WorldWideScience

Sample records for asymptotic conditions

  1. Asymptotic conditions and conserved quantities

    International Nuclear Information System (INIS)

    Koul, R.K.

    1990-01-01

    Two problems have been investigated in this dissertation. The first one deals with the relationship between stationary space-times which are flat at null infinity and stationary space-times which are asymptotic flat at space-like infinity. It is shown that the stationary space-times which are asymptotically flat, in the Penrose sense, at null infinity, are asymptotically flat at space-like infinity in the Geroch sense and metric at space like infinity is at least C 1 . In the converse it is shown that the stationary space-times which are asymptotically flat at space like infinity, in the Beig sense, are asymptotically flat at null infinity in the Penrose sense. The second problem addressed deals with the theories of arbitrary dimensions. The theories treated are the ones which have fiber bundle structure, outside some compact region. For these theories the criterion for the choice of the background metric is specified, and the boundary condition for the initial data set (q ab , P ab ) is given in terms of the background metric. Having these boundary conditions it is shown that the symplectic structure and the constraint functionals are well defined. The conserved quantities associated with internal Killing vector fields are specified. Lastly the energy relative to a fixed background and the total energy of the theory have been given. It is also shown that the total energy of the theory is independent of the choice of the background

  2. Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)

    2010-05-15

    In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)

  3. Asymptotic boundary conditions for dissipative waves: General theory

    Science.gov (United States)

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  4. Asymptotic boundary conditions for dissipative waves - General theory

    Science.gov (United States)

    Hagstrom, Thomas

    1991-01-01

    An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  5. LSZ asymptotic condition and dynamic equations in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1983-01-01

    Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation

  6. A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2016-01-01

    textabstractThe paper derives a Multivariate Asymmetric Long Memory conditional volatility model with Exogenous Variables (X), or the MALMX model, with dynamic conditional correlations, appropriate regularity conditions, and associated asymptotic theory. This enables checking of internal consistency

  7. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    International Nuclear Information System (INIS)

    Davies, E Brian; Exner, Pavel; Lipovsky, JirI

    2010-01-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  8. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Sté phane; Said-Houari, Belkacem

    2011-01-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  9. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Stéphane

    2011-12-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  10. Asymptotics for the conditional-sum-of-squares estimator in multivariate fractional time series models

    DEFF Research Database (Denmark)

    Ørregård Nielsen, Morten

    This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses...... the multivariate non-cointegrated fractional ARIMA model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter values, for which the objective function does not converge uniformly in probablity, thus making...

  11. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    Science.gov (United States)

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A generalized L1-approach for a kernel estimator of conditional quantile with functional regressors: Consistency and asymptotic normality

    OpenAIRE

    2009-01-01

    Abstract A kernel estimator of the conditional quantile is defined for a scalar response variable given a covariate taking values in a semi-metric space. The approach generalizes the median?s L1-norm estimator. The almost complete consistency and asymptotic normality are stated. correspondance: Corresponding author. Tel: +33 320 964 933; fax: +33 320 964 704. (Lemdani, Mohamed) (Laksaci, Ali) mohamed.lemdani@univ-lill...

  13. Role of exponential type random invexities for asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming.

    Science.gov (United States)

    Verma, Ram U; Seol, Youngsoo

    2016-01-01

    First a new notion of the random exponential Hanson-Antczak type [Formula: see text]-V-invexity is introduced, which generalizes most of the existing notions in the literature, second a random function [Formula: see text] of the second order is defined, and finally a class of asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming is established. Furthermore, several sets of asymptotic sufficiency results in which various generalized exponential type [Formula: see text]-V-invexity assumptions are imposed on certain vector functions whose components are the individual as well as some combinations of the problem functions are examined and proved. To the best of our knowledge, all the established results on the semi-infinite aspects of the multi-objective fractional programming are new, which is a significantly new emerging field of the interdisciplinary research in nature. We also observed that the investigated results can be modified and applied to several special classes of nonlinear programming problems.

  14. Asymptotic Eigenstructures

    Science.gov (United States)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  15. Existence and asymptotic behavior of the wave equation with dynamic boundary conditions

    KAUST Repository

    Graber, Philip Jameson; Said-Houari, Belkacem

    2012-01-01

    The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.

  16. Existence and asymptotic behavior of the wave equation with dynamic boundary conditions

    KAUST Repository

    Graber, Philip Jameson

    2012-03-07

    The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.

  17. Theory of collisions between an atom and a diatomic molecule in the body-fixed coordinate system.)/sup a/ I. Coupled differential equation and asymptotic boundary conditions

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.; Tang, K.T.

    1978-01-01

    The body-fixed (BF) formulation for atom--diatom scatterings is developed to the extent that one can use it to perform accurate close-coupling calculation, without introducing further approximation except truncating a finite basis set of the target molecular wave function, on the same ground as one use the space-fixed (SF) formulation. In this formulation, the coupled differential equations are solved an the boundary conditions matched entirely in the BF coordinate system. A unitary transformation is used to obtain both the coupled differential equation and the boundary condition in BF system system from SF system. All properties of the solution with respect to parity are derived entirely from the transformation, without using the parity eignfunctions of the BF frame. Boundary conditions that yield the scattering (S) matrix and the reactance (R) matrix are presented for each parity in both the far asymptotic region (where the interaction and the centrifugal potentials are both negligible) and the near asymptotic region (where the interaction potential is negligible but the centrifugal potential is not). While our differential equations are the same as those derived by others with different methods, our asymptotic boundary conditions disagree with some existing ones. With a given form of the BF coupled differential equations, the acceptable boundary conditions are discussed

  18. Asymptotic freedom

    International Nuclear Information System (INIS)

    Meyer, P.

    1978-01-01

    After having established the renormalization group equations and the possibilities of fixed points for the effective coupling constants the non abelian gauge theories are shown to have the property of asymptotic freedom. These results are applied to the colour gauge group of the strong interactions of quarks and gluons. The behavior of the moments of the structure functions of the deep inelastic scattering of leptons on nucleons (scaling and its logarithmic violations) is then deduced with using the Wilson's operator product expansion [fr

  19. Asymptotics of the Eigenvalues of a Self-Adjoint Fourth Order Boundary Value Problem with Four Eigenvalue Parameter Dependent Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Manfred Möller

    2013-01-01

    Full Text Available Considered is a regular fourth order ordinary differential equation which depends quadratically on the eigenvalue parameter λ and which has separable boundary conditions depending linearly on λ. It is shown that the eigenvalues lie in the closed upper half plane or on the imaginary axis and are symmetric with respect to the imaginary axis. The first four terms in the asymptotic expansion of the eigenvalues are provided.

  20. Asymptotic structure of isolated systems

    International Nuclear Information System (INIS)

    Schmidt, B.G.

    1979-01-01

    The main methods to formulate asymptotic flatness conditions are introduced and motivation and basic ideas are emphasized. Any asymptotic flatness condition proposed up to now describes space-times which behave somehow like Minkowski space, and a very explicit exposition of the structure at infinity of Minkowski space is given. This structure is used to describe the asymptotic behaviour of fields on Minkowski space in a frame-dependent way. The definition of null infinity for curved space-time according to Penrose is given and attempts to define spacelike infinity are outlined. The conformal bundle approach to the formulation of asymptotic behaviour is described and its relation to null and spacelike infinity is given, as far as known. (Auth.)

  1. Short-time Asymptotics of the Heat Kernel on Bounded Domain with Piecewise Smooth Boundary Conditions and Its Applications to an Ideal Gas

    Institute of Scientific and Technical Information of China (English)

    E.M.E. ZAYED

    2004-01-01

    The asymptotic expansion of the heat kernel Θ(t)(∞∑=(i=0))exp (-λi) where({λi}∞i=1) Are the eigen-values of negative Laplacian( -△n=-n∑k=1(θ/θxk)2)in Rn(n=2 or 3) is studied for short-time t for a general bounded domainθΩwith a smooth boundary θΩ.In this paper, we consider the case of a finite number of the Dirichlet conditions φ=0 on Γi (i = J +1,….,J)and the Neumann conditions and (θφ/θ vi) = 0 on Γi (i = J+1,…,k) and the Robin condition (θφ/θ vi+γi) θ=(I=k+1,… m) where γi are piecewise smooth positive impedancem(θφ=mUi=1Γi. )We construct the required asymptotics in the form of a power series over t. The senior coe.cients inthis series are speci.ed as functionals of the geometric shape of the domain Ω.This result is applied to calculatethe one-particle partition function of a "special ideal gas", i.e., the set of non-interacting particles set up in abox with Dirichlet, Neumann and Robin boundary conditions for the appropriate wave function. Calculationof the thermodynamic quantities for the ideal gas such as the internal energy, pressure and speci.c heat revealsthat these quantities alone are incapable of distinguishing between two di.erent shapes of the domain. Thisconclusion seems to be intuitively clear because it is based on a limited information given by a one-particlepartition function; nevertheless, its formal theoretical motivation is of some interest.

  2. Asymptotic numbers, asymptotic functions and distributions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-07-01

    The asymptotic functions are a new type of generalized functions. But they are not functionals on some space of test-functions as the distributions of Schwartz. They are mappings of the set denoted by A into A, where A is the set of the asymptotic numbers introduced by Christov. On its part A is a totally-ordered set of generalized numbers including the system of real numbers R as well as infinitesimals and infinitely large numbers. Every two asymptotic functions can be multiplied. On the other hand, the distributions have realizations as asymptotic functions in a certain sense. (author)

  3. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  4. Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion

    Directory of Open Access Journals (Sweden)

    S. A. Kaschenko

    2014-01-01

    Full Text Available We study the dynamics of finite-difference approximation on spatial variables of a logistic equation with delay and diffusion. It is assumed that the diffusion coefficient is small and the Malthusian coefficient is large. The question of the existence and asymptotic behavior of attractors was studied with special asymptotic methods. It is shown that there is a rich array of different types of attractors in the phase space: leading centers, spiral waves, etc. The main asymptotic characteristics of all solutions from the corresponding attractors are adduced in this work. Typical graphics of wave fronts motion of different structures are represented in the article.

  5. Cosmic censorship, persistent curvature and asymptotic causal pathology

    International Nuclear Information System (INIS)

    Newman, R.P.A.C.

    1984-01-01

    The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)

  6. Asymptotic and geometrical quantization

    International Nuclear Information System (INIS)

    Karasev, M.V.; Maslov, V.P.

    1984-01-01

    The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered

  7. Asymptotics and Borel summability

    CERN Document Server

    Costin, Ovidiu

    2008-01-01

    Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us

  8. Explicit Disassociation of a Conditioned Stimulus and Unconditioned Stimulus during Extinction Training Reduces Both Time to Asymptotic Extinction and Spontaneous Recovery of a Conditioned Taste Aversion

    Science.gov (United States)

    Mickley, G. Andrew; DiSorbo, Anthony; Wilson, Gina N.; Huffman, Jennifer; Bacik, Stephanie; Hoxha, Zana; Biada, Jaclyn M.; Kim, Ye-Hyun

    2009-01-01

    Conditioned taste aversions (CTAs) may be acquired when an animal consumes a novel taste (CS) and then experiences the symptoms of poisoning (US). This aversion may be extinguished by repeated exposure to the CS alone. However, following a latency period in which the CS is not presented, the CTA will spontaneously recover (SR). In the current…

  9. Criteria for exponential asymptotic stability in the large of ...

    African Journals Online (AJOL)

    The purpose of this study is to provide necessary and sufficient conditions for exponential asymptotic stability in the large and uniform asymptotic stability of perturbations of linear systems with unbounded delays. A strong relationship is established between the two types of asymptotic stability. It is found that if the ...

  10. Asymptotically Optimal Agents

    OpenAIRE

    Lattimore, Tor; Hutter, Marcus

    2011-01-01

    Artificial general intelligence aims to create agents capable of learning to solve arbitrary interesting problems. We define two versions of asymptotic optimality and prove that no agent can satisfy the strong version while in some cases, depending on discounting, there does exist a non-computable weak asymptotically optimal agent.

  11. Asymptotic numbers: Pt.1

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1980-01-01

    The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed

  12. Asymptotic freedom without guilt

    International Nuclear Information System (INIS)

    Ma, E.

    1979-01-01

    The notion of asymptotic freedom in quantum chromodynamics is explained on general physical grounds, without invoking the formal arguments of renormalizable quantum field theory. The related concept of quark confinement is also discussed along the same line. 5 references

  13. Quasi-extended asymptotic functions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-01-01

    The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example

  14. Perils of Asymptotics

    International Nuclear Information System (INIS)

    Dewar, R. L.

    1995-01-01

    A large part of physics consists of learning which asymptotic methods to apply where, yet physicists are not always taught asymptotics in a systematic way. Asymptotology is given using an example from aerodynamics, and a rent Phys. Rev. Letter Comment is used as a case study of one subtle way things can go wrong. It is shown that the application of local analysis leads to erroneous conclusions regarding the existence of a continuous spectrum in a simple test problem, showing that a global analysis must be used. The final section presents results on a more sophisticated example, namely the WKBJ solution of Mathieu equation. 13 refs., 2 figs

  15. Asymptotic safety guaranteed

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Sannino, Francesco

    2014-01-01

    We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...

  16. An asymptotical machine

    Science.gov (United States)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  17. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  18. Variationally Asymptotically Stable Difference Systems

    Directory of Open Access Journals (Sweden)

    Goo YoonHoe

    2007-01-01

    Full Text Available We characterize the h-stability in variation and asymptotic equilibrium in variation for nonlinear difference systems via n∞-summable similarity and comparison principle. Furthermore we study the asymptotic equivalence between nonlinear difference systems and their variational difference systems by means of asymptotic equilibria of two systems.

  19. Perturbed asymptotically linear problems

    OpenAIRE

    Bartolo, R.; Candela, A. M.; Salvatore, A.

    2012-01-01

    The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...

  20. Model Hadron asymptotic behaviour

    International Nuclear Information System (INIS)

    Kralchevsky, P.; Nikolov, A.

    1983-01-01

    The work is devoted to the problem of solving a set of asymptotic equations describing the model hardon interaction. More specifically an interactive procedure consisting of two stages is proposed and the first stage is exhaustively studied here. The principle of contracting transformations has been applied for this purpose. Under rather general and natural assumptions, solutions in a series of metric spaces suitable for physical applications have been found. For each of these spaces a solution with unique definiteness is found. (authors)

  1. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  2. Extended asymptotic functions - some examples

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1981-01-01

    Several examples of extended asymptotic functions of two variables are given. This type of asymptotic functions has been introduced as an extension of continuous ordinary functions. The presented examples are realizations of some Schwartz distributions delta(x), THETA(x), P(1/xsup(n)) and can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. The examples illustrate the method of construction of extended asymptotic functions similar to the distributions. The set formed by the extended asymptotic functions is also considered. It is shown, that this set is not closed with respect to addition and multiplication

  3. A quantum kinematics for asymptotically flat gravity

    Science.gov (United States)

    Campiglia, Miguel; Varadarajan, Madhavan

    2015-07-01

    We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.

  4. ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2017-11-01

    Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.

  5. Conformal Phase Diagram of Complete Asymptotically Free Theories

    DEFF Research Database (Denmark)

    Pica, Claudio; Ryttov, Thomas A.; Sannino, Francesco

    2017-01-01

    function. We provide the general conditions that the beta function coefficients must abide for the theory to be completely asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special trajectories in coupling space along which some couplings are both...... asymptotically safe and infrared conformal....

  6. Error estimates in horocycle averages asymptotics: challenges from string theory

    NARCIS (Netherlands)

    Cardella, M.A.

    2010-01-01

    For modular functions of rapid decay, a classical result connects the error estimate in their long horocycle average asymptotic to the Riemann hypothesis. We study similar asymptotics, for modular functions with not that mild growing conditions, such as of polynomial growth and of exponential growth

  7. Asymptotic representation theorems for poverty indices | Lo | Afrika ...

    African Journals Online (AJOL)

    Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...

  8. Asymptotically Safe Standard Model via Vectorlike Fermions

    Science.gov (United States)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  9. Asymptotic near freedom

    International Nuclear Information System (INIS)

    Bailin, D.

    1974-01-01

    It is proved that the characteristic power deviations from scaling of the theories which are not asymptotically free should be detectable in the N.A.L. muon experiments. The Yukawa theories here considered have SU(3) non-singlet structure function moments varying as a power of -q 2 , namely (-q 2 ) at power -p. The maximum value of p is determined to be 2/3:SU3 and 1:SU2. The outstanding question is whether the Yukawa theories considered do in fact have fixed points satisfying the inequalities, and thus simultaneous (non-trivial) zeroes of β(g) and β(lambda) have to be found

  10. High frequency asymptotic methods

    International Nuclear Information System (INIS)

    Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.

    1991-01-01

    The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets

  11. Asymptotic Safety Guaranteed in Supersymmetry

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2017-11-01

    We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed points, R charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is achieved in a Veneziano limit. Consistency with unitarity and the a theorem is established. We find that supersymmetry enhances the predictivity of asymptotically safe theories.

  12. More asymptotic safety guaranteed

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2018-04-01

    We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.

  13. Asymptotically safe grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Bajc, Borut [J. Stefan Institute,1000 Ljubljana (Slovenia); Sannino, Francesco [CP-Origins & the Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Université de Lyon, France, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France)

    2016-12-28

    Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.

  14. Renormalization group and asymptotic freedom

    International Nuclear Information System (INIS)

    Morris, J.R.

    1978-01-01

    Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions

  15. Theorems for asymptotic safety of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)

  16. Asymptotic behaviour of Feynman integrals

    International Nuclear Information System (INIS)

    Bergere, M.C.

    1980-01-01

    In these lecture notes, we describe how to obtain the asymptotic behaviour of Feynman amplitudes; this technique has been already applied in several cases, but the general solution for any kind of asymptotic behaviour has not yet been found. From the mathematical point of view, the problem to solve is close to the following problem: find the asymptotic expansion at large lambda of the integral ∫...∫ [dx] esup(-LambdaP[x]) where P[x] is a polynomial of several variables. (orig.)

  17. Asymptotic Parachute Performance Sensitivity

    Science.gov (United States)

    Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.

    2006-01-01

    In 2010, the Mars Science Laboratory mission will pioneer the next generation of robotic Entry, Descent, and Landing systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than any other mission to Mars, Mars Science Laboratory will also provide scientists with unprecedented access to regions of Mars that have been previously unreachable. By providing an Entry, Descent, and Landing system capable of landing at altitudes as high as 2 km above the reference gravitational equipotential surface, or areoid, as defined by the Mars Orbiting Laser Altimeter program, Mars Science Laboratory will demonstrate sufficient performance to land on 83% of the planet s surface. By contrast, the highest altitude landing to date on Mars has been the Mars Exploration Rover at 1.3 km below the areoid. The coupling of this improved altitude performance with latitude limits as large as 60 degrees off of the equator and a precise delivery to within 10 km of a surface target, will allow the science community to select the Mars Science Laboratory landing site from thousands of scientifically interesting possibilities. In meeting these requirements, Mars Science Laboratory is extending the limits of the Entry, Descent, and Landing technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Specifically, the drag deceleration provided by a Viking-heritage 16.15 m supersonic Disk-Gap-Band parachute in the thin atmosphere of Mars is insufficient, at the altitudes and ballistic coefficients under consideration by the Mars Science Laboratory project, to maintain necessary altitude performance and timeline margin. This paper defines and discusses the asymptotic parachute performance observed in Monte Carlo simulation and performance analysis and its effect on the Mars Science Laboratory Entry, Descent, and Landing architecture.

  18. Nonminimal hints for asymptotic safety

    Science.gov (United States)

    Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran

    2018-01-01

    In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.

  19. Generating asymptotically plane wave spacetimes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)

  20. Asymptotically anti-de Sitter spacetimes in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2009-01-01

    We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.

  1. Global asymptotic stability of delayed Cohen-Grossberg neural networks

    International Nuclear Information System (INIS)

    Wu Wei; Cui Baotong; Huang Min

    2007-01-01

    In this letter, the global asymptotic stability of a class of Cohen-Grossberg neural networks with time-varying delays is discussed. A new set of sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence. Our criteria represent an extension of the existing results in literatures. An example is also presented to compare our results with the previous results

  2. Asymptotic stability of a genetic network under impulsive control

    International Nuclear Information System (INIS)

    Li Fangfei; Sun Jitao

    2010-01-01

    The study of the stability of genetic network is an important motif for the understanding of the living organism at both molecular and cellular levels. In this Letter, we provide a theoretical method for analyzing the asymptotic stability of a genetic network under impulsive control. And the sufficient conditions of its asymptotic stability under impulsive control are obtained. Finally, an example is given to illustrate the effectiveness of the obtained method.

  3. Polynomial Asymptotes of the Second Kind

    Science.gov (United States)

    Dobbs, David E.

    2011-01-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…

  4. The theory of asymptotic behaviour

    International Nuclear Information System (INIS)

    Ward, B.F.L.; Purdue Univ., Lafayette, IN

    1978-01-01

    The Green's functions of renormalizable quantum field theory are shown to violate, in general, Euler's theorem on homogeneous functions, that is to say, to violate naive dimensional analysis. The respective violations are established by explicit calculation with Feynman diagrams. These violations, when incorporated into the renormalization group, then provide the basis for an entirely new approach to asymptotic behaviour in renormalizable field theory. Specifically, the violations add new delta-function sources to the usual partial differential equations of the group when these equations are written in terms of the external momenta of the respective Green's functions. The effect of these sources is illustrated by studying the real part, Re GAMMA 6 (lambda p), of the six-point 1PI vertex of the massless scalar field with quartic self-coupling - the simplest of ranormalizable situations. Here, lambda p is symbolic for the six-momenta of GAMMA 6 . Briefly, it is found that the usual theory of characteristics is unable to satisfy the boundary condition attendant to the respective dimensional-analysis-violating sources. Thus, the method of characteristics is completely abandonded in favour of the method of separation of variables. A complete solution which satisfies the inhomogeneous group equation and all boundary conditions is then explicitly constructed. This solution possesses Laurent expansions in the scale lambda of its momentum arguments for all real values of lambda 2 except lambda 2 = 0. For |lambda 2 |→ infinity and |lambda 2 |→ 0, the solution's leading term in its respective Laurent series is proportional to lambda -2 . The limits lambda 2 →0sub(+) and lambda 2 →0sup(-) of lambda 2 ReGAMMA 6 are both nonzero and unequal. The value of the solution at lambda 2 = 0 is not simply related to the value of either of these limits. The new approach would appear to be operationally established

  5. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  6. The PN theory as an asymptotic limit of transport theory in planar geometry. 1

    International Nuclear Information System (INIS)

    Larsen, E.W.; Pomraning, G.C.

    1991-01-01

    In this paper the P N theory is shown to be an asymptotic limit of transport theory for an optically thick planar-geometry system with small absorption and highly anisotropic scattering. The asymptotic analysis shows that the solution in the interior of the system is described by the standard P N equations for which initial, boundary, and interface conditions are determined by asymptotic initial, boundary layer, and interface layer calculations. The asymptotic initial, (reflecting) boundary, and interface conditions for the P N equations agree with conventional formulations. However, at a boundary having a prescribed incident flux, the asymptotic boundary layer analysis yields P N boundary conditions that differ from previous formulations. Numerical transport and P N results are presented to substantiate this asymptotic theory

  7. Asymptotic geometric analysis, part I

    CERN Document Server

    Artstein-Avidan, Shiri

    2015-01-01

    The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen

  8. Asymptotically free SU(5) models

    International Nuclear Information System (INIS)

    Kogan, Ya.I.; Ter-Martirosyan, K.A.; Zhelonkin, A.V.

    1981-01-01

    The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles [ru

  9. Asymptotic solutions of diffusion models for risk reserves

    Directory of Open Access Journals (Sweden)

    S. Shao

    2003-01-01

    Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.

  10. Ruin problems and tail asymptotics

    DEFF Research Database (Denmark)

    Rønn-Nielsen, Anders

    The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...

  11. Asymptotic Expansions - Methods and Applications

    International Nuclear Information System (INIS)

    Harlander, R.

    1999-01-01

    Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)

  12. Naturalness of asymptotically safe Higgs

    DEFF Research Database (Denmark)

    Pelaggi, Giulio M.; Sannino, Francesco; Strumia, Alessandro

    2017-01-01

    that the scalars can be lighter than Λ. Although we do not have an answer to whether the Standard Model hypercharge coupling growth toward a Landau pole at around Λ ~ 1040GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful...

  13. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...

  14. Existence and Asymptotic Stability of Periodic Solutions of the Reaction-Diffusion Equations in the Case of a Rapid Reaction

    Science.gov (United States)

    Nefedov, N. N.; Nikulin, E. I.

    2018-01-01

    A singularly perturbed periodic in time problem for a parabolic reaction-diffusion equation in a two-dimensional domain is studied. The case of existence of an internal transition layer under the conditions of balanced and unbalanced rapid reaction is considered. An asymptotic expansion of a solution is constructed. To justify the asymptotic expansion thus constructed, the asymptotic method of differential inequalities is used. The Lyapunov asymptotic stability of a periodic solution is investigated.

  15. Heat Kernel Asymptotics of Zaremba Boundary Value Problem

    Energy Technology Data Exchange (ETDEWEB)

    Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu

    2004-03-15

    The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.

  16. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  17. Asymptotic functions and multiplication of distributions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-01-01

    Considered is a new type of generalized asymptotic functions, which are not functionals on some space of test functions as the Schwartz distributions. The definition of the generalized asymptotic functions is given. It is pointed out that in future the particular asymptotic functions will be used for solving some topics of quantum mechanics and quantum theory

  18. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    An, Ok Song [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy); Department of Physics, Kim Il Sung University,Ryongnam Dong, TaeSong District, Pyongyang, D.P.R. (Korea, Republic of); ICTP,Strada Costiera 11, 34014 Trieste (Italy); Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,209 S 33rd St, Philadelphia, PA 19104 (United States); Center for Applied Mathematics and Theoretical Physics, University of Maribor,Mladinska 3, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)

    2016-03-14

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.

  19. Asymptotic structure of isolated systems

    International Nuclear Information System (INIS)

    Beig, R.

    1988-01-01

    I discuss the general ideas underlying the subject of ''asymptotics'' in general relativity and describe the current status of the concepts resulting from these ideas. My main concern will be the problem of consistency. By this I mean the question as to whether the geometric assumptions inherent in these concepts are compatible with the dynamics of the theory, as determined by Einstein's equations. This rather strong bias forces me to leave untouched several issues related to asymptotics, discussed in the recent literature, some of which are perhaps thought equally, or more important, by other workers in the field. In addition I shall, for coherence of presentation, mainly consider Einstein's equations in vacuo. When attention is confined to small neighbourhoods of null and spacelike infinity, this restriction is not important, but is surely relevant for more global issues. (author)

  20. Asymptotic freedom and Zweig's rule

    International Nuclear Information System (INIS)

    Appelquist, Th.

    1977-01-01

    Some theoretical aspects of applying short distance physics (asymptotic freedom) are discussed to prove the correctness of the quantum chromodynamics. Properties of new particles that depend only on short distance physics can be dealt with perturbatively. The new mesons are assumed to be CantiC bound states, where C is a new heavy quark. With this in mind some comments are made on the calculation of total widths for the direct decay of different CantiC states into ordinary hadrons

  1. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  2. Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities

    International Nuclear Information System (INIS)

    Chen, S.-F.

    2009-01-01

    The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results.

  3. First-passage time asymptotics over moving boundaries for random walk bridges

    NARCIS (Netherlands)

    Sloothaak, F.; Zwart, B.; Wachtel, V.

    2017-01-01

    We study the asymptotic tail probability of the first-passage time over a moving boundary for a random walk conditioned to return to zero, where the increments of the random walk have finite variance. Typically, the asymptotic tail behavior may be described through a regularly varying function with

  4. On the asymptotic stability of nonlinear mechanical switched systems

    Science.gov (United States)

    Platonov, A. V.

    2018-05-01

    Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.

  5. Asymptotic behaviour near extinction of continuous-state branching processes

    OpenAIRE

    Berzunza, Gabriel; Pardo, Juan Carlos

    2016-01-01

    In this note, we study the asymptotic behaviour near extinction of (sub-) critical continuous state branching processes. In particular, we establish an analogue of Khintchin's law of the iterated logarithm near extinction time for a continuous state branching process whose branching mechanism satisfies a given condition and its reflected process at its infimum.

  6. Asymptotic expansions of Mathieu functions in wave mechanics

    International Nuclear Information System (INIS)

    Hunter, G.; Kuriyan, M.

    1976-01-01

    Solutions of the radial Schroedinger equation containing a polarization potential r -4 are expanded in a form appropriate for large values of r. These expansions of the Mathieu functions are used in association with the numerical solution of the Schroedinger equation to impose the asymptotic boundary condition in the case of bound states, and to extract phase shifts in the case of scattering states

  7. Asymptotics of the QMLE for General ARCH(q) Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders Christian

    2009-01-01

    -ARCH -- are derived. Strong consistency is established under the assumptions that the ARCH process is geometrically ergodic, the conditional variance function has a finite log-moment, and finite second moment of the rescaled error. Asymptotic normality of the estimator is established under the additional assumption...

  8. Tail asymptotics for dependent subexponential differences

    DEFF Research Database (Denmark)

    Albrecher, H; Asmussen, Søren; Kortschak, D.

    We study the asymptotic behavior of P(X − Y > u) as u → ∞, where X is subexponential and X, Y are positive random variables that may be dependent. We give criteria under which the subtraction of Y does not change the tail behavior of X. It is also studied under which conditions the comonotonic co...

  9. Asymptotics for Associated Random Variables

    CERN Document Server

    Oliveira, Paulo Eduardo

    2012-01-01

    The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting

  10. Numerical relativity and asymptotic flatness

    International Nuclear Information System (INIS)

    Deadman, E; Stewart, J M

    2009-01-01

    It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.

  11. Asymptotic twistor theory and the Kerr theorem

    International Nuclear Information System (INIS)

    Newman, Ezra T

    2006-01-01

    We first review asymptotic twistor theory with its real subspace of null asymptotic twistors: a five-dimensional CR manifold. This is followed by a description of the Kerr theorem (the identification of shear-free null congruences, in Minkowski space, with the zeros of holomorphic functions of three variables) and an asymptotic version of the Kerr theorem that produces regular asymptotically shear-free null geodesic congruences in arbitrary asymptotically flat Einstein or Einstein-Maxwell spacetimes. A surprising aspect of this work is the role played by analytic curves in H-space, each curve generating an asymptotically flat null geodesic congruence. Also there is a discussion of the physical space realizations of the two associated five- and three-dimensional CR manifolds

  12. From asymptotic safety to dark energy

    International Nuclear Information System (INIS)

    Ahn, Changrim; Kim, Chanju; Linder, Eric V.

    2011-01-01

    We consider renormalization group flow applied to the cosmological dynamical equations. A consistency condition arising from energy-momentum conservation links the flow parameters to the cosmological evolution, restricting possible behaviors. Three classes of cosmological fixed points for dark energy plus a barotropic fluid are found: a dark energy dominated universe, which can be either accelerating or decelerating depending on the RG flow parameters, a barotropic dominated universe where dark energy fades away, and solutions where the gravitational and potential couplings cease to flow. If the IR fixed point coincides with the asymptotically safe UV fixed point then the dark energy pressure vanishes in the first class, while (only) in the de Sitter limit of the third class the RG cutoff scale becomes the Hubble scale.

  13. UV conformal window for asymptotic safety

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom

    2018-02-01

    Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.

  14. Asymptotic limits of a statistical transport description

    International Nuclear Information System (INIS)

    Malvagi, F.; Levermore, C.D.; Pomraning, G.C.; Department of Mathematics, University of Arizona, Tucson, AZ 85721)

    1989-01-01

    We consider three different asymptotic limits of a model describing linear particle transport in a stochastic medium consisting of two randomly mixed immiscible fluids. These three limits are: (1) the fluid packets are small compared to the particle mean free path in the packet; (2) a small amount of large cross section fluid is admixed with a large amount of small cross section fluid; and (3) the angular dependence of the intensity (angular flux) is nearly isotropic. The first two limits reduce the underlying model, which consists of two coupled transport equations, to a single transport equation of the usual form. The third limit yields a two-equation diffusion approximation, and a boundary layer analysis gives boundary conditions for these two coupled diffusion equations

  15. Asymptotic density and effective negligibility

    Science.gov (United States)

    Astor, Eric P.

    In this thesis, we join the study of asymptotic computability, a project attempting to capture the idea that an algorithm might work correctly in all but a vanishing fraction of cases. In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of Jockusch and Schupp, we introduce dense computation, the weakest notion of asymptotic computability (requiring only that the correct answer is produced on a set of density 1), and effective dense computation, where every computation halts with either the correct answer or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise the relationship between these notions and work already done with Jockusch and Schupp's original definitions of coarse and generic computability. For all four types of asymptotic computation, including generic computation, we demonstrate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt, Jockusch, Kuyper, and Schupp in which they establish this for coarse computation. Their result transfers to yield a minimal pair for relative coarse computation; we generalize their method and extract a similar result for relative dense computation (and thus for its corresponding reducibility). However, all of these notions of near-computation treat a set as negligible iff it has asymptotic density 0. Noting that this definition is not computably invariant, this produces some failures of intuition and a break with standard expectations in computability theory. For instance, as shown by Hamkins and Miasnikov, the halting problem is (in some formulations) effectively densely computable, even in polynomial time---yet this result appears fragile, as indicated by Rybalov. In independent work, we respond to this by strengthening the approach of Jockusch and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic asymptotic density, invariant under computable permutation, with rich relations to both

  16. Asymptotic safety, emergence and minimal length

    International Nuclear Information System (INIS)

    Percacci, Roberto; Vacca, Gian Paolo

    2010-01-01

    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.

  17. Numerical Asymptotic Solutions Of Differential Equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  18. Asymptotic behaviour in field theory

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, H.

    1980-07-01

    Asymptotic behaviour in field theory has been studied and the anomalies are pointed out in two specific cases, (i) the infrared and fixed angle high energy behaviour in the non-trivial case of the 'box' amplitude in a scalar-scalar theory and (ii) high energy behaviour of a sixth order Yang-Mills diagram. A set of rules are presented for writing down the precise leading infrared behaviour of an arbitrary generalised ladder diagram (GLD) in QED. These rules are the final result of a detailed analysis of the relevant amplitudes in the Feynman parameter space. The connection between the infrared and fixed angle high energy limits of generalised ladder diagrams is explained. It is argued that the same set of rules yield the fixed angle high energy limit.

  19. Asymptotical representation of discrete groups

    International Nuclear Information System (INIS)

    Mishchenko, A.S.; Mohammad, N.

    1995-08-01

    If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs

  20. Exponential asymptotics of homoclinic snaking

    International Nuclear Information System (INIS)

    Dean, A D; Matthews, P C; Cox, S M; King, J R

    2011-01-01

    We study homoclinic snaking in the cubic-quintic Swift–Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319–54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement

  1. Stark resonances: asymptotics and distributional Borel sum

    International Nuclear Information System (INIS)

    Caliceti, E.; Grecchi, V.; Maioli, M.

    1993-01-01

    We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)

  2. Asymptotics of Laplace-Dirichlet integrals

    International Nuclear Information System (INIS)

    Kozlov, S.M.

    1990-01-01

    Here we consider the problem of the asymptotic expansion of the Laplace-Dirichlet integral. In homogenization theory such an integral represents the energy, and in general depends on the cohomology class. Here the asymptotic behaviour of this integral is found. The full text will appear in Functional Analysis and Applications, 1990, No.2. (author). 3 refs

  3. A method for summing nonalternating asymptotic series

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1980-01-01

    A method for reconstructing a function from its nonalternating asymptotic series is proposed. It can also be applied when only a limited number of coefficients and their high order asymptotic behaviour are known. The method is illustrated by examples of the ordinary simple integral simulating a functional integral in a theory with degenerate minimum and of the double-well unharmonic oscillator

  4. Wijsman Orlicz Asymptotically Ideal -Statistical Equivalent Sequences

    Directory of Open Access Journals (Sweden)

    Bipan Hazarika

    2013-01-01

    in Wijsman sense and present some definitions which are the natural combination of the definition of asymptotic equivalence, statistical equivalent, -statistical equivalent sequences in Wijsman sense. Finally, we introduce the notion of Cesaro Orlicz asymptotically -equivalent sequences in Wijsman sense and establish their relationship with other classes.

  5. 8. Asymptotically Flat and Regular Cauchy Data

    Science.gov (United States)

    Dain, Sergio

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  6. Journal Afrika Statistika ISSN 0852-0305 Asymptotic representation ...

    African Journals Online (AJOL)

    Asymptotic representation theorems for poverty indices ... Statistical asymptotic laws for these indices, particularly asymptotic normality, on which statistical inference on the ... population of individuals, each of which having a random income or ...

  7. Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes

    Directory of Open Access Journals (Sweden)

    Maria Crespo

    2017-08-01

    Full Text Available In this work, we present an asymptotic analysis of a coupled system of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacteria, called biomass, and a diluted organic contaminant (e.g., nitrates, called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the linearization method to give sufficient conditions for the linear asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.

  8. Experimental tests of asymptotic freedom

    International Nuclear Information System (INIS)

    Bethke, S.

    1996-09-01

    Measurements which probe the energy dependence of α s , the coupling strength of the strong interaction, are reviewed. Jet counting in e + e - annihilation, combining results obtained in the centre of mass energy range from 22 to 133 GeV, provides direct evidence for an asymptotically free coupling, without the need to determine explicit values of α s . Recent results from jet production in e p and in p p collisions, obtained in single experiments spanning large ranges of momentum transfer, Q 2 , are in good agreement with the running of α s as predicted by QCD. Mass spectra of hadronic decays of τ-leptons are analysed to probe the running α s in the very low energy domain, 0.7 GeV 2 2 2 τ . An update of the world summary of measurements of α s (Q 2 ) consistently proves the energy dependence of α s and results in a combined average of α s (M Z 0 =0.118±0.006). (orig.)

  9. Bounds and asymptotics for orthogonal polynomials for varying weights

    CERN Document Server

    Levin, Eli

    2018-01-01

    This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals.  Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics.  This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .

  10. Asymptotic Conservation Laws in Classical Field Theory

    International Nuclear Information System (INIS)

    Anderson, I.M.; Torre, C.G.

    1996-01-01

    A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society

  11. Asymptotic work distributions in driven bistable systems

    International Nuclear Information System (INIS)

    Nickelsen, D; Engel, A

    2012-01-01

    The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.

  12. Asymptotic structure of the Einstein-Maxwell theory on AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Riquelme, Miguel [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Tempo, David [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-02-02

    The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to ℝ⊗U(1)⊗U(1). Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized by an arbitrary function of a single variable, whose precise form depends on the choice of the chiral copy. Remarkably, requiring the asymptotic symmetries to contain the full conformal group selects a very special set of boundary conditions that is labeled by a unique constant parameter, so that the algebra of the canonical generators is given by the direct sum of two copies of the Virasoro algebra with the standard central extension and U(1). This special set of boundary conditions makes the energy spectrum of electrically charged rotating black holes to be well-behaved.

  13. On the asymptotics of the Gell-Mann-Low function in quantum field theory

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Popov, V.S.

    2003-01-01

    The problem of reconstructing the Gell-Mann-Low function in quantum field theory starting with its asymptotic series with the first terms calculated by perturbation theory is discussed. And though in a strict mathematical sense this is not unambiguously realizable, under reasonable assumptions about the function it appears to be possible to reconstruct it in some finite interval of g. However, any attempts to find its asymptotics as g→∞ from our point of view are not justified. We also present the conditions under which the sum of the asymptotic series may decrease at infinity

  14. Asymptotic Likelihood Distribution for Correlated & Constrained Systems

    CERN Document Server

    Agarwal, Ujjwal

    2016-01-01

    It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.

  15. Asymptotic Poincare lemma and its applications

    International Nuclear Information System (INIS)

    Ziolkowski, R.W.; Deschamps, G.A.

    1984-01-01

    An asymptotic version of Poincare's lemma is defined and solutions are obtained with the calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidimensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincare lemma are used to generate a general representation of the Leray form. All of the (differential form) expressions presented are generalizations of known (vector calculus) results. 14 references, 4 figures

  16. EMC effect: asymptotic freedom with nuclear targets

    International Nuclear Information System (INIS)

    West, G.B.

    1984-01-01

    General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references

  17. Spectral asymptotic in the large coupling limit

    CERN Document Server

    Bruneau, V

    2002-01-01

    In this paper, we study a singular perturbation of an eigenvalues problem related to supra-conductor wave guides. Using boundary layer tools we perform a complete asymptotic expansion of the eigenvalues as the conductivity tends to $+\\infty$.

  18. Large Deviations and Asymptotic Methods in Finance

    CERN Document Server

    Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef

    2015-01-01

    Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...

  19. More on asymptotically anti-de Sitter spaces in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2010-01-01

    Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).

  20. Komar integrals in asymptotically anti-de Sitter space-times

    International Nuclear Information System (INIS)

    Magnon, A.

    1985-01-01

    Recently, boundary conditions governing the asymptotic behavior of the gravitational field in the presence of a negative cosmological constant have been introduced using Penrose's conformal techniques. The subsequent analysis has led to expressions of conserved quantities (associated with asymptotic symmetries) involving asymptotic Weyl curvature. On the other hand, if the underlying space-time is equipped with isometries, a generalization of the Komar integral which incorporates the cosmological constant is also available. Thus, in the presence of an isometry, one is faced with two apparently unrelated definitions. It is shown that these definitions agree. This coherence supports the choice of boundary conditions for asymptotically anti-de Sitter space-times and reinforces the definitions of conserved quantities

  1. Asymptotic expansion of the Keesom integral

    International Nuclear Information System (INIS)

    Abbott, Paul C

    2007-01-01

    The asymptotic evaluation and expansion of the Keesom integral, K(a), is discussed at some length in Battezzati and Magnasco (2004 J. Phys. A: Math. Gen. 37 9677; 2005 J. Phys. A: Math. Gen. 38 6715). Here, using standard identities, it is shown that this triple integral can be reduced to a single integral from which the asymptotic behaviour is readily obtained using Laplace's method. (comment)

  2. Composite asymptotic expansions and scaling wall turbulence.

    Science.gov (United States)

    Panton, Ronald L

    2007-03-15

    In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.

  3. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  4. Trinucleon asymptotic normalization constants including Coulomb effects

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.

    1982-01-01

    Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects

  5. Asymptotic scalings of developing curved pipe flow

    Science.gov (United States)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  6. Asymptotic state discrimination and a strict hierarchy in distinguishability norms

    Energy Technology Data Exchange (ETDEWEB)

    Chitambar, Eric [Department of Physics and Astronomy, Southern Illinois University, Carbondale, Illinois 62901 (United States); Hsieh, Min-Hsiu [Centre for Quantum Computation and Intelligent Systems (QCIS), Faculty of Engineering and Information Technology (FEIT), University of Technology Sydney - UTS, NSW 2007 (Australia)

    2014-11-15

    In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational advantage of using two-way classical communication over one-way communication in LOCC processing. With a simple two-qubit product state ensemble, we demonstrate a strict majorization of the two-way LOCC norm over the one-way norm.

  7. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  8. Asymptotically flat structure of hypergravity in three spacetime dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, Oscar [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2015-10-02

    The asymptotic structure of three-dimensional hypergravity without cosmological constant is analyzed. In the case of gravity minimally coupled to a spin-5/2 field, a consistent set of boundary conditions is proposed, being wide enough so as to accommodate a generic choice of chemical potentials associated to the global charges. The algebra of the canonical generators of the asymptotic symmetries is given by a hypersymmetric nonlinear extension of BMS{sub 3}. It is shown that the asymptotic symmetry algebra can be recovered from a subset of a suitable limit of the direct sum of the W{sub (2,4)} algebra with its hypersymmetric extension. The presence of hypersymmetry generators allows to construct bounds for the energy, which turn out to be nonlinear and saturate for spacetimes that admit globally-defined “Killing vector-spinors”. The null orbifold or Minkowski spacetime can then be seen as the corresponding ground state in the case of fermions that fulfill periodic or antiperiodic boundary conditions, respectively. The hypergravity theory is also explicitly extended so as to admit parity-odd terms in the action. It is then shown that the asymptotic symmetry algebra includes an additional central charge, being proportional to the coupling of the Lorentz-Chern-Simons form. The generalization of these results in the case of gravity minimally coupled to arbitrary half-integer spin fields is also carried out. The hypersymmetry bounds are found to be given by a suitable polynomial of degree s+(1/2) in the energy, where s is the spin of the fermionic generators.

  9. Generalized Asymptotically Almost Periodic and Generalized Asymptotically Almost Automorphic Solutions of Abstract Multiterm Fractional Differential Inclusions

    Directory of Open Access Journals (Sweden)

    G. M. N’Guérékata

    2018-01-01

    Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.

  10. Asymptotic Value Distribution for Solutions of the Schroedinger Equation

    International Nuclear Information System (INIS)

    Breimesser, S. V.; Pearson, D. B.

    2000-01-01

    We consider the Dirichlet Schroedinger operator T=-(d 2 /d x 2 )+V, acting in L 2 (0,∞), where Vis an arbitrary locally integrable potential which gives rise to absolutely continuous spectrum. Without any other restrictive assumptions on the potential V, the description of asymptotics for solutions of the Schroedinger equation is carried out within the context of the theory of value distribution for boundary values of analytic functions. The large x asymptotic behaviour of the solution v(x,λ) of the equation Tf(x,λ)=λf(x,λ), for λ in the support of the absolutely continuous part μ a.c. of the spectral measure μ, is linked to the spectral properties of this measure which are determined by the boundary value of the Weyl-Titchmarsh m-function. Our main result (Theorem 1) shows that the value distribution for v'(N,λ)/v(N,λ) approaches the associated value distribution of the Herglotz function m N (z) in the limit N → ∞, where m N (z) is the Weyl-Titchmarsh m-function for the Schroedinger operator -(d 2 /d x 2 )+Vacting in L 2 (N,∞), with Dirichlet boundary condition at x=N. We will relate the analysis of spectral asymptotics for the absolutely continuous component of Schroedinger operators to geometrical properties of the upper half-plane, viewed as a hyperbolic space

  11. A note on asymptotic expansions for Markov chains using operator theory

    DEFF Research Database (Denmark)

    Jensen, J.L.

    1987-01-01

    We consider asymptotic expansions for sums Sn on the form Sn = fhook0(X0) + fhook(X1, X0) + ... + fhook(Xn, Xn-1), where Xi is a Markov chain. Under different ergodicity conditions on the Markov chain and certain conditional moment conditions on fhook(Xi, Xi-1), a simple representation...

  12. Asymptotic stability of a catalyst particle

    DEFF Research Database (Denmark)

    Wedel, Stig; Michelsen, Michael L.; Villadsen, John

    1977-01-01

    The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...

  13. Directions for model building from asymptotic safety

    Science.gov (United States)

    Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.

    2017-08-01

    Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.

  14. On the asymptotics of dimers on tori

    OpenAIRE

    Kenyon, Richard W.; Sun, Nike; Wilson, David B.

    2013-01-01

    We study asymptotics of the dimer model on large toric graphs. Let $\\mathbb L$ be a weighted $\\mathbb{Z}^2$-periodic planar graph, and let $\\mathbb{Z}^2 E$ be a large-index sublattice of $\\mathbb{Z}^2$. For $\\mathbb L$ bipartite we show that the dimer partition function on the quotient $\\mathbb{L}/(\\mathbb{Z}^2 E)$ has the asymptotic expansion $\\exp[A f_0 + \\text{fsc} + o(1)]$, where $A$ is the area of $\\mathbb{L}/(\\mathbb{Z}^2 E)$, $f_0$ is the free energy density in the bulk, and $\\text{fsc...

  15. On selfdual spin-connections and asymptotic safety

    Energy Technology Data Exchange (ETDEWEB)

    Harst, U., E-mail: harst@thep.physik.uni-mainz.de; Reuter, M., E-mail: reuter@thep.physik.uni-mainz.de

    2016-02-10

    We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG) equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-)selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein–Cartan gravity without the selfduality condition.

  16. Asymptotic convergence for iterative optimization in electronic structure

    International Nuclear Information System (INIS)

    Lippert, Ross A.; Sears, Mark P.

    2000-01-01

    There have recently been a number of proposals for solving large electronic structure problems (local-density approximation, Hartree-Fock, and tight-binding methods) iteratively with a computational effort proportional to the size of the system. The effort needed to perform a single iteration in these schemes is well understood but the convergence rate has been an empirical matter. This paper will show that many of the proposed methods have a single underlying geometrical structure, which has a specific asymptotic convergence behavior, and that behavior can be understood in terms of some simple condition numbers based on the spectrum of the Hamiltonian. (c) 2000 The American Physical Society

  17. Asymptotic Limits for Transport in Binary Stochastic Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, A. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    The Karhunen-Loeve stochastic spectral expansion of a random binary mixture of immiscible fluids in planar geometry is used to explore asymptotic limits of radiation transport in such mixtures. Under appropriate scalings of mixing parameters - correlation length, volume fraction, and material cross sections - and employing multiple- scale expansion of the angular flux, previously established atomic mix and diffusion limits are reproduced. When applied to highly contrasting material properties in the small cor- relation length limit, the methodology yields a nonstandard reflective medium transport equation that merits further investigation. Finally, a hybrid closure is proposed that produces both small and large correlation length limits of the closure condition for the material averaged equations.

  18. Derivative analyticity relations and asymptotic energies

    International Nuclear Information System (INIS)

    Fischer, J.

    1976-01-01

    On the basis of general principles of the S-matrix theory theorems are derived showing that derivative analyticity relations analogous to those of Bronzen, Kane and Sukhatme hold at asymptotic energies if the high-energy limits of certain physical quantities exist

  19. Stationary solutions and asymptotic flatness I

    International Nuclear Information System (INIS)

    Reiris, Martin

    2014-01-01

    In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)

  20. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  1. Supersymmetric asymptotic safety is not guaranteed

    DEFF Research Database (Denmark)

    Intriligator, Kenneth; Sannino, Francesco

    2015-01-01

    in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...

  2. The asymptotic expansion method via symbolic computation

    OpenAIRE

    Navarro, Juan F.

    2012-01-01

    This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  3. The Asymptotic Expansion Method via Symbolic Computation

    Directory of Open Access Journals (Sweden)

    Juan F. Navarro

    2012-01-01

    Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  4. Large degree asymptotics of generalized Bessel polynomials

    NARCIS (Netherlands)

    J.L. López; N.M. Temme (Nico)

    2011-01-01

    textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the

  5. Asymptotic expansions for the Gaussian unitary ensemble

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Thorbjørnsen, Steen

    2012-01-01

    Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian U...

  6. Asymptotic Translation Length in the Curve Complex

    OpenAIRE

    Valdivia, Aaron D.

    2013-01-01

    We show that when the genus and punctures of a surface are directly proportional by some rational number the minimal asymptotic translation length in the curve complex has behavior inverse to the square of the Euler characteristic. We also show that when the genus is fixed and the number of punctures varies the behavior is inverse to the Euler characteristic.

  7. Asymptotic inversion of the Erlang B formula

    NARCIS (Netherlands)

    Leeuwaarden, van J.S.H.; Temme, N.M.

    2008-01-01

    The Erlang B formula represents the steady-state blocking probability in the Erlang loss model or M=M=s=s queue. We derive asymptotic expansions for the offered load that matches, for a given number of servers, a certain blocking probability. In addressing this inversion problem we make use of

  8. Asymptotic analysis of the Forward Search

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...

  9. On iterative procedures of asymptotic inference

    NARCIS (Netherlands)

    K.O. Dzhaparidze (Kacha)

    1983-01-01

    textabstractAbstract  An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then

  10. Asymptotic evolution of quantum Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Jaroslav [FNSPE, CTU in Prague, 115 19 Praha 1 - Stare Mesto (Czech Republic); Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2012-07-01

    The iterated quantum operations, so called quantum Markov chains, play an important role in various branches of physics. They constitute basis for many discrete models capable to explore fundamental physical problems, such as the approach to thermal equilibrium, or the asymptotic dynamics of macroscopic physical systems far from thermal equilibrium. On the other hand, in the more applied area of quantum technology they also describe general characteristic properties of quantum networks or they can describe different quantum protocols in the presence of decoherence. A particularly, an interesting aspect of these quantum Markov chains is their asymptotic dynamics and its characteristic features. We demonstrate there is always a vector subspace (typically low-dimensional) of so-called attractors on which the resulting superoperator governing the iterative time evolution of quantum states can be diagonalized and in which the asymptotic quantum dynamics takes place. As the main result interesting algebraic relations are presented for this set of attractors which allow to specify their dual basis and to determine them in a convenient way. Based on this general theory we show some generalizations concerning the theory of fixed points or asymptotic evolution of random quantum operations.

  11. Infrared studies of asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Willems, F.J.

    1987-01-01

    In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs

  12. Asymptotic behaviour of firmly non expansive sequences

    International Nuclear Information System (INIS)

    Rouhani, B.D.

    1993-04-01

    We introduce the notion of firmly non expansive sequences in a Banach space and present several results concerning their asymptotic behaviour extending previous results and giving an affirmative answer to an open question raised by S. Reich and I. Shafir. Applications to averaged mappings are also given. (author). 16 refs

  13. An asymptotic problem in renewal theory

    NARCIS (Netherlands)

    Klamkin, M.S.; van Lint, J.H.

    1972-01-01

    A special problem in renewal theory is considered. The asymptotic behavior of the renewal function was studied by W. L. Smith. Here we show that his result with an exponentially small remainder term follows from a theorem of De Bruijn on Volterra integral equations.

  14. Asymptotics for the minimum covariance determinant estimator

    NARCIS (Netherlands)

    Butler, R.W.; Davies, P.L.; Jhun, M.

    1993-01-01

    Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown

  15. Behavior of asymptotically electro-Λ spacetimes

    Science.gov (United States)

    Saw, Vee-Liem

    2017-04-01

    We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .

  16. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons

  17. Asymptotic behavior of trigonometric integrals

    International Nuclear Information System (INIS)

    Ikromov, I.A.; Absalamov, A.T.

    2008-06-01

    Trigonometric integrals play an essential role in many branches of mathematics. Especially many problems from mathematical physics and theory of probability lead to investigate trigonometric integrals. Problem: Find the least upper bound p 0 for p such that T element of L p (R?N). This problem was considered in connection with the problems of number theory, and obtained an estimation for k = 1. The precise value of p 0 for k = 1 was indicated and was proved for boundness in higher dimensional cases. In this paper we study the problem by considering the classical setting. In other words P is a square polynomial function and Q is a unit cube. It should be noted that the condition of Makenhaupt does not hold for this case

  18. Global asymptotic stability of Cohen-Grossberg neural networks with constant and variable delays

    International Nuclear Information System (INIS)

    Wu Wei; Cui Baotong; Huang Min

    2007-01-01

    Global asymptotic stability of Cohen-Grossberg neural networks with constant and variable delays is studied. Some sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence by using different Lyapunov functionals. Our criteria represent an extension of the existing results in literatures. A comparison between our results and the previous results admits that our results establish a new set of stability criteria for delayed Cohen-Grossberg neural networks. Those conditions are less restrictive than those given in the earlier reference

  19. Asymptotic symmetries of Rindler space at the horizon and null infinity

    International Nuclear Information System (INIS)

    Chung, Hyeyoun

    2010-01-01

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler space at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.

  20. The Asymptotic Safety Scenario in Quantum Gravity.

    Science.gov (United States)

    Niedermaier, Max; Reuter, Martin

    2006-01-01

    The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  1. Asymptotic properties of a simple random motion

    International Nuclear Information System (INIS)

    Ravishankar, K.

    1988-01-01

    A random walker in R/sup N/ is considered. At each step the walker picks a point in R/sup N/ from a fixed finite set of destination points. Having chosen the point, the walker moves a fraction r (r < 1) of the distance toward the point along a straight line. Assuming that the successive destination points are chosen independently, it is shown that the asymptotic distribution of the walker's position has the same mean as the destination point distribution. An estimate is obtained for the fraction of time the walker stays within a ball centered at the mean value for almost every destination sequence. Examples show that the asymptotic distribution could have intricate structure

  2. Asymptotic mass degeneracies in conformal field theories

    International Nuclear Information System (INIS)

    Kani, I.; Vafa, C.

    1990-01-01

    By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)

  3. Asymptotic normalization coefficients and astrophysical factors

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.-W.; Sattarov, A.; Trache, L.; Tribble, R.E.; Burjan, V.; Kroha, V.; Carstoiu, F.

    2000-01-01

    The S factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients (ANC's) which provide the normalization of the tails of the overlap functions for 8 B → 7 Be + p. Peripheral transfer reactions offer a technique to determine these ANC's. Using this technique, the 10 B( 7 Be, 8 B) 9 Be and 14 N( 7 Be, 8 B) 13 C reactions have been used to measure the asymptotic normalization coefficient for 7 Be(p, γ) 8 B. These results provide an indirect determination of S 17 (0). Analysis of the existing 9 Be(p, γ) 10 B experimental data within the framework of the R-matrix method demonstrates that experimentally measured ANC's can provide a reasonable determination of direct radiative capture rates. (author)

  4. The Asymptotic Safety Scenario in Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Niedermaier Max

    2006-12-01

    Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  5. Asymptotic adaptive bipartite entanglement-distillation protocol

    International Nuclear Information System (INIS)

    Hostens, Erik; Dehaene, Jeroen; De Moor, Bart

    2006-01-01

    We present an asymptotic bipartite entanglement-distillation protocol that outperforms all existing asymptotic schemes. This protocol is based on the breeding protocol with the incorporation of two-way classical communication. Like breeding, the protocol starts with an infinite number of copies of a Bell-diagonal mixed state. Breeding can be carried out as successive stages of partial information extraction, yielding the same result: one bit of information is gained at the cost (measurement) of one pure Bell state pair (ebit). The basic principle of our protocol is at every stage to replace measurements on ebits by measurements on a finite number of copies, whenever there are two equiprobable outcomes. In that case, the entropy of the global state is reduced by more than one bit. Therefore, every such replacement results in an improvement of the protocol. We explain how our protocol is organized as to have as many replacements as possible. The yield is then calculated for Werner states

  6. On extracting physical content from asymptotically flat spacetime metrics

    International Nuclear Information System (INIS)

    Kozameh, C; Newman, E T; Silva-Ortigoza, G

    2008-01-01

    A major issue in general relativity, from its earliest days to the present, is how to extract physical information from any solution or class of solutions to the Einstein equations. Though certain information can be obtained for arbitrary solutions, e.g., via geodesic deviation, in general, because of the coordinate freedom, it is often hard or impossible to do. Most of the time information is found from special conditions, e.g. degenerate principle null vectors, weak fields close to Minkowski space (using coordinates close to Minkowski coordinates), or from solutions that have symmetries or approximate symmetries. In the present work, we will be concerned with asymptotically flat spacetimes where the approximate symmetry is the Bondi-Metzner-Sachs group. For these spaces the Bondi 4-momentum vector and its evolution, found from the Weyl tensor at infinity, describes the total energy-momentum of the interior source and the energy-momentum radiated. By generalizing the structures (shear-free null geodesic congruences) associated with the algebraically special metrics to asymptotically shear-free null geodesic congruences, which are available in all asymptotically flat spacetimes, we give kinematic meaning to the Bondi 4-momentum. In other words, we describe the Bondi vector and its evolution in terms of a center of mass position vector, its velocity and a spin vector, all having clear geometric meaning. Among other items, from dynamic arguments, we define a unique (at our level of approximation) total angular momentum and extract its evolution equation in the form of a conservation law with an angular momentum flux

  7. Optimization of Parameters of Asymptotically Stable Systems

    Directory of Open Access Journals (Sweden)

    Anna Guerman

    2011-01-01

    Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.

  8. Mass loss on the Asymptotic Giant Branch

    OpenAIRE

    Zijlstra, Albert

    2006-01-01

    Mass loss on the Asymptotic Giant Branch provides the origin of planetary nebulae. This paper reviews several relevant aspects of AGB evolution: pulsation properties, mass loss formalisms and time variable mass loss, evidence for asymmetries on the AGB, binarity, ISM interaction, and mass loss at low metallicity. There is growing evidence that mass loss on the AGB is already asymmetric, but with spherically symmetric velocity fields. The origin of the rings may be in pulsational instabilities...

  9. Asymptotic elastic energy in simple metals

    International Nuclear Information System (INIS)

    Khalifeh, J.M.

    1983-07-01

    The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)

  10. Asymptotic safety of gravity with matter

    Science.gov (United States)

    Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel

    2018-05-01

    We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.

  11. Asymptotic coulombic conditions in the electron capture process

    International Nuclear Information System (INIS)

    Corchs, S.E.; Maidagan, J.M.; Rivarola, R.D.

    1990-01-01

    Several first order perturbative approximations of the transition amplitude for electronic capture are studied. Different models in which the long range Coulomb potential is represented by different internuclear dependent phases, in the initial and final wave functions, are analysed and compared. (Author). 8 refs., 2 figs

  12. Asymptotic stabilization of nonlinear systems using state feedback

    International Nuclear Information System (INIS)

    D'Attellis, Carlos

    1990-01-01

    This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es

  13. Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence

    International Nuclear Information System (INIS)

    Zhang Tailei; Teng Zhidong

    2008-01-01

    In this paper, the asymptotic behavior of solutions of an autonomous SEIRS epidemic model with the saturation incidence is studied. Using the method of Liapunov-LaSalle invariance principle, we obtain the disease-free equilibrium is globally stable if the basic reproduction number is not greater than one. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions of locally and globally asymptotically stable convergence to an endemic equilibrium are obtained base on the permanence

  14. State Estimation for a Biological Phosphorus Removal Process using an Asymptotic Observer

    DEFF Research Database (Denmark)

    Larose, Claude Alain; Jørgensen, Sten Bay

    2001-01-01

    This study investigated the use of an asymptotic observer for state estimation in a continuous biological phosphorus removal process. The estimated states are the concentration of heterotrophic, autotrophic, and phosphorus accumulating organisms, polyphosphate, glycogen and PHA. The reaction scheme...... if the convergence, driven by the dilution rate, was slow (from 15 to 60 days). The propagation of the measurement noise and a bias in the estimation of glycogen and PHA could be the result of the high condition number of one of the matrices used in the algorithm of the asymptotic observer for the aerated tanks....

  15. First-passage time asymptotics over moving boundaries for random walk bridges

    OpenAIRE

    Sloothaak, F.; Zwart, B.; Wachtel, V.

    2017-01-01

    We study the asymptotic tail probability of the first-passage time over a moving boundary for a random walk conditioned to return to zero, where the increments of the random walk have finite variance. Typically, the asymptotic tail behavior may be described through a regularly varying function with exponent -1/2, where the impact of the boundary is captured by the slowly varying function. Yet, the moving boundary may have a stronger effect when the tail is considered at a time close to the re...

  16. Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm

    International Nuclear Information System (INIS)

    Kleinmann, M.; Kampermann, H.; Bruss, D.

    2011-01-01

    We revisit the problem of discriminating orthogonal quantum states within the local-quantum-operation-and-classical-communication (LOCC) paradigm. Our particular focus is on the asymptotic situation where the parties have infinite resources and the protocol may become arbitrarily long. Our main result is a necessary condition for perfect asymptotic LOCC discrimination. As an application, we prove that for complete product bases, unlimited resources are of no advantage. On the other hand, we identify an example for which it still remains undecided whether unlimited resources are superior.

  17. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    Science.gov (United States)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  18. The Data-Constrained Generalized Maximum Entropy Estimator of the GLM: Asymptotic Theory and Inference

    Directory of Open Access Journals (Sweden)

    Nicholas Scott Cardell

    2013-05-01

    Full Text Available Maximum entropy methods of parameter estimation are appealing because they impose no additional structure on the data, other than that explicitly assumed by the analyst. In this paper we prove that the data constrained GME estimator of the general linear model is consistent and asymptotically normal. The approach we take in establishing the asymptotic properties concomitantly identifies a new computationally efficient method for calculating GME estimates. Formulae are developed to compute asymptotic variances and to perform Wald, likelihood ratio, and Lagrangian multiplier statistical tests on model parameters. Monte Carlo simulations are provided to assess the performance of the GME estimator in both large and small sample situations. Furthermore, we extend our results to maximum cross-entropy estimators and indicate a variant of the GME estimator that is unbiased. Finally, we discuss the relationship of GME estimators to Bayesian estimators, pointing out the conditions under which an unbiased GME estimator would be efficient.

  19. Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2004-01-01

    We consider a self-interacting scalar field whose mass saturates the Breitenlohner-Freedman bound, minimally coupled to Einstein gravity with a negative cosmological constant in D≥3 dimensions. It is shown that the asymptotic behavior of the metric has a slower fall-off than that of pure gravity with a localized distribution of matter, due to the back-reaction of the scalar field, which has a logarithmic branch decreasing as r -(D-1)/2 ln r for large radius r. We find the asymptotic conditions on the fields which are invariant under the same symmetry group as pure gravity with negative cosmological constant (conformal group in D-1 dimensions). The generators of the asymptotic symmetries are finite even when the logarithmic branch is considered but acquire, however, a contribution from the scalar field

  20. Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media

    Science.gov (United States)

    Gallican, Valentin; Brenner, Renald; Suquet, Pierre

    2017-11-01

    This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"

  1. Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis

    CERN Document Server

    Vetyukov, Yury

    2014-01-01

    This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...

  2. Global Asymptotic Stability of Impulsive CNNs with Proportional Delays and Partially Lipschitz Activation Functions

    Directory of Open Access Journals (Sweden)

    Xueli Song

    2014-01-01

    Full Text Available This paper researches global asymptotic stability of impulsive cellular neural networks with proportional delays and partially Lipschitz activation functions. Firstly, by means of the transformation vi(t=ui(et, the impulsive cellular neural networks with proportional delays are transformed into impulsive cellular neural networks with the variable coefficients and constant delays. Secondly, we provide novel criteria for the uniqueness and exponential stability of the equilibrium point of the latter by relative nonlinear measure and prove that the exponential stability of equilibrium point of the latter implies the asymptotic stability of one of the former. We furthermore obtain a sufficient condition to the uniqueness and global asymptotic stability of the equilibrium point of the former. Our method does not require conventional assumptions on global Lipschitz continuity, boundedness, and monotonicity of activation functions. Our results are generalizations and improvements of some existing ones. Finally, an example and its simulations are provided to illustrate the correctness of our analysis.

  3. Oscillation and asymptotic stability of a delay differential equation with Richard's nonlinearity

    Directory of Open Access Journals (Sweden)

    Leonid Berezansky

    2005-04-01

    Full Text Available We obtain sufficient conditions for oscillation of solutions, and for asymptotical stability of the positive equilibrium, of the scalar nonlinear delay differential equation $$ frac{dN}{dt} = r(tN(tBig[a-Big(sum_{k=1}^m b_k N(g_k(tBig^{gamma}Big], $$ where $ g_k(tleq t$.

  4. Global asymptotic stability of Cohen-Grossberg neural network with continuously distributed delays

    International Nuclear Information System (INIS)

    Wan Li; Sun Jianhua

    2005-01-01

    The convergence dynamical behaviors of Cohen-Grossberg neural network with continuously distributed delays are discussed. By using Brouwer's fixed point theorem, matrix theory and analysis techniques such as Gronwall inequality, some new sufficient conditions guaranteeing the existence, uniqueness of an equilibrium point and its global asymptotic stability are obtained. An example is given to illustrate the theoretical results

  5. Almost Surely Asymptotic Stability of Numerical Solutions for Neutral Stochastic Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    convergence theorem. It is shown that the Euler method and the backward Euler method can reproduce the almost surely asymptotic stability of exact solutions to NSDDEs under additional conditions. Numerical examples are demonstrated to illustrate the effectiveness of our theoretical results.

  6. Impulsive effects on global asymptotic stability of delay BAM neural networks

    International Nuclear Information System (INIS)

    Chen Jun; Cui Baotong

    2008-01-01

    Based on the proper Lyapunov functions and the Jacobsthal liner inequality, some sufficient conditions are presented in this paper for global asymptotic stability of delay bidirectional associative memory neural networks with impulses. The obtained results are independently of the delay parameters and can be easily verified. Also, some remarks and an illustrative example are given to demonstrate the effectiveness of the obtained results

  7. Chiral symmetry breaking in asymptotically free and non-asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1986-01-01

    An essential distinction in the realization of the PCAC-dynamics in vector-like asymptotically free and non-asymptotically free (with a non-trival ultraviolet stable fixed point) gauge theories is revealed. For the latter theories an analytical expression for the condensate is obtained in the two-loop approximation and the arguments in support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed

  8. Asymptotic problems for stochastic partial differential equations

    Science.gov (United States)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  9. Lectures on the asymptotic theory of ideals

    CERN Document Server

    Rees, D

    1988-01-01

    In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work

  10. Asymptotic density and the Ershov hierarchy

    OpenAIRE

    Downey, Rod; Jockusch, Carl; McNicholl, Timothy H.; Schupp, Paul

    2013-01-01

    We classify the asymptotic densities of the $\\Delta^0_2$ sets according to their level in the Ershov hierarchy. In particular, it is shown that for $n \\geq 2$, a real $r \\in [0,1]$ is the density of an $n$-c.e.\\ set if and only if it is a difference of left-$\\Pi_2^0$ reals. Further, we show that the densities of the $\\omega$-c.e.\\ sets coincide with the densities of the $\\Delta^0_2$ sets, and there are $\\omega$-c.e.\\ sets whose density is not the density of an $n$-c.e. set for any $n \\in \\ome...

  11. Asymptotic freedom in extended conformal supergravities

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Tseytlin, A.A.

    1982-01-01

    We present the calculation of the one-loop β-function in extended conformal supergravities. N = 1, 2, 3 theories (free or coupled to the Einstein supergravities) are found to the asymptotically free (like the N = 0 Weyl theory) while the N = 4 theory becomes finite under some plausible hypothesis. The results support the possibility to solve the problem of ghosts in these theories. The obtained sequence of SU(N) β-functions appears to be in remarkable correspondence with that for gauged O(N) supergravity theories. (orig.)

  12. Asymptotically Free Natural Supersymmetric Twin Higgs Model

    Science.gov (United States)

    Badziak, Marcin; Harigaya, Keisuke

    2018-05-01

    Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.

  13. Asymptotics with a positive cosmological constant II

    Science.gov (United States)

    Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice

    2015-04-01

    The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.

  14. Integrable theories that are asymptotically CFT

    CERN Document Server

    Evans, J M; Jonathan M Evans; Timothy J Hollowood

    1995-01-01

    A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...

  15. Asymptotic Behavior of Solutions of Delayed Difference Equations

    Directory of Open Access Journals (Sweden)

    J. Diblík

    2011-01-01

    Full Text Available This contribution is devoted to the investigation of the asymptotic behavior of delayed difference equations with an integer delay. We prove that under appropriate conditions there exists at least one solution with its graph staying in a prescribed domain. This is achieved by the application of a more general theorem which deals with systems of first-order difference equations. In the proof of this theorem we show that a good way is to connect two techniques—the so-called retract-type technique and Liapunov-type approach. In the end, we study a special class of delayed discrete equations and we show that there exists a positive and vanishing solution of such equations.

  16. Asymptotically stable phase synchronization revealed by autoregressive circle maps

    Science.gov (United States)

    Drepper, F. R.

    2000-11-01

    A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.

  17. Asymptotically AdS spacetimes with a timelike Kasner singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-07-21

    Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  18. Asymptotic analysis of downlink MISO systems over Rician fading channels

    KAUST Repository

    Falconet, Hugo

    2016-06-24

    In this work, we focus on the ergodic sum rate in the downlink of a single-cell large-scale multi-user MIMO system in which the base station employs N antennas to communicate with K single-antenna user equipments. A regularized zero-forcing (RZF) scheme is used for precoding under the assumption that each link forms a spatially correlated MIMO Rician fading channel. The analysis is conducted assuming N and K grow large with a non trivial ratio and perfect channel state information is available at the base station. Recent results from random matrix theory and large system analysis are used to compute an asymptotic expression of the signal-to-interference-plus-noise ratio as a function of the system parameters, the spatial correlation matrix and the Rician factor. Numerical results are used to evaluate the performance gap in the finite system regime under different operating conditions. © 2016 IEEE.

  19. Asymptotic Behavior of an Elastic Satellite with Internal Friction

    International Nuclear Information System (INIS)

    Haus, E.; Bambusi, D.

    2015-01-01

    We study the dynamics of an elastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. The main result is that, if all the deformations of the satellite dissipate some energy, then under a suitable nondegeneracy condition there are only three possible outcomes for the dynamics: (i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in which the barycenter moves on a circular orbit, and the satellite moves rigidly, always showing the same face to the planet. The result is obtained by making use of LaSalle’s invariance principle and by a careful kinematic analysis showing that energy stops dissipating only on synchronous orbits. We also use in quite an extensive way the fact that conservative elastodynamics is a Hamiltonian system invariant under the action of the rotation group

  20. Asymptotic analysis of downlink MISO systems over Rician fading channels

    KAUST Repository

    Falconet, Hugo; Sanguinetti, Luca; Kammoun, Abla; Debbah, Merouane

    2016-01-01

    In this work, we focus on the ergodic sum rate in the downlink of a single-cell large-scale multi-user MIMO system in which the base station employs N antennas to communicate with K single-antenna user equipments. A regularized zero-forcing (RZF) scheme is used for precoding under the assumption that each link forms a spatially correlated MIMO Rician fading channel. The analysis is conducted assuming N and K grow large with a non trivial ratio and perfect channel state information is available at the base station. Recent results from random matrix theory and large system analysis are used to compute an asymptotic expression of the signal-to-interference-plus-noise ratio as a function of the system parameters, the spatial correlation matrix and the Rician factor. Numerical results are used to evaluate the performance gap in the finite system regime under different operating conditions. © 2016 IEEE.

  1. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen

    2010-01-01

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S 2 or S 1 , and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  2. On parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations

    International Nuclear Information System (INIS)

    Phan Thanh An; Phan Le Na; Ngo Quoc Chung

    2004-05-01

    We describe a practical implementation for finding parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations based on Korenevskij and Mitropolskij's sufficient condition and our sufficient conditions. Numerical results show that all of these sufficient conditions are crucial in the implementation. (author)

  3. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  4. Numerical integration of asymptotic solutions of ordinary differential equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  5. Asymptotic Theory for Regressions with Smoothly Changing Parameters

    DEFF Research Database (Denmark)

    Hillebrand, Eric Tobias; Medeiros, Marcelo C.; Xu, Junyue

    We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual square-root-of-T rate...... and has an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....

  6. Asymptotic theory for regressions with smoothly changing parameters

    DEFF Research Database (Denmark)

    Hillebrand, Eric; Medeiros, Marcelo; Xu, Junyue

    2013-01-01

    We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual pT-rate and has...... an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....

  7. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  8. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Arik, Sabri

    2006-01-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature

  9. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Arik, Sabri

    2006-02-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.

  10. Asymptotic theory of weakly dependent random processes

    CERN Document Server

    Rio, Emmanuel

    2017-01-01

    Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...

  11. Chiral fermions in asymptotically safe quantum gravity.

    Science.gov (United States)

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  12. Asymptotic stability of steady compressible fluids

    CERN Document Server

    Padula, Mariarosaria

    2011-01-01

    This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...

  13. Asymptotic representation of relaxation oscillations in lasers

    CERN Document Server

    Grigorieva, Elena V

    2017-01-01

    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  14. Asymptotically safe non-minimal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tronconi, Alessandro, E-mail: Alessandro.Tronconi@bo.infn.it [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46,40126 Bologna (Italy)

    2017-07-01

    We study the constraints imposed by the requirement of Asymptotic Safety on a class of inflationary models with an inflaton field non-minimally coupled to the Ricci scalar. The critical surface in the space of theories is determined by the improved renormalization group flow which takes into account quantum corrections beyond the one loop approximation. The combination of constraints deriving from Planck observations and those from theory puts severe bounds on the values of the parameters of the model and predicts a quite large tensor to scalar ratio. We finally comment on the dependence of the results on the definition of the infrared energy scale which parametrises the running on the critical surface.

  15. Quantum defect theory and asymptotic methods

    International Nuclear Information System (INIS)

    Seaton, M.J.

    1982-01-01

    It is shown that quantum defect theory provides a basis for the development of various analytical methods for the examination of electron-ion collision phenomena, including di-electronic recombination. Its use in conjuction with ab initio calculations is shown to be restricted by problems which arise from the presence of long-range non-Coulomb potentials. Empirical fitting to some formulae can be efficient in the use of computer time but extravagant in the use of person time. Calculations at a large number of energy points which make no use of analytical formulae for resonance structures may be made less extravagant in computer time by the development of more efficient asymptotic methods. (U.K.)

  16. Grassmann scalar fields and asymptotic freedom

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, F [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-03-01

    The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.

  17. Asymptotic methods in mechanics of solids

    CERN Document Server

    Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi

    2015-01-01

    The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...

  18. Asymptotic Sharpness of Bounds on Hypertrees

    Directory of Open Access Journals (Sweden)

    Lin Yi

    2017-08-01

    Full Text Available The hypertree can be defined in many different ways. Katona and Szabó introduced a new, natural definition of hypertrees in uniform hypergraphs and investigated bounds on the number of edges of the hypertrees. They showed that a k-uniform hypertree on n vertices has at most (nk−1$\\left( {\\matrix{n \\cr {k - 1} } } \\right$ edges and they conjectured that the upper bound is asymptotically sharp. Recently, Szabó verified that the conjecture holds by recursively constructing an infinite sequence of k-uniform hypertrees and making complicated analyses for it. In this note we give a short proof of the conjecture by directly constructing a sequence of k-uniform k-hypertrees.

  19. Asymptotic safety, singularities, and gravitational collapse

    International Nuclear Information System (INIS)

    Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz

    2011-01-01

    Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.

  20. Charge exchange with ion excitation: asymptotic theory

    International Nuclear Information System (INIS)

    Ivakin, I.A.; Karbovanets, M.I.; Ostrovskii, V.N.

    1987-01-01

    There is developed an asymptotic (with respect to the large internuclear separation R) theory for computing the matrix element of the exchange interaction between states of quasimolecules, which is responsible for charge transfer with ion excitation: B + +A→B+A + *. A semiclassical approximation is used, which enables one to apply the theory to processes with the participation of multiply charged ions. The case of s--s transitions for excitation of the ion A + →A + *, where it is appropriate to take into account the distortion of the wave functions of the ion A + by the particle B, is treated separately. Calculations of cross sections and comparison with the results of experiments for He + --Cd and Ne + --Mg collisions at thermal energies are given. It is shown that it is impossible to explain the experimental data by the interaction of terms of the quasimolecules at large R only, and a possible mechanism for populating at small R is proposed

  1. Methods in half-linear asymptotic theory

    Directory of Open Access Journals (Sweden)

    Pavel Rehak

    2016-10-01

    Full Text Available We study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation $$ (r(t|y'|^{\\alpha-1}\\hbox{sgn} y''=p(t|y|^{\\alpha-1}\\hbox{sgn} y, $$ where r(t and p(t are positive continuous functions on $[a,\\infty$, $\\alpha\\in(1,\\infty$. The aim of this article is twofold. On the one hand, we show applications of a wide variety of tools, like the Karamata theory of regular variation, the de Haan theory, the Riccati technique, comparison theorems, the reciprocity principle, a certain transformation of dependent variable, and principal solutions. On the other hand, we solve open problems posed in the literature and generalize existing results. Most of our observations are new also in the linear case.

  2. Lattice quantum gravity and asymptotic safety

    Science.gov (United States)

    Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.

    2017-09-01

    We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.

  3. Comparison between various notions of conserved charges in asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    Hollands, Stefan; Ishibashi, Akihiro; Marolf, Donald

    2005-01-01

    We derive Hamiltonian generators of asymptotic symmetries for general relativity with asymptotic AdS boundary conditions using the 'covariant phase space' method of Wald et al. We then compare our results with other definitions that have been proposed in the literature. We find that our definition agrees with that proposed by Ashtekar et al, with the spinor definition, and with the background-dependent definition of Henneaux and Teitelboim. Our definition disagrees with that obtained from the 'counterterm subtraction method', but the difference is found to consist only of a 'constant offset' that is determined entirely in terms of the boundary metric. We finally discuss and justify our boundary conditions by a linear perturbation analysis, and we comment on generalizations of our boundary conditions, as well as inclusion of matter fields

  4. Numerical algorithms for uniform Airy-type asymptotic expansions

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    1997-01-01

    textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing

  5. H. David Politzer, Asymptotic Freedom, and Strong Interaction

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis H. David Politzer, Asymptotic Freedom, and Strong Interaction Resources with Additional Information H. David Politzer Photo Credit: California Institute of Technology H. David Politzer has won the 2004 Nobel Prize in Physics 'for the discovery of asymptotic freedom

  6. Regge asymptotics of scattering with flavour exchange in QCD

    International Nuclear Information System (INIS)

    Kirschner, R.

    1994-06-01

    The contribution to the perturbative Regge asymptotics of the exchange of two reggeized fermions with opposite helicity is investigated. The methods of conformal symmetry known for the case of gluon exchange are extended to this case where double-logarithmic contributions dominate the asymptotics. The Regge trajectories at large momentum transfer are calculated. (orig.)

  7. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan

    2015-01-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  8. An asymptotic solution of large-N QCD

    Directory of Open Access Journals (Sweden)

    Bochicchio Marco

    2014-01-01

    Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.

  9. An asymptotic formula of the divergent bilateral basic hypergeometric series

    OpenAIRE

    Morita, Takeshi

    2012-01-01

    We show an asymptotic formula of the divergent bilateral basic hypergeometric series ${}_1\\psi_0 (a;-;q,\\cdot)$ with using the $q$-Borel-Laplace method. We also give the limit $q\\to 1-0$ of our asymptotic formula.

  10. Some asymptotic properties of functions holomorphic in tubular domains

    International Nuclear Information System (INIS)

    Zavialov, B.I.

    1988-10-01

    For the function holomorphic in curved tubular domain the connection between asymptotic behaviour of real part of its boundary value at a given point of base manifold and asymptotic behaviour of the whole function from the inside of this domain is studied. (author). 3 refs

  11. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.

    2015-03-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  12. Asymptotic time dependent neutron transport in multidimensional systems

    International Nuclear Information System (INIS)

    Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.

    1983-01-01

    A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated

  13. Inverted hierarchy and asymptotic freedom in grand unified supersymmetric theories

    International Nuclear Information System (INIS)

    Aratyn, H.

    1983-01-01

    The interrelation between an inverted hierarchy mechanism and asymptotic freedom in supersymmetric theories is analyzed in two models for which we performed a detailed analysis of the effective potentials and effective couplings. We find it difficult to accommodate an inverted hierarchy together with asymptotic freedom for the matter-Yukawa couplings. (orig.)

  14. Szegö Kernels and Asymptotic Expansions for Legendre Polynomials

    Directory of Open Access Journals (Sweden)

    Roberto Paoletti

    2017-01-01

    Full Text Available We present a geometric approach to the asymptotics of the Legendre polynomials Pk,n+1, based on the Szegö kernel of the Fermat quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [-1,1].

  15. Cookbook asymptotics for spiral and scroll waves in excitable media.

    Science.gov (United States)

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.

  16. On asymptotic continuity of functions of quantum states

    International Nuclear Information System (INIS)

    Synak-Radtke, Barbara; Horodecki, Michal

    2006-01-01

    A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this letter, we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called robustness under admixture. This allows us to show that relative entropy distance from a convex set including a maximally mixed state is asymptotically continuous. Subsequently, we consider arrowing-a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples. (letter to the editor)

  17. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices

    Science.gov (United States)

    Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.

    2017-11-01

    Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.

  18. Asymptotic description of plasma turbulence: Krylov-Bogoliubov methods and quasi-particles

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Bertrand, P.; Decyk, V.K.

    2001-01-01

    The asymptotic theory of charged particle motion in electromagnetic fields is developed for the general case of finite Larmor-radius effects by means of Krylov-Bogoliubov averaging method. The correspondence between the general asymptotic methods, elaborated by M. Krylov and M.Bogoliubov, the quasi-particle description and gyrokinetics is established. Such a comparison is used to shed more light on the physical sense of the reduced Poisson equation, introduced in gyrokinetics, and the particle polarization drift. It is shown that the modification of the Poisson equation in the asymptotic theory is due to the non-conservation of the magnetic moment and gyrophase trembling. it is shown that the second-order modification of the adiabatic invariant can determine the conditions of global plasma stability and introduces new nonlinear terms into the reduced Poisson equation. Such a modification is important for several plasma orderings, e.g. NHD type ordering. The feasibility of numerical simulation schemes in which the polarization drift is included into the quasi-particle equations of motion, and the Poisson equation remains unchanged is analyzed. A consistent asymptotic model is proposed in which the polarization drift is included into the quasi-particle equations of motion and the particle and quasi-particle velocities are equal. It is shown that in such models there are additional modifications of the reduced Poisson equation. The latter becomes even more complicated in contrast to earlier suggestions

  19. Asymptotic integration of a linear fourth order differential equation of Poincaré type

    Directory of Open Access Journals (Sweden)

    Anibal Coronel

    2015-11-01

    Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.

  20. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  1. On Kolmogorov asymptotics of estimators of the misclassification error rate in linear discriminant analysis

    KAUST Repository

    Zollanvari, Amin

    2013-05-24

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  2. Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2011-01-01

    Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.

  3. A multiscale asymptotic analysis of time evolution equations on the complex plane

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Gastão A., E-mail: gbraga@mat.ufmg.br [Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970 Belo Horizonte, MG (Brazil); Conti, William R. P., E-mail: wrpconti@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça 144, 11070-100 Santos, SP (Brazil)

    2016-07-15

    Using an appropriate norm on the space of entire functions, we extend to the complex plane the renormalization group method as developed by Bricmont et al. The method is based upon a multiscale approach that allows for a detailed description of the long time asymptotics of solutions to initial value problems. The time evolution equation considered here arises in the study of iterations of the block spin renormalization group transformation for the hierarchical N-vector model. We show that, for initial conditions belonging to a certain Fréchet space of entire functions of exponential type, the asymptotics is universal in the sense that it is dictated by the fixed point of a certain operator acting on the space of initial conditions.

  4. On Kolmogorov asymptotics of estimators of the misclassification error rate in linear discriminant analysis

    KAUST Repository

    Zollanvari, Amin; Genton, Marc G.

    2013-01-01

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  5. A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach

    International Nuclear Information System (INIS)

    Cao Jinde; Ho, Daniel W.C.

    2005-01-01

    In this paper, global asymptotic stability is discussed for neural networks with time-varying delay. Several new criteria in matrix inequality form are given to ascertain the uniqueness and global asymptotic stability of equilibrium point for neural networks with time-varying delay based on Lyapunov method and Linear Matrix Inequality (LMI) technique. The proposed LMI approach has the advantage of considering the difference of neuronal excitatory and inhibitory efforts, which is also computationally efficient as it can be solved numerically using recently developed interior-point algorithm. In addition, the proposed results generalize and improve previous works. The obtained criteria also combine two existing conditions into one generalized condition in matrix form. An illustrative example is also given to demonstrate the effectiveness of the proposed results

  6. Asymptotics of quantum weighted Hurwitz numbers

    Science.gov (United States)

    Harnad, J.; Ortmann, Janosch

    2018-06-01

    This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.

  7. Asymptotic Solutions of Serial Radial Fuel Shuffling

    Directory of Open Access Journals (Sweden)

    Xue-Nong Chen

    2015-12-01

    Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.

  8. ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS

    International Nuclear Information System (INIS)

    Lyubarsky, Yuri

    2009-01-01

    In relativistic, Poynting-dominated outflows, acceleration and collimation are intimately connected. An important point is that the Lorentz force is nearly compensated by the electric force; therefore the acceleration zone spans a large range of scales. We derived the asymptotic equations describing relativistic, axisymmetric magnetohydrodynamic flows far beyond the light cylinder. These equations do not contain either intrinsic small scales (like the light cylinder radius) or terms that nearly cancel each other (like the electric and magnetic forces); therefore they could be easily solved numerically. They also suit well for qualitative analysis of the flow and, in many cases, they could even be solved analytically or semianalytically. We show that there are generally two collimation regimes. In the first regime, the residual of the hoop stress and the electric force is counterbalanced by the pressure of the poloidal magnetic field so that, at any distance from the source, the structure of the flow is the same as the structure of an appropriate cylindrical equilibrium configuration. In the second regime, the pressure of the poloidal magnetic field is negligibly small so that the flow could be conceived as composed from coaxial magnetic loops. In the two collimation regimes, the flow is accelerated in different ways. We study in detail the structure of jets confined by the external pressure with a power-law profile. In particular, we obtained simple scalings for the extent of the acceleration zone, for the terminal Lorentz factor, and for the collimation angle.

  9. Asymptotic laws for random knot diagrams

    Science.gov (United States)

    Chapman, Harrison

    2017-06-01

    We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.

  10. Asymptotic estimation of reactor fueling optimal strategy

    International Nuclear Information System (INIS)

    Simonov, V.D.

    1985-01-01

    The problem of improving the technical-economic factors of operating. and designed nuclear power plant blocks by developino. internal fuel cycle strategy (reactor fueling regime optimization), taking into account energy system structural peculiarities altogether, is considered. It is shown, that in search of asymptotic solutions of reactor fueling planning tasks the model of fuel energy potential (FEP) is the most ssuitable and effective. FEP represents energy which may be produced from the fuel in a reactor with real dimensions and power, but with hypothetical fresh fuel supply, regime, providing smilar burnup of all the fuel, passing through the reactor, and continuous overloading of infinitely small fuel portion under fule power, and infinitely rapid mixing of fuel in the reactor core volume. Reactor fuel run with such a standard fuel cycle may serve as FEP quantitative measure. Assessment results of optimal WWER-440 reactor fresh fuel supply periodicity are given as an example. The conclusion is drawn that with fuel enrichment x=3.3% the run which is 300 days, is economically justified, taking into account that the cost of one energy unit production is > 3 cop/KW/h

  11. Wall roughness induces asymptotic ultimate turbulence

    Science.gov (United States)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  12. Qualitative and Asymptotic Theory of Detonations

    KAUST Repository

    Faria, Luiz

    2014-11-09

    Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.

  13. Asymptotics of Heavy-Meson Form Factors

    CERN Document Server

    Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias

    1997-01-01

    Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...

  14. Asymptotic behavior of local dipolar fields in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2016-10-15

    A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.

  15. Delay-dependent asymptotic stability of a two-neuron system with different time delays

    International Nuclear Information System (INIS)

    Tu Fenghua; Liao Xiaofeng; Zhang Wei

    2006-01-01

    In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results

  16. Asymptotic estimates and exponential stability for higher-order monotone difference equations

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2005-01-01

    Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.

  17. Asymptotic estimates and exponential stability for higher-order monotone difference equations

    Directory of Open Access Journals (Sweden)

    Mihály Pituk

    2005-03-01

    Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.

  18. Asymptotics of the $s$-perimeter as $s\\searrow 0$

    OpenAIRE

    Dipierro, Serena; Figalli, Alessio; Palatucci, Giampiero; Valdinoci, Enrico

    2012-01-01

    We deal with the asymptotic behavior of the $s$-perimeter of a set $E$ inside a domain $\\Omega$ as $s\\searrow0$. We prove necessary and sufficient conditions for the existence of such limit, by also providing an explicit formulation in terms of the Lebesgue measure of $E$ and $\\Omega$. Moreover, we construct examples of sets for which the limit does not exist.

  19. Multiplicity of Solutions for a Class of Fourth-Order Elliptic Problems with Asymptotically Linear Term

    Directory of Open Access Journals (Sweden)

    Qiong Liu

    2012-01-01

    Full Text Available We study the following fourth-order elliptic equations: Δ2+Δ=(,,∈Ω,=Δ=0,∈Ω, where Ω⊂ℝ is a bounded domain with smooth boundary Ω and (, is asymptotically linear with respect to at infinity. Using an equivalent version of Cerami's condition and the symmetric mountain pass lemma, we obtain the existence of multiple solutions for the equations.

  20. The exotic heat-trace asymptotics of a regular-singular operator revisited

    OpenAIRE

    Vertman, Boris

    2013-01-01

    We discuss the exotic properties of the heat-trace asymptotics for a regular-singular operator with general boundary conditions at the singular end, as observed by Falomir, Muschietti, Pisani and Seeley as well as by Kirsten, Loya and Park. We explain how their results alternatively follow from the general heat kernel construction by Mooers, a natural question that has not been addressed yet, as the latter work did not elaborate explicitly on the singular structure of the heat trace expansion...

  1. Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2007-01-01

    Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.

  2. Strong Convergence Theorems for a Countable Family of Total Quasi-ϕ-Asymptotically Nonexpansive Nonself Mappings

    Directory of Open Access Journals (Sweden)

    Liang-cai Zhao

    2012-01-01

    Full Text Available The purpose of this paper is to introduce a class of total quasi-ϕ-asymptotically nonexpansive-nonself mappings and to study the strong convergence under a limit condition only in the framework of Banach spaces. As an application, we utilize our results to study the approximation problem of solution to a system of equilibrium problems. The results presented in the paper extend and improve the corresponding results announced by some authors recently.

  3. On conformal-invariant behaviour of four-point theories in ultraviolet asymptotics

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1977-01-01

    A method is presented to obtain scale- and conformal-invariant solutions of four-point field theories in the ultraviolet asymptotics by means of reduction to the three-point problem. To do this a supplementary sigma field without a kinetic term is introduced and the Lagrangian is modified correspondingly. For the three-point problems the equations in form of the generalized unitarity conditions are solved further

  4. Asymptotic Solution of the Theory of Shells Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    I. V. Andrianov

    2007-01-01

    Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.

  5. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Asymptotically double lacunry equivalent sequences defined by Orlicz functions

    Directory of Open Access Journals (Sweden)

    Ayhan Esi

    2014-04-01

    Full Text Available This paper presents the following definition which is natural combition of the definition for asymptotically equivalent and Orlicz function. The two nonnegative double sequences x=(x_{k,l} and y=(y_{k,l} are said to be M-asymptotically double equivalent to multiple L provided that for every ε>0, P-lim_{k,l}M(((|((x_{k,l}/(y_{k,l}-L|/ρ=0, for some ρ>0, (denoted by x∽y and simply M-asymptotically double equivalent if L=1. Also we give some new concepts related to this definition and some inclusion theorems.

  7. Asymptotic failure rate of a continuously monitored system

    International Nuclear Information System (INIS)

    Grall, A.; Dieulle, L.; Berenguer, C.; Roussignol, M.

    2006-01-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy

  8. Asymptotic failure rate of a continuously monitored system

    Energy Technology Data Exchange (ETDEWEB)

    Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr

    2006-02-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.

  9. On asymptotic analysis of spectral problems in elasticity

    Directory of Open Access Journals (Sweden)

    S.A. Nazarov

    Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.

  10. Asymptotics for the Kummer function of Bose plasmas

    International Nuclear Information System (INIS)

    Kowalenko, V.; Frankel, N.E.

    1993-01-01

    The asymptotic expansions for the Kummer function obtained in the study of the linear response of magnetised Bose plasmas at T = 0 K are presented for large and small values of its parameter, thereby displaying the function's asymptotic non-uniformity. The large parameter expansion plays a determining role in the behaviour of these Bose systems in the limit that the external magnetic field B →0. This particular expansion is generalised herein and its validity tested by determining the asymptotic expansion for the Hurwitz zeta function. 18 refs., 1 tab., 2 figs

  11. Asymptotic theory of circular polarization memory.

    Science.gov (United States)

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  12. On approach to double asymptotic scaling at low x

    International Nuclear Information System (INIS)

    Choudhury, D.K.

    1994-10-01

    We obtain the finite x correlations to the gluon structure function which exhibits double asymptotic scaling at low x. The technique used is the GLAP equation for gluon approximated at low x by a Taylor expansion. (author). 27 refs

  13. Confinement and asymptotic freedom seen with a golden eye

    International Nuclear Information System (INIS)

    Elokaby, A.

    2009-01-01

    The present short note is an attempt to reconcile the current conventional understanding of quarks confinement and asymptotic freedom with the results found by El Naschie using the exact renormalization equation of his quantum golden field theory.

  14. Asymptotic distribution of products of sums of independent random ...

    Indian Academy of Sciences (India)

    integrable random variables (r.v.) are asymptotically log-normal. This fact ... the product of the partial sums of i.i.d. positive random variables as follows. .... Now define ..... by Henan Province Foundation and Frontier Technology Research Plan.

  15. Preheating in an asymptotically safe quantum field theory

    DEFF Research Database (Denmark)

    Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert

    2016-01-01

    . High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance...... fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F......We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J...

  16. Pseudo-random number generator based on asymptotic deterministic randomness

    Science.gov (United States)

    Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming

    2008-06-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  17. Pseudo-random number generator based on asymptotic deterministic randomness

    International Nuclear Information System (INIS)

    Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming

    2008-01-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks

  18. Asymptotic series and functional integrals in quantum field theory

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1979-01-01

    Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)

  19. Asymptotically Almost Periodic Solutions of Evolution Equations in Banach Spaces

    Science.gov (United States)

    Ruess, W. M.; Phong, V. Q.

    Tile linear abstract evolution equation (∗) u'( t) = Au( t) + ƒ( t), t ∈ R, is considered, where A: D( A) ⊂ E → E is the generator of a strongly continuous semigroup of operators in the Banach space E. Starting from analogs of Kadets' and Loomis' Theorems for vector valued almost periodic Functions, we show that if σ( A) ∩ iR is countable and ƒ: R → E is [asymptotically] almost periodic, then every bounded and uniformly continuous solution u to (∗) is [asymptotically] almost periodic, provided e-λ tu( t) has uniformly convergent means for all λ ∈ σ( A) ∩ iR. Related results on Eberlein-weakly asymptotically almost periodic, periodic, asymptotically periodic and C 0-solutions of (∗), as well as on the discrete case of solutions of difference equations are included.

  20. Asymptotic behavior of quark masses induced by instantons

    International Nuclear Information System (INIS)

    Carneiro, C.E.I.; Frenkel, J.

    1984-02-01

    A simple argument which shows that the dynamical mass induced by interactions of massless quarks with pseudo-particle configurations, behaves like p -6 for asymptotically large quark momenta is presented. (Author) [pt

  1. Robust methods and asymptotic theory in nonlinear econometrics

    CERN Document Server

    Bierens, Herman J

    1981-01-01

    This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

  2. Self-consistent field theory of collisions: Orbital equations with asymptotic sources and self-averaged potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Y.K., E-mail: ykhahn22@verizon.net

    2014-12-15

    The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree–Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model. - Highlights: • First extension of HF to scattering states, with proper asymptotic conditions. • Orbital equations with asymptotic sources and integrable orbital solutions. • Construction of self-averaged potentials, and orbital energy fixing. • Channel coupling and configuration mixing, involving the new orbitals. • Critical evaluation of the

  3. Asymptotically Safe Standard Model Extensions arXiv

    CERN Document Server

    Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    We consider theories with a large number NF of charged fermions and compute the renormalisation group equations for the gauge, Yukawa and quartic couplings resummed at leading order in NF. We construct extensions of the Standard Model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  4. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    2007-04-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  5. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2007-01-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  6. Asymptotical behaviour of pion electromagnetic form factor in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory

  7. Non-Asymptotic Confidence Sets for Circular Means

    Directory of Open Access Journals (Sweden)

    Thomas Hotz

    2016-10-01

    Full Text Available The mean of data on the unit circle is defined as the minimizer of the average squared Euclidean distance to the data. Based on Hoeffding’s mass concentration inequalities, non-asymptotic confidence sets for circular means are constructed which are universal in the sense that they require no distributional assumptions. These are then compared with asymptotic confidence sets in simulations and for a real data set.

  8. Asymptotic freedom and the symplectic and G2 groups

    International Nuclear Information System (INIS)

    Chaichian, M; Kolmakov, Yu. N.; Nelipa, N. F.

    1978-01-01

    It is shown that the symplectic Sp(4), Sp(6) and the exceptional G 2 gauge field theories with complete Spontaneous symmetry breaking through the Higgs mechanism are not asymptotically free. This, together with earlier results for other groups, hints at the existence of a general theorem according to which it would no longer be possible for asymptotic freedom to coexist with the absence of infrared divergences. (author)

  9. Discrete Weighted Pseudo Asymptotic Periodicity of Second Order Difference Equations

    Directory of Open Access Journals (Sweden)

    Zhinan Xia

    2014-01-01

    Full Text Available We define the concept of discrete weighted pseudo-S-asymptotically periodic function and prove some basic results including composition theorem. We investigate the existence, and uniqueness of discrete weighted pseudo-S-asymptotically periodic solution to nonautonomous semilinear difference equations. Furthermore, an application to scalar second order difference equations is given. The working tools are based on the exponential dichotomy theory and fixed point theorem.

  10. Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems

    International Nuclear Information System (INIS)

    Aptekarev, A I; Lopez, Guillermo L; Rocha, I A

    2005-01-01

    The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.

  11. arXiv Asymptotically Safe Standard Model Extensions?

    CERN Document Server

    Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    2018-05-15

    We consider theories with a large number NF of charged fermions and compute the renormalization group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1/NF. We construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  12. The asymptotic variance of departures in critically loaded queues

    NARCIS (Netherlands)

    Al Hanbali, Ahmad; Mandjes, M.R.H.; Nazarathy, Y.; Whitt, W.

    2011-01-01

    We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1 - 2 / π)(ca2 +

  13. Asymptotic Method for Cladding Stress Evaluation in PCMI

    International Nuclear Information System (INIS)

    Kim, Hyungkyu; Kim, Jaeyong; Yoon, Kyungho; Lee, Kanghee; Kang, Heungseok

    2014-01-01

    A PCMI (Pellet Cladding Mechanical Interaction) failure was first reported in the GETR (General Electric Test Reactor) at Vacellitos in 1963, and such failures are still occurring. Since the high stress values in the cladding tube has been of a crucial concern in PCMI studies, there have been many researches on the stress analysis of a cladding tube pressed by a pellet. Typical works can be found in some references. It has often been assumed, however, that the cracks in the pellet were equally spaced and the pellet was a rigid body. In addition, the friction coefficient was arbitrarily chosen so that a slipping between the pellets and cladding tube could not be logically defined. Moreover, the stress intensification due to the sharp edge of a pellet fragment has never been realistically considered. These problems above drove us to launch a framework of a PCMI study particularly on stress analysis technology to improve the present analysis method incorporating the actual PCMI conditions such as the stress intensification, arbitrary distribution of the pellet cracks, material properties (esp. pellet) and slipping behavior of the pellet/cladding interface. As a first step of this work, this paper introduces an asymptotic method that was originally developed for a stress analysis in the vicinity of a sharp notch of a homogeneous body. The intrinsic reason for applying this method is to simulate the stress singularity that is expected to take place at the sharp edge of a pellet fragment due to cracking during irradiation. As a first attempt of this work, an eigenvalue problem is formulated in the case of adhered contact, and the generalized stress intensity factors are defined and evaluated. Although some works obviously remain to be accomplished, for the present framework on the PCMI analysis (e. g., slipping behaviour, contact force etc.), it was addressed that the asymptotic method can produce the stress values that cause the cladding tube failure in PCMI more

  14. Physical renormalization schemes and asymptotic safety in quantum gravity

    Science.gov (United States)

    Falls, Kevin

    2017-12-01

    The methods of the renormalization group and the ɛ -expansion are applied to quantum gravity revealing the existence of an asymptotically safe fixed point in spacetime dimensions higher than two. To facilitate this, physical renormalization schemes are exploited where the renormalization group flow equations take a form which is independent of the parameterisation of the physical degrees of freedom (i.e. the gauge fixing condition and the choice of field variables). Instead the flow equation depends on the anomalous dimensions of reference observables. In the presence of spacetime boundaries we find that the required balance between the Einstein-Hilbert action and Gibbons-Hawking-York boundary term is preserved by the beta functions. Exploiting the ɛ -expansion near two dimensions we consider Einstein gravity coupled to matter. Scheme independence is generically obscured by the loop-expansion due to breaking of two-dimensional Weyl invariance. In schemes which preserve two-dimensional Weyl invariance we avoid the loop expansion and find a unique ultraviolet (UV) fixed point. At this fixed point the anomalous dimensions are large and one must resum all loop orders to obtain the critical exponents. Performing the resummation a set of universal scaling dimensions are found. These scaling dimensions show that only a finite number of matter interactions are relevant. This is a strong indication that quantum gravity is renormalizable.

  15. On modal cross-coupling in the asymptotic modal limit

    Science.gov (United States)

    Culver, Dean; Dowell, Earl

    2018-03-01

    The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.

  16. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  17. Asymptotic behaviour of the scattering phase for non-trapping metrics

    International Nuclear Information System (INIS)

    Popov, G.S.

    1982-01-01

    The asymptotic behaviour of the scattering phase is considered at infinity for an elliptic, self-adjoint, second order differential operator H, defined either in Rsup(n) or in an unbounded domain Ω contains Rsup(n) with Dirichlet or Neumann boundary conditions. The operator H has the form H=- δsub(g)+hD+V where δsub(g) is the Laplace-Beltrami operator related to a Riemann metric g in anti Ω. Provided a non-trapping hypothesis is fulfilled and H coincides with the Laplace operator δ in a neighbourhood of infinity, an asymptotic development of the scattering phase s(lambda) is obtained for lambda → infinity. The first coefficients in this development are found

  18. Asymptotic behavior of equilibrium states of reaction-diffusion systems with mass conservation

    Science.gov (United States)

    Chern, Jann-Long; Morita, Yoshihisa; Shieh, Tien-Tsan

    2018-01-01

    We deal with a stationary problem of a reaction-diffusion system with a conservation law under the Neumann boundary condition. It is shown that the stationary problem turns to be the Euler-Lagrange equation of an energy functional with a mass constraint. When the domain is the finite interval (0 , 1), we investigate the asymptotic profile of a strictly monotone minimizer of the energy as d, the ratio of the diffusion coefficient of the system, tends to zero. In view of a logarithmic function in the leading term of the potential, we get to a scaling parameter κ satisfying the relation ε : =√{ d } =√{ log ⁡ κ } /κ2. The main result shows that a sequence of minimizers converges to a Dirac mass multiplied by the total mass and that by a scaling with κ the asymptotic profile exhibits a parabola in the nonvanishing region. We also prove the existence of an unstable monotone solution when the mass is small.

  19. Asymptotic freeze-out of the perturbations generated inside a corrugated rarefaction wave

    International Nuclear Information System (INIS)

    Wouchuk, J.G.; Serrano Rodrigo, A.D.

    2004-01-01

    Based on previous work [J. G. Wouchuk and R. Carretero, Phys. Plasmas 10, 4237 (2003)], the conditions of asymptotic freeze-out of the ripples at the tail of a corrugated rarefaction wave are analyzed. The precise location of the freezing-out regions in the space of preshock parameters is tried, and an efficient algorithm for their determination is given. It is seen that asymptotic freeze-out can only happen for gases that have an isentropic exponent γ cr ≅2.2913hellip. It is shown that the late time freeze-out of the ripple perturbations is correlated to the initial tangential velocity profile (at t=0+) inside the expansion fan

  20. Asymptotic analysis for Nakagami-m fading channels with relay selection

    KAUST Repository

    Zhong, Caijun

    2011-06-01

    In this paper, we analyze the asymptotic outage probability performance of both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems using partial relay selection and the "best" relay selection schemes for Nakagami-m fading channels. We derive their respective outage probability expressions in the asymptotic high signal-to-noise ratio (SNR) regime, from which the diversity order and coding gain are analyzed. In addition, we investigate the impact of power allocation between the source and relay terminals and derive the diversity-multiplexing tradeoff (DMT) for these relay selection systems. The theoretical findings suggest that partial relay selection can improve the diversity of the system and can achieve the same DMT as the "best" relay selection scheme under certain conditions. © 2011 IEEE.

  1. Symmetry breaking and asymptotic freedom in colour SU(3) gauge models

    International Nuclear Information System (INIS)

    Ma, E.

    1976-01-01

    A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)

  2. Asymptotic behaviour and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation

    Science.gov (United States)

    Butuzov, V. F.

    2017-06-01

    We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.

  3. Asymptotic behaviour of solutions of real two-dimensional differential system with nonconstant delay in an unstable case

    Directory of Open Access Journals (Sweden)

    J. Kalas

    2012-01-01

    Full Text Available The asymptotic behaviour for the solutions of a real two-dimensional system with a bounded nonconstant delay is studied under the assumption of instability. Our results improve and complement previous results by J. Kalas, where the sufficient conditions assuring the existence of bounded solutions or solutions tending to origin for $t$ approaching infinity are given. The method of investigation is based on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle.

  4. Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks.

    Science.gov (United States)

    Wu, Ailong; Zeng, Zhigang

    2016-02-01

    We show that the ω-periodic fractional-order fuzzy neural networks cannot generate non-constant ω-periodic signals. In addition, several sufficient conditions are obtained to ascertain the boundedness and global Mittag-Leffler stability of fractional-order fuzzy neural networks. Furthermore, S-asymptotical ω-periodicity and global asymptotical ω-periodicity of fractional-order fuzzy neural networks is also characterized. The obtained criteria improve and extend the existing related results. To illustrate and compare the theoretical criteria, some numerical examples with simulation results are discussed in detail. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces

    Directory of Open Access Journals (Sweden)

    Gurucharan Singh Saluja

    2010-01-01

    Full Text Available In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.

  6. Weak and Strong Convergence of an Algorithm for the Split Common Fixed-Point of Asymptotically Quasi-Nonexpansive Operators

    Directory of Open Access Journals (Sweden)

    Yazheng Dang

    2013-01-01

    Full Text Available Inspired by the Moudafi (2010, we propose an algorithm for solving the split common fixed-point problem for a wide class of asymptotically quasi-nonexpansive operators and the weak and strong convergence of the algorithm are shown under some suitable conditions in Hilbert spaces. The algorithm and its convergence results improve and develop previous results for split feasibility problems.

  7. STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-01-01

    The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ∼ 0.008 (0.6 x solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ∼ 0.004. Masses of AGB stars that produce C-rich dust are in the range

  8. Loop quantum gravity in asymptotically flat spaces

    International Nuclear Information System (INIS)

    Arnsdorf, M.

    2000-01-01

    This thesis describes applications and extensions of the loop variable approach to non-perturbative quantum gravity. The common theme of the work presented, is the need to generalise loop quantum gravity to be applicable in cases where space is asymptotically flat, and no longer compact as is usually assumed. This is important for the study of isolated gravitational systems. It also presents a natural context in which to search for the semi-classical limit, one of the main outstanding problems in loop quantum gravity. In the first part of the thesis we study how isolated gravitational systems can be attributed particle-like properties. In particular, we show how spinorial states can arise in pure loop quantum gravity if spatial topology is non-trivial, thus confirming an old conjecture of Friedman and Sorkin. Heuristically, this corresponds to the idea that we can rotate isolated regions of spatial topology relative to the environment at infinity, and that only a 4π-rotation will take us back to the original configuration. To do this we extend the standard loop quantum gravity formalism by introducing a compactification of our non-compact spatial manifold, and study the knotting of embedded graphs. The second part of the thesis takes a more systematic approach to the study of loop quantum gravity on non-compact spaces. We look for new representations of the loop algebra, which give rise to quantum theories that are inequivalent to the standard one. These theories naturally describe excitations of a fiducial background state, which is specified via the choice of its vacuum expectation values. In particular, we can choose background states that describe the geometries of non-compact manifolds. We also discuss how suitable background states can be constructed that can approximate classical phase space data, in our case holonomies along embedded paths and geometrical quantities related to areas and volumes. These states extend the notion of the weave and provide a

  9. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.

    Directory of Open Access Journals (Sweden)

    Richard B King

    Full Text Available Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females and annual growth increments of individuals of unknown age (1,152 males, 730 females. We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further

  10. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    Science.gov (United States)

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID

  11. Asymptotics of bivariate generating functions with algebraic singularities

    Science.gov (United States)

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  12. Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays.

    Science.gov (United States)

    Arik, Sabri

    2005-05-01

    This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.

  13. AdS-like spectrum of the asymptotically Goedel space-times

    International Nuclear Information System (INIS)

    Konoplya, R. A.; Zhidenko, A.

    2011-01-01

    A black hole immersed in a rotating universe, described by the Gimon-Hashimoto solution, is tested on stability against scalar field perturbations. Unlike the previous studies on perturbations of this solution, which dealt only with the limit of slow universe rotation j, we managed to separate variables in the perturbation equation for the general case of arbitrary rotation. This leads to qualitatively different dynamics of perturbations, because the exact effective potential does not allow for Schwarzschild-like asymptotic of the wave function in the form of purely outgoing waves. The Dirichlet boundary conditions are allowed instead, which result in a totally different spectrum of asymptotically Goedel black holes: the spectrum of quasinormal frequencies is similar to the one of asymptotically anti-de Sitter black holes. At large and intermediate overtones N, the spectrum is equidistant in N. In the limit of small black holes, quasinormal modes (QNMs) approach the normal modes of the empty Goedel space-time. There is no evidence of instability in the found frequencies, which supports the idea that the existence of closed timelike curves (CTCs) and the onset of instability correlate (if at all) not in a straightforward way.

  14. Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2007-01-01

    We examine anti-de Sitter gravity minimally coupled to a self-interacting scalar field in D>=4 dimensions when the mass of the scalar field is in the range m * 2 = 2 * 2 +l -2 . Here, l is the AdS radius, and m * 2 is the Breitenlohner-Freedman mass. We show that even though the scalar field generically has a slow fall-off at infinity which back reacts on the metric so as to modify its standard asymptotic behavior, one can still formulate asymptotic conditions (i) that are anti-de Sitter invariant; and (ii) that allows the construction of well-defined and finite Hamiltonian generators for all elements of the anti-de Sitter algebra. This requires imposing a functional relationship on the coefficients a, b that control the two independent terms in the asymptotic expansion of the scalar field. The anti-de Sitter charges are found to involve a scalar field contribution. Subtleties associated with the self-interactions of the scalar field as well as its gravitational back reaction, not discussed in previous treatments, are explicitly analyzed. In particular, it is shown that the fields develop extra logarithmic branches for specific values of the scalar field mass (in addition to the known logarithmic branch at the B-F bound)

  15. Large gauge symmetries and asymptotic states in QED

    Energy Technology Data Exchange (ETDEWEB)

    Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2016-12-19

    Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.

  16. Asymptotic strength of thermal pulses in the helium shell burning

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, M Y [Niigata Univ. (Japan); Sugimoto, D

    1979-03-01

    Secular growth in the strength of the recurrent thermal pulses of helium shell burning is discussed for the purpose of determining its asymptotic strength. It is shown that the pulse grows stronger if the helium zone has been cooled more before the initiation of the pulse. The secular growth of the pulse is related with the increasing degree of cooling. Thermal pulses are computed for an initial model corresponding to the maximum possible cooling, i.e., for a model in which the steady-state entropy distribution was realized in the helium zone. Such thermal pulses are shown to give an upper bound to the asymptotic strength, which is close enough to the asymptotic strength itself for relatively large core masses. Numerical results are given for the core mass of 1.07 M sub(sun), for which the asymptotic strength is found to be 9 x 10/sup 6/ L sub(sun). Thermal pulses are also computed for an initial model which has been cooled artificially more than the steady-state model. The first pulse results in a much greater strength than in the normal model, but a later pulse approaches the normal asymptotic value. Such models are also discussed in relation to the shell flashes on accreting white dwarfs.

  17. Asymptotic distribution of ∆AUC, NRIs, and IDI based on theory of U-statistics.

    Science.gov (United States)

    Demler, Olga V; Pencina, Michael J; Cook, Nancy R; D'Agostino, Ralph B

    2017-09-20

    The change in area under the curve (∆AUC), the integrated discrimination improvement (IDI), and net reclassification index (NRI) are commonly used measures of risk prediction model performance. Some authors have reported good validity of associated methods of estimating their standard errors (SE) and construction of confidence intervals, whereas others have questioned their performance. To address these issues, we unite the ∆AUC, IDI, and three versions of the NRI under the umbrella of the U-statistics family. We rigorously show that the asymptotic behavior of ∆AUC, NRIs, and IDI fits the asymptotic distribution theory developed for U-statistics. We prove that the ∆AUC, NRIs, and IDI are asymptotically normal, unless they compare nested models under the null hypothesis. In the latter case, asymptotic normality and existing SE estimates cannot be applied to ∆AUC, NRIs, or IDI. In the former case, SE formulas proposed in the literature are equivalent to SE formulas obtained from U-statistics theory if we ignore adjustment for estimated parameters. We use Sukhatme-Randles-deWet condition to determine when adjustment for estimated parameters is necessary. We show that adjustment is not necessary for SEs of the ∆AUC and two versions of the NRI when added predictor variables are significant and normally distributed. The SEs of the IDI and three-category NRI should always be adjusted for estimated parameters. These results allow us to define when existing formulas for SE estimates can be used and when resampling methods such as the bootstrap should be used instead when comparing nested models. We also use the U-statistic theory to develop a new SE estimate of ∆AUC. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian

    2011-01-01

    The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...

  19. Contact mechanics of articular cartilage layers asymptotic models

    CERN Document Server

    Argatov, Ivan

    2015-01-01

    This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...

  20. Scalar hairy black holes and solitons in asymptotically flat spacetimes

    International Nuclear Information System (INIS)

    Nucamendi, Ulises; Salgado, Marcelo

    2003-01-01

    A numerical analysis shows that the Einstein field equations allow static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. When regularity at the origin is imposed (i.e., in the absence of a horizon) globally regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(φ) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture

  1. Asymptotic chaos expansions in finance theory and practice

    CERN Document Server

    Nicolay, David

    2014-01-01

    Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...

  2. Asymptotic Analysis in MIMO MRT/MRC Systems

    Directory of Open Access Journals (Sweden)

    Zhou Quan

    2006-01-01

    Full Text Available Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC systems. One is the asymptotic error performance (in terms of SNR in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.

  3. Watermelon configurations with wall interaction: exact and asymptotic results

    Energy Technology Data Exchange (ETDEWEB)

    Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)

    2006-06-15

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  4. Watermelon configurations with wall interaction: exact and asymptotic results

    International Nuclear Information System (INIS)

    Krattenthaler, C

    2006-01-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature

  5. Watermelon configurations with wall interaction: exact and asymptotic results

    Science.gov (United States)

    Krattenthaler, C.

    2006-06-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  6. The unusual asymptotics of three-sided prudent polygons

    International Nuclear Information System (INIS)

    Beaton, Nicholas R; Guttmann, Anthony J; Flajolet, Philippe

    2010-01-01

    We have studied the area-generating function of prudent polygons on the square lattice. Exact solutions are obtained for the generating function of two-sided and three-sided prudent polygons, and a functional equation is found for four-sided prudent polygons. This is used to generate series coefficients in polynomial time, and these are analysed to determine the asymptotics numerically. A careful asymptotic analysis of the three-sided polygons produces a most surprising result. A transcendental critical exponent is found, and the leading amplitude is not quite a constant, but is a constant plus a small oscillatory component with an amplitude approximately 10 -8 times that of the leading amplitude. This effect cannot be seen by any standard numerical analysis, but it may be present in other models. If so, it changes our whole view of the asymptotic behaviour of lattice models. (fast track communication)

  7. Polymers and Random graphs: Asymptotic equivalence to branching processes

    International Nuclear Information System (INIS)

    Spouge, J.L.

    1985-01-01

    In 1974, Falk and Thomas did a computer simulation of Flory's Equireactive RA/sub f/ Polymer model, rings forbidden and rings allowed. Asymptotically, the Rings Forbidden model tended to Stockmayer's RA/sub f/ distribution (in which the sol distribution ''sticks'' after gelation), while the Rings Allowed model tended to the Flory version of the RA/sub f/ distribution. In 1965, Whittle introduced the Tree and Pseudomultigraph models. We show that these random graphs generalize the Falk and Thomas models by incorporating first-shell substitution effects. Moreover, asymptotically the Tree model displays postgelation ''sticking.'' Hence this phenomenon results from the absence of rings and occurs independently of equireactivity. We also show that the Pseudomultigraph model is asymptotically identical to the Branching Process model introduced by Gordon in 1962. This provides a possible basis for the Branching Process model in standard statistical mechanics

  8. Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models

    International Nuclear Information System (INIS)

    Wu Shiliang; Li Wantong

    2009-01-01

    This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called interval monotone condition. Under such a weak monotone condition, the existence and comparison theorem of solutions is first established for reaction-diffusion systems on R by appealing to the theory of abstract differential equations. The global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts are then proved by the elementary super- and sub-solution comparison and squeezing methods for nonlinear evolution equations. Finally, these abstract results are applied to a two species competition-diffusion model and a system modeling man-environment-man epidemics.

  9. ADM Mass for Asymptotically de Sitter Space-Time

    International Nuclear Information System (INIS)

    Huang Shiming; Yue Ruihong; Jia Dongyan

    2010-01-01

    In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)

  10. Selected asymptotic methods with applications to electromagnetics and antennas

    CERN Document Server

    Fikioris, George; Bakas, Odysseas N

    2013-01-01

    This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som

  11. Convergence Theorem for Finite Family of Total Asymptotically Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    E.U. Ofoedu

    2015-11-01

    Full Text Available In this paper we introduce an explicit iteration process and prove strong convergence of the scheme in a real Hilbert space $H$ to the common fixed point of finite family of total asymptotically nonexpansive mappings which is nearest to the point $u \\in H$.  Our results improve previously known ones obtained for the class of asymptotically nonexpansive mappings. As application, iterative method for: approximation of solution of variational Inequality problem, finite family of continuous pseudocontractive mappings, approximation of solutions of classical equilibrium problems and approximation of solutions of convex minimization problems are proposed. Our theorems unify and complement many recently announced results.

  12. New rigorous asymptotic theorems for inverse scattering amplitudes

    International Nuclear Information System (INIS)

    Lomsadze, Sh.Yu.; Lomsadze, Yu.M.

    1984-01-01

    The rigorous asymptotic theorems both of integral and local types obtained earlier and establishing logarithmic and in some cases even power correlations aetdeen the real and imaginary parts of scattering amplitudes Fsub(+-) are extended to the inverse amplitudes 1/Fsub(+-). One also succeeds in establishing power correlations of a new type between the real and imaginary parts, both for the amplitudes themselves and for the inverse ones. All the obtained assertions are convenient to be tested in high energy experiments when the amplitudes show asymptotic behaviour

  13. Centrally extended symmetry algebra of asymptotically Goedel spacetimes

    International Nuclear Information System (INIS)

    Compere, Geoffrey; Detournay, Stephane

    2007-01-01

    We define an asymptotic symmetry algebra for three-dimensional Goedel spacetimes supported by a gauge field which turns out to be the semi-direct sum of the diffeomorphisms on the circle with two loop algebras. A class of fields admitting this asymptotic symmetry algebra and leading to well-defined conserved charges is found. The covariant Poisson bracket of the conserved charges is then shown to be centrally extended to the semi-direct sum of a Virasoro algebra and two affine algebras. The subsequent analysis of three-dimensional Goedel black holes indicates that the Virasoro central charge is negative

  14. Asymptotic inverse periods of reflected reactors above prompt critical

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Busch, R.D.

    1995-01-01

    It is commonly assumed that the kinetic behavior of reflected and unreflected reactors is identical. In particular, it is often accepted that a given reactivity change in either type of system will result in an identical asymptotic inverse period. This is generally true for reactivities below prompt critical. For reactivities above prompt critical, however, the asymptotic inverse period can vary in a highly nonlinear fashion with system reactivity depending on the reflector return fraction, the neutron lifetime in the core, and the neutron lifetime in the reflector

  15. Self similar asymptotics of the drift ion acoustic waves

    International Nuclear Information System (INIS)

    Taranov, V.B.

    2004-01-01

    A 3D model for the coupled drift and ion acoustic waves is considered. It is shown that self-similar solutions can exist due to the symmetry extension in asymptotic regimes. The form of these solutions is determined in the presence of the magnetic shear as well as in the shear less case. Some of the most symmetric exact solutions are obtained explicitly. In particular, solutions describing asymptotics of zonal flow interaction with monochromatic waves are presented and corresponding frequency shifts are determined

  16. Gravitational charges of transverse asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2006-01-01

    Using Killing-Yano symmetries, we construct conserved charges of spacetimes that asymptotically approach to the flat or anti-de Sitter spaces only in certain directions. In D dimensions, this allows one to define gravitational charges (such as mass and angular momenta densities) of p-dimensional branes/solitons or any other extended objects that curve the transverse space into an asymptotically flat or AdS one. Our construction answers the question of what kind of charges the antisymmetric Killing-Yano tensors lead to

  17. Generalized heat kernel coefficients for a new asymptotic expansion

    International Nuclear Information System (INIS)

    Osipov, Alexander A.; Hiller, Brigitte

    2003-01-01

    The method which allows for asymptotic expansion of the one-loop effective action W = lndetA is formulated. The positively defined elliptic operator A = U + M2 depends on the external classical fields taking values in the Lie algebra of the internal symmetry group G. Unlike the standard method of Schwinger - DeWitt, the more general case with the nongenerate mass matrix M = diag(m1, m2, ...) is considered. The first coefficients of the new asymptotic series are calculated and their relationship with the Seeley - DeWitt coefficients is clarified

  18. Global Asymptotic Stability of Switched Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Zhenyu Lu

    2015-01-01

    Full Text Available This paper investigates the global asymptotic stability of a class of switched neural networks with delays. Several new criteria ensuring global asymptotic stability in terms of linear matrix inequalities (LMIs are obtained via Lyapunov-Krasovskii functional. And here, we adopt the quadratic convex approach, which is different from the linear and reciprocal convex combinations that are extensively used in recent literature. In addition, the proposed results here are very easy to be verified and complemented. Finally, a numerical example is provided to illustrate the effectiveness of the results.

  19. Non-pionic effects in deuteron asymptotic observables

    International Nuclear Information System (INIS)

    Ballot, J.L.; Robilotta, M.R.

    1991-01-01

    It is well known that pion dynamics dominates deuteron asymptotic observables, especially η, the D/S ratio and Q, the quadrupole moment. A procedure has been discussed earlier that allows the unambiguous determination of the pion contribution to these observables as function of the pion-nucleon coupling constant. This problem is discussed in the framework of a specific model for the nucleon-nucleon interaction, namely the potential developed by the Tourreil, Rouben and Sprung. The contribution of non-pionic dynamics to deuteron asymptotic observables is investigated. It is shown that effects due to ρ and ω exchanges are negligible. (K.A.) 8 refs., 1 fig., 1 tab

  20. Vacuum energy in asymptotically flat 2 + 1 gravity

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, Olivera, E-mail: olivera.miskovic@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago (Chile); Roy, Debraj, E-mail: roy.debraj@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2017-04-10

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  1. Vacuum energy in asymptotically flat 2 + 1 gravity

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Olea, Rodrigo; Roy, Debraj

    2017-01-01

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  2. Asymptotic analysis of spatial discretizations in implicit Monte Carlo

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2009-01-01

    We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.

  3. Asymptotic Time Averages and Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Muhammad El-Taha

    2016-01-01

    Full Text Available Consider an arbitrary nonnegative deterministic process (in a stochastic setting {X(t,  t≥0} is a fixed realization, i.e., sample-path of the underlying stochastic process with state space S=(-∞,∞. Using a sample-path approach, we give necessary and sufficient conditions for the long-run time average of a measurable function of process to be equal to the expectation taken with respect to the same measurable function of its long-run frequency distribution. The results are further extended to allow unrestricted parameter (time space. Examples are provided to show that our condition is not superfluous and that it is weaker than uniform integrability. The case of discrete-time processes is also considered. The relationship to previously known sufficient conditions, usually given in stochastic settings, will also be discussed. Our approach is applied to regenerative processes and an extension of a well-known result is given. For researchers interested in sample-path analysis, our results will give them the choice to work with the time average of a process or its frequency distribution function and go back and forth between the two under a mild condition.

  4. Asymptotic propagators and trajectories in plasma turbulence theory. The importance of irreversibility, asymptoticity and non-Markovian terms

    International Nuclear Information System (INIS)

    Misguich, J.H.

    1978-09-01

    The physical meaning of perturbed trajectories in turbulent fields is analysed. Special care is devoted to the asymptotic description of average trajectories for long time intervals, as occuring in many recent plasma turbulence theories. Equivalence is proved between asymptotic average trajectories described as well (i) by the propagators V(t,t-tau) for retrodiction and Wsub(J)(t,t+tau) for prediction, and (ii) by the long time secular behavior of the solution of the equations of motion. This confirms the equivalence between perturbed orbit theories and renormalized theories, including non-Markovian contributions

  5. Asymptotic analysis of an ion extraction model

    International Nuclear Information System (INIS)

    Ben Abdallah, N.; Mas-Gallic, S.; Raviart, P.A.

    1993-01-01

    A simple model for ion extraction from a plasma is analyzed. The order of magnitude of the plasma parameters leads to a singular perturbation problem for a semilinear elliptic equation. We first prove existence of solutions for the perturbed problem and uniqueness under certain conditions. Then we prove the convergence of these solutions, when the parameters go to zero, towards the solution of a Child-Langmuir problem

  6. Asymptotic aspect of derivations in Banach algebras

    Directory of Open Access Journals (Sweden)

    Jaiok Roh

    2017-02-01

    Full Text Available Abstract We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  7. Asymptotics for a special solution to the second member of the Painleve I hierarchy

    International Nuclear Information System (INIS)

    Claeys, T

    2010-01-01

    We study the asymptotic behavior of a special smooth solution y(x, t) to the second member of the Painleve I hierarchy. This solution arises in random matrix theory and in the study of the Hamiltonian perturbations of hyperbolic equations. The asymptotic behavior of y(x, t) if x → ±∞ (for fixed t) is known and relatively simple, but it turns out to be more subtle when x and t tend to infinity simultaneously. We distinguish a region of algebraic asymptotic behavior and a region of elliptic asymptotic behavior, and we obtain rigorous asymptotics in both regions. We also discuss two critical transitional asymptotic regimes.

  8. The fourth-order non-linear sigma models and asymptotic freedom in four dimensions

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Ketov, S.V.

    1991-01-01

    Starting with the most general Lagrangian of the fourth-order non-linear sigma model in four space-time dimensions, we calculate the one-loop, on-shell ultra-violet-divergent part of the effective action. The formalism is based on the background field method and the generalised Schwinger-De Witt technique. The multiplicatively renormalisable case is investigated in some detail. The renormalisation group equations are obtained, and the conditions for a realisation of asymptotic freedom are considered. (orig.)

  9. Asymptotic integration of some nonlinear differential equations with fractional time derivative

    International Nuclear Information System (INIS)

    Baleanu, Dumitru; Agarwal, Ravi P; Mustafa, Octavian G; Cosulschi, Mirel

    2011-01-01

    We establish that, under some simple integral conditions regarding the nonlinearity, the (1 + α)-order fractional differential equation 0 D α t (x') + f(t, x) = 0, t > 0, has a solution x element of C([0,+∞),R) intersection C 1 ((0,+∞),R), with lim t→0 [t 1-α x'(t)] element of R, which can be expanded asymptotically as a + bt α + O(t α-1 ) when t → +∞ for given real numbers a, b. Our arguments are based on fixed point theory. Here, 0 D α t designates the Riemann-Liouville derivative of order α in (0, 1).

  10. On the asymptotic ergodic capacity of FSO links with generalized pointing error model

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-09-11

    Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantize the effect of these two factors on FSO system performance, we need an effective mathematical model for them. Scintillations are typically modeled by the log-normal and Gamma-Gamma distributions for weak and strong turbulence conditions, respectively. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive the asymptotic ergodic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. © 2015 IEEE.

  11. Asymptotic behaviour of a non-commutative rational series with a nonnegative linear representation

    Directory of Open Access Journals (Sweden)

    Philippe Dumas

    2007-01-01

    Full Text Available We analyse the asymptotic behaviour in the mean of a non-commutative rational series, which originates from differential cryptanalysis, using tools from probability theory, and from analytic number theory. We derive a Fourier representation of a first-order summation function obtained by interpreting this rational series as a non-classical rational sequence via the octal numeration system. The method is applicable to a wide class of sequences rational with respect to a numeration system essentially under the condition that they admit a linear representation with nonnegative coefficients.

  12. Asymptotic equivalence of neutron diffusion and transport in time-independent reactor systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Mika, J.; Spiga, G.

    1982-01-01

    Presented in this paper is the asymptotic analysis of the time-independent neutron transport equation in the second-order variational formulation. The small parameter introduced into the equation is an estimate of the ratio of absorption and leakage to scattering in the system considered. When the ratio tends to zero, the weak solution to the transport problem tends to the weak solution of the diffusion problem, including properly defined boundary conditions. A formula for the diffusion coefficient different from that based on averaging the transport mean-free-path is derived

  13. On the asymptotic solution to a class of linear integral equations

    International Nuclear Information System (INIS)

    Gautesen, A.K.

    1988-01-01

    The authors consider Fredholm integral equations of the first kind whose kernels are a function of the difference between two points times a large parameter. Conditions on the kernel are stated in terms of a function corresponding to a Wiener-Hopf factorization of the Fourier transform of the kernel. They give the complete asymptotic expansions of the solution to the integral equations. As applications of the author's results, the author considers the steady-state, acoustical scattering of a plane wave by both a hard strip and a soft strip. The author's results are uniform with respect to the direction of incidence

  14. An Enhanced Asymptotic Expansion for the Stability of Nonlinear Elastic Structures

    DEFF Research Database (Denmark)

    Christensen, Claus Dencker; Byskov, Esben

    2010-01-01

    A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns...... with two different types of cross-section. Comparison with numerical results show that our expansion provides more accurate predictions of the behavior than usual expansions. The method is based on an extended version of the principle of virtual displacements that covers cases with auxiliary conditions...

  15. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng

    2013-01-01

    The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral–faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions. (paper)

  16. Asymptotic convertibility of entanglement: An information-spectrum approach to entanglement concentration and dilution

    Science.gov (United States)

    Jiao, Yong; Wakakuwa, Eyuri; Ogawa, Tomohiro

    2018-02-01

    We consider asymptotic convertibility of an arbitrary sequence of bipartite pure states into another by local operations and classical communication (LOCC). We adopt an information-spectrum approach to address cases where each element of the sequences is not necessarily a tensor power of a bipartite pure state. We derive necessary and sufficient conditions for the LOCC convertibility of one sequence to another in terms of spectral entropy rates of entanglement of the sequences. Based on these results, we also provide simple proofs for previously known results on the optimal rates of entanglement concentration and dilution of general sequences of bipartite pure states.

  17. Asymptotically stable fourth-order accurate schemes for the diffusion equation on complex shapes

    International Nuclear Information System (INIS)

    Abarbanel, S.; Ditkowski, A.

    1997-01-01

    An algorithm which solves the multidimensional diffusion equation on complex shapes to fourth-order accuracy and is asymptotically stable in time is presented. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty-like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions, fail. The ability of the paradigm to be applied to arbitrary geometric domains is an important feature of the algorithm. 5 refs., 14 figs

  18. Parabolic cyclinder functions : examples of error bounds for asymptotic expansions

    NARCIS (Netherlands)

    R. Vidunas; N.M. Temme (Nico)

    2002-01-01

    textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.

  19. Asymptotic inference for jump diffusions with state-dependent intensity

    NARCIS (Netherlands)

    Becheri, Gaia; Drost, Feico; Werker, Bas

    2016-01-01

    We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to

  20. The least weighted squares II. Consistency and asymptotic normality

    Czech Academy of Sciences Publication Activity Database

    Víšek, Jan Ámos

    2002-01-01

    Roč. 9, č. 16 (2002), s. 1-28 ISSN 1212-074X R&D Projects: GA AV ČR KSK1019101 Grant - others:GA UK(CR) 255/2000/A EK /FSV Institutional research plan: CEZ:AV0Z1075907 Keywords : robust regression * consistency * asymptotic normality Subject RIV: BA - General Mathematics

  1. Small Bandwidth Asymptotics for Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels and the standard errors...

  2. TAIL ASYMPTOTICS OF LIGHT-TAILED WEIBULL-LIKE SUMS

    DEFF Research Database (Denmark)

    Asmussen, Soren; Hashorva, Enkelejd; Laub, Patrick J.

    2017-01-01

    We consider sums of n i.i.d. random variables with tails close to exp{-x(beta)} for some beta > 1. Asymptotics developed by Rootzen (1987) and Balkema, Kluppelberg, and Resnick (1993) are discussed from the point of view of tails rather than of densities, using a somewhat different angle...

  3. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic-analysis/asy1348

  4. Asymptotic behavior of tidal damping in alluvial estuaries

    NARCIS (Netherlands)

    Cai, H.; Savenije, H.H.G.

    2013-01-01

    Tidal wave propagation can be described analytically by a set of four implicit equations, i.e., the phase lag equation, the scaling equation, the damping equation, and the celerity equation. It is demonstrated that this system of equations has an asymptotic solution for an infinite channel,

  5. Asymptotics for Estimating Equations in Hidden Markov Models

    DEFF Research Database (Denmark)

    Hansen, Jørgen Vinsløv; Jensen, Jens Ledet

    Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...

  6. The Asymptotic Solution for the Steady Variable-Viscosity Free ...

    African Journals Online (AJOL)

    Under an arbitrary time-dependent heating of an infinite vertical plate (or wall), the steady viscosity-dependent free convection flow of a viscous incompressible fluid is investigated. Using the asymptotic method of solution on the governing equations of motion and energy, the resulting Ordinary differential equations were ...

  7. From A to Z : Asymptotic expansions by van Zwet

    NARCIS (Netherlands)

    Albers, Willem/Wim; de Gunst, Mathisca; Klaasen, Chris; van der Vaart, Aad

    2001-01-01

    Refinements of first order asymptotic results axe reviewed, with a number of Ph.D. projects supervised by van Zwet serving as stepping stones. Berry-Esseen bounds and Edgeworth expansions are discussed for R-, L- and [/-statistics. After these special classes, the question about a general second

  8. Conformal techniques for OPE in asymptotically free quantum field theory

    International Nuclear Information System (INIS)

    Craigie, N.S.; Dobrev, V.K.

    1982-06-01

    We discuss the relationship between the short-distance behaviour of vertex functions and conformal invariance in asymptotically free theories. We show how conformal group techniques can be used to derive spectral representations of wave functions and vertex functions in QCD. (author)

  9. Asymptotics of sums of lognormal random variables with Gaussian copula

    DEFF Research Database (Denmark)

    Asmussen, Søren; Rojas-Nandayapa, Leonardo

    2008-01-01

    Let (Y1, ..., Yn) have a joint n-dimensional Gaussian distribution with a general mean vector and a general covariance matrix, and let Xi = eYi, Sn = X1 + ⋯ + Xn. The asymptotics of P (Sn > x) as n → ∞ are shown to be the same as for the independent case with the same lognormal marginals. In part...

  10. The running QCD coupling in the pre-asymptotic region

    Energy Technology Data Exchange (ETDEWEB)

    Burgio, G.; Di Renzo, F.; Parrinello, C.; Pittori, C

    1999-03-01

    We study deviations from the perturbative asymptotic behaviour in the running QCD coupling by analysing non-perturbative measurements of {alpha}{sub s}(p) at low momenta (p {approx} 2 GeV) as obtained from the lattice three-gluon vertex. Our exploratory study provides some evidence for power corrections to the perturbative running proportional to 1/p{sup 2}.

  11. Asymptotic analysis of methane-hydrogen-air mixtures

    NARCIS (Netherlands)

    Hermanns, R.T.E.; Bastiaans, R.J.M.; Goey, de L.P.H.

    2005-01-01

    In this paper an asymptotic analysis of de Goey et al.concerning premixed stoichiometric methane-hydrogen-air flames is analyzed in depth. The analysis is performed with up to 50 mole percent of hydrogen in the fuel, at gas inlet temperatures ranging from 300 K to 650 K and pressures from 1 to 15

  12. Asymptotic behaviour of a rescattering series for nonlinear reggeons

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Martynov, E.S.

    1990-01-01

    A series of elastic re-scattering (both quasi-eikonal and U-matrix ones) for reggeons with nonlinear trajectories are estimated asymptotically. The calculations are performed for models of supercritical and dipole pomerons. A weak dependence of the series of re-scattering on reggeon trajectory nonlinearity is revealed. 13 refs.; 3 figs

  13. Asymptotics and Numerics for Laminar Flow over Finite Flat Plate

    NARCIS (Netherlands)

    Dijkstra, D.; Kuerten, J.G.M.; Kaper, Hans G.; Garbey, Mare; Pieper, Gail W.

    1992-01-01

    A compilation of theoretical results from the literature on the finite flat-plate flow at zero incidence is presented. This includes the Blasius solution, the Triple Deck at the trailing edge, asymptotics in the wake, and properties near the edges of the plate. In addition, new formulas for skin

  14. Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations

    Czech Academy of Sciences Publication Activity Database

    Klein, O.; Krejčí, Pavel

    2003-01-01

    Roč. 4, č. 5 (2003), s. 755-785 ISSN 1468-1218 Keywords : hysteresis operators * Prandtl-Ishlinskii operator * asymptotic behaviour Subject RIV: BA - General Mathematics Impact factor: 0.257, year: 2003 http://www.wias-berlin.de/preprint/748/wias_preprints_748.pdf

  15. Asymptotic Structure of the Seismic Radiation from an Explosive Column

    Directory of Open Access Journals (Sweden)

    Marco Rosales-Vera

    2018-01-01

    Full Text Available We study the structure of the seismic radiation in the far field produced by an explosive column. Using an asymptotic solution for the far field of vibration (Heelan’s solution, we find analytical expressions to the peak particle velocity (PPV diagrams. These results are extended to the case of a charge with finite velocity of detonation.

  16. Level shift and charm mass: a test of asymptotic planarity

    International Nuclear Information System (INIS)

    Palmer, W.F.; Pinsky, S.S.; Shi, C.C.

    1976-01-01

    Level shifts and mixings away from exact exchange degeneracy are examined with respect to the ''asymptotic planarity'' predictions of Chew and Rosenzweig. It is found that the data in the J/sup P/ = 0 - , 1 - , and 2 + multiplets support neither the general shape nor the special relation proposed by Chew and Rosenzweig for the tensor and vector ''cylinder'' corrections

  17. Asymptotic Expansions of Generalized Nevanlinna Functions and their Spectral Properties

    NARCIS (Netherlands)

    Derkach, Vladimir; Hassi, Seppo; de Snoo, Hendrik

    2007-01-01

    Asymptotic expansions of generalized Nevanlinna functions Q are investigated by means of a factorization model involving a part of the generalized zeros and poles of nonpositive type of the function Q. The main results in this paper arise from the explicit construction of maximal Jordan chains in

  18. High energy asymptotics of the scattering amplitude for the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Scattering matrix; asymptotic expansion; high energy; diagonal singula- ..... (see subsection 2 of § 3) with functions of the generator of dilations. A = 1. 2 d ..... ness in quantum scattering theory, Ann. Inst. Henri Poincaré, Phys. Théor.

  19. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2015-01-01

    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  20. Quantum local asymptotic normality and other questions of quantum statistics

    NARCIS (Netherlands)

    Kahn, Jonas

    2008-01-01

    This thesis is entitled Quantum Local Asymptotic Normality and other questions of Quantum Statistics ,. Quantum statistics are statistics on quantum objects. In classical statistics, we usually start from the data. Indeed, if we want to predict the weather, and can measure the wind or the

  1. Models of Regge behaviour in an asymptotically free theory

    International Nuclear Information System (INIS)

    Polkinghorne, J.C.

    1976-01-01

    Two simple Feynman integral models are presented which reproduce the features expected to be of physical importance in the Regge behaviour of asymptotically free theories. Analysis confirms the result, expected on general grounds, that phi 3 in six dimensions has an essential singularity at l=-1. The extension to gauge theories is discussed. (Auth.)

  2. On some asymptotic relations in the Boltzmann-Enskog model

    International Nuclear Information System (INIS)

    Sadovnikov, B.I.; Inozemtseva, N.G.

    1977-04-01

    The coefficients in the tsup(-3/2) asymptotics of the time autocorrelation functions are successively determined in the framework of the non-linear Boltzmann-Enskog model. The left and right eigenfunction systems are constructed for the Boltzmann-Enskog operator

  3. Some asymptotic theory for variance function smoothing | Kibua ...

    African Journals Online (AJOL)

    Simple selection of the smoothing parameter is suggested. Both homoscedastic and heteroscedastic regression models are considered. Keywords: Asymptotic, Smoothing, Kernel, Bandwidth, Bias, Variance, Mean squared error, Homoscedastic, Heteroscedastic. > East African Journal of Statistics Vol. 1 (1) 2005: pp. 9-22 ...

  4. Pointwise asymptotic convergence of solutions for a phase separation model

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Zheng, S.

    2006-01-01

    Roč. 16, č. 1 (2006), s. 1-18 ISSN 1078-0947 Institutional research plan: CEZ:AV0Z10190503 Keywords : phase-field system * asymptotic phase separation * energy Subject RIV: BA - General Mathematics Impact factor: 1.087, year: 2006 http://aimsciences.org/journals/pdfs.jsp?paperID=1875&mode=full

  5. Asymptotic behavior of second-order impulsive differential equations

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2011-02-01

    Full Text Available In this article, we study the asymptotic behavior of all solutions of 2-th order nonlinear delay differential equation with impulses. Our main tools are impulsive differential inequalities and the Riccati transformation. We illustrate the results by an example.

  6. A convergence theorem for asymptotic expansions of Feynman amplitudes

    International Nuclear Information System (INIS)

    Mabouisson, A.P.C.

    1999-06-01

    The Mellin representations of Feynman integrals is revisited. From this representation, and asymptotic expansion for generic Feynman amplitudes, for any set of invariants going to zero or to ∞, may be obtained. In the case of all masses going to zero in Euclidean metric, we show that the truncated expansion has a rest compatible with convergence of the series. (author)

  7. Asymptotic absolute continuity for perturbed time-dependent ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    We study the notion of asymptotic velocity for a class of perturbed time- ... for Mathematical Physics and Stochastics, funded by a grant from the Danish National Research Foun- .... Using (2.4) we can readily continue α(t) to the whole half-axis.

  8. Technicolor and the asymptotic behavior of dynamically generated masses

    International Nuclear Information System (INIS)

    Natale, A.A.

    1984-01-01

    Arguments are given in favor of a hard asymptotic behavior of dynamically generated masses, its consequences for technicolor models are analyzed and a model is proposed, where effects of flavor changing neutral currents are highly supressed and pseudo Goldstone bosons get masses of O(30-90) GeV. (Author) [pt

  9. Ergodic Retractions for Families of Asymptotically Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Saeidi Shahram

    2010-01-01

    Full Text Available We prove some theorems for the existence of ergodic retractions onto the set of common fixed points of a family of asymptotically nonexpansive mappings. Our results extend corresponding results of Benavides and Ramírez (2001, and Li and Sims (2002.

  10. Formal matched asymptotics for degenerate Ricci flow neckpinches

    International Nuclear Information System (INIS)

    Angenent, Sigurd B; Isenberg, James; Knopf, Dan

    2011-01-01

    Gu and Zhu (2008 Commun. Anal. Geom. 16 467–94) have shown that type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on S n+1 (n≥2). In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile and rate of curvature blow-up that we predict such solutions exhibit

  11. Deep inelastic scattering in an asymptotically free gauge theory

    International Nuclear Information System (INIS)

    Fujiwara, Tsutomu

    1977-01-01

    This paper reviews the success of the asymptotically free gauge theory which describes the deep inelastic lepton-hadron scattering. The asymptotically free gauge theory was discussed as well as the reason why the parton has the nature like free particles by the aid of the field theory. The asymptotically free gauge theory (AFGT) gives the prediction that the Bjorken scaling gives rise to logarithmic violation. The theory was applied to the exchange processes of single photon and two photons. First, this paper describes the approaches to the Bjorken scaling. The approaches are the discussion of the scaling law dependent on the model and the discussion of the scaling law independent of the model. The field theoretical treatment in described. This is called the method of the renormalization group introduced by Wilson. The asymptotically free gauge theory was formed on the basis of the Callan-Symanzik equation (CSE) and of the Weinberg's power counting theorem. The exact Bjorken scaling does not hold in the quantum field theory, at least there must be logarithmic violation. The pattern of the scaling violation cannot be clarified by the present data. Discussions concerning two gamma process are presented. The measurement of the photon-photon scattering process will give the judgement whether the prediction of the AFGT is correct or not. (Kato, T.)

  12. Gap asymptotics in a weakly bent leaky quantum wire

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Kondej, S.

    2015-01-01

    Roč. 48, č. 49 (2015), s. 495301 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : singular Schroedinger operators * delta interaction * leaky quantum wires * weak perturbation * asymptotic expansion Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015

  13. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  14. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic- analysis /asy1348

  15. Asymptotic behaviour of unbounded non expansive sequences in Banach spaces

    International Nuclear Information System (INIS)

    Djafari Rouhani, B.

    1990-08-01

    Let x be a real Banach space and C a subset of x. We consider a non expansive map t from an arbitrary subset C of x into itself, and for x is an element of C, we study the asymptotic behaviour of the sequence x T x n in x. 20 refs

  16. Asymptotic performance modelling of DCF protocol with prioritized channel access

    Science.gov (United States)

    Choi, Woo-Yong

    2017-11-01

    Recently, the modification of the DCF (Distributed Coordination Function) protocol by the prioritized channel access was proposed to resolve the problem that the DCF performance worsens exponentially as more nodes exist in IEEE 802.11 wireless LANs. In this paper, an asymptotic analytical performance model is presented to analyze the MAC performance of the DCF protocol with the prioritized channel access.

  17. Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes

    NARCIS (Netherlands)

    Caldeira Costa, R.N.

    2012-01-01

    In this work we elaborate on an extension of the AdS/CFT framework to a sub-class of gravitational theories with vanishing cosmological constant. By building on earlier ideas, we construct a correspondence between Ricci-flat spacetimes admitting asymptotically hyperbolic hypersurfaces and a family

  18. Penrose inequality for asymptotically AdS spaces

    International Nuclear Information System (INIS)

    Itkin, Igor; Oz, Yaron

    2012-01-01

    In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.

  19. Penrose inequality for asymptotically AdS spaces

    Energy Technology Data Exchange (ETDEWEB)

    Itkin, Igor [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Oz, Yaron, E-mail: yaronoz@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2012-02-28

    In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.

  20. The P(phi)2 Green's functions; asymptotic perturbation expansion

    International Nuclear Information System (INIS)

    Dimock, J.

    1976-01-01

    The real time Green's functions in the P(phi) 2 quantum field theory are infinitely differentiable functions of the coupling constant lambda up to and including lamba=0. It follows that the perturbation series are asymptotic as lambda→0 + . (Auth.)

  1. A Review on asymptotic normality of sums of associated random ...

    African Journals Online (AJOL)

    Association between random variables is a generalization of independence of these random variables. This concept is more and more commonly used in current trends in any research elds in Statistics. In this paper, we proceed to a simple, clear and rigorous introduction to it. We will present the fundamental asymptotic ...

  2. Asymptotic stability estimates near an equilibrium point

    Science.gov (United States)

    Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2017-07-01

    We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.

  3. Caustics, counting maps and semi-classical asymptotics

    International Nuclear Information System (INIS)

    Ercolani, N M

    2011-01-01

    This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z 0 (t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain

  4. Caustics, counting maps and semi-classical asymptotics

    Science.gov (United States)

    Ercolani, N. M.

    2011-02-01

    This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z0(t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain

  5. Gravitational collapse in asymptotically anti-de Sitter or de Sitter backgrounds

    International Nuclear Information System (INIS)

    Madhav, T. Arun; Goswami, Rituparno; Joshi, Pankaj S.

    2005-01-01

    We study here the gravitational collapse of a matter cloud with a nonvanishing tangential pressure in the presence of a nonzero cosmological term Λ. It is investigated how Λ modifies the dynamics of the collapsing cloud and whether it affects the cosmic censorship. Conditions for bounce and singularity formation are derived. It is seen that when the tangential pressure vanishes, the bounce and singularity conditions reduce to the dust case studied earlier. The collapsing interior is matched to an exterior which is asymptotically de Sitter or anti-de Sitter, depending on the sign of the cosmological constant. The junction conditions for matching the cloud to the exterior are specified. The effect of Λ on apparent horizons is studied in some detail and the nature of central singularity is analyzed. The visibility of singularity and implications for the cosmic censorship conjecture are discussed. It is shown that for a nonvanishing cosmological constant, both black hole and naked singularities do form as collapse end states in spacetimes which are asymptotically de Sitter or anti-de Sitter

  6. On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability

    Directory of Open Access Journals (Sweden)

    Işık Mahmut

    2017-01-01

    Full Text Available In this study, we introduce and examine the concepts of asymptotically lacunary statistical equivalent of order α in probability and strong asymptotically lacunary equivalent of order α in probability. We give some relations connected to these concepts.

  7. Asymptotic procedures for aviation constructions calcul

    International Nuclear Information System (INIS)

    Zveriaev, E.H.

    1994-01-01

    Theory of elasticity equations for statics, dynamics, stability of aviation constructions are very complex and very difficult to decide. To get the solution engineers pass on to the applied theories -- ones of bars, plates, shells. In this case some hypothesises are input. A quantity of the ones in vague, and its might be excessive and even contradicting. In this work some procedures permitting to establish the necessary and sufficient quantity of hypothesises, estimating each member contribution into equation, throwing off secondary members and keeping of principals. For example, in such a manner all without exception applied theories of bar, plates and shells are obtained from three-dimensional theory of elasticity. The fact is interesting that all the theories are obtained on a basis of the mapping contracting principle. The proposed approach essence is contained in that some small parametres are singled out of the input equations and the ones are rewritten in the suitable aspect small parametre to the some power value is attached to the symbols of differentiation. This unknown power is determined from the condition of coincidence of the starting approximation, power with the one of the first approximation. As the first example the problem for the unit width long rectangular strip with the fixed short edges (x=1,1) and the free longitudinal edges (y=+1, -1) is considered. The longitudinal edges are loaded with some distributed charge

  8. Asymptotic behavior of the plasma equation

    International Nuclear Information System (INIS)

    Kwong, Y.C.

    1984-01-01

    This paper is concerned with the plasma equation on a bounded smooth domain the N-dimensional Euclidean Space, with non-negative initial data and a homogenous Dirichlet boundary condition. It is known that there exists a finite extinction time T such that the solution decays to zero at T. Berryman and Holland investigated the stability of the profile of the solution as t is approaching T. However, they obtained their results at the expense of some very strong regularity assumptions. By invoking both the nonlinear semi-group theory and a standard regularizing scheme for the equation, the same results are proved without those assumptions by measuring the rate of decay of the solution and estimates are obtained on the time derivative as t is approaching T. As motivated by the regularity assumptions, both the interior and boundary regularities of the solution are studied. Finally, the nonlinearity of the plasma equation is perturbed and the same aspects for the perturbed equation are studied

  9. Exact asymptotic expansions for solutions of multi-dimensional renewal equations

    International Nuclear Information System (INIS)

    Sgibnev, M S

    2006-01-01

    We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles

  10. Large time asymptotics of solutions of the equations of principal chiral field

    International Nuclear Information System (INIS)

    Sukhanov, V.V.

    1990-01-01

    Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation

  11. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    International Nuclear Information System (INIS)

    Setare, M R; Adami, H

    2017-01-01

    In this paper we show that warped AdS 3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS 3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U (1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS 3 black hole solution of GMMG is a warped CFT. (paper)

  12. Global Asymptotic Stability of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes

    Directory of Open Access Journals (Sweden)

    Shengbin Yu

    2012-01-01

    Full Text Available We study the predator-prey model proposed by Aziz-Alaoui and Okiye (Appl. Math. Lett. 16 (2003 1069–1075 First, the structure of equilibria and their linearized stability is investigated. Then, we provide two sufficient conditions on the global asymptotic stability of a positive equilibrium by employing the Fluctuation Lemma and Lyapunov direct method, respectively. The obtained results not only improve but also supplement existing ones.

  13. Inverse curvature flows in asymptotically Robertson Walker spaces

    Science.gov (United States)

    Kröner, Heiko

    2018-04-01

    In this paper we consider inverse curvature flows in a Lorentzian manifold N which is the topological product of the real numbers with a closed Riemannian manifold and equipped with a Lorentzian metric having a future singularity so that N is asymptotically Robertson Walker. The flow speeds are future directed and given by 1 / F where F is a homogeneous degree one curvature function of class (K*) of the principal curvatures, i.e. the n-th root of the Gauss curvature. We prove longtime existence of these flows and that the flow hypersurfaces converge to smooth functions when they are rescaled with a proper factor which results from the asymptotics of the metric.

  14. Hadronic Form Factors in Asymptotically Free Field Theories

    Science.gov (United States)

    Gross, D. J.; Treiman, S. B.

    1974-01-01

    The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.

  15. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca; Kammoun, Abla; Debbah, Merouane

    2017-01-01

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  16. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca

    2017-06-20

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  17. Asymptotic size determines species abundance in the marine size spectrum

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2006-01-01

    The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory......, where population structure is derived from physiology and simple arguments regarding the predator-prey interaction. Using a hypothesis of constant satiation, which states that the average degree of satiation is independent of the size of an organism, the number of individuals with a given size is found...... to be proportional to the weight raised to the power -2.05, independent of the predator/prey size ratio. This is the first time the spectrum exponent has been derived solely on the basis of processes at the individual level. The theory furthermore predicts that the parameters in the von Bertalanffy growth function...

  18. Asymptotic inference in system identification for the atom maser.

    Science.gov (United States)

    Catana, Catalin; van Horssen, Merlijn; Guta, Madalin

    2012-11-28

    System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.

  19. Ghost anomalous dimension in asymptotically safe quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2010-01-01

    We compute the ghost anomalous dimension within the asymptotic-safety scenario for quantum gravity. For a class of covariant gauge fixings and using a functional renormalization group scheme, the anomalous dimension η c is negative, implying an improved UV behavior of ghost fluctuations. At the non-Gaussian UV fixed point, we observe a maximum value of η c ≅-0.78 for the Landau-deWitt gauge within the given scheme and truncation. Most importantly, the backreaction of the ghost flow onto the Einstein-Hilbert sector preserves the non-Gaussian fixed point with only mild modifications of the fixed-point values for the gravitational coupling and cosmological constant and the associated critical exponents; also their gauge dependence is slightly reduced. Our results provide further evidence for the asymptotic-safety scenario of quantum gravity.

  20. Molten salt reactor as asymptotic safety nuclear system

    International Nuclear Information System (INIS)

    Novikov, V.M.; Ignatyev, V.V.

    1989-01-01

    Safety is becoming the main and priority problem of the nuclear power development. An increase of the active safety measures could hardly be considered as the proper way to achieve the asymptotically high level of nuclear safety. It seem that the more realistic way to achieve such a goal is to minimize risk factors and to maximize the use of inherent and passive safety properties. The passive inherent safety features of the liquid fuel molten salt reactor (MSR) technology are making it attractive for future energy generation. The achievement of the asymptotic safety in MSR is being connected with the minimization of such risk factors as a reactivity excess, radioactivity stored, decay heat, non nuclear energy stored in core. In this paper safety peculiarities of the different MSR concepts are discussed

  1. Asymptotic solutions and spectral theory of linear wave equations

    International Nuclear Information System (INIS)

    Adam, J.A.

    1982-01-01

    This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)

  2. Higher order corrections to asymptotic-de Sitter inflation

    Science.gov (United States)

    Mohsenzadeh, M.; Yusofi, E.

    2017-08-01

    Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.

  3. The Barrett–Crane model: asymptotic measure factor

    International Nuclear Information System (INIS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2014-01-01

    The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V −1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett–Crane model in the large internal spin regime. (paper)

  4. The Barrett-Crane model: asymptotic measure factor

    Science.gov (United States)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2014-04-01

    The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V-1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett-Crane model in the large internal spin regime.

  5. Asymptotic dynamics in perturbative quantum gravity and BMS supertranslations

    Science.gov (United States)

    Choi, Sangmin; Kol, Uri; Akhoury, Ratindranath

    2018-01-01

    Recently it has been shown that infrared divergences in the conventional S-matrix elements of gauge and gravitational theories arise from a violation of the conservation laws associated with large gauge symmetries. These infrared divergences can be cured by using the Faddeev-Kulish (FK) asymptotic states as the basis for S-matrix elements. Motivated by this connection, we study the action of BMS supertranslations on the FK asymptotic states of perturbative quantum gravity. We compute the BMS charge of the FK states and show that it characterizes the superselection sector to which the state belongs. Conservation of the BMS charge then implies that there is no transition between different superselection sectors, hence showing that the FK graviton clouds implement the necessary transition induced by the scattering process.

  6. A mutually profitable alliance - Asymptotic expansions and numerical computations

    Science.gov (United States)

    Euvrard, D.

    Problems including the flow past a wing airfoil at Mach 1, and the two-dimensional flow past a partially immersed body are used to show the advantages of coupling a standard numerical method for the whole domain where everything is of the order of 1, with an appropriate asymptotic expansion in the vicinity of some singular point. Cases more closely linking the two approaches are then considered. In the localized finite element method, the asymptotic expansion at infinity becomes a convergent series and the problem reduces to a variational form. Combined analytical and numerical methods are used in the singularity distribution method and in the various couplings of finite elements and a Green integral representation to design a subroutine to compute the Green function and its derivatives.

  7. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  8. Asymptotics of empirical eigenstructure for high dimensional spiked covariance.

    Science.gov (United States)

    Wang, Weichen; Fan, Jianqing

    2017-06-01

    We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.

  9. Detailed treatment of scaling violations in asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Hinchliffe, I.; Llewellyn Smith, C.H.

    1977-01-01

    Scaling violations in lepto-production are discussed on the basis of asymptotically free gauge theories. Detailed attention is given to the problems of operator mixing and data parametrisation. All the electro-/muo-production data for F 2 can be accommodated. The calculated values for Fsub(L) are also compatible with the data in the region where the theory may be trusted. It is shown that the FNAL data for sigmasup(anti γ)/sigmasup(γ) and sup(anti γ) can be explained if the freedom to input rather large amounts of antiquarks is exploited. It is therefore premature to conclude that new flavours are required. Predictions are given for very high energies which are relevant for possible new experimental facilities. The consequences of a conjecture about the possible pattern of scaling violations in the production of W's, Z's and μ-pairs are explored. Some theoretical problems and uncertainties in testing asymptotic freedom are discussed. (Auth.)

  10. Asymptotic matching of the solar-system gravitational yields

    International Nuclear Information System (INIS)

    Kopejkin, S.M.

    1989-01-01

    In the framework of the general relativity, the structure of the Solar-system gravitational fields is investigated and the relativistic formulae of transformation between nonrotating in the dynamical sense harmonic reference systems - barycentric, planetocentric and topocentric (satelite) ones - are derived by the method of the asymptotic mathing of components of the metric tensor. The derived formulae generalize the linear Poincare transformation in the case of curved space-time. With the help of the asymptotic matching formulae, the relationships between relativistic time scales inside the Solar system have been established, the equations of relativistic precession of the space axis of one reference system with respect to another one have been derived, the equations of translational motion of the center-of-mass of planets (the Sun) and their satellites have been obtained

  11. Power corrections to the asymptotics of the pion electromagnetic formfactor

    International Nuclear Information System (INIS)

    Gorsky, A.S.

    1984-01-01

    The first power correction to the pion electromagnetic form factor is derived. A few asymptotic wave functions corresponding to the different series of operators and matrix elements of four-particle operators in pion have been found. The large scale of the first power correction approximately 10 2 (GeV 2 )/Q 2 where Q 2 is the momentum transfer indicates that at low energies the whole series of power corrections seems to be taken into account

  12. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....

  13. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....

  14. Asymptotics of the information entropy of the Airy function

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, P [Departamento de Fisica Moderna, Universidad de Granada, Granada (Spain); Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain); Yanez, R J [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain); Departamento de Matematica Aplicada, Universidad de Granada, Granada (Spain); Buyarov, V [Moscow State University (Russian Federation)

    2005-11-18

    The Boltzmann-Shannon information entropy of linear potential wavefunctions is known to be controlled by the information entropy of the Airy function Ai(x). Here, the entropy asymptotics is analysed so that the first two leading terms (previously calculated in the WKB approximation) as well as the following term (already conjectured) are derived by using only the specific properties of the Airy function.

  15. Evidence for asymptotic safety from lattice quantum gravity.

    Science.gov (United States)

    Laiho, J; Coumbe, D

    2011-10-14

    We calculate the spectral dimension for nonperturbative quantum gravity defined via Euclidean dynamical triangulations. We find that it runs from a value of ∼3/2 at short distance to ∼4 at large distance scales, similar to results from causal dynamical triangulations. We argue that the short-distance value of 3/2 for the spectral dimension may resolve the tension between asymptotic safety and the holographic principle.

  16. Framework for an asymptotically safe standard model via dynamical breaking

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....

  17. Asymptotic behavior of Maxwell fields in higher dimensions

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello

    2014-01-01

    Roč. 90, č. 12 (2014), s. 124020 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.124020

  18. Asymptotic behaviour of the Weyl tensor in higher dimensions

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello; Pravdová, Alena

    2014-01-01

    Roč. 90, č. 10 (2014), s. 104011 ISSN 1550-7998 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.104011

  19. Airy asymptotics: the logarithmic derivative and its reciprocal

    International Nuclear Information System (INIS)

    Kearney, Michael J; Martin, Richard J

    2009-01-01

    We consider the asymptotic expansion of the logarithmic derivative of the Airy function Ai'(z)/Ai(z), and also its reciprocal Ai(z)/Ai'(z), as |z| → ∞. We derive simple, closed-form solutions for the coefficients which appear in these expansions, which are of interest since they are encountered in a wide variety of problems. The solutions are presented as Mellin transforms of given functions; this fact, together with the methods employed, suggests further avenues for research.

  20. Asymptotic stability boundaries of ballooning modes in circular tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; Bondeson, A.; Chance, M.S.

    1987-06-01

    The model ballooning mode equation of Connor, Hastie, and Taylor for large-aspect-ratio circular tokamaks is analyzed in the limit of large pressure gradient, and corresponding expressions for stability boundaries are derived. In particular, it is found that for a fixed radial wave number, there exists an infinite sequence of unstable bands, and that minimizing over the radial wave numbers leads to asymptotic merging between the neighboring bands

  1. Asymptotic behavior of Maxwell fields in higher dimensions

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello

    2014-01-01

    Roč. 90, č. 12 (2014), s. 124020 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals. aps .org/prd/abstract/10.1103/PhysRevD.90.124020

  2. Asymptotic behaviour of the Weyl tensor in higher dimensions

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello; Pravdová, Alena

    2014-01-01

    Roč. 90, č. 10 (2014), s. 104011 ISSN 1550-7998 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals. aps .org/prd/abstract/10.1103/PhysRevD.90.104011

  3. The discovery of asymptotic freedom and the emergence of QCD

    International Nuclear Information System (INIS)

    Gross, D.J.

    2005-01-01

    The paper is the lecture of one of the Nobel prize winners D.J. Gross delivered 8 December 2004. The lecture has two-sided aspect. The first one - autobiography of D.J. Gross as a specialist in the elementary particles physics. The second one describes the way to discovery of the asymptotic freedom and its consequences in the quantum field theory, in the Universe development and in creation of the unified theory, including gravitation [ru

  4. The unitary conformal field theory behind 2D Asymptotic Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)

    2016-02-25

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.

  5. Asymptotic expansion and statistical description of turbulent systems

    International Nuclear Information System (INIS)

    Hagan, W.K. III.

    1986-01-01

    A new approach to studying turbulent systems is presented in which an asymptotic expansion of the general dynamical equations is performed prior to the application of statistical methods for describing the evolution of the system. This approach has been applied to two specific systems: anomalous drift wave turbulence in plasmas and homogeneous, isotropic turbulence in fluids. For the plasma case, the time and length scales of the turbulent state result in the asymptotic expansion of the Vlasov/Poisson equations taking the form of nonlinear gyrokinetic theory. Questions regarding this theory and modern Hamiltonian perturbation methods are discussed and resolved. A new alternative Hamiltonian method is described. The Eulerian Direct Interaction Approximation (EDIA) is slightly reformulated and applied to the equations of nonlinear gyrokinetic theory. Using a similarity transformation technique, expressions for the thermal diffusivity are derived from the EDIA equations for various geometries, including a tokamak. In particular, the unique result for generalized geometry may be of use in evaluating fusion reactor designs and theories of anomalous thermal transport in tokamaks. Finally, a new and useful property of the EDIA is pointed out. For the fluid case, an asymptotic expansion is applied to the Navier-Stokes equation and the results lead to the speculation that such an approach may resolve the problem of predicting the Kolmogorov inertial range energy spectrum for homogeneous, isotropic turbulence. 45 refs., 3 figs

  6. Asymptotic kinetic theory of magnetized plasmas: quasi-particle concept

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Zagorodny, A.H.

    2004-01-01

    The asymptotic kinetic theory of magnetized plasmas is elaborated within the context of general statistical approach and asymptotic methods, developed by M. Krylov and M. Bohol'ubov, for linear and non-linear dynamic systems with a rapidly rotating phase. The quasi-particles are introduced already on the microscopic level. Asymptotic expansions enable to close the description for slow processes, and to relate consistently particles and guiding centres to quasi-particles. The kinetic equation for quasi-particles is derived. It makes a basis for the reduced description of slow collective phenomena in the medium. The kinetic equation for quasi-particles takes into account self-consistent interaction fields, quasi-particle collisions and collective-fluctuation-induced relaxation of quasi-particle distribution function. The relationships between the distribution functions for particles, guiding centres and quasi-particles are derived taking into account fluctuations, which can be especially important in turbulent states. In this way macroscopic (statistical) particle properties can be obtained from those of quasi-particles in the general case of non-equilibrium. (authors)

  7. Modeling broadband poroelastic propagation using an asymptotic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Donald W.

    2009-05-01

    An asymptotic method, valid in the presence of smoothly-varying heterogeneity, is used to derive a semi-analytic solution to the equations for fluid and solid displacements in a poroelastic medium. The solution is defined along trajectories through the porous medium model, in the manner of ray theory. The lowest order expression in the asymptotic expansion provides an eikonal equation for the phase. There are three modes of propagation, two modes of longitudinal displacement and a single mode of transverse displacement. The two longitudinal modes define the Biot fast and slow waves which have very different propagation characteristics. In the limit of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence a transient pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse mode are modified elastic waves. At intermediate frequencies the wave characteristics of the longitudinal modes are mixed. A comparison of the asymptotic solution with analytic and numerical solutions shows reasonably good agreement for both homogeneous and heterogeneous Earth models.

  8. Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions

    Science.gov (United States)

    Ablowitz, Mark J.

    2009-09-01

    Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.

  9. Asymptotic theory of two-dimensional trailing-edge flows

    Science.gov (United States)

    Melnik, R. E.; Chow, R.

    1975-01-01

    Problems of laminar and turbulent viscous interaction near trailing edges of streamlined bodies are considered. Asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds numbers are used to describe the local solution near the trailing edge of cusped or nearly cusped airfoils at small angles of attack in compressible flow. A complicated inverse iterative procedure, involving finite-difference solutions of the triple-deck equations coupled with asymptotic solutions of the boundary values, is used to accurately solve the viscous interaction problem. Results are given for the correction to the boundary-layer solution for drag of a finite flat plate at zero angle of attack and for the viscous correction to the lift of an airfoil at incidence. A rational asymptotic theory is developed for treating turbulent interactions near trailing edges and is shown to lead to a multilayer structure of turbulent boundary layers. The flow over most of the boundary layer is described by a Lighthill model of inviscid rotational flow. The main features of the model are discussed and a sample solution for the skin friction is obtained and compared with the data of Schubauer and Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.

  10. Holography in asymptotically flat spacetimes and the BMS group

    International Nuclear Information System (INIS)

    Arcioni, Giovanni; Dappiaggi, Claudio

    2004-01-01

    In a previous paper (Arcioni G and Dappiaggi C 2003 Preprint hep-th/0306142) we have started to explore the holographic principle in the case of asymptotically flat spacetimes and analysed, in particular, different aspects of the Bondi-Metzner-Sachs (BMS) group, namely the asymptotic symmetry group of any asymptotically flat spacetime. We continue this investigation in this paper. Having in mind an S-matrix approach with future and past null infinity playing the role of holographic screens on which the BMS group acts, we connect the IR sectors of the gravitational field with the representation theory of the BMS group. We analyse the (complicated) mapping between bulk and boundary symmetries pointing out differences with respect to the anti-de Sitter (AdS)/CFT set up. Finally, we construct a BMS phase space and a free Hamiltonian for fields transforming with respect to BMS representations. The last step is supposed to be an explorative investigation of the boundary data living on the degenerate null manifold at infinity

  11. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  12. Asymptotics with a positive cosmological constant: I. Basic framework

    Science.gov (United States)

    Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna

    2015-01-01

    The asymptotic structure of the gravitational field of isolated systems has been analyzed in great detail in the case when the cosmological constant Λ is zero. The resulting framework lies at the foundation of research in diverse areas in gravitational science. Examples include: (i) positive energy theorems in geometric analysis; (ii) the coordinate invariant characterization of gravitational waves in full, nonlinear general relativity; (iii) computations of the energy-momentum emission in gravitational collapse and binary mergers in numerical relativity and relativistic astrophysics; and (iv) constructions of asymptotic Hilbert spaces to calculate S-matrices and analyze the issue of information loss in the quantum evaporation of black holes. However, by now observations have led to a strong consensus that Λ is positive in our universe. In this paper we show that, unfortunately, the standard framework does not extend from the Λ =0 case to the Λ \\gt 0 case in a physically useful manner. In particular, we do not have positive energy theorems, nor an invariant notion of gravitational waves in the nonlinear regime, nor asymptotic Hilbert spaces in dynamical situations of semi-classical gravity. A suitable framework to address these conceptual issues of direct physical importance is developed in subsequent papers.

  13. Asymptotic behavior of the warm inflation scenario with viscous pressure

    International Nuclear Information System (INIS)

    Mimoso, Jose P.; Nunes, Ana; Pavon, Diego

    2006-01-01

    We analyze the dynamics of models of warm inflation with general dissipative effects. We consider phenomenological terms both for the inflaton decay rate and for viscous effects within matter. We provide a classification of the asymptotic behavior of these models and show that the existence of a late-time scaling regime depends not only on an asymptotic behavior of the scalar field potential, but also on an appropriate asymptotic behavior of the inflaton decay rate. There are scaling solutions whenever the latter evolves to become proportional to the Hubble rate of expansion regardless of the steepness of the scalar field exponential potential. We show from thermodynamic arguments that the scaling regime is associated with a power-law dependence of the matter-radiation temperature on the scale factor, which allows a mild variation of the temperature of the matter/radiation fluid. We also show that the late-time contribution of the dissipative terms alleviates the depletion of matter, and increases the duration of inflation

  14. Asymptotic structure of space-time with a positive cosmological constant

    Science.gov (United States)

    Kesavan, Aruna

    In general relativity a satisfactory framework for describing isolated systems exists when the cosmological constant Lambda is zero. The detailed analysis of the asymptotic structure of the gravitational field, which constitutes the framework of asymptotic flatness, lays the foundation for research in diverse areas in gravitational science. However, the framework is incomplete in two respects. First, asymptotic flatness provides well-defined expressions for physical observables such as energy and momentum as 'charges' of asymptotic symmetries at null infinity, [special character omitted] +. But the asymptotic symmetry group, called the Bondi-Metzner-Sachs group is infinite-dimensional and a tensorial expression for the 'charge' integral of an arbitrary BMS element is missing. We address this issue by providing a charge formula which is a 2-sphere integral over fields local to the 2-sphere and refers to no extraneous structure. The second, and more significant shortcoming is that observations have established that Lambda is not zero but positive in our universe. Can the framework describing isolated systems and their gravitational radiation be extended to incorporate this fact? In this dissertation we show that, unfortunately, the standard framework does not extend from the Lambda = 0 case to the Lambda > 0 case in a physically useful manner. In particular, we do not have an invariant notion of gravitational waves in the non-linear regime, nor an analog of the Bondi 'news tensor', nor positive energy theorems. In addition, we argue that the stronger boundary condition of conformal flatness of intrinsic metric on [special character omitted]+, which reduces the asymptotic symmetry group from Diff([special character omitted]) to the de Sitter group, is insufficient to characterize gravitational fluxes and is physically unreasonable. To obtain guidance for the full non-linear theory with Lambda > 0, linearized gravitational waves in de Sitter space-time are analyzed in

  15. Effective action for composite operators and chiral symmetry breakdown in asymptotically free and non-asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1987-01-01

    An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown

  16. Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields

    International Nuclear Information System (INIS)

    González, Hernán A.; Pino, Miguel

    2014-01-01

    We construct a two-dimensional action principle invariant under a spin-three extension of BMS_3 group. Such a theory is obtained through a reduction of Chern-Simons action with a boundary. This procedure is carried out by imposing a set of boundary conditions obtained from asymptotically flat spacetimes in three dimensions. When implementing part of this set, we obtain an analog of chiral WZW model based on a contraction of sl(3,ℝ)×sl(3,ℝ). The remaining part of the boundary conditions imposes constraints on the conserved currents of the model, which allows to further reduce the action principle. It is shown that a sector of this latter theory is related to a flat limit of Toda theory

  17. Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions

    International Nuclear Information System (INIS)

    Dolan, Brian P

    2014-01-01

    Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)

  18. Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields

    Energy Technology Data Exchange (ETDEWEB)

    González, Hernán A. [Physique Théorique et Mathématique,Université Libre de Bruxelles & International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Pino, Miguel [Departamento de Física, Universidad de Santiago de Chile,Av. Ecuador 3493, Estación Central, Santiago (Chile)

    2014-05-27

    We construct a two-dimensional action principle invariant under a spin-three extension of BMS{sub 3} group. Such a theory is obtained through a reduction of Chern-Simons action with a boundary. This procedure is carried out by imposing a set of boundary conditions obtained from asymptotically flat spacetimes in three dimensions. When implementing part of this set, we obtain an analog of chiral WZW model based on a contraction of sl(3,ℝ)×sl(3,ℝ). The remaining part of the boundary conditions imposes constraints on the conserved currents of the model, which allows to further reduce the action principle. It is shown that a sector of this latter theory is related to a flat limit of Toda theory.

  19. Common Fixed Points for Asymptotic Pointwise Nonexpansive Mappings in Metric and Banach Spaces

    Directory of Open Access Journals (Sweden)

    P. Pasom

    2012-01-01

    Full Text Available Let C be a nonempty bounded closed convex subset of a complete CAT(0 space X. We prove that the common fixed point set of any commuting family of asymptotic pointwise nonexpansive mappings on C is nonempty closed and convex. We also show that, under some suitable conditions, the sequence {xk}k=1∞ defined by xk+1=(1-tmkxk⊕tmkTmnky(m-1k, y(m-1k=(1-t(m-1kxk⊕t(m-1kTm-1nky(m-2k,y(m-2k=(1-t(m-2kxk⊕t(m-2kTm-2nky(m-3k,…,y2k=(1-t2kxk⊕t2kT2nky1k,y1k=(1-t1kxk⊕t1kT1nky0k,y0k=xk,  k∈N, converges to a common fixed point of T1,T2,…,Tm where they are asymptotic pointwise nonexpansive mappings on C, {tik}k=1∞ are sequences in [0,1] for all i=1,2,…,m, and {nk} is an increasing sequence of natural numbers. The related results for uniformly convex Banach spaces are also included.

  20. Asymptotic theory of charge exchange for relativistic velocities and binding energies

    International Nuclear Information System (INIS)

    Demkov, Yu.N.; Ostrovskij, V.N.; Shevchenko, S.I.

    1983-01-01

    The asymptotic theory of charge exchange (ATCE) at a large shock parameter rho is applied to the case of relativistic velocities and binding energies. The charge exchange reaction (1+e)+2 → 1+(e+2), when an electron from the bound 1Ssub(1/2) state on one particle transforms to the 1Ssub(1/2) state on the other, is considered. Oasic features of the method are as follows: 1) the representation of the transition amplitude in the form of multidimensional integral over some hypersurface; 2) the use of the saddle-point method for calculating necessary multidimensional integrals; 3) the refinement of wave functions as compared with the case of the absence of the interaction. The ATCE (at rho → infinity) makes it possible to obtain analytical results whose accuracy is determined solely with the shock parameter rho. A basic term of charge exchange amplitude asymptotics for 1Ssub(1/2) → 1Ssub(1/2) transitions has been calculated. It is possible to consider the ATCE as a peculiar reference with which theoretical and experimental results can be compared as well as to use the ATCE as boundary conditions during numerical calculations

  1. Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states

    International Nuclear Information System (INIS)

    Benini, Marco; Dappiaggi, Claudio; Murro, Simone

    2014-01-01

    We discuss the quantization of linearized gravity on globally hyperbolic, asymptotically flat, vacuum spacetimes, and the construction of distinguished states which are both of Hadamard form and invariant under the action of all bulk isometries. The procedure, we follow, consists of looking for a realization of the observables of the theory as a sub-algebra of an auxiliary, non-dynamical algebra constructed on future null infinity ℑ + . The applicability of this scheme is tantamount to proving that a solution of the equations of motion for linearized gravity can be extended smoothly to ℑ + . This has been claimed to be possible provided that a suitable gauge fixing condition, first written by Geroch and Xanthopoulos [“Asymptotic simplicity is stable,” J. Math. Phys. 19, 714 (1978)], is imposed. We review its definition critically, showing that there exists a previously unnoticed obstruction in its implementation leading us to introducing the concept of radiative observables. These constitute an algebra for which a Hadamard state induced from null infinity and invariant under the action of all spacetime isometries exists and it is explicitly constructed

  2. An Asymptotic Approach for the Elastodynamic Problem of a Plate under Impact Loading

    Directory of Open Access Journals (Sweden)

    Penelope Michalopoulou

    2010-01-01

    Full Text Available An approach is presented for analyzing the transient elastodynamic problem of a plate under an impact loading. The plate is considered to be in the form of a long strip under plane strain conditions. The loading is taken as a concentrated line force applied normal to the plate surface. It is assumed that this line force is suddenly applied and maintained thereafter (i.e., it is a Heaviside step function of time. Inertia effects are taken into consideration and the problem is treated exactly within the framework of elastodynamic theory. The approach is based on multiple Laplace transforms and on certain asymptotic arguments. In particular, the one-sided Laplace transform is applied to suppress time dependence and the two-sided Laplace transform to suppress the dependence upon a spatial variable (along the extent of the infinite strip. Exact inversions are then followed by invoking the asymptotic Tauber theorem and the Cagniard-deHoop technique. Various extensions of this basic analysis are also discussed.

  3. Asymptotic solutions of miscible displacements in geometries of large aspect ratio

    International Nuclear Information System (INIS)

    Yang, Z.; Yortsos, Y.C.

    1997-01-01

    Asymptotic solutions are developed for miscible displacements at Stokes flow conditions between parallel plates or in a cylindrical capillary, at large values of the geometric aspect ratio. The single integro-differential equation obtained is solved numerically for different values of the Pacute eclet number and the viscosity ratio. At large values of the latter, the solution consists of a symmetric finger propagating in the middle of the gap or the capillary. Constraints on conventional convection-dispersion-equation approach for studying miscible instabilities in planar Hele endash Shaw cells are obtained. The asymptotic formalism is next used to derive emdash in the limit of zero diffusion emdash a hyperbolic equation for the cross-sectionally averaged concentration, the solution of which is obtained by analytical means. This solution is valid as long as sharp shock fronts do not form. The results are compared with recent numerical simulations of the full problem and experiments of miscible displacement in a narrow capillary. copyright 1997 American Institute of Physics

  4. Asymptotic behavior of a rotational population distribution in a molecular quantum-kicked rotor with ideal quantum resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Leo, E-mail: leo-matsuoka@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527 (Japan); Segawa, Etsuo [Graduate School of Information Sciences, Tohoku University, Aoba, Sendai 980-8579 (Japan); Yuki, Kenta [Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527 (Japan); Konno, Norio [Department of Applied Mathematics, Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan); Obata, Nobuaki [Graduate School of Information Sciences, Tohoku University, Aoba, Sendai 980-8579 (Japan)

    2017-06-09

    We performed a mathematical analysis of the time-dependent dynamics of a quantum-kicked rotor implemented in a diatomic molecule under the condition of ideal quantum resonance. We examined a model system featuring a diatomic molecule in a periodic train of terahertz pulses, regarding the molecule as a rigid rotor with the state-dependent transition moment and including the effect of the magnetic quantum number M. We derived the explicit expression for the asymptotic distribution of a rotational population by making the transition matrix correspondent with a sequence of ultraspherical polynomials. The mathematical results obtained were validated by numerical simulations. - Highlights: • The behavior of the molecular quantum-kicked rotor was mathematically investigated. • The matrix elements were made correspondent with the ultraspherical polynomials. • The explicit formula for asymptotic distribution was obtained. • Complete agreement with the numerical simulation was verified.

  5. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    Science.gov (United States)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  6. Inversion of quasi-periodic deviations between low-degree solar gravity mode eigenfrequencies and asymptotic theory eigenfrequencies

    International Nuclear Information System (INIS)

    Hill, H.A.; Gao, Qiang; Rosenwald, R.D.

    1988-01-01

    The fine structure found by Gu, Hill and Rosenwald between asymptotic theory eigenfrequencies and the observed eigenfrequencies reported by Hill and Gu is interpreted as the result of conditions not being met for the applicability of asymptotic theory at one or more radii in the solar interior. From an inversion of the observed fine structure, reasonably good agreement is obtained between observation and theory for either a localized perturbation in internal structure at r/R ∼ 0.06 or at r/R ∼ 0.23. The latter solution is, however, the better one. The amplitude of the perturbation in the mean molecular weight required to produce the fine structure is also inferred. 11 refs., 2 figs

  7. arXiv Phase structure of complete asymptotically free SU($N_c$) theories with quarks and scalar quarks

    CERN Document Server

    Hansen, Frederik F.; Langæble, Kasper; Mann, Robert B.; Sannino, Francesco; Steele, Tom G.; Wang, Zhi-Wei

    2018-03-21

    We determine the phase diagram of completely asymptotically free SU(Nc) gauge theories featuring Ns complex scalars and Nf Dirac quarks transforming according to the fundamental representation of the gauge group. The analysis is performed at the maximum known order in perturbation theory. We unveil a very rich dynamics and associated phase structure. Intriguingly, we discover that the completely asymptotically free conditions guarantee that the infrared dynamics displays long-distance conformality, and in a regime when perturbation theory is applicable. We conclude our analysis by determining the quantum corrected potential of the model and summarizing the possible patterns of radiative symmetry breaking. These models are of potential phenomenological interest as either elementary or composite ultraviolet finite extensions of the standard model.

  8. Asymptotic bounded consensus tracking of double-integrator multi-agent systems with bounded-jerk target based on sampled-data without velocity measurements

    International Nuclear Information System (INIS)

    Wu Shuang-Shuang; Wu Zhi-Hai; Peng Li; Xie Lin-Bo

    2017-01-01

    This paper investigates asymptotic bounded consensus tracking (ABCT) of double-integrator multi-agent systems (MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target (AUABJT) available to partial agents based on sampled-data without velocity measurements. A sampled-data consensus tracking protocol (CTP) without velocity measurements is proposed to guarantee that double-integrator MASs track an AUABJT available to only partial agents. The eigenvalue analysis method together with the augmented matrix method is used to obtain the necessary and sufficient conditions for ABCT. A numerical example is provided to illustrate the effectiveness of theoretical results. (paper)

  9. Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement

    Science.gov (United States)

    Jana, Subrata; Samal, Prasanjit

    2018-01-01

    The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.

  10. Binary black hole initial data from matched asymptotic expansions

    International Nuclear Information System (INIS)

    Yunes, Nicolas; Owen, Benjamin J.; Tichy, Wolfgang; Bruegmann, Bernd

    2006-01-01

    We present an approximate metric for a binary black-hole spacetime to construct initial data for numerical relativity. This metric is obtained by asymptotically matching a post-Newtonian metric for a binary system to a perturbed Schwarzschild metric for each hole. In the inner zone near each hole, the metric is given by the Schwarzschild solution plus a quadrupolar perturbation corresponding to an external tidal gravitational field. In the near zone, well outside each black hole but less than a reduced wavelength from the center of mass of the binary, the metric is given by a post-Newtonian expansion including the lowest-order deviations from flat spacetime. When the near zone overlaps each inner zone in a buffer zone, the post-Newtonian and perturbed Schwarzschild metrics can be asymptotically matched to each other. By demanding matching (over a 4-volume in the buffer zone) rather than patching (choosing a particular 2-surface in the buffer zone), we guarantee that the errors are small in all zones. The resulting piecewise metric is made formally C ∞ with smooth transition functions so as to obtain the finite extrinsic curvature of a 3-slice. In addition to the metric and extrinsic curvature, we present explicit results for the lapse and the shift, which can be used as initial data for numerical simulations. This initial data is not accurate all the way to the asymptotically flat ends inside each hole, and therefore must be used with evolution codes which employ black hole excision rather than puncture methods. This paper lays the foundations of a method that can be straightforwardly iterated to obtain initial data to higher perturbative order

  11. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, Alikram N.

    2008-01-01

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4

  12. Determining the asymptotic buckling for the reference RB reactor lattice

    International Nuclear Information System (INIS)

    Martinc, R.; Sotic, O.

    1969-01-01

    Material buckling was measured for reference lattice of the heavy water reflected system with 2% enriched uranium fuel. Experiments were done for cores with lattice pitch values: 8, 8√2, i 16 cm. Each of these cores had heavy water reflector, as well as active reflector - heavy water lattice with natural uranium fuel. The core was reflected by natural uranium lattice in order to approach asymptotic regime in the central zone. Buckling values obtained with the natural uranium lattice as reflector are, as a rule, lower then in case of heavy water reflector [sr

  13. Asymptotics of Rydberg states for the hydrogen atom

    International Nuclear Information System (INIS)

    Thomas, L.E.

    1997-01-01

    The asymptotics of Rydberg states, i.e., highly excited bound states of the hydrogen atom Hamiltonian, and various expectations involving these states are investigated. We show that suitable linear combinations of these states, appropriately rescaled and regarded as functions either in momentum space or configuration space, are highly concentrated on classical momentum space or configuration space Kepler orbits respectively, for large quantum numbers. Expectations of momentum space or configuration space functions with respect to these states are related to time-averages of these functions over Kepler orbits. (orig.)

  14. Asymptotic Ergodic Capacity Analysis of Composite Lognormal Shadowed Channels

    KAUST Repository

    Ansari, Imran Shafique

    2015-05-01

    Capacity analysis of composite lognormal (LN) shadowed links, such as Rician-LN, Gamma-LN, and Weibull-LN, is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single composite link transmission system is presented in terms of well- known elementary functions. Capitalizing on these new moments expressions, we present asymptotically tight lower bounds for the ergodic capacity at high SNR. All the presented results are verified via computer-based Monte-Carlo simulations. © 2015 IEEE.

  15. Stable Asymptotically Free Extensions (SAFEs) of the Standard Model

    International Nuclear Information System (INIS)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2015-01-01

    We consider possible extensions of the standard model that are not only completely asymptotically free, but are such that the UV fixed point is completely UV attractive. All couplings flow towards a set of fixed ratios in the UV. Motivated by low scale unification, semi-simple gauge groups with elementary scalars in various representations are explored. The simplest model is a version of the Pati-Salam model. The Higgs boson is truly elementary but dynamical symmetry breaking from strong interactions may be needed at the unification scale. A hierarchy problem, much reduced from grand unified theories, is still in need of a solution.

  16. Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics

    Science.gov (United States)

    Engliš, Miroslav; Ali, S. Twareque

    2015-07-01

    Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.

  17. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

    Directory of Open Access Journals (Sweden)

    Golovaty Yuriy

    2017-04-01

    Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.

  18. Asymptotic behavior of observables in the asymmetric quantum Rabi model

    Science.gov (United States)

    Semple, J.; Kollar, M.

    2018-01-01

    The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.

  19. Subexponential loss rate asymptotics for Lévy processes

    DEFF Research Database (Denmark)

    Andersen, Lars Nørvang

    2011-01-01

    We consider a Lévy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotic...... for the loss rate when K tends to infinity, when the mean of the Lévy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula....

  20. Pushing the asymptotics of the 6j-symbol further

    International Nuclear Information System (INIS)

    Dupuis, Maiete; Livine, Etera R.

    2009-01-01

    In the context of spin-foam models for quantum gravity, we investigate the asymptotical behavior of the (6j)-symbol at next-to-leading order. This gives the first quantum gravity correction to the (3d) Regge action. We compute it analytically and check our results against numerical calculations. The (6j)-symbol is the building block of the Ponzano-Regge amplitudes for 3d quantum gravity, and the present analysis is directly relevant to deriving the quantum corrections to gravitational correlations in the spin-foam formalism.

  1. Asymptotic states and infrared divergences in gauge theories

    International Nuclear Information System (INIS)

    Butler, D.R.

    1981-01-01

    The gauge theories, Gravity and QCD are shown to be infrared finite to a non-trival order by a generalization of the coherent state approach. The asymptotic Hamiltonian operator is used, along with a mathematical theorem by Magnus, to specify a S-operator and to show cancellation of infrared divergences at the amplitude level. This procedure is exemplified in Gravity to third order and applied to QCD for leading order divergences to fifth order in the coupling constant. Dimensional regularization is used to isolate the infrared singularities in QCD. The sections on Gravity include a derivation of the infrared structure of the propagators for a massive particle and the graviton

  2. Joint Asymptotic Distributions of Smallest and Largest Insurance Claims

    Directory of Open Access Journals (Sweden)

    Hansjörg Albrecher

    2014-07-01

    Full Text Available Assume that claims in a portfolio of insurance contracts are described by independent and identically distributed random variables with regularly varying tails and occur according to a near mixed Poisson process. We provide a collection of results pertaining to the joint asymptotic Laplace transforms of the normalised sums of the smallest and largest claims, when the length of the considered time interval tends to infinity. The results crucially depend on the value of the tail index of the claim distribution, as well as on the number of largest claims under consideration.

  3. An asymptotic formula for Weyl solutions of the dirac equations

    International Nuclear Information System (INIS)

    Misyura, T.V.

    1995-01-01

    In the spectral analysis of differential operators and its applications an important role is played by the investigation of the behavior of the Weyl solutions of the corresponding equations when the spectral parameter tends to infinity. Elsewhere an exact asymptotic formula for the Weyl solutions of a large class of Sturm-Liouville equations has been obtained. A decisve role in the proof of this formula has been the semiboundedness property of the corresponding Sturm-Liouville operators. In this paper an analogous formula is obtained for the Weyl solutions of the Dirac equations

  4. Asymptotic Reissner–Nordström black holes

    International Nuclear Information System (INIS)

    Hendi, S.H.

    2013-01-01

    We consider two types of Born–Infeld like nonlinear electromagnetic fields and obtain their interesting black hole solutions. The asymptotic behavior of these solutions is the same as that of a Reissner–Nordström black hole. We investigate the geometric properties of the solutions and find that depending on the value of the nonlinearity parameter, the singularity covered with various horizons. -- Highlights: •We investigate two types of the BI-like nonlinear electromagnetic fields in the Einsteinian gravity. •We analyze the effects of nonlinearity on the electromagnetic field. •We examine the influences of the nonlinearity on the geometric properties of the black hole solutions

  5. Very proton-rich nuclei with N asymptotically equals 82

    International Nuclear Information System (INIS)

    Nolte, E.

    1984-01-01

    The proton-rich nuclei with N asymptotically equals 82 show beautifully properties, which are perfectly described by the nuclear shell model. Some of these properties are the occurrence of seniority isomerism in the proton-rich N=82 isotones and the perfect description of the corresponding life times by the seniority scheme as well as the observation of favoured Gamow-Teller β transitions in this nuclear region and the dependence of the corresponding ft values on the number of the envolved nucleons. (author)

  6. Nontrivial asymptotically nonfree gauge theories and dynamical unification of couplings

    International Nuclear Information System (INIS)

    Kubo, J.

    1995-01-01

    Evidence for the nontriviality of asymptotically nonfree (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of the dynamical unification of couplings (DUC). The second-order reduction of couplings in the ANF SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC

  7. Asymptotically exact solution of a local copper-oxide model

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu.

    1994-03-01

    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig

  8. Application of the Asymptotic Taylor Expansion Method to Bistable Potentials

    Directory of Open Access Journals (Sweden)

    Okan Ozer

    2013-01-01

    Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

  9. Revisiting r > g-The asymptotic dynamics of wealth inequality

    Science.gov (United States)

    Berman, Yonatan; Shapira, Yoash

    2017-02-01

    Studying the underlying mechanisms of wealth inequality dynamics is essential for its understanding and for policy aiming to regulate its level. We apply a heterogeneous non-interacting agent-based modeling approach, solved using iterated maps to model the dynamics of wealth inequality based on 3 parameters-the economic output growth rate g, the capital value change rate a and the personal savings rate s and show that for a income distribution. If a > g, the wealth distribution constantly becomes more and more inegalitarian. We also show that when a economic output, which also implies that the wealth-disposable income ratio asymptotically converges to s /(g - a) .

  10. Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, M D [Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa (Russian Federation)

    2013-07-31

    This paper describes a new algorithm for constructing lattice cubature formulae with bounded boundary layer. These formulae are unsaturated (in the sense of Babenko) both with respect to the order and in regard to the property of asymptotic optimality on W{sub 2}{sup m}-spaces, m element of (n/2,∞). Most of the results obtained apply also to W{sub 2}{sup μ}(R{sup n})-spaces with a hypoelliptic multiplier of smoothness μ. Bibliography: 6 titles.

  11. Asymptotic Ergodic Capacity Analysis of Composite Lognormal Shadowed Channels

    KAUST Repository

    Ansari, Imran Shafique; Alouini, Mohamed-Slim

    2015-01-01

    Capacity analysis of composite lognormal (LN) shadowed links, such as Rician-LN, Gamma-LN, and Weibull-LN, is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single composite link transmission system is presented in terms of well- known elementary functions. Capitalizing on these new moments expressions, we present asymptotically tight lower bounds for the ergodic capacity at high SNR. All the presented results are verified via computer-based Monte-Carlo simulations. © 2015 IEEE.

  12. Neutronics equations: Positiveness; compactness; spectral theory; time asymptotic behavior

    International Nuclear Information System (INIS)

    Mokhtar-Kharroubi, M.

    1987-12-01

    Neutronics equations are studied: the continuous model (with and without delayed neutrons) and the multigroup model. Asymptotic descriptions of these equations (t→+∞) are obtained, either by the Dunford method or by using semigroup perturbation techniques, after deriving the spectral theory for the equations. Compactness problems are reviewed, and a general theory of compact injection in neutronic functional space is derived. The effects of positiveness in neutronics are analyzed: the irreducibility of the transport semigroup, and the properties of the main eigenvalue (existence, nonexistence, frame, strict dominance, strict monotony in relation to all the parameters). A class of transport operators whose real spectrum can be completely described is shown [fr

  13. Asymptotic fermion propagator in massless three-dimensional QED

    International Nuclear Information System (INIS)

    Hand, B.J.

    1993-01-01

    Massless quantum electrodynamics in two spatial and one time dimensions has a logarithmically confining static Coulomb potential, and thus nontrivial infrared behavior. We apply a technique developed for ordinary four-dimensional quantum electrodynamics in which the charged asymptotic states in the theory are dressed with soft vector bosons, in order to improve the representation of the infrared dynamics in perturbation theory. The resulting modification to the mass-shell behavior of the fermion propagator is determined, with the result that the propagator no longer possesses a mass-shell singularity

  14. Asymptotic shape of solutions to the perturbed simple pendulum problems

    Directory of Open Access Journals (Sweden)

    Tetsutaro Shibata

    2007-05-01

    Full Text Available We consider the positive solution of the perturbed simple pendulum problem $$ u''(r + frac{N-1}{r}u'(r - g(u(t + lambda sin u(r = 0, $$ with $0 < r < R$, $ u'(0 = u(R = 0$. To understand well the shape of the solution $u_lambda$ when $lambda gg 1$, we establish the leading and second terms of $Vert u_lambdaVert_q$ ($1 le q < infty$ with the estimate of third term as $lambda o infty$. We also obtain the asymptotic formula for $u_lambda'(R$ as $lambda o infty$.

  15. Exact results for integrable asymptotically-free field theories

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).

  16. On hierarchy in asymptotic reconstruction of spontaneously broken isotopic symmetry

    International Nuclear Information System (INIS)

    Ermolaev, B.I.

    1978-01-01

    The isotopic features of the effective current-current lagrangian of the Lsub(eff) electromagnetic-weak interaction between elementary particles are treated at large momentum transfers using the Weinberg-Salam model. Transition to other models may be made by analogy. It is shown that when the collision energies of elementary particles exceed 90 GeV one may expect the hierarchy in the asymptotic reconstruction of the isotopic symmetry. Such hierarchy could be observed, in particular, in experiments on elastic leptonic collisions at high energies

  17. Asymptotic angular dependences of exclusive hadron large-angle scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.

    1979-01-01

    Asymptotic approach to the description of the large-angle scattering amplitudes of the meson-nucleon and nucleon-nucleon scattering is studied. The paper is based on the Mandelstam representation and quark counting rules. The crossing summetry, SU-3 symmetry and spin effects are taken into account. Formulae obtained are used for the description of the differential cross sections of πsup(+-)p, pp and pn scattering. The predictions about ksup(+-)p and p anti p scattering are made. It is shown that formulae provide quantitative description of experimental data for the considered reactions

  18. Finite element analysis of the biaxial cyclic tensile loading of the elastoplastic plate with the central hole: asymptotic regimes

    Science.gov (United States)

    Turkova, Vera; Stepanova, Larisa

    2018-03-01

    For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.

  19. Influence of phase transformations on the asymptotic residual stress distribution arising near a sharp V-notch tip

    International Nuclear Information System (INIS)

    Ferro, P

    2012-01-01

    In this work, the residual stress distribution induced by the solidification and cooling of a fusion zone in the vicinity of a sharp V-notch tip is investigated. The intensity of the residual asymptotic stress fields, quantified by the notch stress intensity factors, was studied for two different V-notch specimen geometries under generalized plane-strain conditions. In order to analyze the influence of phase transformations on the obtained results, simulations with and without the effects of phase transformation were carried out on ASTM SA 516 steel plates. Thanks to the possibilities of numerical modelling, additional analyses were performed without taking into account the transformation plasticity phenomenon. It was found that phase transformation effects (both volume change and transformation plasticity) have a great influence on the intensity and sign of the asymptotic stress fields at the sharp V-notch tips. This result is believed to be very important for the correct numerical determination (and future applications) of notch stress intensity factors resulting from asymptotic residual stress distributions induced by transient thermal loads. The analyses were performed with the finite element code SYSWELD. (paper)

  20. Nonlocality and Multipartite Entanglement in Asymptotically Flat Space-Times

    International Nuclear Information System (INIS)

    Moradi, Shahpoor; Amiri, Firouz

    2016-01-01

    We study the Bell's inequality and multipartite entanglement generation for initially maximally entangled states of free Dirac field in a non inertial frame and asymptotically flat Robertson–Walker space-time. For two qubit case, we show that the Bell's inequality always is violated as measured by the accelerated observers which are in the causally connected regions. On the other hand, for those observers in the causally disconnected regions inequality is not violated for any values of acceleration. The generated three qubit state from two qubit state due to acceleration of one parties has a zero 3-tangle. For a three qubit state, the inequality violated for measurements done by both causally connected and disconnected observers. Initially GHZ state with non zero 3-tangle, in accelerated frame, transformed to a four qubit state with vanishing 4-tangle value. On the other hand, for a W-state with zero 3-tangle, in non inertial frame, transformed to a four qubit state with a non-zero 4-tangle acceleration dependent. In an expanding space-time with asymptotically flat regions, for an initially maximally entangled state, the maximum value of violation of Bell's inequality in the far past decreased in the far future due to cosmological particle creation. For some initially maximally entangled states, the generated four qubit state due to expansion of space-time, has non vanishing 4-tangle. (paper)