platforms for Silicon Photonics

    Directory of Open Access Journals (Sweden)

    John E. Bowers

    2010-03-01

    Full Text Available A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  11. Dispersion toughened silicon carbon ceramics

    Science.gov (United States)

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  12. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Porz, F.

    1982-10-01

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 1500 0 C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE) [de

  13. The ARGUS silicon vertex detector

    International Nuclear Information System (INIS)

    Michel, E.; Ball, S.; Ehret, K.; Geyer, C.; Hesselbarth, J.; Hoelscher, A.; Hofmann, W.; Holzer, B.; Huepper, A.; Khan, S.; Knoepfle, K.T.; Seeger, M.; Spengler, J.; Brogle, M.; Horisberger, R.

    1994-01-01

    A silicon microstrip vertex detector has been built as an upgrade to the ARGUS detector for increased precision and efficiency in the reconstruction of decay vertices. This paper discusses the mechanical and electronic design of this device and presents first results from its successful test operation yielding an impact parameter resolution of about 18 μm. ((orig.))

  14. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  15. Seedless electroplating on patterned silicon

    NARCIS (Netherlands)

    Vargas Llona, Laura Dolores; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2006-01-01

    Nickel thin films have been electrodeposited without the use of an additional seed layer, on highly doped silicon wafers. These substrates conduct sufficiently well to allow deposition using a peripherical electrical contact on the wafer. Films 2 μm thick have been deposited using a nickel sulfamate

  16. Aleph silicon microstrip vertex detector

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This microstrip vertex locator was located at the heart of the ALEPH experiment, one of the four experiments at the Large Electron-Positron (LEP) collider. In the experiments at CERN's LEP, which ran from 1989 to 2000, modern silicon microvertex detectors, such as those used at ALEPH, monitored the production of short-lived particles close to the beam pipe.

  17. Silicon nanowire hot carrier electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, M. du, E-mail: monuko@up.ac.za; Joubert, T.-H.

    2016-08-31

    Avalanche electroluminescence from silicon pn junctions has been known for many years. However, the internal quantum efficiencies of these devices are quite low due to the indirect band gap nature of the semiconductor material. In this study we have used reach-through biasing and SOI (silicon-on-insulator) thin film structures to improve the internal power efficiency and the external light extraction efficiency. Both continuous silicon thin film pn junctions and parallel nanowire pn junctions were manufactured using a custom SOI technology. The pn junctions are operated in the reach-through mode of operation, thus increasing the average electric field within the fully depleted region. Experimental results of the emission spectrum indicate that the most dominant photon generating mechanism is due to intraband hot carrier relaxation processes. It was found that the SOI nanowire light source external power efficiency is at least an order of magnitude better than the comparable bulk CMOS (Complementary Metal Oxide Semiconductor) light source. - Highlights: • We investigate effect of electric field on silicon avalanche electroluminescence. • With reach-through pn junctions the current and carrier densities are kept constant. • Higher electric fields increase short wavelength radiation. • Higher electric fields decrease long wavelength radiation. • The effect of the electric field indicates intraband transitions as main mechanism.

  18. Silicon quantum dots: surface matters

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  19. prismane structure by silicon substitution

    Indian Academy of Sciences (India)

    Using the second-order Møller–Plesset perturbation (MP2) theoretic method and the cc-pVDZ basis set, it is shown that with an increase in the number of carbon atoms substituted by silicon, the [6]-prismane structure becomes increasingly more stable, relative to the two isolated benzene (like) structures. A similar trend is ...

  20. Thermal carbonization of nanoporous silicon

    Indian Academy of Sciences (India)

    An interesting phenomenon is observed while carrying out thermal carbonization of porous silicon (PS) with an aim to arrest the natural surface degradation, and it is a burning issue for PS-based device applications. A tubular carbon structure has been observed on the PS surface. Raman, Fourier transform infrared ...

  1. The CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.; Carter, H.; Flaugher, B.

    1993-01-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the

  2. The CDF Silicon Vertex Trigger

    International Nuclear Information System (INIS)

    Dell'Orso, Mauro

    2006-01-01

    Motivations, design, performance and ongoing upgrade of the CDF Silicon Vertex Trigger are presented. The system provides CDF with a powerful tool for online tracking with offline quality in order to enhance the reach on B-physics and large P t -physics coupled to b quarks

  3. Microelectromechanical pump utilizing porous silicon

    Science.gov (United States)

    Lantz, Jeffrey W [Albuquerque, NM; Stalford, Harold L [Norman, OK

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  4. Untreated silicone breast implant rupture

    DEFF Research Database (Denmark)

    Hölmich, Lisbet R; Vejborg, Ilse M; Conrad, Carsten

    2004-01-01

    Implant rupture is a well-known complication of breast implant surgery that can pass unnoticed by both patient and physician. To date, no prospective study has addressed the possible health implications of silicone breast implant rupture. The aim of the present study was to evaluate whether untre...

  5. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-11-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.

  6. Silicon spintronics with ferromagnetic tunnel devices

    International Nuclear Information System (INIS)

    Jansen, R; Sharma, S; Dash, S P; Min, B C

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  7. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  8. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  9. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  10. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  11. Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide

    Science.gov (United States)

    Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg

    2018-03-01

    Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.

  12. A review of oxide, silicon nitride, and silicon carbide brazing

    International Nuclear Information System (INIS)

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed

  13. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  14. Direct bandgap silicon: tensile-strained silicon nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Hapala, Prokop; Valenta, J.; Jelínek, Pavel; Cibulka, Ondřej; Ondič, Lukáš; Pelant, Ivan

    2014-01-01

    Roč. 1, č. 2 (2014), "1300042-1"-"1300042-9" ISSN 2196-7350 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235; GA ČR GAP204/10/0952 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * badstructure * light emission * direct bandgap * surface capping Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Creep analysis of silicone for podiatry applications.

    Science.gov (United States)

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Silicon Nanocrystal Synthesis in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  17. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation via three-body collision. The particle synthesis in high-density plasma media is beneficial for promoting nucleation process. In addition, further growth of silicon nuclei was able to be favorably terminated in a short-residence time reactor. Micro Raman scattering spectrum showed that as-deposited particles were mostly amorphous silicon with small fraction of silicon nanocrystals. Transmission electron micrograph confirmed individual silicon nanocrystals of 3-15 nm size. Although those particles were not mono-dispersed, they were

  18. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    Science.gov (United States)

    Agosto, William N.

    1993-01-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  19. The LHCb Silicon Inner Tracker

    International Nuclear Information System (INIS)

    Sievers, P.

    2002-01-01

    A silicon strip detector has been adopted as baseline technology for the LHCb Inner Tracker system. It consists of nine planar stations covering a cross-shaped area around the LHCb beam pipe. Depending on the final layout of the stations the sensitive surface of the Inner Tracker will be of the order of 14 m 2 . Ladders have to be 22 cm long and the pitch of the sensors should be as large as possible in order to reduce costs of the readout electronics. Major design criteria are material budget, short shaping time and a moderate spatial resolution of about 80 μm. After an introduction on the requirements of the LHCb Inner Tracker we present a description and characterization of silicon prototype sensors. First, laboratory and test beam results are discussed

  20. Macular edema in siliconized eyes

    Directory of Open Access Journals (Sweden)

    Kaya A

    2016-05-01

    Full Text Available Abdullah Kaya,1 Yakup Aksoy,2 Yıldıray Yildirim,3 Murat Sonmez3 1Department of Ophthalmology, Anittepe Military Dispensary, Ankara, Turkey; 2Department of Ophthalmology, Girne Military Hospital, Girne, Cyprus; 3Department of Ophthalmology, GATA Haydarpasa Training Hospital, Istanbul, TurkeyWe read with great interest the article titled “Value of optical coherence tomography in the detection of macular pathology before the removal of silicone oil” by Rashad et al.1 The authors have evaluated the optical coherence tomography (OCT findings before the removal of silicone oil (SiO. We congratulate the authors for this well-organized study and would like to contribute to their findings.View original paper by Rashad and colleagues.

  1. SVX/silicon detector studies

    International Nuclear Information System (INIS)

    Bagby, L.; Johnson, M.; Lipton, R.; Gu, W.

    1995-11-01

    AC coupled silicon detectors, being used for the DO upgrade, may have substantial voltage across the coupling capacitor. Failed capacitors can present ∼50 V to the input of the SVX, Silicon Vertex, device. We measured the effects that failed detector coupling capacitors have on the SVXD (rad soft 3μm), SVXH (rad hard 1.2μm), and SVXIIb (rad soft 1.2μm) amplifier / readout devices. The test results show that neighboring channels saturate when an excessive voltage is applied directly to a SVX channel. We believe that the effects are due to current diffusion within the SVX substrate rather than surface currents on the detectors. This paper discusses the magnitude of the saturation and a possible solution to the problem

  2. Characterisation of Silicon Pad Diodes

    CERN Document Server

    Hodson, Thomas Connor

    2017-01-01

    Silicon pad sensors are used in high luminosity particle detectors because of their excellent timing resolution, radiation tolerance and possible high granularity. The effect of different design decisions on detector performance can be investigated nondestructively through electronic characterisation of the sensor diodes. Methods for making accurate measurements of leakage current and cell capacitance are described using both a standard approach with tungsten needles and an automated approach with a custom multiplexer and probing setup.

  3. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...

  4. Silicon micropattern detector: a dream

    Energy Technology Data Exchange (ETDEWEB)

    Heijne, E H.M.; Jarron, P; Olsen, A; Redaelli, N

    1988-12-15

    The present use of silicon microstrip detectors in elementary particle physics experiments is described and future needs are evaluated. Possibilities and problems to be encountered in the development of a true two-dimensional detector with intelligent data collection are discussed. This paper serves as an introduction to various other contributions to the conference proceedings, either dealing with futuristic device designs or with cautious steps on the road of technology development.

  5. Silicon spintronics: Progress and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sverdlov, Viktor; Selberherr, Siegfried, E-mail: Selberherr@TUWien.ac.at

    2015-07-14

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized.

  6. Internal friction in irradiated silicon

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Pajzullakhanov, M.S.; Khajdarov, T.; Ummatov, Kh.

    1999-01-01

    The submicroscopic heterogeneities in mono- and polycrystal silicon and the influence of X-ray radiation on them were investigated using the ultrasound resonance method. Disk-shaped samples of 27.5 mm in diameter and 4 mm in thickness, with the flat surface parallel to crystallographic plane (111), were irradiated by X-ray beam of 1 Wt/cm 2 (50 KeV, Mo K α ) during 10 hours. Relations of internal frictions (Q -1 ) of samples and their relative attitude (ψ) - Q -1 (ψ) show that there is a presence of double-humped configuration for monocrystal silicon with the peaks at ψ=900 and 270 degrees. The relations Q -1 (ψ) remain the same after the irradiation. However, the peak width becomes larger. This data show that the configuration and attitude of the heterogeneities remain the same after the irradiation. The double-humped configuration was not discovered for the relations Q -1 (ψ) of polycrystal silicon. It is explained by the fact that there is an isotropic distribution in the content of many blocks and granules

  7. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  8. Excimer laser decomposition of silicone

    International Nuclear Information System (INIS)

    Laude, L.D.; Cochrane, C.; Dicara, Cl.; Dupas-Bruzek, C.; Kolev, K.

    2003-01-01

    Excimer laser irradiation of silicone foils is shown in this work to induce decomposition, ablation and activation of such materials. Thin (100 μm) laminated silicone foils are irradiated at 248 nm as a function of impacting laser fluence and number of pulsed irradiations at 1 s intervals. Above a threshold fluence of 0.7 J/cm 2 , material starts decomposing. At higher fluences, this decomposition develops and gives rise to (i) swelling of the irradiated surface and then (ii) emission of matter (ablation) at a rate that is not proportioned to the number of pulses. Taking into consideration the polymer structure and the foil lamination process, these results help defining the phenomenology of silicone ablation. The polymer decomposition results in two parts: one which is organic and volatile, and another part which is inorganic and remains, forming an ever thickening screen to light penetration as the number of light pulses increases. A mathematical model is developed that accounts successfully for this physical screening effect

  9. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  10. Silicon spintronics: Progress and challenges

    International Nuclear Information System (INIS)

    Sverdlov, Viktor; Selberherr, Siegfried

    2015-01-01

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized

  11. Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Yang, Hyundeok; Chang, Man; Baek, Sungkweon; Hwang, Hyunsang; Jeon, Sanghun; Kim, Juhyung; Kim, Chungwoo

    2005-01-01

    Silicon nitride with silicon nanocrystals formed by low-energy silicon plasma immersion ion implantation has been investigated as a charge trapping layer of a polycrystalline silicon-oxide-nitride-oxide-silicon-type nonvolatile memory device. Compared with the control sample without silicon nanocrystals, silicon nitride with silicon nanocrystals provides excellent memory characteristics, such as larger width of capacitance-voltage hysteresis, higher program/erase speed, and lower charge loss rate at elevated temperature. These improved memory characteristics are derived by incorporation of silicon nanocrystals into the charge trapping layer as additional accessible charge traps with a deeper effective trap energy level

  12. Gelcasting of SiC/Si for preparation of silicon nitride bonded silicon carbide

    International Nuclear Information System (INIS)

    Xie, Z.P.; Tsinghua University, Beijing,; Cheng, Y.B.; Lu, J.W.; Huang, Y.

    2000-01-01

    In the present paper, gelcasting of aqueous slurry with coarse silicon carbide(1mm) and fine silicon particles was investigated to fabricate silicon nitride bonded silicon carbide materials. Through the examination of influence of different polyelectrolytes on the Zeta potential and viscosity of silicon and silicon carbide suspensions, a stable SiC/Si suspension with 60 vol% solid loading could be prepared by using polyelectrolyte of D3005 and sodium alginate. Gelation of this suspension can complete in 10-30 min at 60-80 deg C after cast into mold. After demolded, the wet green body can be dried directly in furnace and the green strength will develop during drying. Complex shape parts with near net size were prepared by the process. Effects of the debindering process on nitridation and density of silicon nitride bonded silicon carbide were also examined. Copyright (2000) The Australian Ceramic Society

  13. Single-Event Effects in Silicon and Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2014-01-01

    NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.

  14. Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon

    International Nuclear Information System (INIS)

    Wang, Xiaojuan; Li, Dong; Zhang, Qichong; Zou, Liping; Wang, Fengli; Zhou, Jun; Zhang, Zengxing

    2015-01-01

    Graphene/silicon heterostructures present a Schottky characteristic and have potential applications for solar cells and photodetectors. Here, we fabricated graphene/silicon heterostructures by using chemical vapor deposition derived graphene and n-type silicon, and studied the electronic and optoelectronic properties through varying their interface and silicon resistivity. The results exhibit that the properties of the fabricated configurations can be effectively modulated. The graphene/silicon heterostructures with a Si (111) interface and high resistivity show a better photovoltaic behavior and should be applied for high-performance photodetectors. With the combined atomic force microscopy and theoretical analysis, the possible origination is discussed. The work here should be helpful on exploring high-performance graphene/silicon photoelectronics. - Highlights: • Different graphene/silicon heterostructures were fabricated. • Electronic and optoelectronic properties of the heterostructures were studied. • Graphene/silicon heterostructures were further explored for photodetectors.

  15. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  16. Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojuan [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Li, Dong; Zhang, Qichong; Zou, Liping; Wang, Fengli [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Jun, E-mail: zhoujunzhou@tongji.edu.cn [Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Zengxing, E-mail: zhangzx@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-structured Materials & Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-10-01

    Graphene/silicon heterostructures present a Schottky characteristic and have potential applications for solar cells and photodetectors. Here, we fabricated graphene/silicon heterostructures by using chemical vapor deposition derived graphene and n-type silicon, and studied the electronic and optoelectronic properties through varying their interface and silicon resistivity. The results exhibit that the properties of the fabricated configurations can be effectively modulated. The graphene/silicon heterostructures with a Si (111) interface and high resistivity show a better photovoltaic behavior and should be applied for high-performance photodetectors. With the combined atomic force microscopy and theoretical analysis, the possible origination is discussed. The work here should be helpful on exploring high-performance graphene/silicon photoelectronics. - Highlights: • Different graphene/silicon heterostructures were fabricated. • Electronic and optoelectronic properties of the heterostructures were studied. • Graphene/silicon heterostructures were further explored for photodetectors.

  17. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  18. Signal development in irradiated silicon detectors

    CERN Document Server

    Kramberger, Gregor; Mikuz, Marko

    2001-01-01

    This work provides a detailed study of signal formation in silicon detectors, with the emphasis on detectors with high concentration of irradiation induced defects in the lattice. These defects give rise to deep energy levels in the band gap. As a consequence, the current induced by charge motion in silicon detectors is signifcantly altered. Within the framework of the study a new experimental method, Charge correction method, based on transient current technique (TCT) was proposed for determination of effective electron and hole trapping times in irradiated silicon detectors. Effective carrier trapping times were determined in numerous silicon pad detectors irradiated with neutrons, pions and protons. Studied detectors were fabricated on oxygenated and non-oxygenated silicon wafers with different bulk resistivities. Measured effective carrier trapping times were found to be inversely proportional to fuence and increase with temperature. No dependence on silicon resistivity and oxygen concentration was observ...

  19. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  20. Use of hydroxypropylmethylcellulose 2% for removing adherent silicone oil from silicone intraocular lenses

    OpenAIRE

    Wong , S Chien; Ramkissoon , Yashin D; Lopez , Mauricio; Page , Kristopher; Parkin , Ivan P; Sullivan , Paul M

    2009-01-01

    Abstract Background / aims: To investigate the effect of hydroxypropylmethylcellulose (HPMC) on the physical interaction (contact angle) between silicone oil and a silicone intraocular lens (IOL). Methods: In vitro experiments were performed, to determine the effect of HPMC (0.5%, 1% or 2%), with or without an additional simple mechanical manoeuvre, on the contact angle of silicone oil at the surface of both silicone and acrylic (control) IOLs. A balanced salt solu...

  1. Silicon Processors Using Organically Reconfigurable Techniques (SPORT)

    Science.gov (United States)

    2014-05-19

    AFRL-OSR-VA-TR-2014-0132 SILICON PROCESSORS USING ORGANICALLY RECONFIGURABLE TECHNIQUES ( SPORT ) Dennis Prather UNIVERSITY OF DELAWARE Final Report 05...5a. CONTRACT NUMBER Silicon Processes for Organically Reconfigurable Techniques ( SPORT ) 5b. GRANT NUMBER FA9550-10-1-0363 5c...Contract: Silicon Processes for Organically Reconfigurable Techniques ( SPORT ) Contract #: FA9550-10-1-0363 Reporting Period: 1 July 2010 – 31 December

  2. Silicon wafers for integrated circuit process

    OpenAIRE

    Leroy , B.

    1986-01-01

    Silicon as a substrate material will continue to dominate the market of integrated circuits for many years. We first review how crystal pulling procedures impact the quality of silicon. We then investigate how thermal treatments affect the behaviour of oxygen and carbon, and how, as a result, the quality of silicon wafers evolves. Gettering techniques are then presented. We conclude by detailing the requirements that wafers must satisfy at the incoming inspection.

  3. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    Yehezkel, O.

    1983-01-01

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  4. Numerical Simulation Of Silicon-Ribbon Growth

    Science.gov (United States)

    Woda, Ben K.; Kuo, Chin-Po; Utku, Senol; Ray, Sujit Kumar

    1987-01-01

    Mathematical model includes nonlinear effects. In development simulates growth of silicon ribbon from melt. Takes account of entire temperature and stress history of ribbon. Numerical simulations performed with new model helps in search for temperature distribution, pulling speed, and other conditions favoring growth of wide, flat, relatively defect-free silicon ribbons for solar photovoltaic cells at economically attractive, high production rates. Also applicable to materials other than silicon.

  5. A study of positron irradiated porous silicon

    International Nuclear Information System (INIS)

    Huang Yuanming; Xue Qing; Zhai Baogai; Xu Aijun; Liu Shewen; Yu Weizhong

    1998-01-01

    The effect of positron irradiation on photoluminescence (PL) of porous silicon has been studied. After four hour positron irradiation, the red PL spectrum of porous silicon blue shifts into greenish spectral region, and a higher energy luminescence band is introduced into this blueshifted spectrum. The fourier transform infrared absorption experiment shows that the positron irradiation can cause further oxidization of porous silicon. A possible mechanism causing this change of PL spectra after positron irradiation is suggested

  6. Silicon photonics for telecommunications and biomedicine

    CERN Document Server

    Fathpour, Sasan

    2011-01-01

    Given silicon's versatile material properties, use of low-cost silicon photonics continues to move beyond light-speed data transmission through fiber-optic cables and computer chips. Its application has also evolved from the device to the integrated-system level. A timely overview of this impressive growth, Silicon Photonics for Telecommunications and Biomedicine summarizes state-of-the-art developments in a wide range of areas, including optical communications, wireless technologies, and biomedical applications of silicon photonics. With contributions from world experts, this reference guides

  7. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  8. Porous silicon investigated by positron annihilation

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.

    1989-01-01

    The effect of the anodic conversion in silicon single crystals is investigated by positron lifetime measurements. Anodization at constant current induces changes in the positron lifetime spectrum of monocrystalline silicon samples. It is found that theses changes are primarily dependent on the silicon resistivity. The annihilation parameter behaviour of anodized samples, treated at high temperature under reducing conditions, is also investigated. The results reveal that positron annihilation can be a useful technique to characterize porous silicon formed by anodizing as well as to investigate its thermal behaviour. (author)

  9. Silicon nanowire-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S [Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena (Germany)], E-mail: thomas.stelzner@ipht-jena.de

    2008-07-23

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm{sup 2} open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm{sup -2} were obtained.

  10. Silicon nanowire-based solar cells

    International Nuclear Information System (INIS)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S

    2008-01-01

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm 2 open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm -2 were obtained

  11. Silicon Micromachined Microlens Array for THz Antennas

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  12. Nanofluidics : Silicon for the perfect membrane

    NARCIS (Netherlands)

    van den Berg, Albert; Wessling, Matthias

    2007-01-01

    Newly developed ultrathin silicon membranes can filter and separate molecules much more effectively than conventional polymer membranes. Many applications, of economic and medical significance, stand to benefit.

  13. Hydrogen passivation of silicon sheet solar cells

    International Nuclear Information System (INIS)

    Tsuo, Y.S.; Milstein, J.B.

    1984-01-01

    Significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells have been obtained after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. The silicon sputter rate for constant ion beam flux of 0.60 +- 0.05 mA/cm 2 exhibits a maximum at approximately 1400-eV ion beam energy

  14. Element depth profiles of porous silicon

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Nikonov, O.A.; Kulik, M.; Zuk, J.; Krzyzanowska, H.; Ochalski, T.J.

    1997-01-01

    Element depth profiles of porous silicon were measured on the Van-de-Graaff accelerator in the energy range of 4 He + ions from 2 to 3.2 MeV. Application of complementary RBS, ERD and 16 O(α,α) 16 O nuclear reaction methods permits us to obtain: 1) the exact silicon, oxygen and hydrogen distribution in the samples, 2) the distribution of partial pore concentrations. The oxygen concentration in porous silicon reaches 30%, which allows one to assume the presence of silicon oxide in the pores and to explain the spectrum shift of luminescence into the blue area

  15. Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask

    NARCIS (Netherlands)

    Haneveld, J.; Berenschot, Johan W.; Maury, P.A.; Jansen, Henricus V.

    2005-01-01

    A method to fabricate nano-ridges over a full wafer is presented. The fabrication method uses local oxidation of silicon, with silicon nitride as a mask, and wet anisotropic etching of silicon. The realized structures are 7-20 nm wide, 40-100 nm high and centimeters long. All dimensions are easily

  16. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Seif, J.; Descoeudres, A.; Nogay, G.; Hänni, S.; de Nicolas, S.M.; Holm, N.; Geissbühler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; Ledinský, Martin; De Wolf, S.; Ballif, C.

    2016-01-01

    Roč. 6, č. 5 (2016), s. 1132-1140 ISSN 2156-3381 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : microcrystalline silicon * nanocrystalline silicon * silicon heterojunctions (SHJs) * solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.712, year: 2016

  17. Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, Mohamed Ben; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-06-15

    The effects of antireflection (ARC) and surface passivation films on optoelectronic features of multicrystalline silicon (mc-Si) were investigated in order to perform high efficiency solar cells. A double layer consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride (SiN{sub x}) on porous silicon (PS) was achieved on mc-Si surfaces. It was found that this treatment decreases the total surface reflectivity from about 25% to around 6% in the 450-1100 nm wavelength range. As a result, the effective minority carrier diffusion length, estimated from the Laser-beam-induced current (LBIC) method, was found to increase from 312 {mu}m for PS-treated cells to about 798 {mu}m for SiN{sub x}/PS-treated ones. The deposition of SiN{sub x} was found to impressively enhance the minority carrier diffusion length probably due to hydrogen passivation of surface, grain boundaries and bulk defects. Fourier Transform Infrared Spectroscopy (FTIR) shows that the vibration modes of the highly suitable passivating Si-H bonds exhibit frequency shifts toward higher wavenumber, depending on the x ratio of the introduced N atoms neighbors. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. High breakdown-strength composites from liquid silicone rubbers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Zakaria, Shamsul Bin; Yu, Liyun

    2014-01-01

    In this paper we investigate the performance of liquid silicone rubbers (LSRs) as dielectric elastomer transducers. Commonly used silicones in this application include room-temperature vulcanisable (RTV) silicone elastomers and composites thereof. Pure LSRs and their composites with commercially...

  19. Emerging heterogeneous integrated photonic platforms on silicon

    Directory of Open Access Journals (Sweden)

    Fathpour Sasan

    2015-05-01

    Full Text Available Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths and feasibility of electrically-injected lasers (at least at room temperature. More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for

  20. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  1. Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

    Directory of Open Access Journals (Sweden)

    Zahra Ostadmahmoodi Do

    2016-06-01

    Full Text Available Nanowires (NWs are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW, is synthesized and characterized for application in photovoltaic device. Si NWs are prepared using wet chemical etching method which is commonly used as a simple and low cost method for producing nanowires of the same substrate material. The process conditions are adjusted to find the best quality of Si NWs. Morphology of Si NWs is studied using a field emission scanning electron microscopic technique. An energy dispersive X-Ray analyzer is also used to provide elemental identification and quantitative compositional information. Subsequently, Schottky type solar cell samples are fabricated on Si and Si NWs using ITO and Ag contacts. The junction properties are calculated using I-V curves in dark condition and the solar cell I-V characteristics are obtained under incident of the standardized light of AM1.5. The results for the two mentioned Schottky solar cell samples are compared and discussed. An improvement in short circuit current and efficiency of Schottky solar cell is found when Si nanowires are employed.

  2. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  3. Electronic structure of silicon superlattices

    International Nuclear Information System (INIS)

    Krishnamurthy, S.; Moriarty, J.A.

    1984-01-01

    Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon

  4. Silicone cushions for engineering applications

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    When a complex system composed of materials of very different properties is subjected to varying temperature, differential thermal expansion and contraction will produce intolerable stresses unless the parts are separated by suitable cushions. In addition to accommodating differential thermal expansion and contraction, these cushions must absorb shock and vibration, take up dimensional tolerances in the parts, and distribute and attenuate applied loads. We are studying cellular silicone cushions, starting with raw materials and polymer manufacture, to analysis of mechanical and chemical properties, through short- and long-term life testing, in order to tailor cushions to various specific engineering requirements

  5. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  6. Silicone foam for penetration seal

    International Nuclear Information System (INIS)

    Hoshino, Yoshikazu

    1986-01-01

    In nuclear power plants or general buildings, it is very important to form a fire-resistant seal around cables, cable trays and conduits passing through a wall or a floor. Rockwool, asbestos, glasswool and flame-retarded urethane foam have so far been used for these purposes. However, they were not satisfactory in sealing property, workability and safety. The silicone foam newly developed, ''TOSSEAL'' 300, has cleared these defects. It has now come to be used for fire resistant seal in nuclear power plants. (author)

  7. Fracture dynamics in implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Massy, D.; Tardif, S.; Penot, J. D.; Ragani, J.; Rieutord, F. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SP2M, F-38000 Grenoble (France); Mazen, F.; Madeira, F. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Landru, D.; Kononchuk, O. [SOITEC, Parc Technologique des Fontaines, 38190 Bernin (France)

    2015-08-31

    Crack propagation in implanted silicon for thin layer transfer is experimentally studied. The crack propagation velocity as a function of split temperature is measured using a designed optical setup. Interferometric measurement of the gap opening is performed dynamically and shows an oscillatory crack “wake” with a typical wavelength in the centimetre range. The dynamics of this motion is modelled using beam elasticity and thermodynamics. The modelling demonstrates the key role of external atmospheric pressure during crack propagation. A quantification of the amount of gas trapped inside pre-existing microcracks and released during the fracture is made possible, with results consistent with previous studies.

  8. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  9. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  10. Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing

    Science.gov (United States)

    Chen, Christine P.

    The market for higher data rate communication is driving the semiconductor industry to develop new techniques of writing at smaller scales, while continuing to scale bandwidth at low power consumption. Silicon photonic (SiPh) devices offer a potential solution to the electronic interconnect bandwidth bottleneck. SiPh leverages the technology commensurate of decades of fabrication development with the unique functionality of next-generation optical interconnects. Finer fabrication techniques have allowed for manufacturing physical characteristics of waveguide structures that can support multiple modes in a single waveguide. By refining modal characteristics in photonic waveguide structures, through mode multiplexing with the asymmetric y-junction and microring resonator, higher aggregate data bandwidth is demonstrated via various combinations of spatial multiplexing, broadening applications supported by the integrated platform. The main contributions of this dissertation are summarized as follows. Experimental demonstrations of new forms of spatial multiplexing combined together exhibit feasibility of data transmission through mode-division multiplexing (MDM), mode-division and wavelength-division multiplexing (MDM-WDM), and mode-division and polarization-division multiplexing (MDM-PDM) through a C-band, Si photonic platform. Error-free operation through mode multiplexers and demultiplexers show how data can be viably scaled on multiple modes and with existing spatial domains simultaneously. Furthermore, we explore expanding device channel support from two to three arms. Finding that a slight mismatch in the third arm can increase crosstalk contributions considerably, especially when increasing data rate, we explore a methodical way to design the asymmetric y-junction device by considering its angles and multiplexer/demultiplexer arm width. By taking into consideration device fabrication variations, we turn towards optimizing device performance post

  11. Simple Approach to Superamphiphobic Overhanging Silicon Nanostructures

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Mogensen, Klaus Bo; Bøggild, Peter

    2010-01-01

    with contact angles up to 152 degrees and roll-off angle down to 8 degrees. Such nonlithographic nanoscale overhanging Structures can also be added to silicon nanograss by deposition of a thin SiO2 layer, which equips the silicon rods with 100-300 nm sized overhanging Structures. This is a simple, fast...

  12. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  13. Case Report: Magnetically retained silicone facial prosthesis ...

    African Journals Online (AJOL)

    Prosthetic camouflaging of facial defects and use of silicone maxillofacial material are the alternatives to the surgical retreatment. Silicone elastomers provide more options to clinician for customization of the facial prosthesis which is simple, esthetically good when coupled with bio magnets for retention. Key words: Magnet ...

  14. Broadband Nonlinear Signal Processing in Silicon Nanowires

    DEFF Research Database (Denmark)

    Yvind, Kresten; Pu, Minhao; Hvam, Jørn Märcher

    The fast non-linearity of silicon allows Tbit/s optical signal processing. By choosing suitable dimensions of silicon nanowires their dispersion can be tailored to ensure a high nonlinearity at power levels low enough to avoid significant two-photon abso We have fabricated low insertion...

  15. Radiation cured and monomer modified silicon elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1979-01-01

    A method is described for the production of a tear resistant silicone elastomer, which has improved elongation properties. This elastomer is the radiation induced reaction product of a noncured methyl vinyl silicone resin (VMQ) and uniformly dispersed therein a blend of a polyfunctional acrylic crosslinking monomer and a filler

  16. Low surface damage dry etched black silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym M.; Gaudig, Maria; Davidsen, Rasmus Schmidt

    2017-01-01

    Black silicon (bSi) is promising for integration into silicon solar cell fabrication flow due to its excellent light trapping and low reflectance, and a continuously improving passivation. However, intensive ion bombardment during the reactive ion etching used to fabricate bSi induces surface dam...

  17. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  18. Silicon drift detectors, present and future prospects

    Science.gov (United States)

    Takahashi, J.; Bellwied, R.; Beuttenmuller, R.; Caines, H.; Chen, W.; Dyke, H.; Hoffmann, G. W.; Humanic, T.; Kotov, I.; Kuczewski, P.; Leonhardt, W.; Li, Z.; Lynn, D.; Minor, R.; Munhoz, M.; Ott, G.; Pandey, S. U.; Schambach, J.; Soja, R.; Sugarbaker, E.; Willson, R. M.

    2001-04-01

    Silicon drift detectors provide unambiguous two-dimensional position information for charged particle detection with a single detector layer. A large area silicon drift detector was developed for the inner tracking detector of the STAR experiment at RHIC. In this paper, we discuss the lessons learned and the future prospects of this technology.

  19. Challenges in amorphous silicon solar cell technology

    NARCIS (Netherlands)

    Swaaij, van R.A.C.M.M.; Zeman, M.; Korevaar, B.A.; Smit, C.; Metselaar, J.W.; Sanden, van de M.C.M.

    2000-01-01

    Hydrogenated amorphous silicon is nowadays extensively used for a range of devices, amongst others solar cells, Solar cell technology has matured over the last two decades and resulted in conversion efficiencies in excess of 15%. In this paper the operation of amorphous silicon solar cells is

  20. Phosphorous Doping of Nanostructured Crystalline Silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Steckel, André

    Nano-textured silicon, known as black silicon (bSi), is attractive with excellent photon trapping properties. bSi can be produced using simple one-step fabrication reactive ion etching (RIE) technique. However, in order to use bSi in photovoltaics doping process should be developed. Due to high s...

  1. Oblique patterned etching of vertical silicon sidewalls

    Science.gov (United States)

    Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.

    2016-04-01

    A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  2. Optical and microstructural investigations of porous silicon

    Indian Academy of Sciences (India)

    Raman scattering and photoluminescence (PL) measurements on (100) oriented -type crystalline silicon (-Si) and porous silicon (PS) samples were carried out. PS samples were prepared by anodic etching of -Si under the illumination of light for different etching times of 30, 60 and 90 min. Raman scattering from the ...

  3. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  4. Silicon nanostructures produced by laser direct etching

    DEFF Research Database (Denmark)

    Müllenborn, Matthias; Dirac, Paul Andreas Holger; Petersen, Jon Wulff

    1995-01-01

    A laser direct-write process has been applied to structure silicon on a nanometer scale. In this process, a silicon substrate, placed in a chlorine ambience, is locally heated above its melting point by a continuous-wave laser and translated by high-resolution direct-current motor stages. Only...

  5. A continuous Czochralski silicon crystal growth system

    Science.gov (United States)

    Wang, C.; Zhang, H.; Wang, T. H.; Ciszek, T. F.

    2003-03-01

    Demand for large silicon wafers has driven the growth of silicon crystals from 200 to 300 mm in diameter. With the increasing silicon ingot sizes, melt volume has grown dramatically. Melt flow becomes more turbulent as melt height and volume increase. To suppress turbulent flow in a large silicon melt, a new Czochralski (CZ) growth furnace has been designed that has a shallow melt. In this new design, a crucible consists of a shallow growth compartment in the center and a deep feeding compartment around the periphery. Two compartments are connected with a narrow annular channel. A long crystal may be continuously grown by feeding silicon pellets into the dedicated feeding compartment. We use our numerical model to simulate temperature distribution and velocity field in a conventional 200-mm CZ crystal growth system and also in the new shallow crucible CZ system. By comparison, advantages and disadvantages of the proposed system are observed, operating conditions are determined, and the new system is improved.

  6. Fabricating solar cells with silicon nanoparticles

    Science.gov (United States)

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  7. Electrochemical properties of ion implanted silicon

    International Nuclear Information System (INIS)

    Pham minh Tan.

    1979-11-01

    The electrochemical behaviour of ion implanted silicon in contact with hydrofluoric acid solution was investigated. It was shown that the implanted layer on silicon changes profoundly its electrochemical properties (photopotential, interface impedance, rest potential, corrosion, current-potential behaviour, anodic dissolution of silicon, redox reaction). These changes depend strongly on the implantation parameters such as ion dose, ion energy, thermal treatment and ion mass and are weakly dependent on the chemical nature of the implantation ion. The experimental results were evaluated and interpreted in terms of the semiconductor electrochemical concepts taking into account the interaction of energetic ions with the solid surface. The observed effects are thus attributed to the implantation induced damage of silicon lattice and can be used for profiling of the implanted layer and the electrochemical treatment of the silicon surface. (author)

  8. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1979-01-01

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH 3 ) 2 Si][CH 3 Si]. The polysilane contains from 0 to 60 mole percent (CH 3 ) 2 Si units and from 40 to 100 mole percent CH 3 Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 150 0 C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  9. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  10. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others

    1996-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  11. The DOe Silicon Track Trigger

    International Nuclear Information System (INIS)

    Steinbrueck, Georg

    2003-01-01

    We describe a trigger preprocessor to be used by the DOe experiment for selecting events with tracks from the decay of long-lived particles. This Level 2 impact parameter trigger utilizes information from the Silicon Microstrip Tracker to reconstruct tracks with improved spatial and momentum resolutions compared to those obtained by the Level 1 tracking trigger. It is constructed of VME boards with much of the logic existing in programmable processors. A common motherboard provides the I/O infrastructure and three different daughter boards perform the tasks of identifying the roads from the tracking trigger data, finding the clusters in the roads in the silicon detector, and fitting tracks to the clusters. This approach provides flexibility for the design, testing and maintenance phases of the project. The track parameters are provided to the trigger framework in 25 μs. The effective impact parameter resolution for high-momentum tracks is 35 μm, dominated by the size of the Tevatron beam

  12. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  13. Radiation cured silicone rubber articles

    International Nuclear Information System (INIS)

    DuPont, J.G.; Goodwin, P.A.

    1984-01-01

    A process for making radiation cured silicone rubber articles is disclosed wherein a hydroxyl-terminated polysilaxane having a molecular weight from about 50,000 to about 2,000,000, optionally modified by mixing with up to 85% of an end-stopped silicone rubber, is mixed with from about 10 to about 70 parts per hundred of rubber of a finely divided silica filler with a particle size in the reinforcing range and other inert fillers as determined by desired final properties; the composition so prepared is formed into the desired shape at room temperature; the article so formed is precured to improve the mechanical properties of the material with which it is made by exposure to ammonia gas, ammonium hydroxide, or to the vapors or solutions of a volatile amine at room temperature; and the precured article is irradiated with high energy electrons or gamma radiation to effect a permanent cure of the material from which the article is formed

  14. A CMOS silicon spin qubit

    Science.gov (United States)

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.

    2016-11-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  15. Low cost silicon solar array project large area silicon sheet task: Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.

    1977-01-01

    Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals.

  16. Segregation of boron implanted into silicon on angular configurations of silicon/silicon dioxide oxidation interface

    CERN Document Server

    Tarnavskij, G A; Obrekht, M S

    2001-01-01

    One studies segregation of boron implanted into silicon when a wave (interface) of oxidation moves within it. There are four types of angular configurations of SiO sub 2 /Si oxidation interface, that is: direct and reverse shoulders, trench type cavities and a square. By means of computer-aided simulation one obtained and analyzed complex patterns of B concentration distribution within Si, SiO sub 2 domains and at SiO sub 2 /Si interface for all types of angular configurations of the oxidation interface

  17. Comparison of confinement characters between porous silicon and silicon nanowires

    International Nuclear Information System (INIS)

    Tit, Nacir; Yamani, Zain H.; Pizzi, Giovanni; Virgilio, Michele

    2011-01-01

    Confinement character and its effects on photoluminescence (PL) properties are theoretically investigated and compared between porous silicon (p-Si) and silicon nanowires (Si-NWs). The method is based on the application of the tight-binding technique using the minimal sp 3 -basis set, including the second-nearest-neighbor interactions. The results show that the quantum confinement (QC) is not entirely controlled by the porosity, rather it is mainly affected by the average distance between pores (d). The p-Si is found to exhibit weaker confinement character than Si-NWs. The confinement energy of charge carriers decays against d exponentially for p-Si and via a power-law for Si-NWs. This latter type of QC is much stronger and is somewhat similar to the case of a single particle in a quantum box. The excellent fit to the PL data demonstrates that the experimental samples of p-Si do exhibit strong QC character and thus reveals the possibility of silicon clustering into nano-crystals and/or nanowires. Furthermore, the results show that the passivation of the surface dangling bonds by the hydrogen atoms plays an essential role in preventing the appearance of gap states and consequently enhances the optical qualities of the produced structures. The oscillator strength (OS) is found to increase exponentially with energy in Si-NWs confirming the strong confinement character of carriers. Our theoretical findings suggest the existence of Si nanocrystals (Si-NCs) of sizes 1-3 nm and/or Si-NWs of cross-sectional sizes in the 1-3 nm range inside the experimental p-Si samples. The experimentally-observed strong photoluminescence from p-Si should be in favor of an exhibition of 3D-confinement character. The favorable comparison of our theoretical results with the experimental data consolidates our above claims. -- Highlights: → Tight-binding is used to study quantum-confinement (QC) effects in p-Si and Si-NWs. → QC is not entirely controlled by the porosity but also by the d

  18. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  19. Annealing temperature dependence of photoluminescent characteristics of silicon nanocrystals embedded in silicon-rich silicon nitride films grown by PECVD

    International Nuclear Information System (INIS)

    Chao, D.S.; Liang, J.H.

    2013-01-01

    Recently, light emission from silicon nanostructures has gained great interest due to its promising potential of realizing silicon-based optoelectronic applications. In this study, luminescent silicon nanocrystals (Si–NCs) were in situ synthesized in silicon-rich silicon nitride (SRSN) films grown by plasma-enhanced chemical vapor deposition (PECVD). SRSN films with various excess silicon contents were deposited by adjusting SiH 4 flow rate to 100 and 200 sccm and keeping NH 3 one at 40 sccm, and followed by furnace annealing (FA) treatments at 600, 850 and 1100 °C for 1 h. The effects of excess silicon content and post-annealing temperature on optical properties of Si–NCs were investigated by photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The origins of two groups of PL peaks found in this study can be attributed to defect-related interface states and quantum confinement effects (QCE). Defect-related interface states lead to the photon energy levels almost kept constant at about 3.4 eV, while QCE results in visible and tunable PL emission in the spectral range of yellow and blue light which depends on excess silicon content and post-annealing temperature. In addition, PL intensity was also demonstrated to be highly correlative to the excess silicon content and post-annealing temperature due to its corresponding effects on size, density, crystallinity, and surface passivation of Si–NCs. Considering the trade-off between surface passivation and structural properties of Si–NCs, an optimal post-annealing temperature of 600 °C was suggested to maximize the PL intensity of the SRSN films

  20. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  1. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  2. Plasma processing of microcrystalline silicon films : filling in the gaps

    NARCIS (Netherlands)

    Bronneberg, A.C.

    2012-01-01

    Hydrogenated microcrystalline silicon (µc-Si:H) is a mixed-phase material consisting of crystalline silicon grains, hydrogenated amorphous silicon (a-Si:H) tissue, and voids. Microcrystalline silicon is extensively used as absorber layer in thin-film tandem solar cells, combining the advantages of a

  3. Study of effects of radiation on silicone prostheses

    International Nuclear Information System (INIS)

    Shedbalkar, A.R.; Devata, A.; Padanilam, T.

    1980-01-01

    Radiation effects on silicone gel and dose distribution of radiation through mammary prostheses were studied. Silicone gel behaves like tissue. Half value thickness for silicone gel and water are almost the same. Linear absorption coefficient for silicone gel and water are comparable

  4. High-efficient solar cells with porous silicon

    International Nuclear Information System (INIS)

    Migunova, A.A.

    2002-01-01

    It has been shown that the porous silicon is multifunctional high-efficient coating on silicon solar cells, modifies its surface and combines in it self antireflection and passivation properties., The different optoelectronic effects in solar cells with porous silicon were considered. The comparative parameters of uncovered photodetectors also solar cells with porous silicon and other coatings were resulted. (author)

  5. Formation of iron disilicide on amorphous silicon

    Science.gov (United States)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  6. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  7. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-01-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  8. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-06-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  9. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  10. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  11. Compressive creep of silicon nitride

    International Nuclear Information System (INIS)

    Silva, C.R.M. da; Melo, F.C.L. de; Cairo, C.A.; Piorino Neto, F.

    1990-01-01

    Silicon nitride samples were formed by pressureless sintering process, using neodymium oxide and a mixture of neodymium oxide and yttrio oxide as sintering aids. The short term compressive creep behaviour was evaluated over a stress range of 50-300 MPa and temperature range 1200 - 1350 0 C. Post-sintering heat treatments in nitrogen with a stepwise decremental variation of temperature were performed in some samples and microstructural analysis by X-ray diffraction and transmission electron microscopy showed that the secondary crystalline phase which form from the remnant glass are dependent upon composition and percentage of aditives. Stress exponent values near to unity were obtained for materials with low glass content suggesting grain boundary diffusion accommodation processes. Cavitation will thereby become prevalent with increase in stress, temperature and decrease in the degree of crystallization of the grain boundary phase. (author) [pt

  12. Germanium silicon physics and materials

    CERN Document Server

    Willardson, R K; Bean, John C; Hull, Robert

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  13. Visualizing a silicon quantum computer

    International Nuclear Information System (INIS)

    Sanders, Barry C; Hollenberg, Lloyd C L; Edmundson, Darran; Edmundson, Andrew

    2008-01-01

    Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.

  14. Visualizing a silicon quantum computer

    Science.gov (United States)

    Sanders, Barry C.; Hollenberg, Lloyd C. L.; Edmundson, Darran; Edmundson, Andrew

    2008-12-01

    Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.

  15. CMS Silicon Strip Tracker Performance

    CERN Document Server

    Agram, Jean-Laurent

    2012-01-01

    The CMS Silicon Strip Tracker (SST), consisting of 9.6 million readout channels from 15148 modules and covering an area of 198 square meters, needs to be precisely calibrated in order to correctly reconstruct the events recorded. Calibration constants are derived from different workflows, from promptly reconstructed events with particles as well as from commissioning events gathered just before the acquisition of physics runs. The performance of the SST has been carefully studied since the beginning of data taking: the noise of the detector, data integrity, signal-over-noise ratio, hit reconstruction efficiency and resolution have been all investigated with time and for different conditions. In this paper we describe the reconstruction strategies, the calibration procedures and the detector performance results from the latest CMS operation.

  16. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  17. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  18. Particle identification by silicon detectors

    International Nuclear Information System (INIS)

    Santos, Denison de Souza

    1997-01-01

    A method is developed for the evaluation of the energy loss, dE/dx, of a charged particle traversing a silicon strip detector. The method is applied to the DELPHI microvertex detector leading to diagrams of dE/dx versus momentum for different particles. The specific case of pions and protons is treated and the most probable value of dE/dx and the width of the dE/dx distribution for those particles in the momentum range of 0.2 GeV/c to 1.5 GeV/c, are obtained. The resolution found is 13.4 % for particles with momentum higher than 2 GeV/c and the separation power is 2.9 for 1.0 GeV/c pions and protons. (author)

  19. Visualizing a silicon quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Barry C [Institute for Quantum Information Science, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Hollenberg, Lloyd C L [ARC Centre of Excellence for Quantum Computer Technology, School of Physics, University of Melbourne, Victoria 3010 (Australia); Edmundson, Darran; Edmundson, Andrew [EDM Studio Inc., Level 2, 850 16 Avenue SW, Calgary, Alberta T2R 0S9 (Canada)], E-mail: bsanders@qis.ucalgary.ca, E-mail: lloydch@unimelb.edu.au, E-mail: darran@edmstudio.com

    2008-12-15

    Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.

  20. The BELLE silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Alimonti, G.; Aihara, H.; Alexander, J.; Asano, Y.; Bakich, A.; Bozek, A.; Banas, E.; Browder, T.; Dragic, J.; Fukunaga, C.; Gordon, A.; Guler, H.; Everton, C.; Heenan, E.; Haba, J.; Hazumi, M.; Hastings, N.; Hara, T.; Hojo, T.; Higuchi, T.; Iwai, G.; Ishino, H.; Jalocha, P.; Korotuschenko, K.; Kaneko, J.; Kapusta, P.; Kawasaki, T.; Lange, J.S.; Li, Y.; Marlow, D.; Moloney, G.; Moffitt, L.; Mori, S.; Matsubara, T.; Nakadaira, T.; Nakamura, T.; Natkaniec, Z.; Okuno, S.; Olsen, S.; Ostrowicz, W.; Palka, H.; Peak, L.S.; Ryuko, J.; Rozanska, M.; Sevior, M.; Shimada, J.; Sumisawa, K.; Stock, R.; Stanic, S.; Swain, S.; Taylor, G.; Takasaki, F.; Tajima, H.; Trabelsi, K.; Tamura, N.; Tanaka, J.; Tanaka, M. E-mail: tanakam@post.kek.jp; Takahashi, S.; Tomura, T.; Tsuboyama, T.; Tsujita, Y.; Varner, G.; Varvell, K.E.; Watanabe, Y.; Yamamoto, H.; Yamada, Y.; Yokoyama, M.; Zhao, H.; Zontar, D

    2000-10-11

    A silicon vertex detector has been developed for the BELLE experiment at the KEK B-factory to be used to determine the relative displacements of B-meson decay vertices for CP violation measurements. The device has been successfully installed and operated with high-luminosity beam conditions. The average strip yield is larger than 96%, including the preamplifier electronics yield and the detector is currently working stably with a signal-to-noise ratio of 17-40. The measured impact parameter resolution agrees with expectations based on Monte Carlo simulations, and the measured D{sup 0} lifetime is in good agreement with the particle data group's average of other measurements. Several B{yields}J/{psi}K events produced at the {upsilon}(4S) resonance have been detected and separate decay vertices have been found.

  1. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  2. Silicone-based Dielectric Elastomers

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    Efficient conversion of energy from one form to another (transduction) is an important topic in our daily day, and it is a necessity in moving away from the fossil based society. Dielectric elastomers hold great promise as soft transducers, since they are compliant and light-weight amongst many...... energy efficient solutions are highly sought. These properties allow for interesting products ranging very broadly, e.g. from eye implants over artificial skins over soft robotics to huge wave energy harvesting plants. All these products utilize the inherent softness and compliance of the dielectric...... elastomer transducers. The subject of this thesis is improvement of properties of silicone-based dielectric elastomers with special focus on design guides towards electrically, mechanically, and electromechanically reliable elastomers. Strategies for improving dielectric elastomer performance are widely...

  3. Polycrystalline Silicon: a Biocompatibility Assay

    International Nuclear Information System (INIS)

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-01

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  4. From silicon to organic nanoparticle memory devices.

    Science.gov (United States)

    Tsoukalas, D

    2009-10-28

    After introducing the operational principle of nanoparticle memory devices, their current status in silicon technology is briefly presented in this work. The discussion then focuses on hybrid technologies, where silicon and organic materials have been combined together in a nanoparticle memory device, and finally concludes with the recent development of organic nanoparticle memories. The review is focused on the nanoparticle memory concept as an extension of the current flash memory device. Organic nanoparticle memories are at a very early stage of research and have not yet found applications. When this happens, it is expected that they will not directly compete with mature silicon technology but will find their own areas of application.

  5. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  6. Silicon photonics III systems and applications

    CERN Document Server

    Lockwood, David

    2016-01-01

    This book is volume III of a series of books on silicon photonics. It reports on the development of fully integrated systems where many different photonics component are integrated together to build complex circuits. This is the demonstration of the fully potentiality of silicon photonics. It contains a number of chapters written by engineers and scientists of the main companies, research centers and universities active in the field. It can be of use for all those persons interested to know the potentialities and the recent applications of silicon photonics both in microelectronics, telecommunication and consumer electronics market.

  7. Calcinosis Cutis Long after Rhinoplasty with Silicone

    Directory of Open Access Journals (Sweden)

    Yuki Honda

    2014-12-01

    Full Text Available Rhinoplasty is a plastic surgery procedure to reconstruct the nose. Silicone alloplastic materials are most widely used as implants for rhinoplasty, but calcification on the surface occurs with long-term usage. Herein, we report a case of gruel-like calcification approximately 50 years after silicone implant rhinoplasty. In this case, calcification on the silicone surface might have transformed into gruel-like deposits, which presented as a subcutaneous mass at the dorsal area of the nose. The precise mechanism is unclear; a pH change in the tissue might have occurred during the process of inflammation, leading to the dissolution of calcified deposits.

  8. Quantum conductance in silicon quantum wires

    CERN Document Server

    Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A

    2002-01-01

    The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)

  9. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one.

  10. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1980-01-01

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 1600 0 C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH 3 ) 2 Si units and from 40 to 100 mole percent of CH 3 Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  11. Transistors using crystalline silicon devices on glass

    Science.gov (United States)

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  12. 24% efficient PERL structure silicon solar cells

    International Nuclear Information System (INIS)

    Zhao, J.; Wang, A.; Green, M.A.

    1990-01-01

    This paper reports that the performance of silicon solar cells have been significantly improved using an improved PERL (passivated emitter, rear locally-diffused) cell structure. This structure overcomes deficiencies in an earlier PERC (passivated emitter and rear cell) cell structure by locally diffusing boron into contact areas at the rear of the cells. Terrestrial energy conversion efficiencies up to 24% are reported for silicon cells for the first time. Air Mass O efficiencies approach 21%. The first batches of concentrator cells using the new structure have demonstrated significant improvement with 29% efficient concentrator silicon cells expected in the near future

  13. Studies on the reactive melt infiltration of silicon and silicon-molybdenum alloys in porous carbon

    Science.gov (United States)

    Singh, M.; Behrendt, D. R.

    1992-01-01

    Investigations on the reactive melt infiltration of silicon and silicon-1.7 and 3.2 at percent molybdenum alloys into porous carbon preforms have been carried out by process modeling, differential thermal analysis (DTA) and melt infiltration experiments. These results indicate that the initial pore volume fraction of the porous carbon preform is a critical parameter in determining the final composition of the raction-formed silicon carbide and other residual phases. The pore size of the carbon preform is very detrimental to the exotherm temperatures due to liquid silicon-carbon reactions encountered during the reactive melt infiltration process. A possible mechanism for the liquid silicon-porous (glassy) carbon reaction has been proposed. The composition and microstructure of the reaction-formed silicon carbide has been discussed in terms of carbon preform microstructures, infiltration materials, and temperatures.

  14. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    OpenAIRE

    K?nig, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusi...

  15. Characterization of silicon oxynitride films prepared by the simultaneous implantation of oxygen and nitrogen ions into silicon

    International Nuclear Information System (INIS)

    Hezel, R.; Streb, W.

    1985-01-01

    Silicon oxynitride films about 5 nm in thickness were prepared by simultaneously implanting 5 keV oxygen and nitrogen ions into silicon at room temperature up to saturation. These films with concentrations ranging from pure silicon oxide to silicon nitride were characterized using Auger electron spectroscopy, electron energy loss spectroscopy and depth-concentration profiling. The different behaviour of the silicon oxynitride films compared with those of silicon oxide and silicon nitride with regard to thermal stability and hardness against electron and argon ion irradiation is pointed out. (Auth.)

  16. Ion beam studied of silicon oxynitride and silicon nitroxide thin layers

    International Nuclear Information System (INIS)

    Oude Elferink, J.B.

    1989-01-01

    In this the processes occurring during high temperature treatments of silicon oxynitride and silicon oxide layers are described. Oxynitride layers with various atomic oxygen to nitrogen concentration ration (O/N) are considered. The high energy ion beam techniques Rutherford backscattering spectroscopy, elastic recoil detection and nuclear reaction analysis have been used to study the layer structures. A detailed discussion of these ion beam techniques is given. Numerical methods used to obtain quantitative data on elemental compositions and depth profiles are described. The electrical compositions and depth profiles are described. The electrical properties of silicon nitride films are known to be influenced by the behaviour of hydrogen in the film during high temperature anneling. Investigations of the behaviour of hydrogen are presented. Oxidation of silicon (oxy)nitride films in O 2 /H 2 0/HCl and nitridation of silicon dioxide films in NH 3 are considered since oxynitrides are applied as an oxidation mask in the LOCOS (Local oxidation of silicon) process. The nitridation of silicon oxide layers in an ammonia ambient is considered. The initial stage and the dependence on the oxide thickness of nitrogen and hydrogen incorporation are discussed. Finally, oxidation of silicon oxynitride layers and of silicon oxide layers are compared. (author). 76 refs.; 48 figs.; 1 tab

  17. Irradiation effects of swift heavy ions on gallium arsenide, silicon and silicon diodes

    International Nuclear Information System (INIS)

    Bhoraskar, V.N.

    2001-01-01

    The irradiation effects of high energy lithium, boron, oxygen and silicon ions on crystalline silicon, gallium arsenide, porous silicon and silicon diodes were investigated. The ion energy and fluence were varied over the ranges 30 to 100 MeV and 10 11 to 10 14 ions/cm 2 respectively. Semiconductor samples were characterized with the x-ray fluorescence, photoluminescence, thermally stimulated exo-electron emission and optical reflectivity techniques. The life-time of minority carriers in crystalline silicon was measured with a pulsed electron beam and the lithium depth distribution in GaAs was measured with the neutron depth profiling technique. The diodes were characterized through electrical measurements. The results of optical reflectivity, life-time of minority carriers and photoluminescence show that swift heavy ions induce defects in the surface region of crystalline silicon. In the ion-irradiated GaAs, migration of silicon, oxygen and lithium atoms from the buried region towards the surface was observed, with orders of magnitude enhancement in the diffusion coefficients. Enhancement in the photoluminescence intensity was observed in the GaAs and porous silicon samples that, were irradiated with silicon ions. The trade-off between the turn-off time and the voltage, drop in diodes irradiated with different swift heavy ions was also studied. (author)

  18. Photo-EMF Sensitivity of Porous Silicon Thin Layer–Crystalline Silicon Heterojunction to Ammonia Adsorption

    Directory of Open Access Journals (Sweden)

    Kae Dal Kwack

    2011-01-01

    Full Text Available A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  19. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca [Queensland Micro and Nanotechnology Centre and Environmental Futures Research Institute, Griffith University, Nathan QLD 4111 (Australia); Boeckl, John J. [Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433 (United States); Hellerstedt, Jack; Fuhrer, Michael S. [Monash Centre for Atomically Thin Materials, Monash University, Monash, VIC 3800 (Australia)

    2016-07-04

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  20. Production of technical silicon and silicon carbide from rice-husk

    Directory of Open Access Journals (Sweden)

    A. Z. Issagulov

    2014-10-01

    Full Text Available In the article there are studied physical and chemical properties of silicon-carbonic raw material – rice-husk, thermophysical characteristics of the process of rice-husk pyrolysis in nonreactive and oxidizing environment; structure and phase composition of products of the rice-husk pyrolysis in interval of temperatures 150 – 850 °С and high temperature pyrolysis in interval of temperatures 900 – 1 500 °С. There are defined the silicon-carbon production conditions, which meet the requirements applicable to charging materials at production of technical silicon and silicon carbide.