Asymptotic theory of integrated conditional moment tests
Bierens, H.J.; Ploberger, W.
1995-01-01
In this paper we derive the asymptotic distribution of the test statistic of a generalized version of the integrated conditional moment (ICM) test of Bierens (1982, 1984), under a class of Vn-local alternatives, where n is the sample size. The generalized version involved includes neural network tes
Relaxing the parity conditions of asymptotically flat gravity
International Nuclear Information System (INIS)
Four-dimensional asymptotically flat spacetimes at spatial infinity are defined from first principles without imposing parity conditions or restrictions on the Weyl tensor. The Einstein-Hilbert action is shown to be a correct variational principle when it is supplemented by an anomalous counterterm which breaks asymptotic translation, supertranslation and logarithmic translation invariance. Poincare transformations as well as supertranslations and logarithmic translations are associated with finite and conserved charges which represent the asymptotic symmetry group. Lorentz charges as well as logarithmic translations transform anomalously under a change of regulator. Lorentz charges are generally nonlinear functionals of the asymptotic fields but reduce to well-known linear expressions when parity conditions hold. We also define a covariant phase space of asymptotically flat spacetimes with parity conditions but without restrictions on the Weyl tensor. In this phase space, the anomaly plays classically no dynamical role. Supertranslations are pure gauge and the asymptotic symmetry group is the expected Poincare group. (paper)
Asymptotics for maximum score method under general conditions
Taisuke Otsu; Myung Hwan Seo
2014-01-01
Abstract. Since Manski's (1975) seminal work, the maximum score method for discrete choice models has been applied to various econometric problems. Kim and Pollard (1990) established the cube root asymptotics for the maximum score estimator. Since then, however, econometricians posed several open questions and conjectures in the course of generalizing the maximum score approach, such as (a) asymptotic distribution of the conditional maximum score estimator for a panel data dynamic discrete ch...
Asymptotic learning curve and renormalizable condition in statistical learning theory
International Nuclear Information System (INIS)
Bayes statistics and statistical physics have the common mathematical structure, where the log likelihood function corresponds to the random Hamiltonian. Recently, it was discovered that the asymptotic learning curves in Bayes estimation are subject to a universal law, even if the log likelihood function can not be approximated by any quadratic form. However, it is left unknown what mathematical property ensures such a universal law. In this paper, we define a renormalizable condition of the statistical estimation problem, and show that, under such a condition, the asymptotic learning curves are ensured to be subject to the universal law, even if the true distribution is unrealizable and singular for a statistical model. Also we study a nonrenormalizable case, in which the learning curves have the different asymptotic behaviors from the universal law.
Hante, Falk; Tucsnak, Marius
2011-01-01
We study the asymptotic stability of a dissipative evolution in a Hilbert space subject to intermittent damping. We observe that, even if the intermittence satisfies a persistent excitation condition, if the Hilbert space is infinite-dimensional then the system needs not being asymptotically stable (not even in the weak sense). Exponential stability is recovered under a generalized observability inequality, allowing for time-domains that are not intervals. Weak asymptotic stability is obtained under a similarly generalized unique continuation principle. Finally, strong asymptotic stability is proved for intermittences that do not necessarily satisfy some persistent excitation condition, evaluating their total contribution to the decay of the trajectories of the damped system. Our results are discussed using the example of the wave equation, Schr\\"odinger's equation and, for strong stability, also the special case of finite-dimensional systems.
Consistency rates and asymptotic normality of the high risk conditional for functional data
Directory of Open Access Journals (Sweden)
Rabhi Abbes
2015-12-01
Full Text Available The maximum of the conditional hazard function is a parameter of great importance in seismicity studies, because it constitutes the maximum risk of occurrence of an earthquake in a given interval of time. Using the kernel nonparametric estimates of the first derivative of the conditional hazard function, we establish uniform convergence properties and asymptotic normality of an estimate of the maximum in the context of independence data.
Gerbi, Stéphane
2011-12-01
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.
Borisov, Denis; Cardone, Giuseppe
2012-01-01
We consider a magnetic Schroedinger operator in a planar infinite strip with frequently and non-periodically alternating Dirichlet and Robin boundary conditions. Assuming that the homogenized boundary condition is the Dirichlet or the Robin one, we establish the uniform resolvent convergence in various operator norms and we prove the estimates for the rates of convergence. It is shown that these estimates can be improved by using special boundary correctors. In the case of periodic alternation, pure Laplacian, and the homogenized Robin boundary condition, we construct two-terms asymptotics for the first band functions, as well as the complete asymptotics expansion (up to an exponentially small term) for the bottom of the band spectrum.
Sufficient conditions for globally asymptotic self-stability of pressurized water reactors
International Nuclear Information System (INIS)
Highlights: • Self-stability analysis of the PWR is presented through the shifted-ectropy based approach. • Sufficient conditions for the globally asymptotic self-stability are established. • The correctness of the theoretic results are finally verified through numerical simulation. - Abstract: After the Fukushima accident, safe, stable and efficient operation of reactors is very necessary for the development of nuclear power industry. Since pressurized water reactor (PWR) is the mostly widely used fission reactor, the improvement of its operation performance is quite meaningful. Self-stability is the most important dynamic feature of any reactors, and analyzing the self-stability can give the approach of improving the operation performance. With this in mind, the self-stability analysis of the PWR is presented through the shifted-ectropy based approach, and sufficient conditions for the globally asymptotic self-stability in cases of negative, zero and positive coolant temperature feedback coefficient are all established. The correctness of the theoretical results are finally verified through numerical simulation. The results of this paper give the way to not only guaranteeing self-stability through physical and thermal-hydraulic reactor design but also strengthening closed-loop stability and robustness by the means of feedback control
Asymptotic Analysis of a Slightly Rarefied Gas with Nonlocal Boundary Conditions
Caflisch, Russel E.; Lombardo, Maria Carmela; Sammartino, Marco
2011-05-01
In this paper nonlocal boundary conditions for the Navier-Stokes equations are derived, starting from the Boltzmann equation in the limit for the Knudsen number being vanishingly small. In the same spirit of (Lombardo et al. in J. Stat. Phys. 130:69-82, 2008) where a nonlocal Poisson scattering kernel was introduced, a gaussian scattering kernel which models nonlocal interactions between the gas molecules and the wall boundary is proposed. It is proved to satisfy the global mass conservation and a generalized reciprocity relation. The asymptotic expansion of the boundary-value problem for the Boltzmann equation, provides, in the continuum limit, the Navier-Stokes equations associated with a class of nonlocal boundary conditions of the type used in turbulence modeling.
Dahl, Mattias
2015-01-01
When working with asymptotically hyperbolic initial data sets for general relativity it is convenient to assume certain simplifying properties. We prove that the subset of initial data with such properties is dense in the set of physically reasonable asymptotically hyperbolic initial data sets. More specifically, we show that an asymptotically hyperbolic initial data set with non-negative local energy density can be approximated by an initial data set with strictly positive local energy density and a simple structure at infinity, while changing the mass arbitrarily little. The argument follows an argument used by Eichmair, Huang, Lee, and Schoen in the asymptotically Euclidean case.
Nagy, A; Amovilli, C
2008-03-21
In the ground state, the pair density n can be determined by solving a single auxiliary equation of a two-particle problem. Electron-electron cusp condition and asymptotic behavior for the Pauli potential of the effective potential of the two-particle equation are presented. PMID:18361562
Huimin Yu
2012-01-01
The asymptotic behavior (as well as the global existence) of classical solutions to the 3D compressible Euler equations are considered. For polytropic perfect gas $(P(\\rho )={P}_{0}{\\rho }^{\\gamma })$ , time asymptotically, it has been proved by Pan and Zhao (2009) that linear damping and slip boundary effect make the density satisfying the porous medium equation and the momentum obeying the classical Darcy's law. In this paper, we use a more general method and extend this resu...
Energy Technology Data Exchange (ETDEWEB)
Borisov, D I
2003-12-31
We consider a singularly perturbed spectral boundary-value problem for the Laplace operator in a two-dimensional domain with frequently alternating non-periodic boundary conditions. Under certain very weak restrictions on the alternation structure of the boundary conditions, we obtain the first terms of the asymptotic expansions of the eigenelements of this problem. Under still weaker restrictions, we obtain estimates for the rate of convergence of the eigenvalues.
Directory of Open Access Journals (Sweden)
Vardanyan S. A.
2007-09-01
Full Text Available In the framework of the asymmetrical momental micropolar theory in the present work the boundary value problem of thermal stresses in a three-dimensional thin plate with independent fields of displacements and rotations is studied on the basis of asymptotic method. Depending on the values of physical dimensionless constants of the material three applied two-dimensional theories of thermoelasticity of micropolar thin plate are constructed (theories with independent rotations, with constrained rotations and with small shift rigidity.
On the Conditions for the Orbitally Asymptotical Stability of the Almost
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
@@This paper studies the behaviors of the solutions in the vicinity of a givenalmost periodic solution of the autonomous system x′=f(x), x Rn , (1) where f C1 (Rn ,Rn ). Since the periodic solutions of the autonomous system are not Liapunov asymptotic stable, we consider the weak orbitally stability. For the planar autonomous systems (n=2), the classical result of orbitally stability about its periodic solution with period w belongs to Poincare, i.e.
Calkins, Michael A; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe
2015-01-01
The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary condit...
Asymptotic behavior of solutions to nonlinear parabolic equation with nonlinear boundary conditions
Directory of Open Access Journals (Sweden)
Diabate Nabongo
2008-01-01
Full Text Available We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as t approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.
Asymptotic conditions for the use of linear ventilation models in the presence of buoyancy forces
Cao, Shijie; Meyers, Johan
2014-01-01
Low-dimensional discrete linear ventilation models have been studied by Cao and Meyers (2012). In the present study, we investigate the validity and applicability of linear ventilation models for heavy-gas dispersion by employing Reynolds-averaged Navier-Stokes (RANS) simulations. A simple benchmark ventilation case is considered under isothermal condition. Considering large density differences from pollutant gas and fresh air, the effect of buoyancy force has been taken into account in turbu...
Asymptotic behavior of solutions to wave equations with a memory condition at the boundary
Directory of Open Access Journals (Sweden)
Mauro de Lima Santos
2001-11-01
Full Text Available In this paper, we study the stability of solutions for wave equations whose boundary condition includes a integral that represents the memory effect. We show that the dissipation is strong enough to produce exponential decay of the solution, provided the relaxation function also decays exponentially. When the relaxation function decays polynomially, we show that the solution decays polynomially and with the same rate.
Existence and asymptotic behavior of the wave equation with dynamic boundary conditions
Graber, Philip Jameson
2012-03-07
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.
Bousso, Raphael
2016-01-01
We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focussing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the Quantum Null Energy Condition, of the Generalized Second Law, and of the Quantum Bousso Bound.
International Nuclear Information System (INIS)
The body-fixed (BF) formulation for atom--diatom scatterings is developed to the extent that one can use it to perform accurate close-coupling calculation, without introducing further approximation except truncating a finite basis set of the target molecular wave function, on the same ground as one use the space-fixed (SF) formulation. In this formulation, the coupled differential equations are solved an the boundary conditions matched entirely in the BF coordinate system. A unitary transformation is used to obtain both the coupled differential equation and the boundary condition in BF system system from SF system. All properties of the solution with respect to parity are derived entirely from the transformation, without using the parity eignfunctions of the BF frame. Boundary conditions that yield the scattering (S) matrix and the reactance (R) matrix are presented for each parity in both the far asymptotic region (where the interaction and the centrifugal potentials are both negligible) and the near asymptotic region (where the interaction potential is negligible but the centrifugal potential is not). While our differential equations are the same as those derived by others with different methods, our asymptotic boundary conditions disagree with some existing ones. With a given form of the BF coupled differential equations, the acceptable boundary conditions are discussed
Asymptotic Symmetries from finite boxes
Andrade, Tomas
2015-01-01
It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a "box." This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the Anti-de Sitter and Poincar\\'e asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2+1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS$_3$ and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.
Asymptotic symmetries from finite boxes
Andrade, Tomás; Marolf, Donald
2016-01-01
It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a 'box.' This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the anti-de Sitter and Poincaré asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2 + 1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS3 and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.
Regular Variation and Smile Asymptotics
Benaim, Shalom; Friz, Peter
2006-01-01
We consider risk-neutral returns and show how their tail asymptotics translate directly to asymptotics of the implied volatility smile, thereby sharpening Roger Lee's celebrated moment formula. The theory of regular variation provides the ideal mathematical framework to formulate and prove such results. The practical value of our formulae comes from the vast literature on tail asymptotics and our conditions are often seen to be true by simple inspection of known results.
Dettmann, Carl P.
2002-01-01
Recent advances in the periodic orbit theory of stochastically perturbed systems have permitted a calculation of the escape rate of a noisy chaotic map to order 64 in the noise strength. Comparison with the usual asymptotic expansions obtained from integrals and with a previous calculation of the electrostatic potential of exactly selfsimilar fractal charge distributions, suggests a remarkably accurate form for the late terms in the expansion, with parameters determined independently from the...
On Asymptotically Efficient Estimation in Semiparametric Models
Schick, Anton
1986-01-01
A general method for the construction of asymptotically efficient estimates in semiparametric models is presented. It improves and modifies Bickel's (1982) construction of adaptive estimates and obtains asymptotically efficient estimates under conditions weaker than those in Bickel.
Asymptotic structure of isolated systems
International Nuclear Information System (INIS)
The main methods to formulate asymptotic flatness conditions are introduced and motivation and basic ideas are emphasized. Any asymptotic flatness condition proposed up to now describes space-times which behave somehow like Minkowski space, and a very explicit exposition of the structure at infinity of Minkowski space is given. This structure is used to describe the asymptotic behaviour of fields on Minkowski space in a frame-dependent way. The definition of null infinity for curved space-time according to Penrose is given and attempts to define spacelike infinity are outlined. The conformal bundle approach to the formulation of asymptotic behaviour is described and its relation to null and spacelike infinity is given, as far as known. (Auth.)
Asymptotic spectral theory for nonlinear time series
Shao, Xiaofeng; Wu, Wei Biao
2007-01-01
We consider asymptotic problems in spectral analysis of stationary causal processes. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given. Instead of the commonly used strong mixing conditions, in our asymptotic spectral theory we impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear time series.
Strings from 3D gravity: asymptotic dynamics of AdS 3 gravity with free boundary conditions
Apolo, Luis; Sundborg, Bo
2015-01-01
Pure three-dimensional gravity in anti-de Sitter space can be formulated as an SL(2,R) $\\times $ SL(2,R) Chern-Simons theory, and the latter can be reduced to a WZW theory at the boundary. In this paper we show that AdS$_3$ gravity with free boundary conditions is described by a string at the boundary whose target spacetime is also AdS$_3$. While boundary conditions in the standard construction of Coussaert, Henneaux, and van Driel are enforced through constraints on the WZW currents, we find...
Asymptotic behavior to a von Kármán equations of memory type with acoustic boundary conditions
Kang, Jum-Ran
2016-06-01
We study the stability of solutions to a von Kármán plate model of memory type with acoustic boundary conditions. We establish the general decay rate result, using some properties of the convex functions. Our result is obtained without imposing any restrictive assumptions on the behavior of the relaxation function at infinity. These general decay estimates extend and improve on some earlier results-exponential or polynomial decay rates.
Grasselli, Maurizio
2011-01-01
We consider an approximation of the well-known Ericksen-Leslie model for the nematic liquid crystal flow proposed by F.-H. Lin et al. The evolution system consists of the Navier-Stokes equations coupled with a convective Ginzburg-Landau type equation for the (vector-valued) averaged molecular orientations. Here we suppose that the latter is subject to a time-dependent Dirichlet boundary condition h(t), while the Navier--Stokes equations are characterized by a no-slip boundary condition and by a time-dependent external force g(t). We show that, in 2D, each global weak solution converges to a single stationary state when h(t) and g(t) suitably converge to a time-independent boundary datum h_\\infty and 0, respectively. We also provide some estimates of the convergence rate. In the 3D case, we prove a similar long-time behavior for global strong solutions, provided that either the viscosity is large enough or the initial datum is close to a given equilibrium.
Asymptotically Safe Dark Matter
DEFF Research Database (Denmark)
Sannino, Francesco; Shoemaker, Ian M.
2015-01-01
We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....
Mickley, G. Andrew; DiSorbo, Anthony; Wilson, Gina N.; Huffman, Jennifer; Bacik, Stephanie; Hoxha, Zana; Biada, Jaclyn M.; Kim, Ye-Hyun
2009-01-01
Conditioned taste aversions (CTAs) may be acquired when an animal consumes a novel taste (CS) and then experiences the symptoms of poisoning (US). This aversion may be extinguished by repeated exposure to the CS alone. However, following a latency period in which the CS is not presented, the CTA will spontaneously recover (SR). In the current…
Cosmic censorship, persistent curvature and asymptotic causal pathology
International Nuclear Information System (INIS)
The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)
Dai, Hui-Hui; Chen, Zhen
2008-01-01
In this paper, we study phase transitions in a slender circular cylinder composed of a compressible hyperelastic material with a non-convex strain energy function. We aim to construct the asymptotic solutions based on an axisymmetrical three-dimensional setting and use the results to describe the key features (in particular, instability phenomena) observed in the experiments by others. The difficult problem of the solution bifurcations of the governing nonlinear partial differential equations (PDE's) is solved through a novel approach. By using a methodology involving coupled series-asymptotic expansions, we derive the normal form equation of the original complicated system of nonlinear PDE's. By writing the normal form equation into a first-order dynamical system and with a phase-plane analysis, we manage to deduce the global bifurcation properties and to solve the boundary-value problem analytically. The asymptotic solutions (including post-bifurcation solutions) in terms of integrals are obtained. The engi...
Mickley, G Andrew; DiSorbo, Anthony; Wilson, Gina N.; Huffman, Jennifer; Bacik, Stephanie; Hoxha, Zana; Biada, Jaclyn M.; Kim, Ye-Hyun
2009-01-01
Conditioned taste aversions (CTAs) may be acquired when an animal consumes a novel taste (CS) and then experiences the symptoms of poisoning (US). This aversion may be extinguished by repeated exposure to the CS alone. However, following a latency period in which the CS is not presented, the CTA will spontaneously recover (SR). In the current study we employed an explicitly unpaired extinction procedure (EU-EXT) to determine if it could thwart SR of a CTA. Sprague-Dawley rats acquired a stron...
Asymptotics and Borel summability
Costin, Ovidiu
2008-01-01
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us
Supersymmetric 3D gravity with torsion: asymptotic symmetries
Cvetkovic, B.; Blagojevic, M
2007-01-01
We study the structure of asymptotic symmetries in N=1+1 supersymmetric extension of three-dimensional gravity with torsion. Using a natural generalization of the bosonic anti-de Sitter asymptotic conditions, we show that the asymptotic Poisson bracket algebra of the canonical generators has the form of two independent super-Virasoro algebras with different central charges.
Componentwise Asymptotic Stability of Continuous-Time Interval Systems
Institute of Scientific and Technical Information of China (English)
赵胜民; 唐万生; 李光泉; 李文秀
2003-01-01
A special type of asymptotic (exponential) stability, namely componentwise asymptotic (exponential) stability for the continuous-time interval system is investigated. A set-valued map that represents the constraint of the state of the system is defined. And, by applying the viability theory of differential equation, sufficient and necessary conditions for the componentwise asymptotical (exponential) stability of this kind of systems are given.
Penrose type inequalities for asymptotically hyperbolic graphs
Dahl, Mattias; Sakovich, Anna
2013-01-01
In this paper we study asymptotically hyperbolic manifolds given as graphs of asymptotically constant functions over hyperbolic space $\\bH^n$. The graphs are considered as subsets of $\\bH^{n+1}$ and carry the induced metric. For such manifolds the scalar curvature appears in the divergence of a 1-form involving the integrand for the asymptotically hyperbolic mass. Integrating this divergence we estimate the mass by an integral over an inner boundary. In case the inner boundary satisfies a convexity condition this can in turn be estimated in terms of the area of the inner boundary. The resulting estimates are similar to the conjectured Penrose inequality for asymptotically hyperbolic manifolds. The work presented here is inspired by Lam's article concerning the asymptotically Euclidean case.
Asymptotic and Exact Expansions of Heat Traces
Energy Technology Data Exchange (ETDEWEB)
Eckstein, Michał, E-mail: michal@eckstein.pl [Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science (Poland); Zając, Artur, E-mail: artur.zajac@uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland)
2015-12-15
We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.
On asymptotic extension dimension
Repovš, Dušan; Zarichnyi, Mykhailo
2011-01-01
The aim of this paper is to introduce an asymptotic counterpart of the extension dimension defined by Dranishnikov. The main result establishes a relation between the asymptotic extensional dimension of a proper metric space and extension dimension of its Higson corona.
A quantum kinematics for asymptotically flat spacetimes
Campiglia, Miguel
2014-01-01
We construct a quantum kinematics for asymptotically flat spacetimes based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying Loop Quantum Gravity (LQG) which supports, in addition to the usual LQG operators, the action of `background exponential operators' which are connection dependent operators labelled by `background' $su(2)$ electric fields. KS states have, in addition to the LQG state label corresponding to 1 dimensional excitations of the triad, a label corresponding to a `background' electric field which describes 3 dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields which label the {\\em states} and the background electric fields which label the {\\em operators}. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We...
ASYMPTOTIC QUANTIZATION OF PROBABILITY DISTRIBUTIONS
Institute of Scientific and Technical Information of China (English)
Klaus P(o)tzelberger
2003-01-01
We give a brief introduction to results on the asymptotics of quantization errors.The topics discussed include the quantization dimension,asymptotic distributions of sets of prototypes,asymptotically optimal quantizations,approximations and random quantizations.
Asymptotic Resource Usage Bounds
Albert E.; Alonso D.; Arenas P.; Genaim S.; Puebla G.
2009-01-01
When describing the resource usage of a program, it is usual to talk in asymptotic terms, such as the well-known “big O” notation, whereby we focus on the behaviour of the program for large input data and make a rough approximation by considering as equivalent programs whose resource usage grows at the same rate. Motivated by the existence of non-asymptotic resource usage analyzers, in this paper, we develop a novel transformation from a non-asymptotic cost function (which can be produced by ...
Nonstandard asymptotic analysis
Berg, Imme
1987-01-01
This research monograph considers the subject of asymptotics from a nonstandard view point. It is intended both for classical asymptoticists - they will discover a new approach to problems very familiar to them - and for nonstandard analysts but includes topics of general interest, like the remarkable behaviour of Taylor polynomials of elementary functions. Noting that within nonstandard analysis, "small", "large", and "domain of validity of asymptotic behaviour" have a precise meaning, a nonstandard alternative to classical asymptotics is developed. Special emphasis is given to applications in numerical approximation by convergent and divergent expansions: in the latter case a clear asymptotic answer is given to the problem of optimal approximation, which is valid for a large class of functions including many special functions. The author's approach is didactical. The book opens with a large introductory chapter which can be read without much knowledge of nonstandard analysis. Here the main features of the t...
Asymptotic representation theorems for poverty indices
Lo, Gane Samb; Sall, Serigne Touba
2010-01-01
We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotics of the bulk of poverty indices and issues in poverty analysis. Our representation results uniformly hold on a large collection of poverty indices. They enable the continuous measure of poverty with longitudinal data.
General smile asymptotics with bounded maturity
Francesco Caravenna; Jacopo Corbetta
2014-01-01
We provide explicit conditions on the distribution of risk-neutral log-returns which yield sharp asymptotic estimates on the implied volatility smile. We allow for a variety of asymptotic regimes, including both small maturity (with arbitrary strike) and extreme strike (with arbitrary bounded maturity), extending previous work of Benaim and Friz [Math. Finance 19 (2009), 1-12]. We present applications to popular models, including Carr-Wu finite moment logstable model, Merton's jump diffusion ...
Asymptotically Safe Dark Matter
Sannino, Francesco
2014-01-01
We introduce a new paradigm for dark matter interactions according to which the interaction strength is asymptotically safe. In models of this type, the interaction strength is small at low energies but increases at higher energies towards a finite constant value of the coupling. The net effect is to partially offset direct detection constraints without affecting thermal freeze-out at higher energies. High-energy collider and indirect annihilation searches are the primary ways to constrain or discover asymptotically safe dark matter.
Quasi-extended asymptotic functions
International Nuclear Information System (INIS)
The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example
Puschnigg, Michael
1996-01-01
The aim of cyclic cohomology theories is the approximation of K-theory by cohomology theories defined by natural chain complexes. The basic example is the approximation of topological K-theory by de Rham cohomology via the classical Chern character. A cyclic cohomology theory for operator algebras is developed in the book, based on Connes' work on noncommutative geometry. Asymptotic cyclic cohomology faithfully reflects the basic properties and features of operator K-theory. It thus becomes a natural target for a Chern character. The central result of the book is a general Grothendieck-Riemann-Roch theorem in noncommutative geometry with values in asymptotic cyclic homology. Besides this, the book contains numerous examples and calculations of asymptotic cyclic cohomology groups.
International Nuclear Information System (INIS)
A large part of physics consists of learning which asymptotic methods to apply where, yet physicists are not always taught asymptotics in a systematic way. Asymptotology is given using an example from aerodynamics, and a rent Phys. Rev. Letter Comment is used as a case study of one subtle way things can go wrong. It is shown that the application of local analysis leads to erroneous conclusions regarding the existence of a continuous spectrum in a simple test problem, showing that a global analysis must be used. The final section presents results on a more sophisticated example, namely the WKBJ solution of Mathieu equation. 13 refs., 2 figs
Jones, D S
1997-01-01
Many branches of science and engineering involve applications of mathematical analysis. An important part of applied analysis is asymptotic approximation which is, therefore, an active area of research with new methods and publications being found constantly. This book gives an introduction to the subject sufficient for scientists and engineers to grasp the fundamental techniques, both those which have been known for some time and those which have been discovered more recently. The asymptotic approximation of both integrals and differential equations is discussed and the discussion includes hy
Asymptotics for spherical needlets
Baldi, P.; Kerkyacharian, G.; Marinucci, D.; Picard, D.
We investigate invariant random fields on the sphere using a new type of spherical wavelets, called needlets. These are compactly supported in frequency and enjoy excellent localization properties in real space, with quasi-exponentially decaying tails. We show that, for random fields on the sphere, the needlet coefficients are asymptotically uncorrelated for any fixed angular distance. This property is used to derive CLT and functional CLT convergence results for polynomial functionals of the needlet coefficients: here the asymptotic theory is considered in the high-frequency sense. Our proposals emerge from strong empirical motivations, especially in connection with the analysis of cosmological data sets.
On the Asymptotic Distribution of Signal Fraction
Volobouev, Igor
2016-01-01
Condition of the asymptotic normality of the signal fraction estimate by maximum likelihood is derived under the null hypothesis of no signal. Consequences of this condition for determination of signal significance taking in to account the look elsewhere effect are discussed.
Asymptotic freedom, asymptotic flatness and cosmology
International Nuclear Information System (INIS)
Holographic RG flows in some cases are known to be related to cosmological solutions. In this paper another example of such correspondence is provided. Holographic RG flows giving rise to asymptotically-free β-functions have been analyzed in connection with holographic models of QCD. They are shown upon Wick rotation to provide a large class of inflationary models with logarithmically-soft inflaton potentials. The scalar spectral index is universal and depends only on the number of e-foldings. The ratio of tensor to scalar power depends on the single extra real parameter that defines this class of models. The Starobinsky inflationary model as well as the recently proposed models of T-inflation are members of this class. The holographic setup gives a completely new (and contrasting) view to the stability, naturalness and other problems of such inflationary models
DEFF Research Database (Denmark)
Litim, Daniel F.; Sannino, Francesco
2014-01-01
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...
Cristallini, Achille
2016-07-01
A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.
Asymptotic parameterization in inverse limit spaces of dendrites
Hamilton, Brent
2012-01-01
In this paper, we study asymptotic behavior arising in inverse limit spaces of dendrites. In particular, the inverse limit is constructed with a single unimodal bonding map, for which points have unique itineraries and the critical point is periodic. Using symbolic dynamics, sufficient conditions for two rays in the inverse limit space to have asymptotic parameterizations are given. Being a topological invariant, the classification of asymptotic parameterizations would be a useful tool when d...
Singularities in asymptotically anti-de Sitter spacetimes
Ishibashi, Akihiro; Maeda, Kengo
2012-01-01
We consider singularity theorems in asymptotically anti-de Sitter (AdS) spacetimes. In the first part, we discuss the global methods used to show geodesic incompleteness and see that when the conditions imposed in Hawking and Penrose's singularity theorem are satisfied, a singularity must appear in asymptotically AdS spacetime. The recent observations of turbulent instability of asymptotically AdS spacetimes indicate that AdS spacetimes are generically singular even if a closed trapped surfac...
Optimistic Agents are Asymptotically Optimal
Sunehag, Peter; Hutter, Marcus
2012-01-01
We use optimism to introduce generic asymptotically optimal reinforcement learning agents. They achieve, with an arbitrary finite or compact class of environments, asymptotically optimal behavior. Furthermore, in the finite deterministic case we provide finite error bounds.
Asymptotic Flatness in Rainbow Gravity
Hackett, Jonathan
2005-01-01
A construction of conformal infinity in null and spatial directions is constructed for the Rainbow-flat space-time corresponding to doubly special relativity. From this construction a definition of asymptotic DSRness is put forward which is compatible with the correspondence principle of Rainbow gravity. Furthermore a result equating asymptotically flat space-times with asymptotically DSR spacetimes is presented.
Coarse geometry and asymptotic dimension
Grave, Bernd
2006-01-01
We consider asymptotic dimension of coarse spaces. We analyse coarse structures induced by metrisable compactifications. We calculate asymptotic dimension of coarse cell complexes. We calculate the asymptotic dimension of certain negatively curved spaces, e.g. for complete, simply connected manifolds with bounded, strictly negative sectional curvature.
Asymptotically hyperbolic connections
Fine, Joel; Krasnov, Kirill; Scarinci, Carlos
2015-01-01
General Relativity in 4 dimensions can be equivalently described as a dynamical theory of SO(3)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analog of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising "evolution" equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the obstruction appears at third order in the expansion. Another interesting feature of the connection formulation is that the "counter terms" required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-d...
Another Asymptotic Notation : "Almost"
Mondal, Nabarun; Ghosh, Partha P.
2013-01-01
Asymptotic notations are heavily used while analysing runtimes of algorithms. Present paper argues that some of these usages are non trivial, therefore incurring errors in communication of ideas. After careful reconsidera- tion of the various existing notations a new notation is proposed. This notation has similarities with the other heavily used notations like Big-Oh, Big Theta, while being more accurate when describing the order relationship. It has been argued that this notation is more su...
Global asymptotic stability of delay BAM neural networks with impulses
Energy Technology Data Exchange (ETDEWEB)
Lou Xuyang [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China); Cui Baotong [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China)]. E-mail: btcui@sohu.com
2006-08-15
The global asymptotic stability of delay bi-directional associative memory neural networks with impulses are studied by constructing suitable Lyapunov functional. Sufficient conditions, which are independent to the delayed quantity, are obtained for the global asymptotic stability of the neural networks. Some illustrative examples are given to demonstrate the effectiveness of the obtained results.
Asymptotic behavior of the number of Eulerian orientations of graphs
Isaev, Mikhail
2011-01-01
We consider the class of simple graphs with large algebraic connectivity (the second-smallest eigenvalue of the Laplacian matrix). For this class of graphs we determine the asymptotic behavior of the number of Eulerian orientations. In addition, we establish some new properties of the Laplacian matrix, as well as an estimate of a conditionality of matrices with the asymptotic diagonal predominance
Duality and asymptotic geometries
Boonstra, H J; Skenderis, K
1997-01-01
We consider a series of duality transformations that leads to a constant shift in the harmonic functions appearing in the description of a configuration of branes. This way, for several intersections of branes, we can relate the original brane configuration which is asymptotically flat to a geometry of the type $adS_k \\xx E^l \\xx S^m$. The implications of our results for supersymmetry enhancement, M(atrix) theory at finite N, and for supergravity theories in diverse dimensions are discussed.
Extended asymptotic functions - some examples
International Nuclear Information System (INIS)
Several examples of extended asymptotic functions are exposed. These examples will illustrate the notions introduced in another paper but at the same time they have a significance as realizations of some Schwartz disctibutions: delta(x), H(x), P(1/xsup(n)), etc. The important thing is that the asymptotic functions of these examples (which, on their part, are realizations of the above-mentioned distributions) can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. Some properties of the set of all extended asymptotic functions are considered which are essential for the next step of this approach
Asymptotic Efficiency in OLEDS
Nelson, Mitchell C
2015-01-01
Asymptotic efficiency (high output without droop) was recently reported for OLEDS in which a thin emitter layer is located at the anti-node in a resonant microcavity. Here we extend our theoretical analysis to treat multi-mode devices with isotropic emitter orientation. We recover our efficiency equations for the limiting cases with an isotropic emitter layer located at the anti-node where output is linear in current, and for an isotropic emitter located at the node where output can exhibit second order losses with an overall efficiency coefficient that depends on loss terms in competition with a cavity factor. Additional scenarios are described where output is driven by spontaneous emission, or mixed spontaneous and stimulated emission, with stimulated emission present in a loss mode, potentially resulting in cavity driven droop or output clamping, and where the emitter layer is a host-guest system.
ASYMPTOTIC SOLUTION TO NONLINEAR ECOLOGICAL REACTION DIFFUSION SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Nonlinear ecological species group singularly perturbed initial boundary value problems for reaction diffusion systems are considered. Under suitable conditions, using the theory of differential inequalities, the existence and asymptotic behavior of solution to initial boundary value problems are studied.
Asymptotic formula for eigenvalues of one dimensional Dirac system
Ulusoy, Ismail; Penahlı, Etibar
2016-06-01
In this paper, we study the spectral problem for one dimensional Dirac system with Dirichlet boundary conditions. By using Counting lemma, we give an asymptotic formulas of eigenvalues of Dirac system.
Asymptotic stability properties of θ-methods for delay differential equations
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Deals with the asymptotic stability properties of θ- methods for the pantograph equation and the linear delay differential-algebraic equation with emphasis on the linear θ- methods with variable stepsize schemes for the pantograph equation, proves that asymptotic stability is obtained if and only if θ ＞ 1/2, and studies further the one-leg θ- method for the linear delay differential-algebraic equation and establishes the sufficient asymptotic-ally differential-algebraic stable condition θ = 1.
On asymptotics for difference equations
Rafei, M.
2012-01-01
In this thesis a class of nonlinear oscillator equations is studied. Asymptotic approximations of first integrals for nonlinear difference equations are constructed by using the recently developed perturbation method based on invariance vectors. The asymptotic approximations of the solutions of the
Phase Spaces for asymptotically de Sitter Cosmologies
Kelly, William R
2012-01-01
We construct two types of phase spaces for asymptotically de Sitter Einstein-Hilbert gravity in each spacetime dimension $d \\ge 3$. One type contains solutions asymptotic to the expanding spatially-flat ($k=0$) cosmological patch of de Sitter space while the other is asymptotic to the expanding hyperbolic $(k=-1)$ patch. Each phase space has a non-trivial asymptotic symmetry group (ASG) which includes the isometry group of the corresponding de Sitter patch. For $d=3$ and $k=-1$ our ASG also contains additional generators and leads to a Virasoro algebra with vanishing central charge. Furthermore, we identify an interesting algebra (even larger than the ASG) containing two Virasoro algebras related by a reality condition and having imaginary central charges $\\pm i \\frac{3\\ell}{2G}$. On the appropriate phase spaces, our charges agree with those obtained previously using dS/CFT methods. Thus we provide a sense in which (some of) the dS/CFT charges act on a well-defined phase space. Along the way we show that, des...
Asymptotic Phase for Stochastic Oscillators
Thomas, Peter J.; Lindner, Benjamin
2014-12-01
Oscillations and noise are ubiquitous in physical and biological systems. When oscillations arise from a deterministic limit cycle, entrainment and synchronization may be analyzed in terms of the asymptotic phase function. In the presence of noise, the asymptotic phase is no longer well defined. We introduce a new definition of asymptotic phase in terms of the slowest decaying modes of the Kolmogorov backward operator. Our stochastic asymptotic phase is well defined for noisy oscillators, even when the oscillations are noise dependent. It reduces to the classical asymptotic phase in the limit of vanishing noise. The phase can be obtained either by solving an eigenvalue problem, or by empirical observation of an oscillating density's approach to its steady state.
Theorems for Asymptotic Safety of Gauge Theories
Bond, Andrew D
2016-01-01
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
ASYMPTOTICS OF MEAN TRANSFORMATION ESTIMATORS WITH ERRORS IN VARIABLES MODEL
Institute of Scientific and Technical Information of China (English)
CUI Hengjian
2005-01-01
This paper addresses estimation and its asymptotics of mean transformation θ = E[h(X)] of a random variable X based on n iid. Observations from errors-in-variables model Y = X + v, where v is a measurement error with a known distribution and h(.) is a known smooth function. The asymptotics of deconvolution kernel estimator for ordinary smooth error distribution and expectation extrapolation estimator are given for normal error distribution respectively. Under some mild regularity conditions, the consistency and asymptotically normality are obtained for both type of estimators. Simulations show they have good performance.
Asymptotically anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.
Black hole thermodynamics from a variational principle: Asymptotically conical backgrounds
An, Ok Song; Papadimitriou, Ioannis
2016-01-01
The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for $\\mathcal{N}=2$ STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called `subtracted geometries'. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associat...
Asymptotic algebra of quantum electrodynamics
Herdegen, Andrzej
2004-01-01
The Staruszkiewicz quantum model of the long-range structure in electrodynamics is reviewed in the form of a Weyl algebra. This is followed by a personal view on the asymptotic structure of quantum electrodynamics.
Asymptotic State Discrimination and a Strict Hierarchy in Distinguishability Norms
Chitambar, Eric; Hsieh, Min-Hsiu
2013-01-01
In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational...
CLTs and asymptotic variance of time-sampled Markov chains
Latuszynski, Krzysztof
2011-01-01
For a Markov transition kernel $P$ and a probability distribution $ \\mu$ on nonnegative integers, a time-sampled Markov chain evolves according to the transition kernel $P_{\\mu} = \\sum_k \\mu(k)P^k.$ In this note we obtain CLT conditions for time-sampled Markov chains and derive a spectral formula for the asymptotic variance. Using these results we compare efficiency of Barker's and Metropolis algorithms in terms of asymptotic variance.
Asymptotically Lifshitz Brane-World Black Holes
Ranjbar, Arash; Shahidi, Shahab
2012-01-01
We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We show that although the Lifshitz space-time cannot be considered as a vacuum solution of the RSII brane-world, the asymptotically Lifshitz solution can. We then study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the condition on the positivity of entropy imposes an upper bound on the critical exponent $z$. This maximum value of $z$ corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed.
Asymptotic dynamics of three-dimensional gravity
Donnay, Laura
2016-01-01
These are the lectures notes of the course given at the Eleventh Modave Summer School in Mathematical Physics, 2015, aimed at PhD candidates and junior researchers in theoretical physics. We review in details the result of Coussaert-Henneaux-van Driel showing that the asymptotic dynamics of $(2+1)$- dimensional gravity with negative cosmological constant is described at the classical level by Liouville theory. Boundary conditions implement the asymptotic reduction in two steps: the first set reduces the $SL(2,\\mathbb R)\\times SL(2,\\mathbb R)$ Chern-Simons action, equivalent to the Einstein action, to a non-chiral $SL(2,\\mathbb R)$ Wess-Zumino-Witten model, while the second set imposes constraints on the WZW currents that reduce further the action to Liouville theory. We discuss the issues of considering the latter as an effective description of the dual conformal field theory describing AdS$_3$ gravity beyond the semi-classical regime.
Exponential asymptotics and gravity waves
Chapman, S. J.; Vanden-Broeck, J.
2006-01-01
The problem of irrotational inviscid incompressible free-surface flow is examined in the limit of small Froude number. Since this is a singular perturbation, singularities in the flow field (or its analytic continuation) such as stagnation points, or corners in submerged objects or on rough beds, lead to a divergent asymptotic expansion, with associated Stokes lines. Recent techniques in exponential asymptotics are employed to observe the switching on of exponentially small gravity waves acro...
Asymptotic behavior of atomic momentals
Thakkar, Ajit J.
1987-05-01
Knowledge of the large and small momentum transfer behavior of the electron momentum distribution is an important ingredient in the analysis of experimental isotropic Compton profiles. This behavior ultimately rests upon the asymptotic behavior of atomic momentals (momentum space orbitals). The small momentum Maclaurin expansion and the large momentum asymptotic expansion of atomic momentals with arbitrary angular momentum quantum number are derived in this paper. Their implications for momentum densities and Compton profiles are derived and discussed.
Positivity of energy for asymptotically locally AdS spacetimes
Cheng, M C N; Cheng, Miranda C.N.; Skenderis, Kostas
2005-01-01
We derive necessary conditions for the spinorial Witten-Nester energy to be well-defined for asymptotically locally AdS spacetimes. We find that the conformal boundary should admit a spinor satisfying certain differential conditions and in odd dimensions the boundary metric should be conformally Einstein. We show that these conditions are satisfied by asymptotically AdS spacetimes. The gravitational energy (obtained using the holographic stress energy tensor) and the spinorial energy are equal in even dimensions and differ by a bounded quantity related to the conformal anomaly in odd dimensions.
Baez, J C; Egan, G F; Baez, John C.; Egan, Greg
2002-01-01
The Riemannian 10j symbols are spin networks that assign an amplitude to each 4-simplex in the Barrett-Crane model of Riemannian quantum gravity. This amplitude is a function of the areas of the 10 faces of the 4-simplex, and Barrett and Williams have shown that one contribution to its asymptotics comes from the Regge action for all non-degenerate 4-simplices with the specified face areas. However, we show numerically that the dominant contribution comes from degenerate 4-simplices. As a consequence, one can compute the asymptotics of the Riemannian 10j symbols by evaluating a `degenerate spin network', where the rotation group SO(4) is replaced by the Euclidean group of isometries of R^3. We conjecture formulas for the asymptotics of a large class of Riemannian and Lorentzian spin networks, including the Lorentzian 10j symbols, in terms of these degenerate spin networks.
Asymptotics for restricted integer compositions
Malandro, Martin E
2011-01-01
We study the compositions of an integer n where the part sizes of the compositions are restricted to lie in a finite set. We obtain asymptotic formulas for the number of such compositions, the total and average number of parts among all such compositions, and the total and average number of times a particular part size appears among all such compositions. Several of our asymptotics have the additional property that their absolute errors---not just their percentage errors---go to 0 as n goes to infinity. Along the way we also obtain recurrences and generating functions for calculating several of these quantities. Our asymptotic formulas come from the meromorphic analysis of our generating functions. Our results also apply to questions about certain kinds of tilings and rhythm patterns.
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Asymptotic risks of Viterbi segmentation
Kuljus, Kristi
2010-01-01
We consider the maximum likelihood (Viterbi) alignment of a hidden Markov model (HMM). In an HMM, the underlying Markov chain is usually hidden and the Viterbi alignment is often used as the estimate of it. This approach will be referred to as the Viterbi segmentation. The goodness of the Viterbi segmentation can be measured by several risks. In this paper, we prove the existence of asymptotic risks. Being independent of data, the asymptotic risks can be considered as the characteristics of the model that illustrate the long-run behavior of the Viterbi segmentation.
ASYMPTOTIC METHODS OF STATISTICAL CONTROL
Directory of Open Access Journals (Sweden)
Orlov A. I.
2014-10-01
Full Text Available Statistical control is a sampling control based on the probability theory and mathematical statistics. The article presents the development of the methods of statistical control in our country. It discussed the basics of the theory of statistical control – the plans of statistical control and their operational characteristics, the risks of the supplier and the consumer, the acceptance level of defectiveness and the rejection level of defectiveness. We have obtained the asymptotic method of synthesis of control plans based on the limit average output level of defectiveness. We have also developed the asymptotic theory of single sampling plans and formulated some unsolved mathematical problems of the theory of statistical control
Asymptotic perturbation theory of waves
Ostrovsky, Lev
2014-01-01
This book is an introduction to the perturbation theory for linear and nonlinear waves in dispersive and dissipative media. The main focus is on the direct asymptotic method which is based on the asymptotic expansion of the solution in series of one or more small parameters and demanding finiteness of the perturbations; this results in slow variation of the main-order solution. The method, which does not depend on integrability of basic equations, is applied to quasi-harmonic and non-harmonic periodic waves, as well as to localized waves such as solitons, kinks, and autowaves. The basic theor
Asymptotic freedom for nonrelativistic confinement
International Nuclear Information System (INIS)
Some aspects of asymptotic freedom are discussed in the context of a simple two-particle nonrelativistic confining potential model. In this model, asymptotic freedom follows from the similarity of the free-particle and bound state radial wave functions at small distances and for the same angular momentum and the same large energy. This similarity, which can be understood using simple quantum mechanical arguments, can be used to show that the exact response function approaches that obtained when final state interactions are ignored. A method of calculating corrections to this limit is given, and explicit examples are given for the case of a harmonic oscillator
Comment on Asymptotically Safe Inflation
Tye, S -H Henry
2010-01-01
We comment on Weinberg's interesting analysis of asymptotically safe inflation (arXiv:0911.3165). We find that even if the gravity theory exhibits an ultraviolet fixed point, the energy scale during inflation is way too low to drive the theory close to the fixed point value. We choose the specific renormalization groupflow away from the fixed point towards the infrared region that reproduces the Newton's constant and today's cosmological constant. We follow this RG flow path to scales below the Planck scale to study the stability of the inflationary scenario. Again, we find that some fine tuning is necessary to get enough efolds of infflation in the asymptotically safe inflationary scenario.
Asymptotically free SU(5) models
International Nuclear Information System (INIS)
The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.
Singularities in asymptotically anti-de Sitter spacetimes
Ishibashi, Akihiro
2012-01-01
We consider singularity theorems in asymptotically anti-de Sitter (AdS) spacetimes. In the first part, we discuss the global methods used to show geodesic incompleteness and see that when the conditions imposed in Hawking and Penrose's singularity theorem are satisfied, a singularity must appear in asymptotically AdS spacetime. The recent observations of turbulent instability of asymptotically AdS spacetimes indicate that AdS spacetimes are generically singular even if a closed trapped surface, which is one of the main conditions of the Hawking and Penrose theorem, does not exist in the initial hypersurface. This may lead one to expect to obtain a singularity theorem without imposing the existence of a trapped set in asymptotically AdS spacetimes. This, however, does not appear to be the case. We consider, within the use of global methods, two such attempts and discuss difficulties in eliminating conditions concerning a trapped set from singularity theorems in asymptotically AdS spacetimes. Then in the second...
Asymptotics of weighted random sums
DEFF Research Database (Denmark)
Corcuera, José Manuel; Nualart, David; Podolskij, Mark
2014-01-01
In this paper we study the asymptotic behaviour of weighted random sums when the sum process converges stably in law to a Brownian motion and the weight process has continuous trajectories, more regular than that of a Brownian motion. We show that these sums converge in law to the integral of the...
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived. An...
Asymptotic expansions of Jacobi functions
International Nuclear Information System (INIS)
The author presents an asymptotic expansion of the Jacobi polynomials which is based on the fact, that these polynomials are special hypergeometric functions. He uses an integral representation of these functions and expands the integrand in a power series. He derives explicit error bounds on this expansion. (HSI)
Thermodynamics of asymptotically safe theories
DEFF Research Database (Denmark)
Rischke, Dirk H.; Sannino, Francesco
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...
Institute of Scientific and Technical Information of China (English)
LI Hong; L(U) Shu; ZHONG Shou-ming
2005-01-01
The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.
On transfinite extension of asymptotic dimension
Radul, Taras
2006-01-01
We prove that a transfinite extension of asymptotic dimension asind is trivial. We introduce a transfinite extension of asymptotic dimension asdim and give an example of metric proper space which has transfinite infinite dimension.
Stable parabolic Higgs bundles as asymptotically stable decorated swamps
Beck, Nikolai
2016-06-01
Parabolic Higgs bundles can be described in terms of decorated swamps, which we studied in a recent paper. This description induces a notion of stability of parabolic Higgs bundles depending on a parameter, and we construct their moduli space inside the moduli space of decorated swamps. We then introduce asymptotic stability of decorated swamps in order to study the behaviour of the stability condition as one parameter approaches infinity. The main result is the existence of a constant, such that stability with respect to parameters greater than this constant is equivalent to asymptotic stability. This implies boundedness of all decorated swamps which are semistable with respect to some parameter. Finally, we recover the usual stability condition of parabolic Higgs bundles as asymptotic stability.
Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions
Katayama, Soichiro
2011-01-01
In connection with the weak null condition, Alinhac introduced a sufficient condition for global existence of small amplitude solutions to systems of semilinear wave equations in three space dimensions. We introduce a slightly weaker sufficient condition for the small data global existence, and we investigate the asymptotic pointwise behavior of global solutions for systems satisfying this condition. As an application, the asymptotic behavior of global solutions under the Alinhac condition is also derived.
Black hole thermodynamics from a variational principle: asymptotically conical backgrounds
An, Ok Song; Cvetič, Mirjam; Papadimitriou, Ioannis
2016-03-01
The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for {N}=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called `subtracted geometries'. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.
Asymptotic functions and multiplication of distributions
International Nuclear Information System (INIS)
Considered is a new type of generalized asymptotic functions, which are not functionals on some space of test functions as the Schwartz distributions. The definition of the generalized asymptotic functions is given. It is pointed out that in future the particular asymptotic functions will be used for solving some topics of quantum mechanics and quantum theory
Asymptotic structure of isolated systems
International Nuclear Information System (INIS)
I discuss the general ideas underlying the subject of ''asymptotics'' in general relativity and describe the current status of the concepts resulting from these ideas. My main concern will be the problem of consistency. By this I mean the question as to whether the geometric assumptions inherent in these concepts are compatible with the dynamics of the theory, as determined by Einstein's equations. This rather strong bias forces me to leave untouched several issues related to asymptotics, discussed in the recent literature, some of which are perhaps thought equally, or more important, by other workers in the field. In addition I shall, for coherence of presentation, mainly consider Einstein's equations in vacuo. When attention is confined to small neighbourhoods of null and spacelike infinity, this restriction is not important, but is surely relevant for more global issues. (author)
Asymptotic safety goes on shell
International Nuclear Information System (INIS)
It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters. (paper)
Asymptotic safety goes on shell
Benedetti, Dario
2012-01-01
It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.
Asymptotic analysis of Hoppe trees
Leckey, Kevin
2012-01-01
We introduce and analyze a random tree model associated to Hoppe's urn. The tree is built successively by adding nodes to the existing tree when starting with the single root node. In each step a node is added to the tree as a child of an existing node where these parent nodes are chosen randomly with probabilities proportional to their weights. The root node has weight $\\vartheta>0$, a given fixed parameter, all other nodes have weight 1. This resembles the stochastic dynamic of Hoppe's urn. For $\\vartheta=1$ the resulting tree is the well-studied random recursive tree. We analyze the height, internal path length and number of leaves of the Hoppe tree with $n$ nodes as well as the depth of the last inserted node asymptotically as $n\\to \\infty$. Mainly expectations, variances and asymptotic distributions of these parameters are derived.
Asymptotic Excisions of Metric Spaces and Ideals of Asymptotic Coarse Roe Algebras
Institute of Scientific and Technical Information of China (English)
LI Jin-xiu; WANG Qin
2006-01-01
We introduce in this note the notions of asymptotic excision of proper metric spaces and asymptotic equivalence relation for subspaces of metric spaces, which are relevant in characterizing spatial ideals of the asymptotic coarse Roe algebras. We show that the lattice of the asymptotic equivalence classes of the subspaces of a proper metric space is isomorphic to the lattice of the spatial ideals of the asymptotic Roe algebra. For asymptotic excisions of the metric space, we also establish a Mayer-Vietoris sequence in K-theory of the asymptotic coarse Roe algebras.
Exponential asymptotics and capillary waves
Chapman, S. J.; Vanden-Broeck, J.
2002-01-01
Recently developed techniques in exponential asymptotics beyond all orders are employed on the problem of potential flows with a free surface and small surface tension, in the absence of gravity. Exponentially small capillary waves are found to be generated on the free surface where the equipotentials from singularities in the flow (for example, stagnation points and corners) meet it. The amplitude of these waves is determined, and the implications are considered for many quite general flows....
Asymptotic safety: A simple example
International Nuclear Information System (INIS)
We use the Gross-Neveu model in 2f expansion where the model is known to be renormalizable to all orders. In this limit, the fixed-point action as well as all universal critical exponents can be computed analytically. As asymptotic safety has become an important scenario for quantizing gravity, our description of a well-understood model is meant to provide for an easily accessible and controllable example of modern nonperturbative quantum field theory.
Asymptotic algebra for charged particles and radiation
International Nuclear Information System (INIS)
A C*-algebra of asymptotic fields which properly describes the infrared structure in quantum electrodynamics is proposed. The algebra is generated by the null asymptotic of electromagnetic field and the time asymptotic of charged matter fields which incorporate the corresponding Coulomb fields. As a consequence Gauss' law is satisfied in the algebraic setting. Within this algebra the observables can be identified by the principle of gauge invariance. A class of representations of the asymptotic algebra is constructed which resembles the Kulish-Faddeev treatment of electrically charged asymptotic fields. (orig.)
Asymptotically thermal responses for smoothly switched detectors
Fewster, Christopher J; Louko, Jorma
2015-01-01
Thermal phenomena in quantum field theory can be detected with the aid of particle detectors coupled to quantum fields along stationary worldlines, by testing whether the response of such a detector satisfies the detailed balance version of the KMS condition at a constant temperature. This relation holds when the interaction between the field and the detector has infinite time duration. Operationally, however, detectors interact with fields for a finite amount of time, controlled by a switching function of compact support, and the KMS detailed balance condition cannot hold exactly for finite time interactions at arbitrarily large detector energy gap. In this large energy gap regime, we show that, for an adiabatically switched Rindler detector, the Unruh temperature emerges asymptotically after the detector and the field have interacted for a time that is polynomially long in the large energy. We comment on the significance of the adiabaticity assumption in this result.
Asymptotic structure of the Einstein-Maxwell theory on AdS$_{3}$
Perez, Alfredo; Tempo, David; Troncoso, Ricardo
2015-01-01
The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to $\\mathbb{R}\\otimes U\\left(1\\right)\\otimes U\\left(1\\right)$. Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized b...
Total angular momentum for asymptotically flat spacetimes with non-vanishing stress tensor
International Nuclear Information System (INIS)
The asymptotic limit at spatial infinity of Penrose's definition of angular momentum is considered for asymptotically flat spacetimes containing a non-vanishing stress tensor at iota0. The discussion complements some recent work of Bizon, and sufficient conditions for angular momentum conservation in the presence of spin-1/2 or 1 massless fields are obtained. (author)
New explicit global asymptotic stability criteria for higher order difference equations
El-Morshedy, Hassan A.
2007-12-01
New explicit sufficient conditions for the asymptotic stability of the zero solution of higher order difference equations are obtained. These criteria can be applied to autonomous and nonautonomous equations. The celebrated Clark asymptotic stability criterion is improved. Also, applications to models from mathematical biology and macroeconomics are given.
International Nuclear Information System (INIS)
The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results.
Dynamics of loops: asymptotic freedom and quark confinement
International Nuclear Information System (INIS)
New manifestly gauge invariant diagram technique in the loop space is developed. For that purpose a boot-strap ' equation, determining the self-consistent asymptotics, is solved in the framework of the perturbation theory. The boot-strap equation is equivalent to the system including the Bianchi identity and the planar equation accompanied by Euclidean boundary conditions. It is shown that the area law of quark confinement is a self-consistent solution of the boot-strap equation. The frame diagrams constructed by means of certain operator technique reproduce asymptotic freedom in the ultraviolet range
Asymptotic traveling wave solution for a credit rating migration problem
Liang, Jin; Wu, Yuan; Hu, Bei
2016-07-01
In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.
Conformal Phase Diagram of Complete Asymptotically Free Theories
Pica, Claudio; Sannino, Francesco
2016-01-01
We investigate the ultraviolet and infrared fixed point structure of gauge-Yukawa theories featuring a single gauge coupling, Yukawa coupling and scalar self coupling. Our investigations are performed using the two loop gauge beta function, one loop Yukawa beta function and one loop scalar beta function. We provide the general conditions that the beta function coefficients must abide for the theory to be completely asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special trajectories in coupling space along which some couplings are both asymptotically safe and infrared conformal.
Tail asymptotics for dependent subexponential diﬀerences
DEFF Research Database (Denmark)
Albrecher, H; Asmussen, Søren; Kortschak, D.
We study the asymptotic behavior of P(X − Y > u) as u → ∞, where X is subexponential and X, Y are positive random variables that may be dependent. We give criteria under which the subtraction of Y does not change the tail behavior of X. It is also studied under which conditions the comonotonic...... copula represents the worst-case scenario for the asymptotic behavior in the sense of minimizing the tail of X − Y and an explicit construction of the worst-case copula is provided in the other cases....
Thermodynamics of Asymptotically Locally AdS Spacetimes
Papadimitriou, I; Papadimitriou, Ioannis; Skenderis, Kostas
2005-01-01
We formulate the variational problem for AdS gravity with Dirichlet boundary conditions and demonstrate that the covariant counterterms are necessary to make the variational problem well-posed. The holographic charges associated with asymptotic symmetries are then rederived via Noether's theorem and `covariant phase space' techniques. This allows us to prove the first law of black hole mechanics for general asymptotically locally AdS black hole spacetimes. We illustrate our discussion by computing the conserved charges and verifying the first law for the four dimensional Kerr-Newman-AdS and the five dimensional Kerr-AdS black holes.
ASYMPTOTIC PROPERTIES OF MLE FOR WEIBULL DISTRIBUTION WITH GROUPED DATA
Institute of Scientific and Technical Information of China (English)
XUE Hongqi; SONG Lixin
2002-01-01
A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, strongly consistent, asymptotically normal, and satisfy the law of iterated logarithm. Newton iter- ation algorithm is also considered, which converges to the unique solution of the likelihood equation. Moreover, we extend these results to a random case.
Renormalization and asymptotic states in Lorentz-violating QFT
Cambiaso, Mauro; Potting, Robertus
2014-01-01
Radiative corrections in quantum field theories with small departures from Lorentz symmetry alter structural aspects of the theory, in particular the definition of asymptotic single-particle states. Specifically, the mass-shell condition, the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism are affected.
Fast evaluation of asymptotic waveforms from gravitational perturbations
Benedict, Alex G; Lau, Stephen R
2012-01-01
In the context of blackhole perturbation theory, we describe both exact evaluation of an asymptotic waveform from a time series recorded at a finite radial location and its numerical approximation. From the user's standpoint our technique is easy to implement, affords high accuracy, and works for both axial (Regge-Wheeler) and polar (Zerilli) sectors. Our focus is on the ease of implementation with publicly available numerical tables, either as part of an existing evolution code or a post-processing step. Nevertheless, we also present a thorough theoretical discussion of asymptotic waveform evaluation and radiation boundary conditions, which need not be understood by a user of our methods. In particular, we identify (both in the time and frequency domains) analytical asymptotic waveform evaluation kernels, and describe their approximation by techniques developed by Alpert, Greengard, and Hagstrom. This paper also presents new results on the evaluation of far-field signals for the ordinary (acoustic) wave equa...
A New Class of Asymptotically Non-Chaotic Vacuum Singularities
Klinger, Paul
2015-01-01
The BKL conjecture, stated in the 60s and early 70s by Belinski, Khalatnikov and Lifshitz, proposes a detailed description of the generic asymptotic dynamics of spacetimes as they approach a spacelike singularity. It predicts complicated chaotic behaviour in the generic case, but simpler non-chaotic one in cases with symmetry assumptions or certain kinds of matter fields. Here we construct a new class of four-dimensional vacuum spacetimes containing spacelike singularities which show non-chaotic behaviour. In contrast with previous constructions, no symmetry assumptions are made. Rather, the metric is decomposed in Iwasawa variables and conditions on the asymptotic evolution of some of them are imposed. The constructed solutions contain five free functions of all space coordinates, two of which are constrained by inequalities. We investigate continuous and discrete isometries and compare the solutions to previous constructions. Finally, we give the asymptotic behaviour of the metric components and curvature.
Asymptotically free scaling solutions in non-Abelian Higgs models
Gies, Holger; Zambelli, Luca
2015-07-01
We construct asymptotically free renormalization group trajectories for the generic non-Abelian Higgs model in four-dimensional spacetime. These ultraviolet-complete trajectories become visible by generalizing the renormalization/boundary conditions in the definition of the correlation functions of the theory. Though they are accessible in a controlled weak-coupling analysis, these trajectories originate from threshold phenomena which are missed in a conventional perturbative analysis relying on the deep Euclidean region. We identify a candidate three-parameter family of renormalization group trajectories interconnecting the asymptotically free ultraviolet regime with a Higgs phase in the low-energy limit. We provide estimates of their low-energy properties in the light of a possible application to the standard model Higgs sector. Finally, we find a two-parameter subclass of asymptotically free Coleman-Weinberg-type trajectories that do not suffer from a naturalness problem.
Structure and asymptotic theory for nonlinear models with GARCH errors
Directory of Open Access Journals (Sweden)
Felix Chan
2015-01-01
Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.
Asymptotic black hole quasinormal frequencies
Motl, Lubos; Neitzke, Andrew
2003-01-01
We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d greater than or equal to 4 and Reissner-Nordstrom black holes in d = 4, in the limit of infinite damping. For Schwarzschild in d greater than or equal to 4 we find that the asymptotic real part is THawkinglog(3) for scalar perturbations and for some gravitational perturbations; this confirms a result previously obtained by other means in the case d = 4. For Reissner-Nordstrom in d = 4 w...
Asymptotics of robust utility maximization
Knispel, Thomas
2012-01-01
For a stochastic factor model we maximize the long-term growth rate of robust expected power utility with parameter $\\lambda\\in(0,1)$. Using duality methods the problem is reformulated as an infinite time horizon, risk-sensitive control problem. Our results characterize the optimal growth rate, an optimal long-term trading strategy and an asymptotic worst-case model in terms of an ergodic Bellman equation. With these results we propose a duality approach to a "robust large deviations" criterion for optimal long-term investment.
Asymptotics for Associated Random Variables
Oliveira, Paulo Eduardo
2012-01-01
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting
Traversable asymptotically flat wormholes in Rastall gravity
Moradpour, H
2016-01-01
Having introduced the Rastall gravitational theory, and by virtue of the fact that this theory has two unknown parameters, we take the Newtonian limit to define a new parameter for Rastall gravitational theory; a useful dimensionless parameter for simplifying calculations in the Rastall framework. Equipped with basics of the theory, we study the properties of traversable asymptotically flat wormholes in Rastall framework. Then, we investigate the possibility of supporting such geometries by a source with the same state parameter as that of the baryonic matters. Our survey indicates that the parameters of Rastall theory affect the wormhole parameters. It also shows the weak energy condition is violated for all of the studied cases. We then come to investigate the possibility of supporting such geometries by a source of negative energy density and the same state parameter as that of dark energy. Such dark energy-like sources have positive radial and transverse pressures.
Asymptotic black hole quasinormal frequencies
Motl, L; Motl, Lubos; Neitzke, Andrew
2003-01-01
We give a simple derivation of the quasinormal frequencies of Schwarzschild black holes in d>=4 and non-extremal Reissner-Nordstrom black holes in d=4, in the limit of infinite damping. For Schwarzschild in d=4 the asymptotic real part of the frequency is (T_Hawking)log(1+2cos(pi.j)), where j is the spin of the perturbation; this confirms a result previously obtained by other means. For Schwarzschild in d>4 we find that the asymptotic real part is (T_Hawking)log(3) for scalar perturbations. For non-extremal Reissner-Nordstrom in d=4 we find a specific but generally aperiodic behavior for the quasinormal frequencies, both for scalar perturbations and for axial electromagnetic-gravitational perturbations; there is nevertheless a hint that the value (T_Hawking)log(2) may be special in this case. The formulae are obtained by studying the monodromy of the perturbation analytically continued to the complex plane.
Asymptotically Free Gauge Theories. I
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
The maximum drag reduction asymptote
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
Asymptotic safety goes on shell
Benedetti, Dario
2011-01-01
It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge-dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector, and a new cut-off scheme. We find a non-trivial fixed point, with a value of the cosmological constant which is independent of the gauge-fixing parameters.
Structure and Asymptotic theory for Nonlinear Models with GARCH Errors
Chan, Felix; McAleer, Michael; Medeiros, Marcelo
2011-01-01
textabstractNonlinear time series models, especially those with regime-switching and conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we first derive necessary conditions for strict stationar...
Structure and Asymptotic theory for Nonlinear Models with GARCH Errors
Felix Chan; Michael McAleer; Medeiros, Marcelo C.
2011-01-01
Nonlinear time series models, especially those with regime-switching and conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we first derive necessary conditions for strict stationarity and ergo...
Asymptotic conservation laws in field theory
Anderson, Ian M.; Torre, Charles G.
1996-01-01
A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation...
Asymptotically Plane Wave Spacetimes and their Actions
Witt, Julian Le; Ross, Simon F.
2008-01-01
We propose a definition of asymptotically plane wave spacetimes in vacuum gravity in terms of the asymptotic falloff of the metric, and discuss the relation to previously constructed exact solutions. We construct a well-behaved action principle for such spacetimes, using the formalism developed by Mann and Marolf. We show that this action is finite on-shell and that the variational principle is well-defined for solutions of vacuum gravity satisfying our asymptotically plane wave falloff condi...
Asymptotics of near unit roots (in Russian)
Stanislav Anatolyev; Nikolay Gospodinov
2012-01-01
Sometimes the conventional asymptotic theory yields that the limiting distribution changes discontinuously, or that the asymptotic distribution does not approximate accurately the actual finite-sample distribution. In such situations one finds useful an asymptotic tool of drifting parameterizations where certain parameters are allowed to depend explicitly on the sample size. It proves useful, among other things, for impulse response analysis and forecasting of strongly dependent processes at ...
Asymptotic independence and a network traffic model
Maulik, Krishanu; Resnick, Sidney; Rootzén, Holger
2002-01-01
The usual concept of asymptotic independence, as discussed in the context of extreme value theory, requires the distribution of the coordinatewise sample maxima under suitable centering and scaling to converge to a product measure. However, this definition is too broad to conclude anything interesting about the tail behavior of the product of two random variables that are asymptotically independent. Here we introduce a new concept of asymptotic independence which allows u...
Exponential asymptotic stability for linear volterra equations
John A. D. Appleby
2000-01-01
This note studies the exponential asymptotic stability of the zero solution of the linear Volterra equation x˙ (t) = Ax(t) + t 0 K(t − s)x(s) ds by extending results in the paper of Murakami “Exponential Asymptotic Stability for scalar linear Volterra Equations”, Differential and Integral Equations, 4, 1991. In particular, when K isi ntegrable and has entries which do not change sign, and the equation has a uniformly asymptotically stable solution, exponential asympto...
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety in...... supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those of...
Why are tensor field theories asymptotically free?
Rivasseau, Vincent
2015-01-01
In this pedagogic letter we explain the combinatorics underlying the generic asymptotic freedom of tensor field theories. We focus on simple combinatorial models with a $1/p^2$ propagator and quartic interactions and on the comparison between the intermediate field representations of the vector, matrix and tensor cases. The transition from asymptotic freedom (tensor case) to asymptotic safety (matrix case) is related to the crossing symmetry of the matrix vertex whereas in the vector case, the lack of asymptotic freedom ("Landau ghost"), as in the ordinary scalar case, is simply due to the absence of any wave function renormalization at one loop.
Numerical Asymptotic Solutions Of Differential Equations
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
Thermodynamics of asymptotically safe theories
Rischke, Dirk H
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze at a constant and calculable value in the ultraviolet, their values can even be made arbitrarily small for an appropriate choice of the ratio $N_c/N_f$ of fermion colours and flavours in the Veneziano limit. Thus, a perturbative treatment can be justified. We compute the pressure, entropy density, and thermal degrees of freedom of these theories to next-to-next-to-leading order in the coupling constants.
The multi-channel scattering with velocity-dependent asymptotic potentials
International Nuclear Information System (INIS)
Asymptotic solution for the system of radial Schroedinger equations with velocity-dependent potentials are investigated. Boundary conditions for the multichannel radial Schroedinger equation at the infinity and some finite point Rp are proposed. 12 refs.; 6 figs
Institute of Scientific and Technical Information of China (English)
肖黎明
2001-01-01
Under certain conditions, starting from the three-dimensional dynamic equations of elastic shells the author gives the justification of dynamic equations of flexural shells by means of themethod of asymptotic analysis.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Under certain conditions, the dynamic equatioins of membrane shells and the dynamic equations of flexural shells are obtained from dynamic equations of Koiter shells by the method of asymptotic analysis.
Barczy, Matyas; Pap, Gyula
2010-01-01
In this paper the asymptotic behavior of conditional least squares estimators of the autoregressive parameter for nonprimitive unstable integer-valued autoregressive models of order 2 (INAR(2)) is described.
Asymptotic analysis of random matrices with external source and a family of algebraic curves
McLaughlin, K. D. T-R
2006-01-01
We present a set of conditions which, if satisfied, provide for a complete asymptotic analysis of random matrices with source term containing two distinct eigenvalues. These conditions are shown to be equivalent to the existence of a particular algebraic curve. For the case of a quartic external field, the curve in question is proven to exist, yielding precise asymptotic information about the limiting mean density of eigenvalues, as well as bulk and edge universality.
S-asymptotically -periodic Solutions of R-L Fractional Derivative-Integral Equation
Institute of Scientific and Technical Information of China (English)
WANG Bing
2015-01-01
The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:is a linear densely defined operator of sectorial type on a completed Banach space X, f is a continuous function satisfying a suitable Lipschitz type condition. We will use the contraction mapping theory to prove problem (1) and (2) has a unique S-asymptotically ω-periodic solution if the function f satisfies Lipshcitz condition.
Asymptotically flat and regular Cauchy data
Dain, S
2002-01-01
I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.
8. Asymptotically Flat and Regular Cauchy Data
Dain, Sergio
I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.
Asymptotics of implied volatility far from maturity
Michael R., Tehranchi
2009-01-01
This note explores the behaviour of the implied volatility of a European call option far from maturity. Asymptotic formulae are derived with precise control over the error terms. The connection between the asymptotic implied volatility and the cumulant generating function of the logarithm of the underlying stock price is discussed in detail and illustrated by examples.
Asymptotically robust variance estimation for person-time incidence rates.
Scosyrev, Emil
2016-05-01
Person-time incidence rates are frequently used in medical research. However, standard estimation theory for this measure of event occurrence is based on the assumption of independent and identically distributed (iid) exponential event times, which implies that the hazard function remains constant over time. Under this assumption and assuming independent censoring, observed person-time incidence rate is the maximum-likelihood estimator of the constant hazard, and asymptotic variance of the log rate can be estimated consistently by the inverse of the number of events. However, in many practical applications, the assumption of constant hazard is not very plausible. In the present paper, an average rate parameter is defined as the ratio of expected event count to the expected total time at risk. This rate parameter is equal to the hazard function under constant hazard. For inference about the average rate parameter, an asymptotically robust variance estimator of the log rate is proposed. Given some very general conditions, the robust variance estimator is consistent under arbitrary iid event times, and is also consistent or asymptotically conservative when event times are independent but nonidentically distributed. In contrast, the standard maximum-likelihood estimator may become anticonservative under nonconstant hazard, producing confidence intervals with less-than-nominal asymptotic coverage. These results are derived analytically and illustrated with simulations. The two estimators are also compared in five datasets from oncology studies. PMID:26439107
Universal asymptotic umbrella for hydraulic fracture modeling
Linkov, Aleksandr M
2014-01-01
The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.
ASYMPTOTIC PROPERTIES OF MLE FOR WEIBULL DISTRIBUTION WITH GROUPED DATA
Institute of Scientific and Technical Information of China (English)
XUEHongqi; SONGLixin
2002-01-01
A grouped data model for weibull distribution is considered.Under mild conditions .the maximum likelihood estimators(MLE)are shown to be identifiable,strongly consistent,asymptotically normal,and satisfy the law of iterated logarithm .Newton iteration algorthm is also condsidered,which converges to the unique solution of the likelihood equation.Moreover,we extend these results to a random case.
An asymptotic preserving scheme for strongly anisotropic elliptic problems
Degond, Pierre; Deluzet, Fabrice; Negulescu, Claudia
2009-01-01
21 pages In this article we introduce an asymptotic preserving scheme designed to compute the solution of a two dimensional elliptic equation presenting large anisotropies. We focus on an anisotropy aligned with one direction, the dominant part of the elliptic operator being supplemented with Neumann boundary conditions. A new scheme is introduced which allows an accurate resolution of this elliptic equation for an arbitrary anisotropy ratio.
Complementarity between Gauge-Boson Compositeness and Asymptotic Freedom
Akama, K; Akama, Keiichi; Hattori, Takashi
1997-01-01
We derive and solve the compositeness condition for the SU(N_c) gauge boson at the next-to-leading order in 1/N_f (N_f is the number of flavors) to obtain the expression of the gauge coupling constant in terms of the compositeness scale. It turns out that the argument of gauge-boson compositeness is successful only for N_f/N_c>11/2, where the asymptotic freedom fails.
On asymptotic exit-time control problems lacking coercivity
Motta, Monica; Sartori, Caterina
2014-01-01
International audience The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for th...
Stable Parabolic Higgs Bundles as Asymptotically Stable Decorated Swamps
Beck, Nikolai
2014-01-01
Parabolic Higgs bundles can be described in terms of decorated swamps, which we studied in a recent paper. This description induces a notion of stability of parabolic Higgs bundles depending on a parameter, and we construct their moduli space inside the moduli space of decorated swamps. We then introduce asymptotic stability of decorated swamps in order to study the behavior of the stability condition as one parameter approaches infinity. The main result is the existence of a constant, such t...
Solution branches for nonlinear problems with an asymptotic oscillation property
Directory of Open Access Journals (Sweden)
Lin Gong
2015-10-01
Full Text Available In this article we employ an oscillatory condition on the nonlinear term, to prove the existence of a connected component of solutions of a nonlinear problem, which bifurcates from infinity and asymptotically oscillates over an interval of parameter values. An interesting and immediate consequence of such oscillation property of the connected component is the existence of infinitely many solutions to the nonlinear problem for all parameter values in that interval.
Asymptotic dynamics in 3D gravity with torsion
Blagojevic, M; Vasilic, M.
2003-01-01
We study the nature of boundary dynamics in the teleparallel 3D gravity. The asymptotic field equations with anti-de Sitter boundary conditions yield only two non-trivial boundary modes, related to a conformal field theory with classical central charge. After showing that the teleparallel gravity can be formulated as a Chern-Simons theory, we identify dynamical structure at the boundary as the Liouville theory.
Asymptotic stability of relaxation shock profiles for hyperbolic conservation laws
Liu, Hailiang
This paper studies the asymptotic stability of traveling relaxation shock profiles for hyperbolic systems of conservation laws. Under a stability condition of subcharacteristic type the large time relaxation dynamics on the level of shocks is shown to be determined by the equilibrium conservation laws. The proof is due to the energy principle, using the weighted norms, the interaction of waves from various modes is treated by imposing suitable weight matrix.
Asymptotic energy behavior of two classical intermediate benchmark shell problems
Beirao Da Veiga, Lourenco
2002-01-01
We consider two classical problems which are widely used as benchmark tests for shell numerical methods: the Scordelis-Lo roof and the pinched roof. Due to the particular load and boundary conditions applied, neither belongs to the well known classes of purely bending or purely membrane dominated shells. Consequently the asymptotic energy norm behavior, which is useful not only because it represents the structure stiffness, but also for numerical comparison purposes, is not ...
Asymptotics of nearly critical Galton-Watson processes with immigration
Kevei, Peter
2011-01-01
We investigate the inhomogeneous Galton--Watson processes with immigration, where $\\rho_n$ the offspring means in the $n^\\textrm{th}$ generation tends to 1. We show that if the second derivatives of the offspring generating functions go to 0 rapidly enough, then the asymptotics are the same as in the INAR(1) case, treated by Gy\\"orfi et al. We also determine the limit if this assumption does not hold showing the optimality of the conditions.
Extended Analytic Device Optimization Employing Asymptotic Expansion
Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred
2013-01-01
Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.
Asymptotic structure of the Einstein-Maxwell theory on AdS3
Pérez, Alfredo; Riquelme, Miguel; Tempo, David; Troncoso, Ricardo
2016-02-01
The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to {R}⊗ U(1)⊗ U(1) . Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized by an arbitrary function of a single variable, whose precise form depends on the choice of the chiral copy. Remarkably, requiring the asymptotic symmetries to contain the full conformal group selects a very special set of boundary conditions that is labeled by a unique constant parameter, so that the algebra of the canonical generators is given by the direct sum of two copies of the Virasoro algebra with the standard central extension and U (1). This special set of boundary conditions makes the energy spectrum of electrically charged rotating black holes to be well-behaved.
Global asymptotic stability for Hopfield-type neural networks with diffusion effects
Institute of Scientific and Technical Information of China (English)
YAN Xiang-ping; LI Wan-tong
2007-01-01
The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differentiable, and the interconnected matrix is related to the Lyapunov diagonal stable matrix, the sufficient conditions guaranteeing the existence of the equilibrium of the system are obtained by applying the topological degree theory. By means of constructing the suitable average Lyapunov functions, the global asymptotic stability of the equilibrium of the system is also investigated. It is shown that the equilibrium (if it exists) is globally asymptotically stable and this implies that the equilibrium of the system is unique.
Asymptotics of phase and wave functions
Zhaba, V I
2016-01-01
For single and twochannel nucleon-nucleon scattering the asymptotic form of the phase function for r->0 were taken into account for the asymptotic behavior of the wave function. Asymptotics of the wave function will not r^(l+1), and will have a more complex view and be also determined by the behavior of the potential near the origin. Have examined the cases for nonsingular (weakly singular) and strongly singular potentials. Were the numerical calculations of phase, amplitude and wave functions for the nucleon-nucleon potential Argonne v18. Considered 1S0-, 3P0-, 3P1- states of the np- system.
Asymptotic study of subcritical graph classes
Drmota, Michael; Kang, Mihyun; Kraus, Veronika; Rué, Juanjo
2010-01-01
We present a unified general method for the asymptotic study of graphs from the so-called "subcritical"$ $ graph classes, which include the classes of cacti graphs, outerplanar graphs, and series-parallel graphs. This general method works both in the labelled and unlabelled framework. The main results concern the asymptotic enumeration and the limit laws of properties of random graphs chosen from subcritical classes. We show that the number $g_n/n!$ (resp. $g_n$) of labelled (resp. unlabelled) graphs on $n$ vertices from a subcritical graph class ${\\cG}=\\cup_n {\\cG_n}$ satisfies asymptotically the universal behaviour
More on asymptotically anti-de Sitter spaces in topologically massive gravity
International Nuclear Information System (INIS)
Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).
Asymptotic-group analysis of algebraic equations
Shamrovskii, A. D.; I. V. Andrianov; J. Awrejcewicz
2004-01-01
Both the method of asymptotic analysis and the theory of extension group are applied to study the Descates equation. The proposed algorithm allows to obtain various variants of simplification and can be easily generalized to their algebraic and differential equations.
The Lorentzian proper vertex amplitude: Asymptotics
Engle, Jonathan; Zipfel, Antonia
2015-01-01
In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semi-classical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the EPRL case by an extra `projector' term which scales linearly with spins only in the asymptotic limit. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a non-degenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.
Asymptotic Likelihood Distribution for Correlated & Constrained Systems
Agarwal, Ujjwal
2016-01-01
It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.
Asymptotic fixed points for nonlinear contractions
Directory of Open Access Journals (Sweden)
Yong-Zhuo Chen
2005-06-01
Full Text Available Recently, W. A. Kirk proved an asymptotic fixed point theorem for nonlinear contractions by using ultrafilter methods. In this paper, we prove his theorem under weaker assumptions. Furthermore, our proof does not use ultrafilter methods.
Negative dimension in general and asymptotic topology
Maslov, V. P.
2006-01-01
We introduce the notion of negative topological dimension and the notion of weight for the asymptotic topological dimension. Quantizing of spaces of negative dimension is applied to linguistic statistics.
Kinematical bound in asymptotically translationally invariant spacetimes
Shiromizu, T; Tomizawa, S; Shiromizu, Tetsuya; Ida, Daisuke; Tomizawa, Shinya
2004-01-01
We present positive energy theorems in asymptotically translationally invariant spacetimes which can be applicable to black strings and charged branes. We also address the bound property of the tension and charge of branes.
EMC effect: asymptotic freedom with nuclear targets
International Nuclear Information System (INIS)
General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references
Large Deviations and Asymptotic Methods in Finance
Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef
2015-01-01
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...
THE HIGHER ASYMPTOTIC EXPANSIONS FINDING FOR BOUNDARY VALUE PROBLEM OF THE ZOM MODEL
Directory of Open Access Journals (Sweden)
Kovalenko A. V.
2013-12-01
Full Text Available In this article authors propose the asymptotic solution of the boundary value problem modeling the transport of salt ions in the cell electrodialysis desalination unit. The domain of the camera desalting broken into two subdomains: electroneutrality and space charge. Subdomains has own asymptotic expansion. The subdomain of the space charge has unique solvability of the current approach used by the solvability condition of the next approximation
ASYMPTOTIC SOLUTION OF ACTIVATOR INHIBITOR SYSTEMS FOR NONLINEAR REACTION DIFFUSION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Jiaqi MO; Wantao LIN
2008-01-01
A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of multiple scales and the expanding theory of power series the formal asymptotic expansions of the solution are constructed, and finally, using the theory of differential inequalities the uniform validity and asymptotic behavior of the solution are studied.
Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering
Directory of Open Access Journals (Sweden)
Xiu Kan
2012-01-01
Full Text Available The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t+β(tXtdt+σ(tdWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.
To theory of asymptotically stable accelerating Universe in Riemann-Cartan spacetime
Energy Technology Data Exchange (ETDEWEB)
Garkun, A.S. [The National Academy of Sciences of Belarus, Nezalezhnosti av. 66, 220072 Minsk (Belarus); Kudin, V.I.; Minkevich, A.V., E-mail: garkun@bsu.by, E-mail: kudzin_w@tut.by, E-mail: minkav@bsu.by [Department of Theoretical Physics and Astrophysics, Belarusian State University, Nezalezhnosti av. 2, 220030 Minsk (Belarus)
2014-12-01
Homogeneous isotropic cosmological models built in the framework of the Poincar'e gauge theory of gravity based on general expression of gravitational Lagrangian with indefinite parameters are analyzed. Special points of cosmological solutions for flat cosmological models at asymptotics and conditions of their stability in dependence of indefinite parameters are found. Procedure of numerical integration of the system of gravitational equations at asymptotics is considered. Numerical solution for accelerating Universe without dark energy is obtained.
Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering
Xiu Kan; Huisheng Shu; Yan Che
2012-01-01
The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t)+β(t)Xt)dt+σ(t)dWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.
Asymptotic free probability for arithmetic functions and factorization of Dirichlet series
Cho, Ilwoo; Gillespie, Timothy; Jorgensen, Palle E. T.
2015-11-01
In this paper, we study a free-probabilistic model on the algebra of arithmetic functions by considering their asymptotic behavior. As an application, we concentrate on arithmetic functions arising from certain representations attached to the general linear group GL_n . We then study conditions under which a Dirichlet series may be factored into a product of automorphic L-functions using asymptotic freeness.
Hanfeng Kuang; Jinbo Liu; Xi Chen; Jie Mao; Linjie He
2013-01-01
The asymptotic behavior of a class of switched stochastic cellular neural networks (CNNs) with mixed delays (discrete time-varying delays and distributed time-varying delays) is investigated in this paper. Employing the average dwell time approach (ADT), stochastic analysis technology, and linear matrix inequalities technique (LMI), some novel sufficient conditions on the issue of asymptotic behavior (the mean-square ultimate boundedness, the existence of an attractor, and the mean-square ...
Directory of Open Access Journals (Sweden)
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Asymptotic state discrimination and a strict hierarchy in distinguishability norms
Chitambar, Eric; Hsieh, Min-Hsiu
2014-11-01
In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational advantage of using two-way classical communication over one-way communication in LOCC processing. With a simple two-qubit product state ensemble, we demonstrate a strict majorization of the two-way LOCC norm over the one-way norm.
Asymptotic state discrimination and a strict hierarchy in distinguishability norms
International Nuclear Information System (INIS)
In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational advantage of using two-way classical communication over one-way communication in LOCC processing. With a simple two-qubit product state ensemble, we demonstrate a strict majorization of the two-way LOCC norm over the one-way norm
A Framework for Non-Asymptotic Quantum Information Theory
Tomamichel, Marco
2012-01-01
This thesis consolidates, improves and extends the smooth entropy framework for non-asymptotic information theory and cryptography. We investigate the conditional min- and max-entropy for quantum states, generalizations of classical R\\'enyi entropies. We introduce the purified distance, a novel metric for unnormalized quantum states and use it to define smooth entropies as optimizations of the min- and max-entropies over a ball of close states. We explore various properties of these entropies, including data-processing inequalities, chain rules and their classical limits. The most important property is an entropic formulation of the asymptotic equipartition property, which implies that the smooth entropies converge to the von Neumann entropy in the limit of many independent copies. The smooth entropies also satisfy duality and entropic uncertainty relations that provide limits on the power of two different observers to predict the outcome of a measurement on a quantum system. Finally, we discuss three example...
Hints of (trans-Planckian) asymptotic freedom in semiclassical cosmology
International Nuclear Information System (INIS)
We employ the semiclassical approximation to the Wheeler–DeWitt equation in the spatially flat de Sitter Universe to investigate the dynamics of a minimally coupled scalar field near the Planck scale. We find that, contrary to naive intuition, the effects of quantum gravitational fluctuations become negligible and the scalar field states asymptotically approach plane waves at very early times. These states can then be used as initial conditions for the quantum states of matter to show that each mode essentially originated in the minimum energy vacuum. Although the full quantum dynamics cannot be obtained exactly for the case at hand, our results can be considered as supporting the general idea of asymptotic safety in quantum gravity
Asymptotically Lifshitz spacetimes with universal horizons in $(1 + 2)$ dimensions
Basu, Sayandeb; Mattingly, David; Roberson, Matthew
2016-01-01
Horava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide a natural framework for Lifshitz holography. We derive the conditions on the two derivative Horava gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon in general relativity. Specializing to z=2 in 1+2 dimensions, we then numerically construct such regular solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the asymptotically anti-de Sitter case, the first law applied to the universal horizon is straightforwardly compatible with a thermodynamic interpretation.
Asymptotically Lifshitz spacetimes with universal horizons in (1 +2 ) dimensions
Basu, Sayandeb; Bhattacharyya, Jishnu; Mattingly, David; Roberson, Matthew
2016-03-01
Hořava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide a natural framework for Lifshitz holography. We derive the conditions on the two-derivative Hořava gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon in general relativity. Specializing to z =2 in 1 +2 dimensions, we then numerically construct such regular solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the asymptotically anti-de Sitter case, the first law applied to the universal horizon is straightforwardly compatible with a thermodynamic interpretation.
Asymptotically flat black holes with scalar hair: a review
Herdeiro, Carlos A R
2015-01-01
We consider the status of black hole solutions with non-trivial scalar fields but no gauge fields, in four dimensional asymptotically flat space-times, reviewing both classical results and recent developments. We start by providing a simple illustration on the physical difference between black holes in electro-vacuum and scalar-vacuum. Next, we review no-scalar-hair theorems. In particular, we detail an influential theorem by Bekenstein and stress three key assumptions: 1) the type of scalar field equation; 2) the spacetime symmetry inheritance by the scalar field; 3) an energy condition. Then, we list regular (on and outside the horizon), asymptotically flat BH solutions with scalar hair, organizing them by the assumption which is violated in each case and distinguishing primary from secondary hair. We provide a table summary of the state of the art.
On Approximate Asymptotic Solution of Integral Equations
Jikia, Vagner
2013-01-01
It is well known that multi-particle integral equations of collision theory, in general, are not compact. At the same time it has been shown that the motion of three and four particles is described with consistent integral equations. In particular, by using identical transformations of the kernel of the Lipman-Schwinger equation for certain classes of potentials Faddeev obtained Fredholm type integral equations for three-particle problems $[1]$. The motion of for bodies is described by equations of Yakubovsky and Alt-Grassberger-Sandhas-Khelashvili $[2.3]$, which are obtained as a result of two subsequent transpormations of the kernel of Lipman-Schwinger equation. in the case of $N>4$ the compactness of multi-particle equations has not been proven yet. In turn out that for sufficiently high energies the $N$-particle $\\left( {N \\ge 3} \\right)$ dynamic equations have correct asymptotic solutions satisfying unitary condition $[4]$. In present paper by using the Heitler formalism we obtain the results briefly sum...
Asymptotic Orbits in Barred Spiral Galaxies
Harsoula, Maria; Contopoulos, George
2010-01-01
We study the formation of the spiral structure of barred spiral galaxies, using an $N$-body model. The evolution of this $N$-body model in the adiabatic approximation maintains a strong spiral pattern for more than 10 bar rotations. We find that this longevity of the spiral arms is mainly due to the phenomenon of stickiness of chaotic orbits close to the unstable asymptotic manifolds originated from the main unstable periodic orbits, both inside and outside corotation. The stickiness along the manifolds corresponding to different energy levels supports parts of the spiral structure. The loci of the disc velocity minima (where the particles spend most of their time, in the configuration space) reveal the density maxima and therefore the main morphological structures of the system. We study the relation of these loci with those of the apocentres and pericentres at different energy levels. The diffusion of the sticky chaotic orbits outwards is slow and depends on the initial conditions and the corresponding Jaco...
Precise Asymptotics for Lévy Processes
Institute of Scientific and Technical Information of China (English)
Zhi Shui HU; Chun SU
2007-01-01
Let {X(t), t ≥ 0} be a Lévy process with EX(1)=0 and EX2(1)＜∞. In this paper, we shall give two precise asymptotic theorems for {X(t), t≥0}. By the way, we prove the corresponding conclusions for strictly stable processes and a general precise asymptotic proposition for sums of i.i.d.random variables.
Dirichlet eigenvalues of asymptotically flat triangles
Ourmières-Bonafos, Thomas
2015-01-01
This paper is devoted to the study of the eigenpairs of the Dirichlet Laplacian on a family of triangles where two vertices are fixed and the altitude associated with the third vertex goes to zero. We investigate the dependence of the eigenvalues on this altitude. For the first eigenvalues and eigenfunctions, we obtain an asymptotic expansion at any order at the scale cube root of this altitude due to the influence of the Airy operator. Asymptotic expansions of the eigenpairs are provided, ex...
AGB (asymptotic giant branch): Star evolution
Energy Technology Data Exchange (ETDEWEB)
Becker, S.A.
1987-01-01
Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs.
Asymptotically hyperbolic black holes in Horava gravity
Janiszewski, Stefan
2014-01-01
Solutions of Hořava gravity that are asymptotically Lifshitz are explored. General near boundary expansions allow the calculation of the mass of these spacetimes via a Hamiltonian method. Both analytic and numeric solutions are studied which exhibit a causal boundary called the universal horizon, and are therefore black holes of the theory. The thermodynamics of an asymptotically Anti-de Sitter Hořava black hole are verified.
Loop Quantum Gravity and Asymptotically Flat Spaces
Arnsdorf, Matthias
2000-01-01
After motivating why the study of asymptotically flat spaces is important in loop quantum gravity, we review the extension of the standard framework of this theory to the asymptotically flat sector based on the GNS construction. In particular, we provide a general procedure for constructing new Hilbert spaces for loop quantum gravity on non-compact spatial manifolds. States in these Hilbert spaces can be interpreted as describing fluctuations around fiducial fixed backgrounds. When the backgr...
AGB [asymptotic giant branch]: Star evolution
International Nuclear Information System (INIS)
Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs
Higher Spin Black Holes in Three Dimensions: Comments on Asymptotics and Regularity
Banados, M; Theisen, S
2016-01-01
In the context of (2+1)--dimensional SL(N,R)\\times SL(N,R) Chern-Simons theory we explore issues related to regularity and asymptotics on the solid torus, for stationary and circularly symmetric solutions. We display and solve all necessary conditions to ensure a regular metric and metric-like higher spin fields. We prove that holonomy conditions are necessary but not sufficient conditions to ensure regularity, and that Hawking conditions do not necessarily follow from them. Finally we give a general proof that once the chemical potentials are turn on -- as demanded by regularity -- the asymptotics cannot be that of Brown-Henneaux.
Higher spin black holes in three dimensions: Remarks on asymptotics and regularity
Bañados, Máximo; Canto, Rodrigo; Theisen, Stefan
2016-07-01
In the context of (2 +1 )-dimensional S L (N ,R )×S L (N ,R ) Chern-Simons theory we explore issues related to regularity and asymptotics on the solid torus, for stationary and circularly symmetric solutions. We display and solve all necessary conditions to ensure a regular metric and metriclike higher spin fields. We prove that holonomy conditions are necessary but not sufficient conditions to ensure regularity, and that Hawking conditions do not necessarily follow from them. Finally we give a general proof that once the chemical potentials are turned on—as demanded by regularity—the asymptotics cannot be that of Brown-Henneaux.
Asymptotically flat structure of hypergravity in three spacetime dimensions
Fuentealba, Oscar; Troncoso, Ricardo
2015-01-01
The asymptotic structure of three-dimensional hypergravity without cosmological constant is analyzed. In the case of gravity minimally coupled to a spin-$5/2$ field, a consistent set of boundary conditions is proposed, being wide enough so as to accommodate a generic choice of chemical potentials associated to the global charges. The algebra of the canonical generators of the asymptotic symmetries is given by a hypersymmetric nonlinear extension of BMS$_{3}$. It is shown that the asymptotic symmetry algebra can be recovered from a subset of a suitable limit of the direct sum of the W$_{\\left(2,4\\right)}$ algebra with its hypersymmetric extension. The presence of hypersymmetry generators allows to construct bounds for the energy, which turn out to be nonlinear and saturate for spacetimes that admit globally-defined "Killing vector-spinors". The null orbifold or Minkowski spacetime can then be seen as the corresponding ground state in the case of fermions that fulfill periodic or anti-periodic boundary conditio...
The Einstein Constraint Equations on Asymptotically Euclidean Manifolds
Dilts, James
2015-01-01
In this dissertation, we prove a number of results regarding the conformal method of finding solutions to the Einstein constraint equations. These results include necessary and sufficient conditions for the Lichnerowicz equation to have solutions, global supersolutions which guarantee solutions to the conformal constraint equations for near-constant-mean-curvature (near-CMC) data as well as for far-from-CMC data, a proof of the limit equation criterion in the near-CMC case, as well as a model problem on the relationship between the asymptotic constants of solutions and the ADM mass. We also prove a characterization of the Yamabe classes on asymptotically Euclidean manifolds and resolve the (conformally) prescribed scalar curvature problem on asymptotically Euclidean manifolds for the case of nonpositive scalar curvatures. Many, though not all, of the results in this dissertation have been previously published in [Dilts13b], [DIMM14], [DL14], [DM15], and [DGI15]. This article is the author's Ph.D. dissertation...
A unified treatment for non-asymptotic and asymptotic approaches to minimax signal detection
Directory of Open Access Journals (Sweden)
Clément Marteau
2016-01-01
Full Text Available We are concerned with minimax signal detection. In this setting, we discuss non-asymptotic and asymptotic approaches through a unified treatment. In particular, we consider a Gaussian sequence model that contains classical models as special cases, such as, direct, well-posed inverse and ill-posed inverse problems. Working with certain ellipsoids in the space of squared-summable sequences of real numbers, with a ball of positive radius removed, we compare the construction of lower and upper bounds for the minimax separation radius (non-asymptotic approach and the minimax separation rate (asymptotic approach that have been proposed in the literature. Some additional contributions, bringing to light links between non-asymptotic and asymptotic approaches to minimax signal, are also presented. An example of a mildly ill-posed inverse problem is used for illustrative purposes. In particular, it is shown that tools used to derive ‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. In order to enhance our understanding of these two minimax signal detection paradigms, we bring into light hitherto unknown similarities and links between non-asymptotic and asymptotic approaches.
Lectures on renormalization and asymptotic safety
Nagy, Sandor
2012-01-01
A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross-Neveu model, the nonlinear $\\sigma$ model, the sine-Gordon model, and the model of quantum Einstein gravity. We also give a detailed analysis of infrared behavior of the models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure ...
The optimal homotopy asymptotic method engineering applications
Marinca, Vasile
2015-01-01
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011, and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five application...
Statistical tests of nonparametric hypotheses asymptotic theory
Pons, Odile
2013-01-01
An overview of the asymptotic theory of optimal nonparametric tests is presented in this book. It covers a wide range of topics: Neyman-Pearson and LeCam's theories of optimal tests, the theories of empirical processes and kernel estimators with extensions of their applications to the asymptotic behavior of tests for distribution functions, densities and curves of the nonparametric models defining the distributions of point processes and diffusions. With many new test statistics developed for smooth curves, the reliance on kernel estimators with bias corrections and the weak convergence of the
Asymptotic Regime in N Random Interacting Species
Fiasconaro, A; Valenti, D
2005-01-01
The asymptotic regime of a complex ecosystem with N random interacting species and in the presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long time probability distribution of the i_th density species, the extinction of species and the local field acting on the i_th population. We analyze in detail the transient dynamics of this field and the cavity field, which is the field acting on the i_th species when this is absent. We find that the presence or the absence of some population give different asymptotic distributions of these fields.
Asymptotic Redundancies for Universal Quantum Coding
Krattenthaler, C; Krattenthaler, Christian; Slater, Paul
1996-01-01
We investigate the question of whether or not there exists a noncommutative/ quantum extension of a recent (commutative probabilistic) result of Clarke and Barron. They demonstrated that the Jeffreys' invariant prior of Bayesian theory yields the common asymptotic (minimax and maximin) redundancy - the excess of the encoding cost over the source entropy - of universal data compression in a parametric setting. We study certain probability distributions for the two-level quantum systems. We are able to compute exact formulas for the corresponding redundancies, for which we find the asymptotic limits. These results are very suggestive and do indeed point towards a possible quantum extension of the result of Clarke and Barron.
Asymptotically hyperbolic manifolds with small mass
Dahl, Mattias; Sakovich, Anna
2014-01-01
For asymptotically hyperbolic manifolds of dimension $n$ with scalar curvature at least equal to $-n(n-1)$ the conjectured positive mass theorem states that the mass is non-negative, and vanishes only if the manifold is isometric to hyperbolic space. In this paper we study asymptotically hyperbolic manifolds which are also conformally hyperbolic outside a ball of fixed radius, and for which the positive mass theorem holds. For such manifolds we show that the conformal factor tends to one as the mass tends to zero.
Extended asymptotic theory of unstable resonator modes.
Li, Y Q; Sung, C C
1990-10-20
The modes in an unstable resonator can be computed within the limit of a large Fresnel number using the asymptotic expansion of the diffraction integral, as shown by Horwitz, Butts, and Avizonis. The expansion is not valid for the points of interest around or beyond the shadow boundary of the output light. We use a better numerical representation, which extends the regions of use. The comparison of several cases with earlier work shows that the asymptotic theory can be successfully applied for all parameters without restrictions. PMID:20577410
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Under certain conditions, starting from the three-dimensional dynamic equations of elastic shells the author gives the justification of dynamic equations of flexural shells by means of the method of asymptotic analysis.
Further evidence for asymptotic safety of quantum gravity
Falls, K.; Litim, D.; Nikolakopoulos, K.; Rahmede, C.
2016-05-01
The asymptotic safety conjecture is examined for quantum gravity in four dimensions. Using the renormalization group, we find evidence for an interacting UV fixed point for polynomial actions up to the 34th power in the Ricci scalar. The extrapolation to infinite polynomial order is given, and the self-consistency of the fixed point is established using a bootstrap test. All details of our analysis are provided. We also clarify further aspects such as stability, convergence, the role of boundary conditions, and a partial degeneracy of eigenvalues. Within this setting we find strong support for the conjecture.
On selfdual spin-connections and Asymptotic Safety
Harst, Ulrich
2015-01-01
We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG) equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-)selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein-Cartan gravity without the selfduality condition.
On selfdual spin-connections and asymptotic safety
Directory of Open Access Journals (Sweden)
U. Harst
2016-02-01
Full Text Available We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein–Cartan gravity without the selfduality condition.
Precise Asymptotics of Error Variance Estimator in Partially Linear Models
Institute of Scientific and Technical Information of China (English)
Shao-jun Guo; Min Chen; Feng Liu
2008-01-01
In this paper, we focus our attention on the precise asymptoties of error variance estimator in partially linear regression models, yi = xTi β + g(ti) +εi, 1 ≤i≤n, {εi,i = 1,... ,n } are i.i.d random errors with mean 0 and positive finite variance q2. Following the ideas of Allan Gut and Aurel Spataru[7,8] and Zhang[21],on precise asymptotics in the Baum-Katz and Davis laws of large numbers and precise rate in laws of the iterated logarithm, respectively, and subject to some regular conditions, we obtain the corresponding results in partially linear regression models.
Combining Multiple Strategies for Multiarmed Bandit Problems and Asymptotic Optimality
Directory of Open Access Journals (Sweden)
Hyeong Soo Chang
2015-01-01
Full Text Available This brief paper provides a simple algorithm that selects a strategy at each time in a given set of multiple strategies for stochastic multiarmed bandit problems, thereby playing the arm by the chosen strategy at each time. The algorithm follows the idea of the probabilistic ϵt-switching in the ϵt-greedy strategy and is asymptotically optimal in the sense that the selected strategy converges to the best in the set under some conditions on the strategies in the set and the sequence of {ϵt}.
Asymptotic behavior of CLS estimators for unstable INAR(2) models
Barczy, Matyas; Pap, Gyula
2012-01-01
In this paper the asymptotic behavior of the conditional least squares estimators of the autoregressive parameters $(\\alpha, \\beta)$ and of the stability parameter $\\varrho := \\alpha + \\beta$ for an unstable integer-valued autoregressive process $X_k = \\alpha \\circ X_{k-1} + \\beta \\circ X_{k-2} + \\varepsilon_k$, $k\\in\\NN$, is described. The limit distributions and the scaling factors are different according to the following three cases: (i) decomposable, (ii) indecomposable but not positively regular, and (iii) positively regular models.
THE ASYMPTOTIC BEHAVIOR OF SOLUTION FOR THE NONLINEAR HEAT-CONDUCTION EQUATION AND ITS APPLICATION
Institute of Scientific and Technical Information of China (English)
陈方年; 段志文
2001-01-01
In this paper the nonlinear heat-conduction equations with Dirichlet boundary condition and the nonlinear boundary condition are studied. The asymptotic behavior of the global of solution are analyzed by using Lyapuunov function.As its application, the approximate solutions are constructed.
MULTIPLICITY OF SOLUTIONS TO ASYMPTOTICALLY LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,we consider an asymptotically linear second-order ordinary differential system with Dirchlet boundary value conditions. Under some conditions,we show the multiplicity of solutions to the system by the Morse theory and an index theory.
Nikonov, Anatolij Viktorovič; Zakharov, D.D.
2015-01-01
Asymptotically accurate low-frequency models for isotropic elastic coatings and interlayers are developed. The main constraint is the requirement on contact conditions for the layer and the base that at least one of the boundary conditions must include the displacement component in an explicit form. The displacement and stress fields in the three-dimensional elastic system are sought in the form of asymptotic expansion into power series of a small parameter - the ratio between the half-thickn...
Asymptotic behaviour of firmly non expansive sequences
International Nuclear Information System (INIS)
We introduce the notion of firmly non expansive sequences in a Banach space and present several results concerning their asymptotic behaviour extending previous results and giving an affirmative answer to an open question raised by S. Reich and I. Shafir. Applications to averaged mappings are also given. (author). 16 refs
Asymptotic estimates for generalized Stirling numbers
Chelluri, R.; Richmond, L.B.; Temme, Nico
2000-01-01
Uniform asymptotic expansions are given for the Stirling numbers of the first kind for integral arguments and for the second kind as defined for real arguments by Flajolet and Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger is established for a range including the classical integral domain.
Drag force in asymptotically Lifshitz spacetimes
Fadafan, Kazem Bitaghsir
2009-01-01
We calculated drag force for asymptotically Lifshitz space times in (d + 2)-dimensions with arbitrary dynamical exponent $z$. We find that at zero and finite temperature the drag force has a non-zero value. Using the drag force calculations, we investigate the DC conductivity of strange metals.
An asymptotically optimal nonparametric adaptive controller
Institute of Scientific and Technical Information of China (English)
郭雷; 谢亮亮
2000-01-01
For discrete-time nonlinear stochastic systems with unknown nonparametric structure, a kernel estimation-based nonparametric adaptive controller is constructed based on truncated certainty equivalence principle. Global stability and asymptotic optimality of the closed-loop systems are established without resorting to any external excitations.
Asymptotic base loci on singular varieties
Cacciola, Salvatore
2011-01-01
We prove that the non-nef locus and the restricted base locus of a pseudoeffective divisor coincide on KLT pairs. We also extend to KLT pairs F. Russo's characterization of nef and abundant divisors by means of asymptotic multiplier ideals.
The conformal approach to asymptotic analysis
Nicolas, Jean-Philippe
2015-01-01
This essay was written as an extended version of a talk given at a conference in Strasbourg on "Riemann, Einstein and geometry", organized by Athanase Papadopoulos in September 2014. Its aim is to present Roger Penrose's approach to asymptotic analysis in general relativity, which is based on conformal geometric techniques, focusing on historical and recent aspects of two specialized topics~: conformal scattering and peeling.
Asymptotic evolution of quantum Markov chains
International Nuclear Information System (INIS)
The iterated quantum operations, so called quantum Markov chains, play an important role in various branches of physics. They constitute basis for many discrete models capable to explore fundamental physical problems, such as the approach to thermal equilibrium, or the asymptotic dynamics of macroscopic physical systems far from thermal equilibrium. On the other hand, in the more applied area of quantum technology they also describe general characteristic properties of quantum networks or they can describe different quantum protocols in the presence of decoherence. A particularly, an interesting aspect of these quantum Markov chains is their asymptotic dynamics and its characteristic features. We demonstrate there is always a vector subspace (typically low-dimensional) of so-called attractors on which the resulting superoperator governing the iterative time evolution of quantum states can be diagonalized and in which the asymptotic quantum dynamics takes place. As the main result interesting algebraic relations are presented for this set of attractors which allow to specify their dual basis and to determine them in a convenient way. Based on this general theory we show some generalizations concerning the theory of fixed points or asymptotic evolution of random quantum operations.
Asymptotic structure in substitution tiling spaces
Barge, Marcy
2011-01-01
Every sufficiently regular space of tilings of $\\R^d$ has at least one pair of distinct tilings that are asymptotic under translation in all the directions of some open $(d-1)$-dimensional hemisphere. If the tiling space comes from a substitution, there is a way of defining a location on such tilings at which asymptoticity `starts'. This leads to the definition of the {\\em branch locus} of the tiling space: this is a subspace of the tiling space, of dimension at most $d-1$, that summarizes the `asymptotic in at least a half-space' behavior in the tiling space. We prove that if a $d$-dimensional self-similar substitution tiling space has a pair of distinct tilings that are asymptotic in a set of directions that contains a closed $(d-1)$-hemisphere in its interior, then the branch locus is a topological invariant of the tiling space. If the tiling space is a 2-dimensional self-similar Pisot substitution tiling space, the branch locus has a description as an inverse limit of an expanding Markov map on a 1-dimens...
Contraints on Matter from Asymptotic Safety
Percacci, Roberto; Perini, Daniele
2002-01-01
Recent studies of the ultraviolet behaviour of pure gravity suggest that it admits a non-Gaussian attractive fixed point, and therefore that the theory is asymptotically safe. We consider the effect on this fixed point of massless minimally coupled matter fields. The existence of a UV attractive fixed point puts bounds on the type and number of such fields.
Asymptotic estimates for generalized Stirling numbers
Chelluri, R.; Richmond, L.B.; Temme, N.M.
1999-01-01
Uniform asymptotic expansions are given for the Stirling numbers of the first kind for integral arguments and for the second kind as defined for real arguments by Flajolet and Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger is established for a range inclu
On the Asymptotic Accuracy of Efron's Bootstrap
Singh, Kesar
1981-01-01
In the non-lattice case it is shown that the bootstrap approximation of the distribution of the standardized sample mean is asymptotically more accurate than approximation by the limiting normal distribution. The exact convergence rate of the bootstrap approximation of the distributions of sample quantiles is obtained. A few other convergence rates regarding the bootstrap method are also studied.
Zero bias transformation and asymptotic expansions
Jiao, Ying
2012-01-01
Let W be a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic expansions for $\\mathbb {E}[h(W)]$ in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also discuss the estimates of remaining errors.
Exponential asymptotics of the Voigt functions
Paris, R. B.
2015-06-01
We obtain the asymptotic expansion of the Voigt functionss K( x, y) and L( x, y) for large (real) values of the variables x and y, paying particular attention to the exponentially small contributions. A Stokes phenomenon is encountered as with x > 0 fixed. Numerical examples are presented to demonstrate the accuracy of these new expansions.
Infrared studies of asymptotic giant branch stars
International Nuclear Information System (INIS)
In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs
Lectures on renormalization and asymptotic safety
International Nuclear Information System (INIS)
A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross–Neveu model, the nonlinear σ model, the sine–Gordon model, and we consider the model of quantum Einstein gravity which seems to show asymptotic safety, too. We also give a detailed analysis of infrared behavior of such scalar models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The theory spaces of these models show several similar properties, namely the models have the same phase and fixed point structure. The quantum Einstein gravity also exhibits similarities when considering the global aspects of its theory space since the appearing two phases there show analogies with the symmetric and the broken phases of the scalar models. These results be nicely uncovered by the functional renormalization group method
Asymptotic quantum cloning is state estimation
Bae, Joonwoo; Acin, Antonio
2006-01-01
The impossibility of perfect cloning and state estimation are two fundamental results in Quantum Mechanics. It has been conjectured that quantum cloning becomes equivalent to state estimation in the asymptotic regime where the number of clones tends to infinity. We prove this conjecture using two known results of Quantum Information Theory: the monogamy of quantum correlations and the properties of entanglement breaking channels.
Asymptotic probability density functions in turbulence
Minotti, F. O.; Speranza, E.
2007-01-01
A formalism is presented to obtain closed evolution equations for asymptotic probability distribution functions of turbulence magnitudes. The formalism is derived for a generic evolution equation, so that the final result can be easily applied to rather general problems. Although the approximation involved cannot be ascertained a priori, we show that application of the formalism to well known problems gives the correct results.
Resonance asymptotics in the generalized Winter model
Exner, Pavel; Fraas, Martin
2006-01-01
We consider a modification of the Winter model describing a quantum particle in presence of a spherical barrier given by a fixed generalized point interaction. It is shown that the three classes of such interactions correspond to three different types of asymptotic behaviour of resonances of the model at high energies.
Asymptotic approaches to marginally stable resonators.
Nagel, J; Rogovin, D; Avizonis, P; Butts, R
1979-09-01
We present analytical solutions valid for large Fresnel number of the Fresnel-Kirchhoff integral equation for marginally stable resonators, for the specific case of flat circular mirrors. The asymptotic approaches used for curved mirrors have been extended to the waveguide region given by m diffraction around the mirror edge. PMID:19687883
Eigenvalue asymptotics for Dirac-Bessel operators
Hryniv, Rostyslav O.; Mykytyuk, Yaroslav V.
2016-06-01
In this paper, we establish the eigenvalue asymptotics for non-self-adjoint Dirac-Bessel operators on (0, 1) with arbitrary real angular momenta and square integrable potentials, which gives the first step for solution of the related inverse problem. The approach is based on a careful examination of the corresponding characteristic functions and their zero distribution.
Large degree asymptotics of generalized Bessel polynomials
López, J.L.; Temme, N.M.
2011-01-01
Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in t
Asymptotic analysis of the Forward Search
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Bent
The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...
Heavy axion in asymptotically safe QCD
Kobakhidze, Archil
2016-01-01
Assuming QCD exhibits an interacting fixed-point behaviour in the ultraviolet regime, I argue that the axion can be substantially heavier than in the conventional case of asymptotically free QCD due to the enhanced contribution of small size instantons to its mass.
Non-Fefferman-Graham asymptotics and holographic renormalization in New Massive Gravity
Cunliff, Colin
2013-01-01
The asymptotic behavior of new massive gravity (NMG) is analyzed for all values of the mass parameter satisfying the Breitenlohner-Freedman bound. The traditional Fefferman-Graham expansion fails to capture the dynamics of NMG, and new terms in the asymptotic expansion are needed to include the massive graviton modes. New boundary conditions are discovered for a range of values $-1<2m^2l^2<1$ at which non-Einstein modes decay more slowly than the Brown-Henneaux boundary conditions. The holographically renormalized stress tensor is computed for these modes, and the relevant counterterms are identified up to unphysical ambiguities.
Variable-Length Coding of Two-Sided Asymptotically Mean Stationary Measures
Dębowski, Łukasz
2009-01-01
We collect several observations that concern variable-length coding of two-sided infinite sequences in a probabilistic setting. Attention is paid to images and preimages of asymptotically mean stationary measures defined on subsets of these sequences. We point out sufficient conditions under which the variable-length coding and its inverse preserve asymptotic mean stationarity. Moreover, conditions for preservation of shift-invariant $\\sigma$-fields and the finite-energy property are discussed and the block entropies for stationary means of coded processes are related in some cases. Subsequently, we apply certain of these results to construct a stationary nonergodic process with a desired linguistic interpretation.
Asymptotic behavior of trigonometric integrals
International Nuclear Information System (INIS)
Trigonometric integrals play an essential role in many branches of mathematics. Especially many problems from mathematical physics and theory of probability lead to investigate trigonometric integrals. Problem: Find the least upper bound p0 for p such that T element of Lp(R?N). This problem was considered in connection with the problems of number theory, and obtained an estimation for k = 1. The precise value of p0 for k = 1 was indicated and was proved for boundness in higher dimensional cases. In this paper we study the problem by considering the classical setting. In other words P is a square polynomial function and Q is a unit cube. It should be noted that the condition of Makenhaupt does not hold for this case
Asymptotic expansion of the wavelet transform with error term
R. S. Pathak; Pathak, Ashish
2014-01-01
UsingWong's technique asymptotic expansion for the wavelet transform is derived and thereby asymptotic expansions for Morlet wavelet transform, Mexican Hat wavelet transform and Haar wavelet transform are obtained.
Asymptotics of the discrete spectrum for complex Jacobi matrices
Maria Malejki
2014-01-01
The spectral properties and the asymptotic behaviour of the discrete spectrum for a special class of infinite tridiagonal matrices are given. We derive the asymptotic formulae for eigenvalues of unbounded complex Jacobi matrices acting in \\(l^2(\\mathbb{N})\\).
Solutions of special asymptotics to the Einstein constraint equations
Huang, Lan-Hsuan
2010-01-01
We construct solutions with prescribed asymptotics to the Einstein constraint equations using a cut-off technique. Moreover, we give various examples of vacuum asymptotically flat manifolds whose center of mass and angular momentum are ill-defined.
Weak Gibbs measures as Gibbs measures for asymptotically additive sequences
Iommi, Godofredo; Yayama, Yuki
2015-01-01
In this note we prove that every weak Gibbs measure for an asymptotically additive sequences is a Gibbs measure for another asymptotically additive sequence. In particular, a weak Gibbs measure for a continuous potential is a Gibbs measure for an asymptotically additive sequence. This allows, for example, to apply recent results on dimension theory of asymptotically additive sequences to study multifractal analysis for weak Gibbs measure for continuous potentials.
Asymptotic estimates and compactness of expanding gradient Ricci solitons
Deruelle, Alix
2014-01-01
We first investigate the asymptotics of conical expanding gradient Ricci solitons by proving sharp decay rates to the asymptotic cone both in the generic and the asymptotically Ricci flat case. We then establish a compactness theorem concerning nonnegatively curved expanding gradient Ricci solitons.
Asymptotic symmetries in 3d gravity with torsion
Blagojevic, M; Vasilic, M.
2003-01-01
We study the nature of asymptotic symmetries in topological 3d gravity with torsion. After introducing the concept of asymptotically anti-de Sitter configuration, we find that the canonical realization of the asymptotic symmetry is characterized by the Virasoro algebra with classical central charge, the value of which is the same as in general relativity: c=3l/2G.
Robust Asymptotic Tests of Statistical Hypotheses Involving Nuisance Parameters
Wang, Paul C. C.
1981-01-01
A robust version of Neyman's optimal $C(\\alpha)$ test is proposed for contamination neighborhoods. The proposed robust test is shown to be asymptotically locally maximin among all asymptotic level $\\alpha$ tests. Asymptotic efficiency of the test procedure at the ideal model is investigated. An outlier resistant version of Student's $t$-test is proposed.
Generalized Asymptotic Pointwise Contractions and Nonexpansive Mappings Involving Orbits
Directory of Open Access Journals (Sweden)
Nicolae Adriana
2010-01-01
Full Text Available We give fixed point results for classes of mappings that generalize pointwise contractions, asymptotic contractions, asymptotic pointwise contractions, and nonexpansive and asymptotic nonexpansive mappings. We consider the case of metric spaces and, in particular, CAT spaces. We also study the well-posedness of these fixed point problems.
The Asymptotic Safety Scenario in Quantum Gravity
Directory of Open Access Journals (Sweden)
Niedermaier Max
2006-12-01
Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.
Asymptotically Lifshitz brane-world black holes
International Nuclear Information System (INIS)
We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: ► Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. ► Studying the thermodynamical behavior of asymptotically Lifshitz black holes. ► Showing that the entropy imposes the critical exponent z to be bounded from above. ► Discussing the phase transition for different spatial topologies.
Asymptotic safety and the cosmological constant
Falls, Kevin
2016-01-01
We study the non-perturbative renormalisation of quantum gravity in four dimensions. Taking care to disentangle physical degrees of freedom, we observe the topological nature of conformal fluctuations arising from the functional measure. The resulting beta functions possess an asymptotically safe fixed point with a global phase structure leading to classical general relativity for positive, negative or vanishing cosmological constant. If only the conformal fluctuations are quantised we find an asymptotically safe fixed point predicting a vanishing cosmological constant on all scales. At this fixed point we reproduce the critical exponent, ν = 1/3, found in numerical lattice studies by Hamber. Returning to the full theory we find that by setting the cosmological constant to zero the critical exponent agrees with the conformally reduced theory. This suggests the fixed point may be physical while hinting at solution to the cosmological constant problem.
Black holes and asymptotically safe gravity
Falls, Kevin; Raghuraman, Aarti
2010-01-01
Quantum gravitational corrections to black holes are studied in four and higher dimensions using a renormalisation group improvement of the metric. The quantum effects are worked out in detail for asymptotically safe gravity, where the short distance physics is characterized by a non-trivial fixed point of the gravitational coupling. We find that a weakening of gravity implies a decrease of the event horizon, and the existence of a Planck-size black hole remnant with vanishing temperature and vanishing heat capacity. The absence of curvature singularities is generic and discussed together with the conformal structure and the Penrose diagram of asymptotically safe black holes. The production cross section of mini-black holes in energetic particle collisions, such as those at the Large Hadron Collider, is analysed within low-scale quantum gravity models. Quantum gravity corrections imply that cross sections display a threshold, are suppressed in the Planckian, and reproduce the semi-classical result in the deep...
Asymptotically anti-de Sitter Proca Stars
Duarte, Miguel
2016-01-01
We show that complex, massive spin-1 fields minimally coupled to Einstein's gravity with a negative cosmological constant, admit asymptotically anti-de Sitter self-gravitating solutions. Focusing on 4-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the Proca field equations can be solved in a fixed anti-de Sitter background, and then find fully non-linear solutions numerically. These solutions are a natural extension of the recently found asymptotically flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited by their point of maximum mass. We finish with an overview of the behavior of Proca stars in $5$ dimensions.
Brane model with two asymptotic regions
Lubo, Musongela
2005-02-01
Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.
A Brane model with two asymptotic regions
Lubo, M
2004-01-01
Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip.S.Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.
Brane model with two asymptotic regions
International Nuclear Information System (INIS)
Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane
Line Complexity Asymptotics of Polynomial Cellular Automata
Stone, Bertrand
2016-01-01
Cellular automata are discrete dynamical systems that consist of patterns of symbols on a grid, which change according to a locally determined transition rule. In this paper, we will consider cellular automata that arise from polynomial transition rules, where the symbols in the automaton are integers modulo some prime $p$. We are principally concerned with the asymptotic behavior of the line complexity sequence $a_T(k)$, which counts, for each $k$, the number of coefficient strings of length...
Asymptotic elastic energy in simple metals
International Nuclear Information System (INIS)
The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)
Lattice Quantum Gravity and Asymptotic Safety
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2016-01-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we identify the target symmetry as the Hamiltonian canonical symmetry, which is closely related to, but n...
Chiral fermions in asymptotically safe quantum gravity
Meibohm, Jan; Pawlowski, Jan M.
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christia...
Asymptotic Consensus Without Self-Confidence
Nowak, Thomas
2015-01-01
This paper studies asymptotic consensus in systems in which agents do not necessarily have self-confidence, i.e., may disregard their own value during execution of the update rule. We show that the prevalent hypothesis of self-confidence in many convergence results can be replaced by the existence of aperiodic cores. These are stable aperiodic subgraphs, which allow to virtually store information about an agent's value distributedly in the network. Our results are applicable to systems with m...
Asymptotic linear stability of solitary water waves
Pego, Robert L.; Sun, Shu-Ming
2010-01-01
We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions of the linearized equations decay a...
Asymptotic completeness in QED. Pt. 1
International Nuclear Information System (INIS)
Projection operators onto the asymptotic scattering states are defined in the space of quasilocal states of QED in a Gupta-Bleuler formulation. They are obtained as weak limits for t → ±∞ of expressions formed with interacting fields, in close analogy to the LSZ expressions known from field theories without infrared problems. It is shown that these limits exist in perturbative QED and are equal to the identity. (orig.)
Asymptotic completeness in QED. Pt. 2
International Nuclear Information System (INIS)
Physical states and fields in QED are defined as limits in the sense of Wightman functions of states and composite fields of the Gupta-Bleuler formalism. A formulation of asymptotic completeness proposed in an earlier publication for the Gupta-Bleuler case is transferred to the physical state space and shown to be valid in perturbation theory. An application to the calculation of inclusive cross sections is discussed. (orig.)
Vacuum polarization in asymptotically Lifshitz black holes
Quinta, Gonçalo M.(Centro Multidisciplinar de Astrofísica – CENTRA, Departamento de Física, Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Avenida Rovisco Pais 1, Lisboa, 1049-001, Portugal); Flachi, Antonino; Lemos, José P.S.
2016-01-01
There has been considerable interest in applying the gauge/gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed aiming at incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes, and to this aim, we develop a way to compute th...
Variational Asymptotic Micromechanics Modeling of Composite Materials
Tang, Tian
2008-01-01
The issue of accurately determining the effective properties of composite materials has received the attention of numerous researchers in the last few decades and continues to be in the forefront of material research. Micromechanics models have been proven to be very useful tools for design and analysis of composite materials. In the present work, a versatile micromechanics modeling framework, namely, the Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH), has been invented a...
Asymptotic Enumeration of RNA Structures with Pseudoknots
Jin, Emma Y
2007-01-01
In this paper we present the asymptotic enumeration of RNA structures with pseudoknots. We develop a general framework for the computation of exponential growth rate and the sub exponential factors for $k$-noncrossing RNA structures. Our results are based on the generating function for the number of $k$-noncrossing RNA pseudoknot structures, ${\\sf S}_k(n)$, derived in \\cite{Reidys:07pseu}, where $k-1$ denotes the maximal size of sets of mutually intersecting bonds. We prove a functional equation for the generating function $\\sum_{n\\ge 0}{\\sf S}_k(n)z^n$ and obtain for $k=2$ and $k=3$ the analytic continuation and singular expansions, respectively. It is implicit in our results that for arbitrary $k$ singular expansions exist and via transfer theorems of analytic combinatorics we obtain asymptotic expression for the coefficients. We explicitly derive the asymptotic expressions for 2- and 3-noncrossing RNA structures. Our main result is the derivation of the formula ${\\sf S}_3(n) \\sim \\frac{10.4724\\cdot 4!}{n(n...
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients...... aj(g), j ¿ N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the case where and for ¿, µ in C\\R. In this case the mean and...
Asymptotics of the instantons of Painleve I
Garoufalidis, Stavros; Kapaev, Andrei; Marino, Marcos
2010-01-01
The 0-instanton solution of Painlev\\'e I is a sequence $(u_{n,0})$ of complex numbers which appears universally in many enumerative problems in algebraic geometry, graph theory, matrix models and 2-dimensional quantum gravity. The asymptotics of the 0-instanton $(u_{n,0})$ for large $n$ were obtained by the third author using the Riemann-Hilbert approach. For $k=0,1,2,...$, the $k$-instanton solution of Painlev\\'e I is a doubly-indexed sequence $(u_{n,k})$ of complex numbers that satisfies an explicit quadratic non-linear recursion relation. The goal of the paper is three-fold: (a) to compute the asymptotics of the 1-instanton sequence $(u_{n,1})$ to all orders in $1/n$ by using the Riemann-Hilbert method, (b) to present formulas for the asymptotics of $(u_{n,k})$ for fixed $k$ and to all orders in $1/n$ using resurgent analysis, and (c) to confirm numerically the predictions of resurgent analysis. We point out that the instanton solutions display a new type of Stokes behavior, induced from the tritronqu\\'ee ...
Asymptotic form of the Kohn-Sham correlation potential
International Nuclear Information System (INIS)
The density-functional correlation potential of a finite system is shown to asymptotically approach a nonzero constant along a nodal surface of the energetically highest occupied orbital and zero everywhere else. This nonuniform asymptotic form of the correlation potential exactly cancels the nonuniform asymptotic behavior of the exact exchange potential discussed by Della Sala and Goerling [Phys. Rev. Lett. 89, 33003 (2002)]. The sum of the exchange and correlation potentials therefore asymptotically tends to -1/r everywhere, consistent with the asymptotic form of the Kohn-Sham potential as analyzed by Almbladh and von Barth [Phys. Rev. B 31, 3231 (1985)
Wuneng Zhou; Xueqing Yang; Jun Yang; Anding Dai; Huashan Liu
2014-01-01
The problem of almost sure (a.s.) asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching is researched. Firstly, we proposed a new criterion of a.s. asymptotic stability for a general neutral-type stochastic differential equation which extends the existing results. Secondly, based upon this stability criterion, by making use of Lyapunov functional method and designing an adaptive controller, we obtained a condition of a.s. asy...
Henneaux, Marc(Université Libre de Bruxelles, ULB-Campus Plaine CP231, 1050, Brussels, Belgium); Rey, Soo-Jong
2010-01-01
We investigate the asymptotic symmetry algebra of (2+1)-dimensional higher spin, anti-de Sitter gravity. We use the formulation of the theory as a Chern-Simons gauge theory based on the higher spin algebra hs(1,1). Expanding the gauge connection around asymptotically anti-de Sitter spacetime, we specify consistent boundary conditions on the higher spin gauge fields. We then study residual gauge transformation, the corresponding surface terms and their Poisson bracket algebra. We find that the...
Katayama, Soichiro
2012-01-01
We consider the Cauchy problem for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions. Under the null condition for such systems, the global existence of small amplitude solutions is known. In this paper, we will show that the global solution is asymptotically free in the energy sense, by obtaining the asymptotic pointwise behavior of the derivatives of the solution. Nonetheless we can also show that the pointwise behavior of the solution itself may be quite different from that of the free solution.
Dilts, James
2014-01-01
We prove that in a certain class of conformal data on an asymptotically cylindrical manifold, if the conformally decomposed Einstein constraint equations do not admit a solution, then one can always find a nontrivial solution to the limit equation first explored by Dahl, Gicquaud, and Humbert in [DGH11]. We also give an example of a Ricci curvature condition on the manifold which precludes the existence of a solution to this limit equation, showing that such a limit criterion can be a useful tool for studying the Einstein constraint equations on manifolds with asymptotically cylindrical ends.
Asymptotic stabilization of nonlinear systems using state feedback
International Nuclear Information System (INIS)
This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author)
Uniform Asymptotic Normality of the Matrix-variate Beta-distribution
Institute of Scientific and Technical Information of China (English)
Kai Can LI; He TANG
2012-01-01
With the upper bound of Kullback-Leibler distance between a matrix variate Beta-distribution and a normal distribution,this paper gives the conditions under which a matrix-variate Betadistribution will approach uniformly and asymptotically a normal distribution.
Institute of Scientific and Technical Information of China (English)
Zai-ying ZHOU; Jia-qi MO
2012-01-01
A class of differential-difference reaction diffusion equations initial boundary problem with a small time delay is considered.Under suitable conditions and by using method of the stretched variable,the formal asymptotic solution is constructed. And then,by using the theory of differential inequalities the uniformly validity of solution is proved.
Institute of Scientific and Technical Information of China (English)
王金良; 周笠
2003-01-01
In this paper,our main aim is to study the existence and uniqueness of the periodic solution of delayed Logistic equation and its asymptotic behavior.In case the coefficients are periodic,we give some sufficient conditions for the existence and uniqueness of periodic solution.Furthermore,we also study the effect of time-delay on the solution.
Oscillation and asymptotic stability of a delay differential equation with Richard's nonlinearity
Directory of Open Access Journals (Sweden)
Leonid Berezansky
2005-04-01
Full Text Available We obtain sufficient conditions for oscillation of solutions, and for asymptotical stability of the positive equilibrium, of the scalar nonlinear delay differential equation $$ frac{dN}{dt} = r(tN(tBig[a-Big(sum_{k=1}^m b_k N(g_k(tBig^{gamma}Big], $$ where $ g_k(tleq t$.
ASYMPTOTICS OF INITIAL BOUNDARY VALUE PROBLEMS OF BIPOLAR HYDRODYNAMIC MODEL FOR SEMICONDUCTORS
Institute of Scientific and Technical Information of China (English)
Ju Qiangchang
2004-01-01
In this paper, we study the asymptotic behavior of the solutions to the bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the initial boundary problem of the model admits a global smooth solution which decays to the steady state exponentially fast.
Weifang Yan; Rui Liu
2013-01-01
This paper is concerned with traveling wave fronts for a degenerate diffusion equation with time delay. We first establish the necessary and sufficient conditions to the existence of monotone increasing and decreasing traveling wave fronts, respectively. Moreover, special attention is paid to the asymptotic behavior of traveling wave fronts connecting two uniform steady states. Some previous results are extended.
A Lyapunov-Krasovskii methodology for asymptotic stability of discrete time delay systems
Directory of Open Access Journals (Sweden)
Stojanović Sreten B.
2007-01-01
Full Text Available This paper presents a Lyapunov-Krasovskii methodology for asymptotic stability of discrete time delay systems. Based on the methods, delay-independent stability condition is derived. A numerical example has been working out to show the applicability of results derived.
Pressures for Asymptotically Sub-additive Potentials Under a Mistake Function
Cheng, Wen-Chiao; Zhao, Yun; Cao, Yongluo
2010-01-01
This paper defines the pressure for asymptotically subadditive potentials under a mistake function, including the measuretheoretical and the topological versions. Using the advanced techniques of ergodic theory and topological dynamics, we reveals a variational principle for the new defined topological pressure without any additional conditions on the potentials and the compact metric space.
Energy Technology Data Exchange (ETDEWEB)
Cui Baotong [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China)] e-mail: btcui@sohu.com; Lou Xuyang [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China)
2006-03-01
The global asymptotic stability of bi-directional associative memory neural networks with distributed delays and reaction-diffusion terms are studied by using the analysis technique and Lyapunov functional. A sufficient condition is proposed. Two numerical examples are given to show the correctness of our analysis.
An asymptotically normal G-estimate for the Anderson-Fisher discriminant function
Energy Technology Data Exchange (ETDEWEB)
Girko, V.L.; Pavlenko, T.V. [Kiev State Univ. (Ukraine)
1994-06-05
Conditions under which a G-estimate of the Anderson-Fisher discriminant function is asymptotically normal are investigated. This estimate decreases by an order of magnitude the quantity of observations needed for a given level of accuracy on the part of an estimate and is thus of significant interest for practical applications. 3 refs.
Sinharay, Sandip
2015-01-01
The maximum likelihood estimate (MLE) of the ability parameter of an item response theory model with known item parameters was proved to be asymptotically normally distributed under a set of regularity conditions for tests involving dichotomous items and a unidimensional ability parameter (Klauer, 1990; Lord, 1983). This article first considers…
Asymptotics for a resonance-counting function for potential scattering on cylinders
Christiansen, T.
2003-01-01
We study certain resonance-counting functions for potential scattering on infinite cylinders or half-cylinders. Under certain conditions on the potential, we obtain asymptotics of the counting functions, with an explicit formula for the constant appearing in the leading term.
Axisymmetric eddy current inspection of highly conducting thin layers via asymptotic models
Haddar, Houssem; Jiang, Zixian
2015-11-01
Thin copper deposits covering the steam generator tubes can blind eddy current probes in non-destructive testings of problematic faults and it is therefore important that they are identified. Existing methods based on shape reconstruction using eddy current signals encounter difficulties of high numerical costs due to the layer’s small thickness and high conductivity. In this article, we approximate the axisymmetric eddy current problem with some appropriate asymptotic models using effective transmission conditions representing the thin deposits. In these models, the geometrical information related to the deposit is transformed into parameter coefficients on a fictitious interface. A standard iterative inversion algorithm is then applied to the asymptotic models to reconstruct the thickness of the thin copper layers. Numerical tests both validating the asymptotic model and showing the benefits of the inversion procedure are provided.
Non-existence of asymptotically flat geons in (2 + 1) gravity
International Nuclear Information System (INIS)
Geons, small topological structures that exhibit particle properties such as charge and angular momentum without the presence of matter sources, have been extensively discussed in (3 + 1)-dimensional general relativity. Given the recent renewal of interest in (2 + 1) gravity, it is natural to ask whether or not the notion of geons extends to three dimensions. We prove here that, in contrast to the (3 + 1)-dimensional case, there are no (2 + 1)-dimensional asymptotically flat solutions of the vacuum Einstein or Einstein-Maxwell equations containing geons. In contrast, (2 + 1)-dimensional asymptotically anti-de Sitter spacetimes can indeed contain geons; however, the geons are always hidden behind a single black hole horizon. We also prove sufficient conditions for the non-existence of (2 + 1)-dimensional asymptotically flat geon-containing solutions.
Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis
Vetyukov, Yury
2014-01-01
This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...
Barnich, Glenn; Troessaert, Cédric; Tempo, David; Troncoso, Ricardo
2016-04-01
The theory of massive gravity proposed by Bergshoeff, Hohm and Townsend is considered in the special case of the pure irreducibly fourth-order quadratic Lagrangian. It is shown that the asymptotically locally flat black holes of this theory can be consistently deformed to "black flowers" that are no longer spherically symmetric. Moreover, we construct radiating spacetimes settling down to these black flowers in the far future. The generic case can be shown to fit within a relaxed set of asymptotic conditions as compared to the ones of general relativity at null infinity, while the asymptotic symmetries remain the same. Conserved charges as surface integrals at null infinity are constructed following a covariant approach, and their algebra represents BMS3 , but without central extensions. For solutions possessing an event horizon, we derive the first law of thermodynamics from these surface integrals.
AdS-like spectrum of the asymptotically G\\"odel space-times
Konoplya, R A
2011-01-01
A black hole immersed in a rotating Universe, described by the Gimon-Hashimoto solution, is tested on stability against scalar field perturbations. Unlike the previous studies on perturbations of this solution, which dealt only with the limit of slow Universe rotation j, we managed to separate variables in the perturbation equation for the general case of arbitrary rotation. This leads to qualitatively different dynamics of perturbations, because the exact effective potential does not allow for Schwarzschild-like asymptotic of the wave function in the form of purely outgoing waves. The Dirichlet boundary conditions are allowed instead, which result in a totally different spectrum of asymptotically G\\"odel black holes: the spectrum of quasinormal frequencies is similar to the spectrum of asymptotically anti-de Sitter black holes. At large and intermediate overtones N, the spectrum is equidistant in N. In the limit of small black holes, quasinormal modes (QNMs) approach the normal modes of the empty G\\"odel spa...
ASYMPTOTIC STABILITY OF RUNGE-KUTTA METHODS FOR THE PANTOGRAPH EQUATIONS
Institute of Scientific and Technical Information of China (English)
Jing-jun Zhao; Wan-rong Cao; Ming-zhu Liu
2004-01-01
This paper considers the asymptotic stability analysis of both exact and numericalsolutions of the following neutral delay differential equation with pantograph delay.{x′(t)+Bx(t)+Cx′(qt)+Dx(qt)=0, t>0,x(0)=x0,where B, C, D ∈ Cd×d, q ∈ (0, 1), and B is regular. After transforming the above equation to non-automatic neutral equation with constant delay, we determine sufficient conditions for the asymptotic stability of the zero solution. Furthermore, we focus on the asymptotic stability behavior of Runge-Kutta method with variable stepsize. It is proved that a Lstable Runge-Kutta method can preserve the above-mentioned stability properties.
Chiral symmetry breaking in asymptotically free and non-asymptotically free gauge theories
International Nuclear Information System (INIS)
An essential distinction in the realization of the PCAC-dynamics in vector-like asymptotically free and non-asymptotically free (with a non-trival ultraviolet stable fixed point) gauge theories is revealed. For the latter theories an analytical expression for the condensate is obtained in the two-loop approximation and the arguments in support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed
International Nuclear Information System (INIS)
We describe a practical implementation for finding parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations based on Korenevskij and Mitropolskij's sufficient condition and our sufficient conditions. Numerical results show that all of these sufficient conditions are crucial in the implementation. (author)
Asymptotic freedom in Horava-Lifshitz gravity
D'Odorico, Giulio; Schutten, Marrit
2014-01-01
We use the Wetterich equation for foliated spacetimes to study the RG flow of projectable Horava-Lifshitz gravity coupled to n Lifshitz scalars. Using novel results for anisotropic heat kernels, the matter-induced beta functions for the gravitational couplings are computed explicitly. The RG flow exhibits an UV attractive anisotropic Gaussian fixed point where Newton's constant vanishes and the extra scalar mode decouples. This fixed point ensures that the theory is asymptotically free in the large-n expansion, indicating that projectable Horava-Lifshitz gravity is perturbatively renormalizable. Notably, the fundamental fixed point action does not obey detailed balance.
An Asymptotically Free Phi4 Theory
Huang, Kerson
1993-01-01
The Phi4 theory in 4-epsilon dimensions has two fixed points, which coincide in the limit epsilon->0. One is a Gaussian UV fixed point, and the other a non-trivial IR fixed point. They lead to two different continuum field theories. The commonly adopted IR theory is ``trivial,'' behaves like perturbation theory, and suggests an upper bound on the Higgs boson mass. The UV theory is asymptotically free, and does not impose a bound on the Higgs mass. The UV continuum limit can also be reached in...
On the rate of asymptotic eigenvalue degeneracy
International Nuclear Information System (INIS)
The gap between asymptotically degenerate eigenvalues of onedimensional Schroedinger operators is estimated. The procedure is illustrated for two examples, one where the solutions of Schroedinger's equation are explicitly known and one where they are not. For the latter case a comparison theorem for ordinary differential equationsis required. An incidental result is that a semiclassical (W-K-B) method gives a much better approximation to the logarithmic derivative of a wave-function than to the wave-funtion itself; explicit error-bounds for the logarithmic derivative are given. (orig.)
Asymptotic behaviour of exclusive processes in QCD
International Nuclear Information System (INIS)
The main ideas, methods and results in the investigation of the asymptotic behaviour of exclusive processes are reviewed. We discuss power behaviour and its dependence on hadron quantum numbers, logarithmic corrections and properties of nonperturbative hadronic wave functions. Applications to meson and baryon form factors, strong, electromagnetic and weak decays of heavy mesons, elastic scattering, threshold behaviour of inclusive structure functions, etc., are described. Comparison of theoretical predictions with experimental data is made whenever possible. The review may be of interest to theoreticians, experimentalists and students specializing in elementary particle physics. The experts in this field can also find new results (nonleading logarithms, higher twist processes, novel applications, etc.). (orig.)
Asymptotic Performance for Delayed Exponential Process
Boyer, Remy; Abed-Meraim, Karim
2007-01-01
The damped and delayed sinusoidal (DDS) model can be defined as the sum of sinusoids whose waveforms can be damped and delayed. This model is suitable for compactly modeling short time events. This property is closely related to its ability to reduce the time-support of each sinusoidal component. In this correspondence, we derive exact and approximate asymptotic Cramér–Rao bounds (CRBs) for the DDS model. This analysis shows that this model has better, or at least similar, theoretical perform...
Large Degree Asymptotics of Generalized Bessel Polynomials
López, J. L.; Temme, Nico
2011-01-01
Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in the $z-$plane. New forms of expansions in terms of elementary functions valid in sectors not containing the turning points $z=\\pm i/n$ are derived, and a new expansion in terms of modified Bessel fu...
The asymptotics of group Russian roulette
van de Brug, Tim; Kager, Wouter; Meester, Ronald
2015-01-01
We study the group Russian roulette problem, also known as the shooting problem, defined as follows. We have $n$ armed people in a room. At each chime of a clock, everyone shoots a random other person. The persons shot fall dead and the survivors shoot again at the next chime. Eventually, either everyone is dead or there is a single survivor. We prove that the probability $p_n$ of having no survivors does not converge as $n\\to\\infty$, and becomes asymptotically periodic and continuous on the ...
Directory of Open Access Journals (Sweden)
Zhihe Jin
2011-12-01
Full Text Available This work investigates transient heat conduction in a functionally graded plate (FGM plate subjected to gradual cooling/heating at its boundaries. The thermal properties of the FGM are assumed to be continuous and piecewise differentiable functions of the coordinate in the plate thickness direction. A linear ramp function describes the cooling/heating rates at the plate boundaries. A multi-layered material model and Laplace transform are employed to obtain the transformed temperatures at the interfaces between the layers. An asymptotic analysis and an integration technique are then used to obtain a closed form asymptotic solution of the temperature field in the FGM plate for short times. The thermal stress intensity factor (TSIF for an edge crack in the FGM plate calculated based on the asymptotic temperature solution shows that the asymptotic solution can capture the peak TSIFs under the finite cooling rate conditions.
Asymptotically AdS spacetimes with a timelike Kasner singularity
Ren, Jie
2016-07-01
Exact solutions to Einstein's equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.
Asymptotic Stability of Interconnected Passive Non-Linear Systems
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
Asymptotic behaviour of the Weyl tensor in higher dimensions
Ortaggio, Marcello
2014-01-01
We determine the leading order fall-off behaviour of the Weyl tensor in higher dimensional Einstein spacetimes (with and without a cosmological constant) as one approaches infinity along a congruence of null geodesics. The null congruence is assumed to "expand" in all directions near infinity (but it is otherwise generic), which includes in particular asymptotically flat spacetimes. In contrast to the well-known four-dimensional peeling property, the fall-off rate of various Weyl components depends substantially on the chosen boundary conditions, and is also influenced by the presence of a cosmological constant. The leading component is always algebraically special, but in various cases it can be of type N, III or II.
Asymptotic behaviour of Maxwell fields in higher dimensions
Ortaggio, Marcello
2014-01-01
We study the fall-off behaviour of test electromagnetic fields in higher dimensions as one approaches infinity along a congruence of "expanding" null geodesics. The considered backgrounds are Einstein spacetimes including, in particular, (asymptotically) flat and (anti-)de Sitter spacetimes. Various possible boundary conditions result in different characteristic fall-offs, in which the leading component can be of any algebraic type (N, II or G). In particular, the peeling-off of radiative fields F=Nr^{1-n/2}+Gr^{-n/2}+... differs from the standard four-dimensional one (instead it qualitatively resembles the recently determined behaviour of the Weyl tensor in higher dimensions). General p-form fields are also briefly discussed. In even n dimensions, the special case p=n/2 displays unique properties and peels off in the "standard way" as F=Nr^{1-n/2}+IIr^{-n/2}+.... A few explicit examples are mentioned.
Pólya distribution and its asymptotics in nucleation theory
Dubrovskii, V. G.
2014-02-01
A model of condensation-decay rate constants that are linear with respect to the number of monomers in the nucleus is considered. In a particular case of stable growth, this model leads to an exact solution of discrete kinetic equations of the theory of heterogeneous nucleation in the form of the Pólya distribution function. An asymptotic solution in the region of large nucleus sizes that satisfies the normalization condition and provides correct mean nucleus size has been found. It is shown that, in terms of the logarithmic invariant size, the obtained distribution has a universal time-independent form. The obtained solution, being more general than the double-exponent distribution used previously, describes both Gaussian and asymmetric distributions depending on the rate constant of condensation on a bare core. The obtained results are useful for modeling processes in some systems, in particular, the growth of linear chains, two-dimensional clusters, and filamentary nanocrystals.
Asymptotic Behavior of an Elastic Satellite with Internal Friction
Energy Technology Data Exchange (ETDEWEB)
Haus, E., E-mail: emanuele.haus@unina.it [Università di Napoli Federico II Via Cintia, Dipartimento di Matematica e Applicazioni R. Caccioppoli (Italy); Bambusi, D., E-mail: dario.bambusi@unimi.it [Università degli Studi di Milano, DIpartimento di Matematica F. Enriques (Italy)
2015-12-15
We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group.
Asymptotic Behavior of an Elastic Satellite with Internal Friction
International Nuclear Information System (INIS)
We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group
Lattice Quantum Gravity and Asymptotic Safety
Laiho, J; Coumbe, D; Du, D; Neelakanta, J T
2016-01-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we identify the target symmetry as the Hamiltonian canonical symmetry, which is closely related to, but not identical to, four-dimensional diffeomorphism invariance. After introducing and fine-tuning a non-trivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3/2, a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue tha...
Asymptotic behaviour of electro-$\\Lambda$ spacetimes
Saw, Vee-Liem
2016-01-01
We derive the asymptotic solutions for vacuum spacetimes with non-zero cosmological constant $\\Lambda$ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with $\\Lambda=0$. Using these asymptotic solutions, we discuss the mass-loss of an isolated electro-gravitating system with cosmological constant. In a universe with $\\Lambda>0$, the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: 1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. 2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike $\\mathcal{I}$ and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with the Bondi mass-loss formula in any un...
Asymptotic properties of quantum Markov chains
International Nuclear Information System (INIS)
The asymptotic dynamics of discrete quantum Markov chains generated by the most general physically relevant quantum operations is investigated. It is shown that it is confined to an attractor space in which the resulting quantum Markov chain is diagonalizable. A construction procedure of a basis of this attractor space and its associated dual basis of 1-forms is presented. It is applicable whenever a strictly positive quantum state exists which is contracted or left invariant by the generating quantum operation. Moreover, algebraic relations between the attractor space and Kraus operators involved in the definition of a quantum Markov chain are derived. This construction is not only expected to offer significant computational advantages in cases in which the dimension of the Hilbert space is large and the dimension of the attractor space is small, but it also sheds new light onto the relation between the asymptotic dynamics of discrete quantum Markov chains and fixed points of their generating quantum operations. Finally, we show that without any restriction our construction applies to all initial states whose support belongs to the so-called recurrent subspace. (paper)
Asymptotically Lifshitz brane-world black holes
Energy Technology Data Exchange (ETDEWEB)
Ranjbar, Arash, E-mail: a_ranjbar@sbu.ac.ir; Sepangi, Hamid Reza, E-mail: hr-sepangi@sbu.ac.ir; Shahidi, Shahab, E-mail: s_shahidi@sbu.ac.ir
2012-12-15
We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: Black-Right-Pointing-Pointer Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. Black-Right-Pointing-Pointer Studying the thermodynamical behavior of asymptotically Lifshitz black holes. Black-Right-Pointing-Pointer Showing that the entropy imposes the critical exponent z to be bounded from above. Black-Right-Pointing-Pointer Discussing the phase transition for different spatial topologies.
Vacuum polarization in asymptotically Lifshitz black holes
Quinta, Gonçalo M.; Flachi, Antonino; Lemos, José P. S.
2016-06-01
There has been considerable interest in applying the gauge-gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed, focused on incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes and, to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, nonminimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti-de Sitter black holes. The basics are similar to previous calculations; however, in the Lifshitz case, one needs to extend the previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulas are shown to reduce to the anti-de Sitter (AdS) case studied before once the value of the dynamical exponent is set to unity and the metric functions are accordingly chosen. The analytical results we present are general and can be applied to a variety of cases, in fact, to all spherically symmetric Lifshitz black hole solutions. We also implement the numerical analysis choosing some known Lifshitz black hole solutions as illustration.
Vacuum polarization in asymptotically Lifshitz black holes
Quinta, Gonçalo M; Lemos, José P S
2016-01-01
There has been considerable interest in applying the gauge/gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed aiming at incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes, and to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, non-minimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti de Sitter black holes. The basics are similar to previous calculations, however in the Lifshitz case one needs to extend previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulae are shown to reduce to the AdS case studied before once the value of the dynamical exponent is set to...
Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations
Wu, Ruihua; Zou, Xiaoling; Wang, Ke
2015-03-01
This paper is concerned with a stochastic non-autonomous Lotka-Volterra predator-prey model with impulsive effects. The asymptotic properties are examined. Sufficient conditions for persistence and extinction are obtained, our results demonstrate that the impulse has important effects on the persistence and extinction of the species. We also show that the solution is stochastically ultimate bounded under some conditions. Finally, several simulation figures are introduced to confirm our main results.
Convergece Theorems for Finite Families of Asymptotically Quasi-Nonexpansive Mappings
Ali Bashir; Chidume CE
2007-01-01
Let be a real Banach space, a closed convex nonempty subset of , and asymptotically quasi-nonexpansive mappings with sequences (resp.) satisfying as , and . Let be a sequence in . Define a sequence by , , , , , . Let . Necessary and sufficient conditions for a strong convergence of the sequence to a common fixed point of the family are proved. Under some appropriate conditions, strong and weak convergence theorems are also proved.
Yutian Zhang; Yuanhong Guan
2013-01-01
We employ the new method of fixed point theory to study the stability of a class of impulsive cellular neural networks with infinite delays. Some novel and concise sufficient conditions are presented ensuring the existence and uniqueness of solution and the asymptotic stability of trivial equilibrium at the same time. These conditions are easily checked and do not require the boundedness and differentiability of delays.
Asymptotic analysis of the Nörlund and Stirling polynomials
Directory of Open Access Journals (Sweden)
Mark Daniel Ward
2012-04-01
Full Text Available We provide a full asymptotic analysis of the N{\\"o}rlund polynomials and Stirling polynomials. We give a general asymptotic expansion---to any desired degree of accuracy---when the parameter is not an integer. We use singularity analysis, Hankel contours, and transfer theory. This investigation was motivated by a need for such a complete asymptotic description, with parameter 1/2, during this author's recent solution of Wilf's 3rd (previously Unsolved Problem.
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
On the asymptotic methods for nuclear collective models
Gheorghe, A. C.; Raduta, A. A.
2009-01-01
Contractions of orthogonal groups to Euclidean groups are applied to analytic descriptions of nuclear quantum phase transitions. The semiclassical asymptotic of multipole collective Hamiltonians are also investigated.
ASYMPTOTIC EXPANSIONS OF ZEROS FOR KRAWTCHOUK POLYNOMIALS WITH ERROR BOUNDS
Institute of Scientific and Technical Information of China (English)
ZHU Xiao-feng; LI Xiu-chun
2006-01-01
Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds are discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.
Asymptotic variance of grey-scale surface area estimators
DEFF Research Database (Denmark)
Svane, Anne Marie
Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting in a...... general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....
Asymptotic stability of Riemann waves for conservation laws
Chen, G.-Q.; Frid, H.; Marta
We are concerned with the asymptotic behavior of entropy solutions of conservation laws. A new notion about the asymptotic stability of Riemann solutions is introduced, and corresponding analytical frameworks are developed. The correlation between the asymptotic problem and many important topics in conservation laws and nonlinear analysis is recognized and analyzed, such as zero dissipation limits, uniqueness of entropy solutions, entropy analysis, and divergence-measure fields in L∞ . Then this theory is applied to understanding the asymptotic behavior of entropy solutions for many important systems of conservation laws.
Asymptotic Behaviour of Neutron Transport Processes
International Nuclear Information System (INIS)
The solution of the initial-value problem of the time-dependent linear Boltzmann equation corresponds to a semigroup of linear transformations: Initial-value problem: δn/δt = An n(x, v, 0) = f(x, v) Solution: n(x, v, t) = Ttf(x, v) Tt = eAt Lehner and Wing were the first to use a Laplace transform technique for the study of the asymptotic behaviour of the solution. Mika, Bednarz, Albertoni, Kaper et al. extended this technique to more general problems. The main task is always to find the spectrum of the Boltzmann operator A. Asymptotic behaviour is closely related to the point spectrum of A , if the latter exists. This paper uses a completely new approach, mean ergodic theory, the study of asymptotic properties of semigroups of bounded transformations in a Banach space. Two types of function spaces are considered; (1) The Banach space Ltm of functions integrable on the six-dimensional μ- space of statistical mechanics. The Banach norm ||f|| equals the total number of neutrons in the system; (2) The Hilbert space L2m of functions square integrable on the μ-space. The inner product (f, g) equals the totalNcount rate of the neutron distribution f due to an array of neutron detectors described by the weight function g of the space dual to that of all neutron distributions. Excluding the case of a super-critical system, the semigroup generated by the Boltzmann operator A is uniformly bounded || Tt II K, t ≥ 0. The splitting theorem of mean ergodic theory can be applied to T t . The initial distribution is split uniquely into a sum of a reversible and a flight vector. Now a special property of the semigroup generated by the Boltzmann operator A enters: there exists a characteristic time t0 > 0 depending only on the geometry and chemistry of the system such that Ttf(x,v) > 0 for all (x, v) , for all f and all t ≥ 0. From this property it is possible to deduce that an equilibrium distribution exists and is unique. Taking the Hilbert space L2m criticality of a
Narski Jacek; Negulescu Claudia; Maldarella Dario; Degond Pierre; Deluzet Fabrice; Parisot Martin
2011-01-01
International audience In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, ellip-tic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed in this ...
Comparison between various notions of conserved charges in asymptotically AdS spacetimes
International Nuclear Information System (INIS)
We derive Hamiltonian generators of asymptotic symmetries for general relativity with asymptotic AdS boundary conditions using the 'covariant phase space' method of Wald et al. We then compare our results with other definitions that have been proposed in the literature. We find that our definition agrees with that proposed by Ashtekar et al, with the spinor definition, and with the background-dependent definition of Henneaux and Teitelboim. Our definition disagrees with that obtained from the 'counterterm subtraction method', but the difference is found to consist only of a 'constant offset' that is determined entirely in terms of the boundary metric. We finally discuss and justify our boundary conditions by a linear perturbation analysis, and we comment on generalizations of our boundary conditions, as well as inclusion of matter fields
Asymptotic Behaviors of the Solutions to Scalar Viscous Conservation Laws on Bounded Interval
Institute of Scientific and Technical Information of China (English)
Quansen Jiu; Tao Pan
2003-01-01
This paper concerns the asymptotic behaviors of the solutions to the initial-boundary value problem for scalar viscous conservations laws ut + f(u)x = uxx on [0, 1], with the boundary condition u(0, t) =u_,u(1,t) = u+ and the initial data u(x, 0) = u0(x), where u_ ≠ u+ and f is a given function satisfying f″ (u) ＞ 0 for u under consideration. By means of energy estimates method and under some more regular conditions on the initial data, both the global existence and the asymptotic behavior are obtained. When u_ ＜ u+, which corresponds to rarefaction waves in inviscid conservation laws, no smallness conditions are needed. While for u_ ＞ u+, which corresponds to shock waves in inviscid conservation laws, it is established for weak shock waves, which means that |u_ - u+| is small. Moreover, exponential decay rates are both given.
Introduction to Asymptotic Giant Branch Stars
El Eid, Mounib F.
2016-04-01
A brief introduction on the main characteristics of the asymptotic giant branch stars (briefly: AGB) is presented. We describe a link to observations and outline basic features of theoretical modeling of these important evolutionary phases of stars. The most important aspects of the AGB stars is not only because they are the progenitors of white dwarfs, but also they represent the site of almost half of the heavy element formation beyond iron in the galaxy. These elements and their isotopes are produced by the s-process nucleosynthesis, which is a neutron capture process competing with the β- radioactive decay. The neutron source is mainly due to the reaction 13C(α,n)16O reaction. It is still a challenging problem to obtain the right amount of 13 C that can lead to s-process abundances compatible with observation. Some ideas are presented in this context.
Chiral fermions in asymptotically safe quantum gravity
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Quantum defect theory and asymptotic methods
International Nuclear Information System (INIS)
It is shown that quantum defect theory provides a basis for the development of various analytical methods for the examination of electron-ion collision phenomena, including di-electronic recombination. Its use in conjuction with ab initio calculations is shown to be restricted by problems which arise from the presence of long-range non-Coulomb potentials. Empirical fitting to some formulae can be efficient in the use of computer time but extravagant in the use of person time. Calculations at a large number of energy points which make no use of analytical formulae for resonance structures may be made less extravagant in computer time by the development of more efficient asymptotic methods. (U.K.)
Asymptotic safety, singularities, and gravitational collapse
International Nuclear Information System (INIS)
Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.
Asymptotically Honest Confidence Regions for High Dimensional
DEFF Research Database (Denmark)
Caner, Mehmet; Kock, Anders Bredahl
While variable selection and oracle inequalities for the estimation and prediction error have received considerable attention in the literature on high-dimensional models, very little work has been done in the area of testing and construction of confidence bands in high-dimensional models. However......, we develop an oracle inequality for the conservative Lasso only assuming the existence of a certain number of moments. This is done by means of the Marcinkiewicz-Zygmund inequality which in our context provides sharper bounds than Nemirovski's inequality. As opposed to van de Geer et al. (2014) we...... allow for heteroskedastic non-subgaussian error terms and covariates. Next, we desparsify the conservative Lasso estimator and derive the asymptotic distribution of tests involving an increasing number of parameters. As a stepping stone towards this, we also provide a feasible uniformly consistent...
Asymptotic theory of quantum statistical inference
Hayashi, Masahito
Part I: Hypothesis Testing: Introduction to Part I -- Strong Converse and Stein's lemma in quantum hypothesis testing/Tomohiro Ogawa and Hiroshi Nagaoka -- The proper formula for relative entropy and its asymptotics in quantum probability/Fumio Hiai and Dénes Petz -- Strong Converse theorems in Quantum Information Theory/Hiroshi Nagaoka -- Asymptotics of quantum relative entropy from a representation theoretical viewpoint/Masahito Hayashi -- Quantum birthday problems: geometrical aspects of Quantum Random Coding/Akio Fujiwara -- Part II: Quantum Cramèr-Rao Bound in Mixed States Model: Introduction to Part II -- A new approach to Cramèr-Rao Bounds for quantum state estimation/Hiroshi Nagaoka -- On Fisher information of Quantum Statistical Models/Hiroshi Nagaoka -- On the parameter estimation problem for Quantum Statistical Models/Hiroshi Nagaoka -- A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to Quantum Estimation Theory/Hiroshi Nagaoka -- A linear programming approach to Attainable Cramèr-Rao Type Bounds/Masahito Hayashi -- Statistical model with measurement degree of freedom and quantum physics/Masahito Hayashi and Keiji Matsumoto -- Asymptotic Quantum Theory for the Thermal States Family/Masahito Hayashi -- State estimation for large ensembles/Richard D. Gill and Serge Massar -- Part III: Quantum Cramèr-Rao Bound in Pure States Model: Introduction to Part III-- Quantum Fisher Metric and estimation for Pure State Models/Akio Fujiwara and Hiroshi Nagaoka -- Geometry of Quantum Estimation Theory/Akio Fujiwara -- An estimation theoretical characterization of coherent states/Akio Fujiwara and Hiroshi Nagaoka -- A geometrical approach to Quantum Estimation Theory/Keiji Matsumoto -- Part IV: Group symmetric approach to Pure States Model: Introduction to Part IV -- Optimal extraction of information from finite quantum ensembles/Serge Massar and Sandu Popescu -- Asymptotic Estimation Theory for a Finite-Dimensional Pure
Asymptotic linear stability of solitary water waves
Pego, Robert L
2010-01-01
We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions of the linearized equations decay at an exponential rate in an energy norm with exponential weight translated with the wave profile. This holds for all solutions with no component in (i.e., symplectically orthogonal to) the two-dimensional neutral-mode space arising from infinitesimal translational and wave-speed variation of solitary waves. We also obtain spectral stability in an unweighted energy norm.
Black holes in Asymptotically Safe Gravity
Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca
2015-01-01
Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.
Grassmann scalar fields and asymptotic freedom
International Nuclear Information System (INIS)
The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a φ4 model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the β-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction
Hydrodynamics, resurgence and trans-asymptotics
Basar, Gokce
2015-01-01
The second-order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost- invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the non-hydrodynamic modes that are exponentially suppressed at late times, analogous to the quasi-normal-modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semi-classical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these non-hydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with init...
Motion Parallax is Asymptotic to Binocular Disparity
Stroyan, Keith
2010-01-01
Researchers especially beginning with (Rogers & Graham, 1982) have noticed important psychophysical and experimental similarities between the neurologically different motion parallax and stereopsis cues. Their quantitative analysis relied primarily on the "disparity equivalence" approximation. In this article we show that retinal motion from lateral translation satisfies a strong ("asymptotic") approximation to binocular disparity. This precise mathematical similarity is also practical in the sense that it applies at normal viewing distances. The approximation is an extension to peripheral vision of (Cormac & Fox's 1985) well-known non-trig central vision approximation for binocular disparity. We hope our simple algebraic formula will be useful in analyzing experiments outside central vision where less precise approximations have led to a number of quantitative errors in the vision literature.
Asymptotic methods in mechanics of solids
Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi
2015-01-01
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...
Uniform asymptotic estimates of transition probabilities on combs
Bertacchi, Daniela; Zucca, Fabio
2000-01-01
We investigate the asymptotical behaviour of the transition probabilities of the simple random walk on the 2-comb. In particular we obtain space-time uniform asymptotical estimates which show the lack of symmetry of this walk better than local limit estimates. Our results also point out the impossibility of getting Jones-type non-Gaussian estimates.
Asymptotic analysis, Working Note No. 1: Basic concepts and definitions
Energy Technology Data Exchange (ETDEWEB)
Garbey, M. [Universite Claude Bernard Lyon 1, 69 - Villeurbanne (France). Lab. d`Analyse Numerique; Kaper, H.G. [Argonne National Lab., IL (United States)
1993-07-01
In this note we introduce the basic concepts of asymptotic analysis. After some comments of historical interest we begin by defining the order relations O, o, and O{sup {number_sign}}, which enable us to compare the asymptotic behavior of functions of a small positive parameter {epsilon} as {epsilon} {down_arrow} 0. Next, we introduce order functions, asymptotic sequences of order functions and more general gauge sets of order functions and define the concepts of an asymptotic approximation and an asymptotic expansion with respect to a given gauge set. This string of definitions culminates in the introduction of the concept of a regular asymptotic expansion, also known as a Poincare expansion, of a function f : (0, {epsilon}{sub o}) {yields} X, where X is a normed vector space of functions defined on a domain D {epsilon} R{sup N}. We conclude the note with the asymptotic analysis of an initial value problem whose solution is obtained in the form of a regular asymptotic expansion.
Asymptotic Formula for Quantum Harmonic Oscillator Tunneling Probabilities
Jadczyk, Arkadiusz
2015-10-01
Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.
Asymptotic formula for quantum harmonic oscillator tunneling probabilities
Jadczyk, Arkadiusz
2015-01-01
Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.
Asymptotic Hyperstability of Dynamic Systems with Point Delays
Directory of Open Access Journals (Sweden)
M. De la Sen
2005-01-01
Full Text Available It is proved that a linear time-invariant system with internal point delays is asymptotically hyperstable independent of the delays if an associate delay-free system is asymptotically hyperstable and the delayed dynamics are sufficiently small.
An asymptotic solution of large-N QCD
Directory of Open Access Journals (Sweden)
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
Strong Convergence Theorems for Mixed Typ e Asymptotically Nonexpansive Mappings
Institute of Scientific and Technical Information of China (English)
Wei Shi-long; Guo Wei-ping
2015-01-01
The purpose of this paper is to study a new two-step iterative scheme with mean errors of mixed type for two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings and prove strong convergence theorems for the new two-step iterative scheme in uniformly convex Banach spaces.
Einstein-Yang-Mills theory : I. Asymptotic symmetries
Barnich, Glenn
2013-01-01
Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four dimensional asymptotically flat case.
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.
2015-03-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Asymptotic size determines species abundance in the marine size spectrum
DEFF Research Database (Denmark)
Andersen, Ken Haste; Beyer, Jan
2006-01-01
The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory...
Asymptotic functions and their application in quantum theory
International Nuclear Information System (INIS)
An asymptotic function introduced as a limit for a certain class of successions has been determined. The basic properties of the functions are given: continuity, differentiability, integrability. The fields of application of the asymptotic functions in the quantum field theory are presented. The shortcomings and potentialities of further development of the theory are enumerated
Diversity-Multiplexing Tradeoff via Asymptotic Analysis of Large MIMO Systems
Loyka, Sergey
2007-01-01
Diversity-multiplexing tradeoff (DMT) presents a compact framework to compare various MIMO systems and channels in terms of the two main advantages they provide (i.e. high data rate and/or low error rate). This tradeoff was characterized asymptotically (SNR-> infinity) for i.i.d. Rayleigh fading channel by Zheng and Tse [1]. The asymptotic DMT overestimates the finite-SNR one [2]. In this paper, using the recent results on the asymptotic (in the number of antennas) outage capacity distribution, we derive and analyze the finite-SNR DMT for a broad class of channels (not necessarily Rayleigh fading). Based on this, we give the convergence conditions for the asymptotic DMT to be approached by the finite-SNR one. The multiplexing gain definition is shown to affect critically the convergence point: when the multiplexing gain is defined via the mean (ergodic) capacity, the convergence takes place at realistic SNR values. Furthermore, in this case the diversity gain can also be used to estimate the outage probabilit...
Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis
Hod, Shahar
2015-01-01
The spheroidal harmonics $S_{lm}(\\theta;c)$ have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues $\\{A_{lm}(c)\\}$ of these functions have been determined by many authors. However, it should be emphasized that all previous asymptotic analyzes were restricted either to the regime $m\\to\\infty$ with a fixed value of $c$, or to the complementary regime $|c|\\to\\infty$ with a fixed value of $m$. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both $m$ and $c$. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit $m\\to\\infty$ and $|c|\\to\\infty$ with a fixed $m/c$ ratio.
Asymptotics for Nonlinear Transformations of Fractionally Integrated Time Series
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The asymptotic theory for nonlinear transformations of fractionally integrated time series is developed. By the use of fractional Occupation Times Formula, various nonlinear functions of fractionally integrated series such as ARFIMA time series are studied, and the asymptotic distributions of the sample moments of such functions are obtained and analyzed. The transformations considered in this paper includes a variety of functions such as regular functions, integrable functions and asymptotically homogeneous functions that are often used in practical nonlinear econometric analysis. It is shown that the asymptotic theory of nonlinear transformations of original and normalized fractionally integrated processes is different from that of fractionally integrated processes, but is similar to the asymptotic theory of nonlinear transformations of integrated processes.
Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.
ASYMPTOTIC DECAY TOWARD RAREFACTION WAVE FOR A HYPERBOLIC-ELLIPTIC COUPLED SYSTEM ON HALF SPACE
Institute of Scientific and Technical Information of China (English)
Ruan Lizhi; Zhu Changjiang
2008-01-01
We consider the asymptotic behavior of solutions to a model of hyperbolicelliptic coupled system on the half-line R+=(0,∞),ut+uux+qx=0, -qxx+q+ux=0,with the Dirichlet boundary condition u(0,t)=0.S.Kawashima and Y.Tanaka [Kyushu J.Math.,58(2004),211-250]have shown that the solution to the corresponding Cauchy problem behaviors like rarefaction waves and obtained its convergence rate when u_＜u+.Our main concern in this paper is the boundary effect.In the case of null-Dirichlet boundary condition on u,asymptotic behavior of the solution(u,q)is proved to be rarefaction wave as t tends to infinity.Its convergence rate is also obtained by the standard L2-energy method and L1-estimate.It decays much lower than that of the corresponding Cauchy problem.
Zollanvari, Amin
2013-05-24
We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.
Directory of Open Access Journals (Sweden)
Wuneng Zhou
2014-01-01
Full Text Available The problem of almost sure (a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching is researched. Firstly, we proposed a new criterion of a.s. asymptotic stability for a general neutral-type stochastic differential equation which extends the existing results. Secondly, based upon this stability criterion, by making use of Lyapunov functional method and designing an adaptive controller, we obtained a condition of a.s. asymptotic adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching. The synchronization condition is expressed as linear matrix inequality which can be easily solved by Matlab. Finally, we introduced a numerical example to illustrate the effectiveness of the method and result obtained in this paper.
Guoping Xu; Harry Zheng
2010-01-01
In this paper we discuss the basket options valuation for a jump-diffusion model. The underlying asset prices follow some correlated local volatility diffusion processes with systematic jumps. We derive a forward partial integral differential equation (PIDE) for general stochastic processes and use the asymptotic expansion method to approximate the conditional expectation of the stochastic variance associated with the basket value process. The numerical tests show that the suggested method is...
Asymptotic Stability Analysis and Optimality Algorithm for Uncertain Neutral Systems with Saturation
Xinghua Liu
2014-01-01
The certain and uncertain neutral systems with time-delay and saturating actuator are considered in this paper. In order to analyse and optimize the system, auxiliary functions are presented based on additive decomposition approach and the relationship among them is discussed. As the novel stability criterion, two sufficient conditions are obtained for asymptotic stability of the neutral systems. Furthermore, the paper gives the stability analysis algorithm and optimality algorithm to optimiz...
Institute of Scientific and Technical Information of China (English)
Xu Rui(徐瑞); Chen Lansun(陈兰荪); M.A.J. Chaplain
2003-01-01
A delayed n-species nonautonomous Lotka-Volterra type competitive systemwithout dominating instantaneous negative feedback is investigated. By means of a suitableLyapunov functional, sufficient conditions are derived for the global asymptotic stability ofthe positive solutions of the system. As a corollary, it is shown that the global asymptoticstability of the positive solution is maintained provided that the delayed negative feedbacksdominate other interspecific interaction effects with delays and the delays are sufficientlysmall.
Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles
Abatangelo, L; Felli, V.
2015-01-01
We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymptotics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically some conjectures arising from numerical evidences in preexisting literature. The proof relies on an Almgren-t...
Zhou, H. Y.; Cho, Y. J.; Kang, S. M.
2007-01-01
Suppose that is a nonempty closed convex subset of a real uniformly convex and smooth Banach space with as a sunny nonexpansive retraction. Let be two weakly inward and asymptotically nonexpansive mappings with respect to with sequences , , respectively. Suppose that is a sequence in generated iteratively by , , for all , where , , and are three real sequences in for some which satisfy condition . Then, we have the following. (1) If one of and is completely continuous or demicomp...
Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays
Directory of Open Access Journals (Sweden)
Songtao Guo
2007-09-01
Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
A family of asymptotically stable control laws for flexible robots based on a passivity approach
Lanari, Leonardo; Wen, John T.
1991-01-01
A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility.
Asymptotic Stability of Solitons to Nonlinear Schrodinger Equations on Star Graphs
Li, Ze; Zhao, Lifeng
2015-01-01
In this paper, we prove the asymptotic stability of nonlinear Schrodiger equations on star graphs, which partially solves an open problem in D. Noja \\cite{DN}. The essential ingredient of our proof is the dispersive estimate for the linearized operator around the soliton with Kirchhoff boundary condition. In order to obtain the dispersive estimates, we use the Born's series technique and scattering theory for the linearized operator.
Delay-dependent asymptotic stability of a two-neuron system with different time delays
International Nuclear Information System (INIS)
In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results
ASYMPTOTIC BEHAVIOR OF MULTISTEP RUNGE-KUTTA METHODS FOR SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
张诚坚; 廖晓昕
2001-01-01
This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stability of onestep Runge-Kutta methods, we obtain that a multistep Runge-Kutta method for DDEs is stable iff the corresponding methods for ODEs is A-stable under suitable interpolation conditions.
Directory of Open Access Journals (Sweden)
Liang-cai Zhao
2012-01-01
Full Text Available The purpose of this paper is to introduce a class of total quasi-ϕ-asymptotically nonexpansive-nonself mappings and to study the strong convergence under a limit condition only in the framework of Banach spaces. As an application, we utilize our results to study the approximation problem of solution to a system of equilibrium problems. The results presented in the paper extend and improve the corresponding results announced by some authors recently.
The rate of convergence of some asymptotically chi-square distributed statistics by Stein's method
Gaunt, Robert E.; Reinert, Gesine
2016-01-01
We build on recent works on Stein's method for functions of multivariate normal random variables to derive bounds for the rate of convergence of some asymptotically chi-square distributed statistics. We obtain some general bounds and establish some simple sufficient conditions for convergence rates of order $n^{-1}$ for smooth test functions. These general bounds are applied to Friedman's statistic for comparing $r$ treatments across $n$ trials and the family of power divergence statistics fo...
On the Asymptotic of an Eigenvalue Problem with 2 Interior Singularities
Indian Academy of Sciences (India)
A Neamaty; S Haghaieghy
2009-11-01
In this paper we consider the linear differential equation of the form $$-y''(x)+q(x)y(x)= y(x),\\quad -∞ < a < x < b < ∞$$ where satisfies Dirichlet boundary conditions and is a real-valued function which has even number of singularities at $c_1,\\ldots,c_{2n}\\in(a, b)$. We will study the asymptotic eigenvalue near the singularity points.
Asymptotics of Entropy Rate in Special Families of Hidden Markov Chains
Han, Guangyue
2008-01-01
We derive an asymptotic formula for entropy rate of a hidden Markov chain around a "weak Black Hole". We also discuss applications of the asymptotic formula to the asymptotic behaviors of certain channels.
Infra-Red Fixed Points in an Asymptotically Non-Free Theory
Bando, Masako; Sato, Joe(Department of Physics, Saitama University, Shimo-Okubo, Sakura-ku, Saitama 355-8570, Japan); Yoshioka, Koichi
1997-01-01
We investigate the infrared fixed point structure in asymptotically free and asymptotically non-free theory. We find that the ratios of couplings converge strongly to their infrared fixed points in the asymptotically non-free theory.
Asymptotic state behaviour and its modeling for saturated sand
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A new double hardening elasto-plastic model is proposed in this paper based on the existing unified hardening model (UH model). By assuming that there is part coupling effect between the plastic volumetric strain and plastic shear strain, hardening parameters consisting of a coupled and an uncoupled components are adopted in this model. A unique feature of this model is that it can describe not only the conventional drained and undrained behaviors of soil, but also the stress-strain relationships of soil under partially drained conditions which can be volumetric compression or dilation. Adopting the asymptotic state concept, simple equations for estimating the limiting stress ratio under undrained or earth pressure at rest (i.e. K0) conditions are derived. The new model is relatively simple to be adopted in practice for two reasons. First, the same soil parameters as in Cam-clay model are used except the addition of one extra parameter, the stress ratio at the characteristic state. Second, all the parameters can be determined using conventional triaxial compression tests.
Gravitational fixed points and asymptotic safety from perturbation theory
International Nuclear Information System (INIS)
The fixed point structure of the renormalization flow in Einstein gravity and higher derivative gravity is investigated in terms of the background effective action. A refined perturbative framework is developed consisting of: use of a covariant operator regularization that keeps track of powerlike divergences, a non-minimal subtraction ansatz for the originally dimensionful couplings in combination with a 'Wilsonian' matching condition, and the construction of a one-loop effective action exactly gauge-independent on-shell in regularized form. Using this framework strictly positive fixed points for the dimensionless Newton constant gN and the cosmological constant λ can be identified already in one-loop perturbation theory. The renormalization flow is asymptotically safe with respect to the nontrivial fixed points in both cases. In Einstein gravity a residual gauge dependence of the fixed points is unavoidable while in higher derivative gravity both the fixed point and the flow equations are universal. Along this flow spectral positivity of the Hessians can be satisfied, thereby meeting an essential condition for a well-defined Euclidean field theory setting. Dependence on O(10) initial data is erased to accuracy 0.5% after O(100) units of the renormalization mass scale and the flow settles on a λ(gN) orbit.
Asymptotic Stability of High-dimensional Zakharov-Kuznetsov Solitons
Côte, Raphaël; Muñoz, Claudio; Pilod, Didier; Simpson, Gideon
2016-05-01
We prove that solitons (or solitary waves) of the Zakharov-Kuznetsov (ZK) equation, a physically relevant high dimensional generalization of the Korteweg-de Vries (KdV) equation appearing in Plasma Physics, and having mixed KdV and nonlinear Schrödinger (NLS) dynamics, are strongly asymptotically stable in the energy space. We also prove that the sum of well-arranged solitons is stable in the same space. Orbital stability of ZK solitons is well-known since the work of de Bouard [Proc R Soc Edinburgh 126:89-112, 1996]. Our proofs follow the ideas of Martel [SIAM J Math Anal 157:759-781, 2006] and Martel and Merle [Math Ann 341:391-427, 2008], applied for generalized KdV equations in one dimension. In particular, we extend to the high dimensional case several monotonicity properties for suitable half-portions of mass and energy; we also prove a new Liouville type property that characterizes ZK solitons, and a key Virial identity for the linear and nonlinear part of the ZK dynamics, obtained independently of the mixed KdV-NLS dynamics. This last Virial identity relies on a simple sign condition which is numerically tested for the two and three dimensional cases with no additional spectral assumptions required. Possible extensions to higher dimensions and different nonlinearities could be obtained after a suitable local well-posedness theory in the energy space, and the verification of a corresponding sign condition.
Eventually and asymptotically positive semigroups on Banach lattices
Daners, Daniel; Glück, Jochen; Kennedy, James B.
2016-09-01
We develop a theory of eventually positive C0-semigroups on Banach lattices, that is, of semigroups for which, for every positive initial value, the solution of the corresponding Cauchy problem becomes positive for large times. We give characterisations of such semigroups by means of spectral and resolvent properties of the corresponding generators, complementing existing results on spaces of continuous functions. This enables us to treat a range of new examples including the square of the Laplacian with Dirichlet boundary conditions, the bi-Laplacian on Lp-spaces, the Dirichlet-to-Neumann operator on L2 and the Laplacian with non-local boundary conditions on L2 within the one unified theory. We also introduce and analyse a weaker notion of eventual positivity which we call "asymptotic positivity", where trajectories associated with positive initial data converge to the positive cone in the Banach lattice as t → ∞. This allows us to discuss further examples which do not fall within the above-mentioned framework, among them a network flow with non-positive mass transition and a certain delay differential equation.
Asymptotic dynamics of reflecting spiral waves.
Langham, Jacob; Biktasheva, Irina; Barkley, Dwight
2014-12-01
Resonantly forced spiral waves in excitable media drift in straight-line paths, their rotation centers behaving as pointlike objects moving along trajectories with a constant velocity. Interaction with medium boundaries alters this velocity and may often result in a reflection of the drift trajectory. Such reflections have diverse characteristics and are known to be highly nonspecular in general. In this context we apply the theory of response functions, which via numerically computable integrals, reduces the reaction-diffusion equations governing the whole excitable medium to the dynamics of just the rotation center and rotation phase of a spiral wave. Spiral reflection trajectories are computed by this method for both small- and large-core spiral waves in the Barkley model. Such calculations provide insight into the process of reflection as well as explanations for differences in trajectories across parameters, including the effects of incidence angle and forcing amplitude. Qualitative aspects of these results are preserved far beyond the asymptotic limit of weak boundary effects and slow resonant drift. PMID:25615159
Truly Minimal Unification Asymptotically Strong Panacea ?
Aulakh, Charanjit S
2002-01-01
We propose Susy GUTs have a UV {\\it{attractor}} at $E\\sim \\Lambda_{cU} \\sim 10^{17} GeV $ where gauge symmetries ``confine'' forming singlet condensates at scales $E\\sim\\Lambda_{cU}$. The length $l_U\\sim \\Lambda_{cU}^{-1}$ characterizies the {\\it{size}} of gauge non- singlet particles yielding a picture dual to the Dual Standard model of Vachaspati. This Asymptotic Slavery (AS) fixed point is driven by realistic Fermion Mass(FM) Higgs content which implies AS. This defines a dynamical morphogenetic scenario dependent on the dynamics of UV strong N=1 Susy Gauge-Chiral(SGC) theories. Such systems are already understood in the AF case but ignored in the AS case. Analogy to the AFSGC suggests the perturbative SM gauge group of the Grand Desert confines at GUT scales i.e GUT symmetry is ``non-restored''. Restoration before confinement and self-inconsistency are the two other (less likely) logical possibilities. Truly Minimal (TM) SU(5) and SO(10) models with matter and FM Higgs only are defined; AM (adjoint multip...
Qualitative and Asymptotic Theory of Detonations
Faria, Luiz
2014-11-09
Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.
Asymptotic Solutions of Serial Radial Fuel Shuffling
Directory of Open Access Journals (Sweden)
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
Asymptotic safety of gravity-matter systems
Meibohm, J.; Pawlowski, J. M.; Reichert, M.
2016-04-01
We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalization group setup put forward in [N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev. D 92, 121501 (2015).] for pure gravity. It includes full dynamical propagators and a genuine dynamical Newton's coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.
Directory of Open Access Journals (Sweden)
A. Ibeas
2008-12-01
Full Text Available This paper investigates the asymptotic stability of switched linear time-varying systems with constant point delays under not very stringent conditions on the matrix functions of parameters. Such conditions are their boundedness, the existence of bounded time derivatives almost everywhere, and small amplitudes of the appearing Dirac impulses where such derivatives do not exist. It is also assumed that the system matrix for zero delay is stable with some prescribed stability abscissa for all time in order to obtain sufficiency-type conditions of asymptotic stability dependent on the delay sizes. Alternatively, it is assumed that the auxiliary system matrix defined for all the delayed system matrices being zero is stable with prescribed stability abscissa for all time to obtain results for global asymptotic stability independent of the delays. A particular subset of the switching instants is the so-called set of reset instants where switching leads to the parameterization to reset to a value within a prescribed set.
Asymptotically minimax Bayesian predictive densities for multinomial models
Komaki, Fumiyasu
2011-01-01
One-step ahead prediction for the multinomial model is considered. The performance of a predictive density is evaluated by the average Kullback-Leibler divergence from the true density to the predictive density. Asymptotic approximations of risk functions of Bayesian predictive densities based on Dirichlet priors are obtained. It is shown that a Bayesian predictive density based on a specific Dirichlet prior is asymptotically minimax. The asymptotically minimax prior is different from known objective priors such as the Jeffreys prior or the uniform prior.
Asymptotic stability of solitons for the Benjamin-Ono equation
Kenig, C. E.; Martel, Y.
2008-01-01
In this paper, we prove the asymptotic stability of the family of solitons of the Benjamin-Ono equation in the energy space. The proof is based on a Liouville property for solutions close to the solitons for this equation, in the spirit of [Martel, Y. and Merle, F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157 (2001), 219-254], [Martel, Y. and Merle, F.: Asymptotic stability of solitons of the gKdV equations wit...
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
The asymptotic distribution of maxima in bivariate samples
Campbell, J. W.; Tsokos, C. P.
1973-01-01
The joint distribution (as n tends to infinity) of the maxima of a sample of n independent observations of a bivariate random variable (X,Y) is studied. A method is developed for deriving the asymptotic distribution of the maxima, assuming that X and Y possess asymptotic extreme-value distributions and that the probability element dF(x,y) can be expanded in a canonical series. Applied both to the bivariate normal distribution and to the bivariate gamma and compound correlated bivariate Poisson distributions, the method shows that maxima from all these distributions are asymptotically uncorrelated.
A note on asymptotic expansions for Markov chains using operator theory
DEFF Research Database (Denmark)
Jensen, J.L.
1987-01-01
We consider asymptotic expansions for sums Sn on the form Sn = fhook0(X0) + fhook(X1, X0) + ... + fhook(Xn, Xn-1), where Xi is a Markov chain. Under different ergodicity conditions on the Markov chain and certain conditional moment conditions on fhook(Xi, Xi-1), a simple representation of the cha...... characteristic function of Sn is obtained. The representation is in term of the maximal eigenvalue of the linear operator sending a function g(x) into the function x → E(g(Xi)exp[itfhook(Xi, x)]|Xi-1 = x). © 1987....
Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes
Holzegel, Gustav H
2012-01-01
We study the global dynamics of free massive scalar fields on general, globally stationary, asymptotically AdS black hole backgrounds with Dirichlet-, Neumann- or Robin- boundary conditions imposed on \\psi\\ at infinity. This class includes the regular Kerr-AdS black holes satisfying the Hawking Reall bound. We establish a suitable criterion for linear stability (in the sense of uniform boundedness) of \\psi\\ and demonstrate how the issue of stability can depend on the boundary condition prescribed. In particular, we obtain the existence of linear scalar hair for suitably chosen Robin boundary conditions.
Directory of Open Access Journals (Sweden)
Narski Jacek
2011-11-01
Full Text Available In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, elliptic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed in this paper is well suited for the simulation of a plasma in the presence of a magnetic field, whose intensity may vary considerably within the simulation domain.
ASYMPTOTICALLY OPTIMAL SUCCESSIVE OVERRELAXATION METHODS FOR SYSTEMS OF LINEAR EQUATIONS
Institute of Scientific and Technical Information of China (English)
Zhong-zhi Bai; Xue-bin Chi
2003-01-01
We present a class of asymptotically optimal successive overrelaxation methods forsolving the large sparse system of linear equations. Numerical computations show thatthese new methods are more efficient and robust than the classical successive overrelaxationmethod.
Research on temperature profiles of honeycomb regenerator with asymptotic analysis
Institute of Scientific and Technical Information of China (English)
AI Yuan-fang; MEI Chi; HUANG Guo-dong; JIANG Shao-jian; CHEN Hong-rong
2006-01-01
An asymptotic semi-analytical method for heat transfer in counter-flow honeycomb regenerator is proposed. By introducing a combined heat-transfer coefficient between the gas and solid phase, a heat transfer model is built based on the thin-walled assumption. The dimensionless thermal equation is deduced by considering solid heat conduction along the passage length. The asymptotic analysis is used for the small parameter of heat conduction term in equation. The first order asymptotic solution to temperature distribution under weak solid heat conduction is achieved after Laplace transformation through the multiple scales method and the symbolic manipulation function in MATLAB. Semi-analytical solutions agree with tests and finite-difference numerical results. It is proved possible for the asymptotic analysis to improve the effectiveness, economics and precision of thermal research on regenerator.
Asymptotic properties of difference schemes of maximum odd accuracy
International Nuclear Information System (INIS)
The asymptotic estimates of the difference Green function and difference step function are obtained for difference schemes of maximum odd accuracy (2k-1), k = 0(1nh-1), h is step of the net. The problem is reduced to construction of asymptotic expansion of some integrals. Principal estimates are obtained by application of the saddle point method. The saddle points determining asymptotic expansion are situated near finite radius circle and they become close to each other when h → 0. These asymptotic estimates give that the numerical solution convergences to the solution of the continuous problem with the rate 0(hsup(N+α) 1n1nh-1). The width of zone over which an isolated discontinuity spreads out is proportional to 1nh-1
Spectral Expansion for the Asymptotically Spectral Periodic Differential Operators
O. A. Veliev
2016-01-01
In this paper we investigate the spectral expansion for the asymptotically spectral differential operators generated in all real line by ordinary differential expression of arbitrary order with periodic matrix-valued coefficients
Asymptotic behavior of future-complete cosmological space-times
Anderson, M T
2004-01-01
This work discusses the apriori possible asymptotic behavior to the future, for (vacuum) space-times which are geodesically complete to the future and which admit a foliation by compact constant mean curvature Cauchy surfaces.
Asymptotic behavior of future-complete cosmological space-times
Anderson, Michael T.
2003-01-01
This work discusses the apriori possible asymptotic behavior to the future, for (vacuum) space-times which are geodesically complete to the future and which admit a foliation by compact constant mean curvature Cauchy surfaces.
Asymptotic Safety of the CARTAN Induced Four-Fermion Interaction?
Mielke, Eckehard W.
2015-01-01
The difference between Einstein's general relativity and its Cartan extension is analyzed within the scenario of asymptotic safety. In particular, the four-fermion interaction is studied which distinguishes the Einstein-Cartan theory from its Riemannian limit.
Asymptotic behaviour of the number of the Eulerian circuits
Isaev, Mikhail
2011-01-01
We determine the asymptotic behaviour of the number of the Eulerian circuits in undirected simple graphs with large second eigenvalue of the Laplacian matrix (the algebraic connectivity). We also prove some new properties of the Laplacian matrix.
Robust methods and asymptotic theory in nonlinear econometrics
Bierens, Herman J
1981-01-01
This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...
Asymptotic distributions in the projection pursuit based canonical correlation analysis
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, associations between two sets of random variables based on the projection pursuit (PP) method are studied. The asymptotic normal distributions of estimators of the PP based canonical correlations and weighting vectors are derived.
An asymptotic model in acoustics:acoustic drift equations
Vladimirov, Vladimir; Ilin, Konstantin
2013-01-01
A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.
Pseudo-random number generator based on asymptotic deterministic randomness
International Nuclear Information System (INIS)
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks
Spherical Cap Packing Asymptotics and Rank-Extreme Detection
Zhang, Kai
2015-01-01
We study the spherical cap packing problem with a probabilistic approach. Such probabilistic considerations result in an asymptotic sharp universal uniform bound on the maximal inner product between any set of unit vectors and a stochastically independent uniformly distributed unit vector. When the set of unit vectors are themselves independently uniformly distributed, we further develop the extreme value distribution limit of the maximal inner product, which characterizes its uncertainty around the bound. As applications of the above asymptotic results, we derive (1) an asymptotic sharp universal uniform bound on the maximal spurious correlation, as well as its uniform convergence in distribution when the explanatory variables are independently Gaussian distributed; and (2) an asymptotic sharp universal bound on the maximum norm of a low-rank elliptically distributed vector, as well as related limiting distributions. With these results, we develop a fast detection method for a low-rank structure in high-dime...
Asymptotics for the Covariance of the Airy2 Process
Shinault, Gregory; Tracy, Craig A.
2011-04-01
In this paper we compute some of the higher order terms in the asymptotic behavior of the two point function {P}({A}2(0)≤ s1,A2(t)≤ s2), extending the previous work of Adler and van Moerbeke (arXiv:math.PR/0302329; Ann. Probab. 33, 1326-1361, 2005) and Widom (J. Stat. Phys. 115, 1129-1134, 2004). We prove that it is possible to represent any order asymptotic approximation as a polynomial and integrals of the Painlevé II function q and its derivative q'. Further, for up to tenth order we give this asymptotic approximation as a linear combination of the Tracy-Widom GUE density function f 2 and its derivatives. As a corollary to this, the asymptotic covariance is expressed up to tenth order in terms of the moments of the Tracy-Widom GUE distribution.
Asymptotic analysis for Nakagami-m fading channels with relay selection
Zhong, Caijun
2011-06-01
In this paper, we analyze the asymptotic outage probability performance of both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems using partial relay selection and the "best" relay selection schemes for Nakagami-m fading channels. We derive their respective outage probability expressions in the asymptotic high signal-to-noise ratio (SNR) regime, from which the diversity order and coding gain are analyzed. In addition, we investigate the impact of power allocation between the source and relay terminals and derive the diversity-multiplexing tradeoff (DMT) for these relay selection systems. The theoretical findings suggest that partial relay selection can improve the diversity of the system and can achieve the same DMT as the "best" relay selection scheme under certain conditions. © 2011 IEEE.
Asymptotic behavior of a generalized Burgers' equation solutions on a finite interval
International Nuclear Information System (INIS)
The article is concerned with the study of asymptotic behavior of solutions of the Burgers equation and its generalizations with initial value — boundary problem on a finite interval, with constant boundary conditions. Since these equations take a dissipation into account, it is naturally to presuppose that any initial profile will evolve to an invariant time-independent solution with the same boundary values. Yet the answer happens to be slightly more complex. There are three possibilities: the initial profile may regularly decay to an invariant solution; or a Heaviside-type gap develops through a dispersive shock and multi-oscillations; or, exotically, an asymptotic limit is a 'frozen multi-oscillation' piecewise-differentiable solution, composed of different smooth invariant solutions
Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes
Holzegel, Gustav
2011-01-01
We initiate the study of the spherically symmetric Einstein-Klein-Gordon system in the presence of a negative cosmological constant, a model appearing frequently in the context of high-energy physics. Due to the lack of global hyperbolicity of the solutions, the natural formulation of dynamics is that of an initial boundary value problem, with boundary conditions imposed at null infinity. We prove a local well-posedness statement for this system, with the time of existence of the solutions depending only on an invariant H^2-type norm measuring the size of the Klein-Gordon field on the initial data. The proof requires the introduction of a renormalized system of equations and relies crucially on r-weighted estimates for the wave equation on asymptotically AdS spacetimes. The results provide the basis for our companion paper establishing the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this system.
Energy Technology Data Exchange (ETDEWEB)
Pantokratoras, Asterios [Democritus University of Thrace, Associate Professor of Fluid Mechanics, School of Engineering, Xanthi (Greece)
2009-05-15
A theoretical study of the effect of variable fluid properties on the Blasius and Sakiadis flow with uniform suction at the asymptotic state is presented in this paper. The investigation concerns air and water taking into account the variation of their physical properties with temperature. Velocity and temperature profiles are presented as well as values of the displacement thickness, momentum thickness, shape factor, wall shear stress and Nusselt number for different temperatures of the plate and the ambient fluid. It is found that the nondimensional displacement thickness, momentum thickness, shape factor, absolute wall shear stress and Nusselt number are identical in both Blasius and Sakiadib flow at the asymptotic state for a fluid with constant properties. The same is valid for any fluid with variable properties if the temperature boundary conditions are the same in Blasius and Sakiadis flow. (orig.)
Directory of Open Access Journals (Sweden)
Gurucharan Singh Saluja
2010-01-01
Full Text Available In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.
Directory of Open Access Journals (Sweden)
Yazheng Dang
2013-01-01
Full Text Available Inspired by the Moudafi (2010, we propose an algorithm for solving the split common fixed-point problem for a wide class of asymptotically quasi-nonexpansive operators and the weak and strong convergence of the algorithm are shown under some suitable conditions in Hilbert spaces. The algorithm and its convergence results improve and develop previous results for split feasibility problems.
Asymptotic Method for Cladding Stress Evaluation in PCMI
International Nuclear Information System (INIS)
A PCMI (Pellet Cladding Mechanical Interaction) failure was first reported in the GETR (General Electric Test Reactor) at Vacellitos in 1963, and such failures are still occurring. Since the high stress values in the cladding tube has been of a crucial concern in PCMI studies, there have been many researches on the stress analysis of a cladding tube pressed by a pellet. Typical works can be found in some references. It has often been assumed, however, that the cracks in the pellet were equally spaced and the pellet was a rigid body. In addition, the friction coefficient was arbitrarily chosen so that a slipping between the pellets and cladding tube could not be logically defined. Moreover, the stress intensification due to the sharp edge of a pellet fragment has never been realistically considered. These problems above drove us to launch a framework of a PCMI study particularly on stress analysis technology to improve the present analysis method incorporating the actual PCMI conditions such as the stress intensification, arbitrary distribution of the pellet cracks, material properties (esp. pellet) and slipping behavior of the pellet/cladding interface. As a first step of this work, this paper introduces an asymptotic method that was originally developed for a stress analysis in the vicinity of a sharp notch of a homogeneous body. The intrinsic reason for applying this method is to simulate the stress singularity that is expected to take place at the sharp edge of a pellet fragment due to cracking during irradiation. As a first attempt of this work, an eigenvalue problem is formulated in the case of adhered contact, and the generalized stress intensity factors are defined and evaluated. Although some works obviously remain to be accomplished, for the present framework on the PCMI analysis (e. g., slipping behaviour, contact force etc.), it was addressed that the asymptotic method can produce the stress values that cause the cladding tube failure in PCMI more
Bulk viscous matter-dominated Universes: asymptotic properties
International Nuclear Information System (INIS)
By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics
Asymptotic theory of nonparametric regression estimates with censored data
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
For regression analysis, some useful information may have been lost when the responses are right censored. To estimate nonparametric functions, several estimates based on censored data have been proposed and their consistency and convergence rates have been studied in literature, but the optimal rates of global convergence have not been obtained yet. Because of the possible information loss, one may think that it is impossible for an estimate based on censored data to achieve the optimal rates of global convergence for nonparametric regression, which were established by Stone based on complete data. This paper constructs a regression spline estimate of a general nonparametric regression function based on right_censored response data, and proves, under some regularity conditions, that this estimate achieves the optimal rates of global convergence for nonparametric regression. Since the parameters for the nonparametric regression estimate have to be chosen based on a data driven criterion, we also obtain the asymptotic optimality of AIC, AICC, GCV, Cp and FPE criteria in the process of selecting the parameters.
Asymptotic Spreading Rate of Initially Compressible Jets: Experiment and Analysis
Zaman, K. B. M. Q.
1998-01-01
Experimental results for the spreading and centerline velocity decay rates for round, compressible jets, from a convergent and a convergent-divergent nozzle, are presented. The spreading rate is determined from the variation of streamwise mass flux obtained from Pitot probe surveys. Results for the far asymptotic region show that both spreading and centerline velocity decay rates, when nondimensionalized by parameters at the nozzle exit, decrease with increasing "jet Mach number" M(sub J). Dimensional analysis with the assumption of momentum conservation, together with compressible flow calculations for the conditions at the nozzle exit, predict this Mach number dependence well. The analysis also demonstrates that an increase in the "potential core length" of the jet occurring with increasing M(sub J), a commonly observed trend, is largely accounted for simply by the variations in the density and static pressure at the nozzle exit. The effect of decreasing mixing efficiency with increasing compressibility is inferred to contribute only partially to the latter trend.
Investigation of Eigenvalue Behavior in the Asymptotic Analysis of PCMI
International Nuclear Information System (INIS)
As a result, two eigenvalues, associated with the stress singularity at the contact edge, were produced. A finite element analysis technique to calculate the generalized stress intensity factors was also presented in these papers, which would be used as the calibration factors to evaluate the actual stresses when the pellet fragments expand the cladding in the PCMI. This analysis is further extended in this paper to accommodate a more realistic condition of the PCMI such as a frictional contact between two adjacent pellet fragments and a cladding tube. However, this yields a sophisticated behavior of the eigenvalues depending on the coefficient of friction (incorporating the direction of slipping of each fragment) as well as the angle of the pellet crack. Since the stress field of the cladding is directly determined from the eigenvalues, it is crucial to evalutae and investigate them to analyze the PCMI problem mechanistically, which is pursed in this paper. In the sequel to the previous work of an asymptotic analysis of a bonded contact between a wedge and a half plane (two bodies in contact), a frictional contact problem of three bodies mutually contacted is considered here to simulate a further actual contact configuration of a cracked pellet and a cladding tube in PCMI. The results are summarized as follows
Testing monotonicity of a hazard: asymptotic distribution theory
Groeneboom, Piet
2011-01-01
Two new test statistics are introduced to test the null hypotheses that the sampling distribution has an increasing hazard rate on a specified interval [0,a]. These statistics are empirical L_1-type distances between the isotonic estimates, which use the monotonicity constraint, and either the empirical distribution function or the empirical cumulative hazard. They measure the excursions of the empirical estimates with respect to the isotonic estimates, due to local non-monotonicity. Asymptotic normality of the test statistics, if the hazard is strictly increasing on [0,a], is established under mild conditions. This is done by first approximating the global empirical distance by an distance with respect to the underlying distribution function. The resulting integral is treated as sum of increasingly many local integrals to which a CLT can be applied. The behavior of the local integrals is determined by a canonical process: the difference between the stochastic process x -> W(x)+x^2 where W is standard two-sid...
Asymptotic normality through factorial cumulants and partitions identities
Bobecka, Konstancja; Lopez-Blazquez, Fernando; Rempala, Grzegorz; Wesolowski, Jacek
2011-01-01
In the paper we develop an approach to asymptotic normality through factorial cumulants. Factorial cumulants arise in the same manner from factorial moments, as (ordinary) cumulants from (ordinary) moments. Another tool we exploit is a new identity for "moments" of partitions of numbers. The general limiting result is then used to (re)derive asymptotic normality for several models including classical discrete distributions, occupancy problems in some generalized allocation schemes and two models related to negative multinomial distribution.
Theory of asymptotic operation. A summary of basic principles
Tkachov, Fyodor V.
1997-01-01
This summary of several talks given in 1990-1993 discusses the problem of asymptotic expansions of multiloop Feynman diagrams in masses and external momenta - a central problem in perturbative quantum field theory. Basic principles of the theory of asymptotic operation -- the most powerful tool for that purpose -- are discussed. Its connection with the conventional methods is explained (the BPHZ theory, the method of leading logarithmic approximation etc.). The problem of non-euclidean asympt...
Unified treatment of the asymptotics of asymmetric kernel density estimators
Hoffmann, Till; Jones, Nick S.
2015-01-01
We extend balloon and sample-smoothing estimators, two types of variable-bandwidth kernel density estimators, by a shift parameter and derive their asymptotic properties. Our approach facilitates the unified study of a wide range of density estimators which are subsumed under these two general classes of kernel density estimators. We demonstrate our method by deriving the asymptotic bias, variance, and mean (integrated) squared error of density estimators with gamma, log-normal, Birnbaum-Saun...
Global asymptotic stability for a class of nonlinear chemical equations
Anderson, David F.
2007-01-01
We consider a class of nonlinear differential equations that arises in the study of chemical reaction systems that are known to be locally asymptotically stable and prove that they are in fact globally asymptotically stable. More specifically, we will consider chemical reaction systems that are weakly reversible, have a deficiency of zero, and are equipped with mass action kinetics. We show that if for each $c \\in \\R_{> 0}^m$ the intersection of the stoichiometric compatibility class $c + S$ ...
An asymptotically exact theory of functionally graded piezoelectric shells
Le, Khanh Chau
2016-01-01
An asymptotically exact two-dimensional theory of functionally graded piezoelectric shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a functionally graded piezoceramic cylindrical shell with thickness polarization fully covered by electrodes and excited by a harmonic voltage is found.
The asymptotics of an amplitude for the 4-simplex
Barrett, John W.; Williams, Ruth M.
1998-01-01
An expression for the oscillatory part of an asymptotic formula for the relativistic spin network amplitude for a 4-simplex is given. The amplitude depends on specified areas for each two-dimensional face in the 4-simplex. The asymptotic formula has a contribution from each flat Euclidean metric on the 4-simplex which agrees with the given areas. The oscillatory part of each contribution is determined by the Regge calculus Einstein action for that geometry.
Functional truncations in asymptotic safety for quantum gravity
Dietz, Juergen
2016-01-01
Finite dimensional truncations and the single field approximation have thus far played dominant roles in investigations of asymptotic safety for quantum gravity. This thesis is devoted to exploring asymptotic safety in infinite dimensional, or functional, truncations of the effective action as well as the effects that can be caused by the single field approximation in this context. It begins with a comprehensive analysis of the three existing flow equations of the single field f(R) truncation...
Asymptotic heat transfer model in thin liquid films
Chhay, Marx; Dutykh, Denys; Gisclon, Marguerite; Ruyer-Quil, Christian
2015-01-01
In this article, we present a modelling of heat transfer occuring through a liquid film flowing down a vertical wall. This model is formally derived thanks to asymptotic developpment, by considering the physical ratio of typical length scales of the study. A new Nusselt thermal solution is proposed, taking into account the hydrodynamic free surface variations and the contributions of the higher order terms in the asymptotic model are numerically pointed out. The comparisons are provided again...
Asymptotic optimal designs under long-range dependence error structure
Dette, Holger; Pepelyshev, Andrey; Zhigljavsky, Anatoly; 10.3150/09-BEJ185
2010-01-01
We discuss the optimal design problem in regression models with long-range dependence error structure. Asymptotic optimal designs are derived and it is demonstrated that these designs depend only indirectly on the correlation function. Several examples are investigated to illustrate the theory. Finally, the optimal designs are compared with asymptotic optimal designs which were derived by Bickel and Herzberg [Ann. Statist. 7 (1979) 77--95] for regression models with short-range dependent error.
An asymptotically exact theory of smart sandwich shells
Le, Khanh Chau
2016-01-01
An asymptotically exact two-dimensional theory of elastic-piezoceramic sandwich shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a circular elastic plate partially covered by two piezoceramic patches with thickness polarization excited by a harmonic voltage is found.
Sharp asymptotic results for simplified mutation-selection algorithms
Bérard, J.; Bienvenüe, A
2003-01-01
We study the asymptotic behavior of a mutation--selection genetic algorithm on the integers with finite population of size $p\\ge 1$. The mutation is defined by the steps of a simple random walk and the fitness function is linear. We prove that the normalized population satisfies an invariance principle, that a large-deviations principle holds and that the relative positions converge in law. After $n$ steps, the population is asymptotically around $\\sqrt{n}$ times the posi...
Random attractors for asymptotically upper semicompact multivalue random semiflows
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The present paper studied the dynamics of some multivalued random semiflow. The corresponding concept of random attractor for this case was introduced to study asymptotic behavior. The existence of random attractor of multivalued random semiflow was proved under the assumption of pullback asymptotically upper semicompact, and this random attractor is random compact and invariant. Furthermore, if the system has ergodicity, then this random attractor is the limit set of a deterministic bounded set.
Asymptotic Behavior of Mean Partitions in Consensus Clustering
Jain, Brijnesh
2015-01-01
Although consistency is a minimum requirement of any estimator, little is known about consistency of the mean partition approach in consensus clustering. This contribution studies the asymptotic behavior of mean partitions. We show that under normal assumptions, the mean partition approach is consistent and asymptotic normal. To derive both results, we represent partitions as points of some geometric space, called orbit space. Then we draw on results from the theory of Fr\\'echet means and sto...
Asymptotical stability analysis of linear fractional differential systems
Institute of Scientific and Technical Information of China (English)
LI Chang-pin; ZHAO Zhen-gang
2009-01-01
It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts,electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.
Asymptotic solutions of magnetohydrodynamics equations near the derivatives discontinuity lines
International Nuclear Information System (INIS)
Asymptotic solutions of one-dimensional and scalar magnetohydrodynamics equations near the derivatives discontinuity lines have been discussed. The equations of magnetohydrodynamics for the cases of finite and infinite conductivities are formulated and the problem of eigenvalues and eigenvectors is solved. The so called transport equations which describe the behaviour of derivatives in solutions of the quasilinear equations have been used to find the asymptotic solutions of the magnetohydrodynamics equations. (S.B.)
Mass-like invariants for asymptotically hyperbolic metrics
Cortier, Julien; Gicquaud, Romain
2016-01-01
In this article, we classify the set of asymptotic mass-like invariants for asymptotically hyperbolic metrics. It turns out that the standard mass is just one example (but probably the most important one) among the two families of invariants we find. These invariants are attached to finite-dimensional representations of the group of isometries of hyperbolic space. They are then described in terms of wave harmonic polynomials and polynomial solutions to the linearized Einstein equations in Minkowski space.
Global Asymptotic Stability of Switched Neural Networks with Delays
Zhenyu Lu; Kai Li; Yan Li
2015-01-01
This paper investigates the global asymptotic stability of a class of switched neural networks with delays. Several new criteria ensuring global asymptotic stability in terms of linear matrix inequalities (LMIs) are obtained via Lyapunov-Krasovskii functional. And here, we adopt the quadratic convex approach, which is different from the linear and reciprocal convex combinations that are extensively used in recent literature. In addition, the proposed results here are very easy to be verified ...
Asymptotic-induced numerical methods for conservation laws
Garbey, Marc; Scroggs, Jeffrey S.
1990-01-01
Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.
On the Number of Solutions to Asymptotic Plateau Problem
Coskunuzer, Baris
2005-01-01
We give a simple topological argument to show that the number of solutions of the asymptotic Plateau problem in hyperbolic space is generically unique. In particular, we show that the space of codimension-1 closed submanifolds of sphere at infinity, which bounds a unique absolutely area minimizing hypersurface in hyperbolic n-space, is dense in the space of all codimension-1 closed submanifolds at infinity. In dimension 3, we also prove that the set of uniqueness curves in asymptotic sphere f...
Abels, Helmut
2005-05-01
We study the generalized Stokes equations in asymptotically flat layers, which can be considered as compact perturbations of an infinite (flat) layer Ω _0 = mathbb{R}^{n - 1} × ( - 1,1). Besides standard non-slip boundary conditions, we consider a mixture of slip and non-slip boundary conditions on the upper and lower boundary, respectively. In this second part, we use pseudodifferential operator techniques to construct a parametrix to the reduced Stokes equations, which solves the system in Lq-Sobolev spaces, 1 calculus of the (reduced) Stokes operator.
Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model
Gan, Wenzhen; Lin, Zhigui
2008-01-01
In this paper, the competitor-competitor-mutualist three-species Lotka-Volterra model is discussed. Firstly, by Schauder fixed point theory, the coexistence state of the strongly coupled system is given. Applying the method of upper and lower solutions and its associated monotone iterations, the true solutions are constructed. Our results show that this system possesses at least one coexistence state if cross-diffusions and cross-reactions are weak. Secondly, the existence and asymptotic behavior of T-periodic solutions for the periodic reaction-diffusion system under homogeneous Dirichlet boundary conditions are investigated. Sufficient conditions which guarantee the existence of T-periodic solution are also obtained.
LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks
Institute of Scientific and Technical Information of China (English)
ZHANG Sen-lin; LIU Mei-qin
2005-01-01
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is advanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs' stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).
An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations
Cordier, Floraine; Kumbaro, Anela
2011-01-01
We present an Asymptotic-Preserving 'all-speed' scheme for the simulation of compressible flows valid at all Mach-numbers ranging from very small to order unity. The scheme is based on a semi-implicit discretization which treats the acoustic part implicitly and the convective and diffusive parts explicitly. This discretization, which is the key to the Asymptotic-Preserving property, provides a consistent approximation of both the hyperbolic compressible regime and the elliptic incompressible regime. The divergence-free condition on the velocity in the incompressible regime is respected, and an the pressure is computed via an elliptic equation resulting from a suitable combination of the momentum and energy equations. The implicit treatment of the acoustic part allows the time-step to be independent of the Mach number. The scheme is conservative and applies to steady or unsteady flows and to general equations of state. One and Two-dimensional numerical results provide a validation of the Asymptotic-Preserving ...
Institute of Scientific and Technical Information of China (English)
薛强; 梁冰; 刘晓丽; 李宏艳
2003-01-01
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport , a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid-solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure,pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure-saturation-permeability in laboratory.
Asymptotic Behavior of Solutions to a Vector Integral Equation with Deviating Arguments
Directory of Open Access Journals (Sweden)
Cristóbal González
2013-01-01
Full Text Available In this paper, we propose the study of an integral equation, with deviating arguments, of the type y(t=ω(t-∫0∞f(t,s,y(γ1(s,…,y(γN(sds,t≥0, in the context of Banach spaces, with the intention of giving sufficient conditions that ensure the existence of solutions with the same asymptotic behavior at ∞ as ω(t. A similar equation, but requiring a little less restrictive hypotheses, is y(t=ω(t-∫0∞q(t,sF(s,y(γ1(s,…,y(γN(sds,t≥0. In the case of q(t,s=(t-s+, its solutions with asymptotic behavior given by ω(t yield solutions of the second order nonlinear abstract differential equation y''(t-ω''(t+F(t,y(γ1(t,…,y(γN(t=0, with the same asymptotic behavior at ∞ as ω(t.
Superradiant instabilities of asymptotically anti-de Sitter black holes
Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.
2016-06-01
We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino–Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.
Kreangkri RATCHAGIT
2008-01-01
We have established a new sufficient condition for the asymptotic stability of a delay-difference control system of Hopfield neural networks in terms of certain matrix inequalities (based on a discrete analog of the Lyapunov second method). The result has been applied to obtain new stability conditions for some class of delay-difference control system such as delay-difference control system of Hopfield neural networks with multiple delays in terms of certain matrix inequalities.
Generalized multiplicative error models: Asymptotic inference and empirical analysis
Li, Qian
This dissertation consists of two parts. The first part focuses on extended Multiplicative Error Models (MEM) that include two extreme cases for nonnegative series. These extreme cases are common phenomena in high-frequency financial time series. The Location MEM(p,q) model incorporates a location parameter so that the series are required to have positive lower bounds. The estimator for the location parameter turns out to be the minimum of all the observations and is shown to be consistent. The second case captures the nontrivial fraction of zero outcomes feature in a series and combines a so-called Zero-Augmented general F distribution with linear MEM(p,q). Under certain strict stationary and moment conditions, we establish a consistency and asymptotic normality of the semiparametric estimation for these two new models. The second part of this dissertation examines the differences and similarities between trades in the home market and trades in the foreign market of cross-listed stocks. We exploit the multiplicative framework to model trading duration, volume per trade and price volatility for Canadian shares that are cross-listed in the New York Stock Exchange (NYSE) and the Toronto Stock Exchange (TSX). We explore the clustering effect, interaction between trading variables, and the time needed for price equilibrium after a perturbation for each market. The clustering effect is studied through the use of univariate MEM(1,1) on each variable, while the interactions among duration, volume and price volatility are captured by a multivariate system of MEM(p,q). After estimating these models by a standard QMLE procedure, we exploit the Impulse Response function to compute the calendar time for a perturbation in these variables to be absorbed into price variance, and use common statistical tests to identify the difference between the two markets in each aspect. These differences are of considerable interest to traders, stock exchanges and policy makers.
Contact mechanics of articular cartilage layers asymptotic models
Argatov, Ivan
2015-01-01
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...
Asymptotics of Toeplitz operators and applications in TQFT
Andersen, Jørgen Ellegaard
2011-01-01
In this paper we provide a review of asymptotic results of Toeplitz operators and their applications in TQFT. To do this we review the differential geometric construction of the Hitchin connection on a prequantizable compact symplectic manifold. We use asymptotic results relating the Hitchin connec- tion and Toeplitz operators, to, in the special case of the moduli space of flat SU(n)-connections on a surface, prove asymptotic faithfulness of the SU(n) quantum representations of the mapping class group. We then go on to re- view formal Hitchin connections and formal trivializations of these. We discuss how these fit together to produce a Berezin-Toeplitz star product, which is independent of the complex structure. Finally we give explicit examples of all the above objects in the case of the abelian moduli space. We furthermore discuss an approach to curve operators in the TQFT associated to abelian Chern-Simons theory.
Asymptotically Flat Holography and Strings on the Horizon
Medved, A J M
2002-01-01
Recently, Klemm and others [hep-th/0104141] have successfully generalized the Cardy-Verlinde formula for an asymptotically flat spacetime of arbitrary dimensionality. And yet, from a holographic perspective, the interpretation of this formula remains somewhat unclear. Nevertheless, in this paper, we incorporate the implied flat space/CFT duality into a study on boundary descriptions of a $d$-dimensional Schwarzschild-black hole spacetime. In particular, we demonstrate that the (presumably) dual CFT adopts a string-like description and, moreover, is thermodynamically equivalent to a string that lives on the stretched horizon of the bulk black hole. Significantly, a similar equivalence has recently been established in both an asymptotically dS and AdS context. On this basis, we argue that the asymptotically flat Cardy-Verlinde formula does, indeed, have a holographic pedigree.
Holography of 3D Asymptotically Flat Black Holes
Fareghbal, Reza
2014-01-01
We study the asymptotically flat rotating hairy black hole solution of a three-dimensional gravity theory which is given by taking flat-space limit (zero cosmological constant limit) of New Massive Gravity (NMG). We propose that the dual field theory of the flat-space limit of NMG can be described by a Contracted Conformal Field Theory (CCFT). Using Flat/CCFT correspondence we construct a stress tensor which yields the conserved charges of the asymptotically flat black hole solution. Furthermore, by taking appropriate limit of the Cardy formula in the parent CFT, we find a Cardy-like formula which reproduces the Wald's entropy of the 3D asymptotically flat black hole.
Asymptotic symmetries of QED and Weinberg's soft photon theorem
Campiglia, Miguel
2015-01-01
Various equivalences between so-called soft theorems which constrain scattering amplitudes and Ward identities related to asymptotic symmetries have recently been established in gauge theories and gravity. So far these equivalences have been restricted to the case of massless matter fields, the reason being that the asymptotic symmetries are defined at null infinity. The restriction is however unnatural from the perspective of soft theorems which are insensitive to the masses of the external particles. In this work we remove the aforementioned restriction in the context of scalar QED. Inspired by the radiative phase space description of massless fields at null infinity, we introduce a manifold description of time-like infinity on which the asymptotic phase space for massive fields can be defined. The "angle dependent" large gauge transformations are shown to have a well defined action on this phase space, and the resulting Ward identities are found to be equivalent to Weinberg's soft photon theorem.
Detailed ultraviolet asymptotics for AdS scalar field perturbations
Evnin, Oleg
2016-01-01
We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.
Asymptotic chaos expansions in finance theory and practice
Nicolay, David
2014-01-01
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...
Exact and Asymptotic Measures of Multipartite Pure State Entanglement
Bennett, C H; Rohrlich, D E; Smolin, J A; Thapliyal, A V; Bennett, Charles H.; Popescu, Sandu; Rohrlich, Daniel; Smolin, John A.; Thapliyal, Ashish V.
1999-01-01
In an effort to simplify the classification of pure entangled states of multi (m) -partite quantum systems, we study exactly and asymptotically (in n) reversible transformations among n'th tensor powers of such states (ie n copies of the state shared among the same m parties) under local quantum operations and classical communication (LOCC). With regard to exact transformations, we show that two states whose 1-party entropies agree are either locally-unitarily (LU) equivalent or else LOCC-incomparable. Asymptotic transformations result in a simpler classification than exact transformations. We show that m-partite pure states having an m-way Schmidt decomposition are simply parameterizable, with the partial entropy across any nontrivial partition representing the number of standard ``Cat'' states (|0^m>+|1^m>) asymptotically interconvertible to the state in question. For general m-partite states, partial entropies across different partitions need not be equal, and since partial entropies are conserved by asymp...
Asymptotic completeness and multiparticle structure in field theories
International Nuclear Information System (INIS)
Previous proofs of asymptotic completeness and related results on scattering in field theories are restricted to P(φ)2 models in the 2- and 3-particle regions. In this paper, new cluster expansions that are well adapted to more direct proofs and generalizations of these results are presented. In contrast to previous ones, they are designed to provide direct graphical definitions of general irreducible kernels satisfying structure equations recently proposed and shown to be closely linked with asymptotic completeness and with the multiparticle structure of Green functions and collision amplitudes in general energy regions. The method can be applied as previously to P(φ)2 and can also be extended to theories involving renormalization which are controlled by phase-space analysis. It is here illustrated in detail for the Bethe-Salpeter kernel in φ24, in which case a new proof of its 4-particle decay (which yields asymptotic completeness in the 2-particle region) is given. (orig.)
The unitary conformal field theory behind 2D Asymptotic Safety
Nink, Andreas
2015-01-01
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a...
Stability of Non-Isolated Asymptotic Profiles for Fast Diffusion
Akagi, Goro
2016-07-01
The stability of asymptotic profiles of solutions to the Cauchy-Dirichlet problem for fast diffusion equation (FDE, for short) is discussed. The main result of the present paper is the stability of any asymptotic profiles of least energy. It is noteworthy that this result can cover non-isolated profiles, e.g., those for thin annular domain cases. The method of proof is based on the Łojasiewicz-Simon inequality, which is usually used to prove the convergence of solutions to prescribed limits, as well as a uniform extinction estimate for solutions to FDE. Besides, local minimizers of an energy functional associated with this issue are characterized. Furthermore, the instability of positive radial asymptotic profiles in thin annular domains is also proved by applying the Łojasiewicz-Simon inequality in a different way.
Consistency of matter models with asymptotically safe quantum gravity
Donà, P; Percacci, Roberto
2014-01-01
We discuss the compatibility of quantum gravity with dynamical matter degrees of freedom. Specifically, we present bounds we obtained in [1] on the allowed number and type of matter fields within asymptotically safe quantum gravity. As a novel result, we show bounds on the allowed number of spin-3/2 (Rarita-Schwinger) fields, e.g., the gravitino. These bounds, obtained within truncated Renormalization Group flows, indicate the compatibility of asymptotic safety with the matter fields of the standard model. Further, they suggest that extensions of the matter content of the standard model are severely restricted in asymptotic safety. This means that searches for new particles at colliders could provide experimental tests for this particular approach to quantum gravity.
Generalized heat kernel coefficients for a new asymptotic expansion
International Nuclear Information System (INIS)
The method which allows for asymptotic expansion of the one-loop effective action W = lndetA is formulated. The positively defined elliptic operator A = U + M2 depends on the external classical fields taking values in the Lie algebra of the internal symmetry group G. Unlike the standard method of Schwinger - DeWitt, the more general case with the nongenerate mass matrix M = diag(m1, m2, ...) is considered. The first coefficients of the new asymptotic series are calculated and their relationship with the Seeley - DeWitt coefficients is clarified
On the asymptotic distribution of block-modified random matrices
Energy Technology Data Exchange (ETDEWEB)
Arizmendi, Octavio, E-mail: octavius@cimat.mx [Department of Probability and Statistics, CIMAT, Guanajuato (Mexico); Nechita, Ion, E-mail: nechita@irsamc.ups-tlse.fr [Zentrum Mathematik, M5, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany and CNRS, Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, UPS, F-31062 Toulouse (France); Vargas, Carlos, E-mail: obieta@math.tugraz.at [Department of Mathematical Structure Theory, Technische Universität Graz, Steyrergasse 30/III, 8010 Graz (Austria)
2016-01-15
We study random matrices acting on tensor product spaces which have been transformed by a linear block operation. Using operator-valued free probability theory, under some mild assumptions on the linear map acting on the blocks, we compute the asymptotic eigenvalue distribution of the modified matrices in terms of the initial asymptotic distribution. Moreover, using recent results on operator-valued subordination, we present an algorithm that computes, numerically but in full generality, the limiting eigenvalue distribution of the modified matrices. Our analytical results cover many cases of interest in quantum information theory: we unify some known results and we obtain new distributions and various generalizations.
Asymptotic properties of the magnetic integrated density of states
Directory of Open Access Journals (Sweden)
G. D. Raikov
1999-04-01
Full Text Available where we considered the Schr"odinger operator with constant magnetic field and decaying electric potential, and studied the asymptotic behaviour of the discrete spectrum as the coupling constant of the magnetic field tends to infinity. To describe this behaviour when the kernel of the magnetic field is not trivial, we introduced a measure ${cal D}(lambda $ defined on $(-infty,0$ called the ``magnetic integrated density of states''. In this article, we study the asymptotic behaviour of this measure as $lambdauparrow 0$ and as $lambda downarrow lambda_0$, $lambda_0$ being the lower bound of the support of ${cal D}$.
Lorentzian spin foam amplitudes: graphical calculus and asymptotics
International Nuclear Information System (INIS)
The amplitude for the 4-simplex in a spin foam model for quantum gravity is defined using a graphical calculus for the unitary representations of the Lorentz group. The asymptotics of this amplitude are studied in the limit when the representation parameters are large, for various cases of boundary data. It is shown that for boundary data corresponding to a Lorentzian simplex, the asymptotic formula has two terms, with phase plus or minus the Lorentzian signature Regge action for the 4-simplex geometry, multiplied by an Immirzi parameter. Other cases of boundary data are also considered, including a surprising contribution from Euclidean signature metrics.
Asymptotic heat transfer model in thin liquid films
Chhay, Marx; Gisclon, Marguerite; Ruyer-Quil, Christian
2015-01-01
In this article, we present a modelling of heat transfer occuring through a liquid film flowing down a vertical wall. This model is formally derived thanks to asymptotic developpment, by considering the physical ratio of typical length scales of the study. A new Nusselt thermal solution is proposed, taking into account the hydrodynamic free surface variations and the contributions of the higher order terms in the asymptotic model are numerically pointed out. The comparisons are provided against the resolution of the full Fourier equations in a steady state frame.
Asymptotic dynamics, large gauge transformations and infrared symmetries
Gomez, Cesar
2016-01-01
Infrared finite S matrices enjoy an infinite family of symmetries, namely decoupling of asymptotic soft modes with arbitrary direction. The infrared structure of the theory manifests itself in the form of vacuum degeneracy and in nontrivial asymptotic dynamics. These two ingredients are unified in the infrared finite S matrix symmetries and can be disentangled as soft and hard components of corresponding charges. When these two components are disentangled, the nontrivial role of large gauge transformations becomes manifest. The soft decoupling symmetry of the physical S matrix leads to relations between the corresponding soft/hard decompositions for the in and out states that can encode crucial nontrivial information about the scattering process.
Gap asymptotics in a weakly bent leaky quantum wire
International Nuclear Information System (INIS)
The main question studied in this paper concerns the weak-coupling behavior of the geometrically induced bound states of singular Schrödinger operators with an attractive δ interaction supported by a planar, asymptotically straight curve Γ. We demonstrate that if Γ is only slightly bent or weakly deformed, then there is a single eigenvalue and the gap between it and the continuum threshold is in the leading order proportional to the fourth power of the bending angle, or the deformation parameter. For comparison, we analyze the behavior of a general geometrical induced eigenvalue in the situation when one of the curve asymptotes is wiggled. (paper)
On the Asymptotics for the Vacuum Einstein Constraint Equations
Corvino, J; Corvino, Justin; Schoen, Richard M.
2003-01-01
Given asymptotically flat initial data on M^3 for the vacuum Einstein field equation, and given a bounded domain in M, we construct solutions of the vacuum constraint equations which agree with the original data inside the given domain, and are identical to that of a suitable Kerr slice (or identical to a member of some other admissible family of solutions) outside a large ball in a given end. The data for which this construction works is shown to be dense in an appropriate topology on the space of asymptotically flat solutions of the vacuum constraints. This construction generalizes work of the first author, where the time-symmetric case was studied.
Precise Asymptotics for Random Matrices and Random Growth Models
Institute of Scientific and Technical Information of China (English)
Zhong Gen SU
2008-01-01
The author considers the largest eigenvalues of random matrices from Gaussian unitary ensemble and Laguerre unitary ensemble, and the rightmost charge in certain random growth models.We obtain some precise asymptotics results, which are in a sense similar to the precise asymptotics for sums of independent random variables in the context of the law of large numbers and complete convergence. Our proofs depend heavily upon the upper and lower tail estimates for random matrices and random growth models. The Tracy-Widom distribution plays a central role as well.
Counting spanning trees on fractal graphs and their asymptotic complexity
Anema, Jason A.; Tsougkas, Konstantinos
2016-09-01
Using the method of spectral decimation and a modified version of Kirchhoff's matrix-tree theorem, a closed form solution to the number of spanning trees on approximating graphs to a fully symmetric self-similar structure on a finitely ramified fractal is given in theorem 3.4. We show how spectral decimation implies the existence of the asymptotic complexity constant and obtain some bounds for it. Examples calculated include the Sierpiński gasket, a non-post critically finite analog of the Sierpiński gasket, the Diamond fractal, and the hexagasket. For each example, the asymptotic complexity constant is found.
Asymptotic laws in relativistic nuclear physics and their experimental verification
International Nuclear Information System (INIS)
The paper has the character of historical review of development of the relativistic nuclear physics (RNP) and its experimental verification in JINR. The RNP theory bases are described in particular: cumulative effect, interaction of relativistic nuclei (RN) in four-velocity space and asymptotics in RNP. The conclusion is made that the inclusive production cross sections for particles, nuclear fragments and antinuclei in RN collisions in the central rapidity region (y = 0) are characterized by asymptotic behaviour of the cross section dependences on the interaction energy
Asymptotic Marginal Tax Rate of Individual Income Tax in China
Institute of Scientific and Technical Information of China (English)
ZHENYA; LIU; WU; YANG; DAVID; DICKINSON
2014-01-01
This paper examines the asymptotic marginal rate of individual income tax which maximizes China’s social welfare through numerical simulation based on the elasticity of China’s labor supply, income distribution and the social objectives of redistribution in accordance with the optimal direct taxation theory. Taking advantage of the optimal direct taxation model with consideration of the income effect, it comes to the conclusion that combined with China’s reality, the asymptotic marginal rate of individual labor income tax in China should be between 35% and 40%.
Asymptotic analysis of spatial discretizations in implicit Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory
2009-01-01
We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.
Asymptotic analysis of spatial discretizations in implicit Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory
2008-01-01
We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large, We demonstrate the validity of our analysis with a set of numerical examples.
Uniform asymptotics of the coefficients of unitary moment polynomials
Hiary, Ghaith A
2010-01-01
Keating and Snaith showed that the $2k^{th}$ absolute moment of the characteristic polynomial of a random unitary matrix evaluated on the unit circle is given by a polynomial of degree $k^2$. In this article, uniform asymptotics for the coefficients of that polynomial are derived, and a maximal coefficient is located. Some of the asymptotics are given in explicit form. Numerical data to support these calculations are presented. Some apparent connections between random matrix theory and the Riemann zeta function are discussed.
Selected asymptotic methods with applications to electromagnetics and antennas
Fikioris, George; Bakas, Odysseas N
2013-01-01
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som
Asymptotic entanglement transformation between W and GHZ states
Energy Technology Data Exchange (ETDEWEB)
Vrana, Péter [Institute for Theoretical Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland); Department of Geometry, Budapest University of Technology and Economics, Egry József u. 1., 1111 Budapest (Hungary); Christandl, Matthias [Institute for Theoretical Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland); Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark)
2015-02-15
We investigate entanglement transformations with stochastic local operations and classical communication in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increases and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen, we also compute the conversion rate from W to GHZ states.
Strings and the Holographic Description of Asymptotically de Sitter Spaces
Halyo, E
2002-01-01
Asymptotically de Sitter spaces can be described by Euclidean boundary theories with entropies given by the modified Cardy--Verlinde formula. We show that the Cardy--Verlinde formula describes a string with a rescaled tension which in fact is a string at the stretched cosmological horizon as seen from the boundary. The temperature of the boundary theory is the rescaled Hagedorn temperature of the string. Our results agree with an alternative description of asymptotically de Sitter spaces in terms of strings on the stretched horizon. The relation between the two descriptions is given by the large gravitational redshift between the boundary and the stretched horizon and a shift in energy.
On the asymptotic distribution of block-modified random matrices
International Nuclear Information System (INIS)
We study random matrices acting on tensor product spaces which have been transformed by a linear block operation. Using operator-valued free probability theory, under some mild assumptions on the linear map acting on the blocks, we compute the asymptotic eigenvalue distribution of the modified matrices in terms of the initial asymptotic distribution. Moreover, using recent results on operator-valued subordination, we present an algorithm that computes, numerically but in full generality, the limiting eigenvalue distribution of the modified matrices. Our analytical results cover many cases of interest in quantum information theory: we unify some known results and we obtain new distributions and various generalizations
On the charge density and asymptotic tail of a monopole
Harland, Derek
2015-01-01
We propose a new definition for the abelian magnetic charge density of a non-abelian monopole, based on zero-modes of an associated Dirac operator. Unlike the standard definition of the charge density, this density is smooth in the core of the monopole. We show that this charge density induces a magnetic field whose expansion in powers of 1/r agrees with that of the conventional asymptotic magnetic field to all orders. We also show that the asymptotic field can be easily calculated from the spectral curve. Explicit examples are given for known monopole solutions.
Asymptotic analysis of rf-heated collisional plasma
International Nuclear Information System (INIS)
It is shown that a distribution of electrons in resonance with traveling waves, but colliding with background distributions of electrons and ions, evolves to a steady state. Details of the steady state are given analytically in the asymptotic limit of high electron energy and are compared with numerical solutions. The asymptotic analytic solution may be useful for quickly relating emission data to likely excitations and is more reliable than conventional numerical solutions at high energy. A method of improving numerics at high energy is suggested
Quantile spectral processes: Asymptotic analysis and inference
Kley, Tobias; Volgushev, Stanislav; Dette, Holger; Hallin, Marc
2016-01-01
Quantile- and copula-related spectral concepts recently have been considered by various authors. Those spectra, in their most general form, provide a full characterization of the copulas associated with the pairs $(X_{t},X_{t-k})$ in a process $(X_{t})_{t\\in\\mathbb{Z}}$, and account for important dynamic features, such as changes in the conditional shape (skewness, kurtosis), time-irreversibility, or dependence in the extremes that their traditional counterparts cannot capture. Despite variou...
Asymptotic normality with small relative errors of posterior probabilities of half-spaces
Dudley, R. M.; Haughton, D.
2002-01-01
Let $\\Theta$ be a parameter space included in a finite-dimensional Euclidean space and let $A$ be a half-space. Suppose that the maximum likelihood estimate $\\theta_n$ of $\\theta$ is not in $A$ (otherwise, replace $A$ by its complement) and let $\\Delta$ be the maximum log likelihood (at $\\theta_n$) minus the maximum log likelihood over the boundary $\\partial A$. It is shown that under some conditions, uniformly over all half-spaces $A$, either the posterior probability of $A$ is asymptotic to...