WorldWideScience

Sample records for asymptotic conditions

  1. Asymptotic theory of integrated conditional moment tests

    NARCIS (Netherlands)

    Bierens, H.J.; Ploberger, W.

    1995-01-01

    In this paper we derive the asymptotic distribution of the test statistic of a generalized version of the integrated conditional moment (ICM) test of Bierens (1982, 1984), under a class of Vn-local alternatives, where n is the sample size. The generalized version involved includes neural network tes

  2. Asymptotics for maximum score method under general conditions

    OpenAIRE

    Taisuke Otsu; Myung Hwan Seo

    2014-01-01

    Abstract. Since Manski's (1975) seminal work, the maximum score method for discrete choice models has been applied to various econometric problems. Kim and Pollard (1990) established the cube root asymptotics for the maximum score estimator. Since then, however, econometricians posed several open questions and conjectures in the course of generalizing the maximum score approach, such as (a) asymptotic distribution of the conditional maximum score estimator for a panel data dynamic discrete ch...

  3. GLOBAL ASYMPTOTIC STABILITY CONDITIONS OF DELAYED NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-ming; CAO Jin-de; ZHANG Li-ming

    2005-01-01

    Utilizing the Liapunov functional method and combining the inequality of matrices technique to analyze the existence of a unique equilibrium point and the global asymptotic stability for delayed cellular neural networks (DCNNs), a new sufficient criterion ensuring the global stability of DCNNs is obtained. Our criteria provide some parameters to appropriately compensate for the tradeoff between the matrix definite condition on feedback matrix and delayed feedback matrix. The criteria can easily be used to design and verify globally stable networks. Furthermore, the condition presented here is independent of the delay parameter and is less restrictive than that given in the references.

  4. On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping

    CERN Document Server

    Hante, Falk; Tucsnak, Marius

    2011-01-01

    We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (not even in the weak sense). Exponential stability is recovered under a generalized observability inequality, allowing for time-domains that are not intervals. Weak asymptotic stability is obtained under a similarly generalized unique continuation principle. Finally, strong asymptotic stability is proved for intermittences that do not necessarily satisfy some persistent excitation condition, evaluating their total contribution to the decay of the trajectories of the damped system. Our results are discussed using the example of the wave equation, Schr\\"odinger's equation and, for strong stability, also the special case of finite-dimensional systems.

  5. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Stéphane

    2011-12-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  6. Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics

    CERN Document Server

    Borisov, Denis; Cardone, Giuseppe

    2012-01-01

    We consider a magnetic Schroedinger operator in a planar infinite strip with frequently and non-periodically alternating Dirichlet and Robin boundary conditions. Assuming that the homogenized boundary condition is the Dirichlet or the Robin one, we establish the uniform resolvent convergence in various operator norms and we prove the estimates for the rates of convergence. It is shown that these estimates can be improved by using special boundary correctors. In the case of periodic alternation, pure Laplacian, and the homogenized Robin boundary condition, we construct two-terms asymptotics for the first band functions, as well as the complete asymptotics expansion (up to an exponentially small term) for the bottom of the band spectrum.

  7. Laplace asymptotic expansions of conditional Wiener integrals and generalized Mehler kernel formulas

    Science.gov (United States)

    Davies, Ian; Truman, Aubrey

    1982-11-01

    Imitating Schilder's results for Wiener integrals rigorous Laplace asymptotic expansions are proven for conditional Wiener integrals. Applications are given for deriving generalized Mehler kernel formulas, up to arbitrarily high orders in powers of ℏ, for exp{-TH(ℏ)/ℏ}(x, y), T>0 where H(ℏ)=[(-ℏ2/2)Δ1+V], Δ1 being the one-dimensional Laplacian, V being a real-valued potential V∈C∞(R), bounded below, together with its second derivative.

  8. EQUIVALENT CONDITIONS OF LOCAL ASYMPTOTICS FOR THE OVERSHOOT OF A RANDOM WALK WITH HEAVY-TAILED INCREMENTS

    Institute of Scientific and Technical Information of China (English)

    Wang Kaiyong; Wang Yuebao; Yin Chuancun

    2011-01-01

    This article gives the equivalent conditions of the local asymptotics for the overshoot of a random walk with heavy-tailed increments, from which we find that the above asymptotics are different from the local asymptoties for the supremum of the random walk. To do this, the article first extends and improves some existing results about the solutions of renewal equations.

  9. Sufficient conditions for globally asymptotic self-stability of pressurized water reactors

    International Nuclear Information System (INIS)

    Highlights: • Self-stability analysis of the PWR is presented through the shifted-ectropy based approach. • Sufficient conditions for the globally asymptotic self-stability are established. • The correctness of the theoretic results are finally verified through numerical simulation. - Abstract: After the Fukushima accident, safe, stable and efficient operation of reactors is very necessary for the development of nuclear power industry. Since pressurized water reactor (PWR) is the mostly widely used fission reactor, the improvement of its operation performance is quite meaningful. Self-stability is the most important dynamic feature of any reactors, and analyzing the self-stability can give the approach of improving the operation performance. With this in mind, the self-stability analysis of the PWR is presented through the shifted-ectropy based approach, and sufficient conditions for the globally asymptotic self-stability in cases of negative, zero and positive coolant temperature feedback coefficient are all established. The correctness of the theoretical results are finally verified through numerical simulation. The results of this paper give the way to not only guaranteeing self-stability through physical and thermal-hydraulic reactor design but also strengthening closed-loop stability and robustness by the means of feedback control

  10. Asymptotic Analysis of a Slightly Rarefied Gas with Nonlocal Boundary Conditions

    Science.gov (United States)

    Caflisch, Russel E.; Lombardo, Maria Carmela; Sammartino, Marco

    2011-05-01

    In this paper nonlocal boundary conditions for the Navier-Stokes equations are derived, starting from the Boltzmann equation in the limit for the Knudsen number being vanishingly small. In the same spirit of (Lombardo et al. in J. Stat. Phys. 130:69-82, 2008) where a nonlocal Poisson scattering kernel was introduced, a gaussian scattering kernel which models nonlocal interactions between the gas molecules and the wall boundary is proposed. It is proved to satisfy the global mass conservation and a generalized reciprocity relation. The asymptotic expansion of the boundary-value problem for the Boltzmann equation, provides, in the continuum limit, the Navier-Stokes equations associated with a class of nonlocal boundary conditions of the type used in turbulence modeling.

  11. Electron-electron cusp condition and asymptotic behavior for the Pauli potential in pair density functional theory.

    Science.gov (United States)

    Nagy, A; Amovilli, C

    2008-03-21

    In the ground state, the pair density n can be determined by solving a single auxiliary equation of a two-particle problem. Electron-electron cusp condition and asymptotic behavior for the Pauli potential of the effective potential of the two-particle equation are presented. PMID:18361562

  12. Asymptotic Behavior of the 3D Compressible Euler Equations with Nonlinear Damping and Slip Boundary Condition

    OpenAIRE

    Huimin Yu

    2012-01-01

    The asymptotic behavior (as well as the global existence) of classical solutions to the 3D compressible Euler equations are considered. For polytropic perfect gas $(P(\\rho )={P}_{0}{\\rho }^{\\gamma })$ , time asymptotically, it has been proved by Pan and Zhao (2009) that linear damping and slip boundary effect make the density satisfying the porous medium equation and the momentum obeying the classical Darcy's law. In this paper, we use a more general method and extend this resu...

  13. Asymptotics and estimates for the eigenelements of the Laplacian with frequently alternating non-periodic boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, D I

    2003-12-31

    We consider a singularly perturbed spectral boundary-value problem for the Laplace operator in a two-dimensional domain with frequently alternating non-periodic boundary conditions. Under certain very weak restrictions on the alternation structure of the boundary conditions, we obtain the first terms of the asymptotic expansions of the eigenelements of this problem. Under still weaker restrictions, we obtain estimates for the rate of convergence of the eigenvalues.

  14. Fast Transient Thermal Analysis of Non-Fourier Heat Conduction Using Tikhonov Well-Conditioned Asymptotic Waveform Evaluation

    Directory of Open Access Journals (Sweden)

    Sohel Rana

    2014-01-01

    Full Text Available Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE and finite element method (FEM. The non-Fourier heat conduction has been investigated where the maximum likelihood (ML and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML, another well-conditioned scheme, called mass effect (ME T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model.

  15. A theoretical study of asymptotic boundary conditions for the numerical solutions of open-boundary static electromagnetic-field problems

    Institute of Scientific and Technical Information of China (English)

    马西奎; 韩社教

    2002-01-01

    Based on the multipole expansion theory of the potential, a satisfactory interpretation is put forward of the exact nature of the approximations of asymptotic boundary condition (called the ABC) techniques for the numerical solutions of open-boundary static electromagnetic-field problems, and a definite physical meaning is bestowed on ABC, which provide a powerful theoretical background for laying down the operating rules and the key to the derivation of asymptotic boundary conditions. This paper is also intended to reveal the shortcomings of the conventional higher-order ABC, and at the same time to give the concept of a new type of higher-order ABC, and to present a somewhat different formulation of the new nth-order ABC. In order to test its feasibility, several simple problems of electrostatic potentials are analyzed. The results are found to be much better than those of conventional higher-order ABCs.

  16. Boundary conditions in asymptotically anti-de Sitter spacetime and the Anti-de Sitter/Conformal Field Theory correspondence

    Science.gov (United States)

    Amsel, Aaron Jesse

    The properties of asymptotically anti-de Sitter spacetimes have been of much recent interest in light of a remarkable conjecture known as the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. In this dissertation, we study general boundary conditions for various matter fields in asymptotically AdS spacetime, and discuss the implications of our results in the context of AdS/CFT. We begin by considering tachyonic scalar fields coupled to gravity in the so-called "designer-gravity" theories. We construct the Hamiltonian generators of asymptotic symmetries for such systems using the covariant phase space method and show that these charges are finite. Using a Witten-Nester style proof, we obtain a positive energy theorem under the conditions that the function W specifying the boundary conditions has a global minimum and that the scalar potential admits an appropriate superpotential. We then investigate boundary conditions for massive spin-1/2 fermions in exact AdS, and find that (as with scalars) for a special mass range there is a choice of boundary conditions at infinity. Using these results, we identify boundary conditions for combined scalar/fermion systems that preserve N = 1 supersymmetry on the boundary. Finally, we demonstrate similar results for spin-3/2 fields and further show that more general boundary conditions are allowed for any mass if one appropriately "renormalizes" the inner product. We then investigate supersymmetric boundary conditions for d = 4, N = 1 AdS supergravity in which the metric and Rarita-Schwinger fields are fluctuating at the boundary. We argue that the dual of such a theory is a 3-dimensional supergravity theory.

  17. On the Conditions for the Orbitally Asymptotical Stability of the Almost

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@This paper studies the behaviors of the solutions in the vicinity of a givenalmost periodic solution of the autonomous system x′=f(x), x Rn , (1) where f C1 (Rn ,Rn ). Since the periodic solutions of the autonomous system are not Liapunov asymptotic stable, we consider the weak orbitally stability.   For the planar autonomous systems (n=2), the classical result of orbitally stability about its periodic solution with period w belongs to Poincare, i.e.

  18. Polynomial Asymptotes

    Science.gov (United States)

    Dobbs, David E.

    2010-01-01

    This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…

  19. The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection

    CERN Document Server

    Calkins, Michael A; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe

    2015-01-01

    The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary condit...

  20. Rough solutions of the Einstein Constraint Equations on Asymptotically Flat Manifolds without Near-CMC Conditions

    CERN Document Server

    Behzadan, A

    2015-01-01

    In this article we consider the conformal decomposition of Einstein's constraint equations introduced by Lichnerowicz, Choquet-Bruhat, and York, on asymptotically flat (AF) manifolds. Using the non-CMC fixed-point framework developed in 2009 by Holst, Nagy, and Tsogtgerel and by Maxwell, we establish existence of coupled non-CMC weak solutions for AF manifolds. As is the case for the analogous existence results for non-CMC solutions on closed manifolds and compact manifolds with boundary, our results here avoid the near-CMC assumption by assuming that the freely specifiable part of the data given by the traceless-transverse part of the rescaled extrinsic curvature and the matter fields are sufficiently small. The non-CMC rough solutions results here for AF manifolds may be viewed as extending to AF manifolds the 2009 and 2014 results on rough far-from-CMC positive Yamabe solutions for closed and compact manifolds with boundary. Similarly, our results may be viewed as extending the recent 2014 results for AF m...

  1. Role of exponential type random invexities for asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming.

    Science.gov (United States)

    Verma, Ram U; Seol, Youngsoo

    2016-01-01

    First a new notion of the random exponential Hanson-Antczak type [Formula: see text]-V-invexity is introduced, which generalizes most of the existing notions in the literature, second a random function [Formula: see text] of the second order is defined, and finally a class of asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming is established. Furthermore, several sets of asymptotic sufficiency results in which various generalized exponential type [Formula: see text]-V-invexity assumptions are imposed on certain vector functions whose components are the individual as well as some combinations of the problem functions are examined and proved. To the best of our knowledge, all the established results on the semi-infinite aspects of the multi-objective fractional programming are new, which is a significantly new emerging field of the interdisciplinary research in nature. We also observed that the investigated results can be modified and applied to several special classes of nonlinear programming problems. PMID:27652051

  2. Role of exponential type random invexities for asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming.

    Science.gov (United States)

    Verma, Ram U; Seol, Youngsoo

    2016-01-01

    First a new notion of the random exponential Hanson-Antczak type [Formula: see text]-V-invexity is introduced, which generalizes most of the existing notions in the literature, second a random function [Formula: see text] of the second order is defined, and finally a class of asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming is established. Furthermore, several sets of asymptotic sufficiency results in which various generalized exponential type [Formula: see text]-V-invexity assumptions are imposed on certain vector functions whose components are the individual as well as some combinations of the problem functions are examined and proved. To the best of our knowledge, all the established results on the semi-infinite aspects of the multi-objective fractional programming are new, which is a significantly new emerging field of the interdisciplinary research in nature. We also observed that the investigated results can be modified and applied to several special classes of nonlinear programming problems.

  3. Asymptotic behavior of solutions to nonlinear parabolic equation with nonlinear boundary conditions

    Directory of Open Access Journals (Sweden)

    Diabate Nabongo

    2008-01-01

    Full Text Available We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as t approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.

  4. Asymptotics of Random Contractions

    CERN Document Server

    Hashorva, Enkelejd; Tang, Qihe

    2010-01-01

    In this paper we discuss the asymptotic behaviour of random contractions $X=RS$, where $R$, with distribution function $F$, is a positive random variable independent of $S\\in (0,1)$. Random contractions appear naturally in insurance and finance. Our principal contribution is the derivation of the tail asymptotics of $X$ assuming that $F$ is in the max-domain of attraction of an extreme value distribution and the distribution function of $S$ satisfies a regular variation property. We apply our result to derive the asymptotics of the probability of ruin for a particular discrete-time risk model. Further we quantify in our asymptotic setting the effect of the random scaling on the Conditional Tail Expectations, risk aggregation, and derive the joint asymptotic distribution of linear combinations of random contractions.

  5. Asymptotic conditions for the use of linear ventilation models in the presence of buoyancy forces

    OpenAIRE

    Cao, Shijie; Meyers, Johan

    2014-01-01

    Low-dimensional discrete linear ventilation models have been studied by Cao and Meyers (2012). In the present study, we investigate the validity and applicability of linear ventilation models for heavy-gas dispersion by employing Reynolds-averaged Navier-Stokes (RANS) simulations. A simple benchmark ventilation case is considered under isothermal condition. Considering large density differences from pollutant gas and fresh air, the effect of buoyancy force has been taken into account in turbu...

  6. Existence and asymptotic behavior of the wave equation with dynamic boundary conditions

    KAUST Repository

    Graber, Philip Jameson

    2012-03-07

    The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.

  7. Improved Conditions for Global Asymptotic Stability of Cohen-Grossberg Neural Networks with Time-Varying Delays

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; CUI Bao-Tong; GAO Ming

    2008-01-01

    The global asymptotic stability of delayed Cohen-Grossberg neural networks with impulses is investigated. Based on the new suitable Lyapunov functions and the Jacobsthal inequality, a set of novel sufficient criteria are derived for the global asymptotic stability of Cohen-Grossberg neural networks with time-varying delays and impulses.An illustrative example with its numerical simulations is given to demonstrate the effectiveness of the obtained results.

  8. Asymptotic Expansions of the Heat Kernel of the Laplacian for General Annular Bounded Domains with Robin Boundary Conditions: Further Results

    Institute of Scientific and Technical Information of China (English)

    E. M. E. ZAYED

    2003-01-01

    The asymptotic expansions of the trace of the heat kernel Θ(t) = ∑∞ν=1 exp(-tλν) for smallpositive t, where {λν} are the eigenvalues of the negative Laplacian -△n = - ∑n i=1 ( / xi )2 in Rn(n= 2or 3), are studied for a general annular bounded domain Ω with a smooth inner boundary (e)Ω1 and asmooth outer boundary (e)Ω2, where a finite number of piecewise smooth Robin boundary conditions((e)/(e)nj+rj)φ=0 on the components γj(j = 1, ..., k)of (e)Ω1 and on teh components γj(j = 1, ..., m) of (e)Ω2 are considered such that( (e)Ω1+ukj=1 Fj and (e)Ω2=Umj=k+1Fj )and where the coefficients (rj(j=1,…,m))are piecewise smooth positive functions. Some applications of Θ(t) for an ideal gasenclosed in the general annular bounded domain Ω are given. Further results are also obtained.

  9. Theory of collisions between an atom and a diatomic molecule in the body-fixed coordinate system.)/sup a/ I. Coupled differential equation and asymptotic boundary conditions

    International Nuclear Information System (INIS)

    The body-fixed (BF) formulation for atom--diatom scatterings is developed to the extent that one can use it to perform accurate close-coupling calculation, without introducing further approximation except truncating a finite basis set of the target molecular wave function, on the same ground as one use the space-fixed (SF) formulation. In this formulation, the coupled differential equations are solved an the boundary conditions matched entirely in the BF coordinate system. A unitary transformation is used to obtain both the coupled differential equation and the boundary condition in BF system system from SF system. All properties of the solution with respect to parity are derived entirely from the transformation, without using the parity eignfunctions of the BF frame. Boundary conditions that yield the scattering (S) matrix and the reactance (R) matrix are presented for each parity in both the far asymptotic region (where the interaction and the centrifugal potentials are both negligible) and the near asymptotic region (where the interaction potential is negligible but the centrifugal potential is not). While our differential equations are the same as those derived by others with different methods, our asymptotic boundary conditions disagree with some existing ones. With a given form of the BF coupled differential equations, the acceptable boundary conditions are discussed

  10. Regular Variation and Smile Asymptotics

    OpenAIRE

    Benaim, Shalom; Friz, Peter

    2006-01-01

    We consider risk-neutral returns and show how their tail asymptotics translate directly to asymptotics of the implied volatility smile, thereby sharpening Roger Lee's celebrated moment formula. The theory of regular variation provides the ideal mathematical framework to formulate and prove such results. The practical value of our formulae comes from the vast literature on tail asymptotics and our conditions are often seen to be true by simple inspection of known results.

  11. Fractal asymptotics

    OpenAIRE

    Dettmann, Carl P.

    2002-01-01

    Recent advances in the periodic orbit theory of stochastically perturbed systems have permitted a calculation of the escape rate of a noisy chaotic map to order 64 in the noise strength. Comparison with the usual asymptotic expansions obtained from integrals and with a previous calculation of the electrostatic potential of exactly selfsimilar fractal charge distributions, suggests a remarkably accurate form for the late terms in the expansion, with parameters determined independently from the...

  12. On Asymptotically Efficient Estimation in Semiparametric Models

    OpenAIRE

    Schick, Anton

    1986-01-01

    A general method for the construction of asymptotically efficient estimates in semiparametric models is presented. It improves and modifies Bickel's (1982) construction of adaptive estimates and obtains asymptotically efficient estimates under conditions weaker than those in Bickel.

  13. A Note on Asymptotic Contractions

    Directory of Open Access Journals (Sweden)

    Marina Arav

    2006-12-01

    Full Text Available We provide sufficient conditions for the iterates of an asymptotic contraction on a complete metric space X to converge to its unique fixed point, uniformly on each bounded subset of X.

  14. A Note on Asymptotic Contractions

    Directory of Open Access Journals (Sweden)

    Castillo Santos Francisco Eduardo

    2007-01-01

    Full Text Available We provide sufficient conditions for the iterates of an asymptotic contraction on a complete metric space to converge to its unique fixed point, uniformly on each bounded subset of .

  15. Short-time Asymptotics of the Heat Kernel on Bounded Domain with Piecewise Smooth Boundary Conditions and Its Applications to an Ideal Gas

    Institute of Scientific and Technical Information of China (English)

    E.M.E. ZAYED

    2004-01-01

    The asymptotic expansion of the heat kernel Θ(t)(∞∑=(i=0))exp (-λi) where({λi}∞i=1) Are the eigen-values of negative Laplacian( -△n=-n∑k=1(θ/θxk)2)in Rn(n=2 or 3) is studied for short-time t for a general bounded domainθΩwith a smooth boundary θΩ.In this paper, we consider the case of a finite number of the Dirichlet conditions φ=0 on Γi (i = J +1,….,J)and the Neumann conditions and (θφ/θ vi) = 0 on Γi (i = J+1,…,k) and the Robin condition (θφ/θ vi+γi) θ=(I=k+1,… m) where γi are piecewise smooth positive impedancem(θφ=mUi=1Γi. )We construct the required asymptotics in the form of a power series over t. The senior coe.cients inthis series are speci.ed as functionals of the geometric shape of the domain Ω.This result is applied to calculatethe one-particle partition function of a "special ideal gas", i.e., the set of non-interacting particles set up in abox with Dirichlet, Neumann and Robin boundary conditions for the appropriate wave function. Calculationof the thermodynamic quantities for the ideal gas such as the internal energy, pressure and speci.c heat revealsthat these quantities alone are incapable of distinguishing between two di.erent shapes of the domain. Thisconclusion seems to be intuitively clear because it is based on a limited information given by a one-particlepartition function; nevertheless, its formal theoretical motivation is of some interest.

  16. Asymptotically hyperbolic connections

    Science.gov (United States)

    Fine, Joel; Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2016-09-01

    General relativity in four-dimensions can be equivalently described as a dynamical theory of {SO}(3)˜ {SU}(2)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analogue of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising ‘evolution’ equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the unconstrained by Einstein equations ‘stress-energy tensor’ appears at third order in the expansion. Another interesting feature of the connection formulation is that the ‘counter terms’ required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-defined requires the cosmological constant to be quantised. Finally, in the connection setting one can deform the 4D Einstein condition in an interesting way, and we show that asymptotically hyperbolic connection expansion is universal and valid for any of the deformed theories.

  17. Reinstatement of short-latency responses after asymptotic Pavlovian conditioning training by the presentation of an extraneous stimulus.

    Science.gov (United States)

    Vogel, Edgar H

    2012-01-01

    The purpose of this study was to examine whether the progressive disappearance of short-latency conditioned responses, or inhibition of delay, observed in Pavlovian conditioning with long inter-stimulus intervals, could be reverted by the presentation of a novel stimulus. In one experiment, two groups of rabbits received extensive training with a short (250 ms) or a long (1500 ms) tone that overlapped and terminated with a periorbital shock unconditioned stimulus. After training, the presentation of an extraneous stimulus prior to tone onset produced a reinstatement of short latency CRs in the group trained with the long CS, but did not affect CR latency in the group trained with the short CS. This finding is consistent with Pavlov's (1927) view that conditioning with long conditioned stimuli involves the acquisition of response tendencies in the early portion of the stimulus that are subsequently suppressed by the development of an inhibitory process.

  18. Local asymptotic normality and asymptotical minimax efficiency of the MLE under random censorship

    Institute of Scientific and Technical Information of China (English)

    王启华; 荆炳义

    2000-01-01

    Here we study the problems of local asymptotic normality of the parametric family of distri-butions and asymptotic minimax efficient estimators when the observations are subject to right censor-ing. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and fur-thermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.

  19. Local asymptotic normality and asymptotical minimax efficiency of the MLE under random censorship

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the observations are subject to right censoring. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and furthermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.

  20. Strings from 3D gravity: asymptotic dynamics of AdS 3 gravity with free boundary conditions

    OpenAIRE

    Apolo, Luis; Sundborg, Bo

    2015-01-01

    Pure three-dimensional gravity in anti-de Sitter space can be formulated as an SL(2,R) $\\times $ SL(2,R) Chern-Simons theory, and the latter can be reduced to a WZW theory at the boundary. In this paper we show that AdS$_3$ gravity with free boundary conditions is described by a string at the boundary whose target spacetime is also AdS$_3$. While boundary conditions in the standard construction of Coussaert, Henneaux, and van Driel are enforced through constraints on the WZW currents, we find...

  1. Comparing the asymptotic and empirical (un)conditional distributions of OLS and IV in a linear static simultaneous equation

    NARCIS (Netherlands)

    J.F. Kiviet; J. Niemczyk

    2012-01-01

    In designing Monte Carlo simulation studies for analyzing finite sample properties of econometric inference methods, one can use either IID drawings in each replication for any series of exogenous explanatory variables or condition on just one realization of these. The results will usually differ, a

  2. Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force

    CERN Document Server

    Grasselli, Maurizio

    2011-01-01

    We consider an approximation of the well-known Ericksen-Leslie model for the nematic liquid crystal flow proposed by F.-H. Lin et al. The evolution system consists of the Navier-Stokes equations coupled with a convective Ginzburg-Landau type equation for the (vector-valued) averaged molecular orientations. Here we suppose that the latter is subject to a time-dependent Dirichlet boundary condition h(t), while the Navier--Stokes equations are characterized by a no-slip boundary condition and by a time-dependent external force g(t). We show that, in 2D, each global weak solution converges to a single stationary state when h(t) and g(t) suitably converge to a time-independent boundary datum h_\\infty and 0, respectively. We also provide some estimates of the convergence rate. In the 3D case, we prove a similar long-time behavior for global strong solutions, provided that either the viscosity is large enough or the initial datum is close to a given equilibrium.

  3. Comparative assessment of continuum-scale models of bimolecular reactive transport in porous media under pre-asymptotic conditions

    Science.gov (United States)

    Porta, G. M.; Ceriotti, G.; Thovert, J.-F.

    2016-02-01

    We compare the ability of various continuum-scale models to reproduce the key features of a transport setting associated with a bimolecular reaction taking place in the fluid phase and numerically simulated at the pore-scale level in a disordered porous medium. We start by considering a continuum-scale formulation which results from formal upscaling of this reactive transport process by means of volume averaging. The resulting (upscaled) continuum-scale system of equations includes nonlocal integro-differential terms and the effective parameters embedded in the model are quantified directly through computed pore-scale fluid velocity and pore space geometry attributes. The results obtained through this predictive model formulation are then compared against those provided by available effective continuum models which require calibration through parameter estimation. Our analysis considers two models recently proposed in the literature which are designed to embed incomplete mixing arising from the presence of fast reactions under advection-dominated transport conditions. We show that best estimates of the parameters of these two models heavily depend on the type of data employed for model calibration. Our upscaled nonlocal formulation enables us to reproduce most of the critical features observed through pore-scale simulation without any model calibration. As such, our results clearly show that embedding into a continuum-scale model the information content associated with pore-scale geometrical features and fluid velocity yields improved interpretation of typically available continuum-scale transport observations.

  4. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  5. Explicit Disassociation of a Conditioned Stimulus and Unconditioned Stimulus during Extinction Training Reduces Both Time to Asymptotic Extinction and Spontaneous Recovery of a Conditioned Taste Aversion

    Science.gov (United States)

    Mickley, G. Andrew; DiSorbo, Anthony; Wilson, Gina N.; Huffman, Jennifer; Bacik, Stephanie; Hoxha, Zana; Biada, Jaclyn M.; Kim, Ye-Hyun

    2009-01-01

    Conditioned taste aversions (CTAs) may be acquired when an animal consumes a novel taste (CS) and then experiences the symptoms of poisoning (US). This aversion may be extinguished by repeated exposure to the CS alone. However, following a latency period in which the CS is not presented, the CTA will spontaneously recover (SR). In the current…

  6. Explicit disassociation of a conditioned stimulus and unconditioned stimulus during extinction training reduces both time to asymptotic extinction and spontaneous recovery of a conditioned taste aversion

    OpenAIRE

    Mickley, G Andrew; DiSorbo, Anthony; Wilson, Gina N.; Huffman, Jennifer; Bacik, Stephanie; Hoxha, Zana; Biada, Jaclyn M.; Kim, Ye-Hyun

    2009-01-01

    Conditioned taste aversions (CTAs) may be acquired when an animal consumes a novel taste (CS) and then experiences the symptoms of poisoning (US). This aversion may be extinguished by repeated exposure to the CS alone. However, following a latency period in which the CS is not presented, the CTA will spontaneously recover (SR). In the current study we employed an explicitly unpaired extinction procedure (EU-EXT) to determine if it could thwart SR of a CTA. Sprague-Dawley rats acquired a stron...

  7. Asymptotics and Borel summability

    CERN Document Server

    Costin, Ovidiu

    2008-01-01

    Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us

  8. Componentwise Asymptotic Stability of Continuous-Time Interval Systems

    Institute of Scientific and Technical Information of China (English)

    赵胜民; 唐万生; 李光泉; 李文秀

    2003-01-01

    A special type of asymptotic (exponential) stability, namely componentwise asymptotic (exponential) stability for the continuous-time interval system is investigated. A set-valued map that represents the constraint of the state of the system is defined. And, by applying the viability theory of differential equation, sufficient and necessary conditions for the componentwise asymptotical (exponential) stability of this kind of systems are given.

  9. Supersymmetric 3D gravity with torsion: asymptotic symmetries

    OpenAIRE

    Cvetkovic, B.; Blagojevic, M

    2007-01-01

    We study the structure of asymptotic symmetries in N=1+1 supersymmetric extension of three-dimensional gravity with torsion. Using a natural generalization of the bosonic anti-de Sitter asymptotic conditions, we show that the asymptotic Poisson bracket algebra of the canonical generators has the form of two independent super-Virasoro algebras with different central charges.

  10. Penrose type inequalities for asymptotically hyperbolic graphs

    CERN Document Server

    Dahl, Mattias; Sakovich, Anna

    2013-01-01

    In this paper we study asymptotically hyperbolic manifolds given as graphs of asymptotically constant functions over hyperbolic space $\\bH^n$. The graphs are considered as subsets of $\\bH^{n+1}$ and carry the induced metric. For such manifolds the scalar curvature appears in the divergence of a 1-form involving the integrand for the asymptotically hyperbolic mass. Integrating this divergence we estimate the mass by an integral over an inner boundary. In case the inner boundary satisfies a convexity condition this can in turn be estimated in terms of the area of the inner boundary. The resulting estimates are similar to the conjectured Penrose inequality for asymptotically hyperbolic manifolds. The work presented here is inspired by Lam's article concerning the asymptotically Euclidean case.

  11. Asymptotic and Exact Expansions of Heat Traces

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Michał, E-mail: michal@eckstein.pl [Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science (Poland); Zając, Artur, E-mail: artur.zajac@uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland)

    2015-12-15

    We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.

  12. ASYMPTOTIC QUANTIZATION OF PROBABILITY DISTRIBUTIONS

    Institute of Scientific and Technical Information of China (English)

    Klaus P(o)tzelberger

    2003-01-01

    We give a brief introduction to results on the asymptotics of quantization errors.The topics discussed include the quantization dimension,asymptotic distributions of sets of prototypes,asymptotically optimal quantizations,approximations and random quantizations.

  13. Weakly asymptotically hyperbolic manifolds

    CERN Document Server

    Allen, Paul T; Lee, John M; Allen, Iva Stavrov

    2015-01-01

    We introduce a class of "weakly asymptotically hyperbolic" geometries whose sectional curvatures tend to $-1$ and are $C^0$, but are not necessarily $C^1$, conformally compact. We subsequently investigate the rate at which curvature invariants decay at infinity, identifying a conformally invariant tensor which serves as an obstruction to "higher order decay" of the Riemann curvature operator. Finally, we establish Fredholm results for geometric elliptic operators, extending the work of Rafe Mazzeo and John M. Lee to this setting. As an application, we show that any weakly asymptotically hyperbolic metric is conformally related to a weakly asymptotically hyperbolic metric of constant negative curvature.

  14. ASYMPTOTIC STABILITIES OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    SHEN Yi; JIANG Ming-hui; LIAO Xiao-xin

    2006-01-01

    Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of t he solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained. The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.

  15. Asymptotic representation theorems for poverty indices

    OpenAIRE

    Lo, Gane Samb; Sall, Serigne Touba

    2010-01-01

    We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotics of the bulk of poverty indices and issues in poverty analysis. Our representation results uniformly hold on a large collection of poverty indices. They enable the continuous measure of poverty with longitudinal data.

  16. General smile asymptotics with bounded maturity

    OpenAIRE

    Francesco Caravenna; Jacopo Corbetta

    2014-01-01

    We provide explicit conditions on the distribution of risk-neutral log-returns which yield sharp asymptotic estimates on the implied volatility smile. We allow for a variety of asymptotic regimes, including both small maturity (with arbitrary strike) and extreme strike (with arbitrary bounded maturity), extending previous work of Benaim and Friz [Math. Finance 19 (2009), 1-12]. We present applications to popular models, including Carr-Wu finite moment logstable model, Merton's jump diffusion ...

  17. Quasi-extended asymptotic functions

    International Nuclear Information System (INIS)

    The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example

  18. Asymptotic cyclic cohomology

    CERN Document Server

    Puschnigg, Michael

    1996-01-01

    The aim of cyclic cohomology theories is the approximation of K-theory by cohomology theories defined by natural chain complexes. The basic example is the approximation of topological K-theory by de Rham cohomology via the classical Chern character. A cyclic cohomology theory for operator algebras is developed in the book, based on Connes' work on noncommutative geometry. Asymptotic cyclic cohomology faithfully reflects the basic properties and features of operator K-theory. It thus becomes a natural target for a Chern character. The central result of the book is a general Grothendieck-Riemann-Roch theorem in noncommutative geometry with values in asymptotic cyclic homology. Besides this, the book contains numerous examples and calculations of asymptotic cyclic cohomology groups.

  19. Introduction to asymptotics

    CERN Document Server

    Jones, D S

    1997-01-01

    Many branches of science and engineering involve applications of mathematical analysis. An important part of applied analysis is asymptotic approximation which is, therefore, an active area of research with new methods and publications being found constantly. This book gives an introduction to the subject sufficient for scientists and engineers to grasp the fundamental techniques, both those which have been known for some time and those which have been discovered more recently. The asymptotic approximation of both integrals and differential equations is discussed and the discussion includes hy

  20. On Virk's asymptote

    CERN Document Server

    tuoc, Trinh Khanh

    2010-01-01

    The Virk asymptote is shown to be similar in nature to the Karman buffer layer profile and does not represent a new log-law with a modified mixing-length. It is simply part of the wall layer velocity profile but is extended because of the increase in wall layer thickness in drag reduction flows. The friction factors at the maximum drag reduction asymptote correspond to velocity profiles consisting of a wall layer and a law of the wake sub-region. Maximum drag reduction results in the suppression of the law of the wake and full relaminarisation of the flow.

  1. Asymptotic freedom, asymptotic flatness and cosmology

    CERN Document Server

    Kiritsis, Elias

    2013-01-01

    Holographic RG flows in some cases are known to be related to cosmological solutions. In this paper another example of such correspondence is provided. Holographic RG flows giving rise to asymptotically-free $\\beta$-functions have been analyzed in connection with holographic models of QCD. They are shown upon Wick rotation to provide a large class of inflationary models with logarithmically soft inflaton potentials. The scalar spectral index is universal and depends only on the number of e-foldings. The ratio of tensor to scalar power depends on the single extra real parameter that defines this class of models. The Starobinsky inflationary model as well as the recently proposed models of T-inflation are members of this class. The holographic setup gives a completely new (and contrasting) view to the stability and other problems of such inflationary models.

  2. On the Asymptotic Distribution of Signal Fraction

    CERN Document Server

    Volobouev, Igor

    2016-01-01

    Condition of the asymptotic normality of the signal fraction estimate by maximum likelihood is derived under the null hypothesis of no signal. Consequences of this condition for determination of signal significance taking in to account the look elsewhere effect are discussed.

  3. Asymptotic safety guaranteed

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Sannino, Francesco

    2014-01-01

    We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...

  4. On Asymptotically Orthonormal Sequences

    OpenAIRE

    Fricain, Emmanuel; Rupam, Rishika

    2016-01-01

    An asymptotically orthonormal sequence is a sequence which is 'nearly' orthonormal in the sense that it satisfies the Parseval equality up to two constants close to one. In this paper, we explore such sequences formed by normalized reproducing kernels of model spaces and de Branges Rovnyak spaces.

  5. An asymptotical machine

    Science.gov (United States)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  6. Liapunov structure and asymptotic expressions of linear differential systems

    Institute of Scientific and Technical Information of China (English)

    高维新

    1996-01-01

    With a view to the researches on asymptotic properties for linear differential systems,the characteristic number is transformed into functional dass which can indicate the change trend of the norm for solution,so the invariant structure is given under Liapunov changes and feasible computational method of asymptotic expressions for linear differential systems with variant coefficients,and various asymptotic conclusions induding the necessary and sufllcient conditions of stability are got.

  7. Singularities in asymptotically anti-de Sitter spacetimes

    OpenAIRE

    Ishibashi, Akihiro; Maeda, Kengo

    2012-01-01

    We consider singularity theorems in asymptotically anti-de Sitter (AdS) spacetimes. In the first part, we discuss the global methods used to show geodesic incompleteness and see that when the conditions imposed in Hawking and Penrose's singularity theorem are satisfied, a singularity must appear in asymptotically AdS spacetime. The recent observations of turbulent instability of asymptotically AdS spacetimes indicate that AdS spacetimes are generically singular even if a closed trapped surfac...

  8. Asymptotic parameterization in inverse limit spaces of dendrites

    OpenAIRE

    Hamilton, Brent

    2012-01-01

    In this paper, we study asymptotic behavior arising in inverse limit spaces of dendrites. In particular, the inverse limit is constructed with a single unimodal bonding map, for which points have unique itineraries and the critical point is periodic. Using symbolic dynamics, sufficient conditions for two rays in the inverse limit space to have asymptotic parameterizations are given. Being a topological invariant, the classification of asymptotic parameterizations would be a useful tool when d...

  9. Optimistic Agents are Asymptotically Optimal

    OpenAIRE

    Sunehag, Peter; Hutter, Marcus

    2012-01-01

    We use optimism to introduce generic asymptotically optimal reinforcement learning agents. They achieve, with an arbitrary finite or compact class of environments, asymptotically optimal behavior. Furthermore, in the finite deterministic case we provide finite error bounds.

  10. Asymptotic Flatness in Rainbow Gravity

    OpenAIRE

    Hackett, Jonathan

    2005-01-01

    A construction of conformal infinity in null and spatial directions is constructed for the Rainbow-flat space-time corresponding to doubly special relativity. From this construction a definition of asymptotic DSRness is put forward which is compatible with the correspondence principle of Rainbow gravity. Furthermore a result equating asymptotically flat space-times with asymptotically DSR spacetimes is presented.

  11. Asymptotically hyperbolic connections

    CERN Document Server

    Fine, Joel; Krasnov, Kirill; Scarinci, Carlos

    2015-01-01

    General Relativity in 4 dimensions can be equivalently described as a dynamical theory of SO(3)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analog of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising "evolution" equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the obstruction appears at third order in the expansion. Another interesting feature of the connection formulation is that the "counter terms" required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-d...

  12. Asymptotic Behavior of Solutions to a Linear Volterra Integrodifferential System

    Directory of Open Access Journals (Sweden)

    Yue-Wen Cheng

    2013-01-01

    Full Text Available We investigate the asymptotic behavior of solutions to a linear Volterra integrodifferential system , We show that under some suitable conditions, there exists a solution for the above integrodifferential system, which is asymptotically equivalent to some given functions. Two examples are given to illustrate our theorem.

  13. Global asymptotic stability of delay BAM neural networks with impulses

    Energy Technology Data Exchange (ETDEWEB)

    Lou Xuyang [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China); Cui Baotong [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China)]. E-mail: btcui@sohu.com

    2006-08-15

    The global asymptotic stability of delay bi-directional associative memory neural networks with impulses are studied by constructing suitable Lyapunov functional. Sufficient conditions, which are independent to the delayed quantity, are obtained for the global asymptotic stability of the neural networks. Some illustrative examples are given to demonstrate the effectiveness of the obtained results.

  14. Asymptotic behavior of the number of Eulerian orientations of graphs

    CERN Document Server

    Isaev, Mikhail

    2011-01-01

    We consider the class of simple graphs with large algebraic connectivity (the second-smallest eigenvalue of the Laplacian matrix). For this class of graphs we determine the asymptotic behavior of the number of Eulerian orientations. In addition, we establish some new properties of the Laplacian matrix, as well as an estimate of a conditionality of matrices with the asymptotic diagonal predominance

  15. Asymptotic theory of relativistic, magnetized jets.

    Science.gov (United States)

    Lyubarsky, Yuri

    2011-01-01

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors. PMID:21405769

  16. Asymptotic Black Holes

    CERN Document Server

    Ho, Pei-Ming

    2016-01-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  17. Asymptotically Safe Grand Unification

    CERN Document Server

    Bajc, Borut

    2016-01-01

    Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.

  18. Asymptotic admissibility of priors and elliptic differential equations

    CERN Document Server

    Hartigan, J A

    2010-01-01

    We evaluate priors by the second order asymptotic behavior of the corresponding estimators.Under certain regularity conditions, the risk differences between efficient estimators of parameters taking values in a domain D, an open connected subset of R^d, are asymptotically expressed as elliptic differential forms depending on the asymptotic covariance matrix V. Each efficient estimator has the same asymptotic risk as a 'local Bayes' estimate corresponding to a prior density p. The asymptotic decision theory of the estimators identifies the smooth prior densities as admissible or inadmissible, according to the existence of solutions to certain elliptic differential equations. The prior p is admissible if the quantity pV is sufficiently small near the boundary of D. We exhibit the unique admissible invariant prior for V=I,D=R^d-{0). A detailed example is given for a normal mixture model.

  19. ASYMPTOTIC SOLUTION TO NONLINEAR ECOLOGICAL REACTION DIFFUSION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Nonlinear ecological species group singularly perturbed initial boundary value problems for reaction diffusion systems are considered. Under suitable conditions, using the theory of differential inequalities, the existence and asymptotic behavior of solution to initial boundary value problems are studied.

  20. Asymptotical Properties for Parabolic Systems of Neutral Type

    Institute of Scientific and Technical Information of China (English)

    CUI Bao-tong; HAN Mao-an

    2005-01-01

    Asymptotical properties for the solutions of neutral parabolic systems with Robin boundary conditions were analyzed by using the inequality analysis. The oscillations problems for the neutral parabolic systems were considered and some oscillation criteria for the systems were established.

  1. Asymptotic formula for eigenvalues of one dimensional Dirac system

    Science.gov (United States)

    Ulusoy, Ismail; Penahlı, Etibar

    2016-06-01

    In this paper, we study the spectral problem for one dimensional Dirac system with Dirichlet boundary conditions. By using Counting lemma, we give an asymptotic formulas of eigenvalues of Dirac system.

  2. Asymptotic stability properties of θ-methods for delay differential equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Deals with the asymptotic stability properties of θ- methods for the pantograph equation and the linear delay differential-algebraic equation with emphasis on the linear θ- methods with variable stepsize schemes for the pantograph equation, proves that asymptotic stability is obtained if and only if θ > 1/2, and studies further the one-leg θ- method for the linear delay differential-algebraic equation and establishes the sufficient asymptotic-ally differential-algebraic stable condition θ = 1.

  3. On asymptotics for difference equations

    NARCIS (Netherlands)

    Rafei, M.

    2012-01-01

    In this thesis a class of nonlinear oscillator equations is studied. Asymptotic approximations of first integrals for nonlinear difference equations are constructed by using the recently developed perturbation method based on invariance vectors. The asymptotic approximations of the solutions of the

  4. Asymptotic behavior of generalized functions

    CERN Document Server

    Pilipović, Stevan; Vindas, Jasson

    2012-01-01

    The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed approaches related to generalized functions are those of Vladimirov, Drozhinov and Zavyalov, and that of Kanwal and Estrada. The first approach is followed by the authors of this book and extended in the direction of the S-asymptotics. The second approach — of Estrada, Kanwal and Vindas — is related to moment asymptotic expansions of generalized functions and the Ces'aro behavior. The main features of this book are the uses of strong methods of functional analysis and applications to the analysis of asymptotic behavior of solutions to partial differential equations, Abelian and Tauberian type theorems for integral transforms as well as for the summability of Fourier series and integrals. The book can be used by...

  5. Theorems for Asymptotic Safety of Gauge Theories

    CERN Document Server

    Bond, Andrew D

    2016-01-01

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.

  6. ASYMPTOTICS OF MEAN TRANSFORMATION ESTIMATORS WITH ERRORS IN VARIABLES MODEL

    Institute of Scientific and Technical Information of China (English)

    CUI Hengjian

    2005-01-01

    This paper addresses estimation and its asymptotics of mean transformation θ = E[h(X)] of a random variable X based on n iid. Observations from errors-in-variables model Y = X + v, where v is a measurement error with a known distribution and h(.) is a known smooth function. The asymptotics of deconvolution kernel estimator for ordinary smooth error distribution and expectation extrapolation estimator are given for normal error distribution respectively. Under some mild regularity conditions, the consistency and asymptotically normality are obtained for both type of estimators. Simulations show they have good performance.

  7. Semilocal density functional theory with correct surface asymptotics

    Science.gov (United States)

    Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio

    2016-03-01

    Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.

  8. Black hole thermodynamics from a variational principle: Asymptotically conical backgrounds

    CERN Document Server

    An, Ok Song; Papadimitriou, Ioannis

    2016-01-01

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for $\\mathcal{N}=2$ STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called `subtracted geometries'. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associat...

  9. Asymptotic algebra of quantum electrodynamics

    OpenAIRE

    Herdegen, Andrzej

    2004-01-01

    The Staruszkiewicz quantum model of the long-range structure in electrodynamics is reviewed in the form of a Weyl algebra. This is followed by a personal view on the asymptotic structure of quantum electrodynamics.

  10. Asymptotic Dynamics of Monopole Walls

    CERN Document Server

    Cross, R

    2015-01-01

    We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.

  11. Exponential asymptotics and gravity waves

    OpenAIRE

    Chapman, S. J.; Vanden-Broeck, J.

    2006-01-01

    The problem of irrotational inviscid incompressible free-surface flow is examined in the limit of small Froude number. Since this is a singular perturbation, singularities in the flow field (or its analytic continuation) such as stagnation points, or corners in submerged objects or on rough beds, lead to a divergent asymptotic expansion, with associated Stokes lines. Recent techniques in exponential asymptotics are employed to observe the switching on of exponentially small gravity waves acro...

  12. Asymptotic dynamics of three-dimensional gravity

    CERN Document Server

    Donnay, Laura

    2016-01-01

    These are the lectures notes of the course given at the Eleventh Modave Summer School in Mathematical Physics, 2015, aimed at PhD candidates and junior researchers in theoretical physics. We review in details the result of Coussaert-Henneaux-van Driel showing that the asymptotic dynamics of $(2+1)$- dimensional gravity with negative cosmological constant is described at the classical level by Liouville theory. Boundary conditions implement the asymptotic reduction in two steps: the first set reduces the $SL(2,\\mathbb R)\\times SL(2,\\mathbb R)$ Chern-Simons action, equivalent to the Einstein action, to a non-chiral $SL(2,\\mathbb R)$ Wess-Zumino-Witten model, while the second set imposes constraints on the WZW currents that reduce further the action to Liouville theory. We discuss the issues of considering the latter as an effective description of the dual conformal field theory describing AdS$_3$ gravity beyond the semi-classical regime.

  13. Asymptotically Honest Confidence Regions for High Dimensional

    DEFF Research Database (Denmark)

    Caner, Mehmet; Kock, Anders Bredahl

    While variable selection and oracle inequalities for the estimation and prediction error have received considerable attention in the literature on high-dimensional models, very little work has been done in the area of testing and construction of confidence bands in high-dimensional models. However......, in a recent paper van de Geer et al. (2014) showed how the Lasso can be desparsified in order to create asymptotically honest (uniform) confidence band. In this paper we consider the conservative Lasso which penalizes more correctly than the Lasso and hence has a lower estimation error. In particular, we...... of the asymptotic covariance matrix of an increasing number of parameters which is robust against conditional heteroskedasticity. To our knowledge we are the first to do so. Next, we show that our confidence bands are honest over sparse high-dimensional sub vectors of the parameter space and that they contract...

  14. Asymptotically Lifshitz Brane-World Black Holes

    CERN Document Server

    Ranjbar, Arash; Shahidi, Shahab

    2012-01-01

    We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We show that although the Lifshitz space-time cannot be considered as a vacuum solution of the RSII brane-world, the asymptotically Lifshitz solution can. We then study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the condition on the positivity of entropy imposes an upper bound on the critical exponent $z$. This maximum value of $z$ corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed.

  15. Polynomial Asymptotes of the Second Kind

    Science.gov (United States)

    Dobbs, David E.

    2011-01-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…

  16. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  17. Asymptotics for restricted integer compositions

    CERN Document Server

    Malandro, Martin E

    2011-01-01

    We study the compositions of an integer n where the part sizes of the compositions are restricted to lie in a finite set. We obtain asymptotic formulas for the number of such compositions, the total and average number of parts among all such compositions, and the total and average number of times a particular part size appears among all such compositions. Several of our asymptotics have the additional property that their absolute errors---not just their percentage errors---go to 0 as n goes to infinity. Along the way we also obtain recurrences and generating functions for calculating several of these quantities. Our asymptotic formulas come from the meromorphic analysis of our generating functions. Our results also apply to questions about certain kinds of tilings and rhythm patterns.

  18. Ruin problems and tail asymptotics

    DEFF Research Database (Denmark)

    Rønn-Nielsen, Anders

    The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...... by an underlying Harris recurrent Markov process some asymptotic results for the ruin probability are derived. Finally, a paper, which is separate in content from the rest of the thesis, treats a RESTART problem in the situation, where failures occur with decreasing intensity....

  19. Asymptotic freedom for nonrelativistic confinement

    International Nuclear Information System (INIS)

    Some aspects of asymptotic freedom are discussed in the context of a simple two-particle nonrelativistic confining potential model. In this model, asymptotic freedom follows from the similarity of the free-particle and bound state radial wave functions at small distances and for the same angular momentum and the same large energy. This similarity, which can be understood using simple quantum mechanical arguments, can be used to show that the exact response function approaches that obtained when final state interactions are ignored. A method of calculating corrections to this limit is given, and explicit examples are given for the case of a harmonic oscillator

  20. Asymptotic risks of Viterbi segmentation

    CERN Document Server

    Kuljus, Kristi

    2010-01-01

    We consider the maximum likelihood (Viterbi) alignment of a hidden Markov model (HMM). In an HMM, the underlying Markov chain is usually hidden and the Viterbi alignment is often used as the estimate of it. This approach will be referred to as the Viterbi segmentation. The goodness of the Viterbi segmentation can be measured by several risks. In this paper, we prove the existence of asymptotic risks. Being independent of data, the asymptotic risks can be considered as the characteristics of the model that illustrate the long-run behavior of the Viterbi segmentation.

  1. Comment on Asymptotically Safe Inflation

    CERN Document Server

    Tye, S -H Henry

    2010-01-01

    We comment on Weinberg's interesting analysis of asymptotically safe inflation (arXiv:0911.3165). We find that even if the gravity theory exhibits an ultraviolet fixed point, the energy scale during inflation is way too low to drive the theory close to the fixed point value. We choose the specific renormalization groupflow away from the fixed point towards the infrared region that reproduces the Newton's constant and today's cosmological constant. We follow this RG flow path to scales below the Planck scale to study the stability of the inflationary scenario. Again, we find that some fine tuning is necessary to get enough efolds of infflation in the asymptotically safe inflationary scenario.

  2. BIHARMONIC EQUATIONS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    Liu Yue; Wang Zhengping

    2007-01-01

    This article considers the equation △2u = f(x, u)with boundary conditions either u|(a)Ω = (a)u/(a)n|(a)Ω = 0 or u|(a)Ω = △u|(a)Ω = 0, where f(x,t) is asymptotically linear with respect to t at infinity, and Ω is a smooth bounded domain in RN, N > 4. By a variant version of Mountain Pass Theorem, it is proved that the above problems have a nontrivial solution under suitable assumptions of f(x, t).

  3. Asymptotic curved interface models in piezoelectric composites

    Science.gov (United States)

    Serpilli, Michele

    2016-10-01

    We study the electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic shell-like thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic analysis in a general curvilinear framework. After defining a small real dimensionless parameter ε, which will tend to zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong piezoelectric curved interface models, respectively. Moreover, we identify the non-classical electromechanical transmission conditions at the interface between the two three-dimensional bodies.

  4. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  5. Asymptotic expansions of Jacobi functions

    International Nuclear Information System (INIS)

    The author presents an asymptotic expansion of the Jacobi polynomials which is based on the fact, that these polynomials are special hypergeometric functions. He uses an integral representation of these functions and expands the integrand in a power series. He derives explicit error bounds on this expansion. (HSI)

  6. Asymptotics of weighted random sums

    DEFF Research Database (Denmark)

    Corcuera, José Manuel; Nualart, David; Podolskij, Mark

    2014-01-01

    In this paper we study the asymptotic behaviour of weighted random sums when the sum process converges stably in law to a Brownian motion and the weight process has continuous trajectories, more regular than that of a Brownian motion. We show that these sums converge in law to the integral of the...

  7. Inaccurate usage of asymptotic formulas

    CERN Document Server

    Maj, R; Maj, Radoslaw; Mrowczynski, Stanislaw

    2004-01-01

    The asymptotic form of the plane-wave decomposition into spherical waves, which is often used, in particular, to express the scattering amplitude through the phase shifts, is incorrect. We precisely explain why it is incorrect and show how to circumvent mathematical inconsistency.

  8. Singularities in asymptotically anti-de Sitter spacetimes

    CERN Document Server

    Ishibashi, Akihiro

    2012-01-01

    We consider singularity theorems in asymptotically anti-de Sitter (AdS) spacetimes. In the first part, we discuss the global methods used to show geodesic incompleteness and see that when the conditions imposed in Hawking and Penrose's singularity theorem are satisfied, a singularity must appear in asymptotically AdS spacetime. The recent observations of turbulent instability of asymptotically AdS spacetimes indicate that AdS spacetimes are generically singular even if a closed trapped surface, which is one of the main conditions of the Hawking and Penrose theorem, does not exist in the initial hypersurface. This may lead one to expect to obtain a singularity theorem without imposing the existence of a trapped set in asymptotically AdS spacetimes. This, however, does not appear to be the case. We consider, within the use of global methods, two such attempts and discuss difficulties in eliminating conditions concerning a trapped set from singularity theorems in asymptotically AdS spacetimes. Then in the second...

  9. Global Uniform Asymptotic Stability of Competitive Neural Networks with Different-Time Scales and Delay

    Institute of Scientific and Technical Information of China (English)

    LI Hong; L(U) Shu; ZHONG Shou-ming

    2005-01-01

    The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.

  10. Asymptotic safety goes on shell

    International Nuclear Information System (INIS)

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters. (paper)

  11. Asymptotic safety goes on shell

    Science.gov (United States)

    Benedetti, Dario

    2012-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.

  12. Exponential asymptotics and capillary waves

    OpenAIRE

    Chapman, S. J.; Vanden-Broeck, J.

    2002-01-01

    Recently developed techniques in exponential asymptotics beyond all orders are employed on the problem of potential flows with a free surface and small surface tension, in the absence of gravity. Exponentially small capillary waves are found to be generated on the free surface where the equipotentials from singularities in the flow (for example, stagnation points and corners) meet it. The amplitude of these waves is determined, and the implications are considered for many quite general flows....

  13. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...... degrees of freedom of these theories to next-to-next-to-leading order in the coupling constants....

  14. Asymptotic Excisions of Metric Spaces and Ideals of Asymptotic Coarse Roe Algebras

    Institute of Scientific and Technical Information of China (English)

    LI Jin-xiu; WANG Qin

    2006-01-01

    We introduce in this note the notions of asymptotic excision of proper metric spaces and asymptotic equivalence relation for subspaces of metric spaces, which are relevant in characterizing spatial ideals of the asymptotic coarse Roe algebras. We show that the lattice of the asymptotic equivalence classes of the subspaces of a proper metric space is isomorphic to the lattice of the spatial ideals of the asymptotic Roe algebra. For asymptotic excisions of the metric space, we also establish a Mayer-Vietoris sequence in K-theory of the asymptotic coarse Roe algebras.

  15. Asymptotically thermal responses for smoothly switched detectors

    CERN Document Server

    Fewster, Christopher J; Louko, Jorma

    2015-01-01

    Thermal phenomena in quantum field theory can be detected with the aid of particle detectors coupled to quantum fields along stationary worldlines, by testing whether the response of such a detector satisfies the detailed balance version of the KMS condition at a constant temperature. This relation holds when the interaction between the field and the detector has infinite time duration. Operationally, however, detectors interact with fields for a finite amount of time, controlled by a switching function of compact support, and the KMS detailed balance condition cannot hold exactly for finite time interactions at arbitrarily large detector energy gap. In this large energy gap regime, we show that, for an adiabatically switched Rindler detector, the Unruh temperature emerges asymptotically after the detector and the field have interacted for a time that is polynomially long in the large energy. We comment on the significance of the adiabaticity assumption in this result.

  16. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  17. Asymptotic structure of the Einstein-Maxwell theory on AdS$_{3}$

    CERN Document Server

    Perez, Alfredo; Tempo, David; Troncoso, Ricardo

    2015-01-01

    The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to $\\mathbb{R}\\otimes U\\left(1\\right)\\otimes U\\left(1\\right)$. Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized b...

  18. Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation

    Institute of Scientific and Technical Information of China (English)

    HUANG Qiong-Wei; TANG Jia-Shi

    2011-01-01

    Stability and dynamic bifurcation in the perturbed Kuramoto-Sivashinsky (KS) equation with Dirichlet boundary condition are investigated by using central manifold reduction procedure.The result shows, as the bifurcation parameter crosses a critical value, the system undergoes a pitchfork bifurcation to produce two asymptotically stable solutions.Furthermore, when the distance from bifurcation is of comparable order ∈2 (|∈| (≤) 1), the first two terms in e-expansions for the new asymptotic bifurcation solutions are derived by multiscale expansion method.Such information is useful to the bifurcation control.

  19. Conformal Phase Diagram of Complete Asymptotically Free Theories

    CERN Document Server

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the ultraviolet and infrared fixed point structure of gauge-Yukawa theories featuring a single gauge coupling, Yukawa coupling and scalar self coupling. Our investigations are performed using the two loop gauge beta function, one loop Yukawa beta function and one loop scalar beta function. We provide the general conditions that the beta function coefficients must abide for the theory to be completely asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special trajectories in coupling space along which some couplings are both asymptotically safe and infrared conformal.

  20. Dynamics of loops: asymptotic freedom and quark confinement

    International Nuclear Information System (INIS)

    New manifestly gauge invariant diagram technique in the loop space is developed. For that purpose a boot-strap ' equation, determining the self-consistent asymptotics, is solved in the framework of the perturbation theory. The boot-strap equation is equivalent to the system including the Bianchi identity and the planar equation accompanied by Euclidean boundary conditions. It is shown that the area law of quark confinement is a self-consistent solution of the boot-strap equation. The frame diagrams constructed by means of certain operator technique reproduce asymptotic freedom in the ultraviolet range

  1. Asymptotic distributions for a class of generalized $L$-statistics

    CERN Document Server

    Borovskikh, Yuri V; 10.3150/09-BEJ240

    2010-01-01

    We adapt the techniques in Stigler [Ann. Statist. 1 (1973) 472--477] to obtain a new, general asymptotic result for trimmed $U$-statistics via the generalized $L$-statistic representation introduced by Serfling [Ann. Statist. 12 (1984) 76--86]. Unlike existing results, we do not require continuity of an associated distribution at the truncation points. Our results are quite general and are expressed in terms of the quantile function associated with the distribution of the $U$-statistic summands. This approach leads to improved conditions for the asymptotic normality of these trimmed $U$-statistics.

  2. The Asymptotic Limit for the 3D Boussinesq System

    Institute of Scientific and Technical Information of China (English)

    LI Lin-rui; WANG Ke; HONG Ming-li

    2016-01-01

    In this paper, we show the asymptotic limit for the 3D Boussinesq system with zero viscosity limit or zero diffusivity limit. By the classical energy method, we prove that as viscosity(or diffusivity) coefficient goes to zero the solutions of the fully viscous equations converges to those of zero viscosity(or zero diffusivity) equations, which extend the previous results on the asymptotic limit under the conditions of the zero parameter(zero viscosityν=0 or zero diffusivityη=0) in 2D case separately.

  3. Asymptotic Distribution of the Jump Change-Point Estimator

    Institute of Scientific and Technical Information of China (English)

    Changchun TAN; Huifang NIU; Baiqi MIAO

    2012-01-01

    The asymptotic distribution of the change-point estimator in a jump changepoint model is considered.For the jump change-point model Xi =a + θI{[nTo] < i ≤n} + εi,where εi (i =1,…,n) are independent identically distributed random variables with Eεi=0 and Var(εi) < oo,with the help of the slip window method,the asymptotic distribution of the jump change-point estimator (T) is studied under the condition of the local alternative hypothesis.

  4. Asymptotic traveling wave solution for a credit rating migration problem

    Science.gov (United States)

    Liang, Jin; Wu, Yuan; Hu, Bei

    2016-07-01

    In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.

  5. Tail asymptotics for dependent subexponential differences

    DEFF Research Database (Denmark)

    Albrecher, H; Asmussen, Søren; Kortschak, D.

    We study the asymptotic behavior of P(X − Y > u) as u → ∞, where X is subexponential and X, Y are positive random variables that may be dependent. We give criteria under which the subtraction of Y does not change the tail behavior of X. It is also studied under which conditions the comonotonic...... copula represents the worst-case scenario for the asymptotic behavior in the sense of minimizing the tail of X − Y and an explicit construction of the worst-case copula is provided in the other cases....

  6. ON ASYMPTOTIC NORMALITY OF PARAMETERS IN MULTIPLE LINEAR ERRORS-IN-VARIABLES MODEL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sanguo; CHEN Xiru

    2003-01-01

    This paper studies the parameter estimation of multiple dimensional linear errors-in-variables (EV) models in the case where replicated observations are available in some experimental points. Asymptotic normality is established under mild conditions, and the parameters entering the asymptotic variance are consistently estimated to render the result useable in the construction of large-sample confidence regions.

  7. New explicit global asymptotic stability criteria for higher order difference equations

    Science.gov (United States)

    El-Morshedy, Hassan A.

    2007-12-01

    New explicit sufficient conditions for the asymptotic stability of the zero solution of higher order difference equations are obtained. These criteria can be applied to autonomous and nonautonomous equations. The celebrated Clark asymptotic stability criterion is improved. Also, applications to models from mathematical biology and macroeconomics are given.

  8. PERMANENCE AND ASYMPTOTIC PROPERTIES OF NONLINEAR DELAY DIFFERENCE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    李万同

    2003-01-01

    The asymptotic behavior of a class of nonlinear delay difference equation was studied. Some sufficient conditions are obtained for permanence and global attractivity . The results can be applied to a clays of nonlinear delay difference equations and to the delay discrete Logistic model and some known results are included.

  9. ASYMPTOTIC PROPERTIES OF MLE FOR WEIBULL DISTRIBUTION WITH GROUPED DATA

    Institute of Scientific and Technical Information of China (English)

    XUE Hongqi; SONG Lixin

    2002-01-01

    A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, strongly consistent, asymptotically normal, and satisfy the law of iterated logarithm. Newton iter- ation algorithm is also considered, which converges to the unique solution of the likelihood equation. Moreover, we extend these results to a random case.

  10. On global asymptotic controllability of planar affine nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    SUN Yimin; GUO Lei

    2005-01-01

    In this paper, we present a necessary and sufficient condition for globally asymptotic controllability of the general planar affine nonlinear systems with single-input.This result is obtained by introducing a new method in the analysis, which is based on the use of some basic results in planar topology and in the geometric theory of ordinary differential equations.

  11. Fast evaluation of asymptotic waveforms from gravitational perturbations

    CERN Document Server

    Benedict, Alex G; Lau, Stephen R

    2012-01-01

    In the context of blackhole perturbation theory, we describe both exact evaluation of an asymptotic waveform from a time series recorded at a finite radial location and its numerical approximation. From the user's standpoint our technique is easy to implement, affords high accuracy, and works for both axial (Regge-Wheeler) and polar (Zerilli) sectors. Our focus is on the ease of implementation with publicly available numerical tables, either as part of an existing evolution code or a post-processing step. Nevertheless, we also present a thorough theoretical discussion of asymptotic waveform evaluation and radiation boundary conditions, which need not be understood by a user of our methods. In particular, we identify (both in the time and frequency domains) analytical asymptotic waveform evaluation kernels, and describe their approximation by techniques developed by Alpert, Greengard, and Hagstrom. This paper also presents new results on the evaluation of far-field signals for the ordinary (acoustic) wave equa...

  12. Structure and asymptotic theory for nonlinear models with GARCH errors

    Directory of Open Access Journals (Sweden)

    Felix Chan

    2015-01-01

    Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.

  13. Asymptotics of robust utility maximization

    CERN Document Server

    Knispel, Thomas

    2012-01-01

    For a stochastic factor model we maximize the long-term growth rate of robust expected power utility with parameter $\\lambda\\in(0,1)$. Using duality methods the problem is reformulated as an infinite time horizon, risk-sensitive control problem. Our results characterize the optimal growth rate, an optimal long-term trading strategy and an asymptotic worst-case model in terms of an ergodic Bellman equation. With these results we propose a duality approach to a "robust large deviations" criterion for optimal long-term investment.

  14. Asymptotics for Associated Random Variables

    CERN Document Server

    Oliveira, Paulo Eduardo

    2012-01-01

    The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting

  15. Asymptotic black hole quasinormal frequencies

    OpenAIRE

    Motl, Lubos; Neitzke, Andrew

    2003-01-01

    We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d greater than or equal to 4 and Reissner-Nordstrom black holes in d = 4, in the limit of infinite damping. For Schwarzschild in d greater than or equal to 4 we find that the asymptotic real part is THawkinglog(3) for scalar perturbations and for some gravitational perturbations; this confirms a result previously obtained by other means in the case d = 4. For Reissner-Nordstrom in d = 4 w...

  16. Vortex shedding by matched asymptotic vortex method

    Science.gov (United States)

    Guo, Xinjun; Mandre, Shreyas

    2014-11-01

    An extension of the Kutta condition, using matched asymptotic expansion applied to the Navier-Stokes equations, is presented for flow past a smooth body at high Reynolds number. The goal is to study the influence of unsteady fluid dynamical effects like leading edge vortex, unsteady boundary layer separation, etc. In order to capture accurately the location and strength of vortex shedding, the simplified Navier-Stokes equations in the form of boundary layer approximation are solved in the thin inner region close to the solid body. In the outer region far from the structure, the vortex methods are applied, which significantly reduces the computational cost compared to CFD in the whole domain. With this method, the flow past an airfoil with two degrees of freedom, pitching and heaving, is investigated.

  17. Traversable asymptotically flat wormholes in Rastall gravity

    CERN Document Server

    Moradpour, H

    2016-01-01

    Having introduced the Rastall gravitational theory, and by virtue of the fact that this theory has two unknown parameters, we take the Newtonian limit to define a new parameter for Rastall gravitational theory; a useful dimensionless parameter for simplifying calculations in the Rastall framework. Equipped with basics of the theory, we study the properties of traversable asymptotically flat wormholes in Rastall framework. Then, we investigate the possibility of supporting such geometries by a source with the same state parameter as that of the baryonic matters. Our survey indicates that the parameters of Rastall theory affect the wormhole parameters. It also shows the weak energy condition is violated for all of the studied cases. We then come to investigate the possibility of supporting such geometries by a source of negative energy density and the same state parameter as that of dark energy. Such dark energy-like sources have positive radial and transverse pressures.

  18. The maximum drag reduction asymptote

    Science.gov (United States)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  19. The maximum drag reduction asymptote

    Science.gov (United States)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  20. Asymptotically Free Gauge Theories. I

    Science.gov (United States)

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  1. Asymptotic black hole quasinormal frequencies

    CERN Document Server

    Motl, L; Motl, Lubos; Neitzke, Andrew

    2003-01-01

    We give a simple derivation of the quasinormal frequencies of Schwarzschild black holes in d>=4 and non-extremal Reissner-Nordstrom black holes in d=4, in the limit of infinite damping. For Schwarzschild in d=4 the asymptotic real part of the frequency is (T_Hawking)log(1+2cos(pi.j)), where j is the spin of the perturbation; this confirms a result previously obtained by other means. For Schwarzschild in d>4 we find that the asymptotic real part is (T_Hawking)log(3) for scalar perturbations. For non-extremal Reissner-Nordstrom in d=4 we find a specific but generally aperiodic behavior for the quasinormal frequencies, both for scalar perturbations and for axial electromagnetic-gravitational perturbations; there is nevertheless a hint that the value (T_Hawking)log(2) may be special in this case. The formulae are obtained by studying the monodromy of the perturbation analytically continued to the complex plane.

  2. Asymptotic safety goes on shell

    CERN Document Server

    Benedetti, Dario

    2011-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge-dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector, and a new cut-off scheme. We find a non-trivial fixed point, with a value of the cosmological constant which is independent of the gauge-fixing parameters.

  3. Asymptotic properties of the C-Metric

    CERN Document Server

    Sladek, Pavel

    2010-01-01

    The aim of this article is to analyze the asymptotic properties of the C-metric, using a general method specified in work of Tafel and coworkers, [1], [2], [3]. By finding an appropriate conformal factor $\\Omega$, it allows the investigation of the asymptotic properties of a given asymptotically flat spacetime. The news function and Bondi mass aspect are computed, their general properties are analyzed, as well as the small mass, small acceleration, small and large Bondi time limits.

  4. Asymptotically Plane Wave Spacetimes and their Actions

    OpenAIRE

    Witt, Julian Le; Ross, Simon F.

    2008-01-01

    We propose a definition of asymptotically plane wave spacetimes in vacuum gravity in terms of the asymptotic falloff of the metric, and discuss the relation to previously constructed exact solutions. We construct a well-behaved action principle for such spacetimes, using the formalism developed by Mann and Marolf. We show that this action is finite on-shell and that the variational principle is well-defined for solutions of vacuum gravity satisfying our asymptotically plane wave falloff condi...

  5. Asymptotic independence and a network traffic model

    OpenAIRE

    Maulik, Krishanu; Resnick, Sidney; Rootzén, Holger

    2002-01-01

    The usual concept of asymptotic independence, as discussed in the context of extreme value theory, requires the distribution of the coordinatewise sample maxima under suitable centering and scaling to converge to a product measure. However, this definition is too broad to conclude anything interesting about the tail behavior of the product of two random variables that are asymptotically independent. Here we introduce a new concept of asymptotic independence which allows u...

  6. Asymptotics of near unit roots (in Russian)

    OpenAIRE

    Stanislav Anatolyev; Nikolay Gospodinov

    2012-01-01

    Sometimes the conventional asymptotic theory yields that the limiting distribution changes discontinuously, or that the asymptotic distribution does not approximate accurately the actual finite-sample distribution. In such situations one finds useful an asymptotic tool of drifting parameterizations where certain parameters are allowed to depend explicitly on the sample size. It proves useful, among other things, for impulse response analysis and forecasting of strongly dependent processes at ...

  7. Asymptotic conservation laws in field theory

    OpenAIRE

    Anderson, Ian M.; Torre, Charles G.

    1996-01-01

    A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation...

  8. Numerical Asymptotic Solutions Of Differential Equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  9. Why are tensor field theories asymptotically free?

    CERN Document Server

    Rivasseau, Vincent

    2015-01-01

    In this pedagogic letter we explain the combinatorics underlying the generic asymptotic freedom of tensor field theories. We focus on simple combinatorial models with a $1/p^2$ propagator and quartic interactions and on the comparison between the intermediate field representations of the vector, matrix and tensor cases. The transition from asymptotic freedom (tensor case) to asymptotic safety (matrix case) is related to the crossing symmetry of the matrix vertex whereas in the vector case, the lack of asymptotic freedom ("Landau ghost"), as in the ordinary scalar case, is simply due to the absence of any wave function renormalization at one loop.

  10. ASYMPTOTIC ANALYSIS OF DYNAMIC PROBLEMS FOR LINEARLY ELASTIC SHELLS JUSTIFICATION OF EQUATIONS FOR DYNAMIC KOITER SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Under certain conditions, the dynamic equatioins of membrane shells and the dynamic equations of flexural shells are obtained from dynamic equations of Koiter shells by the method of asymptotic analysis.

  11. ASYMPTOTIC ANALYSIS OF DYNAMIC PROBLEMS FOR LINEARLY ELASTICSHELLS JUSTIFICATION OF EQUATIONS FOR DYNAMIC FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    肖黎明

    2001-01-01

    Under certain conditions, starting from the three-dimensional dynamic equations of elastic shells the author gives the justification of dynamic equations of flexural shells by means of themethod of asymptotic analysis.

  12. The multi-channel scattering with velocity-dependent asymptotic potentials

    International Nuclear Information System (INIS)

    Asymptotic solution for the system of radial Schroedinger equations with velocity-dependent potentials are investigated. Boundary conditions for the multichannel radial Schroedinger equation at the infinity and some finite point Rp are proposed. 12 refs.; 6 figs

  13. Asymptotic behavior of CLS estimator of autoregressive parameter for nonprimitive unstable INAR(2) models

    CERN Document Server

    Barczy, Matyas; Pap, Gyula

    2010-01-01

    In this paper the asymptotic behavior of conditional least squares estimators of the autoregressive parameter for nonprimitive unstable integer-valued autoregressive models of order 2 (INAR(2)) is described.

  14. On an asymptotic distribution of dependent random variables on a 3-dimensional lattice.

    Science.gov (United States)

    Harvey, Danielle J; Weng, Qian; Beckett, Laurel A

    2010-06-15

    We define conditions under which sums of dependent spatial data will be approximately normally distributed. A theorem on the asymptotic distribution of a sum of dependent random variables defined on a 3-dimensional lattice is presented. Examples are also presented.

  15. Asymptotically flat and regular Cauchy data

    CERN Document Server

    Dain, S

    2002-01-01

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  16. 8. Asymptotically Flat and Regular Cauchy Data

    Science.gov (United States)

    Dain, Sergio

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  17. Einstein Constraints on Asymptotically Euclidean Manifolds

    CERN Document Server

    Choquet-Bruhat, Y; York, J W; Choquet-Bruhat, Yvonne; Isenberg, James; York, James W.

    2000-01-01

    We consider the Einstein constraints on asymptotically euclidean manifolds $M$ of dimension $n \\geq 3$ with sources of both scaled and unscaled types. We extend to asymptotically euclidean manifolds the constructive method of proof of existence. We also treat discontinuous scaled sources. In the last section we obtain new results in the case of non-constant mean curvature.

  18. PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    FEIGUIHUA; QIUQINGJIU

    1997-01-01

    The authors establish the existence of nontrival periodic solutions of the asymptotically linear Hamiltomian systems in the general case that the asymptotic matrix may be degenerate and time-dependent.This is done by using the critical point theory,Galerkin approximation procedure and the Maslov-type index theory introduced and generalized by Conley,Zehnder and Long.

  19. An asymptotic model of the F layer

    Science.gov (United States)

    Oliver, W. L.

    2012-01-01

    A model of the F layer of the ionosphere is presented that consists of a bottomside asymptote that ignores transport and a topside asymptote that ignores chemistry. The asymptotes connect at the balance height dividing the chemistry and transport regimes. A combination of these two asymptotes produces a good approximation to the true F layer. Analogously, a model of F layer response to an applied vertical drift is presented that consists of two asymptotic responses, one that ignores transport and one that ignores chemistry. The combination of these asymptotic responses produces a good approximation to the response of the true F layer. This latter response is identical to the “servo” response of Rishbeth et al. (1978), derived from the continuity equation. The asymptotic approach bypasses the continuity equation in favor of “force balance” arguments and so replaces a differential equation with simpler algebraic equations. This new approach provides a convenient and intuitive mean for first-order estimates of the change in F layer peak height and density in terms of changes in neutral density, composition, temperature, winds, and electric fields. It is applicable at midlatitudes and at magnetically quiet times at high latitudes. Forensic inverse relations are possible but are not unique. The validity of the asymptotic relations is shown through numerical simulation.

  20. Universal asymptotic umbrella for hydraulic fracture modeling

    CERN Document Server

    Linkov, Aleksandr M

    2014-01-01

    The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

  1. S-asymptotically -periodic Solutions of R-L Fractional Derivative-Integral Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Bing

    2015-01-01

    The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:is a linear densely defined operator of sectorial type on a completed Banach space X, f is a continuous function satisfying a suitable Lipschitz type condition. We will use the contraction mapping theory to prove problem (1) and (2) has a unique S-asymptotically ω-periodic solution if the function f satisfies Lipshcitz condition.

  2. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary

    Institute of Scientific and Technical Information of China (English)

    CHEN LiQun; C.W.LIM; HU QingQuan; DING Hu

    2009-01-01

    Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach.The asymptotic solution is sought for a beam equation with a nonlinear boundary condition.The steady-state responses are determined in primary resonance and subharmonic resonance.The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition.Multivaluedness occurs in the relations as a consequence of the nonlinearity.The stability of steady-state responses is analyzed by use of the Lyapunov linearized sta-bility theory.The stability analysis predicts the jumping phenomenon for certain parameters.The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales.The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.

  3. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary

    Institute of Scientific and Technical Information of China (English)

    C.; W.; LIM

    2009-01-01

    Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach. The asymptotic solution is sought for a beam equation with a nonlinear boundary condition. The steady-state responses are determined in primary resonance and subharmonic resonance. The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition. Multivaluedness occurs in the relations as a consequence of the nonlinearity. The stability of steady-state responses is analyzed by use of the Lyapunov linearized stability theory. The stability analysis predicts the jumping phenomenon for certain parameters. The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales. The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.

  4. Complementarity between Gauge-Boson Compositeness and Asymptotic Freedom

    CERN Document Server

    Akama, K; Akama, Keiichi; Hattori, Takashi

    1997-01-01

    We derive and solve the compositeness condition for the SU(N_c) gauge boson at the next-to-leading order in 1/N_f (N_f is the number of flavors) to obtain the expression of the gauge coupling constant in terms of the compositeness scale. It turns out that the argument of gauge-boson compositeness is successful only for N_f/N_c>11/2, where the asymptotic freedom fails.

  5. Asymptotic Expansions of Transition Densities for Hybrid Jump-Diffusions

    Institute of Scientific and Technical Information of China (English)

    Yuan-jin Liu; G.Yin

    2004-01-01

    A class of hybrid jump diffusions modulated by a Markov chain is considered in this work.The motivation stems from insurance risk models,and emerging applications in production planning and wireless communications.The models are hybrid in that they involve both continuous dynamics and discrete events.Under suitable conditions,asymptotic expansions of the transition densities for the underlying processes are developed.The formal expansions are validated and the error bounds obtained.

  6. Asymptotics of nearly critical Galton-Watson processes with immigration

    CERN Document Server

    Kevei, Peter

    2011-01-01

    We investigate the inhomogeneous Galton--Watson processes with immigration, where $\\rho_n$ the offspring means in the $n^\\textrm{th}$ generation tends to 1. We show that if the second derivatives of the offspring generating functions go to 0 rapidly enough, then the asymptotics are the same as in the INAR(1) case, treated by Gy\\"orfi et al. We also determine the limit if this assumption does not hold showing the optimality of the conditions.

  7. On asymptotic exit-time control problems lacking coercivity

    OpenAIRE

    Motta, Monica; Sartori, Caterina

    2014-01-01

    International audience The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for th...

  8. Asymptotic dynamics in 3D gravity with torsion

    OpenAIRE

    Blagojevic, M; Vasilic, M.

    2003-01-01

    We study the nature of boundary dynamics in the teleparallel 3D gravity. The asymptotic field equations with anti-de Sitter boundary conditions yield only two non-trivial boundary modes, related to a conformal field theory with classical central charge. After showing that the teleparallel gravity can be formulated as a Chern-Simons theory, we identify dynamical structure at the boundary as the Liouville theory.

  9. Asymptotic stability of relaxation shock profiles for hyperbolic conservation laws

    Science.gov (United States)

    Liu, Hailiang

    This paper studies the asymptotic stability of traveling relaxation shock profiles for hyperbolic systems of conservation laws. Under a stability condition of subcharacteristic type the large time relaxation dynamics on the level of shocks is shown to be determined by the equilibrium conservation laws. The proof is due to the energy principle, using the weighted norms, the interaction of waves from various modes is treated by imposing suitable weight matrix.

  10. ASYMPTOTIC PROPERTIES OF MLE FOR WEIBULL DISTRIBUTION WITH GROUPED DATA

    Institute of Scientific and Technical Information of China (English)

    XUEHongqi; SONGLixin

    2002-01-01

    A grouped data model for weibull distribution is considered.Under mild conditions .the maximum likelihood estimators(MLE)are shown to be identifiable,strongly consistent,asymptotically normal,and satisfy the law of iterated logarithm .Newton iteration algorthm is also condsidered,which converges to the unique solution of the likelihood equation.Moreover,we extend these results to a random case.

  11. An asymptotic preserving scheme for strongly anisotropic elliptic problems

    OpenAIRE

    Degond, Pierre; Deluzet, Fabrice; Negulescu, Claudia

    2009-01-01

    21 pages In this article we introduce an asymptotic preserving scheme designed to compute the solution of a two dimensional elliptic equation presenting large anisotropies. We focus on an anisotropy aligned with one direction, the dominant part of the elliptic operator being supplemented with Neumann boundary conditions. A new scheme is introduced which allows an accurate resolution of this elliptic equation for an arbitrary anisotropy ratio.

  12. Extended Analytic Device Optimization Employing Asymptotic Expansion

    Science.gov (United States)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  13. Asymptotics of thermal spectral functions

    CERN Document Server

    Caron-Huot, S

    2009-01-01

    We use operator product expansion (OPE) techniques to study the spectral functions of currents at finite temperature, in the high-energy time-like region $\\omega\\gg T$. The leading corrections to the spectral function of currents and stress tensors are proportional to $\\sim T^4$ expectation values in general, and the leading corrections $\\sim g^2T^4$ are calculated at weak coupling, up to one undetermined coefficient in the shear viscosity channel. Spectral functions in the asymptotic regime are shown to be infrared safe up to order $g^8T^4$. The convergence of sum rules in the shear and bulk viscosity channels is established in QCD to all orders in perturbation theory, though numerically significant tails $\\sim T^4/(\\log\\omega)^3$ are shown to exist in the bulk viscosity channel and to have an impact on sum rules recently proposed by Kharzeev and Tuchin. We argue that the spectral functions of currents and stress tensors in strongly coupled $\\mathcal{N}=4$ super Yang-Mills do not receive any medium-dependent...

  14. Asymptotic structure of the Einstein-Maxwell theory on AdS3

    Science.gov (United States)

    Pérez, Alfredo; Riquelme, Miguel; Tempo, David; Troncoso, Ricardo

    2016-02-01

    The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to {R}⊗ U(1)⊗ U(1) . Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized by an arbitrary function of a single variable, whose precise form depends on the choice of the chiral copy. Remarkably, requiring the asymptotic symmetries to contain the full conformal group selects a very special set of boundary conditions that is labeled by a unique constant parameter, so that the algebra of the canonical generators is given by the direct sum of two copies of the Virasoro algebra with the standard central extension and U (1). This special set of boundary conditions makes the energy spectrum of electrically charged rotating black holes to be well-behaved.

  15. Asymptotic Safety, Emergence and Minimal Length

    CERN Document Server

    Percacci, R

    2010-01-01

    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that 1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and 2) there is a precise sense in which asymptotic safety implies a minimal length. In so doing we also discuss possible signatures of asymptotic safety in scattering experiments.

  16. Global asymptotic stability for Hopfield-type neural networks with diffusion effects

    Institute of Scientific and Technical Information of China (English)

    YAN Xiang-ping; LI Wan-tong

    2007-01-01

    The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differentiable, and the interconnected matrix is related to the Lyapunov diagonal stable matrix, the sufficient conditions guaranteeing the existence of the equilibrium of the system are obtained by applying the topological degree theory. By means of constructing the suitable average Lyapunov functions, the global asymptotic stability of the equilibrium of the system is also investigated. It is shown that the equilibrium (if it exists) is globally asymptotically stable and this implies that the equilibrium of the system is unique.

  17. Nonsymmetric gravity does have acceptable global asymptotics

    CERN Document Server

    Cornish, N J

    1994-01-01

    "Reports of my death are greatly exaggerated" - Mark Twain. We consider the claim by Damour, Deser and McCarthy that nonsymmetric gravity theory has unacceptable global asymptotics. We explain why this claim is incorrect.

  18. Large Deviations and Asymptotic Methods in Finance

    CERN Document Server

    Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef

    2015-01-01

    Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...

  19. Asymptotic Likelihood Distribution for Correlated & Constrained Systems

    CERN Document Server

    Agarwal, Ujjwal

    2016-01-01

    It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.

  20. EMC effect: asymptotic freedom with nuclear targets

    International Nuclear Information System (INIS)

    General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references

  1. Precise Asymptotics for Lévy Processes

    Institute of Scientific and Technical Information of China (English)

    Zhi Shui HU; Chun SU

    2007-01-01

    Let {X(t), t ≥ 0} be a Lévy process with EX(1)=0 and EX2(1)<∞. In this paper, we shall give two precise asymptotic theorems for {X(t), t≥0}. By the way, we prove the corresponding conclusions for strictly stable processes and a general precise asymptotic proposition for sums of i.i.d.random variables.

  2. The trouble with asymptotically safe inflation

    CERN Document Server

    Fang, Chao

    2013-01-01

    In this paper we investigate the perturbation theory of the asymptotically safe inflation and we find that all modes of gravitational waves perturbation become ghosts in order to achieve a large enough number of e-folds. Formally we can calculate the power spectrum of gravitational waves perturbation, but we find that it is negative. It indicates that there is serious trouble with the asymptotically safe inflation.

  3. Dirichlet eigenvalues of asymptotically flat triangles

    OpenAIRE

    Ourmières-Bonafos, Thomas

    2015-01-01

    This paper is devoted to the study of the eigenpairs of the Dirichlet Laplacian on a family of triangles where two vertices are fixed and the altitude associated with the third vertex goes to zero. We investigate the dependence of the eigenvalues on this altitude. For the first eigenvalues and eigenfunctions, we obtain an asymptotic expansion at any order at the scale cube root of this altitude due to the influence of the Airy operator. Asymptotic expansions of the eigenpairs are provided, ex...

  4. Asymptotically hyperbolic black holes in Horava gravity

    OpenAIRE

    Janiszewski, Stefan

    2014-01-01

    Solutions of Hořava gravity that are asymptotically Lifshitz are explored. General near boundary expansions allow the calculation of the mass of these spacetimes via a Hamiltonian method. Both analytic and numeric solutions are studied which exhibit a causal boundary called the universal horizon, and are therefore black holes of the theory. The thermodynamics of an asymptotically Anti-de Sitter Hořava black hole are verified.

  5. Loop Quantum Gravity and Asymptotically Flat Spaces

    OpenAIRE

    Arnsdorf, Matthias

    2000-01-01

    After motivating why the study of asymptotically flat spaces is important in loop quantum gravity, we review the extension of the standard framework of this theory to the asymptotically flat sector based on the GNS construction. In particular, we provide a general procedure for constructing new Hilbert spaces for loop quantum gravity on non-compact spatial manifolds. States in these Hilbert spaces can be interpreted as describing fluctuations around fiducial fixed backgrounds. When the backgr...

  6. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  7. Asymptotic Orbits in Barred Spiral Galaxies

    CERN Document Server

    Harsoula, Maria; Contopoulos, George

    2010-01-01

    We study the formation of the spiral structure of barred spiral galaxies, using an $N$-body model. The evolution of this $N$-body model in the adiabatic approximation maintains a strong spiral pattern for more than 10 bar rotations. We find that this longevity of the spiral arms is mainly due to the phenomenon of stickiness of chaotic orbits close to the unstable asymptotic manifolds originated from the main unstable periodic orbits, both inside and outside corotation. The stickiness along the manifolds corresponding to different energy levels supports parts of the spiral structure. The loci of the disc velocity minima (where the particles spend most of their time, in the configuration space) reveal the density maxima and therefore the main morphological structures of the system. We study the relation of these loci with those of the apocentres and pericentres at different energy levels. The diffusion of the sticky chaotic orbits outwards is slow and depends on the initial conditions and the corresponding Jaco...

  8. Asymptotically Lifshitz spacetimes with universal horizons in $(1 + 2)$ dimensions

    CERN Document Server

    Basu, Sayandeb; Mattingly, David; Roberson, Matthew

    2016-01-01

    Horava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide a natural framework for Lifshitz holography. We derive the conditions on the two derivative Horava gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon in general relativity. Specializing to z=2 in 1+2 dimensions, we then numerically construct such regular solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the asymptotically anti-de Sitter case, the first law applied to the universal horizon is straightforwardly compatible with a thermodynamic interpretation.

  9. Asymptotically flat black holes with scalar hair: a review

    CERN Document Server

    Herdeiro, Carlos A R

    2015-01-01

    We consider the status of black hole solutions with non-trivial scalar fields but no gauge fields, in four dimensional asymptotically flat space-times, reviewing both classical results and recent developments. We start by providing a simple illustration on the physical difference between black holes in electro-vacuum and scalar-vacuum. Next, we review no-scalar-hair theorems. In particular, we detail an influential theorem by Bekenstein and stress three key assumptions: 1) the type of scalar field equation; 2) the spacetime symmetry inheritance by the scalar field; 3) an energy condition. Then, we list regular (on and outside the horizon), asymptotically flat BH solutions with scalar hair, organizing them by the assumption which is violated in each case and distinguishing primary from secondary hair. We provide a table summary of the state of the art.

  10. Asymptotically Lifshitz spacetimes with universal horizons in (1 +2 ) dimensions

    Science.gov (United States)

    Basu, Sayandeb; Bhattacharyya, Jishnu; Mattingly, David; Roberson, Matthew

    2016-03-01

    Hořava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide a natural framework for Lifshitz holography. We derive the conditions on the two-derivative Hořava gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon in general relativity. Specializing to z =2 in 1 +2 dimensions, we then numerically construct such regular solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the asymptotically anti-de Sitter case, the first law applied to the universal horizon is straightforwardly compatible with a thermodynamic interpretation.

  11. A Framework for Non-Asymptotic Quantum Information Theory

    CERN Document Server

    Tomamichel, Marco

    2012-01-01

    This thesis consolidates, improves and extends the smooth entropy framework for non-asymptotic information theory and cryptography. We investigate the conditional min- and max-entropy for quantum states, generalizations of classical R\\'enyi entropies. We introduce the purified distance, a novel metric for unnormalized quantum states and use it to define smooth entropies as optimizations of the min- and max-entropies over a ball of close states. We explore various properties of these entropies, including data-processing inequalities, chain rules and their classical limits. The most important property is an entropic formulation of the asymptotic equipartition property, which implies that the smooth entropies converge to the von Neumann entropy in the limit of many independent copies. The smooth entropies also satisfy duality and entropic uncertainty relations that provide limits on the power of two different observers to predict the outcome of a measurement on a quantum system. Finally, we discuss three example...

  12. ASYMPTOTIC STABILITY OF RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS BY LYAPUNOV’ DIRECT METHOD

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is devoted to studying the asymptotic stability of retarded nonlinear functional differential equations by the method of Lyapunov functionals. Under the as-sumption that there exists a positive definite time-invariant Lyapunov functional with negative semi-definite derivative, we focus on the extra conditions to guarantee the asymptotic stability, and present a new criterion, which is less conservative than the classical one. Finally, an example is given to illustrate the effectiveness of the res...

  13. Asymptotic free probability for arithmetic functions and factorization of Dirichlet series

    Science.gov (United States)

    Cho, Ilwoo; Gillespie, Timothy; Jorgensen, Palle E. T.

    2015-11-01

    In this paper, we study a free-probabilistic model on the algebra of arithmetic functions by considering their asymptotic behavior. As an application, we concentrate on arithmetic functions arising from certain representations attached to the general linear group GL_n . We then study conditions under which a Dirichlet series may be factored into a product of automorphic L-functions using asymptotic freeness.

  14. Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

    Directory of Open Access Journals (Sweden)

    Xiu Kan

    2012-01-01

    Full Text Available The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t+β(tXtdt+σ(tdWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.

  15. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  16. To theory of asymptotically stable accelerating Universe in Riemann-Cartan spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Garkun, A.S. [The National Academy of Sciences of Belarus, Nezalezhnosti av. 66, 220072 Minsk (Belarus); Kudin, V.I.; Minkevich, A.V., E-mail: garkun@bsu.by, E-mail: kudzin_w@tut.by, E-mail: minkav@bsu.by [Department of Theoretical Physics and Astrophysics, Belarusian State University, Nezalezhnosti av. 2, 220030 Minsk (Belarus)

    2014-12-01

    Homogeneous isotropic cosmological models built in the framework of the Poincar'e gauge theory of gravity based on general expression of gravitational Lagrangian with indefinite parameters are analyzed. Special points of cosmological solutions for flat cosmological models at asymptotics and conditions of their stability in dependence of indefinite parameters are found. Procedure of numerical integration of the system of gravitational equations at asymptotics is considered. Numerical solution for accelerating Universe without dark energy is obtained.

  17. Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

    OpenAIRE

    Xiu Kan; Huisheng Shu; Yan Che

    2012-01-01

    The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t)+β(t)Xt)dt+σ(t)dWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.

  18. ASYMPTOTIC SOLUTION OF ACTIVATOR INHIBITOR SYSTEMS FOR NONLINEAR REACTION DIFFUSION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Jiaqi MO; Wantao LIN

    2008-01-01

    A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of multiple scales and the expanding theory of power series the formal asymptotic expansions of the solution are constructed, and finally, using the theory of differential inequalities the uniform validity and asymptotic behavior of the solution are studied.

  19. ASYMPTOTIC NORMALITY OF QUASI MAXIMUM LIKELIHOOD ESTIMATE IN GENERALIZED LINEAR MODELS

    Institute of Scientific and Technical Information of China (English)

    YUE LI; CHEN XIRU

    2005-01-01

    For the Generalized Linear Model (GLM), under some conditions including that the specification of the expectation is correct, it is shown that the Quasi Maximum Likelihood Estimate (QMLE) of the parameter-vector is asymptotic normal. It is also shown that the asymptotic covariance matrix of the QMLE reaches its minimum (in the positive-definte sense) in case that the specification of the covariance matrix is correct.

  20. Practical calculation of the beam scintillation index based on the rigorous asymptotic propagation theory

    Science.gov (United States)

    Charnotskii, Mikhail; Baker, Gary J.

    2011-06-01

    Asymptotic theory of the finite beam scintillations (Charnotskii, WRM, 1994, JOSA A, 2010) provides an exhaustive description of the dependence of the beam scintillation index on the propagation conditions, beam size and focusing. However the complexity of the asymptotic configuration makes it difficult to apply these results for the practical calculations of the scintillation index (SI). We propose an estimation technique and demonstrate some examples of the calculations of the scintillation index dependence on the propagation path length, initial beam size, wavelength and turbulence strength for the beam geometries and propagation scenarios that are typical for applications. We suggest simple analytic bridging approximations that connect the specific asymptotes with the accuracy sufficient for the engineering estimates. Proposed technique covers propagation of the wide, narrow, collimated and focused beams under the weak and strong scintillation conditions. Direct numeric simulation of the beam waves propagation through turbulence expediently complements the asymptotic theory being most efficient when the governing scales difference is not very large. We performed numerical simulations of the beam wave propagation through turbulence for conditions that partially overlap with the major parameter space domains of the asymptotic theory. The results of the numeric simulation are used to confirm the asymptotic theory and estimate the accuracy of the bridging approximations.

  1. Canonical charges and asymptotic symmetry algebra of conformal gravity

    CERN Document Server

    Irakleidou, Maria; Preis, Florian

    2014-01-01

    We study canonical conformal gravity in four dimensions and construct the gauge generators and the associated charges. Using slightly generalized boundary conditions compared to those in \\cite{Grumiller:2013mxa} we find that the charges associated with space-time diffeomorphisms are finite and conserved in time. They are also shown to agree with the Noether charges found in \\cite{Grumiller:2013mxa}. However, there exists no charge associated with Weyl transformations. Consequently the asymptotic symmetry algebra is isomorphic to the Lie algebra of the boundary condition preserving diffeomorphisms. For illustrative purposes we apply the results to the Mannheim--Kazanas--Riegert solution of conformal gravity.

  2. Higher Spin Black Holes in Three Dimensions: Comments on Asymptotics and Regularity

    CERN Document Server

    Banados, M; Theisen, S

    2016-01-01

    In the context of (2+1)--dimensional SL(N,R)\\times SL(N,R) Chern-Simons theory we explore issues related to regularity and asymptotics on the solid torus, for stationary and circularly symmetric solutions. We display and solve all necessary conditions to ensure a regular metric and metric-like higher spin fields. We prove that holonomy conditions are necessary but not sufficient conditions to ensure regularity, and that Hawking conditions do not necessarily follow from them. Finally we give a general proof that once the chemical potentials are turn on -- as demanded by regularity -- the asymptotics cannot be that of Brown-Henneaux.

  3. Higher spin black holes in three dimensions: Remarks on asymptotics and regularity

    Science.gov (United States)

    Bañados, Máximo; Canto, Rodrigo; Theisen, Stefan

    2016-07-01

    In the context of (2 +1 )-dimensional S L (N ,R )×S L (N ,R ) Chern-Simons theory we explore issues related to regularity and asymptotics on the solid torus, for stationary and circularly symmetric solutions. We display and solve all necessary conditions to ensure a regular metric and metriclike higher spin fields. We prove that holonomy conditions are necessary but not sufficient conditions to ensure regularity, and that Hawking conditions do not necessarily follow from them. Finally we give a general proof that once the chemical potentials are turned on—as demanded by regularity—the asymptotics cannot be that of Brown-Henneaux.

  4. The Einstein Constraint Equations on Asymptotically Euclidean Manifolds

    CERN Document Server

    Dilts, James

    2015-01-01

    In this dissertation, we prove a number of results regarding the conformal method of finding solutions to the Einstein constraint equations. These results include necessary and sufficient conditions for the Lichnerowicz equation to have solutions, global supersolutions which guarantee solutions to the conformal constraint equations for near-constant-mean-curvature (near-CMC) data as well as for far-from-CMC data, a proof of the limit equation criterion in the near-CMC case, as well as a model problem on the relationship between the asymptotic constants of solutions and the ADM mass. We also prove a characterization of the Yamabe classes on asymptotically Euclidean manifolds and resolve the (conformally) prescribed scalar curvature problem on asymptotically Euclidean manifolds for the case of nonpositive scalar curvatures. Many, though not all, of the results in this dissertation have been previously published in [Dilts13b], [DIMM14], [DL14], [DM15], and [DGI15]. This article is the author's Ph.D. dissertation...

  5. Asymptotically flat structure of hypergravity in three spacetime dimensions

    CERN Document Server

    Fuentealba, Oscar; Troncoso, Ricardo

    2015-01-01

    The asymptotic structure of three-dimensional hypergravity without cosmological constant is analyzed. In the case of gravity minimally coupled to a spin-$5/2$ field, a consistent set of boundary conditions is proposed, being wide enough so as to accommodate a generic choice of chemical potentials associated to the global charges. The algebra of the canonical generators of the asymptotic symmetries is given by a hypersymmetric nonlinear extension of BMS$_{3}$. It is shown that the asymptotic symmetry algebra can be recovered from a subset of a suitable limit of the direct sum of the W$_{\\left(2,4\\right)}$ algebra with its hypersymmetric extension. The presence of hypersymmetry generators allows to construct bounds for the energy, which turn out to be nonlinear and saturate for spacetimes that admit globally-defined "Killing vector-spinors". The null orbifold or Minkowski spacetime can then be seen as the corresponding ground state in the case of fermions that fulfill periodic or anti-periodic boundary conditio...

  6. Asymptotic Theory of Cepstral Random Fields

    CERN Document Server

    McElroy, Tucker S

    2011-01-01

    Random fields play a central role in the analysis of spatially correlated data and, as a result, have a significant impact on a broad array of scientific applications. Given the importance of this topic, there has been substantial research devoted to this area. However, in spite of the tremendous research to date, outside the engineering literature, the cepstral random field model remains largely underdeveloped. We provide a comprehensive treatment of the asymptotic theory for cepstral random field models. In particular, we provide recursive formulas that connect the spatial cepstral coefficients to an equivalent moving-average random field, which facilitates easy computation of the necessary autocovariance matrix. Additionally, we establish asymptotic consistency results for Bayesian, maximum likelihood, and quasi-maximum likelihood estimation. Further, in both the maximum and quasi-maximum likelihood frameworks we derive the asymptotic distribution of our estimator. The theoretical results are presented gen...

  7. Relations between asymptotic and Fredholm representations

    CERN Document Server

    Manuilov, V M

    1997-01-01

    We prove that for matrix algebras $M_n$ there exists a monomorphism $(\\prod_n M_n/\\oplus_n M_n)\\otimes C(S^1) \\to {\\cal Q} $ into the Calkin algebra which induces an isomorphism of the $K_1$-groups. As a consequence we show that every vector bundle over a classifying space $B\\pi$ which can be obtained from an asymptotic representation of a discrete group $\\pi$ can be obtained also from a representation of the group $\\pi\\times Z$ into the Calkin algebra. We give also a generalization of the notion of Fredholm representation and show that asymptotic representations can be viewed as asymptotic Fredholm representations.

  8. Asymptotic analysis of outwardly propagating spherical flames

    Institute of Scientific and Technical Information of China (English)

    Yun-Chao Wu; Zheng Chen

    2012-01-01

    Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.

  9. The optimal homotopy asymptotic method engineering applications

    CERN Document Server

    Marinca, Vasile

    2015-01-01

    This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011, and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five application...

  10. Asymptotic Regime in N Random Interacting Species

    CERN Document Server

    Fiasconaro, A; Valenti, D

    2005-01-01

    The asymptotic regime of a complex ecosystem with N random interacting species and in the presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long time probability distribution of the i_th density species, the extinction of species and the local field acting on the i_th population. We analyze in detail the transient dynamics of this field and the cavity field, which is the field acting on the i_th species when this is absent. We find that the presence or the absence of some population give different asymptotic distributions of these fields.

  11. Asymptotic Methods for Solitary Solutions and Compactons

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2012-01-01

    Full Text Available This paper is an elementary introduction to some new asymptotic methods for the search for the solitary solutions of nonlinear differential equations, nonlinear differential-difference equations, and nonlinear fractional differential equations. Particular attention is paid throughout the paper to giving an intuitive grasp for the variational approach, the Hamiltonian approach, the variational iteration method, the homotopy perturbation method, the parameter-expansion method, the Yang-Laplace transform, the Yang-Fourier transform, and ancient Chinese mathematics. Hamilton principle and variational principles are also emphasized. The reviewed asymptotic methods are easy to be followed for various applications. Some ideas on this paper are first appeared.

  12. Further evidence for asymptotic safety of quantum gravity

    Science.gov (United States)

    Falls, K.; Litim, D.; Nikolakopoulos, K.; Rahmede, C.

    2016-05-01

    The asymptotic safety conjecture is examined for quantum gravity in four dimensions. Using the renormalization group, we find evidence for an interacting UV fixed point for polynomial actions up to the 34th power in the Ricci scalar. The extrapolation to infinite polynomial order is given, and the self-consistency of the fixed point is established using a bootstrap test. All details of our analysis are provided. We also clarify further aspects such as stability, convergence, the role of boundary conditions, and a partial degeneracy of eigenvalues. Within this setting we find strong support for the conjecture.

  13. On selfdual spin-connections and Asymptotic Safety

    CERN Document Server

    Harst, Ulrich

    2015-01-01

    We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG) equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-)selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein-Cartan gravity without the selfduality condition.

  14. On selfdual spin-connections and asymptotic safety

    Directory of Open Access Journals (Sweden)

    U. Harst

    2016-02-01

    Full Text Available We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein–Cartan gravity without the selfduality condition.

  15. Asymptotic behavior of CLS estimators for unstable INAR(2) models

    CERN Document Server

    Barczy, Matyas; Pap, Gyula

    2012-01-01

    In this paper the asymptotic behavior of the conditional least squares estimators of the autoregressive parameters $(\\alpha, \\beta)$ and of the stability parameter $\\varrho := \\alpha + \\beta$ for an unstable integer-valued autoregressive process $X_k = \\alpha \\circ X_{k-1} + \\beta \\circ X_{k-2} + \\varepsilon_k$, $k\\in\\NN$, is described. The limit distributions and the scaling factors are different according to the following three cases: (i) decomposable, (ii) indecomposable but not positively regular, and (iii) positively regular models.

  16. Precise Asymptotics of Error Variance Estimator in Partially Linear Models

    Institute of Scientific and Technical Information of China (English)

    Shao-jun Guo; Min Chen; Feng Liu

    2008-01-01

    In this paper, we focus our attention on the precise asymptoties of error variance estimator in partially linear regression models, yi = xTi β + g(ti) +εi, 1 ≤i≤n, {εi,i = 1,... ,n } are i.i.d random errors with mean 0 and positive finite variance q2. Following the ideas of Allan Gut and Aurel Spataru[7,8] and Zhang[21],on precise asymptotics in the Baum-Katz and Davis laws of large numbers and precise rate in laws of the iterated logarithm, respectively, and subject to some regular conditions, we obtain the corresponding results in partially linear regression models.

  17. Combining Multiple Strategies for Multiarmed Bandit Problems and Asymptotic Optimality

    Directory of Open Access Journals (Sweden)

    Hyeong Soo Chang

    2015-01-01

    Full Text Available This brief paper provides a simple algorithm that selects a strategy at each time in a given set of multiple strategies for stochastic multiarmed bandit problems, thereby playing the arm by the chosen strategy at each time. The algorithm follows the idea of the probabilistic ϵt-switching in the ϵt-greedy strategy and is asymptotically optimal in the sense that the selected strategy converges to the best in the set under some conditions on the strategies in the set and the sequence of {ϵt}.

  18. ASYMPTOTIC ANALYSIS OF DYNAMIC??PROBLEMS FOR LINEARLY ELASTICSHELLS—JUSTIFICATION OF EQUATIONS???FOR DYNAMIC FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Under certain conditions, starting from the three-dimensional dynamic equations of elastic shells the author gives the justification of dynamic equations of flexural shells by means of the method of asymptotic analysis.

  19. Scattering by a topological defect connecting two asymptotically Minkowski spacetimes

    CERN Document Server

    Pitelli, J P M

    2015-01-01

    We study the stability and the scattering properties of a spacetime with a topological defect along a spherical bubble. This bubble connects two flat spacetimes which are asymptotically Minkowski, so that the resulting universe may be regarded as containing a wormhole. Its distinguished feature is the absence of exotic matter, i.e., its matter content respects all the energy conditions. Although this wormhole is nontraversable, waves and quantum particles can tunnel between both universes. Interestingly enough, the wave equation alone does not uniquely determine the evolution of scalar waves on this background, and the theory of self-adjoint extensions of symmetric operators is required to find the relevant boundary conditions in this context. Here we show that, for a particular boundary condition, this spacetime is stable and gives rise to a scattering pattern which is identical to the more usual thin-shell wormhole composed of exotic matter. Other boundary conditions of interest are also analyzed, including...

  20. THE ASYMPTOTIC BEHAVIOR OF SOLUTION FOR THE NONLINEAR HEAT-CONDUCTION EQUATION AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    陈方年; 段志文

    2001-01-01

    In this paper the nonlinear heat-conduction equations with Dirichlet boundary condition and the nonlinear boundary condition are studied. The asymptotic behavior of the global of solution are analyzed by using Lyapuunov function.As its application, the approximate solutions are constructed.

  1. Multiple Solutions for a Fourth-order Asymptotically Linear Elliptic Problem

    Institute of Scientific and Technical Information of China (English)

    Ai Xia QIAN; Shu Jie LI

    2006-01-01

    Under simple conditions, we prove the existence of three solutions for a fourth-order asymptotically linear elliptic boundary value problem. For the resonance case at infinity, we do not need to assume any more conditions to ensure the boundedness of the (PS) sequence of the corresponding functional.

  2. MULTIPLICITY OF SOLUTIONS TO ASYMPTOTICALLY LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we consider an asymptotically linear second-order ordinary differential system with Dirchlet boundary value conditions. Under some conditions,we show the multiplicity of solutions to the system by the Morse theory and an index theory.

  3. Asymptotic estimates for generalized Stirling numbers

    OpenAIRE

    Chelluri, R.; Richmond, L.B.; Temme, Nico

    2000-01-01

    Uniform asymptotic expansions are given for the Stirling numbers of the first kind for integral arguments and for the second kind as defined for real arguments by Flajolet and Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger is established for a range including the classical integral domain.

  4. Lectures on renormalization and asymptotic safety

    International Nuclear Information System (INIS)

    A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross–Neveu model, the nonlinear σ model, the sine–Gordon model, and we consider the model of quantum Einstein gravity which seems to show asymptotic safety, too. We also give a detailed analysis of infrared behavior of such scalar models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The theory spaces of these models show several similar properties, namely the models have the same phase and fixed point structure. The quantum Einstein gravity also exhibits similarities when considering the global aspects of its theory space since the appearing two phases there show analogies with the symmetric and the broken phases of the scalar models. These results be nicely uncovered by the functional renormalization group method

  5. Eigenvalue asymptotics for Dirac-Bessel operators

    Science.gov (United States)

    Hryniv, Rostyslav O.; Mykytyuk, Yaroslav V.

    2016-06-01

    In this paper, we establish the eigenvalue asymptotics for non-self-adjoint Dirac-Bessel operators on (0, 1) with arbitrary real angular momenta and square integrable potentials, which gives the first step for solution of the related inverse problem. The approach is based on a careful examination of the corresponding characteristic functions and their zero distribution.

  6. Large degree asymptotics of generalized Bessel polynomials

    NARCIS (Netherlands)

    López, J.L.; Temme, N.M.

    2011-01-01

    Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in t

  7. Asymptotic estimates for generalized Stirling numbers

    NARCIS (Netherlands)

    Chelluri, R.; Richmond, L.B.; Temme, N.M.

    1999-01-01

    Uniform asymptotic expansions are given for the Stirling numbers of the first kind for integral arguments and for the second kind as defined for real arguments by Flajolet and Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger is established for a range inclu

  8. On the Asymptotic Accuracy of Efron's Bootstrap

    OpenAIRE

    Singh, Kesar

    1981-01-01

    In the non-lattice case it is shown that the bootstrap approximation of the distribution of the standardized sample mean is asymptotically more accurate than approximation by the limiting normal distribution. The exact convergence rate of the bootstrap approximation of the distributions of sample quantiles is obtained. A few other convergence rates regarding the bootstrap method are also studied.

  9. Heavy axion in asymptotically safe QCD

    CERN Document Server

    Kobakhidze, Archil

    2016-01-01

    Assuming QCD exhibits an interacting fixed-point behaviour in the ultraviolet regime, I argue that the axion can be substantially heavier than in the conventional case of asymptotically free QCD due to the enhanced contribution of small size instantons to its mass.

  10. Asymptotic analysis of the Forward Search

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...

  11. THE COMPLETE ASYMPTOTIC EXPANSION FOR BASKAKOV OPERATORS

    Institute of Scientific and Technical Information of China (English)

    Chungou Zhang; Quane Wang

    2007-01-01

    In this paper, we derive the complete asymptotic expansion of classical Baskakov itly in terms of Stirling number of the first and second kind and another number G(I, p). As a corollary, we also get the Voronovskaja-type result for the operators.

  12. Exponential asymptotics of the Voigt functions

    Science.gov (United States)

    Paris, R. B.

    2015-06-01

    We obtain the asymptotic expansion of the Voigt functionss K( x, y) and L( x, y) for large (real) values of the variables x and y, paying particular attention to the exponentially small contributions. A Stokes phenomenon is encountered as with x > 0 fixed. Numerical examples are presented to demonstrate the accuracy of these new expansions.

  13. Infrared studies of asymptotic giant branch stars

    International Nuclear Information System (INIS)

    In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs

  14. An asymptotically optimal nonparametric adaptive controller

    Institute of Scientific and Technical Information of China (English)

    郭雷; 谢亮亮

    2000-01-01

    For discrete-time nonlinear stochastic systems with unknown nonparametric structure, a kernel estimation-based nonparametric adaptive controller is constructed based on truncated certainty equivalence principle. Global stability and asymptotic optimality of the closed-loop systems are established without resorting to any external excitations.

  15. Zero bias transformation and asymptotic expansions

    OpenAIRE

    Jiao, Ying

    2012-01-01

    Let W be a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic expansions for $\\mathbb {E}[h(W)]$ in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also discuss the estimates of remaining errors.

  16. Approximate description of the dynamics of thin isotropic elastic coatings and interlayers by using asymptotics of high order of accuracy

    OpenAIRE

    Nikonov, Anatolij Viktorovič; Zakharov, D.D.

    2015-01-01

    Asymptotically accurate low-frequency models for isotropic elastic coatings and interlayers are developed. The main constraint is the requirement on contact conditions for the layer and the base that at least one of the boundary conditions must include the displacement component in an explicit form. The displacement and stress fields in the three-dimensional elastic system are sought in the form of asymptotic expansion into power series of a small parameter - the ratio between the half-thickn...

  17. Asymptotic expansion of the wavelet transform with error term

    OpenAIRE

    R. S. Pathak; Pathak, Ashish

    2014-01-01

    UsingWong's technique asymptotic expansion for the wavelet transform is derived and thereby asymptotic expansions for Morlet wavelet transform, Mexican Hat wavelet transform and Haar wavelet transform are obtained.

  18. Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics

    CERN Document Server

    Matulich, Javier; Tempo, David; Troncoso, Ricardo

    2014-01-01

    A generalized set of asymptotic conditions for higher spin gravity without cosmological constant in three spacetime dimensions is constructed. They include the most general temporal components of the gauge fields that manifestly preserve the original asymptotic higher spin extension of the BMS$_{3}$ algebra, with the same central charge. By virtue of a suitable permissible gauge choice, it is shown that this set can be directly recovered as a limit of the boundary conditions that have been recently constructed in the case of negative cosmological constant, whose asymptotic symmetries are spanned by two copies of the centrally-extended W$_{3}$ algebra. Since the generalized asymptotic conditions allow to incorporate chemical potentials conjugated to the higher spin charges, a higher spin extension of locally flat cosmological spacetimes becomes naturally included within the set. It is shown that their thermodynamic properties can be successfully obtained exclusively in terms of gauge fields and the topology of...

  19. Numerical Approximation of Asymptotically Disappearing Solutions of Maxwell's Equations

    CERN Document Server

    Adler, J H; Zikatanov, L T

    2012-01-01

    This work is on the numerical approximation of incoming solutions to Maxwell's equations with dissipative boundary conditions whose energy decays exponentially with time. Such solutions are called asymptotically disappearing (ADS) and they play an importarnt role in inverse back-scatering problems. The existence of ADS is a difficult mathematical problem. For the exterior of a sphere, such solutions have been constructed analytically by Colombini, Petkov and Rauch [7] by specifying appropriate initial conditions. However, for general domains of practical interest (such as Lipschitz polyhedra), the existence of such solutions is not evident. This paper considers a finite-element approximation of Maxwell's equations in the exterior of a polyhedron, whose boundary approximates the sphere. Standard Nedelec-Raviart-Thomas elements are used with a Crank-Nicholson scheme to approximate the electric and magnetic fields. Discrete initial conditions interpolating the ones chosen in [7] are modified so that they are (we...

  20. On Large Scale Inductive Dimension of Asymptotic Resemblance Spaces

    OpenAIRE

    Kalantari, Sh.; Honari, B.

    2014-01-01

    We introduce the notion of large scale inductive dimension for asymptotic resemblance spaces. We prove that the large scale inductive dimension and the asymptotic dimensiongrad are equal in the class of r-convex metric spaces. This class contains the class of all geodesic metric spaces and all finitely generated groups. This leads to an answer for a question asked by E. Shchepin concerning the relation between the asymptotic inductive dimension and the asymptotic dimensiongrad, for r-convex m...

  1. Hyperbolic positive mass theorem under modified energy condition

    Institute of Scientific and Technical Information of China (English)

    XIE NaQing

    2008-01-01

    We provide two new positive mass theorems under respective modified energy conditions allowing Too negative on some compact set for certain modified asymptotically hyperbolic manifolds. This work is analogous to Zhang's previous result for modified asymptotically fiat initial data sets.

  2. Generalized Asymptotic Pointwise Contractions and Nonexpansive Mappings Involving Orbits

    Directory of Open Access Journals (Sweden)

    Nicolae Adriana

    2010-01-01

    Full Text Available We give fixed point results for classes of mappings that generalize pointwise contractions, asymptotic contractions, asymptotic pointwise contractions, and nonexpansive and asymptotic nonexpansive mappings. We consider the case of metric spaces and, in particular, CAT spaces. We also study the well-posedness of these fixed point problems.

  3. Asymptotic symmetries in 3d gravity with torsion

    OpenAIRE

    Blagojevic, M; Vasilic, M.

    2003-01-01

    We study the nature of asymptotic symmetries in topological 3d gravity with torsion. After introducing the concept of asymptotically anti-de Sitter configuration, we find that the canonical realization of the asymptotic symmetry is characterized by the Virasoro algebra with classical central charge, the value of which is the same as in general relativity: c=3l/2G.

  4. Asymptotic estimates and compactness of expanding gradient Ricci solitons

    OpenAIRE

    Deruelle, Alix

    2014-01-01

    We first investigate the asymptotics of conical expanding gradient Ricci solitons by proving sharp decay rates to the asymptotic cone both in the generic and the asymptotically Ricci flat case. We then establish a compactness theorem concerning nonnegatively curved expanding gradient Ricci solitons.

  5. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu

    1996-01-01

    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  6. The Asymptotic Safety Scenario in Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Niedermaier Max

    2006-12-01

    Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  7. Asymptotically Lifshitz brane-world black holes

    International Nuclear Information System (INIS)

    We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: ► Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. ► Studying the thermodynamical behavior of asymptotically Lifshitz black holes. ► Showing that the entropy imposes the critical exponent z to be bounded from above. ► Discussing the phase transition for different spatial topologies.

  8. Asymptotically anti-de Sitter Proca Stars

    CERN Document Server

    Duarte, Miguel

    2016-01-01

    We show that complex, massive spin-1 fields minimally coupled to Einstein's gravity with a negative cosmological constant, admit asymptotically anti-de Sitter self-gravitating solutions. Focusing on 4-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the Proca field equations can be solved in a fixed anti-de Sitter background, and then find fully non-linear solutions numerically. These solutions are a natural extension of the recently found asymptotically flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited by their point of maximum mass. We finish with an overview of the behavior of Proca stars in $5$ dimensions.

  9. Asymptotic behaviour of the non-autonomous competing two-species Lotka-Volterra models with impulsive effect.

    Science.gov (United States)

    Li, Yongfeng; Cui, Jingan; Song, Xinyu

    2009-01-01

    In this paper, the nonautonomous competing two-species Lotka-Volterra models with impulsive effect are considered, where all the parameters are time-dependent and asymptotically approach the corresponding periodic functions. Under some conditions, it is shown that the semi-trivial positive solutions of the models asymptotically approach the semi-trivial positive periodic solutions of the corresponding periodic system. It is also shown that the positive solution of the models asymptotically approach the positive periodic solution of the corresponding periodic system.

  10. Variational Asymptotic Micromechanics Modeling of Composite Materials

    OpenAIRE

    Tang, Tian

    2008-01-01

    The issue of accurately determining the effective properties of composite materials has received the attention of numerous researchers in the last few decades and continues to be in the forefront of material research. Micromechanics models have been proven to be very useful tools for design and analysis of composite materials. In the present work, a versatile micromechanics modeling framework, namely, the Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH), has been invented a...

  11. Lattice Quantum Gravity and Asymptotic Safety

    OpenAIRE

    Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.

    2016-01-01

    We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we identify the target symmetry as the Hamiltonian canonical symmetry, which is closely related to, but n...

  12. Chiral fermions in asymptotically safe quantum gravity

    OpenAIRE

    Meibohm, Jan; Pawlowski, Jan M.

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christia...

  13. Asymptotic completeness in QED. Pt. 1

    International Nuclear Information System (INIS)

    Projection operators onto the asymptotic scattering states are defined in the space of quasilocal states of QED in a Gupta-Bleuler formulation. They are obtained as weak limits for t → ±∞ of expressions formed with interacting fields, in close analogy to the LSZ expressions known from field theories without infrared problems. It is shown that these limits exist in perturbative QED and are equal to the identity. (orig.)

  14. Asymptotic completeness in QED. Pt. 2

    International Nuclear Information System (INIS)

    Physical states and fields in QED are defined as limits in the sense of Wightman functions of states and composite fields of the Gupta-Bleuler formalism. A formulation of asymptotic completeness proposed in an earlier publication for the Gupta-Bleuler case is transferred to the physical state space and shown to be valid in perturbation theory. An application to the calculation of inclusive cross sections is discussed. (orig.)

  15. Asymptotics of high order noise corrections

    CERN Document Server

    Sondergaard, N; Pálla, G; Voros, A; Sondergaard, Niels; Vattay, Gabor; Palla, Gergely; Voros, Andre

    1999-01-01

    We consider an evolution operator for a discrete Langevin equation with a strongly hyperbolic classical dynamics and noise with finite moments. Using a perturbative expansion of the evolution operator we calculate high order corrections to its trace in the case of a quartic map and Gaussian noise. The leading contributions come from the period one orbits of the map. The asymptotic behaviour is investigated and is found to be independent up to a multiplicative constant of the distribution of noise.

  16. Asymptotic elastic energy in simple metals

    International Nuclear Information System (INIS)

    The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)

  17. The Asymptotic Regime of High Density QCD

    CERN Document Server

    Gay-Ducati, M B

    2000-01-01

    We discuss the distinct approaches for high density QCD (hdQCD) in the asymptotic regime of large values of parton density. We derive the AGL equation for running coupling constant and obtain the asymptotic solution, demonstrating that the property of partial saturation of the solution of the AGL equation is not modified by the running of the coupling constant. We show that in this kinematical regime, the solution of the AGL equation coincides with the solution of an evolution equation, obtained recently using the McLerran-Venugopalan approach. Using the asymptotic behavior of the gluon distribution we calculate the $F_2$ structure function assuming first that the leading twist relation between these two quantities is valid and second that this relation is modified by the higher twist terms associated to the unitarity corrections. In the first case we obtain that the corresponding $F_2$ structure function is linearly proportional to $ln s$, which agrees with the results obtained recently by Kovchegov using a ...

  18. Asymptotic expansions for the Gaussian unitary ensemble

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Thorbjørnsen, Steen

    2012-01-01

    Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients...... aj(g), j ¿ N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the case where and for ¿, µ in C\\R. In this case the mean and...

  19. Asymptotically flat space-times: an enigma

    Science.gov (United States)

    Newman, Ezra T.

    2016-07-01

    We begin by emphasizing that we are dealing with standard Einstein or Einstein-Maxwell theory—absolutely no new physics has been inserted. The fresh item is that the well-known asymptotically flat solutions of the Einstein-Maxwell theory are transformed to a new coordinate system with surprising and (seemingly) inexplicable results. We begin with the standard description of (Null) asymptotically flat space-times described in conventional Bondi-coordinates. After transforming the variables (mainly the asymptotic Weyl tensor components) to a very special set of Newman-Unti (NU) coordinates, we find a series of relations totally mimicking standard Newtonian classical mechanics and Maxwell theory. The surprising and troubling aspect of these relations is that the associated motion and radiation does not take place in physical space-time. Instead these relations takes place in an unusual inherited complex four-dimensional manifold referred to as H-space that has no immediate relationship with space-time. In fact these relations appear in two such spaces, H-space and its dual space \\bar{H}.

  20. Asymptotics of the instantons of Painleve I

    CERN Document Server

    Garoufalidis, Stavros; Kapaev, Andrei; Marino, Marcos

    2010-01-01

    The 0-instanton solution of Painlev\\'e I is a sequence $(u_{n,0})$ of complex numbers which appears universally in many enumerative problems in algebraic geometry, graph theory, matrix models and 2-dimensional quantum gravity. The asymptotics of the 0-instanton $(u_{n,0})$ for large $n$ were obtained by the third author using the Riemann-Hilbert approach. For $k=0,1,2,...$, the $k$-instanton solution of Painlev\\'e I is a doubly-indexed sequence $(u_{n,k})$ of complex numbers that satisfies an explicit quadratic non-linear recursion relation. The goal of the paper is three-fold: (a) to compute the asymptotics of the 1-instanton sequence $(u_{n,1})$ to all orders in $1/n$ by using the Riemann-Hilbert method, (b) to present formulas for the asymptotics of $(u_{n,k})$ for fixed $k$ and to all orders in $1/n$ using resurgent analysis, and (c) to confirm numerically the predictions of resurgent analysis. We point out that the instanton solutions display a new type of Stokes behavior, induced from the tritronqu\\'ee ...

  1. Adaptive Molecular Resolution Approach in Hamiltonian Form: An Asymptotic Analysis

    CERN Document Server

    Zhu, Jinglong; Site, Luigi Delle

    2016-01-01

    Adaptive Molecular Resolution approaches in Molecular Dynamics are becoming relevant tools for the analysis of molecular liquids characterized by the interplay of different physical scales. The essential difference among these methods is in the way the change of molecular resolution is made in a buffer/transition region. In particular a central question concerns the possibility of the existence of a global Hamiltonian which, by describing the change of resolution, is at the same time physically consistent, mathematically well defined and numerically accurate. In this paper we present an asymptotic analysis of the adaptive process complemented by numerical results and show that under certain mathematical conditions a Hamiltonian, which is physically consistent and numerically accurate, may exist. \\blue{Such conditions show that molecular simulations in the current computational implementation require systems of large size and thus a Hamiltonian approach as the one proposed, at this stage, would not be practica...

  2. Asymptotic stabilization of nonlinear systems using state feedback

    International Nuclear Information System (INIS)

    This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author)

  3. Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Kleinmann, M. [Department Physik, Universitaet Siegen, Walter-Flex-Strasse 3, D-57068 Siegen (Germany); Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Kampermann, H.; Bruss, D. [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf, D-40225 Duesseldorf (Germany)

    2011-10-15

    We revisit the problem of discriminating orthogonal quantum states within the local-quantum-operation-and-classical-communication (LOCC) paradigm. Our particular focus is on the asymptotic situation where the parties have infinite resources and the protocol may become arbitrarily long. Our main result is a necessary condition for perfect asymptotic LOCC discrimination. As an application, we prove that for complete product bases, unlimited resources are of no advantage. On the other hand, we identify an example for which it still remains undecided whether unlimited resources are superior.

  4. Nonlinear W(infinity) Algebra as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity

    OpenAIRE

    Henneaux, Marc(Université Libre de Bruxelles, ULB-Campus Plaine CP231, 1050, Brussels, Belgium); Rey, Soo-Jong

    2010-01-01

    We investigate the asymptotic symmetry algebra of (2+1)-dimensional higher spin, anti-de Sitter gravity. We use the formulation of the theory as a Chern-Simons gauge theory based on the higher spin algebra hs(1,1). Expanding the gauge connection around asymptotically anti-de Sitter spacetime, we specify consistent boundary conditions on the higher spin gauge fields. We then study residual gauge transformation, the corresponding surface terms and their Poisson bracket algebra. We find that the...

  5. Almost Sure Asymptotical Adaptive Synchronization for Neutral-Type Neural Networks with Stochastic Perturbation and Markovian Switching

    OpenAIRE

    Wuneng Zhou; Xueqing Yang; Jun Yang; Anding Dai; Huashan Liu

    2014-01-01

    The problem of almost sure (a.s.) asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching is researched. Firstly, we proposed a new criterion of a.s. asymptotic stability for a general neutral-type stochastic differential equation which extends the existing results. Secondly, based upon this stability criterion, by making use of Lyapunov functional method and designing an adaptive controller, we obtained a condition of a.s. asy...

  6. Asymptotic Analysis of Transverse Magnetic Multiple Scattering by the Diffraction Grating of Penetrable Cylinders at Oblique Incidence

    Directory of Open Access Journals (Sweden)

    Ömer Kavaklıoğlu

    2011-01-01

    Full Text Available We have presented a derivation of the asymptotic equations for transverse magnetic multiple scattering coefficients of an infinite grating of penetrable circular cylinders for obliquely incident plane electromagnetic waves. We have first deducted an “Ansatz” delineating the asymptotic behavior of the transverse magnetic multiple scattering coefficients associated with the most generalized condition of oblique incidence (Kavaklıoğlu, 2000 by exploiting Schlömilch series corresponding to the special circumstance that the grating spacing is much smaller than the wavelength of the incident electromagnetic radiation. The validity of the asymptotic equations for the aforementioned scattering coefficients has been verified by collating them with the Twersky's asymptotic equations at normal incidence. Besides, we have deduced the consequences that the asymptotic forms of the equations at oblique incidence acquired in this paper reduce to Twersky's asymptotic forms at normal incidence by expanding the generalized scattering coefficients at oblique incidence into an asymptotic series as a function of the ratio of the cylinder radius to the grating spacing.

  7. ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we investigate a second order impulsive differential equation on time scales.Sufficient conditions are given to guarantee that the solutions tend to zero.The notable effect of impulse upon the asymptotic behavior of solutions is stressed in this paper.At last,we illustrate our results with two examples.

  8. Uniform Asymptotic Normality of the Matrix-variate Beta-distribution

    Institute of Scientific and Technical Information of China (English)

    Kai Can LI; He TANG

    2012-01-01

    With the upper bound of Kullback-Leibler distance between a matrix variate Beta-distribution and a normal distribution,this paper gives the conditions under which a matrix-variate Betadistribution will approach uniformly and asymptotically a normal distribution.

  9. Asymptotic Solution of Nonlinear Nonlocal Singularly Perturbed Reaction Diffusion Problems with Two Parameters

    Institute of Scientific and Technical Information of China (English)

    Zai-ying ZHOU; Jia-qi MO

    2012-01-01

    A class of differential-difference reaction diffusion equations initial boundary problem with a small time delay is considered.Under suitable conditions and by using method of the stretched variable,the formal asymptotic solution is constructed. And then,by using the theory of differential inequalities the uniformly validity of solution is proved.

  10. ASYMPTOTICS OF INITIAL BOUNDARY VALUE PROBLEMS OF BIPOLAR HYDRODYNAMIC MODEL FOR SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    Ju Qiangchang

    2004-01-01

    In this paper, we study the asymptotic behavior of the solutions to the bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the initial boundary problem of the model admits a global smooth solution which decays to the steady state exponentially fast.

  11. Existence and Asymptotic Behavior of Traveling Wave Fronts for a Time-Delayed Degenerate Diffusion Equation

    OpenAIRE

    Weifang Yan; Rui Liu

    2013-01-01

    This paper is concerned with traveling wave fronts for a degenerate diffusion equation with time delay. We first establish the necessary and sufficient conditions to the existence of monotone increasing and decreasing traveling wave fronts, respectively. Moreover, special attention is paid to the asymptotic behavior of traveling wave fronts connecting two uniform steady states. Some previous results are extended.

  12. Estimation and asymptotic inference in the first order AR-ARCH model

    DEFF Research Database (Denmark)

    Lange, Theis; Rahbek, Anders; Jensen, Søren Tolver

    2011-01-01

    This article studies asymptotic properties of the quasi-maximum likelihood estimator (QMLE) for the parameters in the autoregressive (AR) model with autoregressive conditional heteroskedastic (ARCH) errors. A modified QMLE (MQMLE) is also studied. This estimator is based on truncation of individual...

  13. A Lyapunov-Krasovskii methodology for asymptotic stability of discrete time delay systems

    Directory of Open Access Journals (Sweden)

    Stojanović Sreten B.

    2007-01-01

    Full Text Available This paper presents a Lyapunov-Krasovskii methodology for asymptotic stability of discrete time delay systems. Based on the methods, delay-independent stability condition is derived. A numerical example has been working out to show the applicability of results derived.

  14. Asymptotic theory for weakly non-linear wave equations in semi-infinite domains

    Directory of Open Access Journals (Sweden)

    Chirakkal V. Easwaran

    2004-01-01

    Full Text Available We prove the existence and uniqueness of solutions of a class of weakly non-linear wave equations in a semi-infinite region $0le x$, $t< L/sqrt{|epsilon|}$ under arbitrary initial and boundary conditions. We also establish the asymptotic validity of formal perturbation approximations of the solutions in this region.

  15. EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTION OF DELAYED LOGISTIC EQUATION AND ITS ASYMPTOTIC BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    王金良; 周笠

    2003-01-01

    In this paper,our main aim is to study the existence and uniqueness of the periodic solution of delayed Logistic equation and its asymptotic behavior.In case the coefficients are periodic,we give some sufficient conditions for the existence and uniqueness of periodic solution.Furthermore,we also study the effect of time-delay on the solution.

  16. Asymptotic solutions for laminar flow in a channel with uniformly accelerating rigid porous walls

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of multiple solutions and its conditions were established by taking into account exponentially small terms in matched asymptotic expansion. The correctness of the analytical predictions was verified by numerical results.

  17. Global asymptotic stability of BAM neural networks with distributed delays and reaction-diffusion terms

    Energy Technology Data Exchange (ETDEWEB)

    Cui Baotong [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China)] e-mail: btcui@sohu.com; Lou Xuyang [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China)

    2006-03-01

    The global asymptotic stability of bi-directional associative memory neural networks with distributed delays and reaction-diffusion terms are studied by using the analysis technique and Lyapunov functional. A sufficient condition is proposed. Two numerical examples are given to show the correctness of our analysis.

  18. An asymptotically normal G-estimate for the Anderson-Fisher discriminant function

    Energy Technology Data Exchange (ETDEWEB)

    Girko, V.L.; Pavlenko, T.V. [Kiev State Univ. (Ukraine)

    1994-06-05

    Conditions under which a G-estimate of the Anderson-Fisher discriminant function is asymptotically normal are investigated. This estimate decreases by an order of magnitude the quantity of observations needed for a given level of accuracy on the part of an estimate and is thus of significant interest for practical applications. 3 refs.

  19. Pressures for Asymptotically Sub-additive Potentials Under a Mistake Function

    OpenAIRE

    Cheng, Wen-Chiao; Zhao, Yun; Cao, Yongluo

    2010-01-01

    This paper defines the pressure for asymptotically subadditive potentials under a mistake function, including the measuretheoretical and the topological versions. Using the advanced techniques of ergodic theory and topological dynamics, we reveals a variational principle for the new defined topological pressure without any additional conditions on the potentials and the compact metric space.

  20. The Asymptotic Distribution of Ability Estimates: Beyond Dichotomous Items and Unidimensional IRT Models

    Science.gov (United States)

    Sinharay, Sandip

    2015-01-01

    The maximum likelihood estimate (MLE) of the ability parameter of an item response theory model with known item parameters was proved to be asymptotically normally distributed under a set of regularity conditions for tests involving dichotomous items and a unidimensional ability parameter (Klauer, 1990; Lord, 1983). This article first considers…

  1. On an asymptotic distribution of dependent random variables on a 3-dimensional lattice✩

    Science.gov (United States)

    Harvey, Danielle J.; Weng, Qian; Beckett, Laurel A.

    2010-01-01

    We define conditions under which sums of dependent spatial data will be approximately normally distributed. A theorem on the asymptotic distribution of a sum of dependent random variables defined on a 3-dimensional lattice is presented. Examples are also presented. PMID:20436940

  2. ASYMPTOTIC STABILITY OF RUNGE-KUTTA METHODS FOR THE PANTOGRAPH EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Jing-jun Zhao; Wan-rong Cao; Ming-zhu Liu

    2004-01-01

    This paper considers the asymptotic stability analysis of both exact and numericalsolutions of the following neutral delay differential equation with pantograph delay.{x′(t)+Bx(t)+Cx′(qt)+Dx(qt)=0, t>0,x(0)=x0,where B, C, D ∈ Cd×d, q ∈ (0, 1), and B is regular. After transforming the above equation to non-automatic neutral equation with constant delay, we determine sufficient conditions for the asymptotic stability of the zero solution. Furthermore, we focus on the asymptotic stability behavior of Runge-Kutta method with variable stepsize. It is proved that a Lstable Runge-Kutta method can preserve the above-mentioned stability properties.

  3. Asymptotically locally flat spacetimes and dynamical nonspherically-symmetric black holes in three dimensions

    Science.gov (United States)

    Barnich, Glenn; Troessaert, Cédric; Tempo, David; Troncoso, Ricardo

    2016-04-01

    The theory of massive gravity proposed by Bergshoeff, Hohm and Townsend is considered in the special case of the pure irreducibly fourth-order quadratic Lagrangian. It is shown that the asymptotically locally flat black holes of this theory can be consistently deformed to "black flowers" that are no longer spherically symmetric. Moreover, we construct radiating spacetimes settling down to these black flowers in the far future. The generic case can be shown to fit within a relaxed set of asymptotic conditions as compared to the ones of general relativity at null infinity, while the asymptotic symmetries remain the same. Conserved charges as surface integrals at null infinity are constructed following a covariant approach, and their algebra represents BMS3 , but without central extensions. For solutions possessing an event horizon, we derive the first law of thermodynamics from these surface integrals.

  4. Axisymmetric eddy current inspection of highly conducting thin layers via asymptotic models

    Science.gov (United States)

    Haddar, Houssem; Jiang, Zixian

    2015-11-01

    Thin copper deposits covering the steam generator tubes can blind eddy current probes in non-destructive testings of problematic faults and it is therefore important that they are identified. Existing methods based on shape reconstruction using eddy current signals encounter difficulties of high numerical costs due to the layer’s small thickness and high conductivity. In this article, we approximate the axisymmetric eddy current problem with some appropriate asymptotic models using effective transmission conditions representing the thin deposits. In these models, the geometrical information related to the deposit is transformed into parameter coefficients on a fictitious interface. A standard iterative inversion algorithm is then applied to the asymptotic models to reconstruct the thickness of the thin copper layers. Numerical tests both validating the asymptotic model and showing the benefits of the inversion procedure are provided.

  5. Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis

    CERN Document Server

    Vetyukov, Yury

    2014-01-01

    This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...

  6. On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protocol

    CERN Document Server

    Cho, Jeong-woo; Jiang, Yuming

    2011-01-01

    Performance evaluation of the 802.11 MAC protocol is classically based on the decoupling assumption, which hypothesizes that the backoff processes at different nodes are independent. A necessary condition for the validity of this approach in the asymptotic sense (when the number of wireless nodes tends to infinity) is the existence and uniqueness of a solution to a fixed point equation. However, it was also recently pointed out that this condition is not sufficient; in contrast, a necessary and sufficient condition is a global stability property of the associated ordinary differential equation. Such a property was established only for a specific case, namely for a homogeneous system (all nodes have the same parameters) and when the number of backoff stages is either two or infinite and with other restrictive conditions. In this paper, we give a simple condition that establishes the asymptotic validity of the decoupling assumption for the homogeneous case. We also discuss the heterogeneous and the differentiat...

  7. Asymptotics for a generalization of Hermite polynomials

    CERN Document Server

    Alfaro, M; Peña, A; Rezola, M L

    2009-01-01

    We consider a generalization of the classical Hermite polynomials by the addition of terms involving derivatives in the inner product. This type of generalization has been studied in the literature from the point of view of the algebraic properties. Thus, our aim is to study the asymptotics of this sequence of nonstandard orthogonal polynomials. In fact, we obtain Mehler--Heine type formulas for these polynomials and, as a consequence, we prove that there exists an acceleration of the convergence of the smallest positive zeros of these generalized Hermite polynomials towards the origin.

  8. Large Degree Asymptotics of Generalized Bessel Polynomials

    OpenAIRE

    López, J. L.; Temme, Nico

    2011-01-01

    Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in the $z-$plane. New forms of expansions in terms of elementary functions valid in sectors not containing the turning points $z=\\pm i/n$ are derived, and a new expansion in terms of modified Bessel fu...

  9. Taming perturbative divergences in asymptotically safe gravity

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, Dario, E-mail: dbenedetti@perimeterinstitute.c [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo ON (Canada); Machado, Pedro F., E-mail: p.f.machado@uu.n [Institute for Theoretical Physics, Utrecht University, 3508 TD Utrecht (Netherlands); Saueressig, Frank, E-mail: Frank.Saueressig@cea.f [Institut de Physique Theorique, CEA Saclay, F-91191 Gif-Sur-Yvette Cedex (France); CNRS URA 2306, F-91191 Gif-Sur-Yvette Cedex (France)

    2010-01-01

    We use functional renormalization group methods to study gravity minimally coupled to a free scalar field. This setup provides the prototype of a gravitational theory which is perturbatively non-renormalizable at one-loop level, but may possess a non-trivial renormalization group fixed point controlling its UV behavior. We show that such a fixed point indeed exists within the truncations considered, lending strong support to the conjectured asymptotic safety of the theory. In particular, we demonstrate that the counterterms responsible for its perturbative non-renormalizability have no qualitative effect on this feature.

  10. Homogenization and asymptotics for small transaction costs

    CERN Document Server

    Soner, H Mete

    2012-01-01

    We consider the classical Merton problem of lifetime consumption-portfolio optimization problem with small proportional transaction costs. The first order term in the asymptotic expansion is explicitly calculated through a singular ergodic control problem which can be solved in closed form in the one-dimensional case. Unlike the existing literature, we consider a general utility function and general dynamics for the underlying assets. Our arguments are based on ideas from the homogenization theory and use the convergence tools from the theory of viscosity solutions. The multidimensional case is studied in our accompanying paper using the same approach.

  11. The ADM mass of asymptotically flat hypersurfaces

    CERN Document Server

    de Lima, Levi Lopes

    2011-01-01

    We provide integral formulae for the ADM mass of asymptotically flat hypersurfaces in Riemannian manifolds with a certain warped product structure in a neighborhood of infinity, thus extending Lam's recent results on Euclidean graphs to this broader context. As applications we exhibit, in any dimension, new classes of manifolds for which versions of the Positive Mass and Riemannian Penrose inequalities hold and discuss a notion of quasi-local mass in this setting. The proof explores a novel connection between the co-vector defining the ADM mass of a hypersurface as above and the Newton tensor associated to its shape operator, which takes place in the presence of an ambient Killing field.

  12. Asymptotics of loop quantum gravity fusion coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Alesci, Emanuele; Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio, E-mail: alesci@fis.uniroma3.i, E-mail: e.bianchi@sns.i, E-mail: elena.magliaro@gmail.co, E-mail: claude.perin@libero.i [Centre de Physique Theorique de Luminy , case 907, F-13288 Marseille (France)

    2010-05-07

    The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in loop quantum gravity. In this paper we give a simple analytic formula of the Engle-Pereira-Rovelli-Livine fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2){sub L} x SU(2){sub R} semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.

  13. Asymptotic behaviour of exclusive processes in QCD

    International Nuclear Information System (INIS)

    The main ideas, methods and results in the investigation of the asymptotic behaviour of exclusive processes are reviewed. We discuss power behaviour and its dependence on hadron quantum numbers, logarithmic corrections and properties of nonperturbative hadronic wave functions. Applications to meson and baryon form factors, strong, electromagnetic and weak decays of heavy mesons, elastic scattering, threshold behaviour of inclusive structure functions, etc., are described. Comparison of theoretical predictions with experimental data is made whenever possible. The review may be of interest to theoreticians, experimentalists and students specializing in elementary particle physics. The experts in this field can also find new results (nonleading logarithms, higher twist processes, novel applications, etc.). (orig.)

  14. Pólya distribution and its asymptotics in nucleation theory

    Science.gov (United States)

    Dubrovskii, V. G.

    2014-02-01

    A model of condensation-decay rate constants that are linear with respect to the number of monomers in the nucleus is considered. In a particular case of stable growth, this model leads to an exact solution of discrete kinetic equations of the theory of heterogeneous nucleation in the form of the Pólya distribution function. An asymptotic solution in the region of large nucleus sizes that satisfies the normalization condition and provides correct mean nucleus size has been found. It is shown that, in terms of the logarithmic invariant size, the obtained distribution has a universal time-independent form. The obtained solution, being more general than the double-exponent distribution used previously, describes both Gaussian and asymmetric distributions depending on the rate constant of condensation on a bare core. The obtained results are useful for modeling processes in some systems, in particular, the growth of linear chains, two-dimensional clusters, and filamentary nanocrystals.

  15. Asymptotic Behavior of an Elastic Satellite with Internal Friction

    Energy Technology Data Exchange (ETDEWEB)

    Haus, E., E-mail: emanuele.haus@unina.it [Università di Napoli Federico II Via Cintia, Dipartimento di Matematica e Applicazioni R. Caccioppoli (Italy); Bambusi, D., E-mail: dario.bambusi@unimi.it [Università degli Studi di Milano, DIpartimento di Matematica F. Enriques (Italy)

    2015-12-15

    We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group.

  16. Asymptotically AdS spacetimes with a timelike Kasner singularity

    Science.gov (United States)

    Ren, Jie

    2016-07-01

    Exact solutions to Einstein's equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  17. Asymptotic Behavior of an Elastic Satellite with Internal Friction

    International Nuclear Information System (INIS)

    We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group

  18. Asymptotic behaviour of electro-$\\Lambda$ spacetimes

    CERN Document Server

    Saw, Vee-Liem

    2016-01-01

    We derive the asymptotic solutions for vacuum spacetimes with non-zero cosmological constant $\\Lambda$ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with $\\Lambda=0$. Using these asymptotic solutions, we discuss the mass-loss of an isolated electro-gravitating system with cosmological constant. In a universe with $\\Lambda>0$, the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: 1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. 2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike $\\mathcal{I}$ and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with the Bondi mass-loss formula in any un...

  19. Asymptotically Lifshitz brane-world black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, Arash, E-mail: a_ranjbar@sbu.ac.ir; Sepangi, Hamid Reza, E-mail: hr-sepangi@sbu.ac.ir; Shahidi, Shahab, E-mail: s_shahidi@sbu.ac.ir

    2012-12-15

    We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: Black-Right-Pointing-Pointer Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. Black-Right-Pointing-Pointer Studying the thermodynamical behavior of asymptotically Lifshitz black holes. Black-Right-Pointing-Pointer Showing that the entropy imposes the critical exponent z to be bounded from above. Black-Right-Pointing-Pointer Discussing the phase transition for different spatial topologies.

  20. Vacuum polarization in asymptotically Lifshitz black holes

    Science.gov (United States)

    Quinta, Gonçalo M.; Flachi, Antonino; Lemos, José P. S.

    2016-06-01

    There has been considerable interest in applying the gauge-gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed, focused on incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes and, to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, nonminimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti-de Sitter black holes. The basics are similar to previous calculations; however, in the Lifshitz case, one needs to extend the previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulas are shown to reduce to the anti-de Sitter (AdS) case studied before once the value of the dynamical exponent is set to unity and the metric functions are accordingly chosen. The analytical results we present are general and can be applied to a variety of cases, in fact, to all spherically symmetric Lifshitz black hole solutions. We also implement the numerical analysis choosing some known Lifshitz black hole solutions as illustration.

  1. Vacuum polarization in asymptotically Lifshitz black holes

    CERN Document Server

    Quinta, Gonçalo M; Lemos, José P S

    2016-01-01

    There has been considerable interest in applying the gauge/gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed aiming at incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes, and to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, non-minimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti de Sitter black holes. The basics are similar to previous calculations, however in the Lifshitz case one needs to extend previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulae are shown to reduce to the AdS case studied before once the value of the dynamical exponent is set to...

  2. Lattice Quantum Gravity and Asymptotic Safety

    CERN Document Server

    Laiho, J; Coumbe, D; Du, D; Neelakanta, J T

    2016-01-01

    We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we identify the target symmetry as the Hamiltonian canonical symmetry, which is closely related to, but not identical to, four-dimensional diffeomorphism invariance. After introducing and fine-tuning a non-trivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3/2, a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue tha...

  3. Numerical integration of asymptotic solutions of ordinary differential equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  4. Asymptotic analysis of the Nörlund and Stirling polynomials

    Directory of Open Access Journals (Sweden)

    Mark Daniel Ward

    2012-04-01

    Full Text Available We provide a full asymptotic analysis of the N{\\"o}rlund polynomials and Stirling polynomials. We give a general asymptotic expansion---to any desired degree of accuracy---when the parameter is not an integer. We use singularity analysis, Hankel contours, and transfer theory. This investigation was motivated by a need for such a complete asymptotic description, with parameter 1/2, during this author's recent solution of Wilf's 3rd (previously Unsolved Problem.

  5. ASYMPTOTIC EXPANSION AND ESTIMATE OF THE LANDAU CONSTANT

    Institute of Scientific and Technical Information of China (English)

    A.Eisinberg; G.Franzè; N.Salerno

    2001-01-01

    Properties of Landau constant are investigated in this note.A new representation in terms of a hypergeometric function 3F2 is given and a property defining the family of asymptotic sequences of Landau constant is formalized.Moreover,we give an other asymptotic expansion of Landau constant by using asymptotic expansion of the ratio of gamma functions in the sense of Poincaré due to Tricomi and Erdélyi.

  6. On the asymptotic methods for nuclear collective models

    OpenAIRE

    Gheorghe, A. C.; Raduta, A. A.

    2009-01-01

    Contractions of orthogonal groups to Euclidean groups are applied to analytic descriptions of nuclear quantum phase transitions. The semiclassical asymptotic of multipole collective Hamiltonians are also investigated.

  7. Asymptotic stability of Riemann waves for conservation laws

    Science.gov (United States)

    Chen, G.-Q.; Frid, H.; Marta

    We are concerned with the asymptotic behavior of entropy solutions of conservation laws. A new notion about the asymptotic stability of Riemann solutions is introduced, and corresponding analytical frameworks are developed. The correlation between the asymptotic problem and many important topics in conservation laws and nonlinear analysis is recognized and analyzed, such as zero dissipation limits, uniqueness of entropy solutions, entropy analysis, and divergence-measure fields in L∞ . Then this theory is applied to understanding the asymptotic behavior of entropy solutions for many important systems of conservation laws.

  8. ASYMPTOTIC EXPANSIONS OF ZEROS FOR KRAWTCHOUK POLYNOMIALS WITH ERROR BOUNDS

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiao-feng; LI Xiu-chun

    2006-01-01

    Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds are discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.

  9. Convergece Theorems for Finite Families of Asymptotically Quasi-Nonexpansive Mappings

    OpenAIRE

    Ali Bashir; Chidume CE

    2007-01-01

    Let be a real Banach space, a closed convex nonempty subset of , and asymptotically quasi-nonexpansive mappings with sequences (resp.) satisfying as , and . Let be a sequence in . Define a sequence by , , , , , . Let . Necessary and sufficient conditions for a strong convergence of the sequence to a common fixed point of the family are proved. Under some appropriate conditions, strong and weak convergence theorems are also proved.

  10. Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations

    Science.gov (United States)

    Wu, Ruihua; Zou, Xiaoling; Wang, Ke

    2015-03-01

    This paper is concerned with a stochastic non-autonomous Lotka-Volterra predator-prey model with impulsive effects. The asymptotic properties are examined. Sufficient conditions for persistence and extinction are obtained, our results demonstrate that the impulse has important effects on the persistence and extinction of the species. We also show that the solution is stochastically ultimate bounded under some conditions. Finally, several simulation figures are introduced to confirm our main results.

  11. Hybrid model for the Coupling of an Asymptotic Preserving scheme with the Asymptotic Limit model: The One Dimensional Case⋆

    OpenAIRE

    Narski Jacek; Negulescu Claudia; Maldarella Dario; Degond Pierre; Deluzet Fabrice; Parisot Martin

    2011-01-01

    International audience In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, ellip-tic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed in this ...

  12. Asymptotic stability of steady compressible fluids

    CERN Document Server

    Padula, Mariarosaria

    2011-01-01

    This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...

  13. Motion Parallax is Asymptotic to Binocular Disparity

    CERN Document Server

    Stroyan, Keith

    2010-01-01

    Researchers especially beginning with (Rogers & Graham, 1982) have noticed important psychophysical and experimental similarities between the neurologically different motion parallax and stereopsis cues. Their quantitative analysis relied primarily on the "disparity equivalence" approximation. In this article we show that retinal motion from lateral translation satisfies a strong ("asymptotic") approximation to binocular disparity. This precise mathematical similarity is also practical in the sense that it applies at normal viewing distances. The approximation is an extension to peripheral vision of (Cormac & Fox's 1985) well-known non-trig central vision approximation for binocular disparity. We hope our simple algebraic formula will be useful in analyzing experiments outside central vision where less precise approximations have led to a number of quantitative errors in the vision literature.

  14. Loop Quantum Gravity and Asymptotically Flat Spaces

    Science.gov (United States)

    Arnsdorf, Matthias

    2002-12-01

    Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...

  15. The asymptotic safety scenario in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, Frank [Institute of Physics, University of Mainz, D-55099 Mainz (Germany)

    2011-07-01

    Asymptotic safety offers the possibility that gravity constitutes a consistent and predictive quantum field theory within Wilsons generalized framework of renormalization. The key ingredient of this scenario is a non-trivial fixed point of the gravitational renormalization group flow which governs the UV behavior of the theory. The fixed point itself thereby guarantees the absence of unphysical UV divergences while its associated finite-dimensional UV-critical surface ensures the predictivity of the resulting quantum theory. This talk summarizes the evidence for the existence of such a fixed point, which emerged from the flow equation for the effective average action, the gravitational beta-functions in 2+{epsilon} dimensions, the 2-Killing vector reduction of the gravitational path-integral and lattice simulations. Possible phenomenological consequences are discussed in detail.

  16. Modeling of nanoplastic by asymptotic homogenization method

    Institute of Scientific and Technical Information of China (English)

    张为民; 何伟; 李亚; 张平; 张淳源

    2008-01-01

    The so-called nanoplastic is a new simple name for the polymer/layered silicate nanocomposite,which possesses excellent properties.The asymptotic homogenization method(AHM) was applied to determine numerically the effective elastic modulus of a two-phase nanoplastic with different particle aspect ratios,different ratios of elastic modulus of the effective particle to that of the matrix and different volume fractions.A simple representative volume element was proposed,which is assumed that the effective particles are uniform well-aligned and perfectly bonded in an isotropic matrix and have periodic structure.Some different theoretical models and the experimental results were compared.The numerical results are good in agreement with the experimental results.

  17. Hydrodynamics, resurgence and trans-asymptotics

    CERN Document Server

    Basar, Gokce

    2015-01-01

    The second-order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost- invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the non-hydrodynamic modes that are exponentially suppressed at late times, analogous to the quasi-normal-modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semi-classical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these non-hydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with init...

  18. Chiral fermions in asymptotically safe quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Meibohm, J. [Gothenburg University, Department of Physics, Goeteborg (Sweden); Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Pawlowski, J.M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung mbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany)

    2016-05-15

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions. (orig.)

  19. Asymptotic theory of quantum statistical inference

    Science.gov (United States)

    Hayashi, Masahito

    Part I: Hypothesis Testing: Introduction to Part I -- Strong Converse and Stein's lemma in quantum hypothesis testing/Tomohiro Ogawa and Hiroshi Nagaoka -- The proper formula for relative entropy and its asymptotics in quantum probability/Fumio Hiai and Dénes Petz -- Strong Converse theorems in Quantum Information Theory/Hiroshi Nagaoka -- Asymptotics of quantum relative entropy from a representation theoretical viewpoint/Masahito Hayashi -- Quantum birthday problems: geometrical aspects of Quantum Random Coding/Akio Fujiwara -- Part II: Quantum Cramèr-Rao Bound in Mixed States Model: Introduction to Part II -- A new approach to Cramèr-Rao Bounds for quantum state estimation/Hiroshi Nagaoka -- On Fisher information of Quantum Statistical Models/Hiroshi Nagaoka -- On the parameter estimation problem for Quantum Statistical Models/Hiroshi Nagaoka -- A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to Quantum Estimation Theory/Hiroshi Nagaoka -- A linear programming approach to Attainable Cramèr-Rao Type Bounds/Masahito Hayashi -- Statistical model with measurement degree of freedom and quantum physics/Masahito Hayashi and Keiji Matsumoto -- Asymptotic Quantum Theory for the Thermal States Family/Masahito Hayashi -- State estimation for large ensembles/Richard D. Gill and Serge Massar -- Part III: Quantum Cramèr-Rao Bound in Pure States Model: Introduction to Part III-- Quantum Fisher Metric and estimation for Pure State Models/Akio Fujiwara and Hiroshi Nagaoka -- Geometry of Quantum Estimation Theory/Akio Fujiwara -- An estimation theoretical characterization of coherent states/Akio Fujiwara and Hiroshi Nagaoka -- A geometrical approach to Quantum Estimation Theory/Keiji Matsumoto -- Part IV: Group symmetric approach to Pure States Model: Introduction to Part IV -- Optimal extraction of information from finite quantum ensembles/Serge Massar and Sandu Popescu -- Asymptotic Estimation Theory for a Finite-Dimensional Pure

  20. Quantum defect theory and asymptotic methods

    International Nuclear Information System (INIS)

    It is shown that quantum defect theory provides a basis for the development of various analytical methods for the examination of electron-ion collision phenomena, including di-electronic recombination. Its use in conjuction with ab initio calculations is shown to be restricted by problems which arise from the presence of long-range non-Coulomb potentials. Empirical fitting to some formulae can be efficient in the use of computer time but extravagant in the use of person time. Calculations at a large number of energy points which make no use of analytical formulae for resonance structures may be made less extravagant in computer time by the development of more efficient asymptotic methods. (U.K.)

  1. Chiral fermions in asymptotically safe quantum gravity

    Science.gov (United States)

    Meibohm, J.; Pawlowski, J. M.

    2016-05-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  2. Asymptotic methods in mechanics of solids

    CERN Document Server

    Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi

    2015-01-01

    The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...

  3. Asymptotic Behavior of Excitable Cellular Automata

    CERN Document Server

    Durrett, R; Durrett, Richard; Griffeath, David

    1993-01-01

    Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...

  4. Chiral fermions in asymptotically safe quantum gravity

    CERN Document Server

    Meibohm, Jan

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christiansen:2015rva, Meibohm:2015twa}, concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models, regardless of the number of fermion flavours. This suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  5. Entropy Production during Asymptotically Safe Inflation

    Directory of Open Access Journals (Sweden)

    Martin Reuter

    2011-01-01

    Full Text Available The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing its implications for cosmology using renormalization group improved Einstein equations, we find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological constant and ends automatically when the renormalization group evolution has reduced the vacuum energy to the level of the matter energy density. The quantum gravity effects also provide a natural mechanism for the generation of entropy. It could easily account for the entire entropy of the present Universe in the massless sector.

  6. Black holes in Asymptotically Safe Gravity

    CERN Document Server

    Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca

    2015-01-01

    Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.

  7. Comparison between various notions of conserved charges in asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    We derive Hamiltonian generators of asymptotic symmetries for general relativity with asymptotic AdS boundary conditions using the 'covariant phase space' method of Wald et al. We then compare our results with other definitions that have been proposed in the literature. We find that our definition agrees with that proposed by Ashtekar et al, with the spinor definition, and with the background-dependent definition of Henneaux and Teitelboim. Our definition disagrees with that obtained from the 'counterterm subtraction method', but the difference is found to consist only of a 'constant offset' that is determined entirely in terms of the boundary metric. We finally discuss and justify our boundary conditions by a linear perturbation analysis, and we comment on generalizations of our boundary conditions, as well as inclusion of matter fields

  8. Asymptotic Behaviors of the Solutions to Scalar Viscous Conservation Laws on Bounded Interval

    Institute of Scientific and Technical Information of China (English)

    Quansen Jiu; Tao Pan

    2003-01-01

    This paper concerns the asymptotic behaviors of the solutions to the initial-boundary value problem for scalar viscous conservations laws ut + f(u)x = uxx on [0, 1], with the boundary condition u(0, t) =u_,u(1,t) = u+ and the initial data u(x, 0) = u0(x), where u_ ≠ u+ and f is a given function satisfying f″ (u) > 0 for u under consideration. By means of energy estimates method and under some more regular conditions on the initial data, both the global existence and the asymptotic behavior are obtained. When u_ < u+, which corresponds to rarefaction waves in inviscid conservation laws, no smallness conditions are needed. While for u_ > u+, which corresponds to shock waves in inviscid conservation laws, it is established for weak shock waves, which means that |u_ - u+| is small. Moreover, exponential decay rates are both given.

  9. 离散时延双神经元网络的渐近稳定性%Asymptotic Stability Criteria for a Two-Neuron Network with Different Time Delays

    Institute of Scientific and Technical Information of China (English)

    李绍文; 李绍荣; 廖晓峰

    2003-01-01

    New sufficient conditions for the asymptotic stability of a two-neuron network with different time delays are derived. These conditions lead to delay-dependent and delay-independent asymptotic stability. Our results are shown to be less conservative and restrictive than those reported in the literature. Some examples are given to illustrate the correctness of our results.

  10. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...

  11. An asymptotic solution of large-N QCD

    Directory of Open Access Journals (Sweden)

    Bochicchio Marco

    2014-01-01

    Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.

  12. Asymptotic Hyperstability of Dynamic Systems with Point Delays

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2005-01-01

    Full Text Available It is proved that a linear time-invariant system with internal point delays is asymptotically hyperstable independent of the delays if an associate delay-free system is asymptotically hyperstable and the delayed dynamics are sufficiently small.

  13. Asymptotic behavior of support points for planar curves

    CERN Document Server

    Nikonorov, Yu G

    2010-01-01

    In this paper we prove a universal inequality described the asymptotic behavior of support points for planar continuous curves. As corollaries we get an analogous result for tangent points of differentiable planar curves and some (partially known) assertions on the asymptotic of the mean value points for various classical analytic theorems. Some open questions are formulated.

  14. Numerical and asymptotic aspects of parabolic cylinder functions

    NARCIS (Netherlands)

    Temme, N.M.

    2000-01-01

    Several uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions given earlier by F.W.J. Olver. Some of his results are

  15. Asymptotic Formula for Quantum Harmonic Oscillator Tunneling Probabilities

    Science.gov (United States)

    Jadczyk, Arkadiusz

    2015-10-01

    Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.

  16. Asymptotic formula for quantum harmonic oscillator tunneling probabilities

    OpenAIRE

    Jadczyk, Arkadiusz

    2015-01-01

    Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.

  17. Strong Convergence Theorems for Mixed Typ e Asymptotically Nonexpansive Mappings

    Institute of Scientific and Technical Information of China (English)

    Wei Shi-long; Guo Wei-ping

    2015-01-01

    The purpose of this paper is to study a new two-step iterative scheme with mean errors of mixed type for two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings and prove strong convergence theorems for the new two-step iterative scheme in uniformly convex Banach spaces.

  18. Einstein-Yang-Mills theory : I. Asymptotic symmetries

    CERN Document Server

    Barnich, Glenn

    2013-01-01

    Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four dimensional asymptotically flat case.

  19. Uniform asymptotic estimates of transition probabilities on combs

    OpenAIRE

    Bertacchi, Daniela; Zucca, Fabio

    2000-01-01

    We investigate the asymptotical behaviour of the transition probabilities of the simple random walk on the 2-comb. In particular we obtain space-time uniform asymptotical estimates which show the lack of symmetry of this walk better than local limit estimates. Our results also point out the impossibility of getting Jones-type non-Gaussian estimates.

  20. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.

    2015-03-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  1. Global asymptotic stability of cellular neural networks with multiple delays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Global asymptotic stability (GAS) is discussed for cellular neural networks (CNN) with multiple time delays. Several criteria are proposed to ascertain the uniqueness and global asymptotic stability of the equilibrium point for the CNN with delays. These criteria can eliminate the difference between the neuronal excitatory and inhibitory effects. Two examples are presented to demonstrate the effectiveness of the criteria.

  2. Asymptotic analysis, Working Note No. 1: Basic concepts and definitions

    Energy Technology Data Exchange (ETDEWEB)

    Garbey, M. [Universite Claude Bernard Lyon 1, 69 - Villeurbanne (France). Lab. d`Analyse Numerique; Kaper, H.G. [Argonne National Lab., IL (United States)

    1993-07-01

    In this note we introduce the basic concepts of asymptotic analysis. After some comments of historical interest we begin by defining the order relations O, o, and O{sup {number_sign}}, which enable us to compare the asymptotic behavior of functions of a small positive parameter {epsilon} as {epsilon} {down_arrow} 0. Next, we introduce order functions, asymptotic sequences of order functions and more general gauge sets of order functions and define the concepts of an asymptotic approximation and an asymptotic expansion with respect to a given gauge set. This string of definitions culminates in the introduction of the concept of a regular asymptotic expansion, also known as a Poincare expansion, of a function f : (0, {epsilon}{sub o}) {yields} X, where X is a normed vector space of functions defined on a domain D {epsilon} R{sup N}. We conclude the note with the asymptotic analysis of an initial value problem whose solution is obtained in the form of a regular asymptotic expansion.

  3. Diversity-Multiplexing Tradeoff via Asymptotic Analysis of Large MIMO Systems

    CERN Document Server

    Loyka, Sergey

    2007-01-01

    Diversity-multiplexing tradeoff (DMT) presents a compact framework to compare various MIMO systems and channels in terms of the two main advantages they provide (i.e. high data rate and/or low error rate). This tradeoff was characterized asymptotically (SNR-> infinity) for i.i.d. Rayleigh fading channel by Zheng and Tse [1]. The asymptotic DMT overestimates the finite-SNR one [2]. In this paper, using the recent results on the asymptotic (in the number of antennas) outage capacity distribution, we derive and analyze the finite-SNR DMT for a broad class of channels (not necessarily Rayleigh fading). Based on this, we give the convergence conditions for the asymptotic DMT to be approached by the finite-SNR one. The multiplexing gain definition is shown to affect critically the convergence point: when the multiplexing gain is defined via the mean (ergodic) capacity, the convergence takes place at realistic SNR values. Furthermore, in this case the diversity gain can also be used to estimate the outage probabilit...

  4. Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis

    CERN Document Server

    Hod, Shahar

    2015-01-01

    The spheroidal harmonics $S_{lm}(\\theta;c)$ have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues $\\{A_{lm}(c)\\}$ of these functions have been determined by many authors. However, it should be emphasized that all previous asymptotic analyzes were restricted either to the regime $m\\to\\infty$ with a fixed value of $c$, or to the complementary regime $|c|\\to\\infty$ with a fixed value of $m$. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both $m$ and $c$. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit $m\\to\\infty$ and $|c|\\to\\infty$ with a fixed $m/c$ ratio.

  5. Asymptotics for Nonlinear Transformations of Fractionally Integrated Time Series

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The asymptotic theory for nonlinear transformations of fractionally integrated time series is developed. By the use of fractional Occupation Times Formula, various nonlinear functions of fractionally integrated series such as ARFIMA time series are studied, and the asymptotic distributions of the sample moments of such functions are obtained and analyzed. The transformations considered in this paper includes a variety of functions such as regular functions, integrable functions and asymptotically homogeneous functions that are often used in practical nonlinear econometric analysis. It is shown that the asymptotic theory of nonlinear transformations of original and normalized fractionally integrated processes is different from that of fractionally integrated processes, but is similar to the asymptotic theory of nonlinear transformations of integrated processes.

  6. Asymptotic Correction Schemes for Semilocal Exchange-Correlation Functionals

    CERN Document Server

    Pan, Chi-Ruei; Chai, Jeng-Da

    2013-01-01

    Aiming to remedy the incorrect asymptotic behavior of conventional semilocal exchange-correlation (XC) density functionals for finite systems, we propose an asymptotic correction scheme, wherein an exchange density functional whose functional derivative has the correct (-1/r) asymptote can be directly added to any semilocal density functional. In contrast to semilocal approximations, our resulting exchange kernel in reciprocal space exhibits the desirable singularity of the type O(-1/q^2) as q -> 0, which is a necessary feature for describing the excitonic effects in non-metallic solids. By applying this scheme to a popular semilocal density functional, PBE [J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)], the predictions of the properties that are sensitive to the asymptote are significantly improved, while the predictions of the properties that are insensitive to the asymptote remain essentially the same as PBE. Relative to the popular model XC potential scheme, our scheme is sig...

  7. INVESTIGATION OF STURM-LIOUVILLE PROBLEM SOLVABILITY IN THE PROCESS OF ASYMPTOTIC SERIES CREATION

    Directory of Open Access Journals (Sweden)

    A. I. Popov

    2015-09-01

    Full Text Available Subject of Research. Creation of asymptotic expansions for solutions of partial differential equations with small parameter reduces, usually, to consequent solving of the Sturm-Liouville problems chain. To find some term of the series, the non-homogeneous Sturm-Liouville problem with the inhomogeneity depending on the previous term needs to be solved. At the same time, the corresponding homogeneous problem has a non-trivial solution. Hence, the solvability problem occures for the non-homogeneous Sturm-Liouville problem for functions or formal power series. The paper deals with creation of such asymptotic expansions. Method. To prove the necessary condition, we use conventional integration technique of the whole equation and boundary conditions. To prove the sufficient condition, we create an appropriate Cauchy problem (which is always solvable and analyze its solution. We deal with the general case of power series and make no hypotheses about the series convergence. Main Result. Necessary and sufficient conditions of solvability for the non-homogeneous Sturm-Liouville problem in general case for formal power series are proved in the paper. As a particular case, the result is valid for functions instead of formal power series. Practical Relevance. The result is usable at creation of the solutions for partial differential equation in the form of power series. The result is general and is applicable to particular cases of such solutions, e.g., to asymptotic series or to functions (convergent power series.

  8. Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity

    International Nuclear Information System (INIS)

    Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.

  9. On Kolmogorov Asymptotics of Estimators of the Misclassification Error Rate in Linear Discriminant Analysis.

    Science.gov (United States)

    Zollanvari, Amin; Genton, Marc G

    2013-08-01

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  10. ASYMPTOTIC DECAY TOWARD RAREFACTION WAVE FOR A HYPERBOLIC-ELLIPTIC COUPLED SYSTEM ON HALF SPACE

    Institute of Scientific and Technical Information of China (English)

    Ruan Lizhi; Zhu Changjiang

    2008-01-01

    We consider the asymptotic behavior of solutions to a model of hyperbolicelliptic coupled system on the half-line R+=(0,∞),ut+uux+qx=0, -qxx+q+ux=0,with the Dirichlet boundary condition u(0,t)=0.S.Kawashima and Y.Tanaka [Kyushu J.Math.,58(2004),211-250]have shown that the solution to the corresponding Cauchy problem behaviors like rarefaction waves and obtained its convergence rate when u_<u+.Our main concern in this paper is the boundary effect.In the case of null-Dirichlet boundary condition on u,asymptotic behavior of the solution(u,q)is proved to be rarefaction wave as t tends to infinity.Its convergence rate is also obtained by the standard L2-energy method and L1-estimate.It decays much lower than that of the corresponding Cauchy problem.

  11. On Kolmogorov asymptotics of estimators of the misclassification error rate in linear discriminant analysis

    KAUST Repository

    Zollanvari, Amin

    2013-05-24

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  12. Asymptotics of Entropy Rate in Special Families of Hidden Markov Chains

    CERN Document Server

    Han, Guangyue

    2008-01-01

    We derive an asymptotic formula for entropy rate of a hidden Markov chain around a "weak Black Hole". We also discuss applications of the asymptotic formula to the asymptotic behaviors of certain channels.

  13. Almost Sure Asymptotical Adaptive Synchronization for Neutral-Type Neural Networks with Stochastic Perturbation and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Wuneng Zhou

    2014-01-01

    Full Text Available The problem of almost sure (a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching is researched. Firstly, we proposed a new criterion of a.s. asymptotic stability for a general neutral-type stochastic differential equation which extends the existing results. Secondly, based upon this stability criterion, by making use of Lyapunov functional method and designing an adaptive controller, we obtained a condition of a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching. The synchronization condition is expressed as linear matrix inequality which can be easily solved by Matlab. Finally, we introduced a numerical example to illustrate the effectiveness of the method and result obtained in this paper.

  14. Some results on the asymptotic behavior for hyperbolic problems in cylindrical domains becoming unbounded

    Science.gov (United States)

    Guesmia, Senoussi

    2008-05-01

    We study here the asymptotic behavior of the solution of a hyperbolic problem defined on a cylindrical domain when l-->[infinity]. We show that, under very general assumptions, the solution of this problem converges faster than any power of towards the solution of another hyperbolic problem, defined on [0,T]×[omega], in any bounded subdomain. We give both necessary and sufficient conditions for this convergence to occur.

  15. Basket Options Valuation for a Local Volatility Jump-Diffusion Model with the Asymptotic Expansion Method

    OpenAIRE

    Guoping Xu; Harry Zheng

    2010-01-01

    In this paper we discuss the basket options valuation for a jump-diffusion model. The underlying asset prices follow some correlated local volatility diffusion processes with systematic jumps. We derive a forward partial integral differential equation (PIDE) for general stochastic processes and use the asymptotic expansion method to approximate the conditional expectation of the stochastic variance associated with the basket value process. The numerical tests show that the suggested method is...

  16. On the Asymptotic of an Eigenvalue Problem with 2 Interior Singularities

    Indian Academy of Sciences (India)

    A Neamaty; S Haghaieghy

    2009-11-01

    In this paper we consider the linear differential equation of the form $$-y''(x)+q(x)y(x)= y(x),\\quad -∞ < a < x < b < ∞$$ where satisfies Dirichlet boundary conditions and is a real-valued function which has even number of singularities at $c_1,\\ldots,c_{2n}\\in(a, b)$. We will study the asymptotic eigenvalue near the singularity points.

  17. A New Iterative Algorithm for Approximating Common Fixed Points for Asymptotically Nonexpansive Mappings

    OpenAIRE

    Zhou, H. Y.; Cho, Y. J.; Kang, S. M.

    2007-01-01

    Suppose that is a nonempty closed convex subset of a real uniformly convex and smooth Banach space with as a sunny nonexpansive retraction. Let be two weakly inward and asymptotically nonexpansive mappings with respect to with sequences , , respectively. Suppose that is a sequence in generated iteratively by , , for all , where , , and are three real sequences in for some which satisfy condition . Then, we have the following. (1) If one of and is completely continuous or demicomp...

  18. Jacobi-Sobolev Orthogonal Polynomials: Asymptotics for N-Coherence of Measures

    Directory of Open Access Journals (Sweden)

    Marcellán Francisco

    2011-01-01

    Full Text Available Let us introduce the Sobolev-type inner product , where and , , with and for all A Mehler-Heine-type formula and the inner strong asymptotics on as well as some estimates for the polynomials orthogonal with respect to the above Sobolev inner product are obtained. Necessary conditions for the norm convergence of Fourier expansions in terms of such Sobolev orthogonal polynomials are given.

  19. Strong Convergence Theorems for a Countable Family of Total Quasi-ϕ-Asymptotically Nonexpansive Nonself Mappings

    Directory of Open Access Journals (Sweden)

    Liang-cai Zhao

    2012-01-01

    Full Text Available The purpose of this paper is to introduce a class of total quasi-ϕ-asymptotically nonexpansive-nonself mappings and to study the strong convergence under a limit condition only in the framework of Banach spaces. As an application, we utilize our results to study the approximation problem of solution to a system of equilibrium problems. The results presented in the paper extend and improve the corresponding results announced by some authors recently.

  20. The rate of convergence of some asymptotically chi-square distributed statistics by Stein's method

    OpenAIRE

    Gaunt, Robert E.; Reinert, Gesine

    2016-01-01

    We build on recent works on Stein's method for functions of multivariate normal random variables to derive bounds for the rate of convergence of some asymptotically chi-square distributed statistics. We obtain some general bounds and establish some simple sufficient conditions for convergence rates of order $n^{-1}$ for smooth test functions. These general bounds are applied to Friedman's statistic for comparing $r$ treatments across $n$ trials and the family of power divergence statistics fo...

  1. GLOBAL ASYMPTOTIC STABILITY IN N-SPECIES NONAUTONOMOUS LOTKA-VOLTERRA COMPETITIVE SYSTEMS WITH DELAYS

    Institute of Scientific and Technical Information of China (English)

    Xu Rui(徐瑞); Chen Lansun(陈兰荪); M.A.J. Chaplain

    2003-01-01

    A delayed n-species nonautonomous Lotka-Volterra type competitive systemwithout dominating instantaneous negative feedback is investigated. By means of a suitableLyapunov functional, sufficient conditions are derived for the global asymptotic stability ofthe positive solutions of the system. As a corollary, it is shown that the global asymptoticstability of the positive solution is maintained provided that the delayed negative feedbacksdominate other interspecific interaction effects with delays and the delays are sufficientlysmall.

  2. ASYMPTOTIC BEHAVIOR OF MULTISTEP RUNGE-KUTTA METHODS FOR SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    张诚坚; 廖晓昕

    2001-01-01

    This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stability of onestep Runge-Kutta methods, we obtain that a multistep Runge-Kutta method for DDEs is stable iff the corresponding methods for ODEs is A-stable under suitable interpolation conditions.

  3. Asymptotic state behaviour and its modeling for saturated sand

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new double hardening elasto-plastic model is proposed in this paper based on the existing unified hardening model (UH model). By assuming that there is part coupling effect between the plastic volumetric strain and plastic shear strain, hardening parameters consisting of a coupled and an uncoupled components are adopted in this model. A unique feature of this model is that it can describe not only the conventional drained and undrained behaviors of soil, but also the stress-strain relationships of soil under partially drained conditions which can be volumetric compression or dilation. Adopting the asymptotic state concept, simple equations for estimating the limiting stress ratio under undrained or earth pressure at rest (i.e. K0) conditions are derived. The new model is relatively simple to be adopted in practice for two reasons. First, the same soil parameters as in Cam-clay model are used except the addition of one extra parameter, the stress ratio at the characteristic state. Second, all the parameters can be determined using conventional triaxial compression tests.

  4. Eventually and asymptotically positive semigroups on Banach lattices

    Science.gov (United States)

    Daners, Daniel; Glück, Jochen; Kennedy, James B.

    2016-09-01

    We develop a theory of eventually positive C0-semigroups on Banach lattices, that is, of semigroups for which, for every positive initial value, the solution of the corresponding Cauchy problem becomes positive for large times. We give characterisations of such semigroups by means of spectral and resolvent properties of the corresponding generators, complementing existing results on spaces of continuous functions. This enables us to treat a range of new examples including the square of the Laplacian with Dirichlet boundary conditions, the bi-Laplacian on Lp-spaces, the Dirichlet-to-Neumann operator on L2 and the Laplacian with non-local boundary conditions on L2 within the one unified theory. We also introduce and analyse a weaker notion of eventual positivity which we call "asymptotic positivity", where trajectories associated with positive initial data converge to the positive cone in the Banach lattice as t → ∞. This allows us to discuss further examples which do not fall within the above-mentioned framework, among them a network flow with non-positive mass transition and a certain delay differential equation.

  5. Asymptotic Stability of High-dimensional Zakharov-Kuznetsov Solitons

    Science.gov (United States)

    Côte, Raphaël; Muñoz, Claudio; Pilod, Didier; Simpson, Gideon

    2016-05-01

    We prove that solitons (or solitary waves) of the Zakharov-Kuznetsov (ZK) equation, a physically relevant high dimensional generalization of the Korteweg-de Vries (KdV) equation appearing in Plasma Physics, and having mixed KdV and nonlinear Schrödinger (NLS) dynamics, are strongly asymptotically stable in the energy space. We also prove that the sum of well-arranged solitons is stable in the same space. Orbital stability of ZK solitons is well-known since the work of de Bouard [Proc R Soc Edinburgh 126:89-112, 1996]. Our proofs follow the ideas of Martel [SIAM J Math Anal 157:759-781, 2006] and Martel and Merle [Math Ann 341:391-427, 2008], applied for generalized KdV equations in one dimension. In particular, we extend to the high dimensional case several monotonicity properties for suitable half-portions of mass and energy; we also prove a new Liouville type property that characterizes ZK solitons, and a key Virial identity for the linear and nonlinear part of the ZK dynamics, obtained independently of the mixed KdV-NLS dynamics. This last Virial identity relies on a simple sign condition which is numerically tested for the two and three dimensional cases with no additional spectral assumptions required. Possible extensions to higher dimensions and different nonlinearities could be obtained after a suitable local well-posedness theory in the energy space, and the verification of a corresponding sign condition.

  6. Gravitational fixed points and asymptotic safety from perturbation theory

    International Nuclear Information System (INIS)

    The fixed point structure of the renormalization flow in Einstein gravity and higher derivative gravity is investigated in terms of the background effective action. A refined perturbative framework is developed consisting of: use of a covariant operator regularization that keeps track of powerlike divergences, a non-minimal subtraction ansatz for the originally dimensionful couplings in combination with a 'Wilsonian' matching condition, and the construction of a one-loop effective action exactly gauge-independent on-shell in regularized form. Using this framework strictly positive fixed points for the dimensionless Newton constant gN and the cosmological constant λ can be identified already in one-loop perturbation theory. The renormalization flow is asymptotically safe with respect to the nontrivial fixed points in both cases. In Einstein gravity a residual gauge dependence of the fixed points is unavoidable while in higher derivative gravity both the fixed point and the flow equations are universal. Along this flow spectral positivity of the Hessians can be satisfied, thereby meeting an essential condition for a well-defined Euclidean field theory setting. Dependence on O(10) initial data is erased to accuracy 0.5% after O(100) units of the renormalization mass scale and the flow settles on a λ(gN) orbit.

  7. Asymptotic state behaviour and its modeling for saturated sand

    Institute of Scientific and Technical Information of China (English)

    LUO Ting; YAO YangPing; CHU Jian

    2009-01-01

    A new double hardening elasto-plastic model is proposed in this paper based on the existing unified hardening model(UH model).By assuming that there is part coupling effect between the plastic volumetric strain and plastic shear strain,hardening parameters consisting of a coupled and an uncoupled components are adopted in this model.A unique feature of this model is that it can describe not only the conventional drained and undrained behaviors of soil,but also the stress-strain relationships of soil under partially drained conditions which can be volumetric compression or dilation.Adopting the asymptotic state concept,simple equations for estimating the limiting stress ratio under undrained or earth pressure at rest(i.e.K0)conditions are derived.The new model is relatively simple to be adopted in practice for two reasons.First,the same soil parameters as in Cam-clay model are used except the addition of one extra parameter,the stress ratio at the characteristic state.Second,all the parameters can be determined using conventional triaxial compression tests.

  8. Qualitative and Asymptotic Theory of Detonations

    KAUST Repository

    Faria, Luiz

    2014-11-09

    Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.

  9. Asymptotic dynamics of inertial particles with memory

    CERN Document Server

    Langlois, Gabriel Provencher; Haller, George

    2014-01-01

    Recent experimental and numerical observations have shown the significance of the Basset--Boussinesq memory term on the dynamics of small spherical rigid particles (or inertial particles) suspended in an ambient fluid flow. These observations suggest an algebraic decay to an asymptotic state, as opposed to the exponential convergence in the absence of the memory term. Here, we prove that the observed algebraic decay is a universal property of the Maxey--Riley equation. Specifically, the particle velocity decays algebraically in time to a limit that is $\\mathcal O(\\epsilon)$-close to the fluid velocity, where $0<\\epsilon\\ll 1$ is proportional to the square of the ratio of the particle radius to the fluid characteristic length-scale. These results follows from a sharp analytic upper bound that we derive for the particle velocity. For completeness, we also present a first proof of existence and uniqueness of global solutions to the Maxey--Riley equation, a nonlinear system of fractional-order differential equ...

  10. Truly Minimal Unification Asymptotically Strong Panacea ?

    CERN Document Server

    Aulakh, Charanjit S

    2002-01-01

    We propose Susy GUTs have a UV {\\it{attractor}} at $E\\sim \\Lambda_{cU} \\sim 10^{17} GeV $ where gauge symmetries ``confine'' forming singlet condensates at scales $E\\sim\\Lambda_{cU}$. The length $l_U\\sim \\Lambda_{cU}^{-1}$ characterizies the {\\it{size}} of gauge non- singlet particles yielding a picture dual to the Dual Standard model of Vachaspati. This Asymptotic Slavery (AS) fixed point is driven by realistic Fermion Mass(FM) Higgs content which implies AS. This defines a dynamical morphogenetic scenario dependent on the dynamics of UV strong N=1 Susy Gauge-Chiral(SGC) theories. Such systems are already understood in the AF case but ignored in the AS case. Analogy to the AFSGC suggests the perturbative SM gauge group of the Grand Desert confines at GUT scales i.e GUT symmetry is ``non-restored''. Restoration before confinement and self-inconsistency are the two other (less likely) logical possibilities. Truly Minimal (TM) SU(5) and SO(10) models with matter and FM Higgs only are defined; AM (adjoint multip...

  11. Asymptotic dynamics of reflecting spiral waves.

    Science.gov (United States)

    Langham, Jacob; Biktasheva, Irina; Barkley, Dwight

    2014-12-01

    Resonantly forced spiral waves in excitable media drift in straight-line paths, their rotation centers behaving as pointlike objects moving along trajectories with a constant velocity. Interaction with medium boundaries alters this velocity and may often result in a reflection of the drift trajectory. Such reflections have diverse characteristics and are known to be highly nonspecular in general. In this context we apply the theory of response functions, which via numerically computable integrals, reduces the reaction-diffusion equations governing the whole excitable medium to the dynamics of just the rotation center and rotation phase of a spiral wave. Spiral reflection trajectories are computed by this method for both small- and large-core spiral waves in the Barkley model. Such calculations provide insight into the process of reflection as well as explanations for differences in trajectories across parameters, including the effects of incidence angle and forcing amplitude. Qualitative aspects of these results are preserved far beyond the asymptotic limit of weak boundary effects and slow resonant drift. PMID:25615159

  12. Thermodynamics of Vacuum of Asymptotic Subspace

    CERN Document Server

    Bogdanov, A V; Bogdanov, Alexander V.; Gevorkyan, Ashot S.

    1997-01-01

    The system of oscillator interacting with vacuum is considered as a problem of random motion of quantum reactive harmonic oscillator (QRHO). It is formulated in terms of a wave functional regarded as complex probability process in the extended space. This wave functional obeys some stochastic differential equation (SDE). Based on the nonlinear Langevin type SDE of second order, introduced in the functional space R{W(t)}, the variables in original equation are separated. The general measure in the space R{W(t)} of the Fokker-Planck type is obtained and expression for total wave function (wave mixture) of random QRHO is constructed as functional expansion over the stochastic basis set. The pertinent transition matrix S_br is constructed. For Wiener type measure W(t) of functional space the exact representation for ''vacuum-vacuum'' transition probability is obtained. The thermodynamics of vacuum is described in detail for the asymptotic space R1_as. The exact values for Energy, shift and expansion of ground sta...

  13. Asymptotic Solutions of Serial Radial Fuel Shuffling

    Directory of Open Access Journals (Sweden)

    Xue-Nong Chen

    2015-12-01

    Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.

  14. Asymptotic stability of solitons for the Benjamin-Ono equation

    OpenAIRE

    Kenig, C. E.; Martel, Y.

    2008-01-01

    In this paper, we prove the asymptotic stability of the family of solitons of the Benjamin-Ono equation in the energy space. The proof is based on a Liouville property for solutions close to the solitons for this equation, in the spirit of [Martel, Y. and Merle, F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157 (2001), 219-254], [Martel, Y. and Merle, F.: Asymptotic stability of solitons of the gKdV equations wit...

  15. Asymptotic Solution of the Theory of Shells Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    I. V. Andrianov

    2007-01-01

    Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.

  16. Asymptotic failure rate of a continuously monitored system

    Energy Technology Data Exchange (ETDEWEB)

    Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr

    2006-02-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.

  17. A note on asymptotic expansions for Markov chains using operator theory

    DEFF Research Database (Denmark)

    Jensen, J.L.

    1987-01-01

    We consider asymptotic expansions for sums Sn on the form Sn = fhook0(X0) + fhook(X1, X0) + ... + fhook(Xn, Xn-1), where Xi is a Markov chain. Under different ergodicity conditions on the Markov chain and certain conditional moment conditions on fhook(Xi, Xi-1), a simple representation of the cha...... characteristic function of Sn is obtained. The representation is in term of the maximal eigenvalue of the linear operator sending a function g(x) into the function x → E(g(Xi)exp[itfhook(Xi, x)]|Xi-1 = x). © 1987....

  18. Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes

    CERN Document Server

    Holzegel, Gustav H

    2012-01-01

    We study the global dynamics of free massive scalar fields on general, globally stationary, asymptotically AdS black hole backgrounds with Dirichlet-, Neumann- or Robin- boundary conditions imposed on \\psi\\ at infinity. This class includes the regular Kerr-AdS black holes satisfying the Hawking Reall bound. We establish a suitable criterion for linear stability (in the sense of uniform boundedness) of \\psi\\ and demonstrate how the issue of stability can depend on the boundary condition prescribed. In particular, we obtain the existence of linear scalar hair for suitably chosen Robin boundary conditions.

  19. Hybrid model for the Coupling of an Asymptotic Preserving scheme with the Asymptotic Limit model: The One Dimensional Case⋆

    Directory of Open Access Journals (Sweden)

    Narski Jacek

    2011-11-01

    Full Text Available In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, elliptic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed in this paper is well suited for the simulation of a plasma in the presence of a magnetic field, whose intensity may vary considerably within the simulation domain.

  20. Robust methods and asymptotic theory in nonlinear econometrics

    CERN Document Server

    Bierens, Herman J

    1981-01-01

    This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

  1. ASYMPTOTICALLY OPTIMAL SUCCESSIVE OVERRELAXATION METHODS FOR SYSTEMS OF LINEAR EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Zhong-zhi Bai; Xue-bin Chi

    2003-01-01

    We present a class of asymptotically optimal successive overrelaxation methods forsolving the large sparse system of linear equations. Numerical computations show thatthese new methods are more efficient and robust than the classical successive overrelaxationmethod.

  2. Research on temperature profiles of honeycomb regenerator with asymptotic analysis

    Institute of Scientific and Technical Information of China (English)

    AI Yuan-fang; MEI Chi; HUANG Guo-dong; JIANG Shao-jian; CHEN Hong-rong

    2006-01-01

    An asymptotic semi-analytical method for heat transfer in counter-flow honeycomb regenerator is proposed. By introducing a combined heat-transfer coefficient between the gas and solid phase, a heat transfer model is built based on the thin-walled assumption. The dimensionless thermal equation is deduced by considering solid heat conduction along the passage length. The asymptotic analysis is used for the small parameter of heat conduction term in equation. The first order asymptotic solution to temperature distribution under weak solid heat conduction is achieved after Laplace transformation through the multiple scales method and the symbolic manipulation function in MATLAB. Semi-analytical solutions agree with tests and finite-difference numerical results. It is proved possible for the asymptotic analysis to improve the effectiveness, economics and precision of thermal research on regenerator.

  3. Spherical Cap Packing Asymptotics and Rank-Extreme Detection

    CERN Document Server

    Zhang, Kai

    2015-01-01

    We study the spherical cap packing problem with a probabilistic approach. Such probabilistic considerations result in an asymptotic sharp universal uniform bound on the maximal inner product between any set of unit vectors and a stochastically independent uniformly distributed unit vector. When the set of unit vectors are themselves independently uniformly distributed, we further develop the extreme value distribution limit of the maximal inner product, which characterizes its uncertainty around the bound. As applications of the above asymptotic results, we derive (1) an asymptotic sharp universal uniform bound on the maximal spurious correlation, as well as its uniform convergence in distribution when the explanatory variables are independently Gaussian distributed; and (2) an asymptotic sharp universal bound on the maximum norm of a low-rank elliptically distributed vector, as well as related limiting distributions. With these results, we develop a fast detection method for a low-rank structure in high-dime...

  4. Asymptotic distributions in the projection pursuit based canonical correlation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, associations between two sets of random variables based on the projection pursuit (PP) method are studied. The asymptotic normal distributions of estimators of the PP based canonical correlations and weighting vectors are derived.

  5. Asymptotic behaviour of the number of the Eulerian circuits

    CERN Document Server

    Isaev, Mikhail

    2011-01-01

    We determine the asymptotic behaviour of the number of the Eulerian circuits in undirected simple graphs with large second eigenvalue of the Laplacian matrix (the algebraic connectivity). We also prove some new properties of the Laplacian matrix.

  6. Global asymptotic stability for a class of nonlinear chemical equations

    OpenAIRE

    Anderson, David F.

    2007-01-01

    We consider a class of nonlinear differential equations that arises in the study of chemical reaction systems that are known to be locally asymptotically stable and prove that they are in fact globally asymptotically stable. More specifically, we will consider chemical reaction systems that are weakly reversible, have a deficiency of zero, and are equipped with mass action kinetics. We show that if for each $c \\in \\R_{> 0}^m$ the intersection of the stoichiometric compatibility class $c + S$ ...

  7. Asymptotical stability analysis of linear fractional differential systems

    Institute of Scientific and Technical Information of China (English)

    LI Chang-pin; ZHAO Zhen-gang

    2009-01-01

    It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts,electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.

  8. Functional truncations in asymptotic safety for quantum gravity

    OpenAIRE

    Dietz, Juergen

    2016-01-01

    Finite dimensional truncations and the single field approximation have thus far played dominant roles in investigations of asymptotic safety for quantum gravity. This thesis is devoted to exploring asymptotic safety in infinite dimensional, or functional, truncations of the effective action as well as the effects that can be caused by the single field approximation in this context. It begins with a comprehensive analysis of the three existing flow equations of the single field f(R) truncation...

  9. Asymptotic heat transfer model in thin liquid films

    OpenAIRE

    Chhay, Marx; Dutykh, Denys; Gisclon, Marguerite; Ruyer-Quil, Christian

    2015-01-01

    In this article, we present a modelling of heat transfer occuring through a liquid film flowing down a vertical wall. This model is formally derived thanks to asymptotic developpment, by considering the physical ratio of typical length scales of the study. A new Nusselt thermal solution is proposed, taking into account the hydrodynamic free surface variations and the contributions of the higher order terms in the asymptotic model are numerically pointed out. The comparisons are provided again...

  10. Asymptotic optimal designs under long-range dependence error structure

    CERN Document Server

    Dette, Holger; Pepelyshev, Andrey; Zhigljavsky, Anatoly; 10.3150/09-BEJ185

    2010-01-01

    We discuss the optimal design problem in regression models with long-range dependence error structure. Asymptotic optimal designs are derived and it is demonstrated that these designs depend only indirectly on the correlation function. Several examples are investigated to illustrate the theory. Finally, the optimal designs are compared with asymptotic optimal designs which were derived by Bickel and Herzberg [Ann. Statist. 7 (1979) 77--95] for regression models with short-range dependent error.

  11. An asymptotically exact theory of smart sandwich shells

    CERN Document Server

    Le, Khanh Chau

    2016-01-01

    An asymptotically exact two-dimensional theory of elastic-piezoceramic sandwich shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a circular elastic plate partially covered by two piezoceramic patches with thickness polarization excited by a harmonic voltage is found.

  12. High frequency asymptotics of antenna/structure interactions

    OpenAIRE

    Coats, J.

    2002-01-01

    This thesis is motivated by the need to calculate the electromagnetic fields produced by sources radiating in the presence of conductors. We begin by reviewing existing theory concerning sources in the presence of flat structures. Various extensions to the canonical Sommerfeld problem are considered. In particular we investigate the asymptotic solution for a finite source that focusses its energy at a point. In chapter 5 we review and extend the asymptotic results concerning illuminat...

  13. High-order topological asymptotic expansion for Stokes equations

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelwahed

    2016-06-01

    Full Text Available We use the topological sensitivity analysis method to solve various optimization problems. It consists of studying the asymptotic expansion of the objective function relative to a perturbation of the domain topology. This expansion becomes insufficient in some applications when it is limited to the first order topological derivative. We present a new topological sensitivity analysis for the Stokes equations based on a high order asymptotic expansion. The derived result is valid for different class of shape functions.

  14. Asymptotic solutions of magnetohydrodynamics equations near the derivatives discontinuity lines

    International Nuclear Information System (INIS)

    Asymptotic solutions of one-dimensional and scalar magnetohydrodynamics equations near the derivatives discontinuity lines have been discussed. The equations of magnetohydrodynamics for the cases of finite and infinite conductivities are formulated and the problem of eigenvalues and eigenvectors is solved. The so called transport equations which describe the behaviour of derivatives in solutions of the quasilinear equations have been used to find the asymptotic solutions of the magnetohydrodynamics equations. (S.B.)

  15. An asymptotically exact theory of functionally graded piezoelectric shells

    CERN Document Server

    Le, Khanh Chau

    2016-01-01

    An asymptotically exact two-dimensional theory of functionally graded piezoelectric shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a functionally graded piezoceramic cylindrical shell with thickness polarization fully covered by electrodes and excited by a harmonic voltage is found.

  16. Random attractors for asymptotically upper semicompact multivalue random semiflows

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The present paper studied the dynamics of some multivalued random semiflow. The corresponding concept of random attractor for this case was introduced to study asymptotic behavior. The existence of random attractor of multivalued random semiflow was proved under the assumption of pullback asymptotically upper semicompact, and this random attractor is random compact and invariant. Furthermore, if the system has ergodicity, then this random attractor is the limit set of a deterministic bounded set.

  17. Asymptotic Spreading Rate of Initially Compressible Jets: Experiment and Analysis

    Science.gov (United States)

    Zaman, K. B. M. Q.

    1998-01-01

    Experimental results for the spreading and centerline velocity decay rates for round, compressible jets, from a convergent and a convergent-divergent nozzle, are presented. The spreading rate is determined from the variation of streamwise mass flux obtained from Pitot probe surveys. Results for the far asymptotic region show that both spreading and centerline velocity decay rates, when nondimensionalized by parameters at the nozzle exit, decrease with increasing "jet Mach number" M(sub J). Dimensional analysis with the assumption of momentum conservation, together with compressible flow calculations for the conditions at the nozzle exit, predict this Mach number dependence well. The analysis also demonstrates that an increase in the "potential core length" of the jet occurring with increasing M(sub J), a commonly observed trend, is largely accounted for simply by the variations in the density and static pressure at the nozzle exit. The effect of decreasing mixing efficiency with increasing compressibility is inferred to contribute only partially to the latter trend.

  18. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  19. Asymptotic theory of nonparametric regression estimates with censored data

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For regression analysis, some useful information may have been lost when the responses are right censored. To estimate nonparametric functions, several estimates based on censored data have been proposed and their consistency and convergence rates have been studied in literature, but the optimal rates of global convergence have not been obtained yet. Because of the possible information loss, one may think that it is impossible for an estimate based on censored data to achieve the optimal rates of global convergence for nonparametric regression, which were established by Stone based on complete data. This paper constructs a regression spline estimate of a general nonparametric regression function based on right_censored response data, and proves, under some regularity conditions, that this estimate achieves the optimal rates of global convergence for nonparametric regression. Since the parameters for the nonparametric regression estimate have to be chosen based on a data driven criterion, we also obtain the asymptotic optimality of AIC, AICC, GCV, Cp and FPE criteria in the process of selecting the parameters.

  20. Asymptotic behavior of large polygonal Wilson loops in confining gauge theories

    CERN Document Server

    Pobylitsa, P V

    2016-01-01

    In the framework of effective string theory (EST), the asymptotic behavior of a large Wilson loop in confining gauge theories can be expressed via Laplace determinant with Dirichlet boundary condition on the Wilson contour. For a general polygonal region, Laplace determinant can be computed using the conformal anomaly and Schwarz-Christoffel transformation. One can construct ratios of polygonal Wilson loops whose large-size limit can be expressed via computable Laplace determinants and is independent of the (confining) gauge group. These ratios are computed for hexagon polygons both in EST and by Monte Carlo (MC) lattice simulations for the tree-dimensional lattice Z2 gauge theory (dual to Ising model) near its critical point. For large hexagon Wilson loops a perfect agreement is observed between the asymptotic EST expressions and the lattice MC results.

  1. Asymptotic analysis for Nakagami-m fading channels with relay selection

    KAUST Repository

    Zhong, Caijun

    2011-06-01

    In this paper, we analyze the asymptotic outage probability performance of both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems using partial relay selection and the "best" relay selection schemes for Nakagami-m fading channels. We derive their respective outage probability expressions in the asymptotic high signal-to-noise ratio (SNR) regime, from which the diversity order and coding gain are analyzed. In addition, we investigate the impact of power allocation between the source and relay terminals and derive the diversity-multiplexing tradeoff (DMT) for these relay selection systems. The theoretical findings suggest that partial relay selection can improve the diversity of the system and can achieve the same DMT as the "best" relay selection scheme under certain conditions. © 2011 IEEE.

  2. Reverse Smoothing Effects, Fine Asymptotics, and Harnack Inequalities for Fast Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Bonforte Matteo

    2007-01-01

    Full Text Available We investigate local and global properties of positive solutions to the fast diffusion equation in the good exponent range , corresponding to general nonnegative initial data. For the Cauchy problem posed in the whole Euclidean space , we prove sharp local positivity estimates (weak Harnack inequalities and elliptic Harnack inequalities; also a slight improvement of the intrinsic Harnack inequality is given. We use them to derive sharp global positivity estimates and a global Harnack principle. Consequences of these latter estimates in terms of fine asymptotics are shown. For the mixed initial and boundary value problem posed in a bounded domain of with homogeneous Dirichlet condition, we prove weak, intrinsic, and elliptic Harnack inequalities for intermediate times. We also prove elliptic Harnack inequalities near the extinction time, as a consequence of the study of the fine asymptotic behavior near the finite extinction time.

  3. Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes

    CERN Document Server

    Holzegel, Gustav

    2011-01-01

    We initiate the study of the spherically symmetric Einstein-Klein-Gordon system in the presence of a negative cosmological constant, a model appearing frequently in the context of high-energy physics. Due to the lack of global hyperbolicity of the solutions, the natural formulation of dynamics is that of an initial boundary value problem, with boundary conditions imposed at null infinity. We prove a local well-posedness statement for this system, with the time of existence of the solutions depending only on an invariant H^2-type norm measuring the size of the Klein-Gordon field on the initial data. The proof requires the introduction of a renormalized system of equations and relies crucially on r-weighted estimates for the wave equation on asymptotically AdS spacetimes. The results provide the basis for our companion paper establishing the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this system.

  4. Global robust asymptotic stability of variable-time impulsive BAM neural networks.

    Science.gov (United States)

    Saylı, Mustafa; Yılmaz, Enes

    2014-12-01

    In this paper, the global robust asymptotic stability of the equilibrium point for a more general class of bidirectional associative memory (BAM) neural networks with variable time of impulses is addressed. Unlike most existing studies, the case of non-fix time impulses is focused on in the present study. By means of B-equivalence method, which was introduced in Akhmet (2003, 2005, 2009, 2010), Akhmet and Perestyuk (1990) and Akhmet and Turan (2009), we reduce these networks to a fix time impulsive neural networks system. Sufficient conditions ensuring the existence, uniqueness and global robust asymptotic stability of the equilibrium point are obtained by employing an appropriate Lyapunov function and linear matrix inequality (LMI). Finally, we give one illustrative example to show the effectiveness of the theoretical results.

  5. MULTI-VALUED TOTALLY QUASI-φ-ASYMPTOTICALLY NONEXPANSIVE SEMI-GROUPS AND STRONG CONVERGENCE THEOREMS IN BANACH SPACES

    Institute of Scientific and Technical Information of China (English)

    Shisheng ZHANG; Lin WANG; Yunhe ZHAO

    2013-01-01

    The purpose of this article is first to introduce the concept of multi-valued totally Quasi-φ-asymptotically nonexpansive semi-groups,which contains many kinds of semigroups as its special cases,and then to modify the Halpern-Mann-type iteration algorithm for multi-valued totally Quasi-φ-asymptotically nonexpansive semi-groups to have the strong convergence under a limit condition only in the framework of Banach spaces.The results presented in this article improve and extend the corresponding results announced by many authors recently.

  6. Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks.

    Science.gov (United States)

    Wu, Ailong; Zeng, Zhigang

    2016-02-01

    We show that the ω-periodic fractional-order fuzzy neural networks cannot generate non-constant ω-periodic signals. In addition, several sufficient conditions are obtained to ascertain the boundedness and global Mittag-Leffler stability of fractional-order fuzzy neural networks. Furthermore, S-asymptotical ω-periodicity and global asymptotical ω-periodicity of fractional-order fuzzy neural networks is also characterized. The obtained criteria improve and extend the existing related results. To illustrate and compare the theoretical criteria, some numerical examples with simulation results are discussed in detail.

  7. On the asymptotic stability and the boundedness of solutions of linear Ito stochastic differential equations not reduced to the Cauchy form

    CERN Document Server

    Nal, P L

    2002-01-01

    We consider the asymptotic stability and the boundedness with probability one of solutions of linear lto stochastic differential equations not reduced to the Cauchy form and give some numerical examples to show that our sufficient conditions for the asymptotic stability with probability one of solutions are more general and more effective than those of Korenevskij and Mitropoloshij. Moreover, our results can also be applied to the case when the unperturbed linear deterministic system is not assumed to be stable.

  8. Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces

    Directory of Open Access Journals (Sweden)

    Gurucharan Singh Saluja

    2010-01-01

    Full Text Available In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.

  9. Weak and Strong Convergence of an Algorithm for the Split Common Fixed-Point of Asymptotically Quasi-Nonexpansive Operators

    Directory of Open Access Journals (Sweden)

    Yazheng Dang

    2013-01-01

    Full Text Available Inspired by the Moudafi (2010, we propose an algorithm for solving the split common fixed-point problem for a wide class of asymptotically quasi-nonexpansive operators and the weak and strong convergence of the algorithm are shown under some suitable conditions in Hilbert spaces. The algorithm and its convergence results improve and develop previous results for split feasibility problems.

  10. PERIODIC SOLUTIONS AND GLOBAL ASYMPTOTIC STABILITY OF A DELAYED DISCRETE PREDATOR-PREY SYSTEM WITH HOLLING Ⅱ TYPE FUNCTIONAL RESPONSE

    Institute of Scientific and Technical Information of China (English)

    Cuimei ZHANG; Wencheng CHEN; Yu YANG

    2006-01-01

    In this paper, we study the existence and global asymptotic stability of positive periodic solutions of a delayed periodic predator-prey system with Holling Ⅱ type functional response. By use of the continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions are obtained.

  11. Asymptotic Analysis to a Diffusion Equation with a Weighted Nonlo cal Source

    Institute of Scientific and Technical Information of China (English)

    JIANG Liang-jun

    2015-01-01

    In this paper, we deal with the blow-up property of the solution to the diffusion equation ut=∆u+a(x)f(u) RΩh(u)dx, x∈Ω, t>0 subject to the null Dirichlet boundary condition. We will show that under certain conditions, the solution blows up in finite time and prove that the set of all blow-up points is the whole region. Especially, in case of f(s)=sp, h(s)=sq, 0≤p≤1, p+q>1, we obtain the asymptotic behavior of the blow up solution.

  12. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model

    Science.gov (United States)

    Gan, Wenzhen; Lin, Zhigui

    2008-01-01

    In this paper, the competitor-competitor-mutualist three-species Lotka-Volterra model is discussed. Firstly, by Schauder fixed point theory, the coexistence state of the strongly coupled system is given. Applying the method of upper and lower solutions and its associated monotone iterations, the true solutions are constructed. Our results show that this system possesses at least one coexistence state if cross-diffusions and cross-reactions are weak. Secondly, the existence and asymptotic behavior of T-periodic solutions for the periodic reaction-diffusion system under homogeneous Dirichlet boundary conditions are investigated. Sufficient conditions which guarantee the existence of T-periodic solution are also obtained.

  13. Reduced and Generalized Stokes Resolvent Equations in Asymptotically Flat Layers, Part II: H∞-Calculus

    Science.gov (United States)

    Abels, Helmut

    2005-05-01

    We study the generalized Stokes equations in asymptotically flat layers, which can be considered as compact perturbations of an infinite (flat) layer Ω _0 = mathbb{R}^{n - 1} × ( - 1,1). Besides standard non-slip boundary conditions, we consider a mixture of slip and non-slip boundary conditions on the upper and lower boundary, respectively. In this second part, we use pseudodifferential operator techniques to construct a parametrix to the reduced Stokes equations, which solves the system in Lq-Sobolev spaces, 1 calculus of the (reduced) Stokes operator.

  14. LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is advanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs' stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).

  15. Asymptotics of bivariate generating functions with algebraic singularities

    Science.gov (United States)

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  16. Asymptotic Behavior of Solutions to a Vector Integral Equation with Deviating Arguments

    Directory of Open Access Journals (Sweden)

    Cristóbal González

    2013-01-01

    Full Text Available In this paper, we propose the study of an integral equation, with deviating arguments, of the type y(t=ω(t-∫0∞‍f(t,s,y(γ1(s,…,y(γN(sds,t≥0, in the context of Banach spaces, with the intention of giving sufficient conditions that ensure the existence of solutions with the same asymptotic behavior at ∞ as ω(t. A similar equation, but requiring a little less restrictive hypotheses, is y(t=ω(t-∫0∞‍q(t,sF(s,y(γ1(s,…,y(γN(sds,t≥0. In the case of q(t,s=(t-s+, its solutions with asymptotic behavior given by ω(t yield solutions of the second order nonlinear abstract differential equation y''(t-ω''(t+F(t,y(γ1(t,…,y(γN(t=0, with the same asymptotic behavior at ∞ as ω(t.

  17. An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations

    CERN Document Server

    Cordier, Floraine; Kumbaro, Anela

    2011-01-01

    We present an Asymptotic-Preserving 'all-speed' scheme for the simulation of compressible flows valid at all Mach-numbers ranging from very small to order unity. The scheme is based on a semi-implicit discretization which treats the acoustic part implicitly and the convective and diffusive parts explicitly. This discretization, which is the key to the Asymptotic-Preserving property, provides a consistent approximation of both the hyperbolic compressible regime and the elliptic incompressible regime. The divergence-free condition on the velocity in the incompressible regime is respected, and an the pressure is computed via an elliptic equation resulting from a suitable combination of the momentum and energy equations. The implicit treatment of the acoustic part allows the time-step to be independent of the Mach number. The scheme is conservative and applies to steady or unsteady flows and to general equations of state. One and Two-dimensional numerical results provide a validation of the Asymptotic-Preserving ...

  18. The asymptotic field of a dynamically growing crack in a viscoelastic materia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field.It was shown that in the stable creep-growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, and stress and strain have the same singularity, namely, (σ,ε)αγ-1/(n-1).The asymptotic solution of separating variables of stress, stain and displacement in the crack-tip field was obtained by asymptotic analysis, and the resulting numerical value of stress and strain in the crack-tip field was obtained by the shooting method and the boundary condition of a mode I crack.Through numerical calculation, it was shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M.When n→∞, the asymptotic solution of a viscoelastic material can be degenerated into that of Freund's elastic-ideally plastic material by analyzing basic equations.

  19. FLUID-SOLID COUPLING MATHEMATICAL MODEL OF CONTAMINANT TRANSPORT IN UNSATURATED ZONE AND ITS ASYMPTOTICAL SOLUTION

    Institute of Scientific and Technical Information of China (English)

    薛强; 梁冰; 刘晓丽; 李宏艳

    2003-01-01

    The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport , a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid-solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure,pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure-saturation-permeability in laboratory.

  20. A remark on asymptotic dimension and digital dimension of finite metric spaces

    OpenAIRE

    Čatyrko, Vitalij Al´bertovič; Zarichnyi, Michael

    2015-01-01

    Asymptotic dimension was introduced by M. L. Gromov as an asymptotic analogue of the covering dimension. In the current note, the authors introduce the concept of digital dimension (essentially asymptotic dimension at a particular scale) and investigate the relationship between the asymptotic dimension of a proper metric space and the digital dimension of its finite subspaces. In particular, they show that the asymptotic dimension of a proper metric space is at most ▫$n$▫ exactly when there i...

  1. Superradiant instabilities of asymptotically anti-de Sitter black holes

    Science.gov (United States)

    Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.

    2016-06-01

    We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino-Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.

  2. asymptotics for open-loop window flow control

    Directory of Open Access Journals (Sweden)

    Arthur W. Berger

    1994-01-01

    Full Text Available An open-loop window flow-control scheme regulates the flow into a system by allowing at most a specified window size W of flow in any interval of length L. The sliding window considers all subintervals of length L, while the jumping window considers consecutive disjoint intervals of length L. To better understand how these window control schemes perform for stationary sources, we describe for a large class of stochastic input processes the asymptotic behavior of the maximum flow in such window intervals over a time interval [0,T] as T and Lget large, with T substantially bigger than L. We use strong approximations to show that when T≫L≫logT an invariance principle holds, so that the asymptotic behavior depends on the stochastic input process only via its rate and asymptotic variability parameters. In considerable generality, the sliding and jumping windows are asymptotically equivalent. We also develop an approximate relation between the two maximum window sizes. We apply the asymptotic results to develop approximations for the means and standard deviations of the two maximum window contents. We apply computer simulation to evaluate and refine these approximations.

  3. The Asymptotical Analysis for the Problem of Modeling the Gas Admixture in the Surface Layer of the Atmosphere

    Directory of Open Access Journals (Sweden)

    M. A. Davydova

    2016-01-01

    Full Text Available In the present work the model boundary value problem for a stationary singularly perturbed reaction-diffusion-advection equation arising at the description of gas impurity transfer processes in an ecosystem ”forest – swamp” is considered. Application of a boundary functions method and an asymptotic method of differential inequalities allow to construct an asymptotics of the boundary layer type solution, to prove the existence of the solution with such an asymptotics and its asymptotic stability by Lyapunov as the stationary solution of the corresponding parabolic problem with the definition of local area of boundary layer type solution formation. The latter has a certain importance for applications, since it allows to reveal the solution describing one of the most probable conditions of the ecosystem. In the final part of the work sufficient conditions for existence of solutions with interior transitional layers (contrast structures are discussed.

  4. Asymptotic chaos expansions in finance theory and practice

    CERN Document Server

    Nicolay, David

    2014-01-01

    Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...

  5. Asymptotic symmetries of QED and Weinberg's soft photon theorem

    CERN Document Server

    Campiglia, Miguel

    2015-01-01

    Various equivalences between so-called soft theorems which constrain scattering amplitudes and Ward identities related to asymptotic symmetries have recently been established in gauge theories and gravity. So far these equivalences have been restricted to the case of massless matter fields, the reason being that the asymptotic symmetries are defined at null infinity. The restriction is however unnatural from the perspective of soft theorems which are insensitive to the masses of the external particles. In this work we remove the aforementioned restriction in the context of scalar QED. Inspired by the radiative phase space description of massless fields at null infinity, we introduce a manifold description of time-like infinity on which the asymptotic phase space for massive fields can be defined. The "angle dependent" large gauge transformations are shown to have a well defined action on this phase space, and the resulting Ward identities are found to be equivalent to Weinberg's soft photon theorem.

  6. 1/R expansion for H2 : Analyticity, summability, and asymptotics

    Energy Technology Data Exchange (ETDEWEB)

    Graffi, S.; Grecchi, V.; Harrell E.M. II; Silverstone, H.J.

    1985-12-01

    It is proved that the 1/R expansion for H2 is divergent and Borel summable to a complex eigenvalue of a non-self-adjoint operator, which has the same 1/R expansion. The Borel sum is related to the H2 system as follows: its real part agrees with the eigenvalue doublet asymptotically to all orders, and its imaginary part determines the asymptotics of the 1/R expansion coefficients via a dispersion relation. A rigorous estimate of the leading behavior of the imaginary part is obtained, and as a consequence the approximate formula of Brezin and Zinn-Justin relating the square of the eigenvalue gap to the asymptotics of the 1/R expansion is put on a rigorous basis.

  7. Contact mechanics of articular cartilage layers asymptotic models

    CERN Document Server

    Argatov, Ivan

    2015-01-01

    This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...

  8. Asymptotic behaviour of zeros of exceptional Jacobi and Laguerre polynomials

    CERN Document Server

    Gómez-Ullate, David; Milson, Robert

    2012-01-01

    The location and asymptotic behaviour for large n of the zeros of exceptional Jacobi and Laguerre polynomials are discussed. The zeros of exceptional polynomials fall into two classes: the regular zeros, which lie in the interval of orthogonality and the exceptional zeros, which lie outside that interval. We show that the regular zeros have two interlacing properties: one is the natural interlacing between consecutive polynomials as a consequence of their Sturm-Liouville character, while the other one shows interlacing between the zeros of exceptional and classical polynomials. A generalization of the classical Heine-Mehler formula is provided for the exceptional polynomials, which allows to derive the asymptotic behaviour of their regular zeros. We also describe the location and the asymptotic behaviour of the exceptional zeros, which converge for large n to fixed values.

  9. Detailed ultraviolet asymptotics for AdS scalar field perturbations

    CERN Document Server

    Evnin, Oleg

    2016-01-01

    We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.

  10. Asymptotics of a singularly perturbed GUE partition function

    CERN Document Server

    Mezzadri, F

    2010-01-01

    We study the double scaling asymptotic limit for large matrix dimension N of the partition function of the unitary ensemble with weight exp(-z^2/2x^2 + t/x - x^2/2). We derive the asymptotics of the partition function when z and t are of O(N^(-1/2)). Our results are obtained using the Deift-Zhou steepest descent method and are expressed in terms of a solution of a fourth order nonlinear differential equation. We also compute the asymptotic limit of such a solution when zN^(1/2) -> 0. The behavior of this solution, together with fact that the partition function is an odd function in the variable t, allows us to reduce such a fourth order differential equation into a second order nonlinear ODE.

  11. Asymptotic completeness and multiparticle structure in field theories

    International Nuclear Information System (INIS)

    Previous proofs of asymptotic completeness and related results on scattering in field theories are restricted to P(φ)2 models in the 2- and 3-particle regions. In this paper, new cluster expansions that are well adapted to more direct proofs and generalizations of these results are presented. In contrast to previous ones, they are designed to provide direct graphical definitions of general irreducible kernels satisfying structure equations recently proposed and shown to be closely linked with asymptotic completeness and with the multiparticle structure of Green functions and collision amplitudes in general energy regions. The method can be applied as previously to P(φ)2 and can also be extended to theories involving renormalization which are controlled by phase-space analysis. It is here illustrated in detail for the Bethe-Salpeter kernel in φ24, in which case a new proof of its 4-particle decay (which yields asymptotic completeness in the 2-particle region) is given. (orig.)

  12. Holography of 3D Asymptotically Flat Black Holes

    CERN Document Server

    Fareghbal, Reza

    2014-01-01

    We study the asymptotically flat rotating hairy black hole solution of a three-dimensional gravity theory which is given by taking flat-space limit (zero cosmological constant limit) of New Massive Gravity (NMG). We propose that the dual field theory of the flat-space limit of NMG can be described by a Contracted Conformal Field Theory (CCFT). Using Flat/CCFT correspondence we construct a stress tensor which yields the conserved charges of the asymptotically flat black hole solution. Furthermore, by taking appropriate limit of the Cardy formula in the parent CFT, we find a Cardy-like formula which reproduces the Wald's entropy of the 3D asymptotically flat black hole.

  13. The unitary conformal field theory behind 2D Asymptotic Safety

    CERN Document Server

    Nink, Andreas

    2015-01-01

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a...

  14. Stability of Non-Isolated Asymptotic Profiles for Fast Diffusion

    Science.gov (United States)

    Akagi, Goro

    2016-07-01

    The stability of asymptotic profiles of solutions to the Cauchy-Dirichlet problem for fast diffusion equation (FDE, for short) is discussed. The main result of the present paper is the stability of any asymptotic profiles of least energy. It is noteworthy that this result can cover non-isolated profiles, e.g., those for thin annular domain cases. The method of proof is based on the Łojasiewicz-Simon inequality, which is usually used to prove the convergence of solutions to prescribed limits, as well as a uniform extinction estimate for solutions to FDE. Besides, local minimizers of an energy functional associated with this issue are characterized. Furthermore, the instability of positive radial asymptotic profiles in thin annular domains is also proved by applying the Łojasiewicz-Simon inequality in a different way.

  15. Consistency of matter models with asymptotically safe quantum gravity

    CERN Document Server

    Donà, P; Percacci, Roberto

    2014-01-01

    We discuss the compatibility of quantum gravity with dynamical matter degrees of freedom. Specifically, we present bounds we obtained in [1] on the allowed number and type of matter fields within asymptotically safe quantum gravity. As a novel result, we show bounds on the allowed number of spin-3/2 (Rarita-Schwinger) fields, e.g., the gravitino. These bounds, obtained within truncated Renormalization Group flows, indicate the compatibility of asymptotic safety with the matter fields of the standard model. Further, they suggest that extensions of the matter content of the standard model are severely restricted in asymptotic safety. This means that searches for new particles at colliders could provide experimental tests for this particular approach to quantum gravity.

  16. Generalized multiplicative error models: Asymptotic inference and empirical analysis

    Science.gov (United States)

    Li, Qian

    This dissertation consists of two parts. The first part focuses on extended Multiplicative Error Models (MEM) that include two extreme cases for nonnegative series. These extreme cases are common phenomena in high-frequency financial time series. The Location MEM(p,q) model incorporates a location parameter so that the series are required to have positive lower bounds. The estimator for the location parameter turns out to be the minimum of all the observations and is shown to be consistent. The second case captures the nontrivial fraction of zero outcomes feature in a series and combines a so-called Zero-Augmented general F distribution with linear MEM(p,q). Under certain strict stationary and moment conditions, we establish a consistency and asymptotic normality of the semiparametric estimation for these two new models. The second part of this dissertation examines the differences and similarities between trades in the home market and trades in the foreign market of cross-listed stocks. We exploit the multiplicative framework to model trading duration, volume per trade and price volatility for Canadian shares that are cross-listed in the New York Stock Exchange (NYSE) and the Toronto Stock Exchange (TSX). We explore the clustering effect, interaction between trading variables, and the time needed for price equilibrium after a perturbation for each market. The clustering effect is studied through the use of univariate MEM(1,1) on each variable, while the interactions among duration, volume and price volatility are captured by a multivariate system of MEM(p,q). After estimating these models by a standard QMLE procedure, we exploit the Impulse Response function to compute the calendar time for a perturbation in these variables to be absorbed into price variance, and use common statistical tests to identify the difference between the two markets in each aspect. These differences are of considerable interest to traders, stock exchanges and policy makers.

  17. Asymptotic Performance of Sparse Signal Detection Using Convex Programming Method

    Institute of Scientific and Technical Information of China (English)

    LEI Chuan; ZHANG Jun

    2012-01-01

    The detection of sparse signals against background noise is considered.Detecting signals of such kind is difficult since only a small portion of the signal carries information.Prior knowledge is usually assumed to ease detection.In this paper,we consider the general unknown and arbitrary sparse signal detection problem when no prior knowledge is available.Under a Neyman-Pearson hypothesis-testing framework,a new detection scheme is proposed by combining a generalized likelihood ratio test (GLRT)-like test statistic and convex programming methods which directly exploit sparsity in an underdetermined system of linear equations.We characterize large sample behavior of the proposed method by analyzing its asymptotic performance.Specifically,we give the condition for the Chernoff-consistent detection which shows that the proposed method is very sensitive to the (e)2 norm energy of the sparse signals.Both the false alarm rate and the miss rate tend to zero at vanishing signal-to-noise ratio (SNR),as long as the signal energy grows at least logarithmically with the problem dimension.Next we give a large deviation analysis to characterize the error exponent for the Neyman-Pearson detection.We derive the oracle error exponent assuming signal knowledge.Then we explicitly derive the error exponent of the proposed scheme and compare it with the oracle exponent.We complement our study with numerical experiments,showing that the proposed method performs in the vicinity of the likelihood ratio test (LRT) method in the finite sample scenario and the error probability degrades exponentially with the number of observations.

  18. Asymptotic Properties of Parabolic Systems for Null-Recurrent Switching Diffusions

    Institute of Scientific and Technical Information of China (English)

    R.Z.Khasminskii; C.Zhu; G.Yin

    2007-01-01

    This work is concerned with the asymptotic behavior of systems of parabolic equations arising from null-recurrent switching diffusions,which are diffusion processes modulated by continuous-time Markov chains.A sufficient condition for null recurrence is presented.Moreover,convergence rate of the solutions of systems of homogeneous parabolic equations under suitable conditions is established.Then a case study on verifying one of the conditions proposed is provided with the use of a two-state Markov chain.To verify the condition,boundary value problems(BVPs)for parabolic systems are treated,which are not the usual two-point BVP type.An extra condition in the interior is needed resulting in jump discontinuity of the derivative of the corresponding solution.

  19. Enumerative and asymptotic analysis of a moduli space

    CERN Document Server

    Readdy, Margaret A

    2010-01-01

    We focus on combinatorial aspects of the Hilbert series of the cohomology ring of the moduli space of stable pointed curves of genus zero. We show its graded Hilbert series satisfies an integral operator identity. This is used to give asymptotic behavior, and in some cases, exact values, of the coefficients themselves. We then study the total dimension, that is, the sum of the coefficients of the Hilbert series. Its asymptotic behavior involves the Lambert W function, which has applications to classical tree enumeration, signal processing and fluid mechanics.

  20. Vacuum energy in asymptotically flat 2+1 gravity

    CERN Document Server

    Miskovic, Olivera; Roy, Debraj

    2016-01-01

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern-Simons formulation for the Poincare group. The equivalent action is nothing but the Einstein-Hilbert term in the bulk plus half of the Gibbons-Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  1. Selected asymptotic methods with applications to electromagnetics and antennas

    CERN Document Server

    Fikioris, George; Bakas, Odysseas N

    2013-01-01

    This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som

  2. Asymptotic analysis of spatial discretizations in implicit Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Densmore, Jeffery D [Los Alamos National Laboratory

    2009-01-01

    We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.

  3. Asymptotic analysis of spatial discretizations in implicit Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Densmore, Jeffery D [Los Alamos National Laboratory

    2008-01-01

    We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large, We demonstrate the validity of our analysis with a set of numerical examples.

  4. EVANS FUNCTIONS AND ASYMPTOTIC STABILITY OF TRAVELING WAVE SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper studies the asymptotic stability of traveling wave solutions of nonlinear systems of integral-differential equations. It has been established that linear stability of traveling waves is equivalent to nonlinear stability and some “nice structure” of the spectrum of an associated operator implies the linear stability. By using the method of variation of parameter, the author defines some complex analytic function, called the Evans function. The zeros of the Evans function corresponds to the eigenvalues of the associated linear operator. By calculating the zeros of the Evans function, the asymptotic stability of the travling wave solutions is established.

  5. Counting spanning trees on fractal graphs and their asymptotic complexity

    Science.gov (United States)

    Anema, Jason A.; Tsougkas, Konstantinos

    2016-09-01

    Using the method of spectral decimation and a modified version of Kirchhoff's matrix-tree theorem, a closed form solution to the number of spanning trees on approximating graphs to a fully symmetric self-similar structure on a finitely ramified fractal is given in theorem 3.4. We show how spectral decimation implies the existence of the asymptotic complexity constant and obtain some bounds for it. Examples calculated include the Sierpiński gasket, a non-post critically finite analog of the Sierpiński gasket, the Diamond fractal, and the hexagasket. For each example, the asymptotic complexity constant is found.

  6. Asymptotic heat transfer model in thin liquid films

    CERN Document Server

    Chhay, Marx; Gisclon, Marguerite; Ruyer-Quil, Christian

    2015-01-01

    In this article, we present a modelling of heat transfer occuring through a liquid film flowing down a vertical wall. This model is formally derived thanks to asymptotic developpment, by considering the physical ratio of typical length scales of the study. A new Nusselt thermal solution is proposed, taking into account the hydrodynamic free surface variations and the contributions of the higher order terms in the asymptotic model are numerically pointed out. The comparisons are provided against the resolution of the full Fourier equations in a steady state frame.

  7. Asymptotic dynamics, large gauge transformations and infrared symmetries

    CERN Document Server

    Gomez, Cesar

    2016-01-01

    Infrared finite S matrices enjoy an infinite family of symmetries, namely decoupling of asymptotic soft modes with arbitrary direction. The infrared structure of the theory manifests itself in the form of vacuum degeneracy and in nontrivial asymptotic dynamics. These two ingredients are unified in the infrared finite S matrix symmetries and can be disentangled as soft and hard components of corresponding charges. When these two components are disentangled, the nontrivial role of large gauge transformations becomes manifest. The soft decoupling symmetry of the physical S matrix leads to relations between the corresponding soft/hard decompositions for the in and out states that can encode crucial nontrivial information about the scattering process.

  8. Asymptotic Marginal Tax Rate of Individual Income Tax in China

    Institute of Scientific and Technical Information of China (English)

    ZHENYA; LIU; WU; YANG; DAVID; DICKINSON

    2014-01-01

    This paper examines the asymptotic marginal rate of individual income tax which maximizes China’s social welfare through numerical simulation based on the elasticity of China’s labor supply, income distribution and the social objectives of redistribution in accordance with the optimal direct taxation theory. Taking advantage of the optimal direct taxation model with consideration of the income effect, it comes to the conclusion that combined with China’s reality, the asymptotic marginal rate of individual labor income tax in China should be between 35% and 40%.

  9. Lorentzian spin foam amplitudes: graphical calculus and asymptotics

    International Nuclear Information System (INIS)

    The amplitude for the 4-simplex in a spin foam model for quantum gravity is defined using a graphical calculus for the unitary representations of the Lorentz group. The asymptotics of this amplitude are studied in the limit when the representation parameters are large, for various cases of boundary data. It is shown that for boundary data corresponding to a Lorentzian simplex, the asymptotic formula has two terms, with phase plus or minus the Lorentzian signature Regge action for the 4-simplex geometry, multiplied by an Immirzi parameter. Other cases of boundary data are also considered, including a surprising contribution from Euclidean signature metrics.

  10. On the asymptotic distribution of block-modified random matrices

    Energy Technology Data Exchange (ETDEWEB)

    Arizmendi, Octavio, E-mail: octavius@cimat.mx [Department of Probability and Statistics, CIMAT, Guanajuato (Mexico); Nechita, Ion, E-mail: nechita@irsamc.ups-tlse.fr [Zentrum Mathematik, M5, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany and CNRS, Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, UPS, F-31062 Toulouse (France); Vargas, Carlos, E-mail: obieta@math.tugraz.at [Department of Mathematical Structure Theory, Technische Universität Graz, Steyrergasse 30/III, 8010 Graz (Austria)

    2016-01-15

    We study random matrices acting on tensor product spaces which have been transformed by a linear block operation. Using operator-valued free probability theory, under some mild assumptions on the linear map acting on the blocks, we compute the asymptotic eigenvalue distribution of the modified matrices in terms of the initial asymptotic distribution. Moreover, using recent results on operator-valued subordination, we present an algorithm that computes, numerically but in full generality, the limiting eigenvalue distribution of the modified matrices. Our analytical results cover many cases of interest in quantum information theory: we unify some known results and we obtain new distributions and various generalizations.

  11. Precise Asymptotics for Random Matrices and Random Growth Models

    Institute of Scientific and Technical Information of China (English)

    Zhong Gen SU

    2008-01-01

    The author considers the largest eigenvalues of random matrices from Gaussian unitary ensemble and Laguerre unitary ensemble, and the rightmost charge in certain random growth models.We obtain some precise asymptotics results, which are in a sense similar to the precise asymptotics for sums of independent random variables in the context of the law of large numbers and complete convergence. Our proofs depend heavily upon the upper and lower tail estimates for random matrices and random growth models. The Tracy-Widom distribution plays a central role as well.

  12. On the charge density and asymptotic tail of a monopole

    CERN Document Server

    Harland, Derek

    2015-01-01

    We propose a new definition for the abelian magnetic charge density of a non-abelian monopole, based on zero-modes of an associated Dirac operator. Unlike the standard definition of the charge density, this density is smooth in the core of the monopole. We show that this charge density induces a magnetic field whose expansion in powers of 1/r agrees with that of the conventional asymptotic magnetic field to all orders. We also show that the asymptotic field can be easily calculated from the spectral curve. Explicit examples are given for known monopole solutions.

  13. Asymptotic analysis of rf-heated collisional plasma

    International Nuclear Information System (INIS)

    It is shown that a distribution of electrons in resonance with traveling waves, but colliding with background distributions of electrons and ions, evolves to a steady state. Details of the steady state are given analytically in the asymptotic limit of high electron energy and are compared with numerical solutions. The asymptotic analytic solution may be useful for quickly relating emission data to likely excitations and is more reliable than conventional numerical solutions at high energy. A method of improving numerics at high energy is suggested

  14. Phases of (Asymptotically) Safe Chiral Theories with(out) Scalars

    CERN Document Server

    Molgaard, Esben

    2016-01-01

    We unveil the dynamics of four dimensional chiral gauge-Yukawa theories featuring several scalar degrees of freedom transforming according to distinct representations of the underlying gauge group. We consider generalized Georgi-Glashow and Bars-Yankielowicz theories. We determine, to the maximum known order in perturbation theory, the phase diagram of these theories and further disentangle their ultraviolet asymptotic nature according to whether they are asymptotically free or safe. We therefore extend the number of theories that are known to be fundamental in the Wilsonian sense to the case of chiral gauge theories with scalars.

  15. Quantile spectral processes: Asymptotic analysis and inference

    OpenAIRE

    Kley, Tobias; Volgushev, Stanislav; Dette, Holger; Hallin, Marc

    2016-01-01

    Quantile- and copula-related spectral concepts recently have been considered by various authors. Those spectra, in their most general form, provide a full characterization of the copulas associated with the pairs $(X_{t},X_{t-k})$ in a process $(X_{t})_{t\\in\\mathbb{Z}}$, and account for important dynamic features, such as changes in the conditional shape (skewness, kurtosis), time-irreversibility, or dependence in the extremes that their traditional counterparts cannot capture. Despite variou...

  16. Modeling quasi-static poroelastic propagation using an asymptotic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.

    2007-11-01

    solution. Unfortunately, analytic solutions are only available for highly idealized conditions, such as a uniform (Rudnicki(1986)) or one-dimensional (Simon et al.(1984)Simon, Zienkiewicz, & Paul; Gajo & Mongiovi(1995); Wang & Kumpel(2003)) medium. In this paper I derive an asymptotic, semi-analytic solution for coupled deformation and flow. The approach is similar to trajectory- or ray-based methods used to model elastic and electromagnetic wave propagation (Aki & Richards(1980); Kline & Kay(1979); Kravtsov & Orlov(1990); Keller & Lewis(1995)) and, more recently, diffusive propagation (Virieux et al.(1994)Virieux, Flores-Luna, & Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner; Vasco(2007)). The asymptotic solution is valid in the presence of smoothly-varying, heterogeneous flow properties. The situation I am modeling is that of a formation with heterogeneous flow properties and uniform mechanical properties. The boundaries of the layer may vary arbitrary and can define discontinuities in both flow and mechanical properties. Thus, using the techniques presented here, it is possible to model a stack of irregular layers with differing mechanical properties. Within each layer the hydraulic conductivity and porosity can vary smoothly but with an arbitrarily large magnitude. The advantages of this approach are that it produces explicit, semi-analytic expressions for the arrival time and amplitude of the Biot slow and fast waves, expressions which are valid in a medium with heterogeneous properties. As shown here, the semi-analytic expressions provide insight into the nature of pressure and deformation signals recorded at an observation point. Finally, the technique requires considerably fewer computer resources than does a fully numerical treatment.

  17. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models

    International Nuclear Information System (INIS)

    The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral–faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions. (paper)

  18. Asymptotic solution for a class of weakly nonlinear singularly perturbed reaction diffusion problem

    Institute of Scientific and Technical Information of China (English)

    TANG Rong-rong

    2009-01-01

    Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter e and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of O(ε2).

  19. Asymptotic behavior of solutions for some nonlinear partial differential equations on unbounded domains

    Directory of Open Access Journals (Sweden)

    Jacqueline Fleckinger

    2001-12-01

    Full Text Available We study the asymptotic behavior of positive solutions $u$ of $$ -Delta_p u(x = V(x u(x^{p-1}, quad p>1; x in Omega,$$ and related partial differential inequalities, as well as conditions for existence of such solutions. Here, $Omega$ contains the exterior of a ball in $mathbb{R}^N$ $1

  20. Lattice Quantization with Side Information: Codes, Asymptotics, and Applications in Sensor Networks

    OpenAIRE

    Servetto, Sergio D.

    2006-01-01

    We consider the problem of rate/distortion with side information available only at the decoder. For the case of jointly-Gaussian source X and side information Y, and mean-squared error distortion, Wyner proved in 1976 that the rate/distortion function for this problem is identical to the conditional rate/distortion function R_{X|Y}, assuming the side information Y is available at the encoder. In this paper we construct a structured class of asymptotically optimal quantizers for this problem: ...

  1. GLOBAL ASYMPTOTICAL PROPERTIES FOR A DIFFUSED HBV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND NONLINEAR INCIDENCE

    Institute of Scientific and Technical Information of China (English)

    Wang Shaoli; Feng Xinlong; He Yinnian

    2011-01-01

    This article proposes a diffused hepatitis B virus (HBV) model with CTLimmune response and nonlinear incidence for the control of viral infections.By means of different Lyapunov functions,the global asymptotical properties of the viral-free equilibrium and immune-free equilibrium of the model are obtained.Global stability of the positive equilibrium of the model is also considered.The results show that the free diffusion of the virus has no effect on the global stability of such HBV infection problem with Neumann homogeneous boundary conditions.

  2. Asymptotic analysis of a semilinear elliptic equation in highly oscillating thin domains

    Science.gov (United States)

    Pereira, Marcone Corrêa

    2016-10-01

    In this work we are interested in the asymptotic behavior of a family of solutions of a semilinear elliptic problem with homogeneous Neumann boundary condition defined in a two-dimensional bounded set which degenerates to the unit interval as a positive parameter {ɛ} goes to zero. Here we also allow that upper and lower boundaries from this singular region present highly oscillatory behavior with different orders and variable profile. Combining results from linear homogenization theory and nonlinear analyzes we get the limit problem showing upper and lower semicontinuity of the solutions at {ɛ=0}.

  3. Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation

    Science.gov (United States)

    Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu

    2016-07-01

    In this paper we construct asymptotic solutions for the nonlocal multidimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation in the class of functions concentrated on a one-dimensional manifold (curve) using a semiclassical approximation technique. We show that the construction of these solutions can be reduced to solving a similar problem for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov in the class of functions concentrated at a point (zero-dimensional manifold) together with an additional operator condition. The general approach is exemplified by constructing a two-dimensional two-parametric solution, which describes quasi-steady-state patterns on a circumference.

  4. On the asymptotic ergodic capacity of FSO links with generalized pointing error model

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-09-11

    Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantize the effect of these two factors on FSO system performance, we need an effective mathematical model for them. Scintillations are typically modeled by the log-normal and Gamma-Gamma distributions for weak and strong turbulence conditions, respectively. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive the asymptotic ergodic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. © 2015 IEEE.

  5. Asymptotic solution for high vorticity regions in incompressible 3D Euler equations

    CERN Document Server

    Agafontsev, D S; Mailybaev, A A

    2016-01-01

    Incompressible 3D Euler equations develop high vorticity in very thin pancake-like regions from generic large-scale initial conditions. In this work we propose an exact solution of the Euler equations for the asymptotic pancake evolution. This solution combines a shear flow aligned with an asymmetric straining flow, and is characterized by a single asymmetry parameter and an arbitrary transversal vorticity profile. The analysis is based on detailed comparison with numerical simulations performed using a pseudo-spectral method in anisotropic grids of up to 972 x 2048 x 4096.

  6. Asymptotic cosmological regimes in scalar-torsion gravity with a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Skugoreva, Maria A. [Kazan Federal University, Kazan (Russian Federation); Toporensky, Alexey V. [Kazan Federal University, Kazan (Russian Federation); Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow (Russian Federation)

    2016-06-15

    We consider the cosmological dynamics of a nonminimally coupled scalar field in scalar-torsion gravity in the presence of hydrodynamical matter. The potential of the scalar field have been chosen as power law with negative index, this type of potentials is usually used in quintessence scenarios. We identify several asymptotic regimes, including de Sitter, kinetic dominance, kinetic tracker, and tracker solutions and study the conditions for their existence and stability. We show that for each combination of coupling constant and potential power index one of the regimes studied in the present paper is stable to the future. (orig.)

  7. Asymptotic Normality of LS Estimate in Simple Linear EV Regression Model

    Institute of Scientific and Technical Information of China (English)

    Jixue LIU

    2006-01-01

    Though EV model is theoretically more appropriate for applications in which measurement errors exist, people are still more inclined to use the ordinary regression models and the traditional LS method owing to the difficulties of statistical inference and computation. So it is meaningful to study the performance of LS estimate in EV model.In this article we obtain general conditions guaranteeing the asymptotic normality of the estimates of regression coefficients in the linear EV model. It is noticeable that the result is in some way different from the corresponding result in the ordinary regression model.

  8. ASYMPTOTICAL STABILITY OFNON-AUTONOMOUS DISCRETE-TIME NEURAL NETWORKS WITH GENERALIZED INPUT-OUTPUT FUNCTION

    Institute of Scientific and Technical Information of China (English)

    阮炯; 王军平; 郭德典

    2004-01-01

    In this paper, we first introduce the model of discrete-time neural networks with generalized input-output function and present a proof of the existence of a fixed point by Schauder fixed-point principle. Secondly, we study the uniformly asymptotical stability of equilibrium in non-autonomous discrete-time neural networks and give some sufficient conditions that guarantee the stability of it by using the converse theorem of Lyapunov function. Finally, several examples and numerical simulations are given to illustrate and reinforce our theories.

  9. Asymptotic Behavior of a Structure Made by a Plate and a Straight Rod

    Institute of Scientific and Technical Information of China (English)

    Dominique BLANCHARD; Georges GRISO

    2013-01-01

    This paper is devoted to describing the asymptotic behavior of a structure made by a thin plate and a thin perpendicular rod in the framework of nonlinear elasticity.The authors scale the applied forces in such a way that the level of the total elastic energy leads to the Von-Kármán's equations (or the linear model for smaller forces) in the plate and to a one-dimensional rod-model at the limit.The junction conditions include in particular the continuity of the bending in the plate and the stretching in the rod at the junction.

  10. Asymptotic cosmological regimes in scalar-torsion gravity with a perfect fluid

    CERN Document Server

    Skugoreva, Maria

    2016-01-01

    We consider cosmological dynamics of nonminimally coupled scalar field in the scalar-torsion gravity in the presence of a hydrodynamical matter. Potential of the scalar field have been chosen as power-law with negative index, this type of potentials is usually used in quintessence scenarios. We identify several asymptotic regimes, including de Sitter, kinetic dominance, kinetic tracker and tracker solution and study conditions for their existence and stability. We show that for each combination of coupling constant and potential power index one of regimes studied in the present paper is stable to the future.

  11. General Solution for the Static, Spherical and Asymptotically Flat Braneworld

    CERN Document Server

    Akama, Keiichi; Mukaida, Hisamitsu

    2011-01-01

    The general solution for the static, spherical and asymptotically flat braneworld is derived by solving the bulk Einstein equation and braneworld dynamics. We show that it involves a large arbitrariness, which reduces the predictability of the theories. Ways out of the difficulty are discussed.

  12. DISSIPATION AND DISPERSION APPROXIMATION TO HYDRODYNAMICAL EQUATIONS AND ASYMPTOTIC LIMIT

    Institute of Scientific and Technical Information of China (English)

    Hsiao Ling; Li Hailiang

    2008-01-01

    The compressible Euler equations with dissipation and/or dispersion correction are widely used in the area of applied sciences, for instance, plasma physics,charge transport in semiconductor devices, astrophysics, geophysics, etc. We consider the compressible Euler equation with density-dependent (degenerate) viscosities and capillarity, and investigate the global existence of weak solutions and asymptotic limit.

  13. The Asymptotics of Stable Sausages in the Plane

    OpenAIRE

    Rosen, Jay

    1992-01-01

    In this paper we develop an asymptotic expansion for the $\\varepsilon$-neighborhood of the symmetric stable process of order $\\beta, 1 < \\beta < 2$. Our expansion is in powers of $\\varepsilon^{2-\\beta}$ with the $n$th coefficient related to $n$-fold self-intersections of our stable process.

  14. Asymptotic behavior of tidal damping in alluvial estuaries

    NARCIS (Netherlands)

    Cai, H.; Savenije, H.H.G.

    2013-01-01

    Tidal wave propagation can be described analytically by a set of four implicit equations, i.e., the phase lag equation, the scaling equation, the damping equation, and the celerity equation. It is demonstrated that this system of equations has an asymptotic solution for an infinite channel, reflecti

  15. $\\alpha_s$ at LHC: Challenging asymptotic freedom

    CERN Document Server

    Sannino, Francesco

    2015-01-01

    Several extensions of the standard model feature new colored states that besides modifying the running of the QCD coupling could even lead to the loss of asymptotic freedom. Such a loss would potentially diminish the Wilsonian fundamental value of the theory. However, the recent discovery of complete asymptotically safe vector-like theories \\cite{Litim:2014uca}, i.e. featuring an interacting UV fixed point in all couplings, elevates these theories to a fundamental status and opens the door to alternative UV completions of (parts of) the standard model. If, for example, QCD rather than being asymptotically free becomes asymptotically safe there would be consequences on the early time evolution of the Universe (the QCD plasma would not be free). It is therefore important to test, both directly and indirectly, the strong coupling running at the highest possible energies. I will review here the attempts made in \\cite{Becciolini:2014lya} to use pure QCD observables at the Large Hadron Collider (LHC) to place bound...

  16. Asymptotic Formulae for Multivariate Kantorovich Type Generalized Sampling Series

    Institute of Scientific and Technical Information of China (English)

    Carlo BARDARO; Ilaria MANTELLINI

    2011-01-01

    In this paper an asymptotic formula of Voronovskaja type for a multivariate extension of the Kantorovich generalized sampling series is given.Moreover a quantitative version in terms of some moduli of smoothness is established.Finally some particular examples of kernels are discussed,as the Bochner-Riesz kernel and the multivariate splines.

  17. Superradiant instabilities of asymptotically anti-de Sitter black holes

    CERN Document Server

    Green, Stephen R; Ishibashi, Akihiro; Wald, Robert M

    2015-01-01

    We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension $d\\ge4$. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, $\\mathcal{E}$. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ...

  18. Geometry of exponential family nonlinear models and some asymptotic inference

    Institute of Scientific and Technical Information of China (English)

    韦博成

    1995-01-01

    A differential geometric framework in Euclidean space for exponential family nonlinear models is presented. Based on this framework, some asymptotic inference related to statistical curvatures and Fisher information are studied. This geometric framework can also be extended to more genera) dass of models and used to study some other problems.

  19. Ergodic Retractions for Families of Asymptotically Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Saeidi Shahram

    2010-01-01

    Full Text Available We prove some theorems for the existence of ergodic retractions onto the set of common fixed points of a family of asymptotically nonexpansive mappings. Our results extend corresponding results of Benavides and Ramírez (2001, and Li and Sims (2002.

  20. ASYMPTOTIC BEHAVIOR OF SOLUTION FOR NONLOCAL REACTION-DIFFUSION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    栗付才; 陈有朋; 谢春红

    2003-01-01

    This paper deals with reaction-diffusion system with nonlocal source. It isproved that there exists a unique classical solution and the solution either exists globallyor blows up in finite time. Furthermore, its blow-up set and asymptotic behavior areobtained provided that the solution blows up in finite time.

  1. Asymptotics and light-cone singularities in quantum field theory

    International Nuclear Information System (INIS)

    For a local amplitude we prove a one-to-one correspondence between properly defined scaling, the leading light-cone singularity and the asymptotic behaviour of the corresponding Jost-Lehmann spectral function in the sense of distribution theory. (orig.)

  2. Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes

    NARCIS (Netherlands)

    R.N. Caldeira Costa

    2012-01-01

    In this work we elaborate on an extension of the AdS/CFT framework to a sub-class of gravitational theories with vanishing cosmological constant. By building on earlier ideas, we construct a correspondence between Ricci-flat spacetimes admitting asymptotically hyperbolic hypersurfaces and a family o

  3. (Non)Differentiability and Asymptotics for Potential Densities of Subordinators

    OpenAIRE

    Doering, Leif; Savov, Mladen

    2011-01-01

    For subordinators with positive drift we extend recent results on the structure of the potential measures and the renewal densities. Applying Fourier analysis a new representation of the potential densities is derived from which we deduce asymptotic results and show how the atoms of the Lévy measure translate into points of (non)differentiability of the potential densities.

  4. Asymptotic stability of solutions to elastic systems with structural damping

    Directory of Open Access Journals (Sweden)

    Hongxia Fan

    2014-11-01

    Full Text Available In this article, we study the asymptotic stability of solutions for the initial value problems of second order evolution equations in Banach spaces, which can model elastic systems with structural damping. The discussion is based on exponentially stable semigroups theory. Applications to the vibration equation of elastic beams with structural damping are also considered.

  5. A Variational Model for an Asymptotic Magnetogydrodynamic System

    Institute of Scientific and Technical Information of China (English)

    JihuanHE

    1998-01-01

    In the present paper an asymptotic gas magnetohydrodynamic system is formulated in variational principles for the first time via the semi-inverse method proposed by He.Thus,a new theoretical basis for the finite element method is founded and a new versatile way to deal with discontinuity(shock)is suggested.

  6. Asymptotics for the Korteweg-de Vries-Burgers Equation

    Institute of Scientific and Technical Information of China (English)

    Nakao HAYASHI; Pavel I. NAUMKIN

    2006-01-01

    We study large time asymptotics of solutions to the Korteweg-de Vries-Burgers equation ut + uux - uxx + uxxx = 0, x ∈ R, t > 0.We are interested in the large time asymptotics for the case when the initial data have an arbitrary size. We prove that ifthe initial data u0 ∈ Hs (R) ∩L1 (R), where s > -1/2,then there exists a uniquesolution u (t,x) ∈ C∞ ((0, ∞);H∞ (R)) to the Cauchy problem for the Korteweg-de Vries-Burgers equation, which has asymptotics u (t) = t-1/2fM((·)t-1/2) + o(t-1/2) as t →∞, where fM is the self-similar solution for the Burgers equation. Moreover if xu0 (x) ∈ L1 (R),then the asymptotics are true u (t) = t-1/2fM((·)t-1/2) + O(t-1/2-γ),where γ∈ (0,1/2).

  7. Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian

    2011-01-01

    is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...

  8. AN ASYMPTOTIC SOLUTION OF THE NONLINEAR REDUCED WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper uses the boundary layer theory to obtain an asymptotic solution of the nonlinear educed wave equation. This solution is valid in the secular region where the geometrical optics result fails. However it agrees with the geometrical optics result when the field is away from the secular region. By using this solution the self-focusing length can also be obtained.

  9. Hilbert manifold structure for asymptotically hyperbolic relativistic initial data

    CERN Document Server

    Fougeirol, Jérémie

    2016-01-01

    We provide a Hilbert manifold structure {\\`a} la Bartnik for the space of asymptotically hyperbolic initial data for the vacuum constraint equations. The adaptation led us to prove new weighted Poincar{\\'e} and Korn type inequalities for AH manifolds with inner boundary and weakly regular metric.

  10. The Asymptotic Behavior for Numerical Solution of a Volterra Equation

    Institute of Scientific and Technical Information of China (English)

    Da Xu

    2003-01-01

    Long-time asymptotic stability and convergence properties for the numerical solution of a Volterra equation of parabolic type are studied. The methods are based on the first-second order backward difference methods. The memory term is approximated by the convolution quadrature and the interpolant quadrature. Discretization of the spatial partial differential operators by the finite element method is also considered.

  11. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2015-01-01

    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  12. Penrose inequality for asymptotically AdS spaces

    Energy Technology Data Exchange (ETDEWEB)

    Itkin, Igor [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Oz, Yaron, E-mail: yaronoz@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2012-02-28

    In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.

  13. Dynamics of Asymptotic Diffeomorphisms in (2+1)-Dimensional Gravity

    OpenAIRE

    Carlip, S

    2005-01-01

    In asymptotically anti-de Sitter gravity, diffeomorphisms that change the conformal boundary data can be promoted to genuine physical degrees of freedom. I show that in 2+1 dimensions, the dynamics of these degrees of freedom is described by a Liouville action, with the correct central charge to reproduce the entropy of the BTZ black hole.

  14. ASYMPTOTIC STABILITY OF A SINGULAR SYSTEM WITH DISTRIBUTED DELAYS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the stability theory of functional differential equations, this paper studies the asymptotic stability of a singular system with distributed delays by constructing suitable Lyapunov functionals and applying the linear matrix inequalities. A numerical example is given to show the effectiveness of the main results.

  15. Strong Convergence Properties for Asymptotically Almost Negatively Associated Sequence

    Directory of Open Access Journals (Sweden)

    Xueping Hu

    2012-01-01

    Full Text Available By applying the moment inequality for asymptotically almost negatively associated (in short AANA random sequence and truncated method, we get the three series theorems for AANA random variables. Moreover, a strong convergence property for the partial sums of AANA random sequence is obtained. In addition, we also study strong convergence property for weighted sums of AANA random sequence.

  16. ASYMPTOTIC BEHAVIOR OF DELAY DISCRETETIME NEURAL NETWORKS WITH CRITICAL THRESHOLD

    Institute of Scientific and Technical Information of China (English)

    ZhangHongqiang; LiuKaiyu

    2005-01-01

    This paper is concerned with a delay discrete-time system arising as a discrete-time network of two neurons with McCulloch-Pitts nonlinearity. We obtain the asymptotic behaviors of the solutions of the system for some cases.The results obtained improve and extend the corresponding results established recently by Zhou, Yu and Huang [1].

  17. Some Asymptotic Inference in Multinomial Nonlinear Models (a Geometric Approach)

    Institute of Scientific and Technical Information of China (English)

    WEIBOCHENG

    1996-01-01

    A geometric framework is proposed for multinomlat nonlinear modelsbased on a modified vemlon of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvtures for multlnomial nonlinear models. Our previous results [15] for ordlnary nonlinear regression models are extended to multlnomlal nonlinear models.

  18. Zero bias transformation and asymptotic expansions II : the Poisson case

    OpenAIRE

    Jiao, Ying

    2009-01-01

    We apply a discrete version of the methodology in \\cite{gauss} to obtain a recursive asymptotic expansion for $\\esp[h(W)]$ in terms of Poisson expectations, where $W$ is a sum of independent integer-valued random variables and $h$ is a polynomially growing function. We also discuss the remainder estimations.

  19. BAHADUR ASYMPTOTIC EFFICIENCY IN A SEMIPARAMETRIC REGRESSION MODEL

    Institute of Scientific and Technical Information of China (English)

    LIANGHUA; CHENGPING

    1994-01-01

    The authors give MLE θ1ML of θ1 in the model Y=θ1+g(T)-σ,then consider Bahadur asymptotic efficiency of θ1ML,where T and ε are independent,g is unknown,ε~φ(-) is known with mean 0 and variance σ2.

  20. Small Bandwidth Asymptotics for Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels and the standard errors...