The Asymptotic Expansion Method via Symbolic Computation
Directory of Open Access Journals (Sweden)
Juan F. Navarro
2012-01-01
Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... aj(g), j ¿ N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the case where and for ¿, µ in C\\R. In this case the mean...
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.
2015-03-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Parabolic cyclinder functions : examples of error bounds for asymptotic expansions
R. Vidunas; N.M. Temme (Nico)
2002-01-01
textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.
Asymptotic chaos expansions in finance theory and practice
Nicolay, David
2014-01-01
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...
From A to Z: Asymptotic expansions by van Zwet
Albers, Willem/Wim; de Gunst, Mathisca; Klaasen, Chris; van der Vaart, Aad
2001-01-01
Refinements of first order asymptotic results axe reviewed, with a number of Ph.D. projects supervised by van Zwet serving as stepping stones. Berry-Esseen bounds and Edgeworth expansions are discussed for R-, L- and [/-statistics. After these special classes, the question about a general second
From A to Z: asymptotic expansions by van Zwet
Albers, Willem/Wim; de Gunst, M.C.M.; Klaassen, C.A.J.; van der Vaart, A.W.
2001-01-01
Refinements of first order asymptotic results are reviewed, with a number of Ph.D. projects supervised by van Zwet serving as stepping stones. Berry-Esseen bounds and Edgeworth expansions are discussed for R-, L- and U-statistics. After these special classes, the question about a general second
On the asymptotic expansion of the Bergman kernel
Seto, Shoo
Let (L, h) → (M, o) be a polarized Kahler manifold. We define the Bergman kernel for H0(M, Lk), holomorphic sections of the high tensor powers of the line bundle L. In this thesis, we will study the asymptotic expansion of the Bergman kernel. We will consider the on-diagonal, near-diagonal and far off-diagonal, using L2 estimates to show the existence of the asymptotic expansion and computation of the coefficients for the on and near-diagonal case, and a heat kernel approach to show the exponential decay of the off-diagonal of the Bergman kernel for noncompact manifolds assuming only a lower bound on Ricci curvature and C2 regularity of the metric.
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.
2014-03-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Application of the Asymptotic Taylor Expansion Method to Bistable Potentials
Directory of Open Access Journals (Sweden)
Okan Ozer
2013-01-01
Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.
Coulomb-distorted plane wave: Partial wave expansion and asymptotic forms
Hornyak, I.; Kruppa, A. T.
2013-05-01
Partial wave expansion of the Coulomb-distorted plane wave is determined and studied. Dominant and sub-dominant asymptotic expansion terms are given and leading order three-dimensional asymptotic form is derived. The generalized hypergeometric function 2F2(a, a; a + l + 1, a - l; z) is expressed with the help of confluent hypergeometric functions and the asymptotic expansion of 2F2(a, a; a + l + 1, a - l; z) is simplified.
Solution of internal erosion equations by asymptotic expansion
Directory of Open Access Journals (Sweden)
Dubujet P.
2012-07-01
Full Text Available One dimensional coupled soil internal erosion and consolidation equations are considered in this work for the special case of well determined sand and clay mixtures with a small proportion of clay phase. An enhanced modelling of the effect of erosion on elastic soil behavior was introduced through damage mechanics concepts. A modified erosion law was proposed. The erosion phenomenon taking place inside the soil was shown to act like a perturbation affecting the classical soil consolidation equation. This interpretation has enabled considering an asymptotic expansion of the coupled erosion consolidation equations in terms of a perturbation parameter linked to the maximum expected internal erosion. A robust analytical solution was obtained via direct integration of equations at order zero and an adequate finite difference scheme that was applied at order one.
Asymptotic expansion of unsteady gravity flow of a power-law fluid ...
African Journals Online (AJOL)
We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...
Asymptotic Expansions and Bootstrapping Distributions for Dependent Variables: A Martingale Approach
Mykland, Per Aslak
1992-01-01
The paper develops a one-step triangular array asymptotic expansion for continuous martingales which are asymptotically normal. Mixing conditions are not required, but the quadratic variations of the martingales must satisfy a law of large numbers and a central limit type condition. From this result we derive expansions for the distributions of estimators in asymptotically ergodic differential equation models, and also for the bootstrapping estimators of these distributions.
Numerical algorithms for uniform Airy-type asymptotic expansions
N.M. Temme (Nico)
1997-01-01
textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing
An asymptotic expansion for product integration applied to Cauchy principal value integrals
Wesseling, P.
1975-01-01
Product integration methods for Cauchy principal value integrals based on piecewise Lagrangian interpolation are studied. It is shown that for this class of quadrature methods the truncation error has an asymptotic expansion in integer powers of the step-size, and that a method with an asymptotic
Directory of Open Access Journals (Sweden)
I. V. Samoilenko
2005-01-01
Full Text Available We study the asymptotic expansion for solution of singularly perturbed equation for functional of Markovian evolution in Rd. The view of regular and singular parts of solution is found.
Asymptotic expansions of integral means and applications to the ratio of gamma functions
Elezović, Neven; Vukšić, Lenka
2013-01-01
Integral means are important class of bivariate means. In this paper we prove the very general algorithm for calculation of coefficients in asymptotic expansion of integral mean. It is based on explicit solving the equation of the form $B(A(x))=C(x)$, where $B$ and $C$ have known asymptotic expansions. The results are illustrated by calculation of some important integral means connected with gamma and digamma functions.
Frenod, Emmanuel
2013-01-01
In this note, a classification of Homogenization-Based Numerical Methods and (in particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.
Remarks on Slater's asymptotic expansions of Kummer functions for large values of the $a-$parameter
N.M. Temme (Nico)
2013-01-01
textabstractIn Slater's 1960 standard work on confluent hypergeometric functions, also called Kummer functions, a number of asymptotic expansions of these functions can be found. We summarize expansions derived from a differential equation for large values of the $a-$parameter. We show how similar
Asymptotic Expansions of the Contact Angle in Nonlocal Capillarity Problems
Dipierro, Serena; Maggi, Francesco; Valdinoci, Enrico
2017-10-01
We consider a family of nonlocal capillarity models, where surface tension is modeled by exploiting the family of fractional interaction kernels |z|^{-n-s}, with s\\in (0,1) and n the dimension of the ambient space. The fractional Young's law (contact angle condition) predicted by these models coincides, in the limit as s→ 1^-, with the classical Young's law determined by the Gauss free energy. Here we refine this asymptotics by showing that, for s close to 1, the fractional contact angle is always smaller than its classical counterpart when the relative adhesion coefficient σ is negative, and larger if σ is positive. In addition, we address the asymptotics of the fractional Young's law in the limit case s→ 0^+ of interaction kernels with heavy tails. Interestingly, near s=0, the dependence of the contact angle from the relative adhesion coefficient becomes linear.
Asymptotic expansions for Riesz fractional derivatives of Airy functions and applications
N.M. Temme (Nico); V. Varlamov
2009-01-01
textabstractRiesz fractional derivatives of a function, $D_{x}^{\\alpha}f(x)$ (also called Riesz potentials), are defined as fractional powers of the Laplacian. Asymptotic expansions for large $x$ are computed for the Riesz fractional derivatives of the Airy function of the first kind, $Ai(x)$, and
Asymptotic expansion of unsteady gravity flow of a power-law fluid ...
African Journals Online (AJOL)
We investigate the effects of velocity on the temperature field. We investigate the power-law viscosity exponent on the flow, the Darcy parameter on the temperature profiles and the results obtained are discussed. Keywords: Unsteady gravity flows; Porous media; Non – Newtonian power- law fluid and Asymptotic expansion.
Asymptotic expansions and the possibilities to drop the hypotheses in the prandtl problem
Georgievskii, D. V.
2009-02-01
The plane problem on the quasistatic compression of a thin perfectly plastic layer between undeformable rough plates (the Prandtl problem) has a well-known analytic solution at all points sufficiently far from the midsection and endpoints of the layer. Both the static and the kinematic component of this solution were obtained on the basis of the Prandtl hypothesis [1] stating that the tangential stress is linear along the layer thickness and is maximal in absolute value on the plate surfaces. (If the plates are perfectly rough, then this maximum value coincides with the shear yield stress.) The Prandtl hypothesis was widely confirmed in experiments carried out after the paper [1] had been published. At the same time, it is natural to ask whether one can construct a classical solution of this problem without imposing any static or kinematic hypotheses on the unknown variables and whether there exist any other mathematical solutions in which these hypotheses do not hold and which themselves are not observed in experiments. In the present paper, we use asymptotic analysis with a natural small geometric parameter and uniquely determine an exact solution (in the sense of finiteness of the number of terms in the asymptotic expansion), which coincides with the Prandtl solution generalized to the case of an arbitrary roughness coefficient of the plates. We rigorously show that such asymptotics cannot hold near the layer midsection, where we construct another, internal asymptotic expansion. In the abovementioned sense, the solution corresponding to the internal expansion is also exact and models the compression of a thin vertical strip in the middle of the layer. We realize two possible versions of matching of the two expansions in the cross-section whose distance from the midsection is equal to the layer thickness.
Relativistic stars in Starobinsky gravity with the matched asymptotic expansions method
Arapoǧlu, Savaş; ćıkıntoǧlu, Sercan; Ekşi, K. Yavuz
2017-10-01
We study the structure of relativistic stars in R +α R2 theory using the method of matched asymptotic expansion to handle the higher order derivatives in field equations arising from the higher order curvature term. We find solutions, parametrized by α , for uniform density stars. We obtain the mass-radius relations and study the dependence of maximum mass on α . We find that Mmax is almost linearly proportional to α . For each α the maximum mass configuration has the biggest compactness parameter (η =G M /R c2), and we argue that the general relativistic stellar configuration corresponding to α =0 is the least compact among these.
Asymptotic expansion of a partition function related to the sinh-model
Borot, Gaëtan; Kozlowski, Karol K
2016-01-01
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integra...
Yedlin, M. J.; Virieux, J.; van Vorst, D. G.
2010-12-01
In acoustic, electromagnetic, and elastic wave propagation problems, of the Helmholtz type, in inhomogeneous media, a reasonable approximation, in the JWKB limit, is given by asymptotic ray theory with appropriate phase corrections in the presence of smooth caustics. Herein, we present a modification of ray theory to account for source singularities, which correspond to line and point caustics respectively in two and three dimensions. The classical ray theory ansatz breaks down in the neighborhood of a source singularity, a manifestation of the vanishing of the cross-sectional area of the ray tube near the source. Conventional methods of fixing this problem involve surrounding the source by a homogeneous medium and computing the initial ray data on a sphere of fixed radius. Such a method is dependent on the foregoing conditions and is considered non-uniform. The new uniform asymptotic expansion ansatz for the Green’s function is based on Zauderer [1] and Yedlin [2] with the replacement of the phase term by the actual Green’s function that contains the travel-time function. An analysis will be presented in both two and three dimensions, in the frequency domain, illustrating the fundamental construction and differences in wave propagation effects. While applications of this new representation of the Green’s function include the calculation of sensitivity kernels [3], [4] a new application has presented itself in waveform inversion, especially in crosshole radar [5]. In crosshole radar waveform inversion, the received data is a three-dimensional wave, while the inversion is initially performed in two-dimensions, usually with a starting model obtained via travel-time tomography. To invert the data correctly, it must be transformed from a three-dimensional data field into a two-dimensional data field. To do so, a transfer function must be defined for the inhomogeneous media between the transmitter and receiver. Such a frequency domain transfer function can be
Directory of Open Access Journals (Sweden)
R. Kenna
2014-09-01
Full Text Available We analyze the resistance between two nodes in a cobweb network of resistors. Based on an exact expression, we derive the asymptotic expansions for the resistance between the center node and a node on the boundary of the M x N cobweb network with resistors r and s in the two spatial directions. All coefficients in this expansion are expressed through analytical functions.
Asymptotic expansions of the error for hyper-singular integrals with an interval variable
Directory of Open Access Journals (Sweden)
Chong Chen
2016-01-01
Full Text Available Abstract In this paper, we present high accuracy quadrature formulas for hyper-singular integrals ∫ a b g ( x q α ( x , t d x $\\int_{a}^{b}g(xq^{\\alpha}(x,t\\, dx$ , where q ( x , t = | x − t | $q(x,t=|x-t|$ (or x − t $x-t$ , t ∈ ( a , b $t\\in(a,b$ , and α ≤ − 1 $\\alpha\\leq-1$ (or α < − 1 $\\alpha<-1$ . If g ( x $g(x$ is 2 m + 1 $2m+1$ times differentiable on [ a , b ] $[a,b]$ , the asymptotic expansions of the error show that the convergence order is O ( h 2 μ + 1 + α $O(h^{2\\mu+1+\\alpha}$ with q ( x , t = | x − t | $q(x,t=|x-t|$ (or x − t $x-t$ for α ≤ − 1 $\\alpha\\leq-1$ (or α < − 1 $\\alpha<-1$ and α being non-integer, and the error power is O ( h η $O(h^{\\eta}$ with q ( x , t = x − t $q(x,t=x-t$ for α being integers less than −1, where η = min ( 2 μ , 2 μ + 2 + α $\\eta =\\min(2\\mu,2\\mu+2+\\alpha$ and μ = 1 , … , m $\\mu=1,\\ldots,m$ . Since the derivatives of the density function g ( x $g(x$ in the quadrature formulas can be eliminated by means of the extrapolation method, the formulas can easily be applied to solving corresponding hyper-singular boundary integral equations. The reliability and efficiency of the proposed formulas in this paper are demonstrated by some numerical examples.
DEFF Research Database (Denmark)
Ryttov, T. A.; Shrock, R.
2016-01-01
We consider an asymptotically free vectorial gauge theory, with gauge group $G$ and $N_f$ fermions in a representation $R$ of $G$, having an infrared (IR) zero in the beta function at $\\alpha_{IR}$. We present general formulas for scheme-independent series expansions of quantities, evaluated...... at $\\alpha_{IR}$, as powers of an $N_f$-dependent expansion parameter, $\\Delta_f$. First, we apply these to calculate the derivative $d\\beta/d\\alpha$ evaluated at $\\alpha_{IR}$, denoted $\\beta'_{IR}$, which is equal to the anomalous dimension of the ${\\rm Tr}(F_{\\mu\
On the asymptotic expansion of the curvature of perturbations of the $L_{2}$ connection
DEFF Research Database (Denmark)
De, Amit
We establish that the Hitchin connection is a perturbation of the $L_{2}$-connection. We notice that such a formulation of the Hitchin connection does not necessarily require the manifold in question possessing a rigid family of Kähler structures. We then proceed to calculate the asymptotic expan...
Energy Technology Data Exchange (ETDEWEB)
Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au [Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007 (Australia); Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science and Centre for Quantum Technologies, National University of Singapore, Singapore 119615 (Singapore)
2016-05-15
State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.
Labbe, Fernando
2007-04-01
Elbows with a shallow surface cracks in nuclear pressure pipes have been recognized as a major origin of potential catastrophic failures. Crack assessment is normally performed by using the J-integral approach. Although this one-parameter-based approach is useful to predict the ductile crack onset, it depends strongly on specimen geometry or constraint level. When a shallow crack exists (depth crack-to-thickness wall ratio less than 0.2) and/or a fully plastic condition develops around the crack, the J-integral alone does not describe completely the crack-tip stress field. In this paper, we report on the use of a three-term asymptotic expansion, referred to as the J- A 2 methodology, for modeling the elastic-plastic stress field around a three-dimensional shallow surface crack in an elbow subjected to internal pressure and out-of-plane bending. The material, an A 516 Gr. 70 steel, used in the nuclear industry, was modeled with a Ramberg-Osgood power law and flow theory of plasticity. A finite deformation theory was included to account for the highly nonlinear behavior around the crack tip. Numerical finite element results were used to calculate a second fracture parameter A 2 for the J- A 2 methodology. We found that the used three-term asymptotic expansion accurately describes the stress field around the considered three-dimensional shallow surface crack.
Ritchie, R.H.; Sakakura, A.Y.
1956-01-01
The formal solutions of problems involving transient heat conduction in infinite internally bounded cylindrical solids may be obtained by the Laplace transform method. Asymptotic series representing the solutions for large values of time are given in terms of functions related to the derivatives of the reciprocal gamma function. The results are applied to the case of the internally bounded infinite cylindrical medium with, (a) the boundary held at constant temperature; (b) with constant heat flow over the boundary; and (c) with the "radiation" boundary condition. A problem in the flow of gas through a porous medium is considered in detail.
Berthelot, Yves H.; Pierce, Allan D.; Kearns, James A.
1987-01-01
The sound field diffracted by a single smooth hill of finite impedance is studied both analytically, within the context of the theory of Matched Asymptotic Expansions (MAE), and experimentally, under laboratory scale modeling conditions. Special attention is given to the sound field on the diffracting surface and throughout the transition region between the illuminated and the shadow zones. The MAE theory yields integral equations that are amenable to numerical computations. Experimental results are obtained with a spark source producing a pulse of 42 microsec duration and about 130 Pa at 1 m. The insertion loss of the hill is inferred from measurements of the acoustic signals at two locations in the field, with subsequent Fourier analysis on an IBM PC/AT. In general, experimental results support the predictions of the MAE theory, and provide a basis for the analysis of more complicated geometries.
Directory of Open Access Journals (Sweden)
Bezyaev Vladimir Ivanovich
2014-09-01
Full Text Available The authors present an efficient algorithm different from the previously known to construct the asymptotics of solutions of nonautonomous systems of ordinary differential equations with meromorphic matrix. Schrödinger equation, Dirac system, Lippman-Schwinger equation and other equations of quantum mechanics with spherically symmetric and meromorphic potentials may be reduced to such systems. The Schrödinger equation and the Dirac system describe the stationary states of an electron in a Coulomb field with a fixed point charge in the description of the relativistic and nonrelativistic hydrogen atom. The Lippman-Schwinger equation of scattering theory describes the results of collision and interaction of quantum-mechanical particles in mathematical language after these particles have already diverged a long way from one another and ceased to interact. The observed algorithm supplements the known results and allows you to approach the analysis of the problems of this type with a fairly simple and at the same time, a universal point of view.
Tovbis, Alexander; Tsuchiya, Masa; Jaffe, Charles
1998-09-01
The subject of this paper is the construction of the exponential asymptotic expansions of the unstable and stable manifolds of the area-preserving Henon map. The approach that is taken enables one to capture the exponentially small effects that result from what is known as the Stokes phenomenon in the analytic theory of equations with irregular singular points. The exponential asymptotic expansions were then used to obtain explicit functional approximations for the stable and unstable manifolds. These approximations are compared with numerical simulations and the agreement is excellent. Several of the main results of the paper have been previously announced in A. Tovbis, M. Tsuchiya, and C. Jaffe ["Chaos-integrability transition in nonlinear dynamical systems: exponential asymptotic approach," Differential Equations and Applications to Biology and to Industry, edited by M. Martelli, K. Cooke, E. Cumberbatch, B. Tang, and H. Thieme (World Scientific, Singapore, 1996), pp. 495-507, and A. Tovbis, M. Tsuchiya, and C. Jaffe, "Exponential asymptotic expansions and approximations of the unstable and stable manifolds of the Henon map," preprint, 1994]. (c) 1998 American Institute of Physics.
Nasution, Muhammad Ridlo Erdata
2014-06-01
A new asymptotic expansion homogenization analysis is proposed to analyze 3-D composite in which thermomechanical and finite thickness effects are considered. Finite thickness effect is captured by relieving periodic boundary condition at the top and bottom of unit-cell surfaces. The mathematical treatment yields that only 2-D periodicity (i.e. in in-plane directions) is taken into account. A unit-cell representing the whole thickness of 3-D composite is built to facilitate the present method. The equivalent in-plane thermomechanical properties of 3-D orthogonal interlock composites are calculated by present method, and the results are compared with those obtained by standard homogenization method (with 3-D periodicity). Young\\'s modulus and Poisson\\'s ratio obtained by present method are also compared with experiments whereby a good agreement is particularly found for the Young\\'s modulus. Localization analysis is carried out to evaluate the stress responses within the unit-cell of 3-D composites for two cases: thermal and biaxial tensile loading. Standard finite element (FE) analysis is also performed to validate the stress responses obtained by localization analysis. It is found that present method results are in a good agreement with standard FE analysis. This fact emphasizes that relieving periodicity in the thickness direction is necessary to accurately simulate the real free-traction condition in 3-D composite. © 2014 Elsevier Ltd.
Directory of Open Access Journals (Sweden)
V. N. Grebenev
2013-01-01
Full Text Available The extended symmetry of the functional of length determined in an affine space K3 of the correlation vectors for homogeneous isotropic turbulence is studied. The two-point velocity-correlation tensor field (parametrized by the time variable t of the velocity fluctuations is used to equip this space by a family of the pseudo-Riemannian metrics dl2(t (Grebenev and Oberlack (2011. First, we observe the results obtained by Grebenev and Oberlack (2011 and Grebenev et al. (2012 about a geometry of the correlation space K3 and expose the Lie algebra associated with the equivalence transformation of the above-mentioned functional for the quadratic form dlD22(t generated by dl2(t which is similar to the Lie algebra constructed by Grebenev et al. (2012. Then, using the properties of this Lie algebra, we show that there exists a nontrivial central extension wherein the central charge is defined by the same bilinear skew-symmetric form c as for the Witt algebra which measures the number of internal degrees of freedom of the system. For the applications in turbulence, as the main result, we establish the asymptotic expansion of the transversal correlation function for large correlation distances in the frame of dlD22(t.
Meliga, Philippe; Gallaire, François
2011-08-01
The present paper investigates numerically and theoretically the axisymmetric vortex breakdown occurring in a constricted pipe of infinite extension, i.e., the transition from a smooth columnar state to a breakdown state exhibiting a recirculation bubble. Velocity distributions are prescribed at the pipe inlet under the form of Batchelor vortices with uniform axial velocity and variable levels of confinement. A numerical continuation technique is developed to follow the branches of nonlinear steady solutions when varying the swirl parameter. In the most general case, vortex breakdown occurs abruptly owing to a subcritical, global instability of the non-parallel, viscous columnar solution, and results in the coexistence of multiple stable solutions over a finite range of swirl. For highly confined vortices, a second scenario prevails, where the flow transitions smoothly from the columnar to the breakdown state without any instability. The effect of a low-flow rate jet positioned at the pipe wall is then characterized in the perspective of control. Its effectiveness is evaluated in light of several practically meaningful criteria, namely, the ability of the control to optimize either the stability domain or the topology of the columnar state and its ability to alleviate hysteresis. For each criterion, an optimal jet position is determined from nonlinear simulations, the results being in good agreement with that issuing from an asymptotic expansion of the Navier-Stokes equations. Finally, we illustrate the importance of physically motivated control strategies by demonstrating how the wall jet technique can be outdone by an appropriate manipulation of the axial velocity profile prescribed at the pipe inlet.
Energy Technology Data Exchange (ETDEWEB)
Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece); School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Hadjinicolaou, Maria [School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Karahalios, George T. [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece)
2016-08-15
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses
Nonstandard asymptotic analysis
Berg, Imme
1987-01-01
This research monograph considers the subject of asymptotics from a nonstandard view point. It is intended both for classical asymptoticists - they will discover a new approach to problems very familiar to them - and for nonstandard analysts but includes topics of general interest, like the remarkable behaviour of Taylor polynomials of elementary functions. Noting that within nonstandard analysis, "small", "large", and "domain of validity of asymptotic behaviour" have a precise meaning, a nonstandard alternative to classical asymptotics is developed. Special emphasis is given to applications in numerical approximation by convergent and divergent expansions: in the latter case a clear asymptotic answer is given to the problem of optimal approximation, which is valid for a large class of functions including many special functions. The author's approach is didactical. The book opens with a large introductory chapter which can be read without much knowledge of nonstandard analysis. Here the main features of the t...
Energy Technology Data Exchange (ETDEWEB)
Dranishnikov, A N [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation)
2000-12-31
In this paper we study the similarity between local topology and its global analogue, so-called asymptotic topology. In the asymptotic case, the notions of dimension, cohomological dimension, and absolute extensor are introduced and some basic facts about them are proved. The Higson corona functor establishing a connection between macro- and micro-topology is considered. A relationship between problems of general asymptotic topology and the Novikov conjecture on higher signatures is discussed. Some new results concerning the Novikov conjecture and other related conjectures are presented.
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
DEFF Research Database (Denmark)
Jensen, J.L.
1993-01-01
Previous results on Edgeworth expansions for sums over a random field are extended to the case where the strong mixing coefficient depends not only on the distance between two sets of random variables, but also on the size of the two sets. The results are applied to the Poisson and the Strauss...
Numerical and asymptotic aspects of parabolic cylinder functions
N.M. Temme (Nico)
2000-01-01
textabstractSeveral uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions given earlier by F.W.J. Olver. Some of his
Asymptotically Safe Dark Matter
DEFF Research Database (Denmark)
Sannino, Francesco; Shoemaker, Ian M.
2015-01-01
We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....
Large Deviations and Asymptotic Methods in Finance
Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef
2015-01-01
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...
Kink fluctuation asymptotics and zero modes
Energy Technology Data Exchange (ETDEWEB)
Izquierdo, A.A. [Universidad de Salamanca, Departamento de Matematica Aplicada and IUFFyM, Salamanca (Spain); Guilarte, J.M. [Universidad de Salamanca, Departamento de Fisica Fundamental and IUFFyM, Salamanca (Spain)
2012-10-15
In this paper we propose a refinement of the heat-kernel/zeta function treatment of kink quantum fluctuations in scalar field theory, further analyzing the existence and implications of a zero-energy fluctuation mode. Improved understanding of the interplay between zero modes and the kink heat-kernel expansion delivers asymptotic estimations of one-loop kink mass shifts with remarkably higher precision than previously obtained by means of the standard Gilkey-DeWitt heat-kernel expansion. (orig.)
Asymptotics and Borel summability
Costin, Ovidiu
2008-01-01
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us
Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations
Sachdev, PL
2010-01-01
A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/boundary conditions. This title presents the constructive mathematical techniques. It deals with the asymptotic methods which include self-similarity, balancing argument, and matched asymptotic expansions
Asymptotic Methods for Solitary Solutions and Compactons
Directory of Open Access Journals (Sweden)
Ji-Huan He
2012-01-01
Full Text Available This paper is an elementary introduction to some new asymptotic methods for the search for the solitary solutions of nonlinear differential equations, nonlinear differential-difference equations, and nonlinear fractional differential equations. Particular attention is paid throughout the paper to giving an intuitive grasp for the variational approach, the Hamiltonian approach, the variational iteration method, the homotopy perturbation method, the parameter-expansion method, the Yang-Laplace transform, the Yang-Fourier transform, and ancient Chinese mathematics. Hamilton principle and variational principles are also emphasized. The reviewed asymptotic methods are easy to be followed for various applications. Some ideas on this paper are first appeared.
Exact Asymptotics of Bivariate Scale Mixture Distributions
Hashorva, Enkelejd
2009-01-01
Let (RU_1, R U_2) be a given bivariate scale mixture random vector, with R>0 being independent of the bivariate random vector (U_1,U_2). In this paper we derive exact asymptotic expansions of the tail probability P{RU_1> x, RU_2> ax}, a \\in (0,1] as x tends infintiy assuming that R has distribution function in the Gumbel max-domain of attraction and (U_1,U_2) has a specific tail behaviour around some absorbing point. As a special case of our results we retrieve the exact asymptotic behaviour ...
Optimal asymptotic cloning machines
Chiribella, Giulio; Yang, Yuxiang
2014-06-01
We pose the question whether the asymptotic equivalence between quantum cloning and quantum state estimation, valid at the single-clone level, still holds when all clones are examined globally. We conjecture that the answer is affirmative and present a large amount of evidence supporting our conjecture, developing techniques to derive optimal asymptotic cloners and proving their equivalence with estimation in virtually all scenarios considered in the literature. Our analysis covers the case of arbitrary finite sets of states, arbitrary families of coherent states, arbitrary phase- and multiphase-covariant sets of states, and two-qubit maximally entangled states. In all these examples we observe that the optimal asymptotic cloners enjoy a universality property, consisting in the fact that scaling of their fidelity does not depend on the specific details of the input states, but only on the number of free parameters needed to specify them.
Ramnath, Rudrapatna V
2012-01-01
This book addresses the task of computation from the standpoint of asymptotic analysis and multiple scales that may be inherent in the system dynamics being studied. This is in contrast to the usual methods of numerical analysis and computation. The technical literature is replete with numerical methods such as Runge-Kutta approach and its variations, finite element methods, and so on. However, not much attention has been given to asymptotic methods for computation, although such approaches have been widely applied with great success in the analysis of dynamic systems. The presence of differen
Asymptotic freedom, asymptotic flatness and cosmology
Kiritsis, Elias
2013-01-01
Holographic RG flows in some cases are known to be related to cosmological solutions. In this paper another example of such correspondence is provided. Holographic RG flows giving rise to asymptotically-free $\\beta$-functions have been analyzed in connection with holographic models of QCD. They are shown upon Wick rotation to provide a large class of inflationary models with logarithmically soft inflaton potentials. The scalar spectral index is universal and depends only on the number of e-foldings. The ratio of tensor to scalar power depends on the single extra real parameter that defines this class of models. The Starobinsky inflationary model as well as the recently proposed models of T-inflation are members of this class. The holographic setup gives a completely new (and contrasting) view to the stability and other problems of such inflationary models.
Asymptotics of perturbed soliton for Davey-Stewartson; 2, equation
Gadylshin, R R
1998-01-01
It is shown that, under a small perturbation of lump (soliton) for Davey-Stewartson (DS-II) equation, the scattering data gain the nonsoliton structure. As a result, the solution has the form of Fourier type integral. Asymptotic analysis shows that, in spite of dispertion, the principal term of the asymptotic expansion for the solution has the solitary wave form up to large time.
Quadratic maps without asymptotic measure
Hofbauer, Franz; Keller, Gerhard
1990-02-01
An interval map is said to have an asymptotic measure if the time averages of the iterates of Lebesgue measure converge weakly. We construct quadratic maps which have no asymptotic measure. We also find examples of quadratic maps which have an asymptotic measure with very unexpected properties, e.g. a map with the point mass on an unstable fix point as asymptotic measure. The key to our construction is a new characterization of kneading sequences.
Scheven, U. M.; Harris, R.; Johns, M. L.
2008-12-01
The experimental characterization of voidspaces in porous media generally includes measurements of volume averaged scalar properties such as porosity, dispersivity, or the hydrodynamic radius rh = V/S, where V and S are the volume and surface area of the pore space respectively. Displacement encoding NMR experiments have made significant contributions to this characterization. It is clear, however, that NMR derived dispersivities in packed beds—the one random porous system for which there exist canonical but incompatible theoretical predictions with few or no adjustable parameters—can be affected by the same experimental complications which have substantially contributed to the puzzling scatter in published dispersion results based on elution experiments. Notable among these are macroscopic flow heterogeneities near walls, and inhomogeneous flow injection. Using the first three cumulants we delineate a transition from a pre-asymptotic to a quasi-asymptotic dispersion regime and determine the true dispersivity of the random pack of spheres.
Energy Technology Data Exchange (ETDEWEB)
Litim, Daniel F. [Department of Physics and Astronomy, University of Sussex,Falmer Campus, Brighton, BN1 9QH (United Kingdom); Sannino, Francesco [CP-Origins & the Danish Institute for Advanced Study Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense (Denmark)
2014-12-31
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet fixed points, strictly controlled by perturbation theory. Extensions towards strong coupling and beyond the large-N limit are discussed.
DEFF Research Database (Denmark)
Litim, Daniel F.; Sannino, Francesco
2014-01-01
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet...... fixed points, strictly controlled by perturbation theory. Extensions towards strong coupling and beyond the large-N limit are discussed....
Asymptotically flat multiblack lenses
Tomizawa, Shinya; Okuda, Taika
2017-03-01
We present an asymptotically flat and stationary multiblack lens solution with biaxisymmetry of U (1 )×U (1 ) as a supersymmetric solution in the five-dimensional minimal ungauged supergravity. We show that the spatial cross section of each degenerate Killing horizon admits different lens space topologies of L (n ,1 )=S3/Zn as well as a sphere S3. Moreover, we show that, in contrast to the higher-dimensional Majumdar-Papapetrou multiblack hole and multi-Breckenridge-Myers-Peet-Vafa (BMPV) black hole spacetime, the metric is smooth on each horizon even if the horizon topology is spherical.
Asymptotic structures of cardinals
Directory of Open Access Journals (Sweden)
Oleksandr Petrenko
2014-07-01
Full Text Available A ballean is a set X endowed with some family F of its subsets, called the balls, in such a way that (X,F can be considered as an asymptotic counterpart of a uniform topological space. Given a cardinal k, we define F using a natural order structure on k. We characterize balleans up to coarse equivalence, give the criterions of metrizability and cellularity, calculate the basic cardinal invariant of these balleans. We conclude the paper with discussion of some special ultrafilters on cardinal balleans.
Ho, Pei-Ming
2017-04-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
Radial asymptotics of Lemaitre-Tolman-Bondi dust models
Sussman, Roberto A
2010-01-01
We examine the radial asymptotic behavior of spherically symmetric Lemaitre-Tolman-Bondi dust models by looking at their covariant scalars along radial rays, which are spacelike geodesics parametrized by proper length $\\ell$, orthogonal to the 4-velocity and to the orbits of SO(3). By introducing quasi-local scalars defined as integral functions along the rays, we obtain a complete and covariant representation of the models, leading to an initial value parametrization in which all scalars can be given by scaling laws depending on two metric scale factors and two basic initial value functions. Considering regular "open" LTB models whose space slices allow for a diverging $\\ell$, we provide the conditions on the radial coordinate so that its asymptotic limit corresponds to the limit as $\\ell\\to\\infty$. The "asymptotic state" is then defined as this limit, together with asymptotic series expansion around it, evaluated for all metric functions, covariant scalars (local and quasi-local) and their fluctuations. By ...
Thermodynamics of Asymptotically Conical Geometries.
Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H
2015-06-12
We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.
Asymptotic symmetries in de Sitter and inflationary spacetimes
DEFF Research Database (Denmark)
Ferreira, Ricardo J. Z.; Sandora, McCullen; Sloth, Martin S.
2017-01-01
Soft gravitons produced by the expansion of de Sitter can be viewed as the Nambu-Goldstone bosons of spontaneously broken asymptotic symmetries of the de Sitter spacetime. We explicitly construct the associated charges, and show that acting with the charges on the vacuum creates a new state...
Asymptotic description of a test particle around a Schwarzschild black hole
Rosales-Vera, Marco
2018-03-01
In this paper, the movement of a test particle around a Schwarzschild black hole is revisited. Using matched asymptotic expansions, approximate analytical expressions for the orbit of the test particle in the case of large eccentricity are found. The asymptotic solutions are compared with numerical and analytical results.
On the asymptotic structure of a Navier-Stokes flow past a rotating body
Kyed, Mads
2014-01-01
Consider a rigid body moving with a prescribed constant non-zero velocity and rotating with a prescribed constant non-zero angular velocity in a three-dimensional Navier-Stokes liquid. The asymptotic structure of a steady-state solution to the corresponding equations of motion is analyzed. In particular, an asymptotic expansion of the corresponding velocity field is obtained.
Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations
Directory of Open Access Journals (Sweden)
Bahman Ghazanfari
2013-08-01
Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.
Asymptotic independence for unimodal densities
Balkema, G.; Nolde, N.
2010-01-01
Asymptotic independence of the components of random vectors is a concept used in many applications. The standard criteria for checking asymptotic independence are given in terms of distribution functions (DFs). DFs are rarely available in an explicit form, especially in the multivariate case. Often
Asymptotic Safety, Fractals, and Cosmology
Reuter, Martin; Saueressig, Frank
These lecture notes introduce the basic ideas of the asymptotic safety approach to quantum Einstein gravity (QEG). In particular they provide the background for recent work on the possibly multi-fractal structure of the QEG space-times. Implications of asymptotic safety for the cosmology of the early Universe are also discussed.
Essentially asymptotically stable homoclinic networks
Driesse, R.; Homburg, A.J.
2009-01-01
Melbourne [An example of a nonasymptotically stable attractor, Nonlinearity 4(3) (1991), pp. 835-844] discusses an example of a robust heteroclinic network that is not asymptotically stable but which has the strong attracting property called essential asymptotic stability. We establish that this
On asymptotics for difference equations
Rafei, M.
2012-01-01
In this thesis a class of nonlinear oscillator equations is studied. Asymptotic approximations of first integrals for nonlinear difference equations are constructed by using the recently developed perturbation method based on invariance vectors. The asymptotic approximations of the solutions of the
Selected asymptotic methods with applications to electromagnetics and antennas
Fikioris, George; Bakas, Odysseas N
2013-01-01
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som
Directory of Open Access Journals (Sweden)
R. Fares
2012-01-01
Full Text Available We study the nonsteady Stokes flow in a thin tube structure composed by two thin rectangles with lateral elastic boundaries which are connected by a domain with rigid boundaries. After a variational approach of the problem which gives us existence, uniqueness, regularity results, and some a priori estimates, we construct an asymptotic solution. The existence of a junction region between the two rectangles imposes to consider, as part of the asymptotic solution, some boundary layer correctors that correspond to this region. We present and solve the problems for all the terms of the asymptotic expansion. For two different cases, we describe the order of steps of the algorithm of solving the problem and we construct the main term of the asymptotic expansion. By means of the a priori estimates, we justify our asymptotic construction, by obtaining a small error between the exact and the asymptotic solutions.
Asymptotics of the filtration problem for suspension in porous media
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2015-01-01
Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....
Top mass from asymptotic safety
Eichhorn, Astrid; Held, Aaron
2018-02-01
We discover that asymptotically safe quantum gravity could predict the top-quark mass. For a broad range of microscopic gravitational couplings, quantum gravity could provide an ultraviolet completion for the Standard Model by triggering asymptotic freedom in the gauge couplings and bottom Yukawa and asymptotic safety in the top-Yukawa and Higgs-quartic coupling. We find that in a part of this range, a difference of the top and bottom mass of approximately 170GeV is generated and the Higgs mass is determined in terms of the top mass. Assuming no new physics below the Planck scale, we construct explicit Renormalization Group trajectories for Standard Model and gravitational couplings which link the transplanckian regime to the electroweak scale and yield a top pole mass of Mt,pole ≈ 171GeV.
Asymptotic Limits for Transport in Binary Stochastic Mixtures
Energy Technology Data Exchange (ETDEWEB)
Prinja, A. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-05-01
The Karhunen-Loeve stochastic spectral expansion of a random binary mixture of immiscible fluids in planar geometry is used to explore asymptotic limits of radiation transport in such mixtures. Under appropriate scalings of mixing parameters - correlation length, volume fraction, and material cross sections - and employing multiple- scale expansion of the angular flux, previously established atomic mix and diffusion limits are reproduced. When applied to highly contrasting material properties in the small cor- relation length limit, the methodology yields a nonstandard reflective medium transport equation that merits further investigation. Finally, a hybrid closure is proposed that produces both small and large correlation length limits of the closure condition for the material averaged equations.
Asymptotic vacua with higher derivatives
Energy Technology Data Exchange (ETDEWEB)
Cotsakis, Spiros, E-mail: skot@aegean.gr [Department of Mathematics, American University of the Middle East, P.O. Box 220 Dasman, 15453 (Kuwait); Kadry, Seifedine, E-mail: Seifedine.Kadry@aum.edu.kw [Department of Mathematics, American University of the Middle East, P.O. Box 220 Dasman, 15453 (Kuwait); Kolionis, Georgios, E-mail: gkolionis@aegean.gr [Research group of Geometry, Dynamical Systems and Cosmology, University of the Aegean, Karlovassi 83200, Samos (Greece); Tsokaros, Antonios, E-mail: atsok@aegean.gr [Research group of Geometry, Dynamical Systems and Cosmology, University of the Aegean, Karlovassi 83200, Samos (Greece)
2016-04-10
We study limits of vacuum, isotropic universes in the full, effective, four-dimensional theory with higher derivatives. We show that all flat vacua as well as general curved ones are globally attracted by the standard, square root scaling solution at early times. Open vacua asymptote to horizon-free, Milne states in both directions while closed universes exhibit more complex logarithmic singularities, starting from initial data sets of a possibly smaller dimension. We also discuss the relation of our results to the asymptotic stability of the passage through the singularity in ekpyrotic and cyclic cosmologies.
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Agarwal, Anirudh; Mathur, Rinku
2010-01-01
ABSTRACT Maxillary transverse discrepancy usually requires expansion of the palate by a combination of orthopedic and orthodontic tooth movements. Three expansion treatment modalities are used today: rapid maxillary expansion, slow maxillary expansion and surgically assisted maxillary expansion.This article aims to review the maxillary expansion by all the three modalities and a brief on commonly used appliances.
Asymptotics of weighted random sums
DEFF Research Database (Denmark)
Corcuera, José Manuel; Nualart, David; Podolskij, Mark
2014-01-01
In this paper we study the asymptotic behaviour of weighted random sums when the sum process converges stably in law to a Brownian motion and the weight process has continuous trajectories, more regular than that of a Brownian motion. We show that these sums converge in law to the integral...
Thermodynamics of asymptotically safe theories
DEFF Research Database (Denmark)
Rischke, Dirk H.; Sannino, Francesco
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...
Naturalness of asymptotically safe Higgs
DEFF Research Database (Denmark)
Pelaggi, Giulio M.; Sannino, Francesco; Strumia, Alessandro
2017-01-01
that the scalars can be lighter than Λ. Although we do not have an answer to whether the Standard Model hypercharge coupling growth toward a Landau pole at around Λ ~ 1040GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful...
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...
Asymptotic behavior for a dissipative plate equation in $R^N$ with periodic coefficients
Directory of Open Access Journals (Sweden)
Eleni Bisognin
2008-03-01
Full Text Available In this work we study the asymptotic behavior of solutions of a dissipative plate equation in $mathbb{R}^N$ with periodic coefficients. We use the Bloch waves decomposition and a convenient Lyapunov function to derive a complete asymptotic expansion of solutions as $to infty$. In a first approximation, we prove that the solutions for the linear model behave as the homogenized heat kernel.
Asymptotic symmetries and electromagnetic memory
Pasterski, Sabrina
2017-09-01
Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called "memories". Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.
Asymptotic prime partitions of integers
Bartel, Johann; Bhaduri, R. K.; Brack, Matthias; Murthy, M. V. N.
2017-05-01
In this paper, we discuss P (n ) , the number of ways a given integer n may be written as a sum of primes. In particular, an asymptotic form Pas(n ) valid for n →∞ is obtained analytically using standard techniques of quantum statistical mechanics. First, the bosonic partition function of primes, or the generating function of unrestricted prime partitions in number theory, is constructed. Next, the density of states is obtained using the saddle-point method for Laplace inversion of the partition function in the limit of large n . This gives directly the asymptotic number of prime partitions Pas(n ) . The leading term in the asymptotic expression grows exponentially as √{n /ln(n ) } and agrees with previous estimates. We calculate the next-to-leading-order term in the exponent, proportional to ln[ln(n )]/ln(n ) , and we show that an earlier result in the literature for its coefficient is incorrect. Furthermore, we also calculate the next higher-order correction, proportional to 1 /ln(n ) and given in Eq. (43), which so far has not been available in the literature. Finally, we compare our analytical results with the exact numerical values of P (n ) up to n ˜8 ×106 . For the highest values, the remaining error between the exact P (n ) and our Pas(n ) is only about half of that obtained with the leading-order approximation. But we also show that, unlike for other types of partitions, the asymptotic limit for the prime partitions is still quite far from being reached even for n ˜107 .
Root Asymptotics of Spectral Polynomials
Directory of Open Access Journals (Sweden)
B. Shapiro
2007-01-01
Full Text Available We have been studying the asymptotic energy distribution of the algebraic part of the spectrum of the one-dimensional sextic anharmonic oscillator. We review some (both old and recent results on the multiparameter spectral problem and show that our problem ranks among the degenerate cases of Heine-Stieltjes spectral problem, and we derive the density of the corresponding probability measure.
Directory of Open Access Journals (Sweden)
Shulin Lyu
2018-01-01
The σ function, namely, the derivative of the log of the smallest eigenvalue distributions of the finite-n LUE or the JUE, satisfies the Jimbo–Miwa–Okamoto σ form of PV and PVI, although in the shift Jacobi case, with the weight xα(1−xβ, the β parameter does not show up in the equation. We also obtain the asymptotic expansions for the smallest eigenvalue distributions of the Laguerre unitary and Jacobi unitary ensembles after appropriate double scalings, and obtained the constants in the asymptotic expansion of the gap probabilities, expressed in term of the Barnes G-function valuated at special point.
Structure and asymptotic theory for nonlinear models with GARCH errors
Directory of Open Access Journals (Sweden)
Felix Chan
2015-01-01
Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.
Numerical Relativity and Asymptotic Flatness
Deadman, E.; Stewart, J. M.
2009-01-01
It is highly plausible that the region of space-time far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al. (1962), Sachs (1962) and Newman & Unti (1962), rely on careful, clever, a-priori choices of chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap...
Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
Directory of Open Access Journals (Sweden)
Golovaty Yuriy
2017-04-01
Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.
Asymptotic behavior of observables in the asymmetric quantum Rabi model
Semple, J.; Kollar, M.
2018-01-01
The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.
Ultraviolet asymptotics of glueball propagators
Bochicchio, Marco; Muscinelli, Samuele P.
2013-08-01
We point out that perturbation theory in conjunction with the renormalization group ( RG) puts a severe constraint on the structure of the large- N non-perturbative glueball propagators in SU( N) pure Y M, in QCD and in = 1 SU SY QCD with massless quarks, or in any confining asymptotically-free gauge theory massless in perturbation theory. For the scalar and pseudoscalar glueball propagators in pure Y M and QCD with massless quarks we check in detail the RG-improved estimate to the order of the leading and next-to-leading logarithms by means of a remarkable three-loop computation by Chetyrkin et al. We investigate as to whether the aforementioned constraint is satisfied by any of the scalar or pseudoscalar glueball propagators computed in the framework of the AdS String/ large- N Gauge Theory correspondence and of a recent proposal based on a Topological Field Theory underlying the large- N limit of Y M . We find that none of the proposals for the scalar or the pseudoscalar glueball propagators based on the AdS String/large- N Gauge Theory correspondence satisfies the constraint, actually as expected, since the gravity side of the correspondence is in fact strongly coupled in the ultraviolet. On the contrary, the Topological Field Theory satisfies the constraint that follows by the asymptotic freedom.
Asymptotically Free Gauge Theories. I
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
Non-Abelian Higgs models: Paving the way for asymptotic freedom
Gies, Holger; Zambelli, Luca
2017-07-01
Asymptotically free renormalization group trajectories can be constructed in non-Abelian Higgs models with the aid of generalized boundary conditions imposed on the renormalized action. We detail this construction within the languages of simple low-order perturbation theory, effective field theory, as well as modern functional renormalization group equations. We construct a family of explicit scaling solutions using a controlled weak-coupling expansion in the ultraviolet, and obtain a standard Wilsonian renormalization group relevance classification of perturbations about scaling solutions. We obtain global information about the quasifixed function for the scalar potential by means of analytic asymptotic expansions and numerical shooting methods. Further analytical evidence for such asymptotically free theories is provided in the large-N limit. We estimate the long-range properties of these theories and identify initial/boundary conditions giving rise to a conventional Higgs phase.
High-frequency asymptotics of solutions of ODE in a Banach space
Sazonov, L. I.
2017-12-01
We construct and justify high-frequency asymptotic expansions of solutions for some class of linear ODE in a Banach space. In particular, we obtain new results in the case when the averaged ODE are degenerate. The author is deceased. The editors are grateful to A. B. Morgulis, who finished the paper after the author’s death.
Modeling broadband poroelastic propagation using an asymptotic approach
Energy Technology Data Exchange (ETDEWEB)
Vasco, Donald W.
2009-05-01
An asymptotic method, valid in the presence of smoothly-varying heterogeneity, is used to derive a semi-analytic solution to the equations for fluid and solid displacements in a poroelastic medium. The solution is defined along trajectories through the porous medium model, in the manner of ray theory. The lowest order expression in the asymptotic expansion provides an eikonal equation for the phase. There are three modes of propagation, two modes of longitudinal displacement and a single mode of transverse displacement. The two longitudinal modes define the Biot fast and slow waves which have very different propagation characteristics. In the limit of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence a transient pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse mode are modified elastic waves. At intermediate frequencies the wave characteristics of the longitudinal modes are mixed. A comparison of the asymptotic solution with analytic and numerical solutions shows reasonably good agreement for both homogeneous and heterogeneous Earth models.
Asymptotic Waveform Evaluation (AWE) Technique for Frequency Domain Electromagnetic Analysis
Cockrell, C. R.; Beck, F. B.
1996-01-01
The Asymptotic Waveform Evaluation (AWE) technique is applied to a generalized frequency domain electromagnetic problem. Most of the frequency domain techniques in computational electromagnetics result in a matrix equation, which is solved at a single frequency. In the AWE technique, the Taylor series expansion around that frequency is applied to the matrix equation. The coefficients of the Taylor's series are obtained in terms of the frequency derivatives of the matrices evaluated at the expansion frequency. The coefficients hence obtained will be used to predict the frequency response of the system over a frequency range. The detailed derivation of the coefficients (called 'moments') is given along with an illustration for electric field integral equation (or Method of Moments) technique. The radar cross section (RCS) frequency response of a square plate is presented using the AWE technique and is compared with the exact solution at various frequencies.
Small-Maturity Asymptotics for the At-The-Money Implied Volatility Slope in Lévy Models.
Gerhold, Stefan; Gülüm, I Cetin; Pinter, Arpad
2016-03-03
We consider the at-the-money (ATM) strike derivative of implied volatility as the maturity tends to zero. Our main results quantify the behaviour of the slope for infinite activity exponential Lévy models including a Brownian component. As auxiliary results, we obtain asymptotic expansions of short maturity ATM digital call options, using Mellin transform asymptotics. Finally, we discuss when the ATM slope is consistent with the steepness of the smile wings, as given by Lee's moment formula.
Asymptotic dimension of relatively hyperbolic groups
Osin, D. V.
2004-01-01
Suppose that a finitely generated group $G$ is hyperbolic relative to a collection of subgroups $\\{H_1, ..., H_m\\} $. We prove that if each of the subgroups $H_1, ..., H_m$ has finite asymptotic dimension, then asymptotic dimension of $G$ is also finite.
Asymptotically informative prior for Bayesian analysis
Yuan, A.; de Gooijer, J.G.
2011-01-01
In classical Bayesian inference the prior is treated as fixed, it is asymptotically negligible, thus any information contained in the prior is ignored from the asymptotic first order result. However, in practice often an informative prior is summarized from previous similar or the same kind of
Term structure modeling and asymptotic long rate
Yao, Y.
1999-01-01
This paper examines the dynamics of the asymptotic long rate in three classes of term structure models. It shows that, in a frictionless and arbitrage-free market, the asymptotic long rate is a non-decreasing process. This gives an alternative proof of the same result of Dybvig et al. (Dybvig, P.H.,
Small dead-time expansion in counting distributions and moments
Ackermann, J.; Hogreve, H.
2010-03-01
Considering type I counters affected by a dead-time τ, we study the τ expansion of the probabilities and moments of the underlying stochastic renewal process. For the counting distributions and probabilities we extend results from the literature and analyse their approximation properties. Our results show, in particular, that for increasing counting numbers ever larger orders of the τ expansion are required for accurate approximations. Furthermore, the τ expansion for the first and second moments are obtained; their series is proved to coincide with the respective long time asymptotics. This asymptotics is demonstrated to converge exponentially fast to the exact quantities for growing time.
Edgeworth expansion for the pre-averaging estimator
DEFF Research Database (Denmark)
Podolskij, Mark; Veliyev, Bezirgen; Yoshida, Nakahiro
asymptotic variance. Our approach is based on martingale embedding, Malliavin calculus and stable central limit theorems for continuous diffusions. Moreover, we derive the density expansion for the studentized statistic, which might be applied to construct asymptotic confidence regions.......In this paper, we study the Edgeworth expansion for a pre-averaging estimator of quadratic variation in the framework of continuous diffusion models observed with noise. More specifically, we obtain a second order expansion for the joint density of the estimators of quadratic variation and its...
Physical renormalization schemes and asymptotic safety in quantum gravity
Falls, Kevin
2017-12-01
The methods of the renormalization group and the ɛ -expansion are applied to quantum gravity revealing the existence of an asymptotically safe fixed point in spacetime dimensions higher than two. To facilitate this, physical renormalization schemes are exploited where the renormalization group flow equations take a form which is independent of the parameterisation of the physical degrees of freedom (i.e. the gauge fixing condition and the choice of field variables). Instead the flow equation depends on the anomalous dimensions of reference observables. In the presence of spacetime boundaries we find that the required balance between the Einstein-Hilbert action and Gibbons-Hawking-York boundary term is preserved by the beta functions. Exploiting the ɛ -expansion near two dimensions we consider Einstein gravity coupled to matter. Scheme independence is generically obscured by the loop-expansion due to breaking of two-dimensional Weyl invariance. In schemes which preserve two-dimensional Weyl invariance we avoid the loop expansion and find a unique ultraviolet (UV) fixed point. At this fixed point the anomalous dimensions are large and one must resum all loop orders to obtain the critical exponents. Performing the resummation a set of universal scaling dimensions are found. These scaling dimensions show that only a finite number of matter interactions are relevant. This is a strong indication that quantum gravity is renormalizable.
Non-asymptotic fractional order differentiators via an algebraic parametric method
Liu, Dayan
2012-08-01
Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie\\'s modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.
Asymptotic methods for wave and quantum problems
Karasev, M V
2003-01-01
The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper "Quantization and Intrinsic Dynamics" a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approxi
A quantum kinematics for asymptotically flat spacetimes
Campiglia, Miguel
2014-01-01
We construct a quantum kinematics for asymptotically flat spacetimes based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying Loop Quantum Gravity (LQG) which supports, in addition to the usual LQG operators, the action of `background exponential operators' which are connection dependent operators labelled by `background' $su(2)$ electric fields. KS states have, in addition to the LQG state label corresponding to 1 dimensional excitations of the triad, a label corresponding to a `background' electric field which describes 3 dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields which label the {\\em states} and the background electric fields which label the {\\em operators}. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We...
The Asymptotic Approach to the Twin Paradox
National Research Council Canada - National Science Library
Spiridon Dumitru
2008-01-01
The argument of twins' asymmetry, essentially put forward in the common solution of the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which the noninertial effects are insignificant...
The Asymptotic Approach to the Twin Paradox
National Research Council Canada - National Science Library
Dumitru S
2008-01-01
The argument of twins’ asymmetry, essentially put forward in the common solution of the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which the noninertial effects are insignificant...
Expansion by regions: revealing potential and Glauber regions automatically
Energy Technology Data Exchange (ETDEWEB)
Jantzen, Bernd [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Smirnov, Alexander V. [Moscow State University, Scientific Research Computing Center, Moscow (Russian Federation); KIT, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); Smirnov, Vladimir A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); KIT, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)
2012-09-15
When performing asymptotic expansions using the strategy of expansion by regions, it is a non-trivial task to find the relevant regions. The recently published Mathematica code asy.m automates this task, but it has not been able to detect potential regions in threshold expansions or Glauber regions. In this work we present an algorithm and its implementation in the update asy2.m which also reveals potential and Glauber regions automatically. (orig.)
Global dynamics and asymptotics for monomial scalar field potentials and perfect fluids
Alho, Artur; Uggla, Claes
2015-01-01
We consider a minimally coupled scalar field with a monomial potential and a perfect fluid in flat FLRW cosmology. We apply local and global dynamical systems techniques to a new three-dimensional dynamical systems reformulation of the field equations on a compact state space. This leads to a visual global description of the solution space and asymptotic behavior. At late times we employ averaging techniques to prove statements about how the relationship between the equation of state of the fluid and the monomial exponent of the scalar field affects asymptotic source dominance and asymptotic manifest self-similarity breaking. We also situate the `attractor' solution in the three-dimensional state space and show that it corresponds to the one-dimensional unstable center manifold of a de Sitter fixed point, located on an unphysical boundary associated with the dynamics at early times. By deriving a center manifold expansion we obtain approximate expressions for the attractor solution. We subsequently improve th...
Boundary asymptotics of the relative Bergman kernel metric for hyperelliptic curves
Directory of Open Access Journals (Sweden)
Dong Robert Xin
2017-02-01
Full Text Available We survey variations of the Bergman kernel and their asymptotic behaviors at degeneration. For a Legendre family of elliptic curves, the curvature form of the relative Bergman kernel metric is equal to the Poincaré metric on ℂ \\ {0,1}. The cases of other elliptic curves are either the same or trivial. Two proofs depending on elliptic functions’ special properties and Abelian differentials’ Taylor expansions are discussed, respectively. For a holomorphic family of hyperelliptic nodal or cuspidal curves and their Jacobians, we announce our results on the Bergman kernel asymptotics near various singularities. For genus-two curves particularly, asymptotic formulas with precise coefficients involving the complex structure information are written down explicitly.
Gravitational entropy of cosmic expansion
Sussman, Roberto A
2014-01-01
We apply a recent proposal to define "gravitational entropy" to the expansion of cosmic voids within the framework of non-perturbative General Relativity. By considering CDM void configurations compatible with basic observational constraints, we show that this entropy grows from post-inflationary conditions towards a final asymptotic value in a late time fully non-linear regime described by the Lemaitre-Tolman-Bondi (LTB) dust models. A qualitatively analogous behavior occurs if we assume a positive cosmological constant consistent with a $\\Lambda$-CDM background model. However, the $\\Lambda$ term introduces a significant suppression of entropy growth with the terminal equilibrium value reached at a much faster rate.
Quantum gravity on foliated spacetimes: Asymptotically safe and sound
Biemans, Jorn; Platania, Alessia; Saueressig, Frank
2017-04-01
Asymptotic safety provides a mechanism for constructing a consistent and predictive quantum theory of gravity valid on all length scales. Its key ingredient is a non-Gaussian fixed point of the gravitational renormalization group flow which controls the scaling of couplings and correlation functions at high energy. In this work we use a functional renormalization group equation adapted to the Arnowitt-Deser-Misner formalism for evaluating the gravitational renormalization group flow on a cosmological Friedmann-Robertson-Walker background. Besides possessing the non-Gaussian fixed-point characteristic for asymptotic safety the setting exhibits a second family of non-Gaussian fixed points with a positive Newton's constant and real critical exponents. The presence of these new fixed points alters the phase diagram in such a way that all renormalization group trajectories connected to classical general relativity are well defined on all length scales. In particular a positive cosmological constant is dynamically driven to zero in the deep infrared. Moreover, the scaling dimensions associated with the universality classes emerging within the causal setting exhibit qualitative agreement with results found within the ɛ -expansion around two dimensions, Monte Carlo simulations based on lattice quantum gravity, and the discretized Wheeler-DeWitt equation.
The large Reynolds number - Asymptotic theory of turbulent boundary layers.
Mellor, G. L.
1972-01-01
A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.
Directory of Open Access Journals (Sweden)
G. M. N’Guérékata
2018-01-01
Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.
ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2017-11-01
Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.
Asymptotics of eigenfunctions for Sturm-Liouville problem in difference equations
Bas, Erdal; Ozarslan, Ramazan
2016-06-01
In this study, Sturm-Liouville problem with variable coefficient, potential function q (n), for difference equation is considered. The representation of solutions is obtained by variation of parameters method for two different initial value problems and trigonometric solutions are found by means of complex characteristic roots. It is proved that these results hold the equation by using summation by parts method. Two estimations of asymptotic expansion of the solutions are established.
The optimal homotopy asymptotic method engineering applications
Marinca, Vasile
2015-01-01
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011, and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five application...
Asymptotic stability of a catalyst particle
DEFF Research Database (Denmark)
Wedel, Stig; Michelsen, Michael L.; Villadsen, John
1977-01-01
The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...
Asymptotically flat spacetimes with BMS3 symmetry
Compère, Geoffrey; Fiorucci, Adrien
2017-10-01
We construct the phase space of 3-dimensional asymptotically flat spacetimes that forms the bulk metric representation of the BMS group consisting of both supertranslations and superrotations. The asymptotic symmetry group is a unique copy of the BMS group at both null infinities and spatial infinity. The BMS phase space obeys a notion of holographic causality and can be parametrized by boundary null fields. This automatically leads to the antipodal identification of bulk fields between past and future null infinity in the absence of a global conical defect.
Indian Academy of Sciences (India)
In this paper, we shall apply the (G /G)-expansion method to obtain the exact travelling wave solution of the two-dimensional ... In §3, we apply our method to the mentioned equations. In §4, some conclusions are ..... The exact solution obtained by this method can be used to check computer codes or as initial condition for ...
On iterative procedures of asymptotic inference
K.O. Dzhaparidze (Kacha)
1983-01-01
textabstractAbstract An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then
Asymptotically periodic solutions of Volterra integral equations
Directory of Open Access Journals (Sweden)
Muhammad N. Islam
2016-03-01
Full Text Available We study the existence of asymptotically periodic solutions of a nonlinear Volterra integral equation. In the process, we obtain the existence of periodic solutions of an associated nonlinear integral equation with infinite delay. Schauder's fixed point theorem is used in the analysis.
Term structure extrapolation and asymptotic forward rates
de Kort, J.; Vellekoop, M.H.
2015-01-01
We investigate different inter- and extrapolation methods for term structures under different constraints in order to generate market-consistent estimates which describe the asymptotic behavior of forward rates. Our starting point is the method proposed by Smith and Wilson, which is used by the
Asymptotic symmetry algebra of conformal gravity
Irakleidou, Maria; Lovrekovic, Iva
2017-11-01
We compute asymptotic symmetry algebras of conformal gravity. Due to more general boundary conditions allowed in conformal gravity in comparison to those in Einstein gravity, we can classify the corresponding algebras. The highest algebra for nontrivial boundary conditions is five dimensional and it leads to global geon solution with nonvanishing charges.
The Asymptotic Approach to the Twin Paradox
Directory of Open Access Journals (Sweden)
Dumitru S.
2008-04-01
Full Text Available The argument of twins’ asymmetry, essentially put forward in the common solution of the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which the noninertial effects are insignificant. Consequently the respective solution proves itself as unreliable thing and the Twin Paradox is re-established as an open problem which require further investigations.
The Asymptotic Approach to the Twin Paradox
Directory of Open Access Journals (Sweden)
Dumitru S.
2008-04-01
Full Text Available The argument of twins' asymmetry, essentially put forward in the common solution of the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which the noninertial effects are insignificant. Consequently the respective solution proves itself as unreliable thing and the Twin Paradox is re-established as an open problem which require further investigations.
Fixed Point Theorems for Asymptotically Contractive Multimappings
Directory of Open Access Journals (Sweden)
M. Djedidi
2012-01-01
Full Text Available We present fixed point theorems for a nonexpansive set-valued mapping from a closed convex subset of a reflexive Banach space into itself under some asymptotic contraction assumptions. Some existence results of coincidence points and eigenvalues for multimappings are given.
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
Asymptotic symmetries, holography and topological hair
Mishra, Rashmish K.; Sundrum, Raman
2018-01-01
Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons
Asymptotic approximations for non-integer order derivatives of monomials
Aşiru, Muniru A.
2015-02-01
In this note, we develop new, simple and very accurate asymptotic approximations for non-integer order derivatives of monomial functions by using the more accurate asymptotic approximations for large factorials that have recently appeared in the literature.
INVESTIGATION OF STURM-LIOUVILLE PROBLEM SOLVABILITY IN THE PROCESS OF ASYMPTOTIC SERIES CREATION
Directory of Open Access Journals (Sweden)
A. I. Popov
2015-09-01
Full Text Available Subject of Research. Creation of asymptotic expansions for solutions of partial differential equations with small parameter reduces, usually, to consequent solving of the Sturm-Liouville problems chain. To find some term of the series, the non-homogeneous Sturm-Liouville problem with the inhomogeneity depending on the previous term needs to be solved. At the same time, the corresponding homogeneous problem has a non-trivial solution. Hence, the solvability problem occures for the non-homogeneous Sturm-Liouville problem for functions or formal power series. The paper deals with creation of such asymptotic expansions. Method. To prove the necessary condition, we use conventional integration technique of the whole equation and boundary conditions. To prove the sufficient condition, we create an appropriate Cauchy problem (which is always solvable and analyze its solution. We deal with the general case of power series and make no hypotheses about the series convergence. Main Result. Necessary and sufficient conditions of solvability for the non-homogeneous Sturm-Liouville problem in general case for formal power series are proved in the paper. As a particular case, the result is valid for functions instead of formal power series. Practical Relevance. The result is usable at creation of the solutions for partial differential equation in the form of power series. The result is general and is applicable to particular cases of such solutions, e.g., to asymptotic series or to functions (convergent power series.
Edgeworth expansions and normalizing transforms for inequality measures
Schluter, C.; van Garderen, K.J.
2009-01-01
Finite sample distributions of studentized inequality measures differ substantially from their asymptotic normal distribution in terms of location and skewness. We study these aspects formally by deriving the second-order expansion of the first and third cumulant of the studentized inequality
Asymptotic Behavior of Certain Integrodifferential Equations
Directory of Open Access Journals (Sweden)
Said Grace
2016-01-01
Full Text Available This paper deals with asymptotic behavior of nonoscillatory solutions of certain forced integrodifferential equations of the form: atx′t′=e(t+∫ct(t-sα-1k(t,sf(s,x(sds, c>1, 0<α<1. From the obtained results, we derive a technique which can be applied to some related integrodifferential as well as integral equations.
Theorems for asymptotic safety of gauge theories
Bond, Andrew D.; Litim, Daniel F.
2017-06-01
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects
DEFF Research Database (Denmark)
Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer
2011-01-01
The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...
Viscous asymptotically flat Reissner-Nordström black branes
Energy Technology Data Exchange (ETDEWEB)
Gath, Jakob; Pedersen, Andreas Vigand [Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)
2014-03-12
We study electrically charged asymptotically flat black brane solutions whose world-volume fields are slowly varying with the coordinates. Using familiar techniques, we compute the transport coefficients of the fluid dynamic derivative expansion to first order. We show how the shear and bulk viscosities are modified in the presence of electric charge and we compute the charge diffusion constant which is not present for the neutral black p-brane. We compute the first order dispersion relations of the effective fluid. For small values of the charge the speed of sound is found to be imaginary and the brane is thus Gregory-Laflamme unstable as expected. For sufficiently large values of the charge, the sound mode becomes stable, however, in this regime the hydrodynamic mode associated with charge diffusion is found to be unstable. The electrically charged brane is thus found to be (classically) unstable for all values of the charge density in agreement with general thermodynamic arguments. Finally, we show that the shear viscosity to entropy bound is saturated, as expected, while the proposed bounds for the bulk viscosity to entropy can be violated in certain regimes of the charge of the brane.
Viscous asymptotically flat Reissner-Nordström black branes
Gath, Jakob; Pedersen, Andreas Vigand
2014-03-01
We study electrically charged asymptotically flat black brane solutions whose world-volume fields are slowly varying with the coordinates. Using familiar techniques, we compute the transport coefficients of the fluid dynamic derivative expansion to first order. We show how the shear and bulk viscosities are modified in the presence of electric charge and we compute the charge diffusion constant which is not present for the neutral black p-brane. We compute the first order dispersion relations of the effective fluid. For small values of the charge the speed of sound is found to be imaginary and the brane is thus Gregory-Laflamme unstable as expected. For sufficiently large values of the charge, the sound mode becomes stable, however, in this regime the hydrodynamic mode associated with charge diffusion is found to be unstable. The electrically charged brane is thus found to be (classically) unstable for all values of the charge density in agreement with general thermodynamic arguments. Finally, we show that the shear viscosity to entropy bound is saturated, as expected, while the proposed bounds for the bulk viscosity to entropy can be violated in certain regimes of the charge of the brane.
Asymptotic Representations of Quantum Affine Superalgebras
Zhang, Huafeng
2017-08-01
We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group.
Asymptotically safe inflation from quadratic gravity
Bonanno, Alfio
2015-01-01
Asymptotically Safe theories of gravity have recently received much attention. In this work we discuss a class of inflationary models derived from quantum-gravity modification of quadratic gravity according to the induced scaling around the non-Gaussian fixed point at very high energies. It is argued that the presence of a three dimensional ultraviolet critical surface generates operators of non-integer power of the type $R^{2-\\theta/2}$ in the effective Lagrangian, where $\\theta>0$ is a critical exponent. The requirement of a successful inflationary model in agreement with the recent Planck 2015 data puts important constraints on the strenght of this new type of couplings.
Discrete dispersion models and their Tweedie asymptotics
DEFF Research Database (Denmark)
Jørgensen, Bent; Kokonendji, Célestin C.
2016-01-01
in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models......-Tweedie asymptotic framework where Poisson-Tweedie models appear as dilation limits. This unifies many discrete convergence results and leads to Poisson and Hermite convergence results, similar to the law of large numbers and the central limit theorem, respectively. The dilation operator also leads to a duality...
Lectures on the asymptotic theory of ideals
Rees, D
1988-01-01
In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work
Asymptotic granularity reduction and its application
Su, Shenghui; Lü, Shuwang; Fan, Xiubin
2011-01-01
It is well known that the inverse function of y = x with the derivative y' = 1 is x = y, the inverse function of y = c with the derivative y' = 0 is inexistent, and so on. Hence, on the assumption that the noninvertibility of the univariate increasing function y = f(x) with x > 0 is in direct proportion to the growth rate reflected by its derivative, the authors put forward a method of comparing difficulties in inverting two functions on a continuous or discrete interval called asymptotic gra...
On the Asymptotics of Takeuchi Numbers
Prellberg, Thomas
2000-01-01
I present an asymptotic formula for the Takeuchi numbers $T_n$. In particular, I give compelling numerical evidence and present a heuristic argument showing that $$T_n\\sim C_T B_n\\exp{1\\over2}{W(n)}^2$$as $n$ tends to infinity, where $B_n$ are the Bell numbers, W(n) is Lambert's $W$ function, and $C_T=2.239...$ is a constant. Moreover, I show that the method presented here can be generalized to derive conjectures for related problems.
Dynamics and Asymptotics of Brane-Worlds
Antoniadis, I.; Cotsakis, S.; Klaoudatou, I.
2015-01-01
The self-tuning mechanism aims to provide a way to address the cosmological constant problem by guarantying the existence of flat brane solutions independently of the brane tension value. In recent work we have studied the asymptotics of different models of brane-worlds, and here we highlight certain interesting behaviors we have encountered in our search for appropriate conditions to avoid finite-distance singularities in flat brane solutions. Finding such conditions offers a framework within which the self-tuning mechanism could be realized.
Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size
Directory of Open Access Journals (Sweden)
Guy Louchard
2017-01-01
Full Text Available Using the Saddle point method and multiseries expansions, we obtain from the exponential formula and Cauchy's integral formula, asymptotic results for the number $T(n,m,k$ of partitions of $n$ labeled objects with $m$ blocks of fixed size $k$. We analyze the central and non-central region. In the region $m=n/k-n^\\al,\\quad 1>\\al>1/2$, we analyze the dependence of $T(n,m,k$ on $\\al$. This paper fits within the framework of Analytic Combinatorics.
Integrable theories that are asymptotically CFT
Evans, J M; Jonathan M Evans; Timothy J Hollowood
1995-01-01
A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...
Asymptotic accuracy of two-class discrimination
Energy Technology Data Exchange (ETDEWEB)
Ho, T.K.; Baird, H.S. [AT& T Bell Laboratories, Murray Hill, NJ (United States)
1994-12-31
Poor quality-e.g. sparse or unrepresentative-training data is widely suspected to be one cause of disappointing accuracy of isolated-character classification in modern OCR machines. We conjecture that, for many trainable classification techniques, it is in fact the dominant factor affecting accuracy. To test this, we have carried out a study of the asymptotic accuracy of three dissimilar classifiers on a difficult two-character recognition problem. We state this problem precisely in terms of high-quality prototype images and an explicit model of the distribution of image defects. So stated, the problem can be represented as a stochastic source of an indefinitely long sequence of simulated images labeled with ground truth. Using this sequence, we were able to train all three classifiers to high and statistically indistinguishable asymptotic accuracies (99.9%). This result suggests that the quality of training data was the dominant factor affecting accuracy. The speed of convergence during training, as well as time/space trade-offs during recognition, differed among the classifiers.
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K.
2010-12-15
Starting from the form factor expansion in finite volume, we derive the multidimensional generalization of the so-called Natte series for the zero-temperature, time and distance dependent reduced density matrix in the non-linear Schroedinger model. This representation allows one to read-off straightforwardly the long-time/large-distance asymptotic behavior of this correlator. Our method of analysis reduces the complexity of the computation of the asymptotic behavior of correlation functions in the so-called interacting integrable models, to the one appearing in free fermion equivalent models. We compute explicitly the first few terms appearing in the asymptotic expansion. Part of these terms stems from excitations lying away from the Fermi boundary, and hence go beyond what can be obtained by using the CFT/Luttinger liquid based predictions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Terras, V. [CNRS, ENS Lyon (France). Lab. de Physique
2010-12-15
We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)
Directory of Open Access Journals (Sweden)
Nicolas Pinel
2012-01-01
Full Text Available This paper studies the coherent scattering from random rough layers made up of two uncorrelated random rough surfaces, by considering 2D problems. The results from a rigorous electromagnetic method called PILE (propagation-inside-layer expansion are used as a reference. Also, two asymptotic analytical approaches are presented and compared to the numerical model for comparison. The cases of surfaces with both Gaussian and exponential correlations are studied. This approach is applied to road survey by GPR at nadir.
Asymptotic variance of grey-scale surface area estimators
DEFF Research Database (Denmark)
Svane, Anne Marie
Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....
An asymptotic solution of large-$N$ $QCD$
Bochicchio, Marco
2014-01-01
We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-$N$ $QCD$, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-poin...
Soft pion theorem, asymptotic symmetry and new memory effect
Hamada, Yuta; Sugishita, Sotaro
2017-11-01
It is known that soft photon and graviton theorems can be regarded as the Ward-Takahashi identities of asymptotic symmetries. In this paper, we consider soft theorem for pions, i.e., Nambu-Goldstone bosons associated with a spontaneously broken axial symmetry. The soft pion theorem is written as the Ward-Takahashi identities of the S-matrix under asymptotic transformations. We investigate the asymptotic dynamics, and find that the conservation of charges generating the asymptotic transformations can be interpreted as a pion memory effect.
Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation
Lannes, David
2007-01-01
A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic models can be recovered by a simple asymptotic expansion of this operator, in function of the shallowness parameter (shallow water limit) or the steepness parameter (deep water limit). Based on this method, a new two-dimensional fully dispersive model for small wave steepness is also derived, which extends to uneven bottom the approach developed by Matsuno \\cite{matsuno3} and Choi \\cite{choi}. This model is still valid in shallow water but with less precision than what can be achieved with Green-Naghdi model, when fully nonlinear waves are considered. The combination, or the coupling, of the new fully dispersive equati...
Some late-time asymptotics of general scalar-tensor cosmologies
Energy Technology Data Exchange (ETDEWEB)
Barrow, John D [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Shaw, Douglas J [Astronomy Unit, Queen Mary University, Mile End Rd., London E1 4NS (United Kingdom)
2008-04-21
We study the asymptotic behaviour of isotropic and homogeneous universes in general scalar-tensor gravity theories containing a p = -{rho} vacuum fluid stress and other sub-dominant matter stresses. It is shown that in order for there to be an approach to a de Sitter spacetime at large 4-volumes the coupling function, {omega}({phi}), which defines the scalar-tensor theory, must diverge faster than |{phi}{sub {infinity}} - {phi}|{sup -1+{epsilon}} for all {epsilon} > 0 as {phi} {yields} {phi}{sub {infinity}} {ne} 0 for large values of the time. Thus, for a given theory, specified by {omega}({phi}), there must exist some {phi}{sub {infinity}} element of (0, {infinity}) such that {omega} {yields} {infinity} and {omega}'/{omega}{sup 2+{epsilon}} {yields} 0 as {phi} {yields} {phi}{sub {infinity}} in order for cosmological solutions of the theory to approach de Sitter expansion at late times. We also classify the possible asymptotic time variations of the gravitation 'constant' G(t) at late times in scalar-tensor theories. We show that (unlike in general relativity) the problem of a profusion of 'Boltzmann brains' at late cosmological times can be avoided in scalar-tensor theories, including Brans-Dicke theory, in which {phi} {yields} {infinity} and {omega} {approx}o({phi}{sup 1/2}) at asymptotically late times.
Energy Technology Data Exchange (ETDEWEB)
Shin, U.; Miller, W.F. Jr. [California Univ., Berkeley, CA (United States)]|[Los Alamos National Lab., NM (United States); Morel, J.E. [Los Alamos National Lab., NM (United States)
1994-10-01
Using conventional diffusion limit analysis, we asymptotically compare three competitive time-dependent equations (the telegrapher`s equation, the time-dependent Simplified P{sub 2} (SP{sub 2}) equation, and the time-dependent Simplified Evcn-Parity (SEP) equation). The time-dependent SP{sub 2} equation contains higher order asymptotic approximations of the time-dependent transport equation than the other equations in a physical regime in which the time-dependent diffusion equation is the leading order approximation. In addition, we derive the multigroup modified time-dependent SP{sub 2} equation from the multigroup time-dependent transport equation by means of an asymptotic expansion in which the multigroup time-dependent diffusion equation is the leading, order approximation. Numerical comparisons of the timedependent diffusion, the telegrapher`s, the time-dependent SP{sub 2}, and S{sub 8} solutions in 2-D X-Y geometry show that, in most cases, the SP{sub 2} solutions contain most of the transport corrections for the diffusion approximation.
The asymptotic complexity of merging networks
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Paterson, Mike; Tarui, Jun
1996-01-01
Let M(m,n) be the minimum number of comparatorsneeded in a comparator network that merges m elements x1≤x2≤&cdots;≤xm and n elements y1≤y2≤&cdots;≤yn , where n≥m . Batcher's odd-even merge yields the following upper bound: Mm,n≤1 2m+nlog 2m+on; in particular, Mn,n≤nlog 2n+On. We prove the following...... lower bound that matches the upper bound above asymptotically as n≥m→∞: Mm,n≥1 2m+nlog 2m-Om; in particular, Mn,n≥nlog 2n-On. Our proof technique extends to give similarily tight lower bounds for the size of monotone Boolean circuits for merging, and for the size of switching networks capable...... of realizing the set of permutations that arise from merging....
Asymptotic freedom beyond the leading order
Buras, Andrzej J; Ross, D A; Sachrajda, Christopher T C
1977-01-01
The authors make a quantitative analysis of the full G/sup 2/ interaction corrections to the leading Q/sup 2/ dependence of nu W/sub 2/ at x>or=0.4, as given by an asymptotically free gauge theory. It turns out that due to partial cancellations between various contributions the g/sup 2/ corrections are small. The best fit with the SLAC ep data after including the g/sup 2/ corrections is almost identical to that without these corrections, the only effect being a change in Lambda , the one free parameter, which sets the scale of the theory. On the other hand the effect of including target mass corrections is to improve the agreement of the prediction for nu W/sub 2//sup ep/ with data for large values of x. (20 refs).
Asymptotic representation of relaxation oscillations in lasers
Grigorieva, Elena V
2017-01-01
In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.
Asymptotic stability of steady compressible fluids
Padula, Mariarosaria
2011-01-01
This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...
Motion Parallax is Asymptotic to Binocular Disparity
Stroyan, Keith
2010-01-01
Researchers especially beginning with (Rogers & Graham, 1982) have noticed important psychophysical and experimental similarities between the neurologically different motion parallax and stereopsis cues. Their quantitative analysis relied primarily on the "disparity equivalence" approximation. In this article we show that retinal motion from lateral translation satisfies a strong ("asymptotic") approximation to binocular disparity. This precise mathematical similarity is also practical in the sense that it applies at normal viewing distances. The approximation is an extension to peripheral vision of (Cormac & Fox's 1985) well-known non-trig central vision approximation for binocular disparity. We hope our simple algebraic formula will be useful in analyzing experiments outside central vision where less precise approximations have led to a number of quantitative errors in the vision literature.
Traversable asymptotically flat wormholes in Rastall gravity
Moradpour, H.; Sadeghnezhad, N.; Hendi, S. H.
2017-12-01
There are some gravitational theories in which the ordinary energy-momentum conservation law is not valid in the curved spacetime. Rastall gravity is one of the known theories in this regard which includes a non-minimal coupling between geometry and matter fields. Equipped with the basis of such theory, we study the properties of traversable wormholes with flat asymptotes. We investigate the possibility of exact solutions by a source with the baryonic matter state parameter. Our survey indicates that Rastall theory has considerable effects on the wormhole characteristics. In addition, we study various case studies and show that the weak energy condition may be met for some solutions. We also give a discussion regarding to traversability of such wormhole geometry with phantom sources.
Correlation at low temperature;2, Asymptotics
Bach, V
2003-01-01
The present paper is a continuation of our paper [Bach-Moller mp_arc 02-215] where the truncated two-point correlation function for a class of lattice spin systems was proved to have exponential decay at low temperature, under a weak coupling assumption. In this paper we compute the asymptotics of the correlation function as the temperature goes to zero. This paper thus extends [Bach-Jecko-Sjostrand, mp_arc 98-552] in two directions: The Hamiltonian function is allowed to have several local minima other than a unique global minimum, and we do not require translation invariance of the Hamiltonian function. We are in particular able to handle spin systems on a general lattice.
Asymptotic theory of weakly dependent random processes
Rio, Emmanuel
2017-01-01
Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...
Asymptotic properties of restricted naming games
Bhattacherjee, Biplab; Datta, Amitava; Manna, S. S.
2017-07-01
Asymptotic properties of the symmetric and asymmetric naming games have been studied under some restrictions in a community of agents. In one version, the vocabulary sizes of the agents are restricted to finite capacities. In this case, compared to the original naming games, the dynamics takes much longer time for achieving the consensus. In the second version, the symmetric game starts with a limited number of distinct names distributed among the agents. Three different quantities are measured for a quantitative comparison, namely, the maximum value of the total number of names in the community, the time at which the community attains the maximal number of names, and the global convergence time. Using an extensive numerical study, the entire set of three power law exponents characterizing these quantities are estimated for both the versions which are observed to be distinctly different from their counter parts of the original naming games.
Asymptotic methods in mechanics of solids
Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi
2015-01-01
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...
Asymptotically Honest Confidence Regions for High Dimensional
DEFF Research Database (Denmark)
Caner, Mehmet; Kock, Anders Bredahl
While variable selection and oracle inequalities for the estimation and prediction error have received considerable attention in the literature on high-dimensional models, very little work has been done in the area of testing and construction of confidence bands in high-dimensional models. However...... of the asymptotic covariance matrix of an increasing number of parameters which is robust against conditional heteroskedasticity. To our knowledge we are the first to do so. Next, we show that our confidence bands are honest over sparse high-dimensional sub vectors of the parameter space and that they contract...... at the optimal rate. All our results are valid in high-dimensional models. Our simulations reveal that the desparsified conservative Lasso estimates the parameters much more precisely than the desparsified Lasso, has much better size properties and produces confidence bands with markedly superior coverage rates....
Lattice quantum gravity and asymptotic safety
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2017-09-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.
The time-dependent simplified P{sub 2} equations: Asymptotic analyses and numerical experiments
Energy Technology Data Exchange (ETDEWEB)
Shin, U.; Miller, W.F. Jr. [Los Alamos National Lab., NM (United States)
1998-01-01
Using an asymptotic expansion, the authors found that the modified time-dependent simplified P{sub 2} (SP{sub 2}) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, they also asymptotically compared three competitive time-dependent equations (the telegrapher`s equation, the time-dependent SP{sub 2} equations, and the time-dependent simplified even-parity equation). As a result, they found that the time-dependent SP{sub 2} equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP{sub 2} solutions are significantly more accurate than the time-dependent diffusion and the telegrapher`s solutions. They have also shown that the time-dependent SP{sub 2} equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, they have shown that the time-dependent SP{sub 2} equations can be solved with significantly less computational effort than the conventionally used, time-dependent S{sub N} equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, they conclude that the time-dependent SP{sub 2} equations should be considered as an important competitor for an improved approximately transport equations solver. Such computationally efficient time-dependent transport models are important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents.
Asymptotic representation theorems for poverty indices | Lo | Afrika ...
African Journals Online (AJOL)
Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...
Asymptotic size determines species abundance in the marine size spectrum
DEFF Research Database (Denmark)
Andersen, Ken Haste; Beyer, Jan
2006-01-01
The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory...
Asymptotic behaviour of solutions of a nonlinear transport equation
C.J. van Duijn (Hans); M.A. Peletier (Mark)
1996-01-01
textabstractWe investigate the asymptotic behaviour of solutions of the convection- diffusion equation $$ b(u)_t + divleft( u q - n u right) = 0 qquad hbox{for r = |x| > e quadhbox{andquad t>0, $$ where $q=l/r, er $, $l>0$. The asymptotic limits that we consider are $ttoinfty$ and $e downto0$. We
Comparison of the asymptotic stability properties for two multirate strategies
V. Savcenco (Valeriu)
2007-01-01
textabstractThis paper contains a comparison of the asymptotic stability properties for two multirate strategies. For each strategy, the asymptotic stability regions are presented for a 2 x 2 test problem and the differences between the results are discussed. The considered multirate schemes use
Journal Afrika Statistika ISSN 0852-0305 Asymptotic representation ...
African Journals Online (AJOL)
Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...
On oscillation and asymptotic behaviour of solutions of forced first ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 111; Issue 3. On Oscillation and Asymptotic Behaviour of Solutions of Forced First Order Neutral Differential Equations. N Parhi R N Rath. Volume 111 Issue 3 August 2001 pp ... Keywords. Oscillation; nonoscillation; neutral equations; asymptotic behaviour.
Reduction Arguments for Geometric Inequalities Associated With Asymptotically Hyperboloidal Slices
Cha, Ye Sle; Sakovich, Anna
2016-01-01
We consider several geometric inequalities in general relativity involving mass, area, charge, and angular momentum for asymptotically hyperboloidal initial data. We show how to reduce each one to the known maximal (or time symmetric) case in the asymptotically flat setting, whenever a geometrically motivated system of elliptic equations admits a solution.
An efficient locally asymptotic parametric test in nonlinear ...
African Journals Online (AJOL)
Abstract. In this paper we deal with a locally asymptotic stringent test for a general class of nonlinear time series heteroscedastic models. Based on the local asymptotic normality (LAN) property of these models, we propose a scoretyp test statistic for testing hypotheses on the parameters appearing in the mean and variance ...
Asymptotic distribution of products of sums of independent random ...
Indian Academy of Sciences (India)
453007 Henan, China. E-mail: bigduckwyl@163.com; duhongxia24@gmail.com. MS received 7 April 2012; revised 10 October 2012. Abstract. In the paper we consider the asymptotic distribution of products of weighted sums of independent random variables. Keywords. Asymptotic distribution; products of sums. 1.
An asymptotic solution of large-N QCD
Directory of Open Access Journals (Sweden)
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
An asymptotic solution of large-N QCD
Bochicchio, Marco
2014-11-01
We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
Asymptotic behavior of a system of linear fractional difference equations
Directory of Open Access Journals (Sweden)
Nurkanović M
2005-01-01
Full Text Available We investigate the global asymptotic behavior of solutions of the system of difference equations , , , where the parameters , , , and are positive numbers and the initial conditions and are arbitrary nonnegative numbers. We obtain some asymptotic results for the positive equilibrium of this system.
Asymptotic solutions for flow in microchannels with ridged walls and arbitrary meniscus protrusion
Kirk, Toby
2017-11-01
Flow over structured surfaces exhibiting apparent slip, such as parallel ridges, have received much attention experimentally and numerically, but analytical and asymptotic solutions that account for the microstructure have so far been limited to unbounded geometries such as shear-driven flows. Analysis for channel flows has been limited to (close to) flat interfaces spanning the grooves between ridges, but in applications the interfaces (menisci) can highly protrude and have a significant impact on the apparent slip. In this presentation, we consider pressure-driven flow through a microchannel with longitudinal ridges patterning one or both walls. With no restriction on the meniscus protrusion, we develop explicit formulae for the slip length using a formal matched asymptotic expansion. Assuming the ratio of channel height to ridge period is large, the periodicity is confined to an inner layer close to the ridges, and the expansion is found to all algebraic orders. As a result, the error is exponentially small and, under a further ``diluteness'' assumption, the explicit formulae are compared to finite element solutions. They are found to have a very wide range of validity in channel height (even when the menisci can touch the opposing wall) and so are useful for practitioners.
Asymptotic ray theory of linear viscoelastic media
Nechtschein, Stephane
The Asymptotic Ray Theory (ART) has become a frequently used technique for the numerical modeling of seismic wave propagation in complex geological models. This theory was originally developed for elastic structures with the ray amplitude computation performed in the time domain. ART is now extended to linear viscoelastic media, the linear theory of viscoelasticity being used to simulate the dispersive properties peculiar to anelastic materials. This extension of ART is based on the introduction of a frequency dependent amplitude term having the same properties as in the elastic case and on a frequency dependent complex phase function. Consequently the ray amplitude computation is now performed in the frequency domain, the final solution being obtained by carrying out an Inverse Fourier Transform. Since ART is used, the boundary conditions for the kinematic and dynamic properties of the waves only have to be satisfied locally. This results in a much simpler Snell's Law for linear viscoelastic media, which in fact turns out to be of the same form as for the elastic case. No complex angle is involved. Furthermore the rays, the ray parameters, the geometrical spreading are all real values implying that the direction of the attenuation vector is always along the ray. The reflection and transmission coefficients were therefore rederived. These viscoelastic ART coefficients behave differently from those obtained with the Plane Wave method. Their amplitude and phase curves are always close to those computed for perfectly elastic media and they smoothly approach the elastic reflection/transmission coefficients when the quality factors increase to infinity. These same ART coefficients also display some non-physical results depending on the choice of the quality factors. This last feature might be useful to determine whether or not the two media making up the interface can be regarded as linear viscoelastic. Finally the results obtained from synthetic seismogram computations
Nonlinear vibrations of non-uniform beams by the MTS asymptotic expansion method
Clementi, F.; Demeio, L.; Mazzilli, C. E. N.; Lenci, S.
2015-09-01
The frequency response curves of a non-uniform beam undergoing nonlinear oscillations are determined analytically by the multiple time scale method, which provides approximate, but accurate results. The axial inertia in neglected, and so the equations of motion are statically condensed on the transversal displacement only. The nonlinearity due to the stretching of the axis of the beam is considered. The effects of variable cross-section, of variable material properties and of the distributed axial loading are taken into account in the formulation. They have been illustrated by means of two examples and are also compared with existing results. The main result of this work is that the effects of any type of non-uniformity can be detected by simple formulas.
Qualitative and Asymptotic Theory of Detonations
Faria, Luiz
2014-11-09
Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.
Asymptotic Behaviour of the QED Perturbation Series
Directory of Open Access Journals (Sweden)
Idrish Huet
2017-01-01
Full Text Available I will summarize the present state of a long-term effort to obtain information on the large-order asymptotic behaviour of the QED perturbation series through the effective action. Starting with the constant-field case, I will discuss the Euler-Heisenberg Lagrangian in various dimensions and up to the three-loop level. This Lagrangian holds the information on the N-photon amplitudes in the low-energy limit, and combining it with Spinor helicity methods explicit all-N results can be obtained at the one-loop and, for the “all +” amplitudes, also at the two-loop level. For the imaginary part of the Euler-Heisenberg Lagrangian, an all-loop formula has been conjectured independently by Affleck, Alvarez, and Manton for Scalar QED and by Lebedev and Ritus for Spinor QED. This formula can be related through a Borel dispersion relation to the leading large-N behaviour of the N-photon amplitudes. It is analytic in the fine structure constant, which is puzzling and suggests a diagrammatic investigation of the large-N limit in perturbation theory. Preliminary results of such a study for the 1+1 dimensional case throw doubt on the validity of the conjecture.
Asymptotic Solutions of Serial Radial Fuel Shuffling
Directory of Open Access Journals (Sweden)
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
Solvable Optimal Velocity Models and Asymptotic Trajectory
Nakanishi, K; Igarashi, Y; Bando, M
1996-01-01
In the Optimal Velocity Model proposed as a new version of Car Following Model, it has been found that a congested flow is generated spontaneously from a homogeneous flow for a certain range of the traffic density. A well-established congested flow obtained in a numerical simulation shows a remarkable repetitive property such that the velocity of a vehicle evolves exactly in the same way as that of its preceding one except a time delay $T$. This leads to a global pattern formation in time development of vehicles' motion, and gives rise to a closed trajectory on $\\Delta x$-$v$ (headway-velocity) plane connecting congested and free flow points. To obtain the closed trajectory analytically, we propose a new approach to the pattern formation, which makes it possible to reduce the coupled car following equations to a single difference-differential equation (Rondo equation). To demonstrate our approach, we employ a class of linear models which are exactly solvable. We also introduce the concept of ``asymptotic traj...
Asymptotic distribution of zeros of polynomials satisfying difference equations
Krasovsky, I. V.
2003-01-01
We propose a way to find the asymptotic distribution of zeros of orthogonal polynomials pn(x) satisfying a difference equation of the formB(x)pn(x+[delta])-C(x,n)pn(x)+D(x)pn(x-[delta])=0.We calculate the asymptotic distribution of zeros and asymptotics of extreme zeros of the Meixner and Meixner-Pollaczek polynomials. The distribution of zeros of Meixner polynomials shows some delicate features. We indicate the relation of our technique to the approach based on the Nevai-Dehesa-Ullman distribution.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
Langmuir probe study of plasma expansion in pulsed laser ablation
DEFF Research Database (Denmark)
Hansen, T.N.; Schou, Jørgen; Lunney, J.G.
1999-01-01
Langmuir probes were used to monitor the asymptotic expansion of the plasma produced by the laser ablation of a silver target in a vacuum. The measured angular and temporal distributions of the ion flux and electron temperature were found to be in good agreement with the self-similar isentropic a...... and adiabatic solution of the gas dynamics equations describing the expansion. The value of the adiabatic index gamma was about 1.25, consistent with the ablation plume being a low temperature plasma....
Asymptotics, structure, and integration of sound-proof atmospheric flow equations
Klein, Rupert
2009-07-01
Relative to the full compressible flow equations, sound-proof models filter acoustic waves while maintaining advection and internal waves. Two well-known sound-proof models, an anelastic model by Bannon and Durran’s pseudo-incompressible model, are shown here to be structurally very close to the full compressible flow equations. Essentially, the anelastic model is obtained by suppressing ∂ t ρ in the mass continuity equation and slightly modifying the gravity term, whereas the pseudo-incompressible model results from dropping ∂ t p from the pressure equation. For length scales small compared to the density and pressure scale heights, the anelastic model reduces to the Boussinesq approximation, while the pseudo-incompressible model approaches the zero Mach number, variable density flow equations. Thus, for small scales, both models are asymptotically consistent with the full compressible flow equations, yet the pseudo-incompressible model is more general in that it remains valid in the presence of large density variations. For the relatively small density variations found in typical atmosphere-ocean flows, both models are found to yield very similar results, with deviations between models much smaller than deviations obtained when using different numerical schemes for the same model. This in agreement with Smolarkiewicz and Dörnbrack (Int J Numer Meth Fluids 56:1513-1519, 2007). Despite these useful properties, neither model can be derived by a low-Mach number asymptotic expansion for length scales comparable to the pressure scale height, i.e., for the regime they were originally designed for. Derivations of these models via scale analysis ignore an asymptotic time scale separation between advection and internal waves. In fact, only the classical Ogura and Phillips model, which assumes weak stratification of the order of the Mach number squared, can be obtained as a leading-order model from systematic low Mach number asymptotic analysis. Issues of formal
Uniform semiclassical expansions for the direct part of Franck-Condon transitions
Hüpper, B
1997-01-01
Semiclassical expansions for traces involving Green's functions have two contributions, one from the periodic or recurrent orbits of the classical system and one from the phase space volume, i.e. the paths of infinitesimal length. Quantitative calculations require the control of both terms. Here, we discuss the contribution from paths of zero length with an emphasis on the application to Franck-Condon transitions. The expansion in the energy representation is asymptotic and a critical parameter is identified. In the time domain, a series expansion of the logarithm of the propagator gives very good results. The expansions are illustrated for transitions onto a linear potential and onto a harmonic oscillator.
An asymptotic model in acoustics: acoustic drift equations.
Vladimirov, Vladimir A; Ilin, Konstantin
2013-11-01
A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.
Preheating in an asymptotically safe quantum field theory
DEFF Research Database (Denmark)
Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert
2016-01-01
We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J....... High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance....... Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J. High Energy Phys. 01 (2016) 081] must contain. This bound also depends on the total number of e-foldings of the inflationary phase....
Pseudo-random number generator based on asymptotic deterministic randomness
Energy Technology Data Exchange (ETDEWEB)
Wang Kai [Department of Radio Engineering, Southeast University, Nanjing (China)], E-mail: kaiwang@seu.edu.cn; Pei Wenjiang; Xia Haishan [Department of Radio Engineering, Southeast University, Nanjing (China); Cheung Yiuming [Department of Computer Science, Hong Kong Baptist University, Hong Kong (China)
2008-06-09
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.
Robust methods and asymptotic theory in nonlinear econometrics
Bierens, Herman J
1981-01-01
This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...
On the generalized asymptotically nonspreading mappings in convex metric spaces
Directory of Open Access Journals (Sweden)
Withun Phuengrattana
2017-04-01
Full Text Available In this article, we propose a new class of nonlinear mappings, namely, generalized asymptotically nonspreading mapping, and prove the existence of fixed points for such mapping in convex metric spaces. Furthermore, we also obtain the demiclosed principle and a delta-convergence theorem of Mann iteration for generalized asymptotically nonspreading mappings in CAT(0 spaces.
Comparison of the asymptotic stability properties for two multirate strategies
Savcenco, V Valeriu
2007-01-01
textabstractThis paper contains a comparison of the asymptotic stability properties for two multirate strategies. For each strategy, the asymptotic stability regions are presented for a 2 x 2 test problem and the differences between the results are discussed. The considered multirate schemes use Rosenbrock type methods as the main time integration method and have one level of temporal local refinement. Some remarks on the relevance of the results for 2 x 2 test problems are presented.
Singularity-free gravitational collapse and asymptotic safety
Torres, Ramón
2014-06-01
A general class of quantum improved stellar models with interiors composed of non-interacting (dust) particles is obtained and analyzed in a framework compatible with asymptotic safety. First, the effective exterior, based on the Quantum Einstein Gravity approach to asymptotic safety is presented and, second, its effective compatible dust interiors are deduced. The resulting stellar models appear to be devoid of shell-focusing singularities.
Asymptotic-induced numerical methods for conservation laws
Garbey, Marc; Scroggs, Jeffrey S.
1990-01-01
Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.
Asymptotic estimation of shift parameter of a quantum state
Holevo, A. S.
2003-01-01
We develop an asymptotic theory of estimation of a shift parameter in a pure quantum state to study the relation between entangled and unentangled covariant estimates in the analytically most transparent way. After recollecting basics of estimation of shift parameter in Sec. 2, we study the structure of the optimal covariant estimate in Sec. 3, showing how entanglement comes into play for several independent trials. In Secs. 4,5 we give the asymptotics of the performance of the optimal covari...
An asymptotically exact theory of functionally graded piezoelectric shells
Le, Khanh Chau
2016-01-01
An asymptotically exact two-dimensional theory of functionally graded piezoelectric shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a functionally graded piezoceramic cylindrical shell with thickness polarization fully covered by electrodes and excited by a harmonic voltage is found.
Max-Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low Complexity Transceivers
Sifaou, Houssem
2016-12-28
This work focuses on the downlink and uplink of large-scale single-cell MU-MIMO systems in which the base station (BS) endowed with M antennas communicates with K single-antenna user equipments (UEs). Particularly, we aim at reducing the complexity of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio subject to a given power constraint. To this end, we consider the asymptotic regime in which M and K grow large with a given ratio. Tools from random matrix theory (RMT) are then used to compute, in closed form, accurate approximations for the parameters of the optimal precoder and receiver, when imperfect channel state information (modeled by the generic Gauss-Markov formulation form) is available at the BS. The asymptotic analysis allows us to derive the asymptotically optimal linear precoder and receiver that are characterized by a lower complexity (due to the dependence on the large scale components of the channel) and, possibly, by a better resilience to imperfect channel state information. However, the implementation of both is still challenging as it requires fast inversions of large matrices in every coherence period. To overcome this issue, we apply the truncated polynomial expansion (TPE) technique to the precoding and receiving vector of each UE and make use of RMT to determine the optimal weighting coefficients on a per- UE basis that asymptotically solve the max-min SINR problem. Numerical results are used to validate the asymptotic analysis in the finite system regime and to show that the proposed TPE transceivers efficiently mimic the optimal ones, while requiring much lower computational complexity.
Self-similar solutions of ion-beam-driven plasma expansion
Energy Technology Data Exchange (ETDEWEB)
Kaercher, B.; Kull, H.J.
1989-03-01
Self-similar solutions of ion-beam-driven plasma expansions, separating in mass and time coordinates, are presented. Model equations are derived for the general class of separable flows with prescribed energy source. Their solutions show, representatively, the transition from an initial heating to an asymptotic expansion regime described by constant energy ratios. The dependence of the asymptotic energy ratios on the temporal form of the beam pulse is examined and maximum heating is found for exponentially growing pulses. The spatial flow profiles are discussed for uniform and nonuniform energy deposition with application to a realistic energy loss formula that is Bragg peaked. Comparison with numerical simulations suggests a general asymptotic validity of the present similarity results.
Energy Technology Data Exchange (ETDEWEB)
Milgram, Michael S. [P.O. Box 1484, Deep River, Ont., K0J 1P0 (Canada)]. E-mail: mike@geometrics-unlimited.com
2005-07-15
Starting from the basic expression for the neutron flux due to a point source in an infinite homogeneous scattering and absorbing medium, the first few fundamental expansion functions corresponding to successive collisions are identified, and their analytic properties are presented, in spherical and plane geometry. Various representations of the functions are obtained in the form of power series, an expansion in a series of exponential integrals, and other integrals. The adequacy of traditional asymptotic forms is considered.
Sergey W. Kozlachkow
2012-01-01
The survey is concerned with the expansion joints, used in bridge constructions to compensate medium and significant operational linear and spatial displacements between adjacent spans or between bridge span and pier. The analysis of design features of these types of expansion joints, their advantages and disadvantages, based on operational experience justified the necessity to design constructions, meeting the modern demands imposed to expansion joints.
Expansion by eigenvectors in case of simple eigenvalues of singular differential operator
Directory of Open Access Journals (Sweden)
O. V. Makhnei
2011-06-01
Full Text Available The asymptotic formulas with large values of parameter for solutions of singular differential equation allow us to estimate Green's function of the boundary-value problem. With the help of this estimation the expansion of singular dierential operator by eigenvectors in the case of simple eigenvalues is constructed.
On the asymptotic behaviour of solutions of an asymptotically Lotka-Volterra model
Directory of Open Access Journals (Sweden)
Attila Dénes
2016-09-01
Full Text Available We make more realistic our model [Nonlinear Anal. 73(2010, 650-659] on the coexistence of fishes and plants in Lake Tanganyika. The new model is an asymptotically autonomous system whose limiting equation is a Lotka-Volterra system. We give conditions for the phenomenon that the trajectory of any solution of the original non-autonomous system "rolls up"' onto a cycle of the limiting Lotka-Volterra equation as $t\\to\\infty$, which means that the limit set of the solution of the non-autonomous system coincides with the cycle. A counterexample is constructed showing that the key integral condition on the coefficient function in the original non-autonomous model cannot be dropped. Computer simulations illustrate the results.
Efficient asymptotic frame selection for binary black hole spacetimes using asymptotic radiation
O'Shaughnessy, R; Healy, J; Meeks, Z; Shoemaker, D
2011-01-01
Previous studies have demonstrated that gravitational radiation reliably encodes information about the natural emission direction of the source (e.g., the orbital plane). In this paper, we demonstrate that these orientations can be efficiently estimated by the principal axes of , an average of the action of rotation group generators on the Weyl tensor at asymptotic infinity. Evaluating this average at each time provides the instantaneous emission direction. Further averaging across the entire signal yields an average orientation, closely connected to the angular components of the Fisher matrix. The latter direction is well-suited to data analysis and parameter estimation when the instantaneous emission direction evolves significantly. Finally, in the time domain, the average provides fast, invariant diagnostics of waveform quality.
Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.
King, Richard B; Stanford, Kristin M; Jones, Peter C; Bekker, Kent
2016-01-01
Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation.
Numerical Analysis of Asymptotic Stability of Equilibrium Points
Directory of Open Access Journals (Sweden)
A. A. Vorkel
2017-01-01
Full Text Available The aim of this study is to numerically analyze an asymptotic stability of the equilibrium points of autonomous systems of ordinary differential equations on the basis of the asymptotic stability criterion given in the article and the functional localization method of invariant compact sets. The article formulates the necessary and sufficient conditions for an asymptotic stability in terms of invariant compact sets and positively invariant sets and describes a functional localization method. Presents appropriate localization theorems for invariant compact sets of dynamical systems.To investigate the asymptotic stability is proposed an algorithm for a numerical iteration procedure to construct the localizing bounds for invariant compact sets contained in a given initial set. Application of the asymptotic stability criterion is based on the results of this procedure. The author of the article verifies the conditions of the appropriate theorem and confirms the use of this criterion.The examples of two- and three-dimensional systems of differential equations demonstrate a principle of the iteration procedure. The article also gives an example of the system with a limit cycle and it shows that the developed numerical algorithm and the functional localization method of invariant compact sets can be used to analyze stability of the limit cycles.Thanks to the method described in the article, when analyzing an asymptotic stability of equilibrium points, finding a Lyapunov function and calculating eigenvalues of a matrix of linear approximation are non-essential. Thus, it is possible to avoid labour-intensive work with complex analytical structures.The numerical iteration procedure can be used in systems of different dimensions and makes the presented algorithm of asymptotic stability analysis universal.
Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size
King, Richard B.
2016-01-01
Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID
Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N
2014-01-01
This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Asymptotic behaviour of two-point functions in multi-species models
Directory of Open Access Journals (Sweden)
Karol K. Kozlowski
2016-05-01
Full Text Available We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU(3-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.
A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
Hale, Nicholas
2014-02-06
A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree N polynomial in O(N(log N)2/ log log N) operations is derived. The fundamental idea of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at an N +1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre coefficients and values on a Chebyshev grid. © 2014 Society for Industrial and Applied Mathematics.
Asymptotic analysis of the narrow escape problem in dendritic spine shaped domain: three dimensions
Li, Xiaofei; Lee, Hyundae; Wang, Yuliang
2017-08-01
This paper deals with the three-dimensional narrow escape problem in a dendritic spine shaped domain, which is composed of a relatively big head and a thin neck. The narrow escape problem is to compute the mean first passage time of Brownian particles traveling from inside the head to the end of the neck. The original model is to solve a mixed Dirichlet-Neumann boundary value problem for the Poisson equation in the composite domain, and is computationally challenging. In this paper we seek to transfer the original problem to a mixed Robin-Neumann boundary value problem by dropping the thin neck part, and rigorously derive the asymptotic expansion of the mean first passage time with high order terms. This study is a nontrivial three-dimensional generalization of the work in Li (2014 J. Phys. A: Math. Theor. 47 505202), where a two-dimensional analogue domain is considered.
QCD Condensates and Holographic Wilson Loops for Asymptotically AdS Spaces
Energy Technology Data Exchange (ETDEWEB)
Quevedo, R. Carcasses [Instituto Balseiro, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Goity, Jose L. [Hampton University, Hampton, VA 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Trinchero, Roberto C. [Instituto Balseiro, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina)
2014-02-01
The minimization of the Nambu-Goto (NG) action for a surface whose contour defines a circular Wilson loop of radius a placed at a finite value of the coordinate orthogonal to the border is considered. This is done for asymptotically AdS spaces. The condensates of dimension n = 2, 4, 6, 8, and 10 are calculated in terms of the coefficients in the expansion in powers of the radius a of the on-shell subtracted NG action for small a->0. The subtraction employed is such that it presents no conflict with conformal invariance in the AdS case and need not introduce an additional infrared scale for the case of confining geometries. It is shown that the UV value of the gluon condensates is universal in the sense that it only depends on the first coefficients of the difference with the AdS case.
Large gauge symmetries and asymptotic states in QED
Energy Technology Data Exchange (ETDEWEB)
Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)
2016-12-19
Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.
Contact mechanics of articular cartilage layers asymptotic models
Argatov, Ivan
2015-01-01
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...
Spherical convective dynamos in the rapidly rotating asymptotic regime
Aubert, Julien; Fournier, Alexandre
2016-01-01
Self-sustained convective dynamos in planetary systems operate in an asymptotic regime of rapid rotation, where a balance is thought to hold between the Coriolis, pressure, buoyancy and Lorentz forces (the MAC balance). Classical numerical solutions have previously been obtained in a regime of moderate rotation where viscous and inertial forces are still significant. We define a unidimensional path in parameter space between classical models and asymptotic conditions from the requirements to enforce a MAC balance and to preserve the ratio between the magnetic diffusion and convective overturn times (the magnetic Reynolds number). Direct numerical simulations performed along this path show that the spatial structure of the solution at scales larger than the magnetic dissipation length is largely invariant. This enables the definition of large-eddy simulations resting on the assumption that small-scale details of the hydrodynamic turbulence are irrelevant to the determination of the large-scale asymptotic state...
Asymptotic Analysis in MIMO MRT/MRC Systems
Directory of Open Access Journals (Sweden)
Zhou Quan
2006-01-01
Full Text Available Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC systems. One is the asymptotic error performance (in terms of SNR in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.
Spatial assortment of mixed propagules explains the acceleration of range expansion.
Ramanantoanina, Andriamihaja; Ouhinou, Aziz; Hui, Cang
2014-01-01
Range expansion of spreading organisms has been found to follow three types: (i) linear expansion with a constant rate of spread; (ii) bi-phase expansion with a faster linear expansion following a slower linear expansion; and (iii) accelerating expansion with a continuously increasing rate of spread. To date, no overarching formula exists that can be applied to all three types of range expansion. We investigated how propagule pressure, i.e., the initial number of individuals and their composition in terms of dispersal ability, affects the spread of a population. A system of integrodifference equations was then used to model the spatiotemporal dynamics of the population. We studied the dynamics of dispersal ability as well as the instantaneous and asymptotic rate of spread. We found that individuals with different dispersal abilities were spatially sorted with the stronger dispersers situated at the expanding range front, causing the velocity of expansion to accelerate. The instantaneous rate of spread was found to be fully determined by the growth and dispersal abilities of the population at the advancing edge of the invasion. We derived a formula for the asymptotic rate of spread under different scenarios of propagule pressure. The results suggest that data collected from the core of the invasion may underestimate the spreading rate of the population. Aside from better managing of invasive species, the derived formula could conceivably also be applied to conservation management of relocated, endangered or extra-limital species.
Directory of Open Access Journals (Sweden)
Sergey W. Kozlachkow
2012-05-01
Full Text Available The survey is concerned with the expansion joints, used in bridge constructions to compensate medium and significant operational linear and spatial displacements between adjacent spans or between bridge span and pier. The analysis of design features of these types of expansion joints, their advantages and disadvantages, based on operational experience justified the necessity to design constructions, meeting the modern demands imposed to expansion joints.
Rednikov, A. Ye.; Colinet, P.
2017-12-01
We revisit the Wayner problem of the microregion of a contact line at rest formed by a perfectly wetting single-component liquid on an isothermal superheated flat substrate in an atmosphere of its own pure vapor. The focus is on the evaporation-induced apparent contact angles. The microregion is shaped by the effects of viscosity, Laplace and disjoining pressures (the latter in the form of an inverse-cubic law), and evaporation. The evaporation is in turn determined by heat conduction across the liquid film, kinetic resistance, and the Kelvin effect (i.e., saturation-condition dependence on the liquid-vapor pressure difference). While an asymptotic limit of large kinetic resistances was considered by Morris nearly two decades ago [J. Fluid Mech. 432, 1 (2001)], here we are concerned rather with matched asymptotic expansions in the limits of weak and strong Kelvin effects. Certain extensions are also touched upon within the asymptotic analysis. These are a more general form of the disjoining pressure and account for the Navier slip. Most notably, these also include the possibility of Wayner's extended microfilms (covering macroscopically dry parts of the substrate) actually getting truncated. A number of isolated cases encountered in the literature are thereby systematically recovered.
Wu, Chih-Ping; Li, Wei-Chen
2017-05-01
A three-dimensional (3D) asymptotic formulation is developed for the buckling analysis of simply-supported, single-layered nanoplates/graphene sheets (SLNP and SLGS) embedded in an elastic medium and under biaxial compressive loads. In the formulation, the Eringen nonlocal elasticity theory is used to capture the small length scale effect, and the interaction between the SLNP/SLGS and its surrounding medium is simulated using a Pasternak-type foundation. After performing the mathematical processes of nondimensionalization, asymptotic expansion and successive integration, we finally obtain recursive sets of governing equations for various order problems. The nonlocal classical plate theory (CPT) is derived as a first-order approximation of the 3D nonlocal elasticity theory, and the governing equations for higher-order problems retain the same differential operators as those of nonlocal CPT, although with different nonhomogeneous terms. Some accurate nonlocal elasticity solutions of the critical load parameters of simply-supported, biaxially-loaded SLNP/SLGS with and without being embedded in the elastic medium are given to demonstrate the performance of the 3D asymptotic nonlocal elasticity theory.
National Research Council Canada - National Science Library
Sergey W. Kozlachkow
2012-01-01
.... The analysis of design features of these types of expansion joints, their advantages and disadvantages, based on operational experience justified the necessity to design constructions, meeting...
Vacuum energy in asymptotically flat 2+1 gravity
Directory of Open Access Journals (Sweden)
Olivera Miskovic
2017-04-01
Full Text Available We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.
Vacuum energy in asymptotically flat 2 + 1 gravity
Miskovic, Olivera; Olea, Rodrigo; Roy, Debraj
2017-04-01
We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern-Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein-Hilbert term in the bulk plus half of the Gibbons-Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.
Vacuum energy in asymptotically flat 2 + 1 gravity
Energy Technology Data Exchange (ETDEWEB)
Miskovic, Olivera, E-mail: olivera.miskovic@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago (Chile); Roy, Debraj, E-mail: roy.debraj@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)
2017-04-10
We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.
Asymptotic shape of solutions to nonlinear eigenvalue problems
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2005-03-01
Full Text Available We consider the nonlinear eigenvalue problem $$ -u''(t = f(lambda, u(t, quad u mbox{greater than} 0, quad u(0 = u(1 = 0, $$ where $lambda > 0$ is a parameter. It is known that under some conditions on $f(lambda, u$, the shape of the solutions associated with $lambda$ is almost `box' when $lambda gg 1$. The purpose of this paper is to study precisely the asymptotic shape of the solutions as $lambda o infty$ from a standpoint of $L^1$-framework. To do this, we establish the asymptotic formulas for $L^1$-norm of the solutions as $lambda o infty$.
Asymptotic solutions of diffusion models for risk reserves
Directory of Open Access Journals (Sweden)
S. Shao
2003-01-01
Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.
Convergence Theorem for Finite Family of Total Asymptotically Nonexpansive Mappings
Directory of Open Access Journals (Sweden)
E.U. Ofoedu
2015-11-01
Full Text Available In this paper we introduce an explicit iteration process and prove strong convergence of the scheme in a real Hilbert space $H$ to the common fixed point of finite family of total asymptotically nonexpansive mappings which is nearest to the point $u \\in H$. Our results improve previously known ones obtained for the class of asymptotically nonexpansive mappings. As application, iterative method for: approximation of solution of variational Inequality problem, finite family of continuous pseudocontractive mappings, approximation of solutions of classical equilibrium problems and approximation of solutions of convex minimization problems are proposed. Our theorems unify and complement many recently announced results.
Global Asymptotic Stability for Linear Fractional Difference Equation
Directory of Open Access Journals (Sweden)
A. Brett
2014-01-01
Full Text Available Consider the difference equation xn+1=(α+∑i=0kaixn-i/(β+∑i=0kbixn-i, n=0,1,…, where all parameters α,β,ai,bi, i=0,1,…,k, and the initial conditions xi, i∈{-k,…,0} are nonnegative real numbers. We investigate the asymptotic behavior of the solutions of the considered equation. We give easy-to-check conditions for the global stability and global asymptotic stability of the zero or positive equilibrium of this equation.
Energy Technology Data Exchange (ETDEWEB)
Traytak, Sergey D., E-mail: sergtray@mail.ru [Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, 45071 Orléans (France); Le STUDIUM (Loire Valley Institute for Advanced Studies), 3D av. de la Recherche Scientifique, 45071 Orléans (France); Semenov Institute of Chemical Physics RAS, 4 Kosygina St., 117977 Moscow (Russian Federation)
2014-06-14
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
Relaxing the parity conditions of asymptotically flat gravity
Compère, G.; Dehouck, F.
2011-01-01
Four-dimensional asymptotically flat spacetimes at spatial infinity are defined from first principles without imposing parity conditions or restrictions on the Weyl tensor. The Einstein-Hilbert action is shown to be a correct variational principle when it is supplemented by an anomalous counterterm
Asymptotic inference for jump diffusions with state-dependent intensity
Becheri, Gaia; Drost, Feico; Werker, Bas
2016-01-01
We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to
High energy asymptotics of the scattering amplitude for the ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
High energy asymptotics of the scattering amplitude for the. Schrödinger equation. D YAFAEV. Department of Mathematics, University Rennes-1, Campus Beaulieu, 35042 Rennes,. France. Abstract. We find an explicit function approximating at high energies the kernel of the scattering matrix with arbitrary accuracy.
Asymptotics of sums of lognormal random variables with Gaussian copula
DEFF Research Database (Denmark)
Asmussen, Søren; Rojas-Nandayapa, Leonardo
2008-01-01
Let (Y1, ..., Yn) have a joint n-dimensional Gaussian distribution with a general mean vector and a general covariance matrix, and let Xi = eYi, Sn = X1 + ⋯ + Xn. The asymptotics of P (Sn > x) as n → ∞ are shown to be the same as for the independent case with the same lognormal marginals. In part...
Chemical Analysis of Asymptotic Giant Branch Stars in M62
Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.
2015-01-01
We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).
Precise asymptotics for complete moment convergence in Hilbert ...
Indian Academy of Sciences (India)
... Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 122; Issue 1. Precise Asymptotics for Complete Moment Convergence in Hilbert Spaces. Keang Fu Juan Chen. Volume 122 Issue 1 February 2012 ...
Exact overflow asymptotics for queues with many Gaussian inputs
Debicki, Krzysztof; Mandjes, M.R.H.
2003-01-01
In this paper we consider a queue fed by a large number of independent continuous-time Gaussian processes with stationary increments. After scaling the buffer exceedance threshold and the (constant) service capacity by the number of sources, we present asymptotically exact results for the
Solute transport through porous media using asymptotic dispersivity
Indian Academy of Sciences (India)
Abstract. In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute ...
Asymptotic linear estimation of the quantile function of a location ...
African Journals Online (AJOL)
Specific results are discussed for the ABLUE of Qξ for the location-scale exponential and double exponential distributions. As a further application of the exponential results, we discuss the asymptotically best optimal spacings for the location-scale logistic distribution. Keywords: Quantiles; Order statistics; Optimal spacing; ...
A Review on asymptotic normality of sums of associated random ...
African Journals Online (AJOL)
Association between random variables is a generalization of independence of these random variables. This concept is more and more commonly used in current trends in any research elds in Statistics. In this paper, we proceed to a simple, clear and rigorous introduction to it. We will present the fundamental asymptotic ...
The Asymptotic Solution for the Steady Variable-Viscosity Free ...
African Journals Online (AJOL)
Under an arbitrary time-dependent heating of an infinite vertical plate (or wall), the steady viscosity-dependent free convection flow of a viscous incompressible fluid is investigated. Using the asymptotic method of solution on the governing equations of motion and energy, the resulting Ordinary differential equations were ...
Asymptotic stability results for retarded differential systems | Igobi ...
African Journals Online (AJOL)
The transcendental character of the polynomial equation of the retarded differential system makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic stability analysis of the system solutions. Various acceptable mathematical techniques have been used to address the issue. In this paper ...
Hardy-Weinberg law: asymptotic approach to a generalized form.
Stark, A E
1976-09-17
The equilibrium frequencies of a generalized Hardy-Weinberg law are approached at a geometric rate under assortative mating, irrespective of the initial genotypic frequencies. The asymptotic form is similar to that of Wright, and the pattern of assortative mating is based on deviations from the mean genotypic value.
Ergodic Retractions for Families of Asymptotically Nonexpansive Mappings
Directory of Open Access Journals (Sweden)
Saeidi Shahram
2010-01-01
Full Text Available We prove some theorems for the existence of ergodic retractions onto the set of common fixed points of a family of asymptotically nonexpansive mappings. Our results extend corresponding results of Benavides and Ramírez (2001, and Li and Sims (2002.
Solute transport through porous media using asymptotic dispersivity
Indian Academy of Sciences (India)
In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute transport in ...
Asymptotic estimates of viscoelastic Green's functions near the wavefront
Hanyga, Andrzej
2014-01-01
Asymptotic behavior of viscoelastic Green's functions near the wavefront is expressed in terms of a causal function $g(t)$ defined in \\cite{SerHanJMP} in connection with the Kramers-Kronig dispersion relations. Viscoelastic Green's functions exhibit a discontinuity at the wavefront if $g(0) < \\infty$. Estimates of continuous and discontinuous viscoelastic Green's functions near the wavefront are obtained.
Uniqueness and asymptotic stability properties of the critical solution ...
African Journals Online (AJOL)
In this research, the Volterra prey/predator model system is modified by introducing time-lag functions f (t - h) into the state parameters to account for the ... The asymptotic stability properties of the critical solution are investigated using the quadratic matrix equation and symmetric linear matrix inequality test. Results obtained ...
Asymptotics and Numerics for Laminar Flow over Finite Flat Plate
Dijkstra, D.; Kuerten, J.G.M.; Kaper, Hans G.; Garbey, Mare; Pieper, Gail W.
1992-01-01
A compilation of theoretical results from the literature on the finite flat-plate flow at zero incidence is presented. This includes the Blasius solution, the Triple Deck at the trailing edge, asymptotics in the wake, and properties near the edges of the plate. In addition, new formulas for skin
Asymptotic-bound-state model for Feshbach resonances
Tiecke, T.G.; Goosen, M.R.; Walraven, J.T.M.; Kokkelmans, S.J.J.M.F.
2010-01-01
We present an asymptotic-bound-state model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body
Precise asymptotics for complete moment convergence in Hilbert ...
Indian Academy of Sciences (India)
(Math. Sci.) Vol. 122, No. 1, February 2012, pp. 87–97. c Indian Academy of Sciences. Precise asymptotics for complete moment convergence in Hilbert spaces ... School of Statistics and Mathematics, Zhejiang Gongshang University, .... Now we start to introduce some Propositions, and the proof of our main result is based.
A note on properties of iterative procedures of asymptotic evidence
Paardekooper, H.C.H.; Steens, H.B.A.; Van der Hoek, G.
1989-01-01
The theoretical results obtained by Dzhaparidze (1983) are based on a theorem dealing with the asymptotically normality of an estimator which is the result of a Newton-like iteration method. The paper establishes a new theorem that supports the use of a more robust BFGS Quasi Newton method with
Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes
Caldeira Costa, R.N.
2012-01-01
In this work we elaborate on an extension of the AdS/CFT framework to a sub-class of gravitational theories with vanishing cosmological constant. By building on earlier ideas, we construct a correspondence between Ricci-flat spacetimes admitting asymptotically hyperbolic hypersurfaces and a family
Tail asymptotics for dependent subexponential diﬀerences
DEFF Research Database (Denmark)
Albrecher, H; Asmussen, Søren; Kortschak, D.
We study the asymptotic behavior of P(X − Y > u) as u → ∞, where X is subexponential and X, Y are positive random variables that may be dependent. We give criteria under which the subtraction of Y does not change the tail behavior of X. It is also studied under which conditions the comonotonic...
Asymptotic tensor rank of graph tensors: beyond matrix multiplication
M. Christandl (Matthias); P. Vrana (Péter); J. Zuiddam (Jeroen)
2016-01-01
textabstractWe present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on $k$ vertices. For $k\\geq4$, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per
Quantum local asymptotic normality and other questions of quantum statistics
Kahn, Jonas
2008-01-01
This thesis is entitled Quantum Local Asymptotic Normality and other questions of Quantum Statistics ,. Quantum statistics are statistics on quantum objects. In classical statistics, we usually start from the data. Indeed, if we want to predict the weather, and can measure the wind or the
Pre-Big Bang, space-time structure, asymptotic Universe
Directory of Open Access Journals (Sweden)
Gonzalez-Mestres Luis
2014-04-01
Full Text Available Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95, while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2 spinor and the Lundmark-Lemaître-Hubble (LLH expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of
On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability
Directory of Open Access Journals (Sweden)
Işık Mahmut
2017-01-01
Full Text Available In this study, we introduce and examine the concepts of asymptotically lacunary statistical equivalent of order α in probability and strong asymptotically lacunary equivalent of order α in probability. We give some relations connected to these concepts.
On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability
Işık Mahmut; Akbaş Kübra Elif
2017-01-01
In this study, we introduce and examine the concepts of asymptotically lacunary statistical equivalent of order α in probability and strong asymptotically lacunary equivalent of order α in probability. We give some relations connected to these concepts.
Improved Expansion of Random Cayley Graphs
Directory of Open Access Journals (Sweden)
Po-Shen Loh
2004-12-01
Full Text Available In Random Cayley Graphs and Expanders, N. Alon and Y. Roichman proved that for every ε > 0 there is a finite c(ε such that for any sufficiently large group G, the expected value of the second largest (in absolute value eigenvalue of the normalized adjacency matrix of the Cayley graph with respect to c(ε log |G| random elements is less than ε. We reduce the number of elements to c(εlog D(G (for the same c, where D(G is the sum of the dimensions of the irreducible representations of G. In sufficiently non-abelian families of groups (as measured by these dimensions, log D(G is asymptotically (1/2log|G|. As is well known, a small eigenvalue implies large graph expansion (and conversely; see Tanner84 and AlonMilman84-2,AlonMilman84-1. For any specified eigenvalue or expansion, therefore, random Cayley graphs (of sufficiently non-abelian groups require only half as many edges as was previously known.
Completeness relations and resonant state expansions
Energy Technology Data Exchange (ETDEWEB)
Lind, P. (Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-221 00 Lund (Sweden))
1993-05-01
The completeness properties of the discrete set of bound states, virtual states, and resonant states characterizing the system of a single nonrelativistic particle moving in a central cutoff potential are investigated. We do not limit ourselves to the restricted form of completeness that can be obtained from Mittag-Leffler theory in this case. Instead we will make use of the information contained in the asymptotic behavior of the discrete states to get a new approach to the question of eventual overcompleteness. Using the theory of analytic functions we derive a number of completeness relations in terms of discrete states and complex continuum states and give some criteria for how to use them to form resonant state expansions of functions, matrix elements, and Green's functions. In cases where the integral contribution vanishes, the discrete part of the expansions is of the same form as that given by Mittag-Leffler theory but with regularized inner products. We also consider the possibility of using the discrete states as basis in a matrix representation.
Conformal expansions and renormalons
Brodsky, S J; Grunberg, G; Rathsman, J; Brodsky, Stanley J.; Gardi, Einan; Grunberg, Georges; Rathsman, Johan
2001-01-01
The coefficients in perturbative expansions in gauge theories are factoriallyincreasing, predominantly due to renormalons. This type of factorial increaseis not expected in conformal theories. In QCD conformal relations betweenobservables can be defined in the presence of a perturbative infraredfixed-point. Using the Banks-Zaks expansion we study the effect of thelarge-order behavior of the perturbative series on the conformal coefficients.We find that in general these coefficients become factorially increasing.However, when the factorial behavior genuinely originates in a renormalonintegral, as implied by a postulated skeleton expansion, it does not affect theconformal coefficients. As a consequence, the conformal coefficients willindeed be free of renormalon divergence, in accordance with previousobservations concerning the smallness of these coefficients for specificobservables. We further show that the correspondence of the BLM method with theskeleton expansion implies a unique scale-setting procedure. Th...
Deformation limits on two-parameter fracture mechanics in terms of higher order asymptotics
Crane, D. L.; Anderson, T. L.
1994-09-01
This report addresses the limitations of two-parameter fracture mechanics. We performed an asymptotic analysis of the general power series representation of the crack tip stress potential in an elastic plastic material that obeys a Ramberg-Osgood constitutive law. Expansion of the power series over a substantial number of terms yields. only three independent coefficients for low. and medium-hardening materials. The first independent The second and third independent coefficients, K2 and K4 are a function of geometry and loading level. A two-parameter theory implies that the crack tip stress fields have two degrees of freedom, but the asymptotic analysis implies that three parameters are required to characterize near-tip conditions. Thus two-parameter fracture theory is a valid engineering model only when there is an approximately unique relationship between K2 and K4. We performed elastic-plastic finite element analyses on several geometries and evaluated K2 and K4 as a function of deformation level. A reference,two-parameter solution (which gives a unique relation between K2 and K4) was provided by the modified boundary layer (MBL) geometry. Results indicate that the near tip stresses in all but the deeply cracked SENT (a/W-.5.O.9) and SENT (a/W-0.9) lend themselves to a two-parameter characterization. However, the deeply cracked SENT and SENT specimens maintain a high level of constraint to relatively large deformation levels. Thus single-parameter fracture mechanics is fairly robust for these high constraint geometries, but two-parameter theory is of little value when constraint loss eventually occurs.
Schrödinger operators on the half line: Resolvent expansions and the Fermi Golden Rule at threshold
DEFF Research Database (Denmark)
Jensen, Arne; Nenciu, Gheorghe
2005-01-01
We consider Schr\\"odinger operators $H = -d^2 \\slash dr^2 + V$ on $L^2 ([0,\\infty))$ with the Dirichlet boundary condition. The potential $V$ may be local or non-local, with polynomial decay at infinity. The point zero in the spectrum of $H$ is classified, and asymptotic expansions of the resolvent...
Precise asymptotic behavior of solutions to damped simple pendulum equations
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2009-11-01
Full Text Available We consider the simple pendulum equation $$displaylines{ -u''(t + epsilon f(u'(t = lambdasin u(t, quad t in I:=(-1, 1,cr u(t > 0, quad t in I, quad u(pm 1 = 0, }$$ where $0 < epsilon le 1$, $lambda > 0$, and the friction term is either $f(y = pm|y|$ or $f(y = -y$. Note that when $f(y = -y$ and $epsilon = 1$, we have well known original damped simple pendulum equation. To understand the dependance of solutions, to the damped simple pendulum equation with $lambda gg 1$, upon the term $f(u'(t$, we present asymptotic formulas for the maximum norm of the solutions. Also we present an asymptotic formula for the time at which maximum occurs, for the case $f(u = -u$.
Asymptotic analysis of multicell massive MIMO over Rician fading channels
Sanguinetti, Luca
2017-06-20
This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.
The asymptotic convergence factor for a polygon under a perturbation
Energy Technology Data Exchange (ETDEWEB)
Li, X. [Georgia Southern Univ., Statesboro, GA (United States)
1994-12-31
Let Ax = b be a large system of linear equations, where A {element_of} C{sup NxN}, nonsingular and b {element_of} C{sup N}. A few iterative methods for solving have recently been presented in the case where A is nonsymmetric. Many of their algorithms consist of two phases: Phase I: estimate the extreme eigenvalues of A; Phase II: construct and apply an iterative method based on the estimates. For convenience, it is rewritten as an equivalent fixed-point form, x = Tx + c. Let {Omega} be a compact set excluding 1 in the complex plane, and let its complement in the extended complex plane be simply connected. The asymptotic convergence factor (ACF) for {Omega}, denoted by {kappa}({Omega}), measures the rate of convergence for the asymptotically optimal semiiterative methods for solving, where {sigma}(T) {contained_in} {Omega}.
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... considerable effect on the final estimations of the method, in particular on the coefficient of variation of the estimated failure probability. Based on these observations, a simple optimization algorithm is proposed which distributes the support points so that the coefficient of variation of the method...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
Asymptotic Floquet states of non-Markovian systems
Magazzú, Luca; Denisov, Sergey; Hänggi, Peter
2017-10-01
We propose a method to find asymptotic states of a class of periodically modulated open systems which are outside the range of validity of the Floquet theory due to the presence of memory effects. The method is based on a Floquet treatment of the time-local, memoryless dynamics taking place in a minimally enlarged state space where the original system is coupled to auxiliary—typically nonphysical—variables. A projection of the Floquet solution into the physical subspace returns the sought asymptotic state of the system. The spectral gap of the Floquet propagator acting in the enlarged state space can be used to estimate the relaxation time. We illustrate the method with a modulated quantum random walk model.
Upper bound on the Abelian gauge coupling from asymptotic safety
Eichhorn, Astrid; Versteegen, Fleur
2018-01-01
We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.
Higher order corrections to asymptotic-de Sitter inflation
Mohsenzadeh, M.; Yusofi, E.
2017-08-01
Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.
Asymptotically Lifshitz spacetimes with universal horizons in (1 +2 ) dimensions
Basu, Sayandeb; Bhattacharyya, Jishnu; Mattingly, David; Roberson, Matthew
2016-03-01
Hořava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide a natural framework for Lifshitz holography. We derive the conditions on the two-derivative Hořava gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon in general relativity. Specializing to z =2 in 1 +2 dimensions, we then numerically construct such regular solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the asymptotically anti-de Sitter case, the first law applied to the universal horizon is straightforwardly compatible with a thermodynamic interpretation.
Non-Tikhonov Asymptotic Properties of Cardiac Excitability
Biktashev, V. N.; Suckley, R.
2004-10-01
Models of electric excitability of cardiac cells can be studied by singular perturbation techniques. To do this one should take into account parameters appearing in equations in nonstandard ways. The physical reason for this is near-perfect switch behavior of ionic current gates. This leads to a definition of excitability different from the currently accepted one. The asymptotic structure revealed by our analysis can be used to devise simplified caricature models, to obtain approximate analytical solutions, and to facilitate numerical simulations.
TAIL ASYMPTOTICS OF LIGHT-TAILED WEIBULL-LIKE SUMS
DEFF Research Database (Denmark)
Asmussen, Soren; Hashorva, Enkelejd; Laub, Patrick J.
2017-01-01
We consider sums of n i.i.d. random variables with tails close to exp{-x(beta)} for some beta > 1. Asymptotics developed by Rootzen (1987) and Balkema, Kluppelberg, and Resnick (1993) are discussed from the point of view of tails rather than of densities, using a somewhat different angle......, and supplemented with bounds, results on a random number N of terms, and simulation algorithms....
Local asymptotic stability for nonlinear quadratic functional integral equations
Directory of Open Access Journals (Sweden)
Bapurao Dhage
2008-03-01
Full Text Available In the present study, using the characterizations of measures of noncompactness we prove a theorem on the existence and local asymptotic stability of solutions for a quadratic functional integral equation via a fixed point theorem of Darbo. The investigations are placed in the Banach space of real functions defined, continuous and bounded on an unbounded interval. An example is indicated to demonstrate the natural realizations of abstract result presented in the paper.
Asymptotic behaviour of the Weyl tensor in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravdová, Alena
2014-01-01
Roč. 90, č. 10 (2014), s. 104011 ISSN 1550-7998 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.104011
Asymptotic behavior of Maxwell fields in higher dimensions
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello
2014-01-01
Roč. 90, č. 12 (2014), s. 124020 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.124020
Asymptotics of solutions to semilinear stochastic wave equations
Chow, Pao-Liu
2006-01-01
Large-time asymptotic properties of solutions to a class of semilinear stochastic wave equations with damping in a bounded domain are considered. First an energy inequality and the exponential bound for a linear stochastic equation are established. Under appropriate conditions, the existence theorem for a unique global solution is given. Next the questions of bounded solutions and the exponential stability of an equilibrium solution, in mean-square and the almost sure sense, are studied. Then...
Framework for an asymptotically safe standard model via dynamical breaking
Abel, Steven; Sannino, Francesco
2017-09-01
We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings.
Asymptotic estimation of xi^{(2n)}(1/2)
Coffey, Mark W.
2009-06-01
We verify a very recent conjecture of Farmer and Rhoades on the asymptotic rate of growth of the derivatives of the Riemann xi function at s=1/2 . We give two separate proofs of this result, with the more general method not restricted to s=1/2 . We briefly describe other approaches to our results, give a heuristic argument, and mention supporting numerical evidence.
Gauge hierarchy problem in asymptotically safe gravity - The resurgence mechanism
Wetterich, Christof; Yamada, Masatoshi
2017-07-01
The gauge hierarchy problem could find a solution within the scenario of asymptotic safety for quantum gravity. We discuss a ;resurgence mechanism; where the running dimensionless coupling responsible for the Higgs scalar mass first decreases in the ultraviolet regime and subsequently increases in the infrared regime. A gravity induced large anomalous dimension plays a crucial role for the required ;self-tuned criticality; in the ultraviolet regime beyond the Planck scale.
Solution branches for nonlinear problems with an asymptotic oscillation property
Directory of Open Access Journals (Sweden)
Lin Gong
2015-10-01
Full Text Available In this article we employ an oscillatory condition on the nonlinear term, to prove the existence of a connected component of solutions of a nonlinear problem, which bifurcates from infinity and asymptotically oscillates over an interval of parameter values. An interesting and immediate consequence of such oscillation property of the connected component is the existence of infinitely many solutions to the nonlinear problem for all parameter values in that interval.
Bounds and asymptotics for orthogonal polynomials for varying weights
Levin, Eli
2018-01-01
This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals. Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics. This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .
Asymptotic analysis of Lévy-driven tandem queues
P.M.D. Lieshout (Pascal); M.R.H. Mandjes (Michel)
2008-01-01
htmlabstractWe analyze tail asymptotics of a two-node tandem queue with spectrally-positive Lévy input. A first focus lies in the tail probabilities of the type ¿(Q 1>¿ x,Q 2>(1¿¿)x), for ¿¿(0,1) and x large, and Q i denoting the steady-state workload in the ith queue. In case of light-tailed input,
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Energy Technology Data Exchange (ETDEWEB)
Lind, P.
1993-02-01
The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.).
Some properties of Riesz means and spectral expansions
Directory of Open Access Journals (Sweden)
S. A. Fulling
1999-03-01
Full Text Available It is well known that short-time expansions of heat kernels correlate to formal high-frequency expansions of spectral densities. It is also well known that the latter expansions are generally not literally true beyond the first term. However, the terms in the heat-kernel expansion correspond rigorously to quantities called Riesz means of the spectral expansion, which damp out oscillations in the spectral density at high frequencies by dint of performing an average over the density at all lower frequencies. In general, a change of variables leads to new Riesz means that contain different information from the old ones. In particular, for the standard second-order elliptic operators, Riesz means with respect to the square root of the spectral parameter correspond to terms in the asymptotics of elliptic and hyperbolic Green functions associated with the operator, and these quantities contain ``nonlocal'' information not contained in the usual Riesz means and their correlates in the heat kernel. Here the relationship between these two sets of Riesz means is worked out in detail; this involves just classical one-dimensional analysis and calculation, with no substantive input from spectral theory or quantum field theory. This work provides a general framework for calculations that are often carried out piecemeal (and without precise understanding of their rigorous meaning in the physics literature.
Directory of Open Access Journals (Sweden)
Justine Yasappan
2013-01-01
Full Text Available Fluids subject to thermal gradients produce complex behaviors that arise from the competition with gravitational effects. Although such sort of systems have been widely studied in the literature for simple (Newtonian fluids, the behavior of viscoelastic fluids has not been explored thus far. We present a theoretical study of the dynamics of a Maxwell viscoelastic fluid in a closed-loop thermosyphon. This sort of fluid presents elastic-like behavior and memory effects. We study the asymptotic properties of the fluid inside the thermosyphon and the exact equations of motion in the inertial manifold that characterizes the asymptotic behavior. We derive, for the first time, the mathematical derivations of the motion of a viscoelastic fluid in the interior of a closed-loop thermosyphon under the effects of natural convection and a given external temperature gradient.
Tate, Stephen James
2013-10-01
In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.
Asymptotic and Numerical Methods for Rapidly Rotating Buoyant Flow
Grooms, Ian G.
This thesis documents three investigations carried out in pursuance of a doctoral degree in applied mathematics at the University of Colorado (Boulder). The first investigation concerns the properties of rotating Rayleigh-Benard convection -- thermal convection in a rotating infinite plane layer between two constant-temperature boundaries. It is noted that in certain parameter regimes convective Taylor columns appear which dominate the dynamics, and a semi-analytical model of these is presented. Investigation of the columns and of various other properties of the flow is ongoing. The second investigation concerns the interactions between planetary-scale and mesoscale dynamics in the oceans. Using multiple-scale asymptotics the possible connections between planetary geostrophic and quasigeostrophic dynamics are investigated, and three different systems of coupled equations are derived. Possible use of these equations in conjunction with the method of superparameterization, and extension of the asymptotic methods to the interactions between mesoscale and submesoscale dynamics is ongoing. The third investigation concerns the linear stability properties of semi-implicit methods for the numerical integration of ordinary differential equations, focusing in particular on the linear stability of IMEX (Implicit-Explicit) methods and exponential integrators applied to systems of ordinary differential equations arising in the numerical solution of spatially discretized nonlinear partial differential equations containing both dispersive and dissipative linear terms. While these investigations may seem unrelated at first glance, some reflection shows that they are in fact closely linked. The investigation of rotating convection makes use of single-space, multiple-time-scale asymptotics to deal with dynamics strongly constrained by rotation. Although the context of thermal convection in an infinite layer seems somewhat removed from large-scale ocean dynamics, the asymptotic
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre
2017-01-01
Different models of wake expansion are presented in this chapter: the 1D momentum theory model, the cylinder analog model and Theodorsen’s model. Far wake models such as the ones from Frandsen or Rathmann or only briefly mentioned. The different models are compared to each other. Results from thi...... this chapter are used in Chap. 16 to link near-wake and far-wake parameters and in Chap. 20 to study the influence of expansion on tip-losses....
Nuclear expansion with excitation
Energy Technology Data Exchange (ETDEWEB)
De, J.N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Samaddar, S.K. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Vinas, X. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Centelles, M. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: mario@ecm.ub.es
2006-07-06
The expansion of an isolated hot spherical nucleus with excitation energy and its caloric curve are studied in a thermodynamic model with the SkM{sup *} force as the nuclear effective two-body interaction. The calted results are shown to compare well with the recent experimental data from energetic nuclear collisions. The fluctuations in temperature and density are also studied. They are seen to build up very rapidly beyond an excitation energy of {approx}9 MeV/u. Volume-conserving quadrupole deformation in addition to expansion indicates, however, nuclear disassembly above an excitation energy of {approx}4 MeV/u.
Directory of Open Access Journals (Sweden)
Massimo Giovannini
2015-06-01
Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
$\\hbar$-expansion for the Schr\\"odinger equation with a position-dependent mass
D. A. Kulikov; V. M. Shapoval
2012-01-01
A recursion technique of obtaining the asymptotical expansions for the bound-state energy eigenvalues of the radial Schr\\"odinger equation with a position-dependent mass is presented. As an example of the application we calculate the energy eigenvalues for the Coulomb potential in the presence of position-dependent mass and we derive the inequalities regulating the shifts of the energy levels from their constant-mass positions.
On the oscillation-driven cosmological expansion at the post-inflation stage
Koutvitsky, Vladimir A
2016-01-01
Dynamics of the inflaton scalar field oscillating around a minimum of the singular potentials in the expanding Universe is investigated. Asymptotic formulas are obtained describing the cosmological expansion at the late times. The problem of stability of the oscillations considered and the related phenomenon of the field fragmentation are briefly discussed. PACS numbers: 98.80.Jk, 98.80.Cq, 04.25.-g, 04.40.-b
Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...
DEFF Research Database (Denmark)
Kolbæk, Ditte; Lundh Snis, Ulrika
discussion forum on Google groups, they created new ways of reflecting and learning. We used netnography to select qualitative postings from the online community and expansive learning concepts for data analysis. The findings show how students changed practices of organisational learning...
Ramírez Suárez, O. L.; Sparenberg, J.-M.
2017-09-01
We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.
Asymptotics of work distributions in a stochastically driven system
Manikandan, Sreekanth K.; Krishnamurthy, Supriya
2017-12-01
We determine the asymptotic forms of work distributions at arbitrary times T, in a class of driven stochastic systems using a theory developed by Nickelsen and Engel (EN theory) [D. Nickelsen and A. Engel, Eur. Phys. J. B 82, 207 (2011)], which is based on the contraction principle of large deviation theory. In this paper, we extend the theory, previously applied in the context of deterministically driven systems, to a model in which the driving is stochastic. The models we study are described by overdamped Langevin equations and the work distributions in path integral form, are characterised by having quadratic augmented actions. We first illustrate EN theory, for a deterministically driven system - the breathing parabola model, and show that within its framework, the Crooks fluctuation theorem manifests itself as a reflection symmetry property of a certain characteristic polynomial, which also determines the exact moment-generating-function at arbitrary times. We then extend our analysis to a stochastically driven system, studied in references [S. Sabhapandit, EPL 89, 60003 (2010); A. Pal, S. Sabhapandit, Phys. Rev. E 87, 022138 (2013); G. Verley, C. Van den Broeck, M. Esposito, New J. Phys. 16, 095001 (2014)], for both equilibrium and non-equilibrium steady state initial distributions. In both cases we obtain new analytic solutions for the asymptotic forms of (dissipated) work distributions at arbitrary T. For dissipated work in the steady state, we compare the large T asymptotic behaviour of our solution to the functional form obtained in reference [New J. Phys. 16, 095001 (2014)]. In all cases, special emphasis is placed on the computation of the pre-exponential factor and the results show excellent agreement with numerical simulations. Our solutions are exact in the low noise (β → ∞) limit.
Exploring central opacity and asymptotic scenarios in elastic hadron scattering
Fagundes, D. A.; Menon, M. J.; Silva, P. V. R. G.
2016-02-01
In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio X between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m. energy interval 5 GeV-8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for X, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio X bar = 0.30 ± 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for X and physical aspects related to a change of curvature in this quantity at 80-100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.
Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence
Eynard, B.
2009-03-01
We propose an asymptotic expansion formula for matrix integrals, including oscillatory terms (derivatives of theta-functions) to all orders. This formula is heuristically derived from the analogy between matrix integrals, and formal matrix models (combinatorics of discrete surfaces), after summing over filling fractions. The whole oscillatory series can also be resummed into a single theta function. We also remark that the coefficients of the theta derivatives, are the same as those which appear in holomorphic anomaly equations in string theory, i.e. they are related to degeneracies of Riemann surfaces. Moreover, the expansion presented here, happens to be independent of the choice of a background filling fraction.
On selfdual spin-connections and asymptotic safety
Directory of Open Access Journals (Sweden)
U. Harst
2016-02-01
Full Text Available We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein–Cartan gravity without the selfduality condition.
Subexponential loss rate asymptotics for Lévy processes
DEFF Research Database (Denmark)
Andersen, Lars Nørvang
2011-01-01
We consider a Lévy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotics...... for the loss rate when K tends to infinity, when the mean of the Lévy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula....
Asymptotic Behavior for a Class of Nonclassical Parabolic Equations
Yanjun Zhang; Qiaozhen Ma
2013-01-01
This paper is devoted to the qualitative analysis of a class of nonclassical parabolic equations ut-εΔut-ωΔu+f(u)=g(x) with critical nonlinearity, where ε∈[0,1] and ω>0 are two parameters. Firstly, we establish some uniform decay estimates for the solutions of the problem for g(x)∈H-1(Ω), which are independent of the parameter ε. Secondly, some uniformly (with respect to ε∈[0,1]) asymptotic regularity about the solutions has been established for g(x)∈L2(Ω), which shows that the solutions are ...
Asymptotic shape of solutions to the perturbed simple pendulum problems
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2007-05-01
Full Text Available We consider the positive solution of the perturbed simple pendulum problem $$ u''(r + frac{N-1}{r}u'(r - g(u(t + lambda sin u(r = 0, $$ with $0 < r < R$, $ u'(0 = u(R = 0$. To understand well the shape of the solution $u_lambda$ when $lambda gg 1$, we establish the leading and second terms of $Vert u_lambdaVert_q$ ($1 le q < infty$ with the estimate of third term as $lambda o infty$. We also obtain the asymptotic formula for $u_lambda'(R$ as $lambda o infty$.
Asymptotic formulae for likelihood-based tests of new physics
Cowan, Glen; Cranmer, Kyle; Gross, Eilam; Vitells, Ofer
2011-02-01
We describe likelihood-based statistical tests for use in high energy physics for the discovery of new phenomena and for construction of confidence intervals on model parameters. We focus on the properties of the test procedures that allow one to account for systematic uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived using results of Wilks and Wald. We motivate and justify the use of a representative data set, called the "Asimov data set", which provides a simple method to obtain the median experimental sensitivity of a search or measurement as well as fluctuations about this expectation.
Asymptotic formulae for likelihood-based tests of new physics
Energy Technology Data Exchange (ETDEWEB)
Cowan, Glen [Royal Holloway, University of London, Physics Department, Egham (United Kingdom); Cranmer, Kyle [New York University, Physics Department, New York, NY (United States); Gross, Eilam; Vitells, Ofer [Weizmann Institute of Science, Rehovot (Israel)
2011-02-15
We describe likelihood-based statistical tests for use in high energy physics for the discovery of new phenomena and for construction of confidence intervals on model parameters. We focus on the properties of the test procedures that allow one to account for systematic uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived using results of Wilks and Wald. We motivate and justify the use of a representative data set, called the ''Asimov data set'', which provides a simple method to obtain the median experimental sensitivity of a search or measurement as well as fluctuations about this expectation. (orig.)
Shrinkage singularities of amplitudes and weak interaction cross- section asymptotic
Dolgov, A D; Okun, Lev Borisovich
1972-01-01
The so called shrinkage singularities of amplitudes caused by shrinkage of diffraction peak at asymptotically high energies are discussed given the condition that the amplitude singularities are not stronger than t/sup 2/ ln t (as is case for neutrino pair exchange diagrams) then total cross-section sigma /sub tot/ cannot increase faster at s to infinity than s/sup 1/3/. If shrinkage singularities are absent then sigma /sub tot/ cannot increase as any power of s. All the conclusions are valid, if the dispersion relations with finite number of subtractions exist at t
Weighted Asymptotically Periodic Solutions of Linear Volterra Difference Equations
Directory of Open Access Journals (Sweden)
Josef Diblík
2011-01-01
Full Text Available A linear Volterra difference equation of the form x(n+1=a(n+b(nx(n+∑i=0nK(n,ix(i, where x:N0→R, a:N0→R, K:N0×N0→R and b:N0→R∖{0} is ω-periodic, is considered. Sufficient conditions for the existence of weighted asymptotically periodic solutions of this equation are obtained. Unlike previous investigations, no restriction on ∏j=0ω-1b(j is assumed. The results generalize some of the recent results.
Asymptotic modelling of a thermopiezoelastic anisotropic smart plate
Long, Yufei
Motivated by the requirement of modelling for space flexible reflectors as well as other applications of plate structures in engineering, a general anisotropic laminated thin plate model and a monoclinic Reissner-Mindlin plate model with thermal deformation, two-way coupled piezoelectric effect and pyroelectric effect is constructed using the variational asymptotic method, without any ad hoc assumptions. Total potential energy contains strain energy, electric potential energy and energy caused by temperature change. Three-dimensional strain field is built based on the concept of warping function and decomposition of the rotation tensor. The feature of small thickness and large in-plane dimension of plate structure helped to asymptotically simplify the three-dimensional analysis to a two-dimensional analysis on the reference surface and a one-dimensional analysis through the thickness. For the zeroth-order approximation, the asymptotically correct expression of energy is derived into the form of energetic equation in classical laminated plate theory, which will be enough to predict the behavior of plate structures as thin as a space flexible reflector. A through-the-thickness strain field can be expressed in terms of material constants and two-dimensional membrane and bending strains, while the transverse normal and shear stresses are not predictable yet. In the first-order approximation, the warping functions are further disturbed into a high order and an asymptotically correct energy expression with derivatives of the two-dimensional strains is acquired. For the convenience of practical use, the expression is transformed into a Reissner-Mindlin form with optimization implemented to minimize the error. Transverse stresses and strains are recovered using the in-plane strain variables. Several numerical examples of different laminations and shapes are studied with the help of analytical solutions or shell elements in finite element codes. The constitutive relation is
Asymptotic Analysis and Spatial Coupling of Counter Braids
Rosnes, Eirik; Amat, Alexandre Graell i
2016-01-01
A counter braid (CB) is a novel counter architecture introduced by Lu et al. in 2007 for per-flow measurements on high-speed links. CBs achieve an asymptotic compression rate (under optimal decoding) that matches the entropy lower bound of the flow size distribution. In this paper, we apply the concept of spatial coupling to CBs to improve their belief propagation (BP) threshold, and analyze the performance of the resulting spatially-coupled CBs (SC-CBs). We introduce an equivalent bipartite ...
Asymptotic geometry in higher products of rank one Hadamard spaces
Link, Gabriele
2013-01-01
Given a product X of locally compact rank one Hadamard spaces, we study asymptotic properties of certain discrete isometry groups. First we give a detailed description of the structure of the geometric limit set and relate it to the limit cone; moreover, we show that the action of the group on a quotient of the regular geometric boundary of X is minimal and proximal. This is completely analogous to the case of Zariski dense discrete subgroups of semi-simple Lie groups acting on the associated...
Asymptotics of Rydberg states for the hydrogen atom
Energy Technology Data Exchange (ETDEWEB)
Thomas, L.E. [Virginia Univ., Charlottesville, VA (United States). Dept. of Mathematics; Villegas-Blas, C. [Universidad Nacional Autonoma de Mexico, Instituto de Matematicas, Unidad Cuernavaca, A. P. 273-3 Admon. 3, Cuernavaca Morelos 62251 (Mexico)
1997-08-01
The asymptotics of Rydberg states, i.e., highly excited bound states of the hydrogen atom Hamiltonian, and various expectations involving these states are investigated. We show that suitable linear combinations of these states, appropriately rescaled and regarded as functions either in momentum space or configuration space, are highly concentrated on classical momentum space or configuration space Kepler orbits respectively, for large quantum numbers. Expectations of momentum space or configuration space functions with respect to these states are related to time-averages of these functions over Kepler orbits. (orig.)
Asymptotic Theory for the Probability Density Functions in Burgers Turbulence
Weinan, E; Eijnden, Eric Vanden
1999-01-01
A rigorous study is carried out for the randomly forced Burgers equation in the inviscid limit. No closure approximations are made. Instead the probability density functions of velocity and velocity gradient are related to the statistics of quantities defined along the shocks. This method allows one to compute the anomalies, as well as asymptotics for the structure functions and the probability density functions. It is shown that the left tail for the probability density function of the velocity gradient has to decay faster than $|\\xi|^{-3}$. A further argument confirms the prediction of E et al., Phys. Rev. Lett. {\\bf 78}, 1904 (1997), that it should decay as $|\\xi|^{-7/2}$.
Joint Asymptotic Distributions of Smallest and Largest Insurance Claims
Directory of Open Access Journals (Sweden)
Hansjörg Albrecher
2014-07-01
Full Text Available Assume that claims in a portfolio of insurance contracts are described by independent and identically distributed random variables with regularly varying tails and occur according to a near mixed Poisson process. We provide a collection of results pertaining to the joint asymptotic Laplace transforms of the normalised sums of the smallest and largest claims, when the length of the considered time interval tends to infinity. The results crucially depend on the value of the tail index of the claim distribution, as well as on the number of largest claims under consideration.
Asymptotic Behavior of the Maximum Entropy Routing in Computer Networks
Directory of Open Access Journals (Sweden)
Milan Tuba
2013-01-01
Full Text Available Maximum entropy method has been successfully used for underdetermined systems. Network design problem, with routing and topology subproblems, is an underdetermined system and a good candidate for maximum entropy method application. Wireless ad-hoc networks with rapidly changing topology and link quality, where the speed of recalculation is of crucial importance, have been recently successfully investigated by maximum entropy method application. In this paper we prove a theorem that establishes asymptotic properties of the maximum entropy routing solution. This result, besides being theoretically interesting, can be used to direct initial approximation for iterative optimization algorithms and to speed up their convergence.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-01
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
Asymptotics of weakly collapsing solutions of nonlinear Schroedinger equation
Ovchinnikov, Yu N
2001-01-01
One studied possible types of asymptotic behavior of weakly collapsing solution of the 3-rd nonlinear Schroedinger equation. It is shown that within left brace A, C sub 1 right brace parameter space there are two neighboring lines along which the amplitude of oscillation terms is exponentially small as to C sub 1 parameter. The same lines locates values of left brace A, C sub 1 right brace parameters at which the energy is equal to zero. With increase of C sub 1 parameter the accuracy of numerical determination of points with zero energy drops abruptly
Asymptotically Efficient Identification of Known-Sensor Hidden Markov Models
Mattila, Robert; Rojas, Cristian R.; Krishnamurthy, Vikram; Wahlberg, Bo
2017-12-01
We consider estimating the transition probability matrix of a finite-state finite-observation alphabet hidden Markov model with known observation probabilities. The main contribution is a two-step algorithm; a method of moments estimator (formulated as a convex optimization problem) followed by a single iteration of a Newton-Raphson maximum likelihood estimator. The two-fold contribution of this letter is, firstly, to theoretically show that the proposed estimator is consistent and asymptotically efficient, and secondly, to numerically show that the method is computationally less demanding than conventional methods - in particular for large data sets.
Asymptotic Stability for a Class of Nonlinear Difference Equations
Directory of Open Access Journals (Sweden)
Chang-you Wang
2010-01-01
Full Text Available We study the global asymptotic stability of the equilibrium point for the fractional difference equation xn+1=(axn-lxn-k/(α+bxn-s+cxn-t, n=0,1,…, where the initial conditions x-r,x-r+1,…,x1,x0 are arbitrary positive real numbers of the interval (0,α/2a,l,k,s,t are nonnegative integers, r=max{l,k,s,t} and α,a,b,c are positive constants. Moreover, some numerical simulations are given to illustrate our results.
Asymptotic Ergodic Capacity Analysis of Composite Lognormal Shadowed Channels
Ansari, Imran Shafique
2015-05-01
Capacity analysis of composite lognormal (LN) shadowed links, such as Rician-LN, Gamma-LN, and Weibull-LN, is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single composite link transmission system is presented in terms of well- known elementary functions. Capitalizing on these new moments expressions, we present asymptotically tight lower bounds for the ergodic capacity at high SNR. All the presented results are verified via computer-based Monte-Carlo simulations. © 2015 IEEE.
Aguareles, M.
2014-06-01
In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is well-known that such solutions exist for small enough values of the twist parameter q and large enough values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an unknown of the problem uniquely determined by the parameters d and q. We show that there is a threshold in the parameter space where the effect of the boundary on the rotational frequency switches from being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain size for small values of q. © 2014 Elsevier B.V. All rights reserved.
Gravitational geons in asymptotically anti-de Sitter spacetimes
Martinon, Grégoire; Fodor, Gyula; Grandclément, Philippe; Forgács, Peter
2017-06-01
We report on numerical constructions of fully non-linear geons in asymptotically anti-de Sitter (AdS) spacetimes in four dimensions. Our approach is based on 3 + 1 formalism and spectral methods in a gauge combining maximal slicing and spatial harmonic coordinates. We are able to construct several families of geons seeded by different families of spherical harmonics. We can reach unprecedentedly high amplitudes, with mass of order ∼1/2 of the AdS length, and with deviations of the order of 50% compared to third order perturbative approaches. The consistency of our results with numerical resolution is carefully checked and we give extensive precision monitoring techniques. All global quantities, such as mass and angular momentum, are computed using two independent frameworks that agree with each other at the 0.1% level. We also provide strong evidence for the existence of ‘excited’ (i.e. with one radial node) geon solutions of Einstein equations in asymptotically AdS spacetimes by constructing them numerically.
Asymptotic behavior for a quadratic nonlinear Schrodinger equation
Directory of Open Access Journals (Sweden)
Pavel I. Naumkin
2008-02-01
Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.
Ke, Zijun; Zhang, Zhiyong Johnny
2017-09-12
Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such as the 1/T approximation method and the Bartlett's formula method may fail in finite samples and are vulnerable to non-normality. Resampling techniques such as the moving block bootstrap and the surrogate data method are competitive alternatives. In this study, we use a Monte Carlo simulation study and a real data example to compare asymptotic methods with the aforementioned resampling techniques. For each resampling technique, we consider both the percentile method and the bias-corrected and accelerated method for interval construction. Simulation results show that the surrogate data method with percentile intervals yields better performance than the other methods. An R package pautocorr is used to carry out tests evaluated in this study. © 2017 The British Psychological Society.
Asymptotically simple spacetimes and mass loss due to gravitational waves
Saw, Vee-Liem
The cosmological constant Λ used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of Λ or Λ being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on Λ: null infinity ℐ is a spacelike, null, or timelike hypersurface, if Λ > 0, Λ = 0, or Λ 0 in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of ℐ, is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with Λ > 0 has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.
Ultraviolet asymptotics for quasiperiodic AdS_4 perturbations
Craps, Ben; Jai-akson, Puttarak; Vanhoof, Joris
2015-01-01
Spherically symmetric perturbations in AdS-scalar field systems of small amplitude epsilon approximately periodic on time scales of order 1/epsilon^2 (in the sense that no significant transfer of energy between the AdS normal modes occurs) have played an important role in considerations of AdS stability. They are seen as anchors of stability islands where collapse of small perturbations to black holes does not occur. (This collapse, if it happens, typically develops on time scales of the order 1/epsilon^2.) We construct an analytic treatment of the frequency spectra of such quasiperiodic perturbations, paying special attention to the large frequency asymptotics. For the case of a self-interacting phi^4 scalar field in a non-dynamical AdS background, we arrive at a fairly complete analytic picture involving quasiperiodic spectra with an exponential suppression modulated by a power law at large mode numbers. For the case of dynamical gravity, the structure of the large frequency asymptotics is more complicated....
arXiv Naturalness of asymptotically safe Higgs
Pelaggi, Giulio Maria; Strumia, Alessandro; Vigiani, Elena
2017-01-01
We extend the list of theories featuring a rigorous interacting ultraviolet fixed point by constructing the first theory featuring a Higgs-like scalar with gauge, Yukawa and quartic interactions. We show that the theory enters a perturbative asymptotically safe regime at energies above a physical scale $\\Lambda$. We determine the salient properties of the theory and use it as a concrete example to test whether scalars masses unavoidably receive quantum correction of order $\\Lambda$. Having at our dispose a calculable model allowing us to precisely relate the IR and UV of the theory we demonstrate that the scalars can be lighter than $\\Lambda$. Although we do not have an answer to whether the Standard Model hypercharge coupling growth towards a Landau pole at around $\\Lambda \\sim 10^{40}$ GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful, it might also offer an explanation for the unbearable lightness of the Higgs.
The asymptotic behavior of Buneman instability in dissipative plasma
Rostomyan, Eduard V.
2017-10-01
The problem of time evolution of initial perturbation excited at the development of the Buneman instability (BI) in plasma with dissipation is solved. Developing fields are presented in the form of a wave train with slowly varying amplitude. It is shown that the evolution of the initial pulse in space and time is given by the differential equation of third order. The equation is solved and the expression for the asymptotic pulse shape is obtained. The expression gives the most complete information on the instability: the space-time distribution of the fields, growth rates, velocities of unstable perturbations, the influence of the collisions/dissipation on the instability, its character, (absolute/convective), etc. All these characteristics of the BI are carried out by analyzing the expression for the shape. The obtained results may be applied to any system in which the red-shifted electron stream oscillations resonantly interact with ions. Asymptotic shapes of the BI are presented for various levels of dissipation.
IKEA's International Expansion
Harapiak, Clayton
2013-01-01
This case concerns a global retailing firm that is dealing with strategic management and marketing issues. Applying a scenario of international expansion, this case provides a thorough analysis of the current business environment for IKEA. Utilizing a variety of methods (e.g. SWOT, PESTLE, McKinsey Matrix) the overall objective is to provide students with the opportunity to apply their research skills and knowledge regarding a highly competitive industry to develop strategic marketing strateg...
On the asymptotic behavior of the Durbin-Watson statistic for ARX processes in adaptive tracking
Bercu, Bernard; Portier, Bruno; Vazquez, V.
2012-01-01
International audience; A wide literature is available on the asymptotic behavior of the Durbin-Watson statistic for autoregressive models. However, it is impossible to find results on the Durbin-Watson statistic for autoregressive models with adaptive control. Our purpose is to fill the gap by establishing the asymptotic behavior of the Durbin Watson statistic for ARX models in adaptive tracking. On the one hand, we show the almost sure convergence as well as the asymptotic normality of the ...
Character expansion of matrix integrals
van de Leur, J. W.; Orlov, A. Yu.
2016-01-01
We consider character expansion of tau functions and multiple integrals in characters of orhtogonal and symplectic groups. In particular we consider character expansions of integrals over orthogonal and over symplectic matrices.
Test of the second order asymptotic theory with low degree solar gravity modes
Energy Technology Data Exchange (ETDEWEB)
Barry, C.T.; Rosenwald, R.D.; Gu, Y.; Hill, H.A
1988-01-01
Further testing of first and second order asymptotic theory predictions for solar gravity modes is possible with the work of gu and Hill in which the number of classified low-degree gravity mode multiplets was increased from 31 to 53. In an extension of the work where the properties of 31 multiplets were analyzed in the framework of first order asymptotic theory, a new analysis has been performed using the properties of the 53 classified multiplets. The result of this analysis again shows the inadequacy of first order asymptotic theory for describing the eigenfrequency spectrum and clearly demonstrates the necessity of using second order asymptotic theory. 30 refs.
Ground state solutions for asymptotically periodic Schrodinger equations with critical growth
Directory of Open Access Journals (Sweden)
Hui Zhang
2013-10-01
Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.
Time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles
Ha, Seung-Yeal; Ko, Dongnam; Zhang, Xiongtao; Zhang, Yinglong
2017-07-01
We study the time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles. For this, we use a coupled hydrodynamic Cucker-Smale system and discuss two frameworks, leading to mono-cluster and bi-cluster flockings asymptotically depending on initial configurations, coupling strengths, and the far-field decay property of communication weights. Under the proposed two frameworks, we show that mono-cluster and bi-cluster flockings emerge asymptotically exponentially fast and algebraically slow, respectively. Our asymptotic analysis uses the Lyapunov functional approach and a Lagrangian formulation of the coupled system.
Elastohydrodynamic lubrication for line and point contacts asymptotic and numerical approaches
Kudish, Ilya I
2013-01-01
Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches describes a coherent asymptotic approach to the analysis of lubrication problems for heavily loaded line and point contacts. This approach leads to unified asymptotic equations for line and point contacts as well as stable numerical algorithms for the solution of these elastohydrodynamic lubrication (EHL) problems. A Unique Approach to Analyzing Lubrication Problems for Heavily Loaded Line and Point Contacts The book presents a robust combination of asymptotic and numerical techniques to solve EHL p
Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.
Baranwal, Vipul K; Pandey, Ram K; Singh, Om P
2014-01-01
We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.
Thermodynamical description of stationary, asymptotically flat solutions with conical singularities
Herdeiro, Carlos; Rebelo, Carmen
2010-01-01
We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and non-connected event horizons, using the thermodynamical description recently proposed in arXiv:0912.3386 [gr-qc]. The examples considered are the double-Kerr solution, the black ring rotating in either S^2 or S^1 and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description but also the thermodynamical angular momentum is the ADM angular momentum. We also analyse the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.
Asymptotic analysis of downlink MISO systems over Rician fading channels
Falconet, Hugo
2016-06-24
In this work, we focus on the ergodic sum rate in the downlink of a single-cell large-scale multi-user MIMO system in which the base station employs N antennas to communicate with K single-antenna user equipments. A regularized zero-forcing (RZF) scheme is used for precoding under the assumption that each link forms a spatially correlated MIMO Rician fading channel. The analysis is conducted assuming N and K grow large with a non trivial ratio and perfect channel state information is available at the base station. Recent results from random matrix theory and large system analysis are used to compute an asymptotic expression of the signal-to-interference-plus-noise ratio as a function of the system parameters, the spatial correlation matrix and the Rician factor. Numerical results are used to evaluate the performance gap in the finite system regime under different operating conditions. © 2016 IEEE.
Asymptotic approximation method of force reconstruction: Proof of concept
Sanchez, J.; Benaroya, H.
2017-08-01
An important problem in engineering is the determination of the system input based on the system response. This type of problem is difficult to solve as it is often ill-defined, and produces inaccurate or non-unique results. Current reconstruction techniques typically involve the employment of optimization methods or additional constraints to regularize the problem, but these methods are not without their flaws as they may be sub-optimally applied and produce inadequate results. An alternative approach is developed that draws upon concepts from control systems theory, the equilibrium analysis of linear dynamical systems with time-dependent inputs, and asymptotic approximation analysis. This paper presents the theoretical development of the proposed method. A simple application of the method is presented to demonstrate the procedure. A more complex application to a continuous system is performed to demonstrate the applicability of the method.
Asymptotic coherence of gluons and of q-bosons
Energy Technology Data Exchange (ETDEWEB)
Nelson, C.A.
1993-12-31
In theoretical physics one of the most important aspects of coherent states is that they can often be simply and reliably used to investigate the quantum coherence and correlation properties of new dynamical, quantum field theories. First, this paper reviews the coherent/degenerate state treatment of the infra-red dynamics of perturbative QCD. This based on the asymptotic behavior of the Hamiltonian operator as {vert_bar}t{vert_bar} {yields} {infinity} in the interaction representation. Second, the paper reviews the usage of q-analogue coherent states {vert_bar}z>{sub q} to deduce coherence and uncertainty properties of the q-analogue quantized radiation field in the {vert_bar}z>{sub q} ``classical limit`` where {vert_bar}z{vert_bar} is large. Third, for future applications, a new ``projector`` definition of the usual coherent states and of the squeezed states is reported.
Asymptotic freedom in the Hamiltonian approach to binding of color
Directory of Open Access Journals (Sweden)
Gómez-Rocha María
2017-01-01
Full Text Available We derive asymptotic freedom and the SU(3 Yang-Mills β-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size s is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian Hs, which is a matrix written in a basis that depend on the scale (or size parameter s. The effective Hamiltonians Hs and the (regularized canonical Hamiltonian H0 are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.
Asymptotic freedom in the Hamiltonian approach to binding of color
Gómez-Rocha, María
2017-03-01
We derive asymptotic freedom and the SU(3) Yang-Mills β-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size s is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian Hs, which is a matrix written in a basis that depend on the scale (or size) parameter s. The effective Hamiltonians Hs and the (regularized) canonical Hamiltonian H0 are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.
Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations
Baranwal, Vipul K.; Pandey, Ram K.
2014-01-01
We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems. PMID:27437484
Sharp asymptotics for Einstein-$\\lambda$-dust flows
Friedrich, Helmut
2016-01-01
We consider the Einstein-dust equations with positive cosmological constant $\\lambda$ on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold $S$. It is shown that the set of standard Cauchy data for the Einstein-$\\lambda$-dust equations on $S$ contains an open (in terms of suitable Sobolev norms) subset of data that develop into solutions which admit at future time-like infinity a space-like conformal boundary ${\\cal J}^+$ that is $C^{\\infty}$ if the data are of class $C^{\\infty}$ and of correspondingly lower smoothness otherwise. As a particular case follows a strong stability result for FLRW solutions. The solutions can conveniently be characterized in terms of their asymptotic end data induced on ${\\cal J}^+$, only a linear equation must be solved to construct such data. In the case where the energy density $\\hat{\\rho}$ is everywhere positive such data can be constructed without solving any differential equation at all.
Asymptotic analysis of radiation extinction of stretched premixed flames
Energy Technology Data Exchange (ETDEWEB)
Ju, Y.; Masuya, G. [Tohoku Univ., Sendai (Japan). Dept. of Aeronautics and Space Engineering; Liu, F. [National Research Council, Ottawa, Ontario (Canada). Inst. for Chemical Prpcess and Environmental Technology; Hattori, Yuji [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science; Riechelmann, D. [Ishikawajima-Harima Heavy Industry, Tokyo (Japan). Research Inst.
2000-01-01
The flammability limit, radiation extinction of stretched premixed flame and effect of non-unity Lewis numbers are analyzed by the large-activated-energy asymptotic method. Particular attention is paid to the effect of Lewis number, the upstream and downstream radiation heat losses as well as the non-linearity of radiation. Explicit expressions for the flame temperature, extinction limit and flammability limit are obtained. The C-shaped extinction curve is reproduced. The dependence of radiation heat loss and the Lewis number effect on the stretch rate and flame separation distance is investigated. The effects of fuel Lewis number, oxidizer Lewis number, upstream radiation heat loss and the non-linearity of radiation on the C-shaped extinction curve are also examined. The results demonstrate a significant influence of these parameters on the radiation extinction and flammability limit and provide a good explanation to the experimental results and numerical simulations. (Author)
An introduction to covariant quantum gravity and asymptotic safety
Percacci, Roberto
2017-01-01
This book covers recent developments in the covariant formulation of quantum gravity. Developed in the 1960s by Feynman and DeWitt, by the 1980s this approach seemed to lead nowhere due to perturbative non-renormalizability. The possibility of non-perturbative renormalizability or "asymptotic safety," originally suggested by Weinberg but largely ignored for two decades, was revived towards the end of the century by technical progress in the field of the renormalization group. It is now a very active field of research, providing an alternative to other approaches to quantum gravity. Written by one of the early contributors to this subject, this book provides a gentle introduction to the relevant ideas and calculational techniques. Several explicit calculations gradually bring the reader close to the current frontier of research. The main difficulties and present lines of development are also outlined.
An asymptotic state of the critical ionization velocity phenomenon
Goertz, C. K.; Machida, S.; Smith, R. A.
1985-01-01
The paper considers the problem of how the momentum of ions created by electron impact ionization of neutrals moving at a speed v(0) perpendicular to the magnetic field through a background plasma is coupled to this plasma. It has been found that the plasma accelerates, and the relative velocity between neutrals and plasma decreases. If this decrease is rapid and large enough, the critical ionization velocity (CIV) phenomenon may turn off. Equations for the evolution of plasma density, electron and ion thermal energy, and plasma velocity have been derived. It was found that the CIV process reaches an asymptotic quasi-steady state, in which the ionization rate reaches a constant value which depends on the properties of the surrounding medium and the value of v(0).
Conference on Boundary and Interior Layers : Computational and Asymptotic Methods
Stynes, Martin; Zhang, Zhimin
2017-01-01
This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed diffe...
The complex dynamics of products and its asymptotic properties.
Directory of Open Access Journals (Sweden)
Orazio Angelini
Full Text Available We analyse global export data within the Economic Complexity framework. We couple the new economic dimension Complexity, which captures how sophisticated products are, with an index called logPRODY, a measure of the income of the respective exporters. Products' aggregate motion is treated as a 2-dimensional dynamical system in the Complexity-logPRODY plane. We find that this motion can be explained by a quantitative model involving the competition on the markets, that can be mapped as a scalar field on the Complexity-logPRODY plane and acts in a way akin to a potential. This explains the movement of products towards areas of the plane in which the competition is higher. We analyse market composition in more detail, finding that for most products it tends, over time, to a characteristic configuration, which depends on the Complexity of the products. This market configuration, which we called asymptotic, is characterized by higher levels of competition.
Sharp Asymptotics for Einstein-{λ}-Dust Flows
Friedrich, Helmut
2017-03-01
We consider the Einstein-dust equations with positive cosmological constant {λ} on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold {S}. It is shown that the set of standard Cauchy data for the Einstein-{λ}-dust equations on {S} contains an open (in terms of suitable Sobolev norms) subset of data which develop into solutions that admit at future time-like infinity a space-like conformal boundary J^+ that is C^{∞} if the data are of class C^{∞} and of correspondingly lower smoothness otherwise. The class of solutions considered here comprises non-linear perturbations of FLRW solutions as very special cases. It can conveniently be characterized in terms of asymptotic end data induced on J^+. These data must only satisfy a linear differential equation. If the energy density is everywhere positive they can be constructed without solving differential equations at all.
Bulk Viscous Matter-dominated Universes: Asymptotic Properties
Avelino, Arturo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel
2013-01-01
By means of a combined study of the type Ia supernovae test,together with a study of the asymptotic properties in the equivalent phase space -- through the use of the dynamical systems tools -- we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of very particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed...
Fields Institute International Symposium on Asymptotic Methods in Stochastics
Kulik, Rafal; Haye, Mohamedou; Szyszkowicz, Barbara; Zhao, Yiqiang
2015-01-01
This book contains articles arising from a conference in honour of mathematician-statistician Miklόs Csörgő on the occasion of his 80th birthday, held in Ottawa in July 2012. It comprises research papers and overview articles, which provide a substantial glimpse of the history and state-of-the-art of the field of asymptotic methods in probability and statistics, written by leading experts. The volume consists of twenty articles on topics on limit theorems for self-normalized processes, planar processes, the central limit theorem and laws of large numbers, change-point problems, short and long range dependent time series, applied probability and stochastic processes, and the theory and methods of statistics. It also includes Csörgő’s list of publications during more than 50 years, since 1962.
Asymptotically AdS spacetimes with a timelike Kasner singularity
Energy Technology Data Exchange (ETDEWEB)
Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2016-07-21
Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.
Turbomachinery computational fluid dynamics: asymptotes and paradigm shifts.
Dawes, W N
2007-10-15
This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.
Delay-dependent asymptotic stability for neural networks with time-varying delays
Directory of Open Access Journals (Sweden)
Xiaofeng Liao
2006-01-01
ensure local and global asymptotic stability of the equilibrium of the neural network. Our results are applied to a two-neuron system with delayed connections between neurons, and some novel asymptotic stability criteria are also derived. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
On the tail asymptotics of the area swept under the Brownian storage graph
Arendarczyk, M.; Dȩbicki, K.; Mandjes, M.
2014-01-01
In this paper, the area swept under the workload graph is analyzed: with {Q(t): t≥0} denoting the stationary workload process, the asymptotic behavior of πT(u)(u):=P(∫T(u)0Q(r)dr>u) is analyzed. Focusing on regulated Brownian motion, first the exact asymptotics of πT(u)(u) are given for the case
Explanation of Second-Order Asymptotic Theory Via Information Spectrum Method
Hayashi, Masahito
We explain second-order asymptotic theory via the information spectrum method. From a unified viewpoint based on the generality of the information spectrum method, we consider second-order asymptotic theory for use in fixed-length data compression, uniform random number generation, and channel coding. Additionally, we discuss its application to quantum cryptography, folklore in source coding, and security analysis.
Assessing model fit in latent class analysis when asymptotics do not hold
van Kollenburg, Geert H.; Mulder, Joris; Vermunt, Jeroen K.
2015-01-01
The application of latent class (LC) analysis involves evaluating the LC model using goodness-of-fit statistics. To assess the misfit of a specified model, say with the Pearson chi-squared statistic, a p-value can be obtained using an asymptotic reference distribution. However, asymptotic p-values
Asymptotic Dichotomy in a Class of Odd-Order Nonlinear Differential Equations with Impulses
Directory of Open Access Journals (Sweden)
Kunwen Wen
2013-01-01
Full Text Available We investigate the oscillatory and asymptotic behavior of a class of odd-order nonlinear differential equations with impulses. We obtain criteria that ensure every solution is either oscillatory or (nonoscillatory and zero convergent. We provide several examples to show that impulses play an important role in the asymptotic behaviors of these equations.
Yuan, Ke-Hai; Bentler, Peter M.
2002-01-01
Examined the asymptotic distributions of three reliability coefficient estimates: (1) sample coefficient alpha; (2) reliability estimate of a composite score following factor analysis; and (3) maximal reliability of a linear combination of item scores after factor analysis. Findings show that normal theory based asymptotic distributions for these…
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.
Tso, Rhondale
2015-01-01
A frequentist asymptotic expansion method for error estimation is employed for a network of gravitational wave detectors to assess the capability of gravitational wave observations, with Adv. LIGO and Adv. Virgo, to distinguish between the post-Einsteinian (ppE) description of coalescing binary systems and that of GR. When such errors are smaller than the parameter value, there is possibility to detect these violations from GR. A parameter space with inclusion of dominant dephasing ppE parameters is used for a study of first- and second-order (co)variance expansions, focusing on the inspiral stage of a nonspinning binary system of zero eccentricity detectible through Adv. LIGO and Adv. Virgo. Our procedure is more reliable than frequentist studies based only on Fisher information estimates and complements Bayesian studies. Second-order asymptotics indicate the possibility of constraining deviations from GR in low-SNR ($\\rho \\sim 15-17$) regimes. The errors on $\\beta$ also increase errors of other parameters s...
Conformal expansions and renormalons
Gardi, E; Gardi, Einan; Grunberg, Georges
2001-01-01
The large-order behaviour of QCD is dominated by renormalons. On the other hand renormalons do not occur in conformal theories, such as the one describing the infrared fixed-point of QCD at small beta_0 (the Banks--Zaks limit). Since the fixed-point has a perturbative realization, all-order perturbative relations exist between the conformal coefficients, which are renormalon-free, and the standard perturbative coefficients, which contain renormalons. Therefore, an explicit cancellation of renormalons should occur in these relations. The absence of renormalons in the conformal limit can thus be seen as a constraint on the structure of the QCD perturbative expansion. We show that the conformal constraint is non-trivial: a generic model for the large-order behaviour violates it. We also analyse a specific example, based on a renormalon-type integral over the two-loop running-coupling, where the required cancellation does occur.
Prethermalization from a low-density Holstein-Primakoff expansion
Marcuzzi, M.; Marino, J.; Gambassi, A.; Silva, A.
2016-12-01
We consider the nonequilibrium dynamics arising after a quench of the transverse magnetic field of a quantum Ising chain, together with the sudden switch-on of a long-range interaction term. The dynamics after the quantum quench is mapped onto a fully connected model of hard-core bosons, after a suitable combination of a Holstein-Primakoff transformation and of a low-density expansion in the quasiparticles injected by the quench. This mapping holds for a broad class of initial states and for quenches which do not cross the critical point of the transverse field Ising model. We then study the algebraic relaxation in time of a number of observables towards a metastable, prethermal state, which becomes the asymptotic steady state in the thermodynamic limit.
Two-point density correlations of quasicondensates in free expansion
DEFF Research Database (Denmark)
Manz, S.; Bücker, R.; Betz, T.
2010-01-01
We measure the two-point density correlation function of freely expanding quasicondensates in the weakly interacting quasi-one-dimensional (1D) regime. While initially suppressed in the trap, density fluctuations emerge gradually during expansion as a result of initial phase fluctuations present...... in the trapped quasicondensate. Asymptotically, they are governed by the thermal coherence length of the system. Our measurements take place in an intermediate regime where density correlations are related to near-field diffraction effects and anomalous correlations play an important role. Comparison...... with a recent theoretical approach described by Imambekov yields good agreement with our experimental results and shows that density correlations can be used for thermometry of quasicondensates....
Permissible limit for mandibular expansion.
Motoyoshi, Mitsuru; Shirai, Sawa; Yano, Shinya; Nakanishi, Kotoe; Shimizu, Noriyoshi
2005-04-01
In recent years, mandibular expansion has been increasingly performed in conjunction with orthodontic treatment. Lateral tipping of the molars associated with mandibular expansion should, however, be considered, because excessive expansion may result in excessive buccal tooth inclination, which may disturb the occlusal relationship. This study was conducted to quantitatively clarify molar movement during mandibular expansion using the Schwarz appliance to determine the permissible limit of mandibular expansion as a clinical index for inclination movement. Inclinations in the masticatory surface of the first molar and intermolar width were measured before expansion (T1), after expansion (T2), and before edgewise treatment (T3). Lower plaster models from 29 subjects treated with expansion plates were used and compared with models from 11 control subjects with normal occlusion. The average treatment change (T1-T2) in intermolar width was 5.42 mm (standard deviation 1.98), and the average angle of buccal tooth inclination was 10.16 degrees (standard deviation 3.83). No significant correlation was found between age prior to treatment and the treatment period when they were compared with the intermolar width increments and inclination angles. There was a significant positive correlation between retention duration and the amount of expansion. The regression coefficient of the angle of buccal tooth inclination during expansion to the increment of the intermolar width was approximately 0.2. This means that 1 mm of expansion is accompanied by 5 degrees of molar lateral tipping. This coefficient is clinically useful for estimating the permissible limit for mandibular expansion.
Fractional Edgeworth expansion: Corrections to the Gaussian-Lévy central-limit theorem
Hazut, Netanel; Medalion, Shlomi; Kessler, David A.; Barkai, Eli
2015-05-01
In this article we generalize the classical Edgeworth expansion for the probability density function (PDF) of sums of a finite number of symmetric independent identically distributed random variables with a finite variance to PDFs with a diverging variance, which converge to a Lévy α -stable density function. Our correction may be written by means of a series of fractional derivatives of the Lévy and the conjugate Lévy PDFs. This series expansion is general and applies also to the Gaussian regime. To describe the terms in the series expansion, we introduce a new family of special functions and briefly discuss their properties. We implement our generalization to the distribution of the momentum for atoms undergoing Sisyphus cooling, and show the improvement of our leading order approximation compared to previous approximations. In vicinity of the transition between Lévy and Gauss behaviors, convergence to asymptotic results slows down.
Burial Ground Expansion Hydrogeologic Characterization
Energy Technology Data Exchange (ETDEWEB)
Gaughan , T.F.
1999-02-26
Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.
Operator product expansion and the short distance behavior of 3-flavor baryon potentials
Aoki, Sinya; Balog, Janos; Weisz, Peter
2010-09-01
The short distance behavior of baryon-baryon potentials defined through Nambu-Bethe-Salpeter wave functions is investigated using the operator product expansion. In a previous analysis of the nucleon-nucleon case, corresponding to the SU(3) channels 27s and {overline {10}_a} , we argued that the potentials have a repulsive core. A new feature occurs for the case of baryons made up of three flavors: manifestly asymptotically attractive potentials appear in the singlet and octet channels. Attraction in the singlet channel was first indicated by quark model considerations, and recently been found in numerical lattice simulations. The latter have however not yet revealed asymptotic attraction in the octet channels; we give a speculative explanation for this apparent discrepancy.
Asymptotic performance of regularized quadratic discriminant analysis based classifiers
Elkhalil, Khalil
2017-12-13
This paper carries out a large dimensional analysis of the standard regularized quadratic discriminant analysis (QDA) classifier designed on the assumption that data arise from a Gaussian mixture model. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that depends only on the covariances and means associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized QDA and can be used to determine the optimal regularization parameter that minimizes the misclassification error probability. Despite being valid only for Gaussian data, our theoretical findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from popular real data bases, thereby making an interesting connection between theory and practice.
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang
2015-05-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
Avoidance of singularities in asymptotically safe Quantum Einstein Gravity
Energy Technology Data Exchange (ETDEWEB)
Kofinas, Georgios [Research Group of Geometry, Dynamical Systems and Cosmology,Department of Information and Communication Systems Engineering,University of the Aegean, Karlovassi 83200, Samos (Greece); Zarikas, Vasilios [Department of Electrical Engineering, Theory Division, ATEI of Central Greece,35100 Lamia (Greece); Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki (Greece)
2015-10-30
New general spherically symmetric solutions have been derived with a cosmological “constant” Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.
Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?
Directory of Open Access Journals (Sweden)
Mehmet Fatih Öçal
2017-01-01
Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.
Quantum learning: asymptotically optimal classification of qubit states
Guţă, Mădălin; Kotłowski, Wojciech
2010-12-01
Pattern recognition is a central topic in learning theory, with numerous applications such as voice and text recognition, image analysis and computer diagnosis. The statistical setup in classification is the following: we are given an i.i.d. training set (X1, Y1), ... , (Xn, Yn), where Xi represents a feature and Yiin{0, 1} is a label attached to that feature. The underlying joint distribution of (X, Y) is unknown, but we can learn about it from the training set, and we aim at devising low error classifiers f: X→Y used to predict the label of new incoming features. In this paper, we solve a quantum analogue of this problem, namely the classification of two arbitrary unknown mixed qubit states. Given a number of 'training' copies from each of the states, we would like to 'learn' about them by performing a measurement on the training set. The outcome is then used to design measurements for the classification of future systems with unknown labels. We found the asymptotically optimal classification strategy and show that typically it performs strictly better than a plug-in strategy, which consists of estimating the states separately and then discriminating between them using the Helstrom measurement. The figure of merit is given by the excess risk equal to the difference between the probability of error and the probability of error of the optimal measurement for known states. We show that the excess risk scales as n-1 and compute the exact constant of the rate.
Subordinated diffusion and continuous time random walk asymptotics.
Dybiec, Bartłomiej; Gudowska-Nowak, Ewa
2010-12-01
Anomalous transport is usually described either by models of continuous time random walks (CTRWs) or, otherwise, by fractional Fokker-Planck equations (FFPEs). The asymptotic relation between properly scaled CTRW and fractional diffusion process has been worked out via various approaches widely discussed in literature. Here, we focus on a correspondence between CTRWs and time and space fractional diffusion equation stemming from two different methods aimed to accurately approximate anomalous diffusion processes. One of them is the Monte Carlo simulation of uncoupled CTRW with a Lévy α-stable distribution of jumps in space and a one-parameter Mittag-Leffler distribution of waiting times. The other is based on a discretized form of a subordinated Langevin equation in which the physical time defined via the number of subsequent steps of motion is itself a random variable. Both approaches are tested for their numerical performance and verified with known analytical solutions for the Green function of a space-time fractional diffusion equation. The comparison demonstrates a trade off between precision of constructed solutions and computational costs. The method based on the subordinated Langevin equation leads to a higher accuracy of results, while the CTRW framework with a Mittag-Leffler distribution of waiting times provides efficiently an approximate fundamental solution to the FFPE and converges to the probability density function of the subordinated process in a long-time limit. © 2010 American Institute of Physics.
Photodetachment cross-section evaluation using asymptotic considerations
Babilotte, Philippe; Vandevraye, Mickael
2017-06-01
Mathematical calculations are given concerning the evaluation of the negative ions photodetachment cross-section σ , into a so-called saturation regime. The interaction between a negative ion particle beam and a laser beam is examined under theoretical aspects. A quantitative criterion S is proposed to define the saturation threshold between the linear and the saturated domains, which are both present in this saturation regime. The asymptotic behaviours extracted at the low and high energy limits are used to determine this threshold quantitative criterion S and to evaluate also the photodetachment cross-section σ . The case of a symmetric gaussian photodetachment laser beam shape is examined according to the proposed formalism, which can be used either for the photo-detachment or photo-ionization processes, and could be potentially used into technological solutions for negative ion neutralisation processes (such as neutral beam injector) in the future fusion energy devices. Estimations onto the errors related to the use of this methodology are given.
Quasinormal modes of asymptotically flat rotating black holes
Dias, Óscar J. C.; Hartnett, Gavin S.; Santos, Jorge E.
2014-12-01
We study the main properties of general linear perturbations of rotating black holes (BHs) in asymptotically flat higher-dimensional spacetimes. In particular, we determine the quasinormal mode (QNM) spectrum of singly spinning and equal angular momenta Myers-Perry BHs (MP BHs). Emphasis is also given to the timescale of the ultraspinning and bar-mode instabilities in these two families of MP BHs. For the bar-mode instabilities in the singly spinning MP BH, we find excellent agreement with our linear analysis and the nonlinear time evolution of Shibata and Yoshino for d = 6,7 spacetime dimensions. We find that d = 5 singly spinning BHs are linearly stable. In the context of studying general relativity in the large dimension limit, we obtain the QNM spectrum of Schwarzschild BHs and rotating MP BHs for large dimensions. We identify two classes of modes. For large dimensions, we find that in the limit of zero rotation, unstable modes of the MP BHs connect to a class of Schwarzschild QNMs that saturate to finite values.
Bulk viscous matter-dominated Universes: asymptotic properties
Energy Technology Data Exchange (ETDEWEB)
Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)
2013-08-01
By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.
Asymptotic behavior of local dipolar fields in thin films
Energy Technology Data Exchange (ETDEWEB)
Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)
2016-10-15
A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.
Polynomial asymptotic stability of damped stochastic differential equations
Directory of Open Access Journals (Sweden)
John Appleby
2004-08-01
Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\\[dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\\] where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.
Convergence of generalized eigenfunction expansions
Directory of Open Access Journals (Sweden)
Mayumi Sakata
2007-05-01
Full Text Available We present a simplified theory of generalized eigenfunction expansions for a commuting family of bounded operators and with finitely many unbounded operators. We also study the convergence of these expansions, giving an abstract type of uniform convergence result, and illustrate the theory by giving two examples: The Fourier transform on Hecke operators, and the Laplacian operators in hyperbolic spaces.
A note on asymptotically anti-de Sitter quantum spacetimes in loop quantum gravity
Bodendorfer, Norbert
2015-01-01
A framework conceptually based on the conformal techniques employed to study the structure of the gravitational field at infinity is set up in the context of loop quantum gravity to describe asymptotically anti-de Sitter quantum spacetimes. A conformal compactification of the spatial slice is performed, which, in terms of the rescaled metric, has now finite volume, and can thus be conveniently described by spin networks states. The conformal factor used is a physical scalar field, which has the necessary asymptotics for many asymptotically AdS black hole solutions.
Rowold, Daine J; Perez-Benedico, David; Stojkovic, Oliver; Garcia-Bertrand, Ralph; Herrera, Rene J
2016-11-15
Here we report the results of fine resolution Y chromosomal analyses (Y-SNP and Y-STR) of 267 Bantu-speaking males from three populations located in the southeast region of Africa. In an effort to determine the relative Y chromosomal affinities of these three genotyped populations, the findings are interpreted in the context of 74 geographically and ethnically targeted African reference populations representing four major ethno-linguistic groups (Afro-Asiatic, Niger Kordofanin, Khoisan and Pygmoid). In this investigation, we detected a general similarity in the Y chromosome lineages among the geographically dispersed Bantu-speaking populations suggesting a shared heritage and the shallow time depth of the Bantu Expansion. Also, micro-variations in the Bantu Y chromosomal composition across the continent highlight location-specific gene flow patterns with non-Bantu-speaking populations (Khoisan, Pygmy, Afro-Asiatic). Our Y chromosomal results also indicate that the three Bantu-speaking Southeast populations genotyped exhibit unique gene flow patterns involving Eurasian populations but fail to reveal a prevailing genetic affinity to East or Central African Bantu-speaking groups. In addition, the Y-SNP data underscores a longitudinal partitioning in sub-Sahara Africa of two R1b1 subgroups, R1b1-P25* (west) and R1b1a2-M269 (east). No evidence was observed linking the B2a haplogroup detected in the genotyped Southeast African Bantu-speaking populations to gene flow from contemporary Khoisan groups. Copyright © 2016 Elsevier B.V. All rights reserved.
Numerical Simulations of Asymptotically AdS Spacetimes
Bantilan, Hans
In this dissertation, we introduce a numerical scheme to construct asymptotically anti-de Sitter spacetimes with Lorentzian signature, focusing on cases that preserve five-dimensional axisymmetry. We study the field theories that are dual to these spacetimes by appealing to the AdS/CFT correspondence in the regime where the gravity dual is completely described by Einstein gravity. The numerical scheme is based on generalized harmonic evolution, and we begin by obtaining initial data defined on some Cauchy hypersurface. For the study described in this dissertation, we use a scalar field to source deviations from pure AdS5, and obtain data that correspond to highly deformed black holes. We evolve this initial data forward in time, and follow the subsequent ringdown. What is novel about this study is that the initial horizon geometry cannot be considered a small perturbation of the final static horizon, and hence we are probing an initial non-linear phase of the evolution of the bulk spacetime. On the boundary, we find that the dual CFT stress tensor behaves like that of a thermalized N = 4 SYM fluid. We find that the equation of state of this fluid is consistent with conformal invariance, and that its transport coefficients match those previously calculated for an N = 4 SYM fluid via holographic methods. Modulo a brief transient that is numerical in nature, this matching appears to hold from the initial time onwards. We transform these solutions computed in global AdS onto a Minkowski piece of the boundary, and examine the temperature of the corresponding fluid flows. Under this transformation, the spatial profile of temperature at the initial time resembles a Lorentz-flattened pancake centered at the origin of Minkowski space. By interpreting the direction along which the data is flattened as the beam-line direction, our initial data can be thought of as approximating a head-on heavy ion collision at its moment of impact.
Generalized multiplicative error models: Asymptotic inference and empirical analysis
Li, Qian
This dissertation consists of two parts. The first part focuses on extended Multiplicative Error Models (MEM) that include two extreme cases for nonnegative series. These extreme cases are common phenomena in high-frequency financial time series. The Location MEM(p,q) model incorporates a location parameter so that the series are required to have positive lower bounds. The estimator for the location parameter turns out to be the minimum of all the observations and is shown to be consistent. The second case captures the nontrivial fraction of zero outcomes feature in a series and combines a so-called Zero-Augmented general F distribution with linear MEM(p,q). Under certain strict stationary and moment conditions, we establish a consistency and asymptotic normality of the semiparametric estimation for these two new models. The second part of this dissertation examines the differences and similarities between trades in the home market and trades in the foreign market of cross-listed stocks. We exploit the multiplicative framework to model trading duration, volume per trade and price volatility for Canadian shares that are cross-listed in the New York Stock Exchange (NYSE) and the Toronto Stock Exchange (TSX). We explore the clustering effect, interaction between trading variables, and the time needed for price equilibrium after a perturbation for each market. The clustering effect is studied through the use of univariate MEM(1,1) on each variable, while the interactions among duration, volume and price volatility are captured by a multivariate system of MEM(p,q). After estimating these models by a standard QMLE procedure, we exploit the Impulse Response function to compute the calendar time for a perturbation in these variables to be absorbed into price variance, and use common statistical tests to identify the difference between the two markets in each aspect. These differences are of considerable interest to traders, stock exchanges and policy makers.
Directory of Open Access Journals (Sweden)
Cristinel Mortici
2015-01-01
Full Text Available In this survey we present our recent results on analysis of gamma function and related functions. The results obtained are in the theory of asymptotic analysis, approximation of gamma and polygamma functions, or in the theory of completely monotonic functions. The motivation of this first part is the work of C. Mortici [Product Approximations via Asymptotic Integration Amer. Math. Monthly 117 (2010 434-441] where a simple strategy for constructing asymptotic series is presented. The classical asymptotic series associated to Stirling, Wallis, Glaisher-Kinkelin are rediscovered. In the second section we discuss some new inequalities related to Landau constants and we establish some asymptotic formulas.
Renormalized asymptotic solutions of the Burgers equation and the Korteweg-de Vries equation
Zakharov, Sergei V.
2015-01-01
The Cauchy problem for the Burgers equation and the Korteweg-de Vries equation is considered. Uniform renormalized asymptotic solutions are constructed in cases of a large initial gradient and a perturbed initial weak discontinuity.
Asymptotic behavior of solutions of the damped Boussinesq equation in two space dimensions
Directory of Open Access Journals (Sweden)
Vladimir V. Varlamov
1999-01-01
classical solution is proved and the solution is constructed in the form of a series. The major term of its long-time asymptotics is calculated explicitly and a uniform in space estimate of the residual term is given.
Directory of Open Access Journals (Sweden)
Xiaolong Qin
2011-01-01
Full Text Available An implicit iterative process is considered. Strong and weak convergence theorems of common fixed points of a finite family of asymptotically pseudocontractive mappings in the intermediate sense are established in a real Hilbert space.
Holography and Colliding gravitational shock waves in asymptotically AdS5 spacetime.
Chesler, Paul M; Yaffe, Laurence G
2011-01-14
Using holography, we study the collision of planar shock waves in strongly coupled N=4 supersymmetric Yang-Mills theory. This requires the numerical solution of a dual gravitational initial value problem in asymptotically anti-de Sitter spacetime.
Holography and Colliding Gravitational Shock Waves in Asymptotically AdS5 Spacetime
Chesler, Paul M.; Yaffe, Laurence G.
2011-01-01
Using holography, we study the collision of planar shock waves in strongly coupled N=4 supersymmetric Yang-Mills theory. This requires the numerical solution of a dual gravitational initial value problem in asymptotically anti-de Sitter spacetime.
Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.
Chen, Boshan; Chen, Jiejie
2015-08-01
We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation
Directory of Open Access Journals (Sweden)
Yuncheng You
2008-12-01
Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.
M. Asai (Manabu); M.J. McAleer (Michael)
2016-01-01
textabstractThe paper derives a Multivariate Asymmetric Long Memory conditional volatility model with Exogenous Variables (X), or the MALMX model, with dynamic conditional correlations, appropriate regularity conditions, and associated asymptotic theory. This enables checking of internal consistency
An Asymptotic Formula for r-Bell Numbers with Real Arguments
Corcino, Cristina B.; Corcino, Roberto B.
2013-01-01
The r-Bell numbers are generalized using the concept of the Hankel contour. Some properties parallel to those of the ordinary Bell numbers are established. Moreover, an asymptotic approximation for r-Bell numbers with real arguments is obtained.
Directory of Open Access Journals (Sweden)
Maria Crespo
2017-08-01
Full Text Available In this work, we present an asymptotic analysis of a coupled system of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacteria, called biomass, and a diluted organic contaminant (e.g., nitrates, called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the linearization method to give sufficient conditions for the linear asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.
Globally Asymptotic Stability of Stochastic Nonlinear Systems by the Output Feedback
Directory of Open Access Journals (Sweden)
Wenwen Cheng
2015-01-01
the traditional mathematical induction method. Indeed, we develop a new method to study the globally asymptotic stability by introducing a series of specific inequalities. Moreover, an example and its simulations are given to illustrate the theoretical result.
Modeling of the long-time asymptotic dynamics of a point-like object
Ribaric, Marijan
2012-01-01
We introduce the first-ever mathematical framework for modeling of the long-time asymptotic behavior of acceleration of such a point-like object whose velocity eventually stops changing after the cessations of the external force. For the small and slowly changing external force we approximate its long-time asymptotic acceleration by a relativistic polynomial in time-derivatives of the external force. Without knowing the equation of motion for such a point-like object, an approximation of this kind enables us to model the long-time asymptotic behavior of its dynamics, and access its long-time asymptotic kinetic constants, which supplement mass and charge. We give various examples.
Stellmach, S; Julien, K; Vasil, G; Cheng, J S; Ribeiro, A; King, E M; Aurnou, J M
2014-01-01
Rapidly rotating Rayleigh-B\\'enard convection is studied by combining results from direct numerical simulations (DNS), laboratory experiments and asymptotic modeling. The asymptotic theory is shown to provide a good description of the bulk dynamics at low, but finite Rossby number. However, large deviations from the asymptotically predicted heat transfer scaling are found, with laboratory experiments and DNS consistently yielding much larger Nusselt numbers than expected. These deviations are traced down to dynamically active Ekman boundary layers, which are shown to play an integral part in controlling heat transfer even for Ekman numbers as small as $10^{-7}$. By adding an analytical parameterization of the Ekman transport to simulations using stress-free boundary conditions, we demonstrate that the heat transfer jumps from values broadly compatible with the asymptotic theory to states of strongly increased heat transfer, in good quantitative agreement with no-slip DNS and compatible with the experimental d...
Asymptotics of Pattern Avoidance in the Klazar Set Partition and Permutation-Tuple Settings
Gunby, Benjamin; Pálvölgyi, Dömötör
2017-01-01
We consider asymptotics of set partition pattern avoidance in the sense of Klazar. Our main result derives the asymptotics of the number of set partitions avoiding a given set partition within an exponential factor, which leads to a classification of possible growth rates of set partition pattern classes. We further define a notion of permutation-tuple avoidance, which generalizes notions of Aldred et al. and the usual permutation pattern setting, and similarly determine the number of permuta...
Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation
Directory of Open Access Journals (Sweden)
Timothy M. Adamo
2012-01-01
Full Text Available A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in an auxiliary four-complex dimensional space, H-space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss by (Bondi's integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum--conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.
Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation
Directory of Open Access Journals (Sweden)
Timothy M. Adamo
2009-09-01
Full Text Available A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in complex Minkowski space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss by (Bondi’s integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum–conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.
Improving the Asymptotic Properties of Discrete System Zeros in Fractional-Order Hold Case
Zeng, Cheng; Liang, Shan; Su, Yingying
2013-01-01
Remarkable improvements in the asymptotic properties of discrete system zeros may be achieved by properly adjusted fractional-order hold (FROH) circuit. This paper analyzes asymptotic properties of the limiting zeros, as the sampling period $T$ tends to zero, of the sampled-data models on the basis of the normal form representation of the continuous-time systems with FROH. Moreover, when the relative degree of the continuous-time system is equal to one or two, an approximate expression of the...
Asymptotic behavior of the likelihood function of covariance matrices of spatial Gaussian processes
DEFF Research Database (Denmark)
Zimmermann, Ralf
2010-01-01
The covariance structure of spatial Gaussian predictors (aka Kriging predictors) is generally modeled by parameterized covariance functions; the associated hyperparameters in turn are estimated via the method of maximum likelihood. In this work, the asymptotic behavior of the maximum likelihood...... of spatial Gaussian predictor models as a function of its hyperparameters is investigated theoretically. Asymptotic sandwich bounds for the maximum likelihood function in terms of the condition number of the associated covariance matrix are established. As a consequence, the main result is obtained...
Directory of Open Access Journals (Sweden)
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering
Directory of Open Access Journals (Sweden)
Xiu Kan
2012-01-01
Full Text Available The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t+β(tXtdt+σ(tdWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.
Asymptotic Solutions of Time-Space Fractional Coupled Systems by Residual Power Series Method
Directory of Open Access Journals (Sweden)
Wenjin Li
2017-01-01
Full Text Available This paper focuses on the asymptotic solutions to time-space fractional coupled systems, where the fractional derivative and integral are described in the sense of Caputo derivative and Riemann-Liouville integral. We introduce the Residual Power Series (for short RPS method to construct the desired asymptotic solutions. Furthermore, we apply this method to some time-space fractional coupled systems. The simplicity and efficiency of RPS method are shown by the application.
Asymptotic SER performance comparison of MPSK and MDPSK in wireless fading channels
Song, Xuegui
2015-02-01
We propose a general framework to investigate asymptotic relative performance between M-ary phase-shift keying (MPSK) and M-ary differential phase-shift keying (MDPSK) in wireless fading channels. Using this framework, we provide an alternative derivation for the closed-form expression of the asymptotic performance loss of MDPSK w.r.t. MPSK in an additive white Gaussian noise channel. The same performance loss is also shown to be true for the lognormal fading channels.
TOPICAL REVIEW: Negative thermal expansion
Barrera, G. D.; Bruno, J. A. O.; Barron, T. H. K.; Allan, N. L.
2005-02-01
There has been substantial renewed interest in negative thermal expansion following the discovery that cubic ZrW2O8 contracts over a temperature range in excess of 1000 K. Substances of many different kinds show negative thermal expansion, especially at low temperatures. In this article we review the underlying thermodynamics, emphasizing the roles of thermal stress and elasticity. We also discuss vibrational and non-vibrational mechanisms operating on the atomic scale that are responsible for negative expansion, both isotropic and anisotropic, in a wide range of materials.
Thermal Expansion of Polyurethane Foam
Lerch, Bradley A.; Sullivan, Roy M.
2006-01-01
Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal
Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis
Harada, Tomohiro; Maeda, Hideki; Carr, B. J.
2008-01-01
Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0antigravity. This extends the previous analysis of spherically symmetric self-similar solutions for fluids with positive pressure (γ>1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically “quasi-Friedmann,” in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions.
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun
2016-05-01
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion.
Asymptotic structure of the Einstein-Maxwell theory on AdS{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Riquelme, Miguel [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Tempo, David [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2016-02-02
The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to ℝ⊗U(1)⊗U(1). Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized by an arbitrary function of a single variable, whose precise form depends on the choice of the chiral copy. Remarkably, requiring the asymptotic symmetries to contain the full conformal group selects a very special set of boundary conditions that is labeled by a unique constant parameter, so that the algebra of the canonical generators is given by the direct sum of two copies of the Virasoro algebra with the standard central extension and U(1). This special set of boundary conditions makes the energy spectrum of electrically charged rotating black holes to be well-behaved.
Finite-SNR Diversity-Multiplexing Tradeoff via Asymptotic Analysis of Large MIMO Systems
Loyka, Sergey
2010-01-01
Diversity-multiplexing tradeoff (DMT) was characterized asymptotically (SNR-> infinity) for i.i.d. Rayleigh fading channel by Zheng and Tse [1]. The SNR-asymptotic DMT overestimates the finite-SNR one [2]. This paper outlines a number of additional limitations and difficulties of the DMT framework and discusses their implications. Using the recent results on the size-asymptotic (in the number of antennas) outage capacity distribution, the finite-SNR, size-asymptotic DMT is derived for a broad class of fading distributions. The SNR range over which the finite-SNR DMT is accurately approximated by the SNR-asymptotic one is characterized. The multiplexing gain definition is shown to affect critically this range and thus should be carefully selected, so that the SNR-asymptotic DMT is an accurate approximation at realistic SNR values and thus has operational significance to be used as a design criteria. The finite SNR diversity gain is shown to decrease with correlation and power imbalance in a broad class of fadi...
Gevrey multiscale expansions of singular solutions of PDEs with cubic nonlinearity
Directory of Open Access Journals (Sweden)
Alberto Lastra
2018-02-01
Full Text Available We study a singularly perturbed PDE with cubic nonlinearity depending on a complex perturbation parameter $\\epsilon$. This is a continuation of the precedent work [22] by the first author. We construct two families of sectorial meromorphic solutions obtained as a small perturbation in $\\epsilon$ of two branches of an algebraic slow curve of the equation in time scale. We show that the nonsingular part of the solutions of each family shares a common formal power series in $\\epsilon$ as Gevrey asymptotic expansion which might be different one to each other, in general.
Energy Technology Data Exchange (ETDEWEB)
Franz Gross, Alfred Stadler
2010-09-01
We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.
Phantom Friedmann cosmologies and higher-order characteristics of expansion
Dabrowski, Mariusz P.; Stachowiak, Tomasz
2006-04-01
We discuss a more general class of phantom (p -1) matter. We show that many types of evolution which include both Big-Bang and Big-Rip singularities are admitted and give explicit examples. Among some interesting models, there exist non-singular oscillating (or “bounce”) cosmologies, which appear due to a competition between positive and negative pressure of variety of matter content. From the point of view of the current observations the most interesting cosmologies are the ones which start with a Big-Bang and terminate at a Big-Rip. A related consequence of having a possibility of two types of singularities is that there exists an unstable static universe approached by the two asymptotic models—one of them reaches Big-Bang, and another reaches Big-Rip. We also give explicit relations between density parameters Ω and the dynamical characteristics for these generalized phantom models, including higher-order observational characteristics such as jerk and “kerk.” Finally, we discuss the observational quantities such as luminosity distance, angular diameter, and source counts, both in series expansion and explicitly, for phantom models. Our series expansion formulas for the luminosity distance and the apparent magnitude go as far as to the fourth-order in redshift z term, which includes explicitly not only the jerk, but also the “kerk” (or “snap”) which may serve as an indicator of the curvature of the universe.
Adventures of the coupled Yang Mills oscillators: I. Semiclassical expansion
Matinyan, Sergei G.; Müller, Berndt
2006-01-01
We study the quantum mechanical motion in the x2y2 potentials with n = 2, 3, which arise in the spatially homogeneous limit of the Yang-Mills (YM) equations. These systems show strong stochasticity in the classical limit (planck = 0) and exhibit a quantum mechanical confinement feature. We calculate the partition function Z(t) going beyond the Thomas-Fermi (TF) approximation by means of the semiclassical expansion using the Wigner-Kirkwood (WK) method. We derive a novel compact form of the differential equation for the WK function. After separating the motion in the channels of the equipotential surface from the motion in the central region, we show that the leading higher order corrections to the TF term vanish up to eighth order in planck, if we treat the quantum motion in the hyperbolic channels correctly by adiabatic separation of the degrees of freedom. Finally, we obtain an asymptotic expansion of the partition function in terms of the parameter g2planck4t3.
Strategic Complexity and Global Expansion
DEFF Research Database (Denmark)
Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina
2012-01-01
The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....
Estimates of expansion time scales
Jones, E. M.
Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy.
Rubidium and zirconium abundances in massive Galactic asymptotic giant branch stars revisited
Pérez-Mesa, V.; Zamora, O.; García-Hernández, D. A.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.
2017-09-01
Context. Luminous Galactic OH/IR stars have been identified as massive (>4-5 M⊙) asymptotic giant branch (AGB) stars experiencing hot bottom burning and Li production. Their Rb abundances and [Rb/Zr] ratios, as derived from classical hydrostatic model atmospheres, are significantly higher than predictions from AGB nucleosynthesis models, posing a problem for our understanding of AGB evolution and nucleosynthesis. Aims: We report new Rb and Zr abundances in the full sample (21) of massive Galactic AGB stars, previously studied with hydrostatic models, by using more realistic extended model atmospheres. Methods: For this, we use a modified version of the spectral synthesis code Turbospectrum and consider the presence of a circumstellar envelope and radial wind in the modelling of the optical spectra of these massive AGB stars. The Rb and Zr abundances are determined from the 7800 Å Rb I resonant line and the 6474 Å ZrO bandhead, respectively, and we explore the sensitivity of the derived abundances to variations of the stellar (Teff) and wind (Ṁ, β and vexp) parameters in the pseudo-dynamical models. The Rb and Zr abundances derived from the best spectral fits are compared with the most recent AGB nucleosynthesis theoretical predictions. Results: The Rb abundances derived with the pseudo-dynamical models are much lower (in the most extreme stars even by 1-2 dex) than those derived with the hydrostatic models, while the Zr abundances are similar. The Rb I line profile and Rb abundance are very sensitive to the wind mass-loss rate Ṁ (especially for Ṁ ≥ 10-8M⊙ yr-1) but much less sensitive to variations of the wind velocity-law (β parameter) and the expansion velocity vexp(OH). Conclusions: We confirm the earlier preliminary results based on a smaller sample of massive O-rich AGB stars, suggesting that the use of extended atmosphere models can solve the discrepancy between the AGB nucleosynthesis theoretical models and the observations of Galactic
Energy Technology Data Exchange (ETDEWEB)
Akcay, Cihan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haut, Terry Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Neil N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-21
The EM module of the Truchas code currently lacks the capability to model the Joule (Ohmic) heating of highly conducting materials that are inserted into induction furnaces from time to time to change the heating profile. This effect is difficult to simulate directly because of the requirement to resolve the extremely thin skin depth of good conductors, which is computationally costly. For example, copper has a skin depth, δ ~ 1 mm, for an oscillation frequency of tens of kHz. The industry is interested in determining what fraction of the heating power is lost to the Joule heating of these good conductors inserted inside the furnaces. The approach presented in this document is one of asymptotics where the leading order (unperturbed) solution is taken as that which emerges from solving the EM problem for a perfectly conducting insert. The conductor is treated as a boundary of the domain. The perturbative correction enters as a series expansion in terms of the dimensionless skin depth δ/L, where L is the characteristic size of the EM system. The correction at each order depends on the previous. This means that the leading order correction only depends on the unperturbed solution, in other words, it does not require Truchas to perform an additional EM field solve. Thus, the Joule heating can be captured by a clever leveraging of the existing tools in Truchas with only slight modifications.
Reed's Conjecture on hole expansions
Fouquet, Jean-Luc
2012-01-01
In 1998, Reed conjectured that for any graph $G$, $\\chi(G) \\leq \\lceil \\frac{\\omega(G) + \\Delta(G)+1}{2}\\rceil$, where $\\chi(G)$, $\\omega(G)$, and $\\Delta(G)$ respectively denote the chromatic number, the clique number and the maximum degree of $G$. In this paper, we study this conjecture for some {\\em expansions} of graphs, that is graphs obtained with the well known operation {\\em composition} of graphs. We prove that Reed's Conjecture holds for expansions of bipartite graphs, for expansions of odd holes where the minimum chromatic number of the components is even, when some component of the expansion has chromatic number 1 or when a component induces a bipartite graph. Moreover, Reed's Conjecture holds if all components have the same chromatic number, if the components have chromatic number at most 4 and when the odd hole has length 5. Finally, when $G$ is an odd hole expansion, we prove $\\chi(G)\\leq\\lceil\\frac{\\omega(G)+\\Delta(G)+1}{2}\\rceil+1$.
Detonative propagation and accelerative expansion of the Crab Nebula shock front.
Gao, Yang; Law, Chung K
2011-10-21
The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society
Bridging asymptotic independence and dependence in spatial exbtremes using Gaussian scale mixtures
Huser, Raphaël
2017-06-23
Gaussian scale mixtures are constructed as Gaussian processes with a random variance. They have non-Gaussian marginals and can exhibit asymptotic dependence unlike Gaussian processes, which are asymptotically independent except in the case of perfect dependence. In this paper, we study the extremal dependence properties of Gaussian scale mixtures and we unify and extend general results on their joint tail decay rates in both asymptotic dependence and independence cases. Motivated by the analysis of spatial extremes, we propose flexible yet parsimonious parametric copula models that smoothly interpolate from asymptotic dependence to independence and include the Gaussian dependence as a special case. We show how these new models can be fitted to high threshold exceedances using a censored likelihood approach, and we demonstrate that they provide valuable information about tail characteristics. In particular, by borrowing strength across locations, our parametric model-based approach can also be used to provide evidence for or against either asymptotic dependence class, hence complementing information given at an exploratory stage by the widely used nonparametric or parametric estimates of the χ and χ̄ coefficients. We demonstrate the capacity of our methodology by adequately capturing the extremal properties of wind speed data collected in the Pacific Northwest, US.
Gatignol, Renée; Croizet, Cédric
2017-04-01
Asymptotic models are constructed to investigate the basic physical phenomena of thermal flows of a mixture of two monatomic gases inside a two-dimensional microchannel. The steady flows are described by the Navier-Stokes-Fourier balance equations, with additional coupling terms in momentum and energy equations, and with first-order slip boundary conditions for the velocities and jump boundary conditions for the temperatures on the two walls. The small parameter equal to the ratio of the two longitudinal and transverse lengths is introduced, and then an asymptotic model is proposed. It corresponds to small Mach numbers and small or moderate Knudsen numbers. Attention is paid to the first-order asymptotic solutions. Results are given and discussed for different cases: the mass flow rates, the molecular weights of the gases, and the temperature gradients along the walls. Comparisons between the first-order asymptotic solutions and Direct Simulation Monte Carlo (DSMC) simulations corresponding to the same physical data show rather good agreement. It should be noted that obtaining an asymptotic solution is very fast compared to obtaining a DSMC result.
Asymptotic structural properties of quasi-random saturated structures of RNA
2013-01-01
Background RNA folding depends on the distribution of kinetic traps in the landscape of all secondary structures. Kinetic traps in the Nussinov energy model are precisely those secondary structures that are saturated, meaning that no base pair can be added without introducing either a pseudoknot or base triple. In previous work, we investigated asymptotic combinatorics of both random saturated structures and of quasi-random saturated structures, where the latter are constructed by a natural stochastic process. Results We prove that for quasi-random saturated structures with the uniform distribution, the asymptotic expected number of external loops is O(logn) and the asymptotic expected maximum stem length is O(logn), while under the Zipf distribution, the asymptotic expected number of external loops is O(log2n) and the asymptotic expected maximum stem length is O(logn/log logn). Conclusions Quasi-random saturated structures are generated by a stochastic greedy method, which is simple to implement. Structural features of random saturated structures appear to resemble those of quasi-random saturated structures, and the latter appear to constitute a class for which both the generation of sampled structures as well as a combinatorial investigation of structural features may be simpler to undertake. PMID:24156624
Low thermal expansion glass ceramics
1995-01-01
This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...
Low Thermal Expansion Glass Ceramics
Bach, Hans
2005-01-01
This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...
Thermal Expansion of Hafnium Carbide
Grisaffe, Salvatore J.
1960-01-01
Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.
Repeated expansion in burn sequela.
Pitanguy, Ivo; Gontijo de Amorim, Natale Ferreira; Radwanski, Henrique N; Lintz, José Eduardo
2002-08-01
This paper presents a retrospective study of the use of 346 expanders in 132 patients operated at the Ivo Pitanguy Clinic, between the period of 1985 and 2000. The expanders were used in the treatment of burn sequela. In the majority of cases, more than one expander was used at the same time. In 42 patients, repeated tissue expansion was done. The re-expanded flaps demonstrated good distension and viability. With the increase in area at each new expansion, larger volume expanders were employed, achieving an adequate advancement of the flaps to remove the injured tissue. The great advantage of using tissue re-expansion in the burned patient is the reconstruction of extensive areas with the same color and texture of neighboring tissues, without the addition of new scars.
18 CFR 154.309 - Incremental expansions.
2010-04-01
... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Incremental expansions... incremental facilities to be rolled-in to the pipeline's rates. For every expansion that has an at-risk...
Asymptotic Delay Analysis for Cross-Layer Delay-Based Routing in Ad Hoc Networks
Directory of Open Access Journals (Sweden)
Philippe Jacquet
2007-01-01
Full Text Available This paper addresses the problem of the evaluation of the delay distribution via analytical means in IEEE 802.11 wireless ad hoc networks. We show that the asymptotic delay distribution can be expressed as a power law. Based on the latter result, we present a cross-layer delay estimation protocol and we derive new delay-distribution-based routing algorithms, which are well adapted to the QoS requirements of real-time multimedia applications. In fact, multimedia services are not sensitive to average delays, but rather to the asymptotic delay distributions. Indeed, video streaming applications drop frames when they are received beyond a delay threshold, determined by the buffer size. Although delay-distribution-based routing is an NP-hard problem, we show that it can be solved in polynomial time when the delay threshold is large, because of the asymptotic power law distribution of the link delays.
Induction motor IFOC based speed-controlled drive with asymptotic disturbance compensation
Directory of Open Access Journals (Sweden)
Stojić Đorđe M.
2012-01-01
Full Text Available This paper presents the design of digitally controlled speed electrical drive, with the asymptotic compensation of external disturbances, implemented by using the IFOC (Indirect Field Oriented Control torque controlled induction motor. The asymptotic disturbance compensation is achieved by using the DOB (Disturbance Observer with the IMP (Internal Model Principle. When compared to the existing IMP-based DOB solutions, in this paper the robust stability and disturbance compensation are improved by implementing the minimal order DOB filter. Also, the IMP-based DOB design is improved by employing the asymptotic compensation of all elemental or more complex external disturbances. The dynamic model of the IFOC torque electrical drive is, also, included in the speed-controller and DOB section design. The simulation and experimental measurements presented in the paper illustrate the effectiveness and robustness of the proposed control scheme.
Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media
Gallican, Valentin; Brenner, Renald; Suquet, Pierre
2017-11-01
This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"
Parallelism, uniqueness, and large-sample asymptotics for the Dantzig selector.
Dicker, Lee; Lin, Xihong
2013-03-01
The Dantzig selector (Candès and Tao, 2007) is a popular ℓ1-regularization method for variable selection and estimation in linear regression. We present a very weak geometric condition on the observed predictors which is related to parallelism and, when satisfied, ensures the uniqueness of Dantzig selector estimators. The condition holds with probability 1, if the predictors are drawn from a continuous distribution. We discuss the necessity of this condition for uniqueness and also provide a closely related condition which ensures uniqueness of lasso estimators (Tibshirani, 1996). Large sample asymptotics for the Dantzig selector, i.e. almost sure convergence and the asymptotic distribution, follow directly from our uniqueness results and a continuity argument. The limiting distribution of the Dantzig selector is generally non-normal. Though our asymptotic results require that the number of predictors is fixed (similar to (Knight and Fu, 2000)), our uniqueness results are valid for an arbitrary number of predictors and observations.
Estimation and asymptotic inference in the first order AR-ARCH model
DEFF Research Database (Denmark)
Lange, Theis; Rahbek, Anders; Jensen, Søren Tolver
2011-01-01
This article studies asymptotic properties of the quasi-maximum likelihood estimator (QMLE) for the parameters in the autoregressive (AR) model with autoregressive conditional heteroskedastic (ARCH) errors. A modified QMLE (MQMLE) is also studied. This estimator is based on truncation of individu...... for the QMLE to be asymptotically normal. Finally, geometric ergodicity for AR-ARCH processes is shown to hold under mild and classic conditions on the AR and ARCH processes.......This article studies asymptotic properties of the quasi-maximum likelihood estimator (QMLE) for the parameters in the autoregressive (AR) model with autoregressive conditional heteroskedastic (ARCH) errors. A modified QMLE (MQMLE) is also studied. This estimator is based on truncation of individual...
Asymptotic symmetries of QED and Weinberg’s soft photon theorem
Energy Technology Data Exchange (ETDEWEB)
Campiglia, Miguel [Instituto de Física, Facultad de Ciencias,Montevideo 11400 (Uruguay); Laddha, Alok [Chennai Mathematical Institute,Siruseri 603103 (India)
2015-07-22
Various equivalences between so-called soft theorems which constrain scattering amplitudes and Ward identities related to asymptotic symmetries have recently been established in gauge theories and gravity. So far these equivalences have been restricted to the case of massless matter fields, the reason being that the asymptotic symmetries are defined at null infinity. The restriction is however unnatural from the perspective of soft theorems which are insensitive to the masses of the external particles. In this work we remove the aforementioned restriction in the context of scalar QED. Inspired by the radiative phase space description of massless fields at null infinity, we introduce a manifold description of time-like infinity on which the asymptotic phase space for massive fields can be defined. The “angle dependent” large gauge transformations are shown to have a well defined action on this phase space, and the resulting Ward identities are found to be equivalent to Weinberg’s soft photon theorem.
Asymptotic stability and instability of large-scale systems. [using vector Liapunov functions
Grujic, L. T.; Siljak, D. D.
1973-01-01
The purpose of this paper is to develop new methods for constructing vector Lyapunov functions and broaden the application of Lyapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. By redefining interconnection functions among the subsystems according to interconnection matrices, the same mathematical machinery can be used to determine connective asymptotic stability of large-scale systems under arbitrary structural perturbations.
Low-thermal expansion infrared glass ceramics
Lam, Philip
2009-05-01
L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.
Callan-Symanzik equation and asymptotic freedom in the Marr-Shimamoto model
Scarfone, Leonard M.
2010-05-01
The exactly soluble nonrelativistic Marr-Shimamoto model was introduced in 1964 as an example of the Lee model with a propagator and a nontrivial vertex function. An exactly soluble relativistic version of this model, known as the Zachariasen model, has been found to be asymptotically free in terms of coupling constant renormalization at an arbitrary spacelike momentum and on the basis of exact solutions of the Gell-Mann-Low equations. This is accomplished with conventional cut-off regularization by setting up the Yukawa and Fermi coupling constants at Euclidean momenta in terms of on mass-shell couplings and then taking the asymptotic limit. In view of this background, it may be expected that an investigation of the nonrelativistic Marr-Shimamoto theory may also exhibit asymptotic freedom in view of its manifest mathematical similarity to that of the Zachariasen model. To prove this point, the present paper prefers to examine asymptotic freedom in the nonrelativistic Marr-Shimamoto theory using the powerful concepts of the renormalization group and the Callan-Symanzik equation, in conjunction with the specificity of dimensional regularization and on-shell renormalization. This approach is based on calculations of the Callan-Symanzik coefficients and determinations of the effective coupling constants. It is shown that the Marr-Shimamoto theory is asymptotically free for dimensions D 3 occurring in periodic intervals over the range of 0
State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer
DEFF Research Database (Denmark)
Larose, Claude Alain; Jørgensen, Sten Bay
2001-01-01
if the convergence, driven by the dilution rate, was slow (from 15 to 60 days). The propagation of the measurement noise and a bias in the estimation of glycogen and PHA could be the result of the high condition number of one of the matrices used in the algorithm of the asymptotic observer for the aerated tanks.......This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...
Asymptotics of QCD traveling waves with fluctuations and running coupling effects
Beuf, Guillaume
2008-09-01
Extending the Balitsky-Kovchegov (BK) equation independently to running coupling or to fluctuation effects due to pomeron loops is known to lead in both cases to qualitative changes of the traveling-wave asymptotic solutions. In this paper we study the extension of the forward BK equation, including both running coupling and fluctuations effects, extending the method developed for the fixed coupling case [E. Brunet, B. Derrida, A.H. Mueller, S. Munier, Phys. Rev. E 73 (2006) 056126, cond-mat/0512021]. We derive the exact asymptotic behavior in rapidity of the probabilistic distribution of the saturation scale.
Robertson, Scott
2014-11-01
Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.
Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights
Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.
2009-12-01
We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.
DEFF Research Database (Denmark)
Vahdatirad, Mohammadjavad; Bayat, Mehdi; Andersen, Lars Vabbersgaard
2015-01-01
The mechanical responses of an offshore monopile foundation mounted in over-consolidated clay are calculated by employing a stochastic approach where a nonlinear p–y curve is incorporated with a finite element scheme. The random field theory is applied to represent a spatial variation for undrained...... shear strength of clay. Normal and Sobol sampling are employed to provide the asymptotic sampling method to generate the probability distribution of the foundation stiffnesses. Monte Carlo simulation is used as a benchmark. Asymptotic sampling accompanied with Sobol quasi random sampling demonstrates...... an efficient method for estimating the probability distribution of stiffnesses for the offshore monopile foundation....
Vladimir Sudakov and double-logarithmic asymptotics of amplitudes in QED, QCD and gravity
Directory of Open Access Journals (Sweden)
Lipatov L. N.
2017-01-01
Full Text Available We review the Sudakov results on the double logarithmic asymptotics of the electron form-factor which were based on his parametrization of the virtual particle momenta in the Feynman diagrams. The high energy amplitudes for various QED and QCD processes in the double-logarithmic approximation are obtained by using the Bethe-Salpeter approach and the evolution equations. The ultraviolet divergency of the graviton Regge trajectory allows to derive the infrared evolution equation for the graviton-graviton scattering amplitude with a double-logarithmic accuracy. The asymptotic behavior of this amplitude depends essentially on the rank N of the super-symmetry.
Laminar flow and convective transport processes scaling principles and asymptotic analysis
Brenner, Howard
1992-01-01
Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Asymptotic Stabilization of Continuous-Time Linear Systems with Input and State Quantizations
Directory of Open Access Journals (Sweden)
Sung Wook Yun
2014-01-01
Full Text Available This paper discusses the asymptotic stabilization problem of linear systems with input and state quantizations. In order to achieve asymptotic stabilization of such systems, we propose a state-feedback controller comprising two control parts: the main part is used to determine the fundamental characteristics of the system associated with the cost, and the additional part is employed to eliminate the effects of input and state quanizations. In particular, in order to implement the additional part, we introduce a quantizer with a region-decision making process (RDMP for a certain linear switching surface. The simulation results show the effectiveness of the proposed controller.
Asymptotic behaviour of total times for jobs that must start over if a failure occurs
DEFF Research Database (Denmark)
Asmussen, Søren; Fiorini, Pierre; Lipsky, Lester
2008-01-01
the ready queue, or it may restart the task. The behavior of systems under the first two scenarios is well documented, but the third (RESTART) has resisted detailed analysis. In this paper we derive tight asymptotic relations between the distribution of task times without failures and the total time when...... including failures, for any failure distribution. In particular, we show that if the task-time distribution has an unbounded support, then the total-time distribution H is always heavy tailed. Asymptotic expressions are given for the tail of H in various scenarios. The key ingredients of the analysis...
Asymptotic behavior of total times For jobs that must start over if a failure occurs
DEFF Research Database (Denmark)
Asmussen, Søren; Fiorini, Pierre; Lipsky, Lester
the ready queue, or it may restart the task. The behavior of systems under the first two scenarios is well documented, but the third (RESTART) has resisted detailed analysis. In this paper we derive tight asymptotic relations between the distribution of task times without failures to the total time when...... including failures, for any failure distribution. In particular, we show that if the task time distribution has an unbounded support then the total time distribution H is always heavy-tailed. Asymptotic expressions are given for the tail of H in various scenarios. The key ingredients of the analysis...
On the Asymptotic Capacity of Dual-Aperture FSO Systems with a Generalized Pointing Error Model
Al-Quwaiee, Hessa
2016-06-28
Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantify the effect of these two factors on FSO system performance, we need an effective mathematical model for them. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive a generic expression of the asymptotic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. Finally, the asymptotic channel capacity formula are extended to quantify the FSO systems performance with selection and switched-and-stay diversity.
Asymptotically near-optimal RRT for fast, high-quality, motion planning
Salzman, Oren; Halperin, Dan
2013-01-01
We present Lower Bound Tree-RRT (LBT-RRT), a single-query sampling-based algorithm that is asymptotically near-optimal. Namely, the solution extracted from LBT-RRT converges to a solution that is within an approximation factor of 1+epsilon of the optimal solution. Our algorithm allows for a continuous interpolation between the fast RRT algorithm and the asymptotically optimal RRT* and RRG algorithms. When the approximation factor is 1 (i.e., no approximation is allowed), LBT-RRT behaves like ...
Asymptotics of the quantum invariants for surgeries on the figure 8 knot
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Hansen, Søren Kold
2006-01-01
We investigate the Reshetikhin–Turaev invariants associated to SU(2) for the 3-manifolds M obtained by doing any rational surgery along the figure 8 knot. In particular, we express these invariants in terms of certain complex double contour integrals. These integral formulae allow us to propose a....... Moreover, we calculate the leading asymptotics of the colored Jones polynomial of the figure 8 knot following R.Kashaev. This leads to a slightly finer asymptotic description of the invariant than predicted by the volume conjecture due to R.Kashaev, H.Murakami and J.Murakami....
Asymptotics of the quantum invariants for surgeries on the figure 8 knot
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Hansen, Søren Kold
2006-01-01
We investigate the Reshetikhin–Turaev invariants associated to SU(2) for the 3-manifolds M obtained by doing any rational surgery along the figure 8 knot. In particular, we express these invariants in terms of certain complex double contour integrals. These integral formulae allow us to propose a....... Moreover, we calculate the leading asymptotics of the colored Jones polynomial of the figure 8 knot following Kashaev [14]. This leads to a slightly finer asymptotic description of the invariant than predicted by the volume conjecture [24]....
Expansive Openness in Teacher Practice
Kimmons, Royce
2016-01-01
Background/Context: Previous work on the use of open educational resources in K-12 classrooms has generally focused on issues related to cost. The current study takes a more expansive view of openness that also accounts for adaptation and sharing in authentic classroom contexts. Purpose/Objective/Research Question/Focus of Study The study seeks to…
Liflyand, E.
2012-01-01
We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.
On persistently positively expansive maps
Directory of Open Access Journals (Sweden)
Alexander Arbieto
2010-06-01
Full Text Available In this paper, we prove that any C¹-persistently positively expansive map is expanding. This improves a result due to Sakai (Sakai 2004.Neste artigo, mostramos que todo mapa C¹-persistentemente positivamente expansivo e expansor. Isto melhora um resultado devido a Sakai (Sakai 2004.
The bootstrap and edgeworth expansion
Hall, Peter
1992-01-01
This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...
Multiscale expansions in discrete world
Indian Academy of Sciences (India)
... multiscale expansions discretely. The power of this manageable method is confirmed by applying it to two selected nonlinear Schrödinger evolution equations. This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program.
Large N Expansion. Vector Models
Nissimov, Emil; Pacheva, Svetlana
2006-01-01
Preliminary version of a contribution to the "Quantum Field Theory. Non-Perturbative QFT" topical area of "Modern Encyclopedia of Mathematical Physics" (SELECTA), eds. Aref'eva I, and Sternheimer D, Springer (2007). Consists of two parts - "main article" (Large N Expansion. Vector Models) and a "brief article" (BPHZL Renormalization).
Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.
Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A
2016-05-01
The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic
DEFF Research Database (Denmark)
Ryttov, Thomas A.; Shrock, Robert
2017-01-01
We study a vectorial asymptotically free gauge theory, with gauge group $G$ and $N_f$ massless fermions in a representation $R$ of this group, that exhibits an infrared (IR) zero in its beta function, $\\beta$, at the coupling $\\alpha=\\alpha_{IR}$ in the non-Abelian Coulomb phase. For general $G......_f$-dependent expansion variable. These are the highest orders to which these expansions have been calculated. We apply these general results to theories with $G={\\rm SU}(N_c)$ and $R$ equal to the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor representations. It is shown that for all...
Fast evaluation of complete synthetic SH seismograms based on asymptotic mode theory
Bastians, M.W.J.M.
1986-01-01
In this thesis we have developed an asymptotic mode theory with the following features. 1) Complete synthetic SH seismograms can be evaluated for both realistic models of Earth and crust. 2) The method is of practical value and can be used even on small computers wi th reasonable computation
Fast evaluation of complete synthetic SH seismograms based on asymptotic mode theory
Bastians, M.W.J.M.
1986-01-01
In this thesis we have developed an asymptotic mode theory with the following features. 1) Complete synthetic SH seismograms can be evaluated for both realistic models of Earth and crust. 2) The method is of practical value and can be used even on small computers wi th reasonable computation times
Asymptotic stability of multi-soliton solutions for nonlinear Schroedinger eqations
Perelman, G.
2003-01-01
We consider the Cauchy problem for the nonlinear Schroedinger eqiation with initial data close to a sum of N decoupled solitons. Under some suitable assumptions on the spectral structure of the one soliton linearizations we prove that for large time the asymptotics of the solution is given by a sum of solitons with slightly modified parameters and a small dispersive term.
Formation of compression waves with multiscale asymptotics in the Burgers and KdV models
Zakharov, Sergei V.
2015-01-01
The Cauchy problem for the Burgers equation with a small dissipation and an initial weak discontinuity and the Cauchy problem with a large initial gradient for a quasilinear parabolic equation and for the Korteweg-de Vries (KdV) equation are considered. Multiscale asymptotics of solutions corresponding to shock waves are constructed. Some results can also be applied to rarefaction waves.
Tail Asymptotics for the Sum of two Heavy-tailed Dependent Risks
DEFF Research Database (Denmark)
Albrecher, H.; Asmussen, Søren
Let X1,X2 denote positive exchangable heavy-tailed random variables with continuous marginal distribution function F. The asymptotic behavior of the tail of X1 + X2 is studied in a general copula framework and some bounds and extremal properties are provided. For more specific assumptions on F...
Asymptotic freedom in the early big bang and the isotropy of the cosmic microwave background
Stecker, F. W.
1980-01-01
It is suggested that a superunified field theory incorporating gravity and possessing asymptotic freedom could provide a solution to the problem of the isotropy of the universal 3 K background radiation. Thermal equilibrium could be established in this context through interactions occurring in a temporally indefinite pre-Planckian era.
Asymptotic freedom in the early big-bang and the isotropy of the cosmic microwave background
Stecker, F. W.
1979-01-01
The isotropy of the universal 3K background radiation is discussed and a superunified field theory incorporating gravity and possessing asymptotic freedom is suggested to provide a solution to the problem. Thermal equilibrium is established in this context through interactions occurring in a temporally indefinite preplanckian era.
Mikhailov, E. A.; Teplyakov, I. O.
2017-11-01
The flow generated in the conductive medium with the electromagnetic force appearing when non-uniform electric current interacts with the own magnetic field was considered. The problem was solved analytically using Stokes approximation in a hemispherical geometry. Also numerical solution was obtained and comparing with the oldest mode of analytical one was carried out. The numerical and asymptotic results are quite similar.
Saw, Vee-Liem
2016-01-01
We derive the asymptotic solutions for vacuum spacetimes with non-zero cosmological constant $\\Lambda$, using the Newman-Penrose formalism. Our approach is based exclusively on the physical spacetime, i.e. no reference of conformal rescaling nor conformal spacetime is made, at least not explicitly. By investigating the Schwarzschild-de Sitter spacetime in spherical coordinates, we subsequently stipulate the fall-offs of the null tetrad and spin coefficients for asymptotically de Sitter spacetimes such that the terms which would give rise to the Bondi mass-loss due to energy carried by gravitational radiation (i.e. involving $\\sigma^o$) must be non-zero. After solving the vacuum Newman-Penrose equations asymptotically, we obtain the Bondi mass-loss formula by integrating the Bianchi identity involving $D'\\Psi_2$ over a compact 2-surface on $\\mathcal{I}$. Whilst our original intention was to study asymptotically de Sitter spacetimes, the use of spherical coordinates implies that this readily applies for $\\Lambd...
An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index
DEFF Research Database (Denmark)
Dierckx, Goedele; Goegebeur, Yuri; Guillou, Armelle
2013-01-01
We introduce a robust and asymptotically unbiased estimator for the tail index of Pareto-type distributions. The estimator is obtained by fitting the extended Pareto distribution to the relative excesses over a high threshold with the minimum density power divergence criterion. Consistency...
Asymptotic and oscillatory behavior of second order neutral quantum equations with maxima
Directory of Open Access Journals (Sweden)
Douglas Anderson
2009-03-01
Full Text Available In this study, the behavior of solutions to certain second order quantum ($q$-difference equations with maxima are considered. In particular, the asymptotic behavior of non-oscillatory solutions is described, and sufficient conditions for oscillation of all solutions are obtained.
On the asymptotic of an eigenvalue problem with 2n2n2n interior ...
Indian Academy of Sciences (India)
On the asymptotic of an eigenvalue problem with 2n2n2n interior singularities. A NEAMATY and S HAGHAIEGHY. Department of Mathematics, Faculty of Basic Sciences, Mazandaran University,. Babolsar, Iran. E-mail: namaty@umz.ac.ir; namtyumcc@yahoo.com. MS received 6 January 2008; revised 28 July 2009. Abstract ...
Energy Technology Data Exchange (ETDEWEB)
Carmona-Espíndola, Javier, E-mail: jcarmona-26@yahoo.com.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340, México (Mexico); Gázquez, José L., E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340, México (Mexico); Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México D. F. 07360, México (Mexico); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México D. F. 07360, México (Mexico); Trickey, S. B. [Quantum Theory Project, Department of Physics and Department of Chemistry, University of Florida, P.O. Box 118435, Gainesville, Florida 32611-8435 (United States)
2015-02-07
A new non-empirical exchange energy functional of the generalized gradient approximation (GGA) type, which gives an exchange potential with the correct asymptotic behavior, is developed and explored. In combination with the Perdew-Burke-Ernzerhof (PBE) correlation energy functional, the new CAP-PBE (CAP stands for correct asymptotic potential) exchange-correlation functional gives heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies on standard test sets that are fully competitive with those obtained from other GGA-type functionals that do not have the correct asymptotic exchange potential behavior. Distinct from them, the new functional provides important improvements in quantities dependent upon response functions, e.g., static and dynamic polarizabilities and hyperpolarizabilities. CAP combined with the Lee-Yang-Parr correlation functional gives roughly equivalent results. Consideration of the computed dynamical polarizabilities in the context of the broad spectrum of other properties considered tips the balance to the non-empirical CAP-PBE combination. Intriguingly, these improvements arise primarily from improvements in the highest occupied and lowest unoccupied molecular orbitals, and not from shifts in the associated eigenvalues. Those eigenvalues do not change dramatically with respect to eigenvalues from other GGA-type functionals that do not provide the correct asymptotic behavior of the potential. Unexpected behavior of the potential at intermediate distances from the nucleus explains this unexpected result and indicates a clear route for improvement.
Energy Technology Data Exchange (ETDEWEB)
Brown, L.S.; Yaffe, L.G. (Department of Physics, University of Washington, Seattle, Washington 98195 (United States))
1992-01-15
A simple and direct approach is used to examine the constraints imposed by asymptotic freedom and analytically on the large-order behavior of perturbaton theory for the current-current correlation function and its imaginary part which gives the {ital R} ratio in high-energy {ital e}{sup +-}{ital e{minus}} annihilation.
On the asymptotic of an eigenvalue problem with 2n2n2n interior ...
Indian Academy of Sciences (India)
where satisfies Dirichlet boundary conditions and is a real-valued function which has even number of singularities at c 1 , … , c 2 n ∈ ( a , b ) . We will study the asymptotic eigenvalue near the singularity points. Author Affiliations. A Neamaty1 S Haghaieghy1. Department of Mathematics, Faculty of Basic Sciences, ...
Constructing Knowledge about the Notion of Limit in the Definition of the Horizontal Asymptote
Kidron, Ivy
2011-01-01
Processes of knowledge construction are investigated. A learner is constructing knowledge about the notion of limit in the definition of the horizontal asymptote. The analysis is based on the dynamically nested epistemic action model for abstraction in context. Different tasks are offered to the learner. In her effort to perform the different…
Maci, S.; Neto, A.
2004-01-01
This second part of a two-paper sequence deals with the uniform asymptotic description of the Green's function of an infinite slot printed between two different homogeneous dielectric media. Starting from the magnetic current derived in Part I, the dyadic green's function is first formulated in
The Internal Model Principle : Asymptotic Tracking and Regulation in the Behavioral Framework
Fiaz, Shaik; Takaba, K.; Trentelman, H.L.
2010-01-01
Given a plant, together with an exosystem generating the disturbances and the reference signals, the problem of asymptotic tracking and regulation is to find a controller such that the to-be-controlled plant variable tracks the reference signal regardless of the disturbance acting on the system. If
Oscillation and asymptotic stability of a delay differential equation with Richard's nonlinearity
Directory of Open Access Journals (Sweden)
Leonid Berezansky
2005-04-01
Full Text Available We obtain sufficient conditions for oscillation of solutions, and for asymptotical stability of the positive equilibrium, of the scalar nonlinear delay differential equation $$ frac{dN}{dt} = r(tN(tBig[a-Big(sum_{k=1}^m b_k N(g_k(tBig^{gamma}Big], $$ where $ g_k(tleq t$.
Mass loss and rotational CO emission from Asymptotic Giant Branch stars
Kemper, F.; Stark, R.; Justtanont, K.; Koter, A. de; Tielens, A. G. G. M.; Waters, L. B. F. M.; Cami, J.; Dijkstra, C.
Abstract: We present submillimeter observations of rotational transitions of carbon monoxide from J = 2 -> 1 up to 7 -> 6 for a sample of Asymptotic Giant Branch stars and red supergiants. It is the first time that the high transitions J = 6 -> 5 and 7 -> 6 are included in such a study. With line
Directory of Open Access Journals (Sweden)
Yan-Tao Bian
2014-04-01
Full Text Available In this article, we study weighted asymptotic behavior of solutions to the semilinear integro-differential equation $$ u'(t=Au(t+\\alpha\\int_{-\\infty}^{t}e^{-\\beta(t-s}Au(sds+f(t,u(t, \\quad t\\in \\mathbb{R}, $$ where $\\alpha, \\beta \\in \\mathbb{R}$, with $\\beta > 0, \\alpha \
Directory of Open Access Journals (Sweden)
Haizhen Sun
2013-01-01
Full Text Available Our aim in this paper is to illustrate that the proof of main theorem of Rhoades and Şoltuz (2003 concerning the equivalence between the convergences of Ishikawa and Mann iterations for uniformly L-Lipschitzian asymptotically pseudocontractive maps is incorrect and to provide its correct version.
The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces
Directory of Open Access Journals (Sweden)
Rabian Wangkeeree
2012-01-01
Full Text Available We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature.