WorldWideScience

Sample records for asymmetric salt ion

  1. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out......Cl saline solution and the PE leaflet is exposed to KCl, the outcome is that the effects of asymmetric lipid and salt ion distributions essentially cancel one another almost completely. Overall, our study highlights the complex nature of the intrinsic potential of cell membranes under physiological...

  2. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...... sediments, the diapir extruded an overhang. Using the asymmetric Klodawa Salt Structure (KSS) in central Poland as a prototype, a series of analogue models were carried out to investigate the evolution history and salt supply driven by asymmetric differential loading. During extension of the model, a daipir...

  3. Asymmetric Ion-Pairing Catalysis

    Science.gov (United States)

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  4. High sensitivity field asymmetric ion mobility spectrometer.

    Science.gov (United States)

    Chavarria, Mario A; Matheoud, Alessandro V; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 10 12 V/A with an effective equivalent input noise level down to about 1 fA/Hz 1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  5. High sensitivity field asymmetric ion mobility spectrometer

    Science.gov (United States)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  6. Electrochemical ion separation in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  7. Ion pumping in nanochannels using an asymmetric electrode array

    NARCIS (Netherlands)

    Sparreboom, Wouter; Cucu, C.F.; Eijkel, Jan C.T.; van den Berg, Albert; Locascio, L.E.; Gaitan, M.; Paegel, B.M.; Ross, D.J.; Vreeland, W.N.

    2008-01-01

    We demonstrate an ion pump, consisting of a nanochannel with an AC driven asymmetric electrode array. Our system enables us to actively pump ions using a low driving voltage. In all experiments the electrical double layers are overlapping. Via viscous coupling ion pumping is accompanied by liquid

  8. Solitary waves in asymmetric electron-positron-ion plasmas

    Science.gov (United States)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2015-10-01

    > By solving the coupled equations of the electromagnetic field and electrostatic potential, we investigate solitary waves in an asymmetric electron-positron plasma and/or electron-positron-ion plasmas with delicate features. It is found that the solutions of the coupled equations can capture multipeak structures of solitary waves in the case of cold plasma, which are left out by using the long-wavelength approximation. By considering the effect of ion motion with respect to non-relativistic and ultra-relativistic temperature plasmas, we find that the ions' mobility can lead to larger-amplitude solitary waves; especially, this becomes more obvious for a high-temperature plasma. The effects of asymmetric temperature between electrons and positrons and the ion fraction on the solitary waves are also studied and presented. It is shown that the amplitudes of solitary waves decrease with positron temperature in asymmetric temperature electron-positron plasmas and decrease also with ion concentration.

  9. Phosphonium salts as chiral phase-transfer catalysts: asymmetric Michael and Mannich reactions of 3-aryloxindoles.

    Science.gov (United States)

    He, Rongjun; Ding, Changhua; Maruoka, Keiji

    2009-01-01

    It's a PTC: A highly efficient reaction of 3-aryloxindoles in an asymmetric Michael addition was achieved by using a quaternary tetraalkylphosphonium salt as a chiral phase-transfer catalyst (PTC). The products were obtained in quantitative yields high ee values. The reaction of 3-aryloxindoles in an asymmetric Mannich reaction using the same catalyst also proved to be feasible.

  10. Multicomponent asymmetric reactions mediated by proline lithium salt

    DEFF Research Database (Denmark)

    Renzi, Polyssena; Overgaard, Jacob; Bella, Marco

    2010-01-01

    The multicomponent reaction between proline lithium salt, 2-cyclohexen-1-one and aliphatic aldehydes affords the 4- alkylidene-2-cyclohexen-1-ones, which are interesting fragrances, and bicyclic amino acids that bear four additional stereocenters, obtained as single stereoisomer.......The multicomponent reaction between proline lithium salt, 2-cyclohexen-1-one and aliphatic aldehydes affords the 4- alkylidene-2-cyclohexen-1-ones, which are interesting fragrances, and bicyclic amino acids that bear four additional stereocenters, obtained as single stereoisomer....

  11. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Kim, Heejae; Kim, Seongheun; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O-D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O-D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O-D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O-D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O-D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O-D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O-D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O-D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O-D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O-D stretch mode is shown to be important and the asymmetric line shapes of the O-D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  12. A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2-Substituted Pyridinium Salts

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-01-01

    Herein we describe a new methodology for the asymmetric hydrogenation (AH) of 2-substituted pyridinium salts. An iridium catalyst based on a mixture of a chiral monodentate phosphoramidite and an achiral phosphine was shown to hydrogenate N-benzyl-2-arylpyiridinium bromides to the corresponding

  13. Catalytic asymmetric aza-Darzens reaction with a vaulted biphenanthrol magnesium phosphate salt.

    Science.gov (United States)

    Larson, Shawn E; Li, Guilong; Rowland, Gerald B; Junge, Denise; Huang, Rongcai; Woodcock, H Lee; Antilla, Jon C

    2011-05-06

    Conditions for a catalytic asymmetric aza-Darzens aziridine synthesis mediated by a vaulted biphenanthrol (VAPOL) magnesium phosphate salt is described. Using simple substrates, this methodology explores the scope and reactivity of a new magnesium catalyst for an aziridination reaction capable of building chirality and complexity simultaneously.

  14. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, Gyula J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer

  15. Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl(2)) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering......, and membrane electrostatic potential. The changes induced by salt are more prominent in dynamical properties related to ion binding and formation of ion-lipid complexes and lipid aggregates, as rotational diffusion of lipids is slowed down by ions, especially in the case of CaCl(2). In the same spirit, lateral...... diffusion of lipids is slowed down rather considerably for increasing concentration of CaCl(2). Both findings for dynamic properties can be traced to the binding of ions with lipid head groups and the related changes in interaction patterns in the headgroup region, where the binding of Na(+) and Ca(2+) ions...

  16. Electrolyte materials containing highly dissociated metal ion salts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  17. Electrolyte materials containing highly dissociated metal ion salts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  18. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    The increase in Na+ was positively related to total soluble sugars, resulting in an osmotic adjustment of the membrane that maintained water availability. The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: Mannitol, membrane injury, ...

  19. Hypertension: salt restriction, sodium homeostasis, and other ions.

    Science.gov (United States)

    Gupta, Neeru; Jani, Kishan Kumar; Gupta, Nivedita

    2011-03-01

    Salt is composed of Sodium Chloride (NaCl) which in body water becomes essential electrolytes, viz., Sodium (Na⁺) and Chloride (Cl⁻) ions, including in the blood and other extracellular fluids (ECF). Na⁺ ions are necessary cations in muscle contractions and their depletion will effect all the muscles in body including smooth muscle contraction of blood vessels, a fact which is utilized in lowering the blood pressure. Na⁺ ions also hold water with them in the ECF. Na⁺ homeostasis in body is maintained by thirst (water intake), kidneys (urinary excretion) and skin (sweating). In Na⁺ withdrawal, body tries to maintain homeostasis as far as possible. However, in certain conditions (e.g., during exercise, intake of drugs and in disorders causing Syndrome of Inappropriate Anti Diuretic Hormone Secretion (SIADH), diuretics, diarrhea) coupled with moderate or severe dietary salt restriction (anorexia nervosa), hyponatremia can get precipitated. Hyponatremia is one end point in the spectrum of disorders caused by severe Na⁺ depletion whereas in moderate depletion it can cause hypohydration (or less total body water) and lower urinary volume (U v ). Moreover, salt sensitivity varies in various populations leading to different responses in relation to dietary Na⁺ intake. Diabetes and Hypertension often co-exist but Na⁺ withdrawal in salt sensitive subjects worsens diabetes though hypertension gets better and reverse occurs in salt loading. Therefore, Na⁺ or salt restriction may be non-physiological. In hypertensive subjects other alternatives to Na⁺ withdrawal could be Potassium (K⁺) and Calcium (Ca⁺²) supplementation. Further studies are required to monitor safety/side effects of salt restriction.

  20. The effect of salt on the morphologies of compositionally asymmetric block copolymer electrolytes

    Science.gov (United States)

    Loo, Whitney; Maslyn, Jacqueline; Oh, Hee Jeung; Balsara, Nitash

    Block copolymer electrolytes are promising for applications in lithium metal solid-state batteries. Due to their ability to microphase separate into distinct morphologies, their ion transport and mechanical properties can be decoupled. The addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt to poly(styrene)-block-poly(ethylene oxide) (SEO) has been shown to increase microphase separation in symmetric block copolymer systems due to an increase in the effective interaction parameter (χeff) ; however the effect of block copolymer compositional asymmetry is not well-understood. The effect of compositional asymmetry on polymer morphology was investigated through small and wide angle X-ray scattering (SAXS/WAXS). The effective Flory-Huggins interaction parameter was extracted from the scattering profiles in order to construct a phase diagram to demonstrate the effect of salt and compositional asymmetry on block copolymer morphology.

  1. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-01-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl− = 2.03[10−9m2s−1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D− − D+)/(D− + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis). PMID:27158057

  2. Electrodialysis-ion exchange for the separation of dissolved salts

    Energy Technology Data Exchange (ETDEWEB)

    Baroch, C.J. [Wastren, Inc., Westminster, CO (United States); Grant, P.J. [Wastren, Inc., Hummelstown, PA (United States)

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  3. Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-11-01

    Carrying out molecular dynamics simulations and graph theoretical analyses of high salt solutions, and comparing numerically calculated vibrational spectroscopic properties of water with femtosecond IR pump-probe experimental data, we have recently found that ions in high salt solutions can form two morphologically different ion aggregate structures. In the cases of NaCl solutions, Na+ and Cl- tend to form compact cluster-like ion aggregate in high NaCl solutions. In contrast, K+ and SCN- form spatially extended network-like ion aggregates that also exhibit a percolating network behavior. Interestingly, a variety of graph theoretical properties of ion network in high KSCN solutions were found to be very similar to those of water H-bonding network. It was shown that spatially extended ion networks in high KSCN solutions are completely intertwined with water H-bonding networks, which might be the key to understand the high solubility of thiocyanate salts in water. Here, we further consider two salts that have been extensively studied experimentally by using femtosecond IR pump-probe technique, which are NaClO4 and NaBF4. Note that ClO4 - and BF4 - are well-known chaotropic ions that have been believed to behave as water structure breaker. To understand how such chaotropic ions affect water H-bonding structure, we carried out spectral graph analyses of molecular dynamics simulation data of these aqueous solutions. Graph spectra and degree distribution of ion aggregates formed in high NaBF4 and NaClO4 solutions show that these chaotropic anions also have a strong propensity to form ion networks. The fact that salts containing chaotropic ions like SCN-, BF4 - , and ClO4 - have very high solubility limits in water could then be related to our observation that these chaotropic anions with counter cations in high salt solutions are capable of forming intricate ion networks intertwined with water H-bonding networks. We anticipate that the present graph theoretical analysis

  4. Fast Orthogonal Separation by Superposition of Time of Flight and Field Asymmetric Ion Mobility Spectrometry.

    Science.gov (United States)

    Bohnhorst, Alexander; Kirk, Ansgar T; Berger, Marc; Zimmermann, Stefan

    2017-12-22

    Ion mobility spectrometry is a powerful and low-cost technique for the identification of chemical warfare agents, toxic chemicals, or explosives in air. Drift tube ion mobility spectrometers (DT-IMS) separate ions by the absolute value of their low field ion mobility, while field asymmetric ion mobility spectrometers (FAIMS) separate them by the change of their ion mobility at high fields. However, using one of these devices alone, some common and harmless substances show the same response as the hazardous target substances. In order to increase the selectivity, orthogonal data are required. Thus, in this work, we present for the first time an ambient pressure ion mobility spectrometer which is able to separate ions both by their differential and low field mobility, providing additional information for selectivity enhancement. This novel field asymmetric time of flight ion mobility spectrometer (FAT-IMS) allows high repetition rates and reaches limits of detection in the low ppb range common for DT-IMS. The device consists of a compact 44 mm drift tube with a tritium ionization source and a resolving power of 70. An increased separation of four substances with similar low field ion mobility is shown: phosgene (K0 = 2.33 cm2/(V s)), 1,1,2-trichlorethane (K0 = 2.31 cm2/(V s)), chlorine (K0 = 2.24 cm2/(V s)), and nitrogen dioxide (K0 = 2.25 cm2/(V s)). Furthermore, the behavior and limits of detection for acetonitrile, dimethyl methylphosphonate, diisopropyl methyl phosphonate in positive polarity and carbon dioxide, sulfur dioxide, hydrochloric acid, cyanogen chloride, and hydrogen cyanide in negative polarity are investigated.

  5. Asymmetric bipolar membrane: A tool to improve product purity

    NARCIS (Netherlands)

    Balster, J.H.; Sumbharaju, R.; Srikantharajah, S.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Jordan, V.; Wessling, Matthias

    2007-01-01

    Bipolar membranes (BPMs) are catalytic membranes for electro-membrane processes splitting water into protons and hydroxyl ions. To improve selectivity and current efficiency of BPMs, we prepare new asymmetric BPMs with reduced salt leakages. The flux of salt ions across a BPM is determined by the

  6. Dipeptide-Derived Multifunctional Quaternary Phosphonium Salt Catalyzed Asymmetric Cyclizations via a Tandem Michael Addition/SN 2 Sequence.

    Science.gov (United States)

    Cao, Dongdong; Zhang, Jiaxing; Wang, Hongyu; Zhao, Gang

    2015-07-06

    A novel family of dipeptide-based multifunctional quaternary phosphonium salts has been developed as chiral phase-transfer catalysts, which feature ready accessibility and structure modularity, allowing easy fine-tunings of activity. They demonstrated high efficiency in catalyzing the tandem asymmetric Michael addition/intramolecular SN 2 reaction between 6 or 7-substituted conjugate enones and malonates, providing synthetically important five or six-membered carbocycles and heterocycles in good yields and with good to excellent enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Two-Scale Ion Meandering Caused by the Polarization Electric Field During Asymmetric Reconnection

    Science.gov (United States)

    Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara L.; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert; hide

    2016-01-01

    Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.

  8. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho

    2014-07-08

    Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.

  9. Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions

    OpenAIRE

    Hirono, Yuji; Hongo, Masaru; Hirano, Tetsufumi

    2012-01-01

    We show that in asymmetric heavy-ion collisions, especially off-central Cu+Au collisions, a sizable strength of electric field directed from Au nucleus to Cu nucleus is generated in the overlapping region, because of the difference in the number of electric charges between the two nuclei. This electric field would induce an electric current in the matter created after the collision, which result in a dipole deformation of the charge distribution. The directed flow parameters $v_1^{\\pm}$ of ch...

  10. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2014-10-01

    Graph theory in mathematics and computer science is the study of graphs that are structures with pairwise connections between any objects. Here, the spectral graph theory and molecular dynamics simulation method are used to describe both morphological variation of ion aggregates in high salt solutions and ion effects on water hydrogen-bonding network structure. From the characteristic value analysis of the adjacency matrices that are graph theoretical representations of ion clusters, ion networks, and water H-bond structures, we obtained the ensemble average eigenvalue spectra revealing intricate connectivity and topology of ion aggregate structure that can be classified as either ion cluster or ion network. We further show that there is an isospectral relationship between the eigenvalue spectra of ion networks in high KSCN solutions and those of water H-bonding networks. This reveals the isomorphic relationship between water H-bond structure and ion-ion network structure in KSCN solution. On the other hand, the ion clusters formed in high NaCl solutions are shown to be graph-theoretically and morphologically different from the ion network structures in KSCN solutions. These observations support the bifurcation hypothesis on large ion aggregate growth mechanism via either ion cluster or ion network formation. We thus anticipate that the present spectral graph analyses of ion aggregate structures and their effects on water H-bonding network structures in high salt solutions can provide important information on the specific ion effects on water structures and possibly protein stability resulting from protein-water interactions.

  11. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2014-10-21

    Graph theory in mathematics and computer science is the study of graphs that are structures with pairwise connections between any objects. Here, the spectral graph theory and molecular dynamics simulation method are used to describe both morphological variation of ion aggregates in high salt solutions and ion effects on water hydrogen-bonding network structure. From the characteristic value analysis of the adjacency matrices that are graph theoretical representations of ion clusters, ion networks, and water H-bond structures, we obtained the ensemble average eigenvalue spectra revealing intricate connectivity and topology of ion aggregate structure that can be classified as either ion cluster or ion network. We further show that there is an isospectral relationship between the eigenvalue spectra of ion networks in high KSCN solutions and those of water H-bonding networks. This reveals the isomorphic relationship between water H-bond structure and ion-ion network structure in KSCN solution. On the other hand, the ion clusters formed in high NaCl solutions are shown to be graph-theoretically and morphologically different from the ion network structures in KSCN solutions. These observations support the bifurcation hypothesis on large ion aggregate growth mechanism via either ion cluster or ion network formation. We thus anticipate that the present spectral graph analyses of ion aggregate structures and their effects on water H-bonding network structures in high salt solutions can provide important information on the specific ion effects on water structures and possibly protein stability resulting from protein-water interactions.

  12. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  13. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-28

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K(+) and SCN(-) ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  14. The Acute Toxicity of Major Ion Salts to Ceriodaphnia dubia. III. Mathematical models for mixture toxicity

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset concerns the development of models for describing the acute toxicity of major ions to Ceriodaphnia dubia using data from single salt tests and binary...

  15. Direct Measurement of Anisotropic and Asymmetric Wave Vector Spectrum in Ion-scale Solar Wind Turbulence

    Science.gov (United States)

    Roberts, O. W.; Narita, Y.; Escoubet, C. P.

    2017-12-01

    This analysis represents the first time that a simultaneous measurement of parallel and perpendicular spectral indices at both inertial and kinetic scales has been made directly in wave vector space, using a single interval of solar wind plasma. An interferometric wave vector analysis method is applied to four-point magnetometer data from the Cluster spacecraft to study for the first time the anisotropic and axially asymmetric energy spectrum directly in the three-dimensional wave vector space in the solar wind on spatial scales for the fluid picture (at about 6000 km) down to the ion kinetic regime (at about 400 km) without invoking Taylor’s frozen-in flow hypothesis. At fluid scales, the spectral index is found to transition from -2 along the large-scale magnetic field direction to a spectral index approaching -5/3 in the perpendicular direction. The wave number for the spectral break between ion inertial and kinetic scales occurs at larger scales in the parallel projection, compared to the perpendicular. At ion kinetic scales, the spectrum in the parallel direction is difficult to measure, while the two perpendicular directions are also anisotropic and vary between -8/3 and -11/3. This suggests that a single anisotropic process where symmetry is broken in a single direction cannot account for the results.

  16. An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan

    2017-01-01

    In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.

  17. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  18. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  19. Effect of salt stress on growth, inorganic ion and proline ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... 4Institute of Molecular Bio Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand. Accepted 26 March ... cultures of KDML105 rice were exposed to salt stress by placing on Murashige and Skoog (MS) medium ... Key word: Aromatic rice, osmoprotectant, callus culture, salt stress.

  20. Effect of salt stress on growth, inorganic ion and proline ...

    African Journals Online (AJOL)

    The inhibitory effect of salt stress in rice is complex and is one of the main reasons for reduction of plant growth and crop productivity. In the present study, the response of rice callus cultivar Khao Dawk Mali 105 (KDML105), commonly known as Thai jasmine rice, to salt stress was examined. Callus cultures of KDML105 rice ...

  1. Ion transport mechanisms in lamellar phases of salt-doped PS-PEO block copolymer electrolytes.

    Science.gov (United States)

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-11-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene-polyethylene oxide (PS-PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  2. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-10-23

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  3. Salt Distribution, Domain Spacing, and Interfacial Characteristics in Lithium Ion-Doped Block Polymer Electrolyte Films

    Science.gov (United States)

    Gartner, Thomas; Shelton, Cameron; Morris, Melody; Jayaraman, Arthi; Epps, Thomas, III

    Block polymer (BP) electrolytes have significant potential for use as battery membranes; however, to enable the design of efficient and reliable battery materials, open questions must be answered about the effects of lithium ion dopants on BP microstructure (including domain spacing and mixing near the interface) and the distribution of lithium ions in the BP domains. In this work, X-ray and neutron reflectometry (XRR and NR, respectively) revealed the morphological changes introduced by doping lamellar polystyrene- b-poly(oligo(oxyethylene methacrylate)) (PS-POEM) block polymer films with various lithium salts, as well as the lithium ion distribution in the ion-conducting POEM domain. XRR indicated swelling of both the POEM and PS domains with increasing salt content, with a corresponding decrease in the interfacial width as the salt increased the segregation strength of the BP. However, at very high salt concentrations ([EO]:[Li] = 6:1), roughening of the film caused a slight increase in the interfacial width. NR showed similar trends in domain spacing with salt content, and fits to the NR allow for determination of the lithium salt distribution across the POEM domains. These results help identify the implications of doping lithium salts into BP battery membranes and inform the design of BP electrolyte materials with controlled structure and properties.

  4. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations.

    Science.gov (United States)

    Lu, Jian-Gang

    2004-12-01

    The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.

  5. Influence of asymmetric donor-receiver ion concentration upon transscleral iontophoretic transport.

    Science.gov (United States)

    Li, S Kevin; Zhang, Yanhui; Zhu, Honggang; Higuchi, William I; White, Henry S

    2005-04-01

    Recent in vitro and in vivo studies have suggested transscleral iontophoresis as a means for non-invasive drug delivery to the eye. However, there remains a lack of information of the iontophoretic transport behavior of the sclera. The objective of the present study was to investigate the effects of permeant concentration upon transscleral iontophoretic transport. Constant current direct current (DC) iontophoresis was conducted with rabbit sclera in vitro at permeant concentration ranging from 0.015 to 1.0 M in the donor chamber without background electrolyte at 0.4-4 mA (current density: 2-20 mA/cm2). PBS (0.15 M) was the receiver solution. Salicylate (SA) and tetraethylammonium (TEA) were the model ionic permeants, and mannitol was the neutral probe permeant. Conductivity experiments of SA and TEA solutions were performed to determine the effects of ion concentration upon SA and TEA electromobilities. Model simulations were carried out and compared with the experimental data. It was found that the fluxes of the ionic permeants increased linearly with the electric current but were relatively independent of their donor concentrations. Electric field-induced convective solvent flow (electroosmosis) in the sclera was observed to be from the anode to cathode, suggesting that the sclera is net negatively charge at neutral pH. For the studied permeants, electrophoresis was the main transport enhancing mechanism with electroosmosis as a secondary effect. No significant interaction between the permeants and sclera was observed that significantly altered electroosmosis in the membrane. Under the asymmetric donor and receiver conditions, the transference of the permeants could not be predicted by the concentrations of the ions in the donor and receiver chambers with the assumption of constant electric field in the membrane. The membrane ion concentrations were different from those in the chambers due to the requirement of charge neutrality in the membrane. Copyright (c

  6. Polymer-Supported Cinchona Alkaloid-Derived Ammonium Salts as Recoverable Phase-Transfer Catalysts for the Asymmetric Synthesis of α-Amino Acids

    Directory of Open Access Journals (Sweden)

    Carmen Nájera

    2004-04-01

    Full Text Available Alkaloids such as cinchonidine, quinine and N-methylephedrine have been N-alkylated using polymeric benzyl halides or co-polymerized and then N-alkylated, thus affording a series of polymer-supported chiral ammonium salts which have been employed as phase-transfer catalysts in the asymmetric benzylation of an N-(diphenylmethyleneglycine ester. These new polymeric catalysts can be easily recovered by simple filtration after the reaction and reused. The best ee’s were achieved when Merrifield resin-anchored cinchonidinium ammonium salts were employed.

  7. Asymmetric Aldol Reaction Catalyzed by L-Proline and Achiral Thiourea Fluoroboric Acid Salt

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun; Lee, Haney; Kim, Taek Hyeon [Chonnam National University, Gwangju (Korea, Republic of)

    2015-01-15

    Considering its ready availability and low cost, L-proline would be the first choice catalyst for preparing aldol adducts with high diastereo- and enantioselectivity. However, proline presents some major drawbacks, including poor performance in direct aldol reactions with aromatic aldehydes, limited solubility, and reactivity in nonpolar organic solvents, and side reactions that make using high catalyst loadings necessary to reach satisfactory conversions. Therefore, numerous proline-modified organo catalysts such as prolinamides, proline thioamides, sulfonamides, chiral amines, and organic salts have been designed for direct aldol reactions. An alternative is to add a readily available additive to the reactions containing proline. This last approach is clearly advantageous in avoiding tedious chemical syntheses of organo catalysts and would ultimately allow the construction of libraries of catalyst protocols by simply changing the additive. Acid additives can influence the outcome of enamine mediated reactions; however, only a few screening studies of acid additions to thiourea organo catalysts are available in the literature. The reaction between cyclohexanone and 4-nitrobenzaldehyde was selected as a standard model reaction for screening of more effective acid additives to thiourea.

  8. Asymmetric Synthesis of γ-Lactones through Koga Amine-Controlled Addition of Enediolates to α,β-Unsaturated Sulfoxonium Salts.

    Science.gov (United States)

    Peraino, Nicholas J; Kaster, Sven H; Wheeler, Kraig A; Kerrigan, Nessan J

    2017-01-06

    A chiral Koga amine-controlled asymmetric synthesis of cis-γ-lactones through a formal [3 + 2] cycloaddition of enediolates with α,β-unsaturated sulfoxonium salts is described. The desired structural motif was formed in moderate to good yields (50-71% for 13 examples), with good to very good diastereoselectivity (dr 5:1 to 10:1 for 20 examples), favoring the cis-isomer, and good to excellent enantioselectivity (70-91% ee for 13 examples).

  9. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  10. Effect of salt stress on growth, inorganic ion and proline ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Wanlchananan et al., 2003). Reports of high-quality aromatic rice linked to salt stress are very few. Thus, the effects of high salinity on total fresh and dry weight, relative water content, proline content, Na+, K+, Ca+ and Na+/K+ ratio in callus ...

  11. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Türk, Hülya, E-mail: hulyaa.turk@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey); East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum (Turkey); Genişel, Mucip, E-mail: m.genisel@hotmail.com [Department of Crop and Animal Production, Vocational High School, Agri (Turkey); Erdal, Serkan, E-mail: serkanerdal25@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey)

    2016-04-18

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K{sup +}/Na{sup +} ratio was reduced by salt stress, ALA application changed this ratio in favor of K{sup +}. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  12. New type of imidazole based salts designed specifically for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Niedzicki, L., E-mail: asalm@ch.pw.edu.p [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw (Poland); Zukowska, G.Z.; Bukowska, M.; Szczecinski, P. [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw (Poland); Grugeon, S.; Laruelle, S.; Armand, M. [Laboratoire de Reactivite et de Chimie des Solides University de Picardie Jules Verne, 33 rue de Saint-Leu, 80039 Amiens (France); Panero, S.; Scrosati, B. [Department of Chemistry, University of Rome ' La Sapienza' , Piazzale Aldo Moro 5, 00185 Rome (Italy); Marcinek, M.; Wieczorek, W. [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw (Poland)

    2010-01-25

    In this manuscript we announce new type of 'tailored' imidazole-derived salts designed, synthesized and tested for application in lithium conductive electrolytes. Basic characterization of the structure of described materials has been made by Raman, IR and NMR ({sup 13}C NMR, {sup 19}F NMR) techniques. DSC and CV studies showed thermal stability of all salts over 200 deg. C and electrochemical stability in liquid and solid polymer solvents up to +4.6 V vs. metallic lithium anode and Al collectors. Such properties proved applicability of these salts as lithium electrolytes for modern types of lithium ion batteries.

  13. NMR-based localization of ions involved in salting out of hen egg white lysozyme.

    Science.gov (United States)

    Poznański, Jarosław

    2006-01-01

    NaCl-induced aggregation of hen egg white lysozyme (HEWL) was monitored by NMR spectroscopy. Small, but significant, changes induced by salt addition in TOCSY spectra were attributed to the effect of local reorganization of protein backbone upon ion binding. Salt-induced variations in HN and H alpha chemical shifts were mapped on the HEWL 3D structure which allowed the construction of a scheme of the spatial localization of potential ion binding sites. It was found that in a 0.5 M NaCl solution six chloride anions and at least one sodium cation are bound to preferred sites on the HEWL surface.

  14. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 coefficients. It is found that proper modeling of these solutions requires the inclusion of electronic polarization of the ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions

  15. Exploiting the Rotational Dynamics of Asymmetric Top Molecules to make Angle Resolved, Molecular Frame Ion Yield and High Harmonic Measurements

    Science.gov (United States)

    Makhija, Varun; Ren, Xiaoming; Tross, Jan; Mondal, Sudipta; Le, Anh-Thu; Trallero, Carlos; Kumarappan, Vinod; JRM HHG-Alignment Collaboration

    2013-05-01

    We extract the angle-dependent ionization rate of ethylene in an intense femtosecond laser pulse from the rotational revivals of the yield of the singly-charged molecular ion. By fitting the measured delay-dependent ion yield to the molecular axis distribution calculated using a rigid rotor code for asymmetric top molecules, we show that the dependence of the ionization rate on two Euler angles can be on obtained. Additionally we explore the possibility of extracting molecular frame information from similar pump-probe measurements of high harmonic generation. Office of Basic Energy Sciences, U.S. Department of Energy.

  16. Analysis of triazines and associated metabolites with electrospray ionization field-asymmetric ion mobility spectrometry/mass spectrometry

    DEFF Research Database (Denmark)

    Mie, Axel; Sandulescu, Madaline; Mathiasson, Lennart

    2008-01-01

    Triazines comprise an important pollutant class owing to continued use in certain countries, and owing to strong environmental persistence that leads to problems even in countries like Sweden where the use of triazines has been prohibited for some years. We investigated mass-selective detection...... for analysis of triazines. More specifically, we studied the background reduction and sensitivity enhancement that result from the use of a new interface technique, field-asymmetric ion mobility spectrometry (FAIMS), in conjunction with electrospray ionization ion-trap mass spectrometry. This technique allows...

  17. Recovery process for phenolic compounds from coal-derived oils by ions of soluble metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Yizhang Ge; Hong Jin [Hefei Institute of Coal, Hefei (China)

    1996-11-01

    Phenolic compounds in a fraction (170-210{degree}C) of multistage rotary furnace coal tar pyrolysed from Tian Zhu brown coal at 550{degree}C were efficiently recovered by precipitation using ions of soluble metal salts as precipitant. The method overcomes the defects of the extraction method using 10 wt% NaOH solution. 8 refs., 2 figs., 3 tabs.

  18. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Van Soestbergen, M.; Pel, L.

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous

  19. Variation in viscosity and ion conductivity of a polymer–salt complex ...

    Indian Academy of Sciences (India)

    Variation in viscosity and ion conductivity of a polymer–salt complex exposed to gamma irradiation. SUJATA TARAFDAR1,∗,SKDE2, SUJIT MANNA2, UDAYAN DE3 and PRADYOT NANDA1. 1Physics Department, Condensed Matter Physics Research Centre, Jadavpur University,. Kolkata 700 032, India. 2Material Science ...

  20. Ion size effects on the electrokinetics of salt-free concentrated suspensions in ac fields

    Science.gov (United States)

    Roa, Rafael; Carrique, Félix; Ruiz-Reina, Emilio

    2012-12-01

    We analyze the influence of finite ion size effects in the response of a salt-free concentrated suspension of spherical particles to an oscillating electric field. Salt-free suspensions are just composed of charged colloidal particles and the added counterions released by the particles to the solution, that counterbalance their surface charge. In the frequency domain, we study the dynamic electrophoretic mobility of the particles and the dielectric response of the suspension. We find that the Maxwell-Wagner-O'Konski process associated with the counterions condensation layer, is enhanced for moderate to high particle charges, yielding an increment of the mobility for such frequencies. We also find that the increment of the mobility grows with ion size and particle charge. All these facts show the importance of including ion size effects in any extension attempting to improve standard electrokinetic models.

  1. Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System

    Directory of Open Access Journals (Sweden)

    Tuhina Tiwari

    2013-01-01

    Full Text Available The effect of different anions, namely, SCN−, I−, and ClO4−, on the electrical properties of starch-based polymer electrolytes has been studied. Anion size and conductivity are having an inverse trend indicating systems to be predominantly anionic conductor. Impact of anion size and multiplet forming tendency is reflected in number of charge carriers and mobility, respectively. Ion dynamics study reveals the presence of different mechanisms in different frequency ranges. Interestingly, superlinear power law (SLPL is found to be present at <5 MHz frequency, which is further confirmed by dielectric data.

  2. Experiment on Chloride Ion Content of Concrete Structure in Coastal Salt-fog Area

    Directory of Open Access Journals (Sweden)

    Nie Ming

    2016-01-01

    Full Text Available This paper chose the south-east coastal salt-fog area Shantou to carry out the experiment study on chloride ion content of concrete structure, through the chloride ion content field test on reinforced concrete structure in Shantou, respectively for the slat-fog atmosphere zone and the splash zone in marine environment, discuss the corrosion by chloride ion of long-time existing concrete structure.And then measure the chloride ion content of concrete cover in different depth, and determine the chloride ion diffusion model in different conditions concrete through comparative analysis.The result of study, can be used in directing the selection of design scheme for building in planning, and also it will help predict the corrosion time of reinforcement inside the concrete on different positions for existing structure.

  3. Amide-Phosphonium Salt as Bifunctional Phase Transfer Catalyst for Asymmetric 1,6-Addition of Malonate Esters to para-Quinone Methides.

    Science.gov (United States)

    Ge, Luo; Lu, Xuehe; Cheng, Cang; Chen, Jie; Cao, Weiguo; Wu, Xiaoyu; Zhao, Gang

    2016-10-07

    Asymmetric 1,6-addition of malonates to para-quinone methides has been developed by using amide-phosphonium salts derived from easily available chiral α-amino acids as bifunctional phase transfer catalysts. Stabilized para-quinone methides with various substituents on the phenyl ring were reacted with diphenyl malonates to give functionalized diaryl methines in excellent yields and high to excellent ee's. Furthermore, to show the utility of this methodology, a gram scale synthesis of an 1,6-addition adduct and its further elaboration into the key intermediate for synthesis of GPR40 agonists were also described.

  4. Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots.

    Science.gov (United States)

    Griffiths, Rian L; Dexter, Alex; Creese, Andrew J; Cooper, Helen J

    2015-10-21

    Liquid extraction surface analysis (LESA) is a surface sampling technique that allows electrospray mass spectrometry analysis of a wide range of analytes directly from biological substrates. Here, we present LESA mass spectrometry coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for the analysis of dried blood spots on filter paper. Incorporation of FAIMS in the workflow enables gas-phase separation of lipid and protein molecular classes, enabling analysis of both haemoglobin and a range of lipids (phosphatidylcholine or phosphatidylethanolamine, and sphingomyelin species) from a single extraction sample. The work has implications for multiplexed clinical assays of multiple analytes.

  5. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    Science.gov (United States)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  6. Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries

    Science.gov (United States)

    Sharova, Varvara; Moretti, Arianna; Diemant, Thomas; Varzi, Alberto; Behm, R. Jürgen; Passerini, Stefano

    2018-01-01

    Herein, we report the results of a detailed study on the use of different Li imide salts (LiTFSI, LiFSI, and LiFTFSI) as electrolyte additives for lithium-ion batteries. The introduction of lithium imide salts in the electrolyte is shown to considerably improve the first cycle coulombic efficiency and the long-term cycling stability of graphite/LiFePO4 cells. Using LiTFSI, a capacity fading of only ∼2% occurred over 600 cycles while the control cell with the state-of-the-art additive (VC) lost ∼20% of the initial capacity at 20 °C. The results of the XPS and impedance spectroscopy measurements of graphite electrodes show that, after the formation cycle, the SEI obtained in the presence of imide salts is thinner, contains more LiF and is less resistive than that obtained using VC. Despite the beneficial effect of the imide salts on the lithium-ion cell performance, a slightly reduced thermal stability of the SEI is observed.

  7. Energy budget and mechanisms of cold ion heating in asymmetric magnetic reconnection

    Science.gov (United States)

    Toledo-Redondo, Sergio; André, Mats; Khotyaintsev, Yuri V.; Lavraud, Benoit; Vaivads, Andris; Graham, Daniel B.; Li, Wenya; Perrone, Denise; Fuselier, Stephen; Gershman, Daniel J.; Aunai, Nicolas; Dargent, Jérémy; Giles, Barbara; Le Contel, Olivier; Lindqvist, Per-Arne; Ergun, Robert E.; Russell, Christopher T.; Burch, James L.

    2017-09-01

    Cold ions (few tens of eV) of ionospheric origin are commonly observed on the magnetospheric side of the Earth's dayside magnetopause. As a result, they can participate in magnetic reconnection, changing locally the reconnection rate and being accelerated and heated. We present four events where cold ion heating was observed by the Magnetospheric Multiscale mission, associated with the magnetospheric Hall E field region of magnetic reconnection. For two of the events the cold ion density was small compared to the magnetosheath density, and the cold ions were heated roughly to the same temperature as magnetosheath ions inside the exhaust. On the other hand, for the other two events the cold ion density was comparable to the magnetosheath density and the cold ion heating observed was significantly smaller. Magnetic reconnection converts magnetic energy into particle energy, and ion heating is known to dominate the energy partition. We find that at least 10-25% of the energy spent by reconnection into ion heating went into magnetospheric cold ion heating. The total energy budget for cold ions may be even higher when properly accounting for the heavier species, namely helium and oxygen. Large E field fluctuations are observed in this cold ion heating region, i.e., gradients and waves, that are likely the source of particle energization.

  8. Modeling of salt and pH gradient elution in ion-exchange chromatography.

    Science.gov (United States)

    Schmidt, Michael; Hafner, Mathias; Frech, Christian

    2014-01-01

    The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Compound ion salt, a novel low-sodium salt substitute: from animal study to community-based population trial.

    Science.gov (United States)

    Zhou, Xin; Liu, Jun-Xiang; Shi, Rui; Yang, Ning; Song, Dong-Lin; Pang, Wei; Li, Yu-Ming

    2009-09-01

    Salt restriction, an important approach for primary and secondary prevention of hypertension, is undermined by unsatisfactory adherence. A salt-restriction study tested the efficacy and safety of a compound ion salt (CISalt) with low sodium content in an animal model and in a community-based population. In part 1, 8-week-old male spontaneously hypertensive rats (SHRs) were fed 1% CISalt in the study group and 8% or 1% normal salt (NSalt) in controls (n = 10 each) for 12 weeks. Blood pressure (BP) and urinary electrolytes were measured every 3 weeks. After 12 weeks, collagen deposition in the heart and kidney and the levels of angiotensin II (Ang II) and nitric oxide (NO) in plasma and renal cortex were measured. In part 2, a single-blind, randomized, 6-month controlled trial with CISalt was conducted in 248 persons (age >or=65 years) in 10 rural communities. Plasma renin activity and Ang II were included in blood and urinary measures at baseline and 6 months. Reduced BP urinary protein excretion and reduced collagen in the heart and kidneys were significantly different in animals fed CISalt compared to controls. In human studies, at 6 months, mean systolic BP (SBP) was decreased by 9.6 mm Hg (95% confidence interval (CI): 13.1 to 6.1, P < 0.001) and diastolic BP (DBP) by 5.3 mm Hg (95% CI: 7.9 to 2.6, P < 0.001), respectively, compared to controls; urinary sodium excretion also decreased by 67.4 mmol/24 h (95% CI: 84.8 to 50.0, P < 0.001), and plasma renin activity was slightly increased by 0.19 ng/ml/h (95% CI: 0.04-0.33, P = 0.013). No adverse cardiovascular events were reported. In these studies, CISalt lowered BP and showed end-organ protection in hypertensive animals and BP reduction in humans. CISalt appears to be a safe and acceptable strategy to reduce BP.

  10. Fluxes of microbes, organic aerosols, dust, sea-salt Na ions, non-sea-salt Ca ions, and methanesulfonate onto Greenland and Antarctic ice

    Directory of Open Access Journals (Sweden)

    P. B. Price

    2009-03-01

    Full Text Available Using a spectrofluorimeter with 224-nm laser excitation and six emission bands from 300 to 420 nm to measure fluorescence intensities at 0.3-mm depth intervals in ice cores, we report results of the first comparative study of concentrations of microbial cells (using the spectrum of protein-bound tryptophan (Trp as a proxy and of aerosols with autofluorescence spectra different from Trp (denoted "non-Trp" as a function of depth in ice cores from West Antarctica (WAIS Divide and Siple Dome and Greenland (GISP2. The ratio of fluxes of microbial cells onto West Antarctic (WAIS Divide versus Greenland sites is 0.13±0.06; the ratio of non-Trp aerosols onto WAIS Divide versus Greenland sites is 0.16±0.08; and the ratio of non-sea-salt Ca2+ ions (a proxy for dust grains onto WAIS Divide versus Greenland sites is 0.06±0.03. All of these are roughly comparable to the ratio of fluxes of dust onto Antarctic versus Greenland sites (0.08±0.05. By contrast to those values, which are considerably lower than unity, the ratio of fluxes of methanesulfonate (MSA onto Antarctic versus Greenland sites is 1.9±0.4 and the ratio of sea-salt Na2+ ions onto WAIS Divide versus Greenland sites is 3.0±2. These ratios are more than an order of magnitude higher than those in the first grouping. We infer that the correlation of microbes and non-Trp aerosols with non-sea-salt Ca and dust suggests a largely terrestrial rather than marine origin. The lower fluxes of microbes, non-Trp aerosols, non-sea-salt Ca and dust onto WAIS Divide ice than onto Greenland ice may be due to the smaller areas of their source regions and less favorable wind patterns for transport onto Antarctic ice than onto Greenland ice. The correlated higher relative fluxes of MSA and marine Na onto Antarctic versus Greenland ice is consistent with the view that both originate largely on or around sea ice, with the Antarctic sea ice being far more extensive than that around Greenland.

  11. Comparative Salt Stress Study on Intracellular Ion Concentration in Marine and Salt-adapted Freshwater Strains of Microalgae

    Directory of Open Access Journals (Sweden)

    Ahmad Farhad TALEBI

    2013-08-01

    Full Text Available Salinity imposes significant stresses in various living organisms including microalgae. High extracellular concentration of Na+ directly influences ionic balance inside the cell and subsequently the cellular activities. In the present study, the effect of such stress on growth and intracellular ions concentration (IIC of Dunaliella salina and Chlorella Spp. was investigated. IIC was analyzed using Ion chromatography technique. D. salina showed the highest degree of resistance to increase in salinity as little changes occurred both in IIC and in growth parameters. D. salina could maintain the balance of K+ inside the cell and eject the excess Na+ even at NaCl concentrations above 1M. Moreover, D. salina accumulated β-carotene in order to protect its photosynthetic apparatus. Among Chlorella species, C. vulgaris showed signs of adaptation to high content of salinity, though it is a fresh water species by nature. Moreover, the response shown by C. vulgaris to rise in salinity was even stronger than that of C. salina, which is presumably a salt-water resistant species. In fact, C. vulgaris could maintain intracellular K+ better than C. salina in response to increasing salinity, and as a result, it could survive at NaCl concentrations as high as 0.75 M. Marine strains such as D. salina well cope with the fluctuations in salinity through the existing adaptation mechanisms i.e. maintaining the K+/N+ balance inside the cell, K+ accumulation and Na+ ejection, accumulation of photosynthetic pigments like β-carotene.

  12. Optimisation strategies for the preparation of bipolar membranes with reduced salt ion leakage in acid-base electrodialysis

    NARCIS (Netherlands)

    Wilhelm, F.G.; Punt, Ineke G.M.; van der Vegt, N.F.A.; Wessling, Matthias; Strathmann, H.

    2001-01-01

    The salt ion fluxes across commercial bipolar membranes (BPMs) result in the salt contamination of the produced acids or bases especially at increased product concentrations. Often, bipolar membrane electrodialysis can only be applied when these fluxes are reduced. Here, a model is presented to

  13. Reverse osmosis separation of some metal ions from mining effluents using heterogeneous asymmetric membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gashi, S.T.; Daci, N.M.; Selimi, T.J. (University of Prishtina, Prishtine (Yugoslavia). Dept. of Chemistry, Faculty of Science)

    1989-01-01

    Heterogeneous asymmetric membranes made from a blend of cellulose acetate and powdered coal were studied. The membranes were characterized in terms of pure water permeability constant A, solute transport parameter D[sub AM]/K[delta] and mass transfer coefficient k of sodium chloride solution as the reference system. These membranes were used for treatment of mining and industrial effluents. Good separation and very high productivity were obtained at low operating pressure. (author). 3 refs, 3 tabs.

  14. Anisotropic and asymmetric fast ion distribution generated by magnetic reconnection in MST plasmas

    Science.gov (United States)

    Kim, Jungha; Anderson, Jay; Bonofiglo, Phillip; Harvey, Robert; Sarff, John

    2017-10-01

    Magnetic reconnection is important in particle transport and energization in both astrophysical and laboratory plasmas. Global reconnection events in MST spontaneously generate an anisotropic ion distribution with a high energy tail extending up to 30x thermal energy, likely through a multi-step process that involves multiple physical scale lengths. First, thermal ions are heated by a mechanism that operates preferentially perpendicular to the magnetic field. Second, the higher energy portion of the thermal ion distribution moves into orbits that drift off the stochastic background magnetic field. In the reversed field pinch (RFP) configuration, these drift velocities contribute to stable fast ion orbits that are low in diffusivity and favorable to confinement. These fast ions, separated from the background magnetic field, are unaffected by fluctuation-based, dynamo-like emfs that reduce the total electric field to 0.5 V/m. Finally, a parallel electric field ( 80 V/m), induced by the fast change in the equilibrium during magnetic relaxation, accelerates these fast ions, resulting in an ion distribution that favors high energy, parallel-streaming ions. Work is underway to model the time evolution of the fast ion distribution using CQL3D (Fokker-Planck equation solver) and RIO (full orbit tracer). Work supported by US DOE.

  15. Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection

    Science.gov (United States)

    Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.; hide

    2016-01-01

    In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.

  16. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    Science.gov (United States)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  17. Performance enhancement of high-field asymmetric waveform ion mobility spectrometry by applying differential-RF-driven operation mode

    Science.gov (United States)

    Zeng, Yue; Tang, Fei; Zhai, Yadong; Wang, Xiaohao

    2017-09-01

    The traditional operation mode of high-field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) uses a one-way radio frequency (RF) voltage input as the dispersion voltage. This requires a high voltage input and limits power consumption reduction and miniaturization of instruments. With higher dispersion voltages or larger compensation voltages, there also exist problems such as low signal intensity or the fact that the dispersion voltage is no longer much larger than the compensation voltage. In this paper, a differential-RF-driven operation mode of FAIMS is proposed. The two-way RF is used to generate the dispersion field, and a phase difference is added between the two RFs to generate a single step waveform field. Theoretical analysis, and experimental results from an ethanol sample, showed that the peak positions of the ion spectra changed linearly (R2 = 0.9992) with the phase difference of the two RFs in the differential-RF-driven mode and that the peak intensity of the ion spectrum could be enhanced by more than eight times for ethanol ions. In this way, it is possible to convert the ion spectrum peaks outside the separation or compensation voltage range into a detectable range, by changing the phase difference. To produce the same separation electric field, the high-voltage direct current input voltage can be maximally reduced to half of that in the traditional operation mode. Without changing the drift region size or drift condition, the differential-RF-driven operation mode can reduce power consumption, increase signal-to-noise ratio, extend the application range of the dispersion voltage and compensation voltage, and improve FAIMS detection performance.

  18. Asymmetric [1,2] Stevens Rearrangement of (S)-N-Benzylic Proline-derived Ammonium Salts under Biphasic Conditions

    National Research Council Canada - National Science Library

    Tayama, Eiji; Nanbara, Shintaro; Nakai, Takeshi

    2006-01-01

    The Stevens rearrangement of (S)-N-benzylic proline-derived ammonium salt with cesium hydroxide in 1,2-dichloroethane is shown to proceed with a high degree of the N-to-C chirality transmission to afford the α...

  19. The distribution of ion energies at the substrate in an asymmetric bi-polar pulsed DC magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J W [Department of Physics, UMIST, Sackville Street, Manchester, M60 1QD (United Kingdom); Baecker, H [Department of Physics, UMIST, Sackville Street, Manchester, M60 1QD (United Kingdom); Aranda-Gonzalvo, Y [Department of Physics, UMIST, Sackville Street, Manchester, M60 1QD (United Kingdom); Kelly, P J [Institute for Materials Research, University of Salford, M5 4WT (United Kingdom); Arnell, R D [Institute for Materials Research, University of Salford, M5 4WT (United Kingdom)

    2002-05-01

    Using an energy-resolved mass spectrometer and a time-resolved Langmuir probe, the distribution of bombarding ion energies, their fluxes and energy fluxes at a substrate in an asymmetric bi-polar pulsed DC magnetron have been determined. The discharge was operated in Ar at a pressure of 0.53 Pa with a Ti target and pulsed DC frequencies of 100 and 350 kHz with a range of duty cycles (from 50 to 96%). At 100 kHz, the Ar{sup +}and Ti{sup +} time-averaged ion energy distribution functions (IEDFs) reveal three peaks, which are at low energy (<10 eV), in a mid-range (20-50 eV) and at high energy (60-100 eV). We correlate these peaks with distinct phases of the discharge voltage. At 350 kHz the IEDFs show four peaks reflecting a more complex voltage waveform. The low-energy ions are generated in the 'on' phase when the plasma potential is typically a few volts above ground. The Ti{sup +} energy spectra show a remnant of the original sputter-neutral energy distribution function. The mid-range ions are produced in the quiescent region of the voltage reverse phase, when the plasma potential is raised globally a few volts above the cathode potential, typically 10-30 V. The high-energy ions are generated in a period of {approx}0.3 {mu}s, during the discharge voltage overshoot, when the target potential rises to typically over +140 V. However, given the time resolution of the Langmuir probe (0.5 {mu}s), it is not possible to determine if plasma potential is lifted globally to this high potential or only close to the cathode. At 350 kHz, these 'fast' ions make up to about a quarter of the total ion flux at the substrate and an upper bound transient power flux of about 2.5 times the maximum delivered in the 'on' phase. The total power flux to a substrate in the sustained phase of the discharge is found to increase with frequency and reverse time.

  20. Microwave irradiation affects ion pairing in aqueous solutions of alkali halide salts

    Science.gov (United States)

    Mohorič, Tomaž; Bren, Urban

    2017-01-01

    Using the molecular dynamics simulations with separate thermostats for translational and rotational degrees of freedom, we investigate the effects of water's rotational motion on the ion pairing of ionic solutes in aqueous solutions. The situation with rotational temperature higher than the translational one, Trot>Ttrs , is mimicking the non-equilibrium effects of microwaves on model solutions of alkali halide salts. The simulations reveal that an increase in the rotational temperature at constant translational temperature exerts significant changes in the structure of the solution. The latter are reflected in increased pairing of the oppositely charged ions, which can be explained by the weaker ability of rotationally excited water to screen and separate the opposite charges. It seems that Collins' law of matching water affinities retains its validity also in the non-equilibrium situation where the rotational temperature exceeds the translational one. On the other hand, the equilibrium effect (i.e., an increase in the solution's overall temperature T ≡Trot = Ttrs) favors the formation of small-small (NaCl), while it has a little effect on large-large (CsI) ion pairs. This is in accordance with water becoming less polar solvent upon a temperature increase. Furthermore, we investigated the effects of excited translational motion of water (and ions) on the ion pairing by increasing the translational temperature, while keeping the rotational one unchanged (i.e., Ttrs>Trot ). Interestingly, in certain cases the faster translational motion causes an increase in correlations. The temperature variations in the like-ion association constants, Kas++ and Kas-, are also examined. Here the situation is more complex but, in most cases, a decrease in the ion pairing is observed.

  1. Removal of Cr(III ions from salt solution by nanofiltration: experimental and modelling analysis

    Directory of Open Access Journals (Sweden)

    Kowalik-Klimczak Anna

    2016-09-01

    Full Text Available The aim of this study was experimental and modelling analysis of the nanofiltration process used for the removal of chromium(III ions from salt solution characterized by low pH. The experimental results were interpreted with Donnan and Steric Partitioning Pore (DSP model based on the extended Nernst-Planck equation. In this model, one of the main parameters, describing retention of ions by the membrane, is pore dielectric constant. In this work, it was identified for various process pressures and feed compositions. The obtained results showed the satisfactory agreement between the experimental and modelling data. It means that the DSP model may be helpful for the monitoring of nanofiltration process applied for treatment of chromium tannery wastewater.

  2. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  3. RF reactor with asymmetrical electrodes for reactive ion etching of semiconductors

    Directory of Open Access Journals (Sweden)

    Dudin S. V.

    2011-04-01

    Full Text Available Results of experimental and theoretical study of RF CCP reactor for reactive ion etching of semiconductors are presented. Breakdown curve and domain of the discharge existence are measured in various gases (argon, fluorocarbon, oxygen. The dependences of the DC selfbias potential on the RF voltage applied to the electrode have been found. The radial profiles of the ion current density to the processed surface and their behavior with the discharge parameters change are presented for various gases. The experimental data are compared to the numerical simulation results obtained using the OOPIC code.

  4. The fluorine-iminium ion gauche effect: proof of principle and application to asymmetric organocatalysis.

    Science.gov (United States)

    Sparr, Christof; Schweizer, W Bernd; Senn, Hans Martin; Gilmour, Ryan

    2009-01-01

    The gauche effect that is induced upon reversible formation of an iminium ion (see structure: green F, blue N) provides a powerful method for the preorganization of transient intermediates that are central to secondary amine catalyzed processes. This phenomenon has been exploited in the design of a novel organocatalyst and is showcased in the stereoselective epoxidation of alpha,beta-unsaturated aldehydes.

  5. Ion pair dissociation effects of aza-based anion receptors on lithium salts in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q.; Lee, H.S.; Xiang, C.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States); Choi, L.S. [Naval Research Lab., Washington, DC (United States); Okamoto, Y. [Polytechnic Univ., Brooklyn, NY (United States)

    1996-12-31

    The addition of aza-based anion receptors greatly increases the conductivity of polymer electrolytes based on LiCl and KI complexes with poly(ethylene oxide) (PEO). In some cases the conductivity increase is more than two orders of magnitude. Also the addition of the anion acceptors imparts a rubber like consistency to the normally stiff PEO salt films. Ion-ion, ion-polymer and anion-complex interactions were studied using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy at the K and Cl K edges and at the I L{sub I} edge. The NEXAFS results show that Cl{sup {minus}} and I{sup {minus}} anions are complexed with the nitrogen groups of the anion receptors. The degree of complexation is related the chain length of the complexing agent and the number of R{double_bond}CF{sub 3}SO{sub 2} groups that are used to substitute for the amine hydrogen atoms in these aza-ether compounds. NEXAFS spectra at potassium K edge provide supplemental evidence for the ion pair dissociation effects of the anion receptors. The results show that dissociated K{sup +} cations are complexed with oxygen atoms of the PEO chains.

  6. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    Science.gov (United States)

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  7. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Cemil; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine,” 14513 Teltow (Germany); Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Heyda, Jan [Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6 (Czech Republic)

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  8. dc Electrokinetics for spherical particles in salt-free concentrated suspensions including ion size effects.

    Science.gov (United States)

    Roa, Rafael; Carrique, Félix; Ruiz-Reina, Emilio

    2011-11-21

    We study the electrophoretic mobility of spherical particles and the electrical conductivity in salt-free concentrated suspensions including finite ion size effects. An ideal salt-free suspension is composed of just charged colloidal particles and the added counterions that counterbalance their surface charge. In a very recent paper [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] we presented a model for the equilibrium electric double layer for this kind of suspensions considering the size of the counterions, and now we extend this work to analyze the response of the suspension under a static external electric field. The numerical results show the high importance of such corrections for moderate to high particle charges, especially when a region of closest approach of the counterions to the particle surface is considered. The present work sets the basis for further theoretical models with finite ion size corrections, concerning particularly the ac electrokinetics and rheology of such systems. This journal is © the Owner Societies 2011

  9. A 2D ion chamber array audit of wedged and asymmetric fields in an inhomogeneous lung phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lye, Jessica; Dunn, Leon, E-mail: leon.dunn@arpansa.gov.au; Alves, Andrew [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085 (Australia); Kenny, John [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and Radiation Oncology Queensland, Toowoomba, Queensland 4350 (Australia); Lehmann, Joerg; Williams, Ivan [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and School of Applied Science, RMIT University, Melbourne 3000 (Australia); Kron, Tomas [School of Applied Science, RMIT University, Melbourne 3000, Australia and Peter MacCallum Cancer Centre, Melbourne 3008 (Australia); Cole, Andrew [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia)

    2014-10-15

    Purpose: The Australian Clinical Dosimetry Service (ACDS) has implemented a new method of a nonreference condition Level II type dosimetric audit of radiotherapy services to increase measurement accuracy and patient safety within Australia. The aim of this work is to describe the methodology, tolerances, and outcomes from the new audit. Methods: The ACDS Level II audit measures the dose delivered in 2D planes using an ionization chamber based array positioned at multiple depths. Measurements are made in rectilinear homogeneous and inhomogeneous phantoms composed of slabs of solid water and lung. Computer generated computed tomography data sets of the rectilinear phantoms are supplied to the facility prior to audit for planning of a range of cases including reference fields, asymmetric fields, and wedged fields. The audit assesses 3D planning with 6 MV photons with a static (zero degree) gantry. Scoring is performed using local dose differences between the planned and measured dose within 80% of the field width. The overall audit result is determined by the maximum dose difference over all scoring points, cases, and planes. Pass (Optimal Level) is defined as maximum dose difference ≤3.3%, Pass (Action Level) is ≤5.0%, and Fail (Out of Tolerance) is >5.0%. Results: At close of 2013, the ACDS had performed 24 Level II audits. 63% of the audits passed, 33% failed, and the remaining audit was not assessable. Of the 15 audits that passed, 3 were at Pass (Action Level). The high fail rate is largely due to a systemic issue with modeling asymmetric 60° wedges which caused a delivered overdose of 5%–8%. Conclusions: The ACDS has implemented a nonreference condition Level II type audit, based on ion chamber 2D array measurements in an inhomogeneous slab phantom. The powerful diagnostic ability of this audit has allowed the ACDS to rigorously test the treatment planning systems implemented in Australian radiotherapy facilities. Recommendations from audits have led to

  10. Modulation of ion uptake in tomato (Lycopersicon esculentum L. plants with exogenous application of calcium under salt stress condition

    Directory of Open Access Journals (Sweden)

    Khursheda Parvin

    2016-11-01

    Full Text Available Salinity affects almost every aspect of the physiology and biochemistry of plants due to both osmotic stress and ionic toxicity. We studied the variation of ion uptake in tomato cv. BARI Tomato-5 under different levels of salinity (0, 2, 4, 6 and 8 dS m-1 and their mitigation by different concentration of Ca2+ (0, 5, 10 mM. The results showed that salt stress significantly affects the stomatal conductance of tomato. Salt treatment markedly increased the uptake of Na+ and decreased both K+ and Ca2+ uptake in the leaves of tomato. The uptake of Na+ decreased and uptake of Ca2+ and K+ increased in tomato when salt-stressed plants were treated with Ca2+. Our results revealed that Ca supplementation can effectively reduce the salt-induced ionic toxicity in tomato plants. Exogenous application of Ca2+ significantly mitigates the adverse effects of salt-induced ionic toxicity.

  11. IONIZING INFLUENCE OF SALTS WITH TRIVALENT AND TETRAVALENT IONS ON CRYSTALLINE EGG ALBUMIN AT THE ISOELECTRIC POINT

    Science.gov (United States)

    Loeb, Jacques

    1922-01-01

    1. While crystalline egg albumin is highly soluble in water at low temperature at the pH of its isoelectric point, it is coagulated by heating. It has long been known that this coagulation can be prevented by adding either acid or alkali, whereby the protein is ionized. 2. It is shown in this paper that salts with trivalent or tetravalent ions, e.g. LaCl3 or Na4Fe(CN)6, are also able to prevent the heat coagulation of albumin at the isoelectric point (i.e. pH 4.8), while salts with a divalent ion, e.g. CaCl2, BaCl4, Na2SO4, or salts like NaCl, have no such effect. 3. This is in harmony with the fact shown in a preceding paper that salts with trivalent or tetravalent ions can cause the ionization of proteins at its isoelectric point and thus give rise to a membrane potential between micellæ of isoelectric protein and surrounding aqueous solution, while the above mentioned salts with divalent and monovalent ions have apparently no such effect. PMID:19871973

  12. Exploring Salt Bridge Structures of Gas-Phase Protein Ions using Multiple Stages of Electron Transfer and Collision Induced Dissociation

    Science.gov (United States)

    Zhang, Zhe; Browne, Shaynah J.; Vachet, Richard W.

    2014-04-01

    The gas-phase structures of protein ions have been studied by electron transfer dissociation (ETD) and collision-induced dissociation (CID) after electrospraying these proteins from native-like solutions into a quadrupole ion trap mass spectrometer. Because ETD can break covalent bonds while minimally disrupting noncovalent interactions, we have investigated the ability of this dissociation technique together with CID to probe the sites of electrostatic interactions in gas-phase protein ions. By comparing spectra from ETD with spectra from ETD followed by CID, we find that several proteins, including ubiquitin, CRABP I, azurin, and β-2-microglobulin, appear to maintain many of the salt bridge contacts known to exist in solution. To support this conclusion, we also performed calculations to consider all possible salt bridge patterns for each protein, and we find that the native salt bridge pattern explains the experimental ETD data better than nearly all other possible salt bridge patterns. Overall, our data suggest that ETD and ETD/CID of native protein ions can provide some insight into approximate location of salt bridges in the gas phase.

  13. Communication: Counter-ion solvation and anomalous low-angle scattering in salt-free polyelectrolyte solutions

    Science.gov (United States)

    Chremos, Alexandros; Douglas, Jack F.

    2017-12-01

    We investigate the influence of counter-ion solvation on the homogeneity of salt-free polyelectrolyte solutions based on a coarse-grained model that includes an explicit solvent. We show that the solvation of the counter-ions can cause a transformation between a nearly homogeneous to a non-uniform polymer solution, in which there is both a chain clustering and the formation of large charge-free domains, i.e., "voids." The emergence of these heterogeneous structures induced by counter-ion solvation is accompanied by the localization and formation of counter-ion rich domains that are symptomatic of emergent effective long-range attractive interchain interactions.

  14. Communication: Counter-ion solvation and anomalous low-angle scattering in salt-free polyelectrolyte solutions.

    Science.gov (United States)

    Chremos, Alexandros; Douglas, Jack F

    2017-12-28

    We investigate the influence of counter-ion solvation on the homogeneity of salt-free polyelectrolyte solutions based on a coarse-grained model that includes an explicit solvent. We show that the solvation of the counter-ions can cause a transformation between a nearly homogeneous to a non-uniform polymer solution, in which there is both a chain clustering and the formation of large charge-free domains, i.e., "voids." The emergence of these heterogeneous structures induced by counter-ion solvation is accompanied by the localization and formation of counter-ion rich domains that are symptomatic of emergent effective long-range attractive interchain interactions.

  15. Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis

    KAUST Repository

    Liu, Chen

    2011-05-20

    A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.

  16. Temperature dependence of ion pairing of a potassium salt in nonaqueous liquid and polymer electrolytes: X-ray absorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q.; Lee, H.S.; McBreen, J. (Brookhaven National Laboratory, Upton, New York 11973 (United States)); Xu, Z.S.; Skotheim, T.A. (Moltech Corporation, Stony Brook, New York 11794-2275 (United States)); Okamoto, Y. (Polytechnic University, Brooklyn, New York 11201 (United States)); Lu, F. (CFFLS, University of Kentucky, Lexington, Kentucky 40506 (United States))

    1994-08-15

    Near-edge x-ray absorption fine structure spectroscopy was used to study the effect of temperature on ion pairing of a potassium salt in a modified carbonate (MC3) solution and in a poly(ethylene oxide)-potassium salt complex that used MC3 as a plasticizer. The modified carbonate was made by attaching three ethylene oxide units to the four position of ethylene carbonate. Spectra were obtained, at the [ital K] edge of potassium, over the temperature range of 25--110 [degree]C. Studies of reference systems showed a correlation between ion pairing and white line splitting in the near-edge region of the spectra. The degree of white line splitting was used as a qualitative indicator of the degree of ion pairing as a function of temperature. The results indicate that, in both systems, the number of ion pairs increases with increasing temperature.

  17. Detection of Potato Storage Disease via Gas Analysis: A Pilot Study Using Field Asymmetric Ion Mobility Spectrometry

    Directory of Open Access Journals (Sweden)

    Massimo Rutolo

    2014-08-01

    Full Text Available Soft rot is a commonly occurring potato tuber disease that each year causes substantial losses to the food industry. Here, we explore the possibility of early detection of the disease via gas/vapor analysis, in a laboratory environment, using a recent technology known as FAIMS (Field Asymmetric Ion Mobility Spectrometry. In this work, tubers were inoculated with a bacterium causing the infection, Pectobacterium carotovorum, and stored within set environmental conditions in order to manage disease progression. They were compared with controls stored in the same conditions. Three different inoculation time courses were employed in order to obtain diseased potatoes showing clear signs of advanced infection (for standard detection and diseased potatoes with no apparent evidence of infection (for early detection. A total of 156 samples were processed by PCA (Principal Component Analysis and k-means clustering. Results show a clear discrimination between controls and diseased potatoes for all experiments with no difference among observations from standard and early detection. Further analysis was carried out by means of a statistical model based on LDA (Linear Discriminant Analysis that showed a high classification accuracy of 92.1% on the test set, obtained via a LOOCV (leave-one out cross-validation.

  18. On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization

    NARCIS (Netherlands)

    Dykstra, J.E.; Dijkstra, J.; Wal, van der A.; Hamelers, H.V.M.; Porada, S.

    2016-01-01

    Capacitive Deionization (CDI) is a water desalination technology that adsorbs ions into two oppositely polarized porous carbon electrodes, under the action of an applied voltage. Here, we introduce a novel method to analyze the effluent concentration of multiple ionic species in mixtures of salt

  19. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanlei [Materials; amp, Department; NorthEast; Omenya, Fredrick [NorthEast; Yan, Pengfei [Environmental; Luo, Langli [Environmental; Whittingham, M. Stanley [NorthEast; Wang, Chongmin [Environmental; Zhou, Guangwen [Materials; amp, Department; NorthEast

    2017-10-20

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor for the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.

  20. Decolorization of Reactive Black-5 by Shewanella sp. in the Presence of Metal Ions and Salts.

    Science.gov (United States)

    Imran, Muhammad; Arshad, Muhammad; Khalid, Azeem; Hussain, Sabir; Mumtaz, Muhammad Waseem; Crowley, David E

    2015-07-01

    In this study, effect of various metal ions and salts on biodecolorization of Reactive black-5, azoreductase activity, and growth of Shewanella sp. strain IFN4 was evaluated. Among the tested metals, Cr²⁺, Pb(²⁺, Ni²⁺, Fe²⁺, and Mn²⁺ did not inhibit the biodecolorization of reactive black-5, azoreductase activity and bacterial growth. Three metals (Cu²⁺, Zn²⁺, and Co²⁺) delayed the decolorization process without completely inhibiting the reaction and also suppressed the bacterial growth. However, no dye decolorization was observed in the presence of Cd²⁺ (10 mg L⁻¹). Furthermore, bacterium decolorized the dye at high concentration (15 mg L⁻¹) of mixed metal ions. Strain IFN4 was also able to decolorize the dye at 50 g NaCl L⁻¹ and 60 g Na₂SO₄ L⁻¹. NaCl was found to be more inhibitory to bacterial growth than Na₂SO₄and the reverse was observed for azoreductase activity. These findings suggest that strain IFN4 could be used in designing a bioreactor for the treatment of textile effluent.

  1. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt

    Science.gov (United States)

    Jeżowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T.

    2018-02-01

    Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

  2. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  3. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)

    Science.gov (United States)

    2012-01-01

    Background It is well known that salt stress has different effects on old and young tissues. However, it remains largely unexplored whether old and young tissues have different regulatory mechanism during adaptation of plants to salt stress. The aim of this study was to investigate whether salt stress has different effects on the ion balance and nitrogen metabolism in the old and young leaves of rice, and to compare functions of both organs in rice salt tolerance. Results Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl− in old leaves. The up-regulation of OsHKT1;1, OsHAK10 and OsHAK16 might contribute to accumulation of Na+ in old leaves under salt stress. In addition, lower expression of OsHKT1;5 and OsSOS1 in old leaves may decrease frequency of retrieving Na+ from old leaf cells. Under salt stress, old leaves showed higher concentration of NO3− content than young leaves. Up-regulation of OsNRT1;2, a gene coding nitrate transporter, might contribute to the accumulation of NO3− in the old leaves of salt stressed-rice. Salt stress clearly up-regulated the expression of OsGDH2 and OsGDH3 in old leaves, while strongly down-regulated expression of OsGS2 and OsFd-GOGAT in old leaves. Conclusions The down-regulation of OsGS2 and OsFd-GOGAT in old leaves might be a harmful response to excesses of Na+ and Cl−. Under salt stress, rice might accumulate Na+ and Cl− to toxic levels in old leaves. This might influence photorespiration process, reduce NH4+ production from photorespiration, and immediately down-regulate the expression of OsGS2 and OsFd-GOGAT in old leaves of salt stressed rice. Excesses of Na+ and Cl− also might change the pathway of NH4+ assimilation in old leaves of salt stressed rice plants, weaken GOGAT/GS pathway and elevate GDH pathway. PMID:23082824

  4. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Science.gov (United States)

    Wang, Shiwen; Liu, Peng; Chen, Daoqian; Yin, Lina; Li, Hongbing; Deng, Xiping

    2015-01-01

    Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for 2 weeks were exposed to 65 mM NaCl solution for another 1 week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp), but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation. PMID:26442072

  5. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner

    Directory of Open Access Journals (Sweden)

    Vaibhav P. Pai

    2017-10-01

    Full Text Available Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4 is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10 and not by a later block (post-stage 10. Injections of HCN4-DN (dominant-negative mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning.

  6. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner.

    Science.gov (United States)

    Pai, Vaibhav P; Willocq, Valerie; Pitcairn, Emily J; Lemire, Joan M; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A; Levin, Michael

    2017-10-15

    Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. © 2017. Published by The Company of Biologists Ltd.

  7. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts

    Science.gov (United States)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel

    2017-10-01

    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  8. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems

    KAUST Repository

    Kim, Younggy

    2013-01-01

    A new bioelectrochemical system is proposed for simultaneous removal of salinity and organic matter. In this process, exoelectrogenic microorganisms oxidize organic matter and transfer electrons to the anode, hydrogen is evolved at the cathode by supplying additional voltage, and salt is removed from the wastewater due to the electric potential generated and the use of two ion-exchange membranes. Salinity removal (initial conductivity ~40mS/cm) increased from 21 to 84% by increasing the substrate (sodium acetate) from 2 to 8g/L. A total of 72-94% of the chemical oxygen demand was degraded in the anode and cathode chambers, with 1-4% left in the anode chamber and the balance lost through the anion-exchange membrane into the concentrate waste chamber. The maximum hydrogen production rate was 3.6m3-H2/m3-electrolyte per day at an applied potential of 1.2V. The Coulombic efficiency was ~100%, while the cathode recovery varied from 57 to 100%, depending on the extent of methanogenesis. Exoelectrogenic microbes generated high current densities (7.8mA/cm2) at ≤36g/L of total dissolved solids, but >41g/L eliminated current. These results provide a new method for achieving simultaneous removal of salinity and organic matter from a saline wastewater with H2 production. © 2012 Elsevier B.V.

  9. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-09-26

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  10. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    Science.gov (United States)

    Knight, Brandon M.

    Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both

  11. Transport of organic cationic drugs: effect of ion-pair formation with bile salts on the biliary excretion and pharmacokinetics.

    Science.gov (United States)

    Song, I S; Choi, M K; Shim, W S; Shim, C K

    2013-04-01

    More than 40% of clinically used drugs are organic cations (OCs), which are positively charged at a physiologic pH, and recent reports have established that these drugs are substrates of membrane transporters. The transport of OCs via membrane transporters may play important roles in gastrointestinal absorption, distribution to target sites, and biliary and/or renal elimination of various OC drugs. Almost 40 years ago, a molecular weight (Mw) threshold of 200 was reported to exist in rats for monoquaternary ammonium (mono QA) compounds to be substantially (e.g., >10% of iv dose) excreted to bile. It is well known that some OCs interact with appropriate endogenous organic anions in the body (e.g., bile salts) to form lipophilic ion-pair complexes. The ion-pair formation may influence the affinity or binding of OCs to membrane transporters that are relevant to biliary excretion. In that sense, the association of the ion-pair formation with the existence of the Mw threshold appears to be worthy of examination. It assumes the ion-pair formation of high Mw mono QA compounds (i.e., >200) in the presence of bile salts in the liver, followed by accelerated transport of the ion-pair complexes via relevant bile canalicular transporter(s). In this article, therefore, the transport of OC drugs will be reviewed with a special focus on the ion-pair formation hypothesis. Such information will deepen the understanding of the pharmacokinetics of OC drugs as well as the physiological roles of endogenous bile salts in the detoxification or phase II metabolism of high Mw QA drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola.

    Science.gov (United States)

    Liu, J; Gao, H; Wang, X; Zheng, Q; Wang, C; Wang, X; Wang, Q

    2014-03-01

    This study evaluated effects of foliar spraying 24-epibrassinoide (24-EBL) on the growth of salt-stressed canola. Seedlings at the four-leaf stage were treated with 150 mM NaCl and different concentrations of 24-EBL (10(-6), 10(-8), 10(-10), 10(-12) M) for 15 days. A concentration of 10(-10) M 24-EBL was chosen as optimal and used in a subsequent experiment on plant biomass and leaf water potential parameters. The results showed that 24-EBL mainly promoted shoot growth of salt-stressed plants and also ameliorated leaf water status. Foliar spraying of salt-stressed canola with 24-EBL increased osmotic adjustment ability in all organs, especially in younger leaves and roots. This was mainly due to an increase of free amino acid content in upper leaves, soluble sugars in middle leaves, organic acids and proline in lower leaves, all of these compounds in roots, as well as essential inorganic ions. Na(+) and Cl(-) sharply increased in different organs under salt stress, and 24-EBL reduced their accumulation. 24-EBL improved the uptake of K(+), Ca(2+), Mg(2+) and NO3(-) in roots, which were mainly transported to upper leaves, while NO3(-) was mainly transported to middle leaves. Thus, 24-EBL improvements in ion homeostasis of K(+)/Na(+), Ca(2+)/Na(+), Mg(2+)/Na(+) and NO3(-)/Cl(-), especially in younger leaves and roots, could be explained. As most important parts, younger leaves and roots were the main organs protected by 24-EBL via improvement in osmotic adjustment ability and ion homeostasis. Further, physiological status of growth of salt-stressed canola was ameliorated after 24-EBL treatment. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts

    OpenAIRE

    Anna Bitner-Michalska; Gene M. Nolis; Grażyna Żukowska; Aldona Zalewska; Marcin Poterała; Tomasz Trzeciak; Maciej Dranka; Michał Kalita; Piotr Jankowski; Leszek Niedzicki; Janusz Zachara; Marek Marcinek; Władysław Wieczorek

    2017-01-01

    A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic...

  14. Influences of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen and soil salt-ion leaching.

    Science.gov (United States)

    Yu, Qiaogang; Ye, Xuezhu; Chen, Yingxu; Zhang, Zhijian; Tian, Guangming

    2008-01-01

    An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular urea was selected as the nitrogen source in the soil. The results showed that the cumulative leaching losses of soil nitrate-N under the treatment of urea with DMPP were from 57.5% to 63.3% lower than those of the treatment of urea without DMPP. The use of nitrification inhibitors as nitrate leaching retardants may be a proposal in regulations to prevent groundwater contaminant. However, there were no great difference between urea and urea with DMPP treatments on ammonium-N leaching. Moreover, the soil salt-ion leaching losses of Ca2+, Mg2+, K+, and Na+ were reduced from 26.6% to 28.8%, 21.3% to 27.8%, 33.3% to 35.5%, and 21.7% to 32.1%, respectively. So, the leaching losses of soil salt-ion were declined for nitrification inhibitor DMPP addition, being beneficial to shallow groundwater protection and growth of crop. These results indicated the possibility of ammonium or ammonium producing compounds using nitrification inhibitor DMPP to control the nitrate and nutrient cation leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.

  15. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaassis, Abdessamad Y.A. [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Xu, Si-Min; Guan, Shanyue; Evans, David G. [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wei, Min, E-mail: weimin@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Williams, Gareth R., E-mail: g.williams@ucl.ac.uk [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom)

    2016-06-15

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.

  16. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress

    Science.gov (United States)

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100–200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl− are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance. PMID:26350977

  17. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress.

    Science.gov (United States)

    Zeng, Youling; Li, Ling; Yang, Ruirui; Yi, Xiaoya; Zhang, Baohong

    2015-09-09

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100-200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; parenchyma cells are more numerous with 100 mM NaCl treatment than they are in control. Inorganic ions (mainly Na+ and Cl-) may play a more important role than organic compounds in NaCl-induced OA and are the primary contributors in OA in H. caspica. The inorganic ions and organic solutes display a tissue-dependent distribution. Na+ and Cl- are accumulated in the reproductive organs and within assimilating branches, which may represent a mechanism for protecting plant growth by way of salt ion dilution and organ abscission. Additionally, OA via increased accumulation of organic substances also protected plant growth and development. This finding provides additional evidence for plant tolerance to salinity stress which can be used for breeding new cultivars for stress tolerance.

  18. Carbon-coated LiCrTiO4 electrode material promoting phase transition to reduce asymmetric polarization for lithium-ion batteries.

    Science.gov (United States)

    Yang, Jianwen; Yan, Bo; Ye, Jing; Li, Xue; Liu, Yansheng; You, Haiping

    2014-02-21

    In this work, carbon-free and carbon-coated spinel LiCrTiO4 oxides were synthesized by a conventional solid state reaction. The lithium-ion diffusion coefficient and electronic conductivity of prepared electrode materials were systematically investigated using the galvanostatic intermittent titration technique (GITT), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The rate performances of the prepared materials were evaluated by galvanostatic charge-discharge. Carefully comparing the charge-discharge polarization potential of both materials, we unexpectedly discovered that the pristine LiCrTiO4 electrode demonstrated asymmetric polarization during the charging-discharging process, which is possibly attributed to the nonuniform electron conductivity between the endmember of a two-phase reaction, whereas carbon coating could level this phenomenon. Additionally, using an asymmetric core-shell model from the microscopic point of view can easily explain this common phenomenon. Meanwhile, this new research perspective can be extended to other active materials in lithium ion batteries.

  19. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...

  20. Quantitative Visualization of Salt Concentration Distributions in Lithium-Ion Battery Electrolytes during Battery Operation Using X-ray Phase Imaging.

    Science.gov (United States)

    Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke; Hirano, Tatsumi

    2018-02-07

    A fundamental understanding of concentrations of salts in lithium-ion battery electrolytes during battery operation is important for optimal operation and design of lithium-ion batteries. However, there are few techniques that can be used to quantitatively characterize salt concentration distributions in the electrolytes during battery operation. In this paper, we demonstrate that in operando X-ray phase imaging can quantitatively visualize the salt concentration distributions that arise in electrolytes during battery operation. From quantitative evaluation of the concentration distributions at steady states, we obtained the salt diffusivities in electrolytes with different initial salt concentrations. Because of no restriction on samples and high temporal and spatial resolutions, X-ray phase imaging will be a versatile technique for evaluating electrolytes, both aqueous and nonaqueous, of many electrochemical systems.

  1. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties

    Science.gov (United States)

    Zhang, Heng; Han, Hongbo; Cheng, Xiaorong; Zheng, Liping; Cheng, Pengfei; Feng, Wenfang; Nie, Jin; Armand, Michel; Huang, Xuejie; Zhou, Zhibin

    2015-11-01

    Lithium salt with a super-delocalized imide anion, namely (trifluoromethane(S-trifluoromethanesulfonylimino)sulfonyl) (trifluoromethanesulfonyl)imide ([CF3SO(=NSO2CF3)2]-), [sTFSI]-), has been prepared and studied as conducting salt for Li-ion cells. The fundamental physicochemical and electrochemical properties of neat Li[sTFSI] and its carbonate-based liquid electrolyte have been characterized with various chemical and electrochemical tools. Li[sTFSI] shows a low melting point at 118 °C, and is thermally stable up to 300 °C without decomposition on the spectra of differential scanning calorimetry-thermogravimetry-mass spectrometry (DSC-TG-MS). The electrolyte of 1.0 M (mol dm-3) Li[sTFSI] in ethylene carbonate (EC)/ethyl-methyl-carbonate (EMC) (3:7, v/v) containing 0.3% water does not show any hydrolytic decomposition on the spectra of 1H and 19F NMR, after storage at 85 °C for 10 days. The conductivities of 1.0 M Li[sTFSI]-EC/EMC (3:7, v/v) are slightly lower than those of Li[(CF3SO2)2N] (LiTFSI), but higher than those of Li[(C2F5SO2)2N] (LiBETI). The electrochemical behavior of Al foil in the Li[sTFSI]-based electrolyte has been investigated by using cyclic voltammetry and chronoamperometry, and scanning electron microscope (SEM). It is illustrated that Al metal does not corrode in the high potential region (3-5 V vs. Li/Li+) in the Li[sTFSI]-based electrolyte. On Pt electrode, the Li[sTFSI]-based electrolyte is highly resistant to oxidation (ca. 5 V vs. Li/Li+), and is also resistant to reduction to allow Li deposition and stripping. The applicability of Li[sTFSI] as conducting salt for Li-ion cells has been tested using graphite/LiCoO2 cells. It shows that the cell with Li[sTFSI] displays better cycling performance than that with LiPF6.

  2. Ion-exchange properties of cell walls of Spinacia oleracea L. roots under different environmental salt conditions.

    Science.gov (United States)

    Meychik, N R; Nikolaeva, Yu I; Yermakov, I P

    2006-07-01

    Ion-exchange properties of the polymeric matrix of cell walls isolated from roots of 55-day-old Spinacia oleracea L. (Matador cv.) plants grown in nutrient solution in the presence of 0.5, 150, and 250 mM NaCl and from roots of Suaeda altissima L. Pall plants of the same age grown in the presence of 0.5 and 250 mM NaCl were studied. The ion-exchange capacity of the spinach cell walls was determined at pH values from 2 to 12 and different ionic strength of the solution (10 and 250 mM NaCl). In the structure of the root cell walls, four types of ionogenic groups were found: amine, two types of carboxyl (the first being galacturonic acid residue), and phenolic groups. The content of each type of group and their ionization constants were evaluated. The ion-exchange properties of spinach and the halophyte Suaeda altissima L. Pall were compared, and the qualitative composition of the ion-exchange groups in the cell walls of roots of these plants appeared to be the same and not depend on conditions of the root nutrition. The content of carboxyl groups of polygalacturonic acid changed in the cell walls of the glycophyte and halophyte depending on the salt concentration in the medium. These changes in the composition of functional groups of the cell wall polymers seemed to be a response of these plants to salt and were more pronounced in the halophyte. A sharp increase in the NaCl concentration in the medium caused a decrease in pH in the extracellular water space as a result of exchange reactions between sodium ions entering from the external solution and protons of carboxyl groups of the cell walls. The findings are discussed from the standpoint of involvement of root cell walls of different plant species in response to salinity.

  3. OBTAINING OF THE MG2+ FORM OF THE ZEOLITE 4A WITH ION EXCHANGE OF MAGNESIUM SALTS

    Directory of Open Access Journals (Sweden)

    Blagica Cekova

    2016-01-01

    Full Text Available Zeolites are sodium alumino silicates which in in their composition contain zeolite water. They have a three-dimensional structure. Spatial structure defined by a strictly defined geometry of pores and cavities. For ionic еchange is used magnesium salt (MgCl2*6H2O whose aqueous solutions were with the following concentrations (MgCl2*6H2O = 2,5; 3.5; 4,5 mol / dm3 , and other parameters of the ion exchange: time t = 20, 30, 40 and temperature of 298 and 330 K. Ionian capacity is calculated as mmgMgO / 1g zeolite.

  4. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress

    OpenAIRE

    Youling Zeng; Ling Li; Ruirui Yang; Xiaoya Yi; Baohong Zhang

    2015-01-01

    The mechanism by which plants cope with salt stress remains poorly understood. The goal of this study is to systematically investigate the contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment (OA) in the halophyte species Halostachys caspica. The results indicate that 100–200 mM NaCl is optimal for plant growth; the water content and degree of succulence of the assimilating branches are higher in this treatment range than that in other treatments; pa...

  5. Asymmetric osmotic water permeation through a vesicle membrane

    Science.gov (United States)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue

    2017-05-01

    Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.

  6. X-ray absorption of the effect of plasticizers on ion-pair dissociation in a poly(ethylene oxide)-potassium salt complex

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q.; Lee, H.S.; Hanson, L.K.; McBreen, J. (Brookhaven National Lab., Upton, NY (United States)); Xu, Z.S.; Skotheim, T.A. (Moltech Corp., Stony Brook, NY (United States)); Okamoto, Y. (Polytechnic Univ., Brooklyn, NY (United States)); Lu, F. (Univ. of Kentucky, Lexington, KY (United States))

    1995-01-01

    Polyethylene oxide (PEO)-salt systems are an important new class of electrolytes that are being considered for use in high specific energy rechargeable lithium batteries. Near-edge X-ray absorption fine structure (NEXAFS) spectra, at the potassium K edge, were obtained for a potassium salt in the following systems: (1) a propylene carbonate (PC) solution, (2) a modified carbonate (MC3) solution, and (3) poly(ethylene oxide) (PEO)-potassium salt complexes with either PC or MC3 as a plasticizer. MC3 is a new plasticizer developed in the authors' laboratory which is similar to PC except that, instead of a methyl group, there are three ethylene oxide units attached to the 4-position. By examining the NEXAFS of various potassium salt reference systems, it was found that the white line splitting in the near-edge region was correlated with ion-pairing. The degree of white line splitting was used to study ion-pair dissociation effects of PC and MC3 qualitatively. When used as a solvent, MC3 has a stronger ion-pair dissociation effect compared to PC. When used as a plasticizer in a PEO-potassium salt complex, the enhancement effect on ion-pair dissociation of MC3 is superior to PC. These results were corroborated by Raman spectroscopy which showed that MC3 has a stronger ion-pair dissociation effect than PC.

  7. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    Science.gov (United States)

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.

  8. Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts.

    Science.gov (United States)

    Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy

    2015-12-10

    Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Complementary experimental-simulational study of surfactant micellar phase in the extraction process of metallic ions: Effects of temperature and salt concentration

    Science.gov (United States)

    Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-02-01

    The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.

  10. Using chloride and other ions to trace sewage and road salt in the Illinois Waterway

    Science.gov (United States)

    Kelly, W.R.; Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Martinsek, A.T.; Markus, M.

    2010-01-01

    Chloride concentrations in waterways of northern USA are increasing at alarming rates and road salt is commonly assumed to be the cause. However, there are additional sources of Cl- in metropolitan areas, such as treated wastewater (TWW) and water conditioning salts, which may be contributing to Cl- loads entering surface waters. In this study, the potential sources of Cl- and Cl- loads in the Illinois River Basin from the Chicago area to the Illinois River's confluence with the Mississippi River were investigated using halide data in stream samples and published Cl- and river discharge data. The investigation showed that road salt runoff and TWW from the Chicago region dominate Cl- loads in the Illinois Waterway, defined as the navigable sections of the Illinois River and two major tributaries in the Chicago region. Treated wastewater discharges at a relatively constant rate throughout the year and is the primary source of Cl- and other elements such as F- and B. Chloride loads are highest in the winter and early spring as a result of road salt runoff which can increase Cl- concentrations by up to several hundred mg/L. Chloride concentrations decrease downstream in the Illinois Waterway due to dilution, but are always elevated relative to tributaries downriver from Chicago. The TWW component is especially noticeable downstream under low discharge conditions during summer and early autumn when surface drainage is at a minimum and agricultural drain tiles are not flowing. Increases in population, urban and residential areas, and roadways in the Chicago area have caused an increase in the flux of Cl- from both road salt and TWW. Chloride concentrations have been increasing in the Illinois Waterway since around 1960 at a rate of about 1 mg/L/a. The increase is largest in the winter months due to road salt runoff. Shallow groundwater Cl- concentrations are also increasing, potentially producing higher base flow concentrations. Projected increases in population and

  11. Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding.

    Science.gov (United States)

    Allahverdi, Abdollah; Chen, Qinming; Korolev, Nikolay; Nordenskiöld, Lars

    2015-02-17

    It is well known that chromatin structure is highly sensitive to the ionic environment. However, the combined effects of a physiologically relevant mixed ionic environment of K(+), Mg(2+) and Na(+), which are the main cations of the cell cytoplasm, has not been systematically investigated. We studied folding and self-association (aggregation) of recombinant 12-mer nucleosome arrays with 177 bp DNA repeat length in solutions of mixtures of K(+) and Mg(2+) or Na(+) and Mg(2+). In the presence of Mg(2+), the addition of sodium ions promotes folding of array into 30-nm fibres, whereas in mixtures of K(+) and Mg(2+), potassium ions abrogate folding. We found that self-association of nucleosome arrays in mixed salt solutions is synergistically promoted by Mg(2+) and monovalent ions, with sodium being slightly more efficient than potassium in amplifying the self-association. The results highlight the importance of a mixed ionic environment for the compaction of chromatin under physiological conditions and demonstrate the complicated nature of the various factors that determine and regulate chromatin compaction in vivo.

  12. The salt and lipid composition of model cheeses modifies in-mouth flavour release and perception related to the free sodium ion content.

    Science.gov (United States)

    Boisard, Lauriane; Andriot, Isabelle; Martin, Christophe; Septier, Chantal; Boissard, Vanessa; Salles, Christian; Guichard, Elisabeth

    2014-02-15

    Reducing salt and lipid levels in foodstuffs without any effect on acceptability is a major challenge, particularly because of their interactions with other ingredients. This study used a multimodal approach to understand the effects of changes to the composition of model cheeses (20/28, 24/24, 28/20 lipid/protein ratios, 0% and 1% added NaCl) on sodium ion mobility ((23)Na NMR), in-mouth sodium release and flavour perception. An increase in the salt content decreased cheese firmness and perceived hardness, and increased sodium ion mobility, in vivo sodium release and both saltiness and aroma perception. With the same amount of salt, a lower lipid/protein ratio increased the firmness of the cheeses, perceived hardness, and decreased sodium ion mobility, in vivo sodium release, saltiness and aroma perception. These findings suggest on one hand that it could be possible to increase saltiness perception by varying cheese composition, thus inducing differences in sodium ion mobility and in free sodium ion concentration, leading to differences in in-mouth sodium release and saltiness perception, and on the other hand that the reformulation of foods in line with health guidelines needs to take account of both salt content and the lipid/protein ratio. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Zhang, Hanjun; Driscoll, Peter; Lucht, Brett; Kerr, John

    2011-09-30

    A new class of lithium salts of malonatoborate anions has been synthesized. These six-membered-ring salts provided slightly lower ionic conductivity than that of LiBOB and LiBF4. Nevertheless, compared with LiBOB and LiPF6, the lowered ring strains in the malonatoborate structures and reduced numbers of fluorine atoms in the molecules was found to enhance the thermal and water stabilities and compatibilities of these salts with ether solvents. Small amount LiDMMDFB when used as an additive, was found to stabilize LiPF6 in carbonate electrolytes at 80°C for one month. Employing LiMDFB as the electrolyte in Li/Li cells and full cells, large interfacial impedances were observed on lithium metal and the cathode. Moreover, the large impedances are at least partially attributed to the acidic hydrogen atoms in the malonate structure. This issue can be addressed by replacing the acidic atoms with methyl groups.

  14. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  15. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    Science.gov (United States)

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-05-01

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na + and Cl - than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H 2 O 2 ) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Thiourea-Quaternary Ammonium Salt Catalyzed Asymmetric 1, 3-Dipolar Cycloaddition of Imino Esters To Construct Spiro[pyrrolidin-3,3'-oxindoles].

    Science.gov (United States)

    Zhang, Jia-Xing; Wang, Hong-Yu; Jin, Qiao-Wen; Zheng, Chang-Wu; Zhao, Gang; Shang, Yong-Jia

    2016-10-07

    A highly enantioselective 1,3-dipolar cycloaddition of imino esters with methyleneindolinones has been realized by using readily available thiourea-quaternary ammonium salts as phase-transfer catalysts, enabling efficient construction of a range of chiral spiro[pyrrolidin-3,3'-oxindoles] in good yields with excellent enantioselectivities under mild conditions.

  17. Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model.

    Science.gov (United States)

    Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and

  18. Faraday Discussion 160 Introductory Lecture: Interpreting and Predicting Hofmeister Salt Ion and Solute Effects on Biopolymer and Model Processes Using the Solute Partitioning Model

    Science.gov (United States)

    Record, M. Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute “m-values” (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = Δ(dμ2/dm3) = Δμ23 which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the SPM, we dissect μ23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called α-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these α-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients

  19. Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties

    Science.gov (United States)

    Miyazaki, R.; Maekawa, H.; Takamura, H.

    2014-05-01

    The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH4, known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH4, more suitable to the high rate condition. We synthesized the H.P. form of LiBH4 under ambient pressure by doping LiBH4 with the KI lattice by sintering. The formation of a KI - LiBH4 solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the "Parasitic Conduction Mechanism." This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  20. Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties

    Directory of Open Access Journals (Sweden)

    R. Miyazaki

    2014-05-01

    Full Text Available The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH4, known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH4, more suitable to the high rate condition. We synthesized the H.P. form of LiBH4 under ambient pressure by doping LiBH4 with the KI lattice by sintering. The formation of a KI - LiBH4 solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the “Parasitic Conduction Mechanism.” This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  1. Salt stress alters fluid and ion transport by Malpighian tubules of Drosophila melanogaster: evidence for phenotypic plasticity.

    Science.gov (United States)

    Naikkhwah, Wida; O'Donnell, Michael J

    2011-10-15

    Drosophila are tolerant of high levels of dietary salt and can provide a useful model for studies of the physiology of salt stress. The effects of NaCl- and KCl-rich diets on haemolymph ionoregulation and Malpighian tubule (MT) fluid secretion, Na(+) and K(+) secretion and transepithelial potential were examined in larval and adult Drosophila melanogaster. K(+) concentrations in the haemolymph of adults reared on the KCl-rich (0.4 mol l(-1)) diet did not differ from the values for insects reared on the control diet. In the haemolymph of larvae reared on the K-rich diet, K(+) concentrations increased from 23 to 75 mmol l(-1) after 6 h, then returned to the control value within 48 h. Na(+) concentrations in the haemolymph of adults or larvae reared for 1-7 days on the NaCl-rich (0.4 mol l(-1)) diet increased by ~50% relative to values for insects reared on the control diet. Rates of secretion of fluid, Na(+) and K(+) by MTs isolated from larvae reared on the Na-rich diet for >6 h and bathed in control saline containing 20 mmol l(-1) K(+) did not differ from the values for tubules of larvae reared on the control diet. Evidence of phenotypic plasticity was seen in the response of MTs isolated from larvae reared on the K-rich diet for >6 h and bathed in saline containing 60 mmol l(-1) K(+); secretion of fluid and K(+) increased by >50% relative to the values for tubules of larvae reared on the control diet. Secretion of fluid, Na(+) and K(+) increased when tubules were bathed in haemolymph collected from larvae reared on the Na- or K-rich diets. Secretion was further increased by addition of exogenous cAMP but not by addition of thapsigargin to the haemolymph. The results show that haemolymph ionoregulation in larvae reared on salt-rich diets involves both alterations in the basal secretion rates of Na(+) and/or K(+) as well as stimulatory effects of diuretic factors present in the haemolymph. The results suggest that such factors stimulate tubule fluid and ion

  2. Catalytic Asymmetric Synthesis of Both Enantiomers of 4‑Substituted 1,4-Dihydropyridines with the Use of Bifunctional Thiourea-Ammonium Salts Bearing Different Counterions

    Directory of Open Access Journals (Sweden)

    Kohzo Yoshida

    2010-11-01

    Full Text Available Organoammonium salts composed of a Brønsted acid and an anilinothiourea promoted the Michael addition of β-keto esters and α,β-unsaturated aldehydes in the presence of primary amines to give functionalized 1,4-dihydropyridines enantioselectively. With the use of the different Brønsted acids such as DFA and HBF4 with the same bifunctional thiourea, both enantiomers of 4-substituted 1,4-dihydropyridine were synthesized from the same starting materials.

  3. Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.

    Science.gov (United States)

    Shyamsunder, Abhinandan; Beichel, Witali; Klose, Petra; Pang, Quan; Scherer, Harald; Hoffmann, Anke; Murphy, Graham K; Krossing, Ingo; Nazar, Linda F

    2017-05-22

    The step-change in gravimetric energy density needed for electrochemical energy storage devices to power unmanned autonomous vehicles, electric vehicles, and enable low-cost clean grid storage is unlikely to be provided by conventional lithium ion batteries. Lithium-sulfur batteries comprising lightweight elements provide a promising alternative, but the associated polysulfide shuttle in typical ether-based electrolytes generates loss in capacity and low coulombic efficiency. The first new electrolyte based on a unique combination of a relatively hydrophobic sulfonamide solvent and a low ion-pairing salt, which inhibits the polysulfide shuttle, is presented. This system behaves as a sparingly solvating electrolyte at slightly elevated temperatures, where it sustains reversible capacities as high as 1200-1500 mAh g-1 over a wide range of current density (2C-C/5, respectively) when paired with a lithium metal anode, with a coulombic efficiency of >99.7 % in the absence of LiNO3 additive. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of phytohormones on absorption and distribution of ions in salt-stressed bean plants

    Directory of Open Access Journals (Sweden)

    Zofia Starck

    2014-01-01

    Full Text Available Bean plant seedlings grown in water culture were treated for 5 days either with NaCl or with 7-times concentrated nutrient solution (diminished water potential by 3-103 hPa in both cases. Control and stressed plants were treated for 24 hrs with zeatin and GA,. NaCl-stress reduced distinctly ion absorption rate (K, Ca and P. Zeatin and GA3 promoted potassium uptake, but only in NaCI-treated plants. These hormones diminished Na accumulation in metabolically active organs but increased P- and Ca-content. In plants grown under both kind of stresses zeatin and GA3 partially reestablished the ratio of the main mono- to divalent cations, which increased in the leaves and apical part of the stressed plants. ABA introduced into the nutrient solution caused inhibition of the ion uptake (K, Ca, Mg and P. similar to that caused by NaCl-stress. The above reported results seem to confirm the supposition, that hormones act as an important factor contributing to regulation of both uptake and distribution of ions. In this way growth substances may also participate in the regulation of transport of various substances (among others - assimilates in the whole plant.

  5. Hemolymph osmolality and cation concentrations in Litopenaeus vannamei during exposure to artificial sea salt or a mixed-ion solution: relationship to potassium flux.

    Science.gov (United States)

    Sowers, A D; Young, S P; Grosell, M; Browdy, C L; Tomasso, J R

    2006-10-01

    Interest in culturing the Pacific white shrimp Litopenaeus vannamei in low-salinity and brackish-well waters has led to questions about the ability of this species to osmo- and ionoregulate in environments containing low concentrations of ions and in environments with ionic ratios that differ from those found in sea water. After seven days, hemolymph osmolality and potassium, sodium and calcium values were all significantly affected by salinity (as artificial sea salt) with values decreasing with decreasing salinity. These decreases were small, however, relative to decreases in salinity, indicating iono- and osmoregulation with adjustment for gradients. The hemolymph osmolality and sodium and calcium concentrations in shrimp exposed to either 2 g/L artificial sea salt or 2 g/L mixed-ion solution (a mixture of sodium, potassium, calcium, and magnesium chlorides that approximate the concentrations and ratios of these cations found in 2 g/L dilute seawater) did not differ significantly. However, hemolymph potassium levels were significantly lower in shrimp held in the mixed-ion environment. Potassium influx rates were similar in shrimp held in either artificial sea salt or mixed ions. The results of this study indicate that salinity affects hemolymph-cation concentrations and osmolality. Further, differential potassium-influx rates do not appear to be the basis for low hemolymph potassium levels observed in shrimp held in mixed-ion environments.

  6. Physicochemical properties of magnesium aluminum silicate (smectone) gels prepared using electrolytic-reduction ion water (2): Effects of various salts on the phase diagram.

    Science.gov (United States)

    Okajima, Masahiro; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2009-09-01

    We produced gels using electrolytic-reduction ion water and magnesium aluminum silicates (smectone), and evaluated in detail gel properties in the presence of various types of salt (NaCl, KCl, CaCl(2), MgCl(2), and AlCl(3)). Each salt was added to deionized-distilled water or electrolytic-reduction ion water, and phase diagrams for the smectone concentration (2.0-4.0%) were produced. The areas of the three phases of smectone (gel, sol, and separation) at each salt concentration were expressed as percentages of the total area. As a result, uni- and polyvalent cations (excluding Ca(2+) ions) affected the stability of gels produced using electrolytic-reduction ion water, and, particularly, univalent cations (Na(+), K(+)) markedly improved gel stability. Using electrolytic-reduction ion water as a dispersal medium, drug delivery systems (DDS) that can maintain the gelling state can be prepared. Thus, gel preparations with maintained functions or controlled-release transdermal drugs can be obtained.

  7. Selective transport of ions and molecules across layer-by-layer assembled membranes of polyelectrolytes, p-sulfonato-calix[n]arenes and Prussian Blue-type complex salts.

    Science.gov (United States)

    Tieke, Bernd; Toutianoush, Ali; Jin, Wanqin

    2005-11-30

    Our recent studies in the field of ultrathin membranes prepared upon layer-by-layer assembly of various polyionic compounds such as polyelectrolytes, calixarenes and polyelectrolytes, and metal hexacyanoferrate salts such as Prussian Blue are reviewed. It is demonstrated that polyelectrolyte multilayers can be used (a) as nanofiltration and reverse osmosis membranes suitable for water softening and seawater desalination and (b) as molecular sieves and ion sieves for size-selective separation of neutral and charged aromatic compounds. Furthermore, hybrid membranes of p-sulfonato-calixarenes and cationic polyelectrolytes showing specific host-guest interactions with permeating ions are described. The membranes exhibit high selectivities for distinct metal ions. Finally, it is demonstrated that purely inorganic membranes of Prussian Blue (PB) and analogues can be prepared upon multiple sequential adsorption of transition metal cations and hexacyanoferrate anions. Due to the porous lattice of PB, the membranes are useful as ion filters able to separate cesium from sodium ions, for example.

  8. X-ray absorption studies of the effect of plasticizers on ion-pair dissociation in a poly(ethylene oxide)-potassium salt complex

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q.; Lee, H.S.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States); Xu, Z.S.; Skotheim, T.A. [Moltech Corp., Stony Brook, NY (United States); Okamoto, Y. [Polytechnic Univ., Brooklyn, NY (United States); Lu, F. [Univ. of Kentucky, Lexington, KY (United States)

    1994-12-31

    Polyethylene oxide (PEO)-salt systems are an important new class of electrolytes that are being considered for use in high specific energy rechargeable lithium batteries. Near-edge x-ray absorption fine structure (NEXAFS) spectra, at the potassium K-edge, were obtained for the following systems: a potassium salt in (1) a propylene carbonate (PC) solution, (2) a modified carbonate (MC3) solution and (3) in a poly(ethylene oxide) (PEO)-potassium salt complexes having either PC or MC3 as a plasticizer. MC3 is similar to PC except that, instead of a methyl group, there are three ethylene oxide units attached to the 4-position. The degree of white line splitting was used to study ion pair dissociation effects of PC and MC3 qualitatively. When used as a solvent, MC3 has a stronger ion pair dissociation effect compared to PC. When used as a plasticizer in a PEO-potassium salt complex, the enhancement effect an ion pair dissociation of MC3 is superior to PC. This is in good agreement with temperature conductivity study.

  9. Formation of Hydrogen-Ion in Isomolar Solution of Hydrochloric and Hydrobromic Acids and Their Salts

    Directory of Open Access Journals (Sweden)

    M.A. Kovaleva

    2016-09-01

    Full Text Available Despite the presence of a large amount of factual material on thermodynamic parameters of complexation of agents in different solvents, including mixed ones, obtained knowledge is specific in nature. In order to identify more general patterns, studies are relevant that would allow to interpret the obtained data taking into account the interaction between chemical forms in solutions. This paper presents a general approach to studying weak ionic interactions in solutions that allows to simultaneously determine the constants of these interactions and the parameters characterizing the influence of changes in the ionic environment on these constants by the example of chlorides and bromides of alkali metals. The obtained constants for hydrosulfate-ion formation and the imperfection parameters can be a reference material for more accurate calculation of the concentration of hydrogen ions in sulfuric acid solutions. The developed approach and patterns identified in the work can be used to study the balanced states for formation of low and medium stable complexes.

  10. Effect of Dopant Ions on the Electrical Conductivity and Microstructure of Polyaniline (Emeraldine Salt

    Directory of Open Access Journals (Sweden)

    M. D. Catedral

    2004-12-01

    Full Text Available Samples of polyaniline (emeraldine salt were prepared with different protonic acid dopants, namely, hydrochloric acid (HCl, nitric acid (HNO3, perchloric acid (HClO4, sulfuric acid (H2SO4, and hydroiodic acid (HI. Using the two-point probe method, it was found that the samples had ohmic behaviors in which high linear coefficients were found in the range 0.9686–0.9997. On the other hand, the electrical conductivities were measured using the Van der Pauw method. The undoped sample had a conductivity of 5x10–4 S/cm. The highest conductivity of 109.04 S/cm was observed for the HClO4-doped sample, while the lowest value (0.02 S/cm was obtained for the HI-doped sample. These conductivities were compared with the computed energy gap between the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO where it was found that they are inversely proportional to each other. Scanning electron microscopy revealed significant differences among the samples in terms of shapes and morphologies.

  11. Electrodialysis-ion exchange for the separation of dissolved salts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, J.L.; Baroch, C.J.; Litz, J.

    1996-07-19

    The program described in this report studies the suitability of electrodialysis-ion exchange (EDIX) to treat aqueous streams containing heavy metals and radioactive cations in a solution containing sodium and nitrates. The goal of the program was to produce a cation stream containing sodium, heavy metals, and radioactive cations; an anion stream of nitric acid free of heavy metals and radioactive cations; and a product stream that meets discharge criteria. The experimental results, described in detail, indicated that EDIX was not a suitable process for treating wastes containing metals that formed insoluble hydroxides in a basic solution; the metals precipitate in the catholyte and feed compartments, and in the cathode membrane. The test program was therefore terminated prior to completion of all planned activities. 2 refs., 22 figs., 8 tabs.

  12. A high sensitive ion pairing probe (the interaction of pyrenetetrasulphonate and methyl viologen): Salt and temperature dependences and applications

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Jeferson [Departamento de Bioquímica e Departamento de Química, Instituto de Química, Universidade de São Paulo, SP (Brazil); Perez, Katia R. [Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo-SP (Brazil); Pisco, Thiago B.; Pavanelli, David D.; Briotto Filho, Décio; Rezende, Daisy [Departamento de Bioquímica e Departamento de Química, Instituto de Química, Universidade de São Paulo, SP (Brazil); Rezende Triboni, Eduardo [Universidade Nove de Julho, São Paulo, São Paulo-SP (Brazil); Chagas Alves Lima, Francisco das [Coordenação de Química, Universidade Estadual do Piauí, Teresina-PI (Brazil); Lopes Magalhães, Janildo [Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Centro de Ciências da Natureza, Teresina, PI (Brazil); Midea Cuccovia, Iolanda [Departamento de Bioquímica e Departamento de Química, Instituto de Química, Universidade de São Paulo, SP (Brazil); and others

    2014-07-01

    The interaction between pyrenetetrasulphonate (PTS) and methyl viologen (MV{sup 2+}) leads to a 1:1 charge transfer complex (CTC) in the concentration range below mmol L{sup −1} of the ligands. Quantum mechanical calculations show the 1:1 complex having the planar moiety of PTS and the charges of the sulfonate groups stabilized by the twisted rings of the positively charged MV{sup 2+} species. The peculiar nature of PTS includes high fluorescence quantum yield (∼1), clear specular UV–vis spectra and fluorescence emission images, as well similar S{sub 2}←S{sub 0} and S{sub 3}←S{sub 0} transitions as those of S{sub 1}←S{sub 0,} all of them exhibiting well resolved vibrational structure. MV{sup 2+} has well known electron-accepting properties that favor the complexation. These features were studied as a function of salt concentration and temperature dependences allowing a detailed comprehension of static and dynamic association processes. Quantum mechanical calculations show the 1:1 stabilization of PTS/MV{sup 2+}. In addition the effect of urea on the CTC equilibrium is presented, as expected the additive acts towards the non-complexed species (solvated free ions). The fluorescence quenching of MV{sup 2+}over PTS highlights is one of the applications of this effect for giant vesicles characterization. - Highlights: • We determined the details of PTS/MV{sup 2+} 1:1 complex formation. • Ground and excited states formation is operative. • Ion pairing effects due to urea effect are shown. • Vesicle formation is illustrated by the pair.

  13. Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery

    Science.gov (United States)

    Wang, Xingbo; Huang, Weifeng; Tao, Shi; Xie, Hui; Wu, Chuanqiang; Yu, Zhen; Su, Xiaozhi; Qi, Jiaxin; Rehman, Zia ur; Song, Li; Zhang, Guobin; Chu, Wangsheng; Wei, Shiqiang

    2017-08-01

    Peroxide structure O2n- has proven to appear after electrochemical process in many lithium-excess precious metal oxides, representing extra reversible capacity. We hereby report construction of a Li-excess rock-salt oxide Li1+xNi1/2-3x/2Ru1/2+x/2O2 electrode, with cost effective and eco-friendly 3d transition metal Ni partially substituting precious 4d transition metal Ru. It can be seen that O2n- is formed in pristine Li1.23Ni0.155Ru0.615O2, and stably exists in subsequent cycles, enabling discharge capacities to 295.3 and 198 mAh g-1 at the 1st/50th cycle, respectively. Combing ex-situ X-ray absorption near edge spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, high resolution transmission electron microscopy and electrochemical characterization, we demonstrate that the excellent electrochemical performance comes from both percolation network with disordered structure and cation/anion redox couples occurring in charge-discharge process. Li-excess and substitution of common element have been demonstrated to be a breakthrough for designing novel high performance commercial cathodes in rechargeable lithium ion battery field.

  14. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  15. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    Science.gov (United States)

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  16. Ion pairing with bile salts modulates intestinal permeability and contributes to food-drug interaction of BCS class III compound trospium chloride.

    Science.gov (United States)

    Heinen, Christian A; Reuss, Stefan; Amidon, Gordon L; Langguth, Peter

    2013-11-04

    In the current study the involvement of ion pair formation between bile salts and trospium chloride (TC), a positively charged Biopharmaceutical Classification System (BCS) class III substance, showing a decrease in bioavailability upon coadministration with food (negative food effect) was investigated. Isothermal titration calorimetry provided evidence of a reaction between TC and bile acids. An effect of ion pair formation on the apparent partition coefficient (APC) was examined using (3)H-trospium. The addition of bovine bile and bile extract porcine led to a significant increase of the APC. In vitro permeability studies of trospium were performed across Caco-2-monolayers and excised segments of rat jejunum in a modified Ussing chamber. The addition of bile acids led to an increase of trospium permeation across Caco-2-monolayers and rat excised segments by approximately a factor of 1.5. The addition of glycochenodeoxycholate (GCDC) was less effective than taurodeoxycholate (TDOC). In the presence of an olive oil emulsion, a complete extinction of the permeation increasing effects of bile salts was observed. Thus, although there are more bile acids in the intestine in the fed state compared to the fasted state, these are not able to form ion pairs with trospium in fed state, because they are involved in the emulsification of dietary fats. In conclusion, the formation of ion pairs between trospium and bile acids can partially explain its negative food effect. Our results are presumably transferable to other organic cations showing a negative food effect.

  17. Evaluation of physiological and defense characteristics and ions contents of Red and Brooms cultivars of sorghum (Sorghum biolor under salt stress stress in vitro

    Directory of Open Access Journals (Sweden)

    Roya Razavizadeh

    2016-12-01

    Full Text Available The present study was conducted to evaluate defense and physiological responses of some red and broomscultivars of Sorghum to salinity stress under in vitro culture. Seeds of Sorghum cultivars were cultured on MS (Murashig and Skoog, 1962 medium containing 0, 50, 100 and 150 mM NaCl under in vitro condition. After 2 weeks, the effect of salinity was studied on percentage of germination, growth parameters, photosynthetic capacity (total chlorophyll and carotenoids, total anthocyanin, total felavonoids, reducing sugars, proline, Na+/K+/Ca2+ ions, total soluble protein content, ascorbate peroxidase and catalase activities in roots and shoots. According to percentage of seed germination and growth parameters, Red and brooms cultivars were selected as susceptible and resistant to salinity in the study, respectively. The photosynthetic pigments (chlorophyll and carotenoids and the anthocyanin content decreased by increasing salt levels in both cultivars, while flavonoids increased in three wavelengths 270, 300 and 330 nm. The results showed proline, suger and protein contents increased in roots and shoots of two cultivars by increasing salinity. The content of Na+ ion increased in the roots of red and brooms cultivars and shoot of Red cultivar. Ratio Na/K increased in roots of two cultivars and shoots of red by increasing salinity. Ratio Na/K in the shoots of brooms cultivar didn’t change significantly under salt stress. Generally in the presence of salt, potassium decreased in roots and shoots of two cultivars. Calcium ion amount in the roots of two cultivars didn’t change significantly under salt stress while it increased in shoots of two cultivars. The CAT activity increased in roots and shoots of two cultivars but APX activity increased in brooms cultivar and decreased significantly in red cultivar.

  18. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate

    Science.gov (United States)

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-06-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li+ ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  19. Mixed-bed ion exchange chromatography employing a salt-free pH gradient for improved sensitivity and compatibility in MudPIT.

    Science.gov (United States)

    Mommen, Geert P M; Meiring, Hugo D; Heck, Albert J R; de Jong, Ad P J M

    2013-07-16

    In proteomics, comprehensive analysis of peptides mixtures necessitates multiple dimensions of separation prior to mass spectrometry analysis to reduce sample complexity and increase the dynamic range of analysis. The main goal of this work was to improve the performance of (online) multidimensional protein identification technology (MudPIT) in terms of sensitivity, compatibility and recovery. The method employs weak anion and strong cation mixed-bed ion exchange chromatography (ACE) in the first separation dimension and reversed phase chromatography (RP) in the second separation dimension (Motoyama et.al. Anal. Chem 2007, 79, 3623-34.). We demonstrated that the chromatographic behavior of peptides in ACE chromatography depends on both the WAX/SCX mixing ratio as the ionic strength of the mobile phase system. This property allowed us to replace the conventional salt gradient by a (discontinuous) salt-free, pH gradient. First dimensional separation of peptides was accomplished with mixtures of aqueous formic acid and dimethylsulfoxide with increasing concentrations. The overall performance of this mobile phase system was found comparable to ammonium acetate buffers in application to ACE chromatography, but clearly outperformed strong cation exchange for use in first dimensional peptide separation. The dramatically improved compatibility between (salt-free) ion exchange chromatography and reversed phase chromatography-mass spectrometry allowed us to downscale the dimensions of the RP analytical column down to 25 μm i.d. for an additional 2- to 3-fold improvement in performance compared to current technology. The achieved levels of sensitivity, orthogonality, and compatibility demonstrates the potential of salt-free ACE MudPIT for the ultrasensitive, multidimensional analysis of very modest amounts of sample material.

  20. Influences of hydrological regime on heavy metal and salt ion concentrations in intertidal sediment from Chongming Dongtan, Changjiang River estuary, China

    Science.gov (United States)

    Zhao, Jiale; Gao, Xiaojiang; Yang, Jin

    2017-11-01

    The tidal flat along the Changjiang (Yangtze) River estuary has long been reclaimed for the agricultural purposes, with the prevailing hydrological conditions during such pedogenic transformations being of great importance to their successful development. In this study, samples of surface sediment from Chongming Dongtan, situated at the mouth of the Changjiang River estuary, were collected and analyzed in order to understand how hydrological management can influence the concentrations of heavy metals and salt ions in pore water, and chemical fractionation of heavy metals during the reclamation process. We performed a series of experiments that simulated three different hydrological regimes: permanent flooding (R1), alternative five-day periods of wetting and drying (R2), continuous field capacity (R3). Our results exhibited good Pearson correlations coefficients between heavy metals and salt ions in the pore water for both R1 and R2. In particular, the concentrations of salt ions in the pore water decreased in all three regimes, but showed the biggest decline in R2. With this R2 experiment, the periodic concentration patterns in the pore water varied for Fe and Mn, but not for Cr, Cu, Pb and Zn. Neither the fractionation of Ni nor the residual fractions of any metals changed significantly in any regime. In R1, the reducible fractions of heavy metals (Cr, Cu, Zn and Pb) in the sediment decreased, while the acid extractable fractions increased. In R2, the acid extractable and the reducible fractions of Cr, Cu, Zn and Pb both decreased, as did the oxidizable fraction of Cu. These data suggest that an alternating hydrological regime can reduce both salinity and the availability of heavy metals in sediments.

  1. Effects of partial defoliation on the growth, ion relations and photosynthesis of Lycium chinense Mill. under salt stress

    Directory of Open Access Journals (Sweden)

    Guo Yuan

    2015-01-01

    Full Text Available In this study, we investigated the effects of artificial defoliation on the growth and physiological response of Lycium chinense Mill. to salt stress. Our results show that partial defoliation increases the plant relative growth rate, leaf water content and dry weight-based leaf Na+ content, and reduces the fresh weight-based leaf Na+ content under salt stress. In response to defoliation, the leaf Na+/Ca2+ and Na+/Mg2+ ratios were decreased, but the K+ content remained unchanged. The contents of ROS and MDA were decreased in defoliated plants. Net The photosynthetic rate (PN, stomatal conductance (gs, electron transport rate (ETR, actual photochemical quenching (ΦPSII and photochemical quenching (qp were enhanced by defoliation. Together, these findings indicate that partial defoliation mitigates the salt-induced growth inhibition and physiological damage in L. chinense.

  2. β-NMR measurements of molecular-scale lithium-ion dynamics in poly(ethylene oxide)-lithium-salt thin films.

    Science.gov (United States)

    McKenzie, Iain; Cortie, David L; Harada, Masashi; Kiefl, Robert F; Levy, C D Philip; MacFarlane, W Andrew; McFadden, Ryan M L; Morris, Gerald D; Ogata, Shin-Ichi; Pearson, Matthew R; Sugiyama, Jun

    2017-06-28

    β-detected NMR (β-NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β-NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of (8)Li(+) was observed in all of the films above ∼250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3±0.2 kJ mol(-1) in PEO:LiTFA to 17.8±0.2 kJ mol(-1) in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in (8)Li(+) hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.

  3. β-NMR measurements of molecular-scale lithium-ion dynamics in poly(ethylene oxide)-lithium-salt thin films

    Science.gov (United States)

    McKenzie, Iain; Cortie, David L.; Harada, Masashi; Kiefl, Robert F.; Levy, C. D. Philip; MacFarlane, W. Andrew; McFadden, Ryan M. L.; Morris, Gerald D.; Ogata, Shin-Ichi; Pearson, Matthew R.; Sugiyama, Jun

    2017-06-01

    β -detected NMR (β -NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β -NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of 8Li+ was observed in all of the films above ˜250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3 ±0.2 kJ mol-1 in PEO:LiTFA to 17.8 ±0.2 kJ mol-1 in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in 8Li+ hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.

  4. Asymmetric fluorocyclizations of alkenes.

    Science.gov (United States)

    Wolstenhulme, Jamie R; Gouverneur, Véronique

    2014-12-16

    CONSPECTUS: The vicinal fluorofunctionalization of alkenes is an attractive transformation that converts feedstock olefins into valuable cyclic fluorinated molecules for application in the pharmaceutical, agrochemical, medical, and material sectors. The challenges associated with asymmetric fluorocyclizations induced by F(+) reagents are distinct from other types of halocyclizations. Processes initiated by the addition of an F(+) reagent onto an alkene do not involve the reversible formation of bridged fluoronium ions but generate acyclic β-fluorocationic intermediates. This mechanistic feature implies that fluorocyclizations are not stereospecific. A discontinuity exists between the importance of this class of fluorocyclization and the activation modes currently available to implement successful catalysis. Progress toward fluorocyclization has been achieved by investing in neutral and cationic [NF] reagent development. The body of work on asymmetric fluorination using chiral cationic [NF](+) reagents prepared by fluorine transfer from the dicationic [NF](2+) reagent Selectfluor to quinuclidines, inspired the development of asymmetric F(+)-induced fluorocyclizations catalyzed by cinchona alkaloids; for catalysis, the use of N-fluorobenzenesulfonimide, which is less reactive than Selectfluor, ensures that the achiral F(+) source remains unreactive toward the alkene. These organocatalyzed enantioselective fluorocyclizations can be applied to indoles to install the fluorine on a quaternary benzylic stereogenic carbon center and to afford fluorinated analogues of natural products featuring the hexahydropyrrolo[2,3-b]indole or the tetrahydro-2H-furo[2,3-b]indole skeleton. In an alternative approach, the poor solubility of dicationic Selectfluor bis(tetrafluoroborate) in nonpolar solvent was exploited with anionic phase transfer catalysis as the operating activation mode. Exchange of the tetrafluoroborate ions of Selectfluor with bulky lipophilic chiral anions (e

  5. Ion-pairing of phosphonium salts in solution: C-H⋅⋅⋅halogen and C-H⋅⋅⋅π hydrogen bonds.

    Science.gov (United States)

    Ammer, Johannes; Nolte, Christoph; Karaghiosoff, Konstantin; Thallmair, Sebastian; Mayer, Peter; de Vivie-Riedle, Regina; Mayr, Herbert

    2013-10-18

    The (1) H NMR chemical shifts of the C(α)H protons of arylmethyl triphenylphosphonium ions in CD2 Cl2 solution strongly depend on the counteranions X(-) . The values for the benzhydryl derivatives Ph2 CHPPh3 (+)  X(-) , for example, range from δH =8.25 (X(-) =Cl(-) ) over 6.23 (X(-) =BF4 (-) ) to 5.72 ppm (X(-) =BPh4 (-) ). Similar, albeit weaker, counterion-induced shifts are observed for the ortho-protons of all aryl groups. Concentration-dependent NMR studies show that the large shifts result from the deshielding of the protons by the anions, which decreases in the order Cl(-) > Br(-) ≫ BF4 (-) > SbF6 (-) . For the less bulky derivatives PhCH2 PPh3 (+)  X(-) , we also find CH⋅⋅⋅Ph interactions between C(α)H and a phenyl group of the BPh4 (-) anion, which result in upfield NMR chemical shifts of the C(α)H protons. These interactions could also be observed in crystals of (p-CF3 -C6 H4 )CH2 PPh3 (+)  BPh4 (-) . However, the dominant effects causing the counterion-induced shifts in the NMR spectra are the CH⋅⋅⋅X(-) hydrogen bonds between the phosphonium ion and anions, in particular Cl(-) or Br(-) . This observation contradicts earlier interpretations which assigned these shifts predominantly to the ring current of the BPh4 (-) anions. The concentration dependence of the (1) H NMR chemical shifts allowed us to determine the dissociation constants of the phosphonium salts in CD2 Cl2 solution. The cation-anion interactions increase with the acidity of the C(α)H protons and the basicity of the anion. The existence of CH⋅⋅⋅X(-) hydrogen bonds between the cations and anions is confirmed by quantum chemical calculations of the ion pair structures, as well as by X-ray analyses of the crystals. The IR spectra of the Cl(-) and Br(-) salts in CD2 Cl2 solution show strong red-shifts of the CH stretch bands. The CH stretch bands of the tetrafluoroborate salt PhCH2 PPh3 (+)  BF4 (-) in CD2 Cl2

  6. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    OpenAIRE

    Wang, Shiwen; Liu, Peng; Chen, Daoqian; Yin, Lina; Li, Hongbing; Deng, Xiping

    2015-01-01

    Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for 2 weeks were exposed to 65 mM NaCl solution for another 1 week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net...

  7. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Lund Jensen, Kristian; Kristensen, Jesper Toft; Crumrine, Andrew Michael

    2011-01-01

    the nanochannel conductance at low salt concentrations and identify a conductance minimum before saturation at a value independent of salt concentration in the dilute limit. Via the Poisson-Boltzmann equation, our model self-consistently couples chemical-equilibrium dissociation models of the silica wall...... and of the electrolyte bulk, parametrized by the dissociation reaction constants. Experimental data with aqueous KCl solutions in 165-nm-high silica nanochannels are described well by our model, both with and without extra hydronium from added HCl....

  8. Electron Jet of Asymmetric Reconnection

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  9. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    Science.gov (United States)

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  10. Synthesis and Self-Assembly of Triangulenium Salts

    DEFF Research Database (Denmark)

    Shi, Dong

    This thesis describes the design and synthesis of asymmetrically substituted amphiphilic tis(dialkylamino)trioxiatriangulenium (ATOTA+) salts with different counter ions. Attention was focused on exploring the assembling properties of the ATOTA+ salts in aqueous media. A direct vortexing-processed...... in influencing the assembling process and morphology of the assembled nanostructures. Tailoring the ATOTA+ system with alkyl chains of different length showed large effect on the final morphology of assembled supramolecular structures. The first two chapters give a brief introduction to molecular self......, highly ordered, and free-floating bilayer nanosheets through prolonged vigorous shaking. In this study, a mechanism for the self-assembly process agitated by prolonged vigorous shaking is proposed. It is proposed that the self-assembly is realized via a intermediated monolayer formed at the dynamic air...

  11. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system.

    Science.gov (United States)

    Gorcek, Zeynep; Erdal, Serkan

    2015-11-01

    Soil salinity is one of the most detrimental environmental factors affecting the growth of plants and limiting their agricultural productivity. This study investigated whether exogenous lipoic acid (LA) pretreatment plays a role in promoting salt tolerance in wheat seedlings. The seedlings were treated with LA (1.75 mmol L(-1)) and salt (100 mmol L(-1) NaCl) separately and a combination of them. Salt stress significantly reduced relative water content, leaf surface area, ribulose bisphosphate carboxylase expression, and chlorophyll content but increased the content of osmo-regulator protein, carbohydrates and proline. In addition, salinity led to an imbalance in the inorganic composition of wheat leaves. While it elevated Na(+) content compared to control, Ca content and K(+)/Na(+) ratio were reduced. Under saline conditions, despite increases in antioxidant enzyme activity and levels of antioxidant compounds (ascorbate and glutathione), the content of reactive oxygen species (superoxide anion, hydrogen peroxide) and malondialdehyde were higher than in control seedlings. LA significantly promoted osmo-regulator level and antioxidant enzyme activities compared to stressed seedlings alone. Also, it both increased levels of ascorbate and glutathione and regenerated their oxidised forms, thus contributing to maintaining cellular redox status. Similarly, LA prevented excessive accumulation of Na(+) and promoted K(+)/Na(+) ratio and Ca content. Reactive oxygen species content was significantly reduced, and the inhibitions in the above parameters markedly recovered. LA reduced salinity-induced oxidative damage and thus contributed to the growth and development of plants in saline soils by modulating ion homeostasis between plant and soil as well as in osmo-regulator content and antioxidant system. © 2014 Society of Chemical Industry.

  12. Electrolyte salts for nonaqueous electrolytes

    Science.gov (United States)

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  13. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy

  14. The influence of salt type on the retention of bovine serum albumin in ion-exchange chromatography

    DEFF Research Database (Denmark)

    Al-Jibbouri, Sattar

    2007-01-01

    that the mechanism of protein retention in ion-exchange chromatography (IEC) involves interactions between the protein solute, the mobile phase constituents and the stationary phase. The effect of protein activity coefficient in the mobile phase on the protein retention volumes is verified....

  15. Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

    Science.gov (United States)

    Gong, Haipeng; Freed, Karl F.

    2010-01-01

    Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761

  16. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes

    Science.gov (United States)

    Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.

  17. A New Cone Shaped Asymmetrically Substituted Calix[4]arene as an ExcellentIonophore in Construction of Ag(I) ion-Selective Membrane Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ganjali, Mohammad Reza; Babaei, Leila Hajiagha [Tehran University, Tehran (Iran, Islamic Republic of); Ganjali, Saeed Taghvaei; Modjallal, Atoosa [Azad University, Tehran (Iran, Islamic Republic of); Shamsipur, Mojtaba [Kermanshah University, Kermanshah (Iran, Islamic Republic of); Hosseini, Morteza [Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Javanbakht, Mehran [Payamenoor University, Delijan (Iran, Islamic Republic of)

    2004-02-15

    A PVC membrane electrode for silver ion based on a new cone shaped calix[4]arene (CASCA) as membrane carrier was prepared. The electrode exhibits a Nernstian response for Ag+ over a wide concentration range (1.0 x 10{sup -1}-8.0 x 10{sup -6} M) with a slope of 58.2 {+-} 0.5 mV per decade. The limit of detection of the sensor is 5.0 x 10{sup -6} M. The sensor has a very fast response time ({approx}5 s) in the concentration range of {<=} = 1.0 x 10{sup -3} M, and a useful working pH range of 4.0-9.5. The proposed sensor displays excellent discriminating ability toward Ag{sup +} ion with respect to common alkali, alkaline earth, transition and heavy metal ions. It was used as an indicator electrode in potentiometric titration of Ag{sup +} with EDTA and in direct determination of silver ion in wastewater of silver electroplating

  18. Liquid-liquid extraction of ion-association complexes of cobalt(II-4-(2-pyridylazoresorcinol with ditetrazolium salts

    Directory of Open Access Journals (Sweden)

    Divarova Vidka V.

    2015-01-01

    Full Text Available The formation and liquid-liquid extraction of ion-association complexes between Co(II-4-(2-Pyridylazoresorcinol (PAR anionic chelates and cations of three ditetrazolium chlorides were studied: Blue Tetrazolium chloride (BTC, Neotetrazolium chloride (NTC and Nitro Blue Tetrazolium chloride (NBT. The optimum conditions for the formation and solvent extraction of the ion-association comlpex chelates were determined. It has been found that in the systems of Co(II-PAR-DTS, the reactants are reacted in molar ratios 1:2:1 and the general formula of complexes was suggested. The extraction equilibria were investigated and quantitatively characterized by the equilibrium constants and the recovery factors. The analytical characteristics of the complexes were calculated.

  19. Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qingsong, E-mail: pinew@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei, Anhui 230026 (China); Sun Jinhua [State Key Laboratory of Fire Science, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei, Anhui 230026 (China); Chen Chunhua [Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-08-15

    The thermal stability of lithiated graphite in the presence of solvents, electrolytes and LiPF{sub 6} salt was studied using C80 micro-calorimeter. The presence of cyclic carbonates or linear carbonates increases the activity of Li{sub x}C{sub 6}-solvent coexisting system, especially for the Li{sub x}C{sub 6}-linear carbonates one. LiPF{sub 6} was detected that it increases the activity greatly of its coexisting system with lithiated graphite. The coexisting system of Li{sub x}C{sub 6} with the electrolyte of LiPF{sub 6}/ethylene carbonate + diethyl carbonate shows less thermal stability, which is attributed to the activity between diethyl carbonate and Li{sub x}C{sub 6}. This also agrees with the experiment result of Li{sub x}C{sub 6}-diethyl carbonate coexisting system.

  20. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity.

    Science.gov (United States)

    Chen, Peng; Yan, Kun; Shao, Hongbo; Zhao, Shijie

    2013-01-01

    Glycine soja (BB52) is a wild soybean cultivar grown in coastal saline land in Yellow River Delta, China. In order to reveal the physiological mechanisms adapting to salinity, we examined photosynthesis, ion flux, antioxidant system and water status in Glycine soja under NaCl treatments, taking a cultivated soybean, ZH13, as control. Upon NaCl exposure, higher relative water content and water potential were maintained in the leaf of BB52 than ZH13, which might depend on the more accumulation of osmotic substances such as glycinebetaine and proline. Compared with ZH13, activities of antioxidant enzymes including superoxide dismutase, catalase, ascorbate peroxidase and contents of ascorbate, glutathione and phenolics were enhanced to a higher level in BB52 leaf under NaCl stress, which could mitigate the salt-induced oxidative damage in BB52. Consistently, lipid peroxidation indicated by malondialdehyde content was lower in BB52 leaf. Photosynthetic rate (Pn) was decreased by NaCl stress in BB52 and ZH13, and the decrease was greater in ZH13. The decreased Pn in BB52 was mainly due to stomatal limitation. The inhibited activation of rubisco enzyme in ZH13 due to the decrease of rubisco activase content became an important limiting factor of Pn, when NaCl concentration increased to 200 mM. Rubisco activase in BB52 was not affected by NaCl stress. Less negative impact in BB52 derived from lower contents of Na(+) and Cl(-) in the tissues, and non-invasive micro-test technique revealed that BB52 roots had higher ability to extrude Na(+) and Cl(-). Wild soybean is a valuable genetic resource, and our study may provide a reference for molecular biologist to improve the salt tolerance of cultivated soybean in face of farmland salinity.

  1. Glass-Fiber Networks as an Orbit for Ions: Fabrication of Excellent Antistatic PP/GF Composites with Extremely Low Organic Salt Loadings.

    Science.gov (United States)

    Gu, Senlin; Zhu, Leon; Mercier, Claude; Li, Yongjin

    2017-05-31

    Polypropylene (PP)/glass fiber (GF) composites showing excellent antistatic performance were prepared by a simple melt process blending PP with GF and a small amount of organic salts (OSs). Two types of OSs, tribuyl(octyl)phosphonium bis(trifloromethanesulfonyl)imide (TBOP-TFSI) and lithium bis(trifloromethanesulfonyl)imide (Li-TFSI), with equivalent anions were used as antistatic agents for the composites. It was found that the GF and OSs exhibited significant synergistic effects on the antistatic performance as well as the mechanical properties of the composites. On the one hand, the incorporation of GF significantly enhanced the electric conductivity of the composites at a constant OS loading. On the other hand, the two types of OSs improved the interfacial adhesion between the GF and the PP matrix, which led to an enhancement of the mechanical properties. This study showed that OSs had specific interactions with GFs and were absorbed exclusively on the GF surface. The GF network in the PP matrix provided perfect orbits for the movement of ions, inducing the excellent antistatic performance exhibited by the PP/GF composites at an OS loading of as low as 0.25 wt % when the GF formed a network in the PP matrix.

  2. Isotherm-Based Thermodynamic Model for Solute Activities of Asymmetric Electrolyte Aqueous Solutions.

    Science.gov (United States)

    Nandy, Lucy; Dutcher, Cari S

    2017-09-21

    Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. J. Phys. Chem. A/C 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute-solvent energy interactions (Ohm et al. J. Phys. Chem. A 2015, Nandy et al. J. Phys. Chem. A 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1-2 and 1-3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate the osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute-solute and solute-solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter that accounts for the dissociation ratio of the dissociated ions to nondissociated ions.

  3. Overexpression of a Plasma Membrane Bound Na+/H+ Antiporter-Like Protein (SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis.

    Science.gov (United States)

    Kumari, P Hima; Kumar, S Anil; Sivan, Pramod; Katam, Ramesh; Suravajhala, Prashanth; Rao, K S; Varshney, Rajeev K; Kishor, Polavarapu B Kavi

    2016-01-01

    A Na+/H+ antiporter-like protein (NHXLP) was isolated from Sorghum bicolor L. (SbNHXLP) and validated by overexpressing in tomato for salt tolerance. Homozygous T2 transgenic lines when evaluated for salt tolerance, accumulated low Na+ and displayed enhanced salt tolerance compared to wild-type plants (WT). This is consistent with the amiloride binding assay of the protein. Transgenics exhibited higher accumulation of proline, K+, Ca2+, improved cambial conductivity, higher PSII, and antioxidative enzyme activities than WT. Fluorescence imaging results revealed lower Na+ and higher Ca2+ levels in transgenic roots. Co-immunoprecipitation experiments demonstrate that SbNHXLP interacts with a Solanum lycopersicum cation proton antiporter protein2 (SlCHX2). qRT-PCR results showed upregulation of SbNHXLP and SlCHX2 upon treatment with 200 mM NaCl and 100 mM potassium nitrate. SlCHX2 is known to be involved in K+ acquisition, and the interaction between these two proteins might help to accumulate more K+ ions, and thus maintain ion homeostasis. These results strongly suggest that plasma membrane bound SbNHXLP involves in Na+ exclusion, maintains ion homeostasis in transgenics in comparison with WT and alleviates NaCl stress.

  4. Asymmetric Divisions in Oogenesis.

    Science.gov (United States)

    Bilinski, Szczepan M; Kubiak, Jacek Z; Kloc, Malgorzata

    In the majority of animals, the oocyte/egg is structurally, molecularly, and functionally asymmetric. Such asymmetry is a prerequisite for a flawless fertilization and faithful segregation of maternal determinants during subsequent embryonic development. The oocyte asymmetry develops during oogenesis and must be maintained during consecutive and obligatorily asymmetric oogonial divisions, which depending on the species lead to the formation of either oocyte alone or oocyte and nurse cell complex. In the following chapter, we summarize current knowledge on the asymmetric oogonial divisions in invertebrate (insects) and vertebrate (Xenopus) species.

  5. Magnetochemistry of the tetrahaloferrate (III) ions: Crystal structure and magnetic ordering in [(4-chloropyridinium)FeCl4]2ṡ4-chloropyridinium chloride and related salts (abstract)

    Science.gov (United States)

    Lowe, C. B.; Shum, D. P.; Carlin, Richard L.

    1990-05-01

    The yellow compound of stoichiometry (4-chloropyridinium)3Fe2Cl9 belongs to the space group P21/n with four formula units in the unit cell. Structural analysis shows that the iron is present as the FeX4- ion. Magnetic measurements on single crystals show that the material orders as a canted antiferromagnet at 2.725 K. Replacement of the 4-chloro cation by the 4-bromo analog yields an isomorphous material and shifts the transition temperature to 2.34 K. The phase diagrams of both salts have also been determined. For [(4-chloropyridinium)FeCl4]2ṡ4-chloropyridinium chloride, the bicritical point is at 2.40 K and 7 kOe, and HSF(0)=5.5 kOe. With Hc(0)=56 kOe, α=HA/HE=1.9×10-2. In the case of [(4-bromopyridinium)FeCl4]2ṡ4-bromopyridinium chloride, HSF(0)=3 kOe, Hc(0)=42 kOe, α=1.0×10-2, and the bicritical point is at 2.24 K and 4.2 kOe. Crystallographic investigations at 25 K are reported on the isomorphous (4-chloropyridinium)3Fe2Br9 and on (4-bromopyridinium)3Fe2Cl1.3Br7.7. Magnetic measurements on single crystals show that (4-bromopyridinium)3Fe2Cl1.3Br7.7 orders as a canted antiferromagnet at 5.67 K, while (4-chloropyridinium)3Fe2Br9 orders similarly at 7.96 K. These compounds behave approximately as S=5/2, three-dimensional Heisenberg antiferromagnets.

  6. A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis.

    Science.gov (United States)

    Mo, Ke; Yang, Yuhua; Cui, Yong

    2014-02-05

    A homochiral metal-organic framework (MOF) of an enantiopure 2,2'-dihydroxy-1,1'-biphenyl ligand was constructed. After exchanging one proton of the dihydroxyl group for Li(I) ions, the framework is shown to be a highly efficient and recyclable heterogeneous catalyst for asymmetric cyanation of aldehydes with up to >99% ee. Compared with the homogeneous counterpart, the MOF catalyst exhibits significantly enhanced catalytic activity and enantioselectivity, especially at a low catalyst/substrate ratio, due to that the rigid framework could stabilize the catalytically active monolithium salt of biphenol against its free transformation to catalytically inactive and/or less active assemblies in reactions. The synthetic utility of the cyanation was demonstrated in the synthesis of (S)-bufuralol (a nonselective β-adrenoceptor blocking agent) with 98% ee.

  7. Molten salt-directed synthesis method for LiMn2O4 nanorods as a cathode material for a lithium-ion battery with superior cyclability

    CSIR Research Space (South Africa)

    Kebede, Mesfin A

    2017-02-01

    Full Text Available A molten salt synthesis technique has been used to prepare nanorods of Mn2O3 and single-crystal LiMn2O4 nanorods cathode material with superior capacity retention. The molten salt-directed synthesis involved the use of NaCl as the eutectic melt...

  8. INNER SALTS

    Science.gov (United States)

    been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a...Products that have been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a mesomeric inner salt . (Author)...Novel phosphonium and phosphorane compounds ere prepared by a variety of m hods from triphenylphosphine and methylene bromide. Products that have

  9. Dietary salt reduction for control of hypertension

    Directory of Open Access Journals (Sweden)

    Richard Tjan

    2016-02-01

    Full Text Available In developed as well as developing countries, the four main factors affecting blood pressure are high salt intake, low potassium intake, overweight, and low physical activity level. This is also true for the increase in blood pressure with advancing age, occurring in all societies. It is now accepted that excess dietary salt raises blood pressure levels, whereas dietary salt reduction reduces blood pressure and prevents vascular complications.(1 The effect of salt on blood pressure is presumably due to the inability of the kidneys to excrete large amounts of salt, as humans are evolutionary adapted to ingest and excrete less than 1 gram of salt per day.(2 In this connection it should be noted that the more important element in common salt (sodium chloride is the sodium ion, and any restrictions applying to common salt also apply to all food items that contain sodium ions, such as sodium glutamate and baking soda.

  10. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  11. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    Science.gov (United States)

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Asymmetrical international attitudes

    NARCIS (Netherlands)

    Van Oudenhoven, JP; Askevis-Leherpeux, F; Hannover, B; Jaarsma, R; Dardenne, B

    2002-01-01

    In general, attitudes towards nations have a fair amount of reciprocity: nations either like each other are relatively indifferent to each other or dislike each other Sometimes, however international attitudes are asymmetrical. In this study, we use social identity theory in order to explain

  13. How Is Nature Asymmetric?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. How Is Nature Asymmetric? - Discrete Symmetries in Particle Physics and their Violation ... Indian Institute of Technology, Chennai. Aligarh Muslim University. University of Rajasthan, Jaipur. Indian Institute of Science, Bangalore 560012, India.

  14. Highly asymmetric rice genomes

    Directory of Open Access Journals (Sweden)

    Chen Jian-Qun

    2007-06-01

    Full Text Available Abstract Background Individuals in the same species are assumed to share the same genomic set. However, it is not unusual to find an orthologous gene only in small subset of the species, and recent genomic studies suggest that structural rearrangements are very frequent between genomes in the same species. Two recently sequenced rice genomes Oryza sativa L. var. Nipponbare and O. sativa L. var. 93-11 provide an opportunity to systematically investigate the extent of the gene repertoire polymorphism, even though the genomic data of 93-11 derived from whole-short-gun sequencing is not yet as complete as that of Nipponbare. Results We compared gene contents and the genomic locations between two rice genomes. Our conservative estimates suggest that at least 10% of the genes in the genomes were either under presence/absence polymorphism (5.2% or asymmetrically located between genomes (4.7%. The proportion of these "asymmetric genes" varied largely among gene groups, in which disease resistance (R genes and the RLK kinase gene group had 11.6 and 7.8 times higher proportion of asymmetric genes than housekeeping genes (Myb and MADS. The significant difference in the proportion of asymmetric genes among gene groups suggests that natural selection is responsible for maintaining genomic asymmetry. On the other hand, the nucleotide diversity in 17 R genes under presence/absence polymorphism was generally low (average nucleotide diversity = 0.0051. Conclusion The genomic symmetry was disrupted by 10% of asymmetric genes, which could cause genetic variation through more unequal crossing over, because these genes had no allelic counterparts to pair and then they were free to pair with homologues at non-allelic loci, during meiosis in heterozygotes. It might be a consequence of diversifying selection that increased the structural divergence among genomes, and of purifying selection that decreased nucleotide divergence in each R gene locus.

  15. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    Directory of Open Access Journals (Sweden)

    Eisa Kohan-Baghkheirati

    2015-03-01

    Full Text Available Silver nanoparticles (AgNPs have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575 in the Arabidopsis genome, followed by Ag+ (1010, heat (1374, drought (1435, salt (4133 and cold (6536. More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively while cold down-regulated the most genes (4022. Responses to AgNPs were more similar to those of Ag+ (464 shared genes, cold (202, and salt (163 than to drought (50 or heat (30; the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis.

  16. Low temperature molten salt synthesis of Y(sub2)Sn(sub2)O(sub7) anode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2015-10-01

    Full Text Available For the first time, yttrium tin oxide (Y(sub2)Sn(sub2)O(sub7)) compound is prepared at low temperature (400 _C) with cubic pyrochlore structure via molten salt method using KOH as a flux for their electrochemical applications. The final product...

  17. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  18. Asymmetric adsorption in an open electrolytic cell

    Science.gov (United States)

    Bousiadi, S.; Lelidis, I.

    2018-01-01

    We investigate the effect of adsorption-desorption phenomenon of ions in an asymmetric electrolytic cell at open circuit conditions. Our approach is based on the Poisson-Nernst-Planck theory for electrolytes and the kinetic model of Langmuir for the description of adsorption-desorption phenomena on the electrodes. When the electrodes are immersed into the solution, selective ion adsorption takes place. It is shown, that the selective ion adsorption is responsible for generating an electrical potential difference between the electrodes of the cell. The analytical expressions for the potential difference and for the charge distribution are calculated. Finally, the time evolution of the system is investigated and the relaxation times of the problem are deduced numerically.

  19. I62− Anion Composed of Two Asymmetric Triiodide Moieties: A Competition between Halogen and Hydrogen Bond

    Directory of Open Access Journals (Sweden)

    Martin van Megen

    2013-10-01

    Full Text Available The reaction of 1,8-diaminooctane with hydroiodic acid in the presence of iodine gave a new polyiodide-containing salt: 1,8-diaminiumoctane bis(triiodide, (H3N-(CH28-NH3[I3]2. The title compound has been characterized by crystallographic and spectroscopic methods. The polyiodide ion is the first example of a hydrogen bonded I62− dianion consisting of two very asymmetric triiodide components with I−I distances of 2.7739(4 and 3.1778(4 Å interacting by a weak halogen bond (I···I: 3.5017(2 Å. The structural parameters of the triiodide anions, derived from X-ray crystallographic data, are in good agreement with the Raman and Far-IR spectroscopic results.

  20. Asymmetric extractions in orthodontics

    Directory of Open Access Journals (Sweden)

    Camilo Aquino Melgaço

    2012-04-01

    Full Text Available INTRODUCTION: Extraction decisions are extremely important in during treatment planning. In addition to the extraction decision orthodontists have to choose what tooth should be extracted for the best solution of the problem and the esthetic/functional benefit of the patient. OBJECTIVE: This article aims at reviewing the literature relating the advantages, disadvantages and clinical implications of asymmetric extractions to orthodontics. METHODS: Keywords were selected in English and Portuguese and the EndNote 9 program was used for data base search in PubMed, Web of Science (WSc and LILACS. The selected articles were case reports, original articles and prospective or retrospective case-control studies concerning asymmetrical extractions of permanent teeth for the treatment of malocclusions. CONCLUSION: According to the literature reviewed asymmetric extractions can make some specific treatment mechanics easier. Cases finished with first permanent molars in Class II or III relationship in one or both sides seem not to cause esthetic or functional problems. However, diagnosis knowledge and mechanics control are essential for treatment success.

  1. Asymmetric Evolutionary Games.

    Directory of Open Access Journals (Sweden)

    Alex McAvoy

    2015-08-01

    Full Text Available Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  2. Asymmetric Evolutionary Games.

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  3. A high voltage asymmetric waveform generator for FAIMS.

    Science.gov (United States)

    Canterbury, Jesse D; Gladden, James; Buck, Lon; Olund, Roy; MacCoss, Michael J

    2010-07-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS) has been used increasingly in recent years as an additional method of ion separation and selection before mass spectrometry. The FAIMS electrodes are relatively simple to design and fabricate for laboratories wishing to implement their own FAIMS designs. However, construction of the electronics apparatus needed to produce the required high magnitude asymmetric electric field oscillating at a frequency of several hundred kilohertz is not trivial. Here we present an entirely custom-built electronics setup capable of supplying the required waveforms and voltages. The apparatus is relatively simple and inexpensive to implement. We also present data acquired on this system demonstrating the use of FAIMS as a gas-phase ion filter interface to an ion trap mass spectrometer. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  4. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  5. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    Science.gov (United States)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  6. RHIC operation with asymmetric collisions in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Aschenauer, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ottavio, T. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Laster, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marr, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmidke, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Steski, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yip, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-07

    To study low-x shadowing/saturation physics as well as other nuclear effects [1], [2], proton-gold (p-Au, for 5 weeks) and proton-Aluminum (p-Al, for 2 weeks) collisions were provided for experiments in 2015 at the Relativistic Heavy Ion Collider (RHIC), with polarized proton beam in the Blue ring and Au/Al beam in the Yellow ring. The special features of the asymmetric run in 2015 will be introduced. The operation experience will be reviewed as well in the report.

  7. Catalytic asymmetric fluorinations.

    Science.gov (United States)

    Bobbio, Carla; Gouverneur, Véronique

    2006-06-07

    The appearance of structurally diverse fluorinating reagents displaying a large spectrum of reactivity has been critical to the development of the catalytic asymmetric fluorination processes known to date. In this article, we discuss how this area of research emerged and which strategies have allowed for the successful development of both nucleophilic and electrophilic catalytic enantioselective fluorinations. We also present the fundamental understanding of catalytic activity and enantioselectivity for the most efficient processes and highlight the first synthetic application with the preparation of a complex fluorinated target.

  8. Asymmetric synthesis v.4

    CERN Document Server

    Morrison, James

    1984-01-01

    Asymmetric Synthesis, Volume 4: The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers describes the practical methods of obtaining chiral fragments. Divided into five chapters, this book specifically examines initial chiral transmission and extension. The opening chapter describes the so-called chiral carbon pool, the readily available chiral carbon fragments used as building blocks in synthesis. This chapter also provides a list of 375 chiral building blocks, along with their commercial sources, approximate prices, and methods of synthesis. Schemes involving

  9. Asymmetric Organocatalytic Cycloadditions

    DEFF Research Database (Denmark)

    Mose, Rasmus

    2016-01-01

    were pioneered by Otto Paul Hermann Diels and Kurt Alder who discovered what later became known as the Diels Alder reaction. The Diels Alder reaction is a [4+2] cycloaddition in which a π4 component reacts with a π2 component via a cyclic transition state to generate a 6 membered ring. This reaction...... undergo cascade reactions with different electron deficient dienophiles in Diels Alder – nucleophilic ring closing reactions. This methodology opens up for the direct asymmetric formation of hydroisochromenes and hydroisoquinolines which may possess interesting biological activities. It is also...

  10. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ovanesyan, Zaven; Marucho, Marcelo, E-mail: marcelo.marucho@utsa.edu [Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003 (United States); Medasani, Bharat [Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003 (United States); Computational Research Division, Lawrence Berkeley National Lab, Berkeley, California 94700 (United States); Fenley, Marcia O. [Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306 (United States); Guerrero-García, Guillermo Iván [Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Olvera de la Cruz, Mónica [Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-12-14

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models.

  11. Effects of pored separator films at the anode and cathode sides on concentration changes of electrolyte salt in lithium ion batteries

    Science.gov (United States)

    Yamanaka, Toshiro; Nakagawa, Hiroe; Tsubouchi, Shigetaka; Domi, Yasuhiro; Doi, Takayuki; Abe, Takeshi; Ogumi, Zempachi

    2017-12-01

    The concentration change of ions in the electrolyte solution in deep narrow spaces between electrodes in batteries was studied by in situ multi-probe Raman spectroscopy. When two separator films were placed at the anode and cathode sides, the concentration change became greater, suggesting that the resistance for ion migration at the anode side increased more than that at the cathode side. Thus, there seems to be a concerted effect of the surface film at the anode [solid electrolyte interphase (SEI)] and the adjacent separator film to form an effective diffusion barrier for Li+.

  12. Root adaptation and ion selectivity affects the nutritional value of salt-stressed hidroponically grown baby-leaf Nasturtium officinale and Lactuca sativa

    OpenAIRE

    Fernández, Juan A.; Diana, Niñirola; Jesús, Ochoa; Francesco, Orsini; Giuseppina, Pennisi; Giorgio, Gianquinto; Catalina, Egea-gilabert

    2016-01-01

    The response of watercress (Nasturtium officinale L.) to salinity has been scarcely addressed in literature despite its growing importance in the baby-leaf market and its wide cultivation in salt-affected agricultural regions. This work evaluates the effect of salinity (2.5, 5 and 10 dS m-1) on productive and quality features of watercress compared with another crop widely cultivated for the baby-leaf sector (lettuce, Lactuca sativa). In watercress, a linear relationship (R2=0.75) was observe...

  13. Asymmetric inclusion process.

    Science.gov (United States)

    Reuveni, Shlomi; Eliazar, Iddo; Yechiali, Uri

    2011-10-01

    We introduce and explore the asymmetric inclusion process (ASIP), an exactly solvable bosonic counterpart of the fermionic asymmetric exclusion process (ASEP). In both processes, random events cause particles to propagate unidirectionally along a one-dimensional lattice of n sites. In the ASEP, particles are subject to exclusion interactions, whereas in the ASIP, particles are subject to inclusion interactions that coalesce them into inseparable clusters. We study the dynamics of the ASIP, derive evolution equations for the mean and probability generating function (PGF) of the sites' occupancy vector, obtain explicit results for the above mean at steady state, and describe an iterative scheme for the computation of the PGF at steady state. We further obtain explicit results for the load distribution in steady state, with the load being the total number of particles present in all lattice sites. Finally, we address the problem of load optimization, and solve it under various criteria. The ASIP model establishes bridges between statistical physics and queueing theory as it represents a tandem array of queueing systems with (unlimited) batch service, and a tandem array of growth-collapse processes.

  14. Surfactant protein C peptides with salt-bridges (“ion-locks” promote high surfactant activities by mimicking the α-helix and membrane topography of the native protein

    Directory of Open Access Journals (Sweden)

    Frans J. Walther

    2014-07-01

    Full Text Available Background. Surfactant protein C (SP-C; 35 residues in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as ‘helical adjuvants’ to maintain activity by overriding the β-sheet propensities of the native sequences.Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges (“ion-locks” promote surface activity by mimicking the α-helix and membrane topography of native SP-C.Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines. Ion-lock SP-C molecules were prepared by incorporating single or double Glu−–Lys+ into the parent SP-C’s. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D exchange FTIR, and also Membrane Protein Explorer (MPEx hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency.Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with ‘amyloid-like’ properties. The enhanced

  15. Exploring drivers of sodium salt toxicity to the mayfly Neocloeon triangulifer, and comparing trends in mayfly and daphnid responses to major ions

    Science.gov (United States)

    Field studies have shown that mayflies (Ephemeroptera) tend to be more sensitive than other benthic macroinvertebrates to elevated levels of total dissolved solids in streams. While work with other species has shown that major ion toxicity is dependent on the ionic composition o...

  16. A relationship between ion balance and the chemical compounds of salt inclusions found in the Greenland Ice Core Project and Dome Fuji ice cores

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2008-01-01

    We have proposed a method of deducing the chemical compounds found in deep polar ice cores by analyzing the balance between six major ions (Cl-, NO3 -, SO4 2-, Na+, Mg2+, and Ca2+). The method is demonstrated for the Holocene and last glacial maximum regions of the Dome Fuji and GRIP ice cores...

  17. Symmetric Decomposition of Asymmetric Games.

    Science.gov (United States)

    Tuyls, Karl; Pérolat, Julien; Lanctot, Marc; Ostrovski, Georg; Savani, Rahul; Leibo, Joel Z; Ord, Toby; Graepel, Thore; Legg, Shane

    2018-01-17

    We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.

  18. A new family of anion receptors and their effects on ion pair dissociation and conductivity of lithium salts in non-aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.; Yang, X.Q.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States); Okamoto, Y. [Polytechnic Univ., Brooklyn, NY (United States)

    1994-08-01

    A new family of anion receptors based on aza-ether compounds have been synthesized. Since the anion complexation of these compounds is not based on either positively charged sites or hydrogen bonding, they have a potential to be used in lithium batteries as electrolyte additives. When these compounds are added into nonaqueous electrolytes using lithium salts, such as LiCl/BF or LiBr/THF, the ionic conductivity can be dramatically increased. Near Edge X-ray Absorption Fine Structure (NF-XAFS) spectroscopy studies show that Cl{sup {minus}} anions are completed with the nitrogen groups in these compounds. The increase in ionic conductivity and the degree of complexation, are both related to the number of R=CF{sub 3}SO{sub 2} groups that are used to substitute the amine hydrogen atoms in these aza-ether compounds.

  19. Root adaptation and ion selectivity affects the nutritional value of salt-stressed hydroponically grown baby-leaf Nasturtium officinale and Lactuca sativa

    Directory of Open Access Journals (Sweden)

    Juan A. Fernández

    2016-12-01

    Full Text Available The response of watercress (Nasturtium officinale L. to salinity has been scarcely addressed in literature despite its growing importance in the baby-leaf market and its wide cultivation in salt-affected agricultural regions. This work evaluates the effect of salinity (2.5, 5 and 10 dS m-1 on productive and quality features of watercress compared with another crop widely cultivated for the baby-leaf sector (lettuce, Lactuca sativa. In watercress, a linear relationship (R2=0.75 was observed between yield decrease and Cl– accumulation in leaves, whereas yield was not affected by salinity in lettuce. NaCl application increased Na+ accumulation at the expense of Ca2+ uptake in the leaf tissues of both crops, but also of K+ in watercress. Health-related features were improved by salinity (e.g. increased phenolics and reduced nitrates, especially in watercress, with limited sensorial quality evaluation effects.

  20. Minimal asymmetric dark matter

    Directory of Open Access Journals (Sweden)

    Sofiane M. Boucenna

    2015-09-01

    Full Text Available In the early Universe, any particle carrying a conserved quantum number and in chemical equilibrium with the thermal bath will unavoidably inherit a particle–antiparticle asymmetry. A new particle of this type, if stable, would represent a candidate for asymmetric dark matter (DM with an asymmetry directly related to the baryon asymmetry. We study this possibility for a minimal DM sector constituted by just one (generic SU(2L multiplet χ carrying hypercharge, assuming that at temperatures above the electroweak phase transition an effective operator enforces chemical equilibrium between χ and the Higgs boson. We argue that limits from DM direct detection searches severely constrain this scenario, leaving as the only possibilities scalar or fermion multiplets with hypercharge y=1, preferentially quintuplets or larger SU(2 representations, and with a mass in the few TeV range.

  1. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  2. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  3. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  4. Low molecular weight salts combined with fluorinated solvents for electrolytes

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  5. Quenching of electronically excited N2 molecules and Tb3+ /Eu3+ ions by polyatomic sulfur-containing gases upon triboluminescence of inorganic lanthanide salts.

    Science.gov (United States)

    Sharipov, G L; Tukhbatullin, A A; Bagautdinova, A R

    2017-08-01

    The triboluminescence of Eu2 (SO4 )3 ·8H2 O and Tb2 (SO4 )3 ·8H2 O crystals in an atmosphere of sulfur dioxide (SO2 ) or sulfur hexafluoride (SF6 ) was studied. Quenching of the gaseous (emitter N2 ) and solid-state (emitter Ln3+ ) components of the triboluminescence (TL) emission spectrum was seen when compared with the TL spectra of the crystals in air. One reason for the quenching is a reduction in the effective charge both on the crystal surface and in micro-cracks under an SO2 or SF6 atmosphere, leading to a decrease in the probability of electrical breakdown and a reduction in electric field strength responsible for the electroluminescence excitation of lanthanide ions in TL. In an SO2 atmosphere, there is an additional mode of quenching, as confirmed by quenching of the crystal photoluminescence (emitter Ln3+ ). It is supposed that this quenching is due to an exchange of energy on electronic excitation of the lanthanide ions to the vibrational sublevels of the SO2 molecules adsorbed on the crystal surface. Another additional channel of TL quenching originates from non-radiative transfer of excitation energy during collisions between the *N2 and SO2 molecules in the gaseous phase. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Novel synthetic approach for 1, 4-dihydroxyanthraquinone and the development of its Lithiated salts as anode material for aqueous rechargeable Lithium-ion batteries

    KAUST Repository

    Gurukar, Suresh Shivappa

    2015-08-17

    The influence of organic electrode materials in the field of lithium ion battery is becoming a keen interest for the present generation scientists. Here we are reporting a novel method of synthesis of electrode material by the combination of sono-chemical and thermal methods. The advantages of organic active material towards lithium ion battery are of core interest of this study. The structural confirmations are by FT-IR, 1H NMR, MALDI-TOF Mass Spectroscopy and powder XRD data. The electrochemical properties of Lithiated-1,4-dihydroxyanthraquinone were studied using electrochemical-techniques such as Cyclic Voltammetry, Galvanostatic Cyclic Potential Limitation and Potentiostatic Electrochemical Impedance Spectroscopy. The satisfactory results towards stability of active species in the aqueous media, reasonable discharge capacity with 0.9 V average voltages and agreeable cycling performance during charge-discharge process with reproducibility are achieved. For the construction of the full cell, the anode material was coupled with the LiNi1/3Co1/3Mn1/3O2 as a cathode material.

  7. CLASSICS The Ions

    Indian Academy of Sciences (India)

    Arrhenius theory of electrolytic dissociation, viz., in general, salts in solution dissociate to give ions. Ostwald, in 1888 gave a quantitative description of the dissociation, which was very useful in understanding the physical chemistry of solutions. The following portion 'The Ions' is from the book The Fundamental Principles of.

  8. Chiral quaternary phosphonium salts: a new class of organocatalysts.

    Science.gov (United States)

    Enders, Dieter; Nguyen, Thanh Vinh

    2012-07-28

    Phase-transfer catalysis has widely been used as a prime synthetic tool for both laboratory and industrial processes. During the last twenty years, asymmetric phase-transfer catalysis using chiral organocatalysts has attracted widespread interest. However, the scope of chiral phase-transfer catalysis has been limited mostly to the quaternary ammonium salts. As an emerging area, the recent developments in the application of quaternary phosphonium salts as chiral phase-transfer catalysts are discussed in this article.

  9. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions.

    Science.gov (United States)

    Sadeghi, Rahmat; Jahani, Farahnaz

    2012-05-03

    To obtain further experimental evidence for the mechanisms of the salting effect produced by the addition of salting-out or sating-in inducing electrolytes to aqueous solutions of water-soluble polymers, systematic studies on the vapor-liquid equilibria and liquid-liquid equilibria of aqueous solutions of several polymers are performed in the presence of a large series of electrolytes. Polymers are polyethylene glycol 400 (PEG400), polyethylene glycol dimethyl ether 250 (PEGDME250), polyethylene glycol dimethyl ether 2000 (PEGDME2000), and polypropylene glycol 400 (PPG400), and the investigated electrolytes are KCl, NH(4)Cl, MgCl(2), (CH(3))(4)NCl, NaCl, NaNO(3), Na(2)CO(3), Na(2)SO(4), and Na(3)Cit (tri-sodium citrate). Aqueous solutions of PPG400 form aqueous two-phase systems with all the investigated salts; however, other investigated polymers form aqueous two-phase systems only with Na(2)CO(3), Na(2)SO(4), and Na(3)Cit. A relation was found between the salting-out or sating-in effects of electrolyte on the polymer aqueous solutions and the slopes of the constant water activity lines of ternary polymer-salt aqueous solutions, so that, in the case of the salting-out effect, the constant water activity lines had a concave slope, but in the case of the salting-in effects, the constant water activity lines had a convex slope. The effect of temperature, anion of electrolyte, cation of electrolyte, and type and molar mass of polymers were studied and the results interpreted in terms of the solute-water and solute-solute interactions. The salting-out effect results from the formation of ion (specially anion)-water hydration complexes, which, in turn, decreases hydration, and hence, the solubility of the polymer and the salting-in effect results from a direct binding of the cations to the ether oxygens of the polymers.

  10. Salt effects in electromembrane extraction

    DEFF Research Database (Denmark)

    Seip, Knut Fredrik; Jensen, Henrik; Kieu, Thanh Elisabeth

    2014-01-01

    Electromembrane extraction (EME) was performed on samples containing substantial amounts of NaCl to investigate how the presence of salts affected the recovery, repeatability, and membrane current in the extraction system. A group of 17 non-polar basic drugs with various physical chemical...... this loss and the physical chemical properties of these substances was seen. The recovery loss was hypothesized to be caused by ion pairing in the SLM, and a mathematical model for the extraction recovery in the presence of salts was made according to the experimental observations. Some variations...... improves the theoretical understanding of the extraction process, and can contribute to the future development and optimization of the technique....

  11. Asymmetric bifurcated halogen bonds.

    Science.gov (United States)

    Novák, Martin; Foroutan-Nejad, Cina; Marek, Radek

    2015-03-07

    Halogen bonding (XB) is being extensively explored for its potential use in advanced materials and drug design. Despite significant progress in describing this interaction by theoretical and experimental methods, the chemical nature remains somewhat elusive, and it seems to vary with the selected system. In this work we present a detailed DFT analysis of three-center asymmetric halogen bond (XB) formed between dihalogen molecules and variously 4-substituted 1,2-dimethoxybenzene. The energy decomposition, orbital, and electron density analyses suggest that the contribution of electrostatic stabilization is comparable with that of non-electrostatic factors. Both terms increase parallel with increasing negative charge of the electron donor molecule in our model systems. Depending on the orientation of the dihalogen molecules, this bifurcated interaction may be classified as 'σ-hole - lone pair' or 'σ-hole - π' halogen bonds. Arrangement of the XB investigated here deviates significantly from a recent IUPAC definition of XB and, in analogy to the hydrogen bonding, the term bifurcated halogen bond (BXB) seems to be appropriate for this type of interaction.

  12. Magnetically Modified Asymmetric Supercapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....

  13. Detection, identification, and occurrence of thiotetronic acids in drinking water from underground sources by electrospray ionization-high field asymmetric waveform ion mobility spectrometry-quadrupole time-of-flight-mass spectrometry.

    Science.gov (United States)

    Lyczko, Jadwiga; Beach, Daniel; Gabryelski, Wojciech

    2015-10-06

    This paper demonstrates that electrospray ionization (ESI) with differential ion mobility spectroscopy (FAIMS) and "soft" mass spectrometry (MS) provide unique analytical capabilities that led to the discovery of sulfur-containing polar congeners of thiotetronic acid (TA) in drinking water from underground sources in Canada and the United States. Polar TAs accumulate in underground aquifers and appear to be the most abundant class of organic compounds in bottled water but cannot be detected by conventional mass spectrometry methods. We show that normally stable TAs are converted into very reactive ions in ESI which have to be analyzed using special conditions in ESI-FAIMS-MS to avoid extensive dissociation and ion/molecule reactions. De novo identification of 10 TAs was accomplished by the comparative tandem mass spectrometry analysis of authentic TA derivatives from groundwater samples and synthetic TA analogues prepared for this study. We present highlights of gas phase ion chemistry of polar TAs to explain their unique properties and reactivity. TA derivatives were originally isolated from soil bacteria and are of interest in the pharmaceutical industry due to their potent activity against a broad spectrum of pathogenic bacteria and negligible toxicity to mammals. We suspect that TAs are natural disinfection agents protecting groundwater from bacterial contamination, but these compound undergo modifications or decompose during an ozonation water treatment.

  14. Water transport and purification in nanochannels controlled by asymmetric wettability.

    Science.gov (United States)

    Chen, Qinwen; Meng, Lingyi; Li, Qikai; Wang, Dong; Guo, Wei; Shuai, Zhigang; Jiang, Lei

    2011-08-08

    Biomimetic asymmetric nanochannels have recently attracted increasing attention from researchers, especially in the aspect of the asymmetric wettability (a hydrophilic-hydrophobic system), which can be utilized to control the wetting behavior of aqueous media and to offer a means for guiding water motion. By using molecular dynamics simulations, a design for a potentially efficient water filter is presented based on (n, n) single-walled carbon nanotubes, where n = 6, 8, 10 and 12, asymmetrically modified with hydrophilic groups (carboxyl, -COOH) at one tip and hydrophobic groups (trifluoromethyl, -CF(3) ) at the other. The reduced water density on the hydrophobic sides of the functionalized nanotubes are observed in both pure water and aqueous electrolyte solution, except for the functionalized (6, 6) tube, due to the change of dipole orientation of the single-file water wire within it. The functionalized (8, 8) tube can significantly maintain the low water density on the hydrophobic side. Both (6, 6) and (8, 8) tubes have relatively high energy barriers at their tips for ion permeation, which can be obtained by calculating the potential of mean force. Such tip functionalization of a nanotube therefore suggests the great possibilities of water transport and filtration, dominated by asymmetric wettability. The functionalized (8, 8) tube could act as a nanofluidic channel for water purification, not only for ion exclusion but also as a stable water column structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. as a Novel Chiral Ligand for Catalysis of the Asymmetric Diels-Al

    African Journals Online (AJOL)

    NJD

    2008-11-25

    Nov 25, 2008 ... the ligand in dichloromethane.22 The resultant catalyst complex was used to promote the described asymmetric Diels-Alder reaction (Scheme 1). From a range of metal salts evaluated, anhydrous Mg(ClO4)2 emerged as the best Lewis acid complex in terms of enantio- selectivity (Table 1, entry 6).

  16. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  17. Recycling of aluminum salt cake

    Energy Technology Data Exchange (ETDEWEB)

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

    1991-12-01

    The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

  18. Comparative physiology of salt and water stress.

    Science.gov (United States)

    Munns, R.

    2002-02-01

    Plant responses to salt and water stress have much in common. Salinity reduces the ability of plants to take up water, and this quickly causes reductions in growth rate, along with a suite of metabolic changes identical to those caused by water stress. The initial reduction in shoot growth is probably due to hormonal signals generated by the roots. There may be salt-specific effects that later have an impact on growth; if excessive amounts of salt enter the plant, salt will eventually rise to toxic levels in the older transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot sustain growth. These effects take time to develop. Salt-tolerant plants differ from salt-sensitive ones in having a low rate of Na+ and Cl-- transport to leaves, and the ability to compartmentalize these ions in vacuoles to prevent their build-up in cytoplasm or cell walls and thus avoid salt toxicity. In order to understand the processes that give rise to tolerance of salt, as distinct from tolerance of osmotic stress, and to identify genes that control the transport of salt across membranes, it is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress.

  19. Asymmetric Gepner models (revisited)

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)] [IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-12-11

    We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as the number of families, singlets and mirrors have an interesting tendency towards smaller values as the gauge groups approaches the Standard Model. We compare our results with an analogous class of free fermionic models. This displays similar features, but with less resolution. Finally we present a complete scan of the three family models based on the triply-exceptional combination (1,16{sup *},16{sup *},16{sup *}) identified originally by Gepner. We find 1220 distinct three family spectra in this case, forming 610 mirror pairs. About half of them have the gauge group SU(3)xSU(2){sub L}xSU(2){sub R}xU(1){sup 5}, the theoretical minimum, and many others are trinification models.

  20. Crystallization in mass and charge asymmetric bilayers

    Science.gov (United States)

    Bonitz, Michael; Ludwig, Patrick; Filinov, Alexei; Lozovik, Yurii; Stolz, Heinrich

    2007-11-01

    We consider Coulomb crystal formation in quantum electron-ion (hole) bilayers. Varying the mass ratio M of ions and electrons between 1 and 100 for a fixed layer separation d at low temperature and high density, one can tune the hole behavior from delocalized (quantum) to localized (quasi-classical) while the electrons remain delocalized all the time. While in 3D plasmas [1], ions crystallize if the mass ratio exceeds a critical value of Mcr˜80, in bilayers Mcr can be drastically reduced by properly choosing d and the in-layer particle density. The complicated overlap of correlation and quantum effects of both, electrons and holes, is fully taken care of by performing first-principle path integral Monte Carlo simulations. [1] M. Bonitz, V.S. Filinov, V.E. Fortov. P.R. Levashov, and H. Fehske, Phys. Rev. Lett. 95, 235006 (2005) and J. Phys. A: Math. Gen. 39, 4717 (2006). [2] P. Ludwig, A. Filinov, Yu. Lozovik, H. Stolz, and M. Bonitz, Crystallization in mass-asymmetric electron-hole bilayers, Contrib. Plasma Phys. (2007), ArXiv: cond-mat/0611556

  1. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  2. Test results of a combined distributed ion pump/non-evaporable getter pump design developed as a proposed alternative pumping system for the PEP-II asymmetric B-Factory collider

    Energy Technology Data Exchange (ETDEWEB)

    Holdener, F.; Behne, D.; Hathaway, D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-04-24

    The authors have built and tested an all-in-one combination plate-type distributed ion pump/non-evaporable getter pump design (DIP/NEG) considered as a proposed alternative pumping system for the PEP-II B-Factory High Energy Ring (HER). The DIP portion of the design used a Penning cell hole size of 12 mm in a mostly uniform magnetic field of 0.18 T. The NEG portion of the design used commercially available non-evaporable getter material type St-707{trademark}. A detailed description of the design is presented along with results of pumping speed measurements.

  3. Influence of intracellular Na + , K + and Cl - on the salt tolerance in ...

    African Journals Online (AJOL)

    In the process of selection for salt tolerance, it is important to understand the physiological basis of ion management executed by the cells through the exclusion, accumulation or maintenance of ratios of specific ions. Intracellular accumulation of Na+, K+ and Cl- ions in the cells in vitro was studied as a factor in salt ...

  4. Asymmetric distances for binary embeddings.

    Science.gov (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  5. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  6. Salt resistant crop plants.

    Science.gov (United States)

    Roy, Stuart J; Negrão, Sónia; Tester, Mark

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker-assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  8. Hydroxamic acids in asymmetric synthesis.

    Science.gov (United States)

    Li, Zhi; Yamamoto, Hisashi

    2013-02-19

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst's center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Because of their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless asymmetric epoxidation, which uses the titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless asymmetric epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities.

  9. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  10. Physical chemistry and evolution of salt tolerance in halobacteria

    Science.gov (United States)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  11. Asymmetric hydrogenation using monodentate phosphoramidite ligands

    NARCIS (Netherlands)

    Minnaard, Adriaan J.; Feringa, Ben L.; Lefort, Laurent; De Vries, Johannes G.

    2007-01-01

    Monodentate phosphoramidites are excellent ligands for Rh-catalyzed asymmetric hydrogenations of substituted olefins. Enantioselectivities between 95 and 99% were obtained in the asymmetric hydrogenation of protected alpha- and beta-dehydroamino acids and esters, itaconic acid and esters, aromatic

  12. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b...

  13. Structure of asymmetrical peptide dendrimers

    NARCIS (Netherlands)

    Okrugin, B.M.; Neelov, I.M.; Leermakers, F.A.M.; Borisov, Oleg V.

    2017-01-01

    Structural properties of asymmetric peptide dendrimers up to the 11th generation are studied on the basis of the self-consistent field Scheutjens-Fleer numerical approach. It is demonstrated that large scale properties such as, e.g., the gyration radius, are relatively weakly affected by the

  14. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  15. Asymmetric trienamine catalysis: new opportunities in amine catalysis.

    Science.gov (United States)

    Kumar, Indresh; Ramaraju, Panduga; Mir, Nisar A

    2013-02-07

    Amine catalysis, through HOMO-activating enamine and LUMO-activating iminium-ion formation, is receiving increasing attention among other organocatalytic strategies, for the activation of unmodified carbonyl compounds. Particularly, the HOMO-raising activation concept has been applied to the greatest number of asymmetric transformations through enamine, dienamine, and SOMO-activation strategies. Recently, trienamine catalysis, an extension of amine catalysis, has emerged as a powerful tool for synthetic chemists with a novel activation strategy for polyenals/polyenones. In this review article, we discuss the initial developments of trienamine catalysis for highly asymmetric Diels-Alder reactions with different dienophiles and emerging opportunities for other types of cycloadditions and cascade reactions.

  16. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  17. A Note on Asymmetric Thick Branes

    Directory of Open Access Journals (Sweden)

    D. Bazeia

    2014-01-01

    Full Text Available We study asymmetric thick braneworld scenarios, generated after adding a constant to the superpotential associated with the scalar field. We study in particular models with odd and even polynomial superpotentials, and we show that asymmetric brane can be generated irrespective of the potential being symmetric or asymmetric. We study in addition the nonpolynomial sine-Gordon like model, also constructed with the inclusion of a constant in the standard superpotential, and we investigate gravitational stability of the asymmetric brane. The results suggest robustness of the new braneworld scenarios and add further possibilities of the construction of asymmetric branes.

  18. What molecular mechanism is adapted by plants during salt stress ...

    African Journals Online (AJOL)

    Salt stress harmfully shocks agricultural yield throughout the world affecting production whether it is for subsistence or economic outcomes. The plant response to salinity consists of numerous processes that must function in coordination to alleviate both cellular hyper-osmolarity and ion disequilibrium. Salt tolerance and ...

  19. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    Science.gov (United States)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  20. Geodesics in Asymmetric Metric Spaces

    Directory of Open Access Journals (Sweden)

    Mennucci Andrea C. G.

    2014-01-01

    Full Text Available In a recent paper [17] we studied asymmetric metric spaces; in this context we studied the length of paths, introduced the class of run-continuous paths; and noted that there are different definitions of “length spaces” (also known as “path-metric spaces” or “intrinsic spaces”. In this paper we continue the analysis of asymmetric metric spaces.We propose possible definitions of completeness and (local compactness.We define the geodesics using as admissible paths the class of run-continuous paths.We define midpoints, convexity, and quasi-midpoints, but without assuming the space be intrinsic.We distinguish all along those results that need a stronger separation hypothesis. Eventually we discuss how the newly developed theory impacts the most important results, such as the existence of geodesics, and the renowned Hopf-Rinow (or Cohn-Vossen theorem.

  1. Asymmetric information and macroeconomic dynamics

    Science.gov (United States)

    Hawkins, Raymond J.; Aoki, Masanao; Roy Frieden, B.

    2010-09-01

    We show how macroeconomic dynamics can be derived from asymmetric information. As an illustration of the utility of this approach we derive the equilibrium density, non-equilibrium densities and the equation of motion for the response to a demand shock for productivity in a simple economy. Novel consequences of this approach include a natural incorporation of time dependence into macroeconomics and a common information-theoretic basis for economics and other fields seeking to link micro-dynamics and macro-observables.

  2. Comprehensive asymmetric dark matter model

    OpenAIRE

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-01-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical...

  3. Up-down asymmetric tokamaks

    CERN Document Server

    Ball, Justin

    2016-01-01

    Bulk toroidal rotation has proven capable of stabilising both dangerous MHD modes and turbulence. In this thesis, we explore a method to drive rotation in large tokamaks: up-down asymmetry in the magnetic equilibrium. We seek to maximise this rotation by finding optimal up-down asymmetric flux surface shapes. First, we use the ideal MHD model to show that low order external shaping (e.g. elongation) is best for creating up-down asymmetric flux surfaces throughout the device. Then, we calculate realistic up-down asymmetric equilibria for input into nonlinear gyrokinetic turbulence analysis. Analytic gyrokinetics shows that, in the limit of fast shaping effects, a poloidal tilt of the flux surface shaping has little effect on turbulent transport. Since up-down symmetric surfaces do not transport momentum, this invariance to tilt implies that devices with mirror symmetry about any line in the poloidal plane will drive minimal rotation. Accordingly, further analytic investigation suggests that non-mirror symmetri...

  4. The effect of metal salt treatment on the photoluminescence of DFO-treated fingerprints.

    Science.gov (United States)

    Conn, C; Ramsay, G; Roux, C; Lennard, C

    2001-02-15

    Ninhydrin developed fingerprints can be enhanced by treatment with a zinc or cadmium salt. The resulting fingerprint luminescence has been attributed to the induced coplanarity of the bicyclic indanedione rings of Ruhemann's purple due to complexation with the metal ions. This paper explores whether this effect also occurs in the 1,8-diaza-9-fluorenone (DFO)-amino acid adduct (1), formed from the reaction of DFO with amino acids. Molecular modeling studies of (1) indicate a relatively small out-of-plane angle of 24 degrees. 1H NMR studies indicate (1) is asymmetric about the C2 axis in contrast to what has been previously reported. Little, if any, enhancement of luminescence was observed with Zn, Cd, Ru or Eu treated DFO developed latent fingerprints. This lack of enhancement was also borne out by solution luminescence studies. Given this lack of enhancement of luminescence, solutions of (1) and the four metal ions above were analyzed by electrospray mass spectrometry (ESMS). This indicated the formation of predominantly 1:1 complexes of (1) with both Zn and Cd, and the 2:1 complex with ruthenium. No evidence of a Eu complex was found by ESMS.

  5. Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause

    Science.gov (United States)

    Ergun, R. E.; Chen, L.-J.; Wilder, F. D.; Ahmadi, N.; Eriksson, S.; Usanova, M. E.; Goodrich, K. A.; Holmes, J. C.; Sturner, A. P.; Malaspina, D. M.; Newman, D. L.; Torbert, R. B.; Argall, M. R.; Lindqvist, P.-A.; Burch, J. L.; Webster, J. M.; Drake, J. F.; Price, L.; Cassak, P. A.; Swisdak, M.; Shay, M. A.; Graham, D. B.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Dorelli, J. C.; Gershman, D.; Avanov, L.; Hesse, M.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Goldman, M. V.; Stawarz, J. E.; Schwartz, S. J.; Eastwood, J. P.; Hwang, K.-J.; Nakamura, R.; Wang, S.

    2017-04-01

    Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude ( 100 mV/m) E|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.

  6. Diffusivity in asymmetric Yukawa ionic mixtures in dense plasmas.

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R

    2014-08-01

    In this paper we present molecular dynamics (MD) calculations of the interdiffusion coefficient for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density ∼10(25) ions/cm(3). The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. The species diffusivity is then calculated using the Green-Kubo approach using an integral of the interdiffusion current autocorrelation function, a quantity calculated in the equilibrium MD simulations. Our MD simulation results show that a widely used expression relating the interdiffusion coefficient with the concentration-weighted sum of self-diffusion coefficients overestimates the interdiffusion coefficient. We argue that this effect due to cross-correlation terms in velocities is characteristic of asymmetric mixed plasmas. Comparison of the MD results with predictions of kinetic theories also shows a discrepancy with MD giving effectively a larger Coulomb logarithm.

  7. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  8. Determination of the deliquesce point in double salts and in in-situ multicomponent salts with DVS equipment

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge

    2014-01-01

    Accelerated salt induced deterioration occurs by frequently changes across the deliquescence point. Therefore does the actual deliquescence point of the present salts have a major impact on preventive conservation being able to ensure a relative humidity not causing salt phase transition and to in......-situ desalination as dissolution of the salts is the essential criterion to enable transport of salt (ions) in the construction. In the present work deliquescence points were measured with dynamic vapor sorption (DVS) equipment in salt mixtures and the results are shown to be in agreement with values from...... the literature. Also in-situ-multi salt samples were measured including the difference between the second critical relative humidity and the efflorescence relative humidity being a measure for the critical supersaturation required for crystallization at the specific experimental conditions. The DVS equipment...

  9. Genetic Diversity of Salt Tolerance in Miscanthus

    Science.gov (United States)

    Chen, Chang-Lin; van der Schoot, Hanneke; Dehghan, Shiva; Alvim Kamei, Claire L.; Schwarz, Kai-Uwe; Meyer, Heike; Visser, Richard G. F.; van der Linden, C. Gerard

    2017-01-01

    Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus. PMID:28261243

  10. The behaviour of salt and salt caverns

    NARCIS (Netherlands)

    Fokker, P.A.

    1995-01-01

    Salts are mined for both storage and extraction purposes, either via dry or solution mining techniques. For operational, environmental and geological purposes, it is important to understand and predict the in situ behaviour of salt, in particular the creep and strength characteristics. A

  11. Effect of Low Salt Diet on Insulin Resistance in Salt Sensitive versus Salt Resistant Hypertension

    OpenAIRE

    Garg, Rajesh; Sun, Bei; Williams, Jonathan

    2014-01-01

    Accumulating evidence shows an increase in insulin resistance on salt restriction. We compared the effect of low salt diet on insulin resistance in salt sensitive versus salt resistant hypertensive subjects. We also evaluated the relationship between salt sensitivity of blood pressure and salt sensitivity of insulin resistance in a multivariate regression model. Studies were conducted after one week of high salt (200 mmol/day Na) and one week of low salt (10 mmol/day Na) diet. Salt sensitivit...

  12. Development of a salt drug with improved solubility: Ethionamide nitrate

    Science.gov (United States)

    Diniz, Luan F.; Carvalho, Paulo S.; de Melo, Cristiane C.; Ellena, Javier

    2017-06-01

    To avoid drug resistance, an adequate tuberculosis treatment should include not only a first-line drug but also at least one second-line drug such as, for example, Ethionamide (ETH). However, the dissolution rate and oral absorption of ETH is highly limited by its low aqueous solubility. Considering that a salt is in general more soluble than its parent compound, herein we depicted a new supramolecular modification of ETH, an Ethionamide nitrate salt (ETHNO3). This salt is the first ETH structure that has been crystallized with four independent ionic pairs (ETH+NO3-) in the asymmetric unit. In addition to the structural study, the salt formation was also identified on the FT-IR and FT-Raman spectra. The thermal behavior of ETHNO3 was also investigated here together with its solubility profile in three dissolution media (purified water, pH 4.0 and 7.0).

  13. Scaling of cross-sections for asymmetric (e,3e) process on helium ...

    Indian Academy of Sciences (India)

    Abstract. An approximate simple scaling law is obtained for asymmetric (e, 3e) process on helium-like ions for double ionization by fast electrons. It is based on the equation. (Z 3/π) exp[−Z (r1 + r2)], Z = Z − (5/16) for ground state wave function of helium- like ions and Z 2 scaling of energies. The scaling law is found to work ...

  14. Scaling of cross-sections for asymmetric (e, 3e) process on helium ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 63; Issue 5. Scaling of ... An approximate simple scaling law is obtained for asymmetric (, 3) process on helium-like ions for double ionization by fast electrons. ... The scaling law becomes increasingly accurate as the target nuclear charge and the energy increase.

  15. Scaling of triple differential cross-sections for asymmetric (e, 2e ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 1 ... A simple scaling law is obtained for asymmetric (, 2) process on helium isoelectronic ions by fast electrons. ... The scaling law is found to work reasonably well for fast incident electrons and becomes increasingly accurate as target increases.

  16. Low-salt diet

    Science.gov (United States)

    Low-sodium diet; Salt restriction ... control many functions. Too much sodium in your diet can be bad for you. For most people, ... you limit salt. Try to eat a balanced diet. Buy fresh vegetables and fruits whenever possible. They ...

  17. Salt Induced Decay of Masonry and Electrokinetic Repair

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    without increased salt content. The types and concentrations of salts found in relation to building stone vary greatly and depend on the stone type and the environment around the building. In general most common salts are sulphates, chlorides and nitrates. These include CaSO4, Na2SO4, MgSO4,KCl and KNO3...... from brick masonry and also how much the removal rate can be increased by application of the electric field compared to diffusion alone. Some main differences occur between electrokinetic remediation of heavy metal polluted soil and electrokinetic removal of salts from brick masonry. The ions...

  18. LG tools for asymmetric wargaming

    Science.gov (United States)

    Stilman, Boris; Yakhnis, Alex; Yakhnis, Vladimir

    2002-07-01

    Asymmetric operations represent conflict where one of the sides would apply military power to influence the political and civil environment, to facilitate diplomacy, and to interrupt specified illegal activities. This is a special type of conflict where the participants do not initiate full-scale war. Instead, the sides may be engaged in a limited open conflict or one or several sides may covertly engage another side using unconventional or less conventional methods of engagement. They may include peace operations, combating terrorism, counterdrug operations, arms control, support of insurgencies or counterinsurgencies, show of force. An asymmetric conflict can be represented as several concurrent interlinked games of various kinds: military, transportation, economic, political, etc. Thus, various actions of peace violators, terrorists, drug traffickers, etc., can be expressed via moves in different interlinked games. LG tools allow us to fully capture the specificity of asymmetric conflicts employing the major LG concept of hypergame. Hypergame allows modeling concurrent interlinked processes taking place in geographically remote locations at different levels of resolution and time scale. For example, it allows us to model an antiterrorist operation taking place simultaneously in a number of countries around the globe and involving wide range of entities from individuals to combat units to governments. Additionally, LG allows us to model all sides of the conflict at their level of sophistication. Intelligent stakeholders are represented by means of LG generated intelligent strategies. TO generate those strategies, in addition to its own mathematical intelligence, the LG algorithm may incorporate the intelligence of the top-level experts in the respective problem domains. LG models the individual differences between intelligent stakeholders. The LG tools make it possible to incorporate most of the known traits of a stakeholder, i.e., real personalities involved in

  19. Loan sales under asymmetric information

    OpenAIRE

    Vargas Martínez, Mónica

    2010-01-01

    Loans are illiquid assets that can be sold in a secondary market even that buyers have no certainty about their quality. I study a model in which a lender has access to new investment opportunities when all her assets are illiquid. To raise funds, the lender may either borrow using her assets as collateral, or she can sell them in a secondary market. Given asymmetric information about assets quality, the lender cannot recover the total value of her assets. There is then a role for the governm...

  20. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor

    KAUST Repository

    Couly, Cedric

    2017-11-27

    Current microfabrication of micro-supercapacitors often involves multistep processing and delicate lithography protocols. In this study, simple fabrication of an asymmetric MXene-based micro-supercapacitor that is flexible, binder-free, and current-collector-free is reported. The interdigitated device architecture is fabricated using a custom-made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced graphene oxide (rGO), which are both 2D layered materials that contribute to the fast ion diffusion in the interdigitated electrode architecture. This MXene-based asymmetric micro-supercapacitor operates at a 1 V voltage window, while retaining 97% of the initial capacitance after ten thousand cycles, and exhibits an energy density of 8.6 mW h cm−3 at a power density of 0.2 W cm−3. Further, these micro-supercapacitors show a high level of flexibility during mechanical bending. Utilizing the ability of Ti3C2Tx-MXene electrodes to operate at negative potentials in aqueous electrolytes, it is shown that using Ti3C2Tx as a negative electrode and rGO as a positive one in asymmetric architectures is a promising strategy for increasing both energy and power densities of micro-supercapacitors.

  1. Salt deposition at particle contact points

    Science.gov (United States)

    Nie, Xiaodong; Evitts, Richard W.; Besant, Robert W.; Kennell, Glyn F.

    2015-09-01

    Caking may occur when granular potash fertilizer with a moisture content greater than 0.25 % (w/w) undergoes drying. Since cake strength is proportional to the mass of crystal deposited per unit volume near contact points (and other factors) the modelling of mass deposition near contact points is important. The Young-Laplace equation for the air-salt-solution interface is used to determine the geometry of a 2-D planar saline film between two cubic potash particles. A 2-D theoretical model is developed and applied for ion diffusion and deposition near the contact point during drying. The numerical predictions of ion diffusion in an initially saturated salt illustrate the transient spatial distribution of new KCl deposits along the solid surfaces near the contact line. These results indicate the average salt deposition commences at the air-liquid-solid intersection, where the liquid film is thinnest, and moves toward the particle contact point with increasing area averaged KCl deposits, causing the formation of crystal deposits and bridges near contact points. It is concluded that the average salt deposit height increases inversely with distance from the contact point and decreases with initial contact angle of the contact region, but the deposition is nearly independent of the evaporation or drying rate near each contact region. Caking strength depends on, among other parameters, the amount of salt deposition near contact points.

  2. Asymmetric liberations in exterior resonances

    Science.gov (United States)

    Beauge, C.

    1994-10-01

    The purpose of this paper is to present a general analysis of the planar circular restricted problem of three bodies in the case of exterior mean-motion resonances. Particularly, our aim is to map the phase space of various commensurabilities and determine the singular solutions of the averaged system, comparing them to the well-known case of interior resonances. In some commensurabilities (e.g. 1/2, 1/3) we show the existence of asymmetric librations; that is, librations in which the stationary value of the critical angle theta = (p+q) lambda1-p lambda-q pi is not equal to either zero or pi. The origin, stability and morphogenesis of these solutions are discussed and compared to symmetric librations. However, in some other resonances (e.g. 2/3, 3/4), these fixed points of the mean system seem to be absent. Librations in such cases are restricted to theta = O mod(pi). Asymmetric singular solutions of the plane circular problem are unknown in the case of interior resonances and cannot be reproduced by the reduced Andoyer Hamiltonian known as the Second Fundamental Model for Resonance. However, we show that the extended version of this Hamiltonian function, in which harmonics up to order two are considered, can reproduce fairly well the principal topological characteristics of the phase space and thereby constitutes a simple and useful analytical approximation for these resonances.

  3. Asymmetric Laguerre-Gaussian beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  4. Thin lenses of asymmetric power

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available It is generally supposed that thin systems, including refracting surfaces and thin lenses, have powers that are necessarily symmetric.  In other words they have powers which can be represented assymmetric dioptric power matrices and in the familar spherocylindrical form used in optometry and ophthalmology.  This paper shows that this is not correct and that it is indeed possible for a thin system to have a power that is not symmetric and which cannot be expressed in spherocylindrical form.  Thin systems of asymmetric power are illustratedby means of a thin lens that is modelled with small prisms and is chosen to have a dioptric power ma-trix that is antisymmetric.  Similar models can be devised for a thin system whose dioptric power matrix is any  2 2 ×  matrix.  Thus any power, symmetric, asymmetric or antisymmetric, is possible for a thin system.  In this sense our understanding of the power of thin systems is now complete.

  5. Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum

    NARCIS (Netherlands)

    Mancarella, S.; Orsini, F.; Oosten, van M.J.; Sanoubar, R.; Stanghellini, C.; Kondo, S.; Gianquinto, G.; Maggio, A.

    2016-01-01

    In this study, plant growth, water relations, ABA levels, ion accumulation patterns and chlorophyll fluorescence were functionally linked to salt stress tolerance of two basil cultivars (Napoletano and Genovese) with different stress sensitivity levels. Plants were treated with salty water at 0,

  6. Asymmetric Warfare and the Will to Win

    National Research Council Canada - National Science Library

    Herrera, Cary

    2001-01-01

    This thesis explores the will to win in asymmetric war. Asymmetric war, in which one side has an overwhelming advantage over its opponent, will likely be the war of the future for the United States in the post-Cold War uni-polar world...

  7. Renewable resource management under asymmetric information

    DEFF Research Database (Denmark)

    Jensen, Frank; Andersen, Peder; Nielsen, Max

    2013-01-01

    Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis. I...

  8. Asymmetric Quantum Codes on Toric Surfaces

    DEFF Research Database (Denmark)

    Hansen, Johan P.

    2017-01-01

    Asymmetric quantum error-correcting codes are quantum codes defined over biased quantum channels: qubit-flip and phase-shift errors may have equal or different probabilities. The code construction is the Calderbank-Shor-Steane construction based on two linear codes. We present families of toric...... surfaces, toric codes and associated asymmetric quantum error-correcting codes....

  9. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    OpenAIRE

    Chauhan, Pankaj; Chimni, Swapandeep Singh

    2012-01-01

    Summary Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  10. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Science.gov (United States)

    Chauhan, Pankaj

    2012-01-01

    Summary Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques. PMID:23243475

  11. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  12. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Directory of Open Access Journals (Sweden)

    Pankaj Chauhan

    2012-12-01

    Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  13. Asymmetric Digital Subscriber Line (ADSL

    Directory of Open Access Journals (Sweden)

    Slavko Šarić

    2012-10-01

    Full Text Available ADSL (Asymmetric Digital Subscriber Line is a technologythat allows transmission at 8.488 Mbps over the existingtelephone copper line (speed range depending on the distance.ADSL circuit connects the ADSL modems by twisted-pairtelephone lines creating three infonnation channels: high speedsimplex (maximum 9 Mbps, medium speed duplex channel(maximum 2 Mbps and plain old telephone service channel.ADSL technology supports up to seven synchronous channelsthat can be configured to meet the needs of the end user.One could simultaneously view four movies stored in MPEG 1fonnat on separate television sets (MPEG 1 transmitted at 1.5Mbps, hold a video-conference (transmitted at 348 kbps,download data files from a server at 128 kbps via ISDN andeven receive a telephone call.

  14. Research on asymmetric searchable encryption

    Science.gov (United States)

    Yu, Zonghua; Wu, Yudong

    2017-05-01

    Cloud server side to ease the user's local storage pressure at the same time, there are hidden data on the hidden dangers, the user often choose to upload the data in the form of cipher text to the cloud server. However, the classic data encryption and decryption algorithms are not provided search function, affecting the user's efficiency. To this end, an asymmetric searchable encryption scheme is proposed. The scheme can be used for any person can generate a trapdoor, cipher text can be free modified, the key pair generated by the user themselves, encrypt the identity, S-shaped virtual and other five loopholes to improve. The analysis results show that the scheme solves the above five vulnerabilities in the original scheme, so that the information semantics of both parties of communication can be guaranteed.

  15. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  16. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  17. Water-Mediated Ion Pairing: Occurrence and Relevance

    DEFF Research Database (Denmark)

    van der Vegt, Nico F.A.; Haldrup, Kristoffer; Roke, Sylvie

    2016-01-01

    salt solutions and their interfaces, the measured and calculated structure and dynamics reveal the presence of a distinct concentration of contact ion pairs (CIPs), solvent shared ion pairs (SIPs), and solvent-separated ion pairs (2SIPs). We discuss the importance of specific ion-pairing interactions...

  18. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch.

    Science.gov (United States)

    Wang, Wei; Zhou, Hongxian; Yang, Hong; Zhao, Siming; Liu, Youming; Liu, Ru

    2017-01-01

    The objective of this study was to evaluate the effects of salts on the gelatinization and retrogradation of maize and waxy maize starch. Experimental results showed that the salting-out or structure-making ions, such as F(-) and SO4(2-), decreased the swelling power, solubility and transparency of both starches, but increased the gelatinization temperature, enthalpy, and syneresis, due to the tendency of these ions to protect the hydrogen bond links among starch molecules. On the other hand, the salting-in or structure-breaking ions, such as I(-) and SCN(-), exhibited the opposite effects. Microscopic observations confirmed such effects of salts on both starches. Furthermore, the effects of salts were more significant on waxy maize and on normal maize starch. Generally, salts could significantly influence on the gelatinization and retrogradation of maize and waxy maize starch, following the order of the Hofmeister series. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ionic Liquid Immobilized Organocatalysts for Asymmetric Reactions in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Allan D. Headley

    2013-09-01

    Full Text Available Ionic liquids are organic salts with melting points typically below ambient or reaction temperature. The unique combination of physical properties of ionic liquids, such as lack of measurable vapor pressure, high thermal and chemical stability, make them ideal to be used as reusable homogenous support for catalysts. In addition, the solubility of ionic liquids in various reaction media can be controlled and easily fine-tuned by modification of the structures of their cations and anions. As a result, ionic liquid immobilized organocatalysts are very effective in aqueous media and can be separated easily from organic solvents, as well as aqueous phases by simply adjusting the polarity of the media. Ionic liquid immobilized organocatalysts are not only very versatile compounds that are effective catalysts for a wide spectrum of reactions, but are also environmentally friendly and recyclable organocatalysts. Herein, we provide a summary of the past decade in the area of asymmetric catalysis in aqueous media for a wide variety of reactions in which ionic liquid and related ammonium salt immobilized organocatalysts are used.

  20. Nanofriction in cold ion traps.

    Science.gov (United States)

    Benassi, A; Vanossi, A; Tosatti, E

    2011-01-01

    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.

  1. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  2. Nondeterministic self-assembly with asymmetric interactions

    Science.gov (United States)

    Tesoro, S.; Göpfrich, K.; Kartanas, T.; Keyser, U. F.; Ahnert, S. E.

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation.

  3. Chiral fullerenes from asymmetric catalysis.

    Science.gov (United States)

    Maroto, Enrique E; Izquierdo, Marta; Reboredo, Silvia; Marco-Martínez, Juan; Filippone, Salvatore; Martín, Nazario

    2014-08-19

    Fullerenes are among the most studied molecules during the last three decades, and therefore, a huge number of chemical reactions have been tested on these new carbon allotropes. However, the aim of most of the reactions carried out on fullerenes has been to afford chemically modified fullerenes that are soluble in organic solvents or even water in the search for different mechanical, optical, or electronic properties. Therefore, although a lot of effort has been devoted to the chemical functionalization of these molecular allotropes of carbon, important aspects in the chemistry of fullerenes have not been properly addressed. In particular, the synthesis of chiral fullerenes at will in an efficient manner using asymmetric catalysis has not been previously addressed in fullerene science. Thus, despite the fact that the chirality of fullerenes has always been considered a fundamental issue, the lack of a general stereoselective synthetic methodology has restricted the use of enantiopure fullerene derivatives, which have usually been obtained only after highly expensive HPLC isolation on specific chiral columns or prepared from a pool of chiral starting materials. In this Account, we describe the first stereodivergent catalytic enantioselective syntheses in fullerene science, which have allowed the highly efficient synthesis of enantiomerically pure derivatives with total control of the stereochemical result using metallic catalysts and/or organocatalysts under very mild conditions. Density functional theory calculations strongly support the experimental findings for the assignment of the absolute configuration of the new stereocenters, which has also been ascertained by application of the sector rule and single-crystal X-ray diffraction. The use of the curved double bond of fullerene cages as a two-π-electron component in a variety of stereoselective cycloaddition reactions represents a challenging goal considering that, in contrast to most of the substituted

  4. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  5. SALT for Language Acquisition.

    Science.gov (United States)

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  6. Crystal structures of triazine-3-thione derivatives by reaction with copper and cobalt salts.

    Science.gov (United States)

    López-Torres, Elena; Mendiola, Maria Antonia; Pastor, César J

    2006-04-03

    The reaction of 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione L1H2OCH3 with copper(II) chloride leads to the formation of an organic molecule L2 containing two triazine rings linked by a new S-S bond. A binuclear copper(II) complex, 1, containing L1 is also isolated. The reaction of L1H2OCH3 with copper(I) chloride yields a hexanuclear cluster of copper(I), 2, in which the copper atoms form a distorted octahedron with the ligand L1 acting as an NS chelate and sulfur bridge, giving to the copper ion a trigonal geometry by one N and two S atoms. In any reaction of the disulfide L2 with metal salts, complexes containing this molecule are isolated. Reactions with copper(I) and copper(II) chloride and nickel(II) and cadmium(II) nitrate produce the S-S bond cleavage, giving complexes containing the triazine L1 behaving as the NS anion, which show spectroscopic characteristics identical with those formed by reaction with L1H2OCH3. However, the reaction with cobalt(II) nitrate gives a low-spin octahedral cobalt(III) complex, in which an asymmetric rupture of the disulfide L2 has been produced, giving an unexpected complex with a new ligand and keeping the S-S bond.

  7. Plant Responses to Salt Stress: Adaptive Mechanisms

    Directory of Open Access Journals (Sweden)

    Jose Ramón Acosta-Motos

    2017-02-01

    Full Text Available This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.

  8. Modeling of asymmetrical boost converters

    Directory of Open Access Journals (Sweden)

    Eliana Isabel Arango Zuluaga

    2014-01-01

    Full Text Available The asymmetrical interleaved dual boost (AIDB is a fifth-order DC/DC converter designed to interface photovoltaic (PV panels. The AIDB produces small current harmonics to the PV panels, reducing the power losses caused by the converter operation. Moreover, the AIDB provides a large voltage conversion ratio, which is required to step-up the PV voltage to the large dc-link voltage used in grid-connected inverters. To reject irradiance and load disturbances, the AIDB must be operated in a closed-loop and a dynamic model is required. Given that the AIDB converter operates in Discontinuous Conduction Mode (DCM, classical modeling approaches based on Continuous Conduction Mode (CCM are not valid. Moreover, classical DCM modeling techniques are not suitable for the AIDB converter. Therefore, this paper develops a novel mathematical model for the AIDB converter, which is suitable for control-pur-poses. The proposed model is based on the calculation of a diode current that is typically disregarded. Moreover, because the traditional correction to the second duty cycle reported in literature is not effective, a new equation is designed. The model accuracy is contrasted with circuital simulations in time and frequency domains, obtaining satisfactory results. Finally, the usefulness of the model in control applications is illustrated with an application example.

  9. Modeling of asymmetrical boost converters

    Directory of Open Access Journals (Sweden)

    Eliana Isabel Arango Zuluaga

    2014-03-01

    Full Text Available The asymmetrical interleaved dual boost (AIDB is a fifth-order DC/DC converter designed to interface photovoltaic (PV panels. The AIDB produces small current harmonics to the PV panels, reducing the power losses caused by the converter operation. Moreover, the AIDB provides a large voltage conversion ratio, which is required to step-up the PV voltage to the large dc-link voltage used in grid-connected inverters. To reject irradiance and load disturbances, the AIDB must be operated in a closed-loop and a dynamic model is required. Given that the AIDB converter operates in Discontinuous Conduction Mode (DCM, classical modeling approaches based on Continuous Conduction Mode (CCM are not valid. Moreover, classical DCM modeling techniques are not suitable for the AIDB converter. Therefore, this paper develops a novel mathematical model for the AIDB converter, which is suitable for control-pur-poses. The proposed model is based on the calculation of a diode current that is typically disregarded. Moreover, because the traditional correction to the second duty cycle reported in literature is not effective, a new equation is designed. The model accuracy is contrasted with circuital simulations in time and frequency domains, obtaining satisfactory results. Finally, the usefulness of the model in control applications is illustrated with an application example.

  10. Resedimented salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Slaczka, A.; Kolasa, K. (Jagiellonian Univ., Krakow (Poland))

    1988-08-01

    Carparthian foredeep's Wieliczka salt mine, unique gravity deposits were lately distinguished. They are mainly built of salt particles and blocks with a small admixture of fragments of Miocene marls and Carpathian rocks, deposited on precipitated salt. The pattern of sediment distribution is similar to a submarine fan. Gravels are dominant in the upper part and sands in lower levels, creating a series of lobes. Coarse-grained deposits are represented by disorganized, self-supported conglomerates passing into matrix-supported ones, locally with gradation, and pebbly sandstones consisting of salt grains and scattered boulder-size clasts. The latter may show in the upper part of a single bed as indistinct cross-bedding and parallel lamination. These sediments are interpreted as debris-flow and high-density turbidity current deposits. Salt sandstones (saltstones) which build a lower part of the fan often show Bouma sequences and are interpreted as turbidity-current deposits. The fan deposits are covered by a thick series of debrites (olistostromes) which consist of clay matrix with salt grains and boulders. The latter as represented by huge (up to 100,000 m{sup 3}) salt blocks, fragments of Miocene marls and Carpathian rocks. These salt debrites represent slumps and debris-flow deposits. The material for resedimented deposits was derived from the southern part of the salt basin and from the adjacent, advancing Carpathian orogen. The authors believe the distinct coarsening-upward sequence of the series is the result of progressive intensification of tectonic movements with paroxysm during the sedimentation of salt debrites (about 15 Ma).

  11. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  12. Asymmetrical Warfare, Transformation, and Foreign Language Capability

    National Research Council Canada - National Science Library

    Porter, Clifford F

    2006-01-01

    .... There is no doubt that the current global war on terrorism is an asymmetrical war against an unpredictable enemy rather than the predictable or symmetrical threats against self-important dictators or the Soviet Union...

  13. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  14. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  15. Modeling Asymmetric Volatility In Oil Prices

    National Research Council Canada - National Science Library

    Syed Aun Hassan

    2011-01-01

    .... The paper uses daily crude oil price data for the past 10 years to test and model the oil price volatility by fitting different variations of GARCH including a univariate asymmetric GARCH model to the series...

  16. Asymmetric dense matter in holographic QCD

    Directory of Open Access Journals (Sweden)

    Shin Ik Jae

    2012-02-01

    Full Text Available We study asymmetric dense matter in holographic QCD.We construct asymmetric dense matter by considering two quark flavor branes with dierent quark masses in a D4/D6/D6 model. To calculate the symmetry energy in nuclear matter, we consider two quarks with equal masses and observe that the symmetry energy increases with the total charge showing the stiff dependence. This behavior is universal in the sense that the result is independent of parameters in the model. We also study strange (or hyperon matter with one light and one intermediate mass quarks. In addition to the vacuum properties of asymmetric matter, we calculate meson masses in asymmetric dense matter and discuss our results in the light of in-medium kaon masses.

  17. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  18. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  19. Designing Asymmetric Multiferroics with Strong Magnetoelectric Coupling

    OpenAIRE

    Lu, X. Z.; Xiang, H. J.

    2014-01-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Unfortunately, single-phase multiferroics suitable for such applications at room temperature has not been discovered. Here, we propose the concept of a new type of multiferroics, namely, "asymmetric multiferroic". In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from ...

  20. Stable Bound States of Asymmetric Dark Matter

    OpenAIRE

    Wise, Mark B.; Zhang, Yue

    2014-01-01

    The simplest renormalizable effective field theories with asymmetric dark matter bound states contain two additional gauge singlet fields one being the dark matter and the other a mediator particle that the dark matter annihilates into. We examine the physics of one such model with a Dirac fermion as the dark matter and a real scalar mediator. For a range of parameters the Yukawa coupling of the dark matter to the mediator gives rise to stable asymmetric dark matter bound states. We derive pr...

  1. Cilia are required for asymmetric nodal induction in the sea urchin embryo.

    Science.gov (United States)

    Tisler, Matthias; Wetzel, Franziska; Mantino, Sabrina; Kremnyov, Stanislav; Thumberger, Thomas; Schweickert, Axel; Blum, Martin; Vick, Philipp

    2016-08-23

    Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.

  2. ion with phenolate ions

    Indian Academy of Sciences (India)

    Administrator

    Photoinduced electron transfer (PET) reaction of homoleptic tris-chelated polypyridine ruthenium(II) complexes with phenolate ions is sensitive to the structure of the ligand of the Ru(II) complex as well as of the phenolate ions 1. In recent years 2 the photophysical and photochemical properties of Ru(II) complexes based on ...

  3. Characteristics of Braced Excavation under Asymmetrical Loads

    Directory of Open Access Journals (Sweden)

    Changjie Xu

    2013-01-01

    Full Text Available Numerous excavation practices have shown that large discrepancies exist between field monitoring data and calculated results when the conventional symmetry-plane method (with half-width is used to design the retaining structure under asymmetrical loads. To examine the characteristics of a retaining structure under asymmetrical loads, we use the finite element method (FEM to simulate the excavation process under four different groups of asymmetrical loads and create an integrated model to tackle this problem. The effects of strut stiffness and wall length are also investigated. The results of numerical analysis clearly imply that the deformation and bending moment of diaphragm walls are distinct on different sides, indicating the need for different rebar arrangements when the excavation is subjected to asymmetrical loads. This study provides a practical approach to designing excavations under asymmetrical loads. We analyze and compare the monitoring and calculation data at different excavation stages and find some general trends. Several guidelines on excavation design under asymmetrical loads are drawn.

  4. Numerical model of halite precipitation in porous sedimentary rocks adjacent to salt diapirs

    Science.gov (United States)

    Li, Shiyuan; Reuning, Lars; Marquart, Gabriele; Wang, Yan; Zhao, Pengyun

    2017-10-01

    Salt diapirs are commonly seen in the North Sea. Below the Zechstein Group exist possibly overpressured salt-anhydrite formations. One explanation as to the salt precipitation in areas with salt diapirs is that salt cementation is thermally driven and occurs strongly in places adjacent to salt diapirs. This paper assumes that the sealing effect of the cap rock above the salt formations is compromised and overpressured fluids, carrying dissolved minerals such as anhydrite (CaSO4) and salt mineral components (NaCl of halite), flow into the porous sedimentary layers above the salt formations. Additionally, a salt-diapir-like structure is assumed to be at one side of the model. The numerical flow and heat transport simulator SHEMAT-Suite was developed and applied to calculating the concentrations of species, and dissolution and precipitation amounts. Results show that the overpressured salt-anhydrite formations have higher pressure heads and the species elements sodium and chlorite are transported into porous sediment rocks through water influx (saturated brine). Halite can precipitate as brine with sodium and chlorite ions flows to the cooler environment. Salt cementation of reservoir rocks leads to decreasing porosity and permeability near salt domes, and cementation of reservoir formations decreases with growing distance to the salt diapir. The proposed approach in this paper can also be used to evaluate precipitation relevant to scaling problems in geothermal engineering.

  5. Apparatus and method for stripping tritium from molten salt

    Science.gov (United States)

    Holcomb, David E.; Wilson, Dane F.

    2017-02-07

    A method of stripping tritium from flowing stream of molten salt includes providing a tritium-separating membrane structure having a porous support, a nanoporous structural metal-ion diffusion barrier layer, and a gas-tight, nonporous palladium-bearing separative layer, directing the flowing stream of molten salt into contact with the palladium-bearing layer so that tritium contained within the molten salt is transported through the tritium-separating membrane structure, and contacting a sweep gas with the porous support for collecting the tritium.

  6. Asymmetric Bessel-Gauss beams.

    Science.gov (United States)

    Kotlyar, V V; Kovalev, A A; Skidanov, R V; Soifer, V A

    2014-09-01

    We propose a three-parameter family of asymmetric Bessel-Gauss (aBG) beams with integer and fractional orbital angular momentum (OAM). The aBG beams are described by the product of a Gaussian function by the nth-order Bessel function of the first kind of complex argument, having finite energy. The aBG beam's asymmetry degree depends on a real parameter c≥0: at c=0, the aBG beam is coincident with a conventional radially symmetric Bessel-Gauss (BG) beam; with increasing c, the aBG beam acquires a semicrescent shape, then becoming elongated along the y axis and shifting along the x axis for c≫1. In the initial plane, the intensity distribution of the aBG beams has a countable number of isolated optical nulls on the x axis, which result in optical vortices with unit topological charge and opposite signs on the different sides of the origin. As the aBG beam propagates, the vortex centers undergo a nonuniform rotation with the entire beam about the optical axis (c≫1), making a π/4 turn at the Rayleigh range and another π/4 turn after traveling the remaining distance. At different values of the c parameter, the optical nulls of the transverse intensity distribution change their position, thus changing the OAM that the beam carries. An isolated optical null on the optical axis generates an optical vortex with topological charge n. A vortex laser beam shaped as a rotating semicrescent has been generated using a spatial light modulator.

  7. Salt reduction and hypertension in China: a concise state-of-the-art review

    Science.gov (United States)

    Liu, Yue; Li, Huiyan; Hong, Siting

    2015-01-01

    Hypertension (HTN) and its cardiovascular complications such as stroke and heart failure are a serious public health problem around the world. A growing number of studies confirm that salt plays an important role in the development of HTN. Increasing intake of salt leads to abnormal transport of sodium ions at the cellular level with activation of the sympathetic nervous system and renin-angiotensin-aldosterone system. Studies have shown that salt restriction can reduce blood pressure (BP) in patients with HTN, especially salt-sensitive HTN. Public health interventions to reduce salt intake, with the goal of decreasing adverse outcomes have been launched in numerous countries. In this review we will summarize the epidemiology of cardiovascular diseases and their risk factors, the relationship between salt and HTN, the effect of salt restriction on HTN and the current situation of prevention and treatment of HTN by salt reduction in China. PMID:26090330

  8. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  9. Asymmetric switching in a homodimeric ABC transporter: a simulation study.

    Directory of Open Access Journals (Sweden)

    Jussi Aittoniemi

    2010-04-01

    Full Text Available ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs.

  10. Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. Collision-Induced Dissociation and Successive Hydration Energies of Gaseous Cu+ with 1-4 Water Molecules

    NARCIS (Netherlands)

    Magnera, Thomas F.; David, Donald E.; Stulik, Dusan; Orth, Robert G.; Jonkman, Harry T.; Michl, Josef

    1989-01-01

    Low-temperature sputtering of frozen aqueous solutions of metal salts, of hydrated crystalline transition-metal salts, of frosted metal surfaces, and of frosted metal salts with kiloelectronvolt energy rare gas atoms or ions produces copious amounts of cluster ions, among which M+(H2O)n and/or

  11. Amine salts of nitroazoles

    Science.gov (United States)

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  12. What Are Bath Salts?

    Science.gov (United States)

    ... reports of people becoming psychotic (losing touch with reality) and violent. Although it is rare, there have ... in bath salts can produce: feelings of joy increased social interaction increased sex drive paranoia nervousness hallucinations ( ...

  13. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    Science.gov (United States)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  14. Ionic liquid interface at an electrode: simulations of electrochemical properties using an asymmetric restricted primitive model

    Science.gov (United States)

    Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2018-02-01

    We use Monte Carlo simulations of a coarse-grained model to investigate structure and electrochemical behaviours at an electrode immersed in room temperature ionic liquids (RTILs). The simple RTIL model, which we denote the asymmetric restricted primitive model (ARPM), is composed of monovalent hard-sphere ions, all of the same size, in which the charge is asymmetrically placed. Not only the hard-sphere size (d), but also the charge displacement (b), is identical for all species, i.e. the monovalent RTIL ions are fully described by only two parameters (d, b). In earlier work, it was demonstrated that the ARPM can capture typical static RTIL properties in bulk solutions with remarkable accuracy. Here, we investigate its behaviour at an electrode surface. The electrode is assumed to be a perfect conductor and image charge methods are utilized to handle polarization effects. We find that the ARPM of the ionic liquid reproduces typical (static) electrochemical properties of RTILs. Our model predicts a declining differential capacitance with increasing temperature, which is expected from simple physical arguments. We also compare our ARPM, with the corresponding RPM description, at an elevated temperature (1000 K). We conclude that, even though ion pairing occurs in the ARPM system, reducing the concentration of ‘free’ ions, it is still better able to screen charge than a corresponding RPM melt. Finally, we evaluate the option to coarse-grain the model even further, by treating the fraction of the ions that form ion pairs implicitly, only through the contribution to the dielectric constant of the corresponding dipolar (ion pair) fluid. We conclude that this primitive representation of ion pairing is not able to reproduce the structures and differential capacitances of the system with explicit ion pairs. The main problem seems to be due to a limited dielectric screening in a layer near the electrode surface, resulting from a combination of orientational

  15. Iodized Salt Use and Salt Iodine Content among Household Salts from Six Districts of Eastern Nepal.

    Science.gov (United States)

    Khatiwada, S; Gelal, B; Tamang, M K; Kc, R; Singh, S; Lamsal, M; Baral, N

    2014-01-01

    Universal salt iodization is considered the best strategy for controlling iodine deficiency disorders in Nepal. This study was done to find iodized salt use among Nepalese population and the iodine content of household salts. Six districts (Siraha, Saptari, Jhapa, Udayapur, Ilam and Panchthar) were chosen randomly from 16 districts of eastern Nepal for the study. In each district, three schools (private and government) were chosen randomly for sample collection. A total of 1803 salt samples were collected from schools of those districts. For sample collection a clean air tight plastic pouch was provided to each school child and was asked to bring approximately 15 gm of their kitchen salt. The information about type of salt used; 'two child logo' iodized salt or crystal salt was obtained from each child and salt iodine content was estimated using iodometric titration. At the time of study, 85% (n=1533) of Nepalese households were found to use iodized salt whereas 15% (n=270) used crystal salt. The mean iodine content in iodized and crystal salt was 40.8±12.35 ppm and 18.43±11.49 ppm respectively. There was significant difference between iodized and crystal salts use and salt iodine content of iodized and crystal salt among different districts (p value <0.001 at confidence level of 95%). Of the total samples, only 169 samples (9.4% of samples) have iodine content<15 ppm. Most Nepalese households have access to iodized salt most salt samples have sufficient iodine content.

  16. Not salt taste perception but self-reported salt eating habit predicts actual salt intake.

    Science.gov (United States)

    Lee, Hajeong; Cho, Hyun-Jeong; Bae, Eunjin; Kim, Yong Chul; Kim, Suhnggwon; Chin, Ho Jun

    2014-09-01

    Excessive dietary salt intake is related to cardiovascular morbidity and mortality. Although dietary salt restriction is essential, it is difficult to achieve because of salt palatability. However, the association between salt perception or salt eating habit and actual salt intake remains uncertain. In this study, we recruited 74 healthy young individuals. We investigated their salt-eating habits by questionnaire and salt taste threshold through a rating scale that used serial dilution of a sodium chloride solution. Predicted 24-hr urinary salt excretions using Kawasaki's and Tanaka's equations estimated dietary salt intake. Participants' mean age was 35 yr, and 59.5% were male. Salt sense threshold did not show any relationship with actual salt intake and a salt-eating habit. However, those eating "salty" foods showed higher blood pressure (P for trend=0.048) and higher body mass index (BMI; P for trend=0.043). Moreover, a salty eating habit was a significant predictor for actual salt intake (regression coefficient [β] for Kawasaki's equation 1.35, 95% confidence interval [CI] 10-2.69, P=0.048; β for Tanaka's equation 0.66, 95% CI 0.01-1.31, P=0.047). In conclusion, a self-reported salt-eating habit, not salt taste threshold predicts actual salt intake.

  17. Diode-like properties of single- and multi-pore asymmetric track membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska, K., E-mail: kziel@jinr.ru [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, Gagarina str. 7, 87-100 Torun (Poland); Gapeeva, A.R.; Orelovich, O.L. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna (Russian Federation); Apel, P.Yu. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna (Russian Federation); The International University “Dubna”, Universitetskaya str. 19, 141980 Dubna (Russian Federation)

    2014-05-01

    In this work, we investigated the ionic transport properties of asymmetric polyethylene terephthalate (PET) track membranes with the thickness of 5 μm. The samples containing single pores and arrays of many pores were fabricated by irradiation with accelerated ions and subsequent physicochemical treatment. The method of etching in the presence of a surface-active agent was used to prepare the pores with highly-tapered tip. The transport of monovalent inorganic ions through the nano-scale holes was studied in a conductivity cell. The effective pore radii, electrical conductance and rectification ratios of pores were measured. The geometric characteristics of nanopores were investigated using FESEM.

  18. Thermodynamics of salt-doped polymers

    Science.gov (United States)

    Wang, Zhen-Gang

    2013-03-01

    There is much current interest in salt-doped polymers as materials for energy applications. For example, a promising system for rechargeable battery applications consists of diblock copolymers of an ion-dissolving block, such as polyethylene oxide (PEO) and a nonconducting block such as polystyrene. Experimentally, it has been shown that the addition of lithium salts significantly alters the order-order and order-disorder transition (ODT) temperatures. In particular, the ODT temperature can increase substantially upon adding even a small amount of lithium salt, and the domain spacing in the ordered phases also increases significantly. Both changes are found to depend on the anion type. In this talk, I describe a simple theory for explaining these phenomena. A key effect is the solvation energy of the anions by the polymers, which we approximate using the Born solvation model. The difference in the Born energy between different polymers provides a driving force towards phase separation. By studying the shift in the mean-field spinodal of the disordered phase, we can identify an effective χ parameter, with a systematic dependence on the anion radius, in agreement with available experimental data. Furthermore, by studying the behavior of the domain spacing with salt concentration, we clarify the relationship between different definitions of the effective χ parameter. We propose that the effective χ parameter determined from the structure factor of the disordered phase is a more robust measure of the change in miscibility between the two blocks. Finally, we demonstrate that salt doping induces a strongly first-order transition from the disordered phase to the lamellar phase, with different salt concentrations in the two phases.

  19. Asymmetrical soft palate cleft repair: preliminary results.

    Science.gov (United States)

    Bütow, K-W; Engelbrecht, H; Naidoo, S

    2014-06-01

    The reconstructions of the asymmetrical soft palate cleft is a surgical challenge when it comes to achieving symmetry and optimal soft palate muscular function. Three different versions of the intravelar veloplasty have been used: the intravelar veloplasty (1969) (type I), the modification according to anatomical defects (1991) (type II), and the modification using part of Sommerlad's technique and part of Ivanov's technique (2008) (type III). The perioperative outcomes of the type II and type III intravelar veloplasty were assessed and compared in asymmetrical cleft cases. Two hundred and seventy-seven soft palate clefts were reconstructed: 153 type II and 124 type III. Of these, 49 were asymmetrical (17.7%); 23 underwent the type II procedure and 26 the type III procedure. Of the type II procedure cases, 30.4% remained asymmetrical postoperatively compared to 3.8% of the type III cases. The uvula appeared subjectively atrophic in 47.8% of the type II cases and in 7.7% of type III cases. Oro-nasal fistula occurred in 13.0% of the type II cases and 3.8% of the type III cases. Speech results will only be assessed after 4 years of age. The type III modified intravelar veloplasty has had a major beneficial impact on patients who had an asymmetrical soft palate cleft. Copyright © 2014. Published by Elsevier Ltd.

  20. Control of apoptosis by asymmetric cell division.

    Science.gov (United States)

    Hatzold, Julia; Conradt, Barbara

    2008-04-08

    Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  1. Control of apoptosis by asymmetric cell division.

    Directory of Open Access Journals (Sweden)

    Julia Hatzold

    2008-04-01

    Full Text Available Asymmetric cell division and apoptosis (programmed cell death are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  2. A sampling theory for asymmetric communities.

    Science.gov (United States)

    Noble, Andrew E; Temme, Nico M; Fagan, William F; Keitt, Timothy H

    2011-03-21

    We introduce the first analytical model of asymmetric community dynamics to yield Hubbell's neutral theory in the limit of functional equivalence among all species. Our focus centers on an asymmetric extension of Hubbell's local community dynamics, while an analogous extension of Hubbell's metacommunity dynamics is deferred to an appendix. We find that mass-effects may facilitate coexistence in asymmetric local communities and generate unimodal species abundance distributions indistinguishable from those of symmetric communities. Multiple modes, however, only arise from asymmetric processes and provide a strong indication of non-neutral dynamics. Although the exact stationary distributions of fully asymmetric communities must be calculated numerically, we derive approximate sampling distributions for the general case and for nearly neutral communities where symmetry is broken by a single species distinct from all others in ecological fitness and dispersal ability. In the latter case, our approximate distributions are fully normalized, and novel asymptotic expansions of the required hypergeometric functions are provided to make evaluations tractable for large communities. Employing these results in a bayesian analysis may provide a novel statistical test to assess the consistency of species abundance data with the neutral hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Ion-pair triple helicates and mesocates self-assembled from ditopic 2,2'-bipyridine-bis(urea) ligands and Ni(ii) or Fe(ii) sulfate salts

    Energy Technology Data Exchange (ETDEWEB)

    Custelcean, Radu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bonnesen, Peter V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roach, Benjamin D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duncan, Nathan C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-05-18

    Here, NiSO4and FeSO4 self-assemble with heteroditopic ligands (L) comprising 2,2'-bipyridine and o-phenylene-(bis)urea cation- and anion-binding sites, respectively, into [ML3SO4] (M = Ni2+, Fe2+) triple-stranded ion-pair helicates and mesocates.

  4. Effect of Low Salt Diet on Insulin Resistance in Salt Sensitive versus Salt Resistant Hypertension

    Science.gov (United States)

    Garg, Rajesh; Sun, Bei; Williams, Jonathan

    2014-01-01

    Accumulating evidence shows an increase in insulin resistance on salt restriction. We compared the effect of low salt diet on insulin resistance in salt sensitive versus salt resistant hypertensive subjects. We also evaluated the relationship between salt sensitivity of blood pressure and salt sensitivity of insulin resistance in a multivariate regression model. Studies were conducted after one week of high salt (200 mmol/day Na) and one week of low salt (10 mmol/day Na) diet. Salt sensitivity was defined as the fall in systolic blood pressure >15mmHg on low salt diet. The study includes 389 subjects (44% Females, 16% Blacks, BMI 28.5±4.2 Kg/m2). As expected, blood pressure was lower on low salt (129±16/78±9 mmHg) as compared to high salt diet (145±18/86±10 mmHg). Fasting plasma glucose, insulin and HOMA were higher on low salt diet (95.4±19.4 mg/dl, 10.8±7.3 mIU/L and 2.6±1.9) as compared to high salt diet (90.6±10.8 mg/dl, 9.4±5.8 mIU/L and 2.1±1.4) (p salt sensitive (N=193) versus salt resistant (N=196) subjects on either diet. Increase in HOMA on low salt diet was 0.5±1.4 in salt sensitive and 0.4±1.5 in salt resistant subjects (p=NS). On multivariate regression analysis, change in systolic blood pressure was not associated with change in HOMA after including age, BMI, sex, change in serum and urine aldosterone and cortisol into the model. We conclude that the increase in insulin resistance on low salt diet is not affected by salt sensitivity of blood pressure. PMID:25185125

  5. Photodissociation of Gaseous Ions Formed by Laser Desorption.

    Science.gov (United States)

    1986-09-20

    produced by separate pathways from the (M-I)- ion or from consecutive photodissociations. Hesperidin : In the negative ion LD mass spectrum of this compound...an ion of m/z r𔃼 was produced from the sodium salt of hesperidin phosphoric acid ester. This ion was observed to dissociate by loss of the attached...Experimental conditions are same as in the top spectrum. Figure 8. Top. Negative ions formed by laser desorption from Na-salt of hesperidin phosphoric acid ester

  6. Reinecke's Salt Revisited. An Undergraduate Project Involving an Unknown Metal Complex.

    Science.gov (United States)

    Searle, Graeme H.; And Others

    1989-01-01

    Describes 10 experiments for characterizing the chromium complex Reinecke's Salt. The properties of the complex, experimental procedures, and a discussion are provided. Analyses are presented for chromium, total ammonia, thiocyanate, ammonium ion, and hydrate water. Measurement methods are described. (YP)

  7. Asymmetric microscope. Fusho no kenbisho [exclamation point

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tadashi. (Tokyo Institute of Technology, Tokyo (Japan))

    1999-07-01

    It is difficult for a conventional optical analysis means to determine the configuration of a substance with an ultra low optical purity. Recently, an asymmetric microscope has been reported as a new concept for solving the above-mentioned problem. Specifically, a product with slight asymmetry is obtained by using the substance with an ultra low optical purity as the chiral initiation, and then the asymmetry of the product is amplified dramatically due to the asymmetric autocatalysis, thus obtaining a product having a high optical purity. A new means is to determine the configuration of the original substance having the low optical purity from the configuration of the substance having the high optical purity. According to this method, the chirality of the substance having the low optical purity is transcribed to alkanol, and the chirality is amplified due to the asymmetric autocatalysis, thus the absolute configuration of the original compound can be determined from the absolute configuration of the final product. (NEDO)

  8. Multi-agent Bargaining under Asymmetric Information

    DEFF Research Database (Denmark)

    Asplund, Marcus; Genesove, David

    information aspect is due to partly unobserved individual valuations of an elevator. We tailor Hellwig (2003) to the features of the retrofitting problem and use this to predict which building characteristics should make it easier for owners to agree. Data from Copenhagen broadly support the model......It is well know that asymmetric information might lead to underprovision of public goods. To test the theoretical prediction, we study the decision to retrofit an elevator into an old apartment building, in which each owner has to agree on how the investment cost is split. The asymmetric......'s predictions. We use transaction data to estimate the market value of an elevator and conclude that for approximately 30-40 percent of the buildings without an elevator the aggregate increase in value exceeds the investment cost....

  9. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  10. Micronized Organic Magnesium Salts Enhance Opioid Analgesia in Rats.

    Directory of Open Access Journals (Sweden)

    Magdalena Bujalska-Zadrożny

    Full Text Available As previously reported, magnesium sulphate administered parenterally significantly increased an opioid antinociception in different kinds of pain. Since the typical form of magnesium salts are poorly and slowly absorbed from the gastrointestinal tract we examined whether their micronized form could increase opioids induced antinociception.In behavioural studies on rats morphine, tramadol and oxycodone together with magnesium (lactate dihydrate, hydroaspartate, chloride in micronized (particles of size D90 < 50 μm and conventional forms were used. Changes in pain thresholds were determined using mechanical stimuli. The intestinal absorption of two forms of magnesium lactate dihydrate (at the doses of 7.5 or 15 mg ions in the porcine gut sac model were also compared.Micronized form of magnesium lactate dihydrate or hydroaspartate but not chloride (15 mg of magnesium ions kg-1 enhanced the analgesic activity of orally administered opioids, significantly faster and more effective in comparison to the conventional form of magnesium salts (about 40% for oxycodone administered together with a micronized form of magnesium hydroaspartate. Moreover, in vitro studies of transport across porcine intestines of magnesium ions showed that magnesium salts administered in micronized form were absorbed from the intestines to a greater extent than the normal form of magnesium salts.The co-administration of micronized magnesium organic salts with opioids increased their synergetic analgesic effect. This may suggest an innovative approach to the treatment of pain in clinical practice.

  11. Algebraic Davis decomposition and asymmetric Doob inequalities

    OpenAIRE

    Hong, Guixiang; Junge, Marius; Parcet, Javier

    2015-01-01

    In this paper we investigate asymmetric forms of Doob maximal inequality. The asymmetry is imposed by noncommutativity. Let $(\\M,\\tau)$ be a noncommutative probability space equipped with a weak-$*$ dense filtration of von Neumann subalgebras $(\\M_n)_{n \\ge 1}$. Let $\\E_n$ denote the corresponding family of conditional expectations. As an illustration for an asymmetric result, we prove that for $1 < p < 2$ and $x \\in L_p(\\M,\\tau)$ one can find $a, b \\in L_p(\\M,\\tau)$ and contractions $u_n, v_...

  12. Asymmetric multiscale behavior in PM2.5 time series: Based on asymmetric MS-DFA

    Science.gov (United States)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping

    2016-11-01

    Particulate matter with an aerodynamic diameter of 2.5 mm or less (PM2.5) is one of the most serious air pollution, considered most harmful for people by World Health Organisation. In this paper, we utilized the asymmetric multiscale detrended fluctuation analysis (A-MSDFA) method to explore the existence of asymmetric correlation properties for PM2.5 daily average concentration in two USA cities (Fresno and Los Angeles) and two Chinese cities (Hong Kong and Shanghai), and to assess the properties of these asymmetric correlations. The results show the existences of asymmetric correlations, and the degree of asymmetric for two USA cities is stronger than that of two Chinese cities. Further, most of the local exponent β(n) are smaller than 0.5, which indicates the existence of anti-persistent long-range correlation for PM2.5 time series in four cities. In addition, we reanalyze the asymmetric correlation by the A-MSDFA method with secant rolling windows of different sizes, which can investigate dynamic changes in the multiscale correlation for PM2.5 time series with changing window size. Whatever window sizes, the correlations are asymmetric and display smaller asymmetries at small scales and larger asymmetries at large scales. Moreover, the asymmetries become increasingly weaker with the increase of window sizes.

  13. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

    Science.gov (United States)

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.

  14. DIVALENT ION EXCHANGE WITH ALKALI

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, A.L.; Klein, G.; Radke, C.J.

    1980-05-01

    Exchange of hardness ions is important in enhanced oil recovery with chemical additives. In both micellar-polymer and caustic flooding processes, multivalent ions released from rock surfaces can interact with anionic surfactants, rendering them preferentially oil soluble and/or insoluble in water. Because hardness cations are sparingly soluble and precipitate in alkaline solutions, such solutions may be more efficient as surfactant flood preflushes than are softened brines. Multivalent ion precipitation may also occur in alkaline waterflooding. To permit design of such processes, this paper presents a chromatographic theory for simultaneous ion exchange with precipitation of divalent ions. Theoretical effluent histories and concentration profiles are presented for the cases of finite pulses and continuous injection of hydroxide ions into linear cores. Complete capture of the insoluble salt particles is assumed. Results are given for the case of instantaneous equilibration of the solution with the precipitate, as well for the case of complete nonequilibrium, in which the solid precipitate does not redissolve. The efficiency of alklaine preflushing is shown to depend on the exchange isotherm, initial divalent loading of the rock, injected pH and salinity, the solubility product of the precipitated salt, and pulse size. The effect of slug size on complete equilibrium removal of hardness ions is reduced efficiency with increasing size until a critical volume approximating continuous injection is reached. Increasing injected pH and salinity provides a more favorable response. Experimental data for Berea sandstone and an argillaceous sand compare favorably with the proposed theory.

  15. Great Salt Lake, Utah

    Science.gov (United States)

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  16. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  17. Novel electrostatic column for ion projection lithography

    Energy Technology Data Exchange (ETDEWEB)

    Chalupka, A.; Stengl, G.; Buschbeck, H.; Lammer, G.; Vonach, H.; Fischer, R.; Hammel, E.; Loeschner, H.; Nowak, R.; Wolf, P. (IMS - Ion Microfabrication Systems GmbH, A-1020 Vienna (Austria)); Finkelstein, W.; Hill, R.W. (Advanced Lithography Group, Columbia, Maryland 21045 (United States)); Berry, I.L. (Department of Defense, Microelectronics Research Laboratory, Columbia, Maryland 21045 (United States)); Harriott, L.R. (AT T Bell Laboratories, Murray Hill, New Jersey 07974 (United States)); Melngailis, J. (University of Maryland, College Park, Maryland 20742 (United States)); Randall, J.N. (Texas Instruments, Dallas, Texas 75243 (United States)); Wolfe, J.C. (University of Houston, Houston, Texas 77204 (United States)); Stroh, H.; Wollnik, H. (University of Giessen, D-35392 Giessen (Germany)); Mondelli, A.A.; Petillo, J.J. (Science Applications International Corporation, McLean, Virginia 22102 (United States)); Leung, K. (Lawrence Berkeley Laboratory, University of Californi

    1994-11-01

    Ion projection lithography (IPL) is being considered for high volume sub-0.25-[mu]m lithography. A novel ion-optical column has been designed for exposing 20[times]20 mm[sup 2] fields at 3[times] reduction from stencil mask to wafer substrates. A diverging lens is realized by using the stencil mask as the first electrode of the ion-optical column. The second and third electrode form an accelerating field lens. The aberrations of the first two lenses (diverging lens and field lens) are compensated by an asymmetric Einzel lens projecting an ion image of the stencil mask openings onto the wafer substrate with better than 2 mrad telecentricity. Less than 30 nm intrafield distortion was calculated within 20[times]20 mm[sup 2] exposure fields. The calculation uncertainty is estimated to be about 10 nm. The calculation holds for helium ions with [approx]10 keV ion energy at the stencil mask and 150 keV ion energy at the wafer plane. A virtual ion source size of 10 [mu]m has been assumed. The calculated chromatic aberrations are less than 60 nm, assuming 6 eV energy spread of the ions extracted from a duoplasmatron source. Recently a multicusp ion source has been developed for which preliminary results indicate an energy spread of less than 2 eV. Thus, with a multicusp source chromatic aberrations of less than 20 nm are to be expected. The ion energy at the crossover between the field lens and the asymmetric Einzel lens is 200 keV. Therefore, stochastic space charge induced degradations in resolution can be kept sufficiently low. The divergence of the ion image projected to the wafer plane is less than 2 mrad. Thus, the usable'' depth of focus for the novel ion optics is in the order of 10 [mu]m.

  18. Mineral resource of the month: salt

    Science.gov (United States)

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  19. Ageing behaviour of unary hydroxides in trivalent metal salt solutions

    Indian Academy of Sciences (India)

    Unknown

    LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and ... sulphate solution containing Al3 + ions (Park et al 1990). After an extensive examination of all the parameters that influence the outcome of a ...

  20. Gas releases from salt

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  1. Polymer Conformations in Ionic Microgels in the Presence of Salt: Theoretical and Mesoscale Simulation Results

    Directory of Open Access Journals (Sweden)

    Hideki Kobayashi

    2017-01-01

    Full Text Available We investigate the conformational properties of polymers in ionic microgels in the presence of salt ions by molecular dynamics simulations and analytical theory. A microgel particle consists of coarse-grained linear polymers, which are tetra-functionally crosslinked. Counterions and salt ions are taken into account explicitly, and charge-charge interactions are described by the Coulomb potential. By varying the charge interaction strength and salt concentration, we characterize the swelling of the polyelectrolytes and the charge distribution. In particular, we determine the amount of trapped mobile charges inside the microgel and the Debye screening length. Moreover, we analyze the polymer extension theoretically in terms of the tension blob model taking into account counterions and salt ions implicitly by the Debye–Hückel model. Our studies reveal a strong dependence of the amount of ions absorbed in the interior of the microgel on the electrostatic interaction strength, which is related to the degree of the gel swelling. This implies a dependence of the inverse Debye screening length κ on the ion concentration; we find a power-law increase of κ with the Coulomb interaction strength with the exponent 3 / 5 for a salt-free microgel and an exponent 1 / 2 for moderate salt concentrations. Additionally, the radial dependence of polymer conformations and ion distributions is addressed.

  2. Cation-Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting.

    Science.gov (United States)

    Gebala, Magdalena; Giambaşu, George M; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M; Herschlag, Daniel

    2015-11-25

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that "count" the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation-anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation-anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4-P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new results leads to

  3. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    Science.gov (United States)

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  4. Transition from symmetric discharge to asymmetric discharge in a short gap helium dielectric barrier discharge

    Science.gov (United States)

    Ning, Wenjun; Dai, Dong; Zhang, YuHui; Hao, Yanpeng; Li, Licheng

    2017-07-01

    The discharge dynamics of a 2.08 mm gap helium dielectric barrier discharge (DBD) are studied with a one-dimensional fluid model. By increasing the amplitude of a sinusoidal voltage source, it is observed that the discharge is symmetric at first and abruptly turns into an asymmetric state after passing a certain critical value. Compared with former publications dealing with relatively larger gap-distance DBD, our simulation results indicate some new discoveries. First, in both the symmetric and asymmetric states, every discharge event is fully developed from Townsend discharge to glow discharge, and the discharge current appears as a steep narrow pulse. Second, the residual positive column is always completely dissipated before the next break down; therefore, its influence on the symmetric-to-asymmetric transition can be eliminated. It is further revealed that the symmetric-to-asymmetric transition in the short-gap DBD is more delicate. A subtle phase shift is observed before the transition process. When the phase shift is further promoted with voltage rising, a discordance of the evolution paces between electron and ions occurs, which consequently leads to the formation of discharge asymmetry.

  5. Mechanism for salt scaling

    Science.gov (United States)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  6. Oxygen sparging of residue salts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.; Griego, W.J.; Owens, S.D.; Thorn, C.W.; Vigil, R.A.

    1993-03-01

    Oxygen sparge is a process for treating salt residues at Los Alamos National Laboratory by sparging oxygen through molten salts. Oxygen reacts with the plutonium trichloride in these salts to form plutonium dioxide. There is further reaction of the plutonium dioxide with plutonium metal and the molten salt to form plutonium oxychloride. Both of the oxide plutonium species are insoluble in the salt and collect atthe bottom of the crucible. This results in a decrease of a factor of 2--3 in the amount of salt that must be treated, and the amount of waste generated by aqueous treatment methods.

  7. Intrinsic momentum transport in up-down asymmetric tokamaks

    CERN Document Server

    Ball, Justin; Barnes, Michael; Dorland, William; Hammett, Gregory W; Rodrigues, Paulo; Loureiro, Nuno F

    2014-01-01

    Recent work demonstrated that breaking the up-down symmetry of tokamak flux surfaces removes a constraint that limits intrinsic momentum transport, and hence toroidal rotation, to be small. We show, through MHD analysis, that ellipticity is most effective at introducing up-down asymmetry throughout the plasma. We detail an extension to GS2, a local $\\delta f$ gyrokinetic code that self-consistently calculates momentum transport, to permit up-down asymmetric configurations. Tokamaks with tilted elliptical poloidal cross-sections were simulated to determine nonlinear momentum transport. The results, which are consistent with experiment in magnitude, suggest that a toroidal velocity gradient, $\\left( \\partial u_{\\zeta i} / \\partial \\rho \\right) / v_{th i}$, of 5% of the temperature gradient, $\\left(\\partial T_{i} / \\partial \\rho \\right) / T_{i}$, is sustainable. Here $v_{th i}$ is the ion thermal speed, $u_{\\zeta i}$ is the ion toroidal mean flow, $\\rho$ is the minor radial coordinate normalized to the tokamak m...

  8. Salt creep and wicking counteract hydrophobic organic structures

    Science.gov (United States)

    Burkhardt, Juergen

    2017-04-01

    The hydrophobic nature of many biological and edaphic surfaces prevents wetting and water movement. Already small amounts of salts and other hygroscopic material (e.g. by aerosol deposition to leaf surfaces) may change this situation. Salts attract minute amounts of liquid water to the surface and may dynamically expand on the original surface by creeping (evaporation-driven extension of crystals). Creeping is governed by fluctuations of relative humidity and increases with time. Under high, almost saturated concentrations of the salt solutions, ions from the chaotropic side of the Hofmeister series creep most efficiently. Once established, continuous salt connections may act to channel small water flows along the surface. They may act as wicks if water is removed from one side by evaporation. Stomata may in this way become 'leaky' by the leaf surface accumulation of hygroscopic aerosols.

  9. A study of salt effects on the complexation between beta-cyclodextrins and bile salts based on the Hofmeister series

    DEFF Research Database (Denmark)

    Holm, Rene; Schonbeck, Christian; Somprasirt, Pitchayanun

    2014-01-01

    bound drug molecules. The influence of Hofmeister ions on the binding constants of complexes between CDs (β-CD and hydroxypropylated β-CD) and bile salts (glycocholate and glycochenodeoxycholate) were examined by isothermal titration calorimetry. The chaotropic anions tended to weaken these inclusion...

  10. RSA Asymmetric Cryptosystem beyond Homogeneous Transformation

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-12-01

    Dec 1, 2013 ... The Internet is an insecure open network and its use and connectivity have witnessed a significant growth, and this has made it vulnerable to all forms of attacks. A threat to a network can cause harm or interrupt the network. In this paper, we looked at the security of data and message, using asymmetric.

  11. Settling dynamics of asymmetric rigid fibers

    Science.gov (United States)

    E.J. Tozzi; C Tim Scott; David Vahey; D.J. Klingenberg

    2011-01-01

    The three-dimensional motion of asymmetric rigid fibers settling under gravity in a quiescent fluid was experimentally measured using a pair of cameras located on a movable platform. The particle motion typically consisted of an initial transient after which the particle approached a steady rate of rotation about an axis parallel to the acceleration of gravity, with...

  12. Computing modal dispersion characteristics of radially Asymmetric ...

    African Journals Online (AJOL)

    determine how the modal characteristics change as circular Bragg fiber is changed to asymmetric Bragg fiber. The key to this transfer matrix method (TMM) is the accurate calculation of the propagation constants of modes. And validity of this method is verified by FDTD method. We compare these results with obtained from ...

  13. Organocatalytic asymmetric transfer hydrogenation of imines

    NARCIS (Netherlands)

    de Vries, Johannes G.; Mrsic, Natasa; Mršić, Nataša

    2011-01-01

    The asymmetric organocatalytic transfer hydrogenation of imines can be accomplished in good yields with high enantioselectivities through the use of BINOL-derived phosphoric acids as catalysts and Hantzsch esters or benzothiazoles as the hydride source. The same method can also be applied to the

  14. Spatially inhomogeneous condensate in asymmetric nuclear matter

    NARCIS (Netherlands)

    Sedrakian, A

    We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into

  15. Asymmetric volatility connectedness on the forex market

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Kočenda, Evžen; Vácha, Lukáš

    2017-01-01

    Roč. 77, č. 1 (2017), s. 39-56 ISSN 0261-5606 R&D Projects: GA ČR(CZ) GA16-14179S Institutional support: RVO:67985556 Keywords : volatility * connectedness * asymmetric effects Subject RIV: AH - Economics Impact factor: 1.853, year: 2016 http:// library .utia.cas.cz/separaty/2017/E/barunik-0478477.pdf

  16. Asymmetric Drift and the Stellar Velocity Ellipsoid

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Swaters, Rob A.

    2007-01-01

    We present the decomposition of the stellar velocity ellipsoid using stellar velocity dispersions within a 40° wedge about the major-axis (smaj), the epicycle approximation, and the asymmetric drift equation. Thus, we employ no fitted forms for smaj and escape interpolation errors resulting from

  17. Dynamic Conditional Correlations for Asymmetric Processes

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (WDCC) model and the Matrix-Exponential Conditional Correlation (MECC) model. The paper applies the WDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models.

  18. Asymmetric conditional volatility in international stock markets

    Science.gov (United States)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  19. Spectral inequalities for the quantum asymmetric top

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Alain; McMillen, Tyler [Department of Mathematics, California State University (Fullerton), McCarthy Hall 154, Fullerton, CA 92834 (United States)], E-mail: abourget@fullerton.edu, E-mail: tmcmillen@fullerton.edu

    2009-03-06

    We consider the spectrum of the quantum asymmetric top. Unlike in the case when two or three moments of inertia are equal, when the moments of inertia are distinct all degeneracy in the spectrum of the operator is removed. We derive inequalities for the spectra based on recent results on the interlacing of Van Vleck zeros.

  20. Palladium catalysed asymmetric alkylation of benzophenone Schiff ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 4. Palladium catalysed asymmetric alkylation of benzophenone Schiff base glycine esters in ionic liquids. Dae Hyun Kim Jin Kyu Im Dae Won Kim Minserk Cheong Hoon Sik Kim Deb Kumar Mukherjee. Volume 123 Issue 4 July 2011 pp 467-476 ...

  1. RSA Asymmetric Cryptosystem beyond Homogeneous Transformation

    African Journals Online (AJOL)

    The Internet is an insecure open network and its use and connectivity have witnessed a significant growth, and this has made it vulnerable to all forms of attacks. A threat to a network can cause harm or interrupt the network. In this paper, we looked at the security of data and message, using asymmetric cryptography, with ...

  2. Mixed gas plasticization phenomena in asymmetric membranes

    NARCIS (Netherlands)

    Visser, Tymen

    2006-01-01

    This thesis describes the thorough investigation of mixed gas transport behavior of asymmetric membranes in the separation of feed streams containing plasticizing gases in order to gain more insights into the complicated behavior of plasticization. To successfully employ gas separation membranes in

  3. Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    DEFF Research Database (Denmark)

    Masina, Isabella; Sannino, Francesco

    2011-01-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....

  4. Impact of High Salt Independent of Blood Pressure on PRMT/ADMA/DDAH Pathway in the Aorta of Dahl Salt-Sensitive Rats

    Directory of Open Access Journals (Sweden)

    Fu-Qiang Liu

    2013-04-01

    Full Text Available Endothelial dysfunction participates in the development and progression of salt-sensitive hypertension. Asymmetric dimethylarginine (ADMA is an endogenous inhibitor of nitric oxide synthase (NOS. The objectives of this study were to investigate the impact of a high salt diet on the PRMT/ADMA/DDAH (protein arginine methyltransferases; dimethylarginine dimethylaminohydrolase pathway in Dahl salt-sensitive (DS rats and SS-13BN consomic (DR rats, and to explore the mechanisms that regulate ADMA metabolism independent of blood pressure reduction. Plasma levels of nitric oxide (NO in DS rats given a high salt diet and subjected to intragastric administration of hydralazine (SH + HYD group were lower than those given a normal salt diet (SN group. There were significant decreases in expression and activity of dimethylarginine dimethylaminohydrolase (DDAH and endothelial NO synthase (eNOS in DS rats given a high diet (SH group in comparison to the SN group. The activity of DDAH and expression of eNOS in the SH + HYD group decreased more significantly than SN group. The mRNA expression of DDAH-1 and DDAH-2 were lowest in the SH group. The results suggest that salt, independent of blood pressure, can affect the PRMT-1/ADMA/DDAH system to a certain degree and lead to endothelial dysfunction in Dahl salt-sensitive rats.

  5. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  6. Salt enrichment of municipal sewage: New prevention approaches in Israel

    Science.gov (United States)

    Weber, Baruch; Avnimelech, Yoram; Juanico, Marcelo

    1996-07-01

    Wastewater irrigation is an environmentally sound wastewater disposal practice, but sewage is more saline than the supplied fresh water and the salts are recycled together with the water. Salts have negative environmental effects on crops, soils, and groundwater. There are no inexpensive ways to remove the salts once they enter sewage, and the prevention of sewage salt enrichment is the most immediately available solution. The body of initiatives presently structured by the Ministry of the Environment of Israel are herein described, with the aim to contribute to the search for a long-term solution of salinity problems in arid countries. The new initiatives are based on: (1) search for new technologies to reduce salt consumption and discharge into sewage; (2) different technologies to cope with different situations; (3) raising the awareness of the public and industry on the environmental implications of salinity pollution; and (4) an elastic legal approach expressed through new state-of-the-art regulations. The main contributor to the salinity of sewage in Israel is the watersoftening process followed by the meat koshering process. Some of the adopted technical solutions are: the discharge of the brine into the sea, the substitution of sodium by potassium salts in the ion-exchangers, the construction of centralized systems for the supply of soft water in industrial areas, the precipitation of Ca and Mg in the effluents from ion-exchangers and recycling of the NaCI solution, a reduction of the discharge of salts by the meat koshering process, and new membrane technology for salt recovery.

  7. Cold Electrons as the Drivers of Parallel, Electrostatic Waves in Asymmetric Reconnection

    Science.gov (United States)

    Holmes, J.; Ergun, R.; Newman, D. L.; Wilder, F. D.; Schwartz, S. J.; Goodrich, K.; Eriksson, S.; Torbert, R. B.; Russell, C. T.; Lindqvist, P. A.; Giles, B. L.; Pollock, C. J.; Le Contel, O.; Strangeway, R. J.; Burch, J. L.

    2016-12-01

    The Magnetospheric MultiScale mission (MMS) has observed several instances of asymmetric reconnection at Earth's magnetopause, where plasma from the magnetosheath encounters that of the magnetosphere. On Earth's dayside, the magnetosphere is often made up of a two-component distribution of cold (cold ion plume. Magnetosheath plasma is primarily warm ( 100 eV) post-shock solar wind. Where they meet, magnetopause reconnection alters the magnetic topology such that these two populations are left cohabiting a field line and rapidly mix. There have been several events observed by MMS where the Fast Plasma Instrument (FPI) clearly shows cold ions near the diffusion region impinging upon the warm magnetosheath population. In many of these, we also see patches of strong electrostatic waves parallel to the magnetic field - a smoking gun for rapid mixing via nonlinear processes. Cold ions alone are too slow to create the same waves; solving for roots of a simplified dispersion relation shows the electron population damps out the ion modes. From this, we infer the presence of cold electrons; in one notable case found by Wilder et al. 2016 (in review), they have been observed directly by FPI. Vlasov simulations of plasma mixing for a number of these events closely reproduce the observed electric field signatures. We conclude from numerical analysis and direct MMS observations that cold plasma mixing, including cold electrons, is the primary driver of parallel electrostatic waves observed near the electron diffusion region in asymmetric magnetic reconnection.

  8. High salt intake causes adverse fetal programming--vascular effects beyond blood pressure.

    Science.gov (United States)

    Piecha, Grzegorz; Koleganova, Nadezda; Ritz, Eberhard; Müller, Annett; Fedorova, Olga V; Bagrov, Alexei Y; Lutz, Diana; Schirmacher, Peter; Gross-Weissmann, Marie-Luise

    2012-09-01

    High salt intake causes hypertension, adverse cardiovascular outcomes and potentially also blood pressure (BP)-independent target organ damage. Excess salt intake in pregnancy is known to affect BP in the offspring. The present study was designed to assess whether high salt intake in pregnancy affects BP and vascular morphology in the offspring. Sprague-Dawley rats were fed a standard rodent diet with low-normal (0.15%) or high (8.0%) salt content during pregnancy and lactation. After weaning at 4 weeks of age, offspring were maintained on the same diet or switched to a high- or low-salt diet, respectively. Vascular geometry was assessed in male offspring at 7 and 12 weeks postnatally. Up to 12 weeks of age, there was no significant difference in telemetrically measured BP between the groups of offspring. At 12 weeks of age, wall thickness of central (aorta, carotid), muscular (mesenteric) and intrapulmonary arteries was significantly higher in offspring of mothers on a high-salt diet irrespective of the post-weaning diet. This correlated with increased fibrosis of the aortic wall, more intense nitrotyrosine staining as well as elevated levels of marinobufagenin (MBG) and asymmetric dimethyl arginine (ADMA). High salt intake in pregnant rats has long-lasting effects on the modeling of central and muscular arteries in the offspring independent of postnatal salt intake and BP. Circulating MBG and ADMA and local oxidative stress correlate with the adverse vascular modeling.

  9. THE EFFECT OF SALTS ON THE IONISATION OF GELATIN

    Science.gov (United States)

    Thimann, Kenneth V.

    1930-01-01

    The effect of the addition of sodium chloride to gelatin solutions is shown from the Donnan relationship to increase the ionisation of the gelatin, the increase produced in acid solutions reaching a maximum at about 1/1000 molar salt concentration. This effect is attributed to the formation of complex ions. From the similar action of calcium and copper chlorides the effective combining power of gelatin for complex positive ion formation is deduced. The bearing of complex ion formation on the zwitter-ionic structure and solubility phenomena of proteins is pointed out. PMID:19872582

  10. Preconceptual design of a salt splitting process using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  11. 21 CFR 100.155 - Salt and iodized salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized...

  12. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  13. Determinant of asymmetric risks in Nigerian loan market: any ...

    African Journals Online (AJOL)

    Bank lending in Nigeria was dominated by the presence of asymmetric information, a wedge to financial intermediation. Using probit and correlation test methodology, evidence of low level asymmetric risk was found and the determinants of asymmetric risks in the market were not significantly different. The size of default ...

  14. Lowering Salt in Your Diet

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Lowering Salt in Your Diet Share Tweet Linkedin Pin it More sharing options ... and can be used by individuals to replace salt in their diet. There are no known undesirable effects in healthy ...

  15. Carpinteria Salt Marsh Habitat Polygons

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — We identified five common habitat types in Carpinteria Salt Marsh: channels, pans (flats), marsh, salt flat and upland. We then drew polygons around each habitat...

  16. Salt ingestion caves.

    Directory of Open Access Journals (Sweden)

    Lundquist Charles A.

    2006-01-01

    Full Text Available Large vertebrate herbivores, when they find a salt-bearing layer of rock, say in a cliff face, can produce sizable voids where, overgenerations, they have removed and consumed salty rock. The cavities formed by this natural animal process constitute a uniqueclass of caves that can be called salt ingestion caves. Several examples of such caves are described in various publications. Anexample in Mississippi U.S.A., Rock House Cave, was visited by the authors in 2000. It seems to have been formed by deer orbison. Perhaps the most spectacular example is Kitum Cave in Kenya. This cave has been excavated to a length over 100 metersby elephants. An ancient example is La Cueva del Milodon in Chile, which is reported to have been excavated by the now extinctmilodon, a giant ground sloth. Still other possible examples can be cited. This class of caves deserves a careful definition. First, thecavity in rock should meet the size and other conventions of the locally accepted definition of a cave. Of course this requirement differsin detail from country to country, particularly in the matter of size. The intent is to respect the local conventions. The characteristicthat human entry is possible is judged to be a crucial property of any recognized cave definition. Second, the cavity should besignificantly the result of vertebrate animal consumption of salt-bearing rock. The defining process is that rock removed to form thecave is carried away in the digestive track of an animal. While sodium salts are expected to be the norm, other salts for which thereis animal hunger are acceptable. Also some other speleogenesis process, such as solution, should not be excluded as long as it issecondary in formation of a cave in question.

  17. Microbial Diversity of Culinary Salts

    OpenAIRE

    Muske, Galen; Baxter, Bonnie

    2016-01-01

    Extremophiles are exceptional microorganisms that live on this planet in extraordinarily harsh environments. One such extremophiles are Halophiles, salt-loving microorganisms that can survive in extreme salinity levels, and have been found to survive inside salt crystals. We were curious is about the potential diversity of halophiles surviving in salts harvested from around the world. For this experiment various culinary salts were suspended in a 23 % NaCL growth media broth and allowed to gr...

  18. Evaluation of Salt Removal from Azulejo Tiles and Mortars using Electrodesalination

    DEFF Research Database (Denmark)

    Ferreira, Célia Maria Dias; Ottosen, Lisbeth M.; Christensen, Iben Vernegren

    2011-01-01

    loss of historic value. In this work preliminary studies with single tiles presenting an underlying layer of mortar have been conducted to assess the amount of salts that can be removed from the building material using a new technique called “electrodesalination”, in which the salt’s ions...... and underlying mortar are no longer at risk of salt induced decay. The main conclusions are that the technique is successful in extracting salts from mortars (removals efficiencies between 88% and 92%) but not as good for the tile (removals between 10% and 80%). The risk of salt damage to the mortar and tile...

  19. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method....

  20. Subsidence and basin-fill architecture of a lignite-bearing salt rim syncline: insights into rim syncline evolution and salt diapirism

    Science.gov (United States)

    Brandes, C.; Pollok, L.; Schmidt, C.; Wilde, V.; Winsemann, J.

    2012-04-01

    In the last decades, salt-withdrawal basins achieved much attention due to their significant hydrocarbon potential like in the Gulf of Mexico, along the Brazilian passive margin and in northern Germany. The Helmstedt-Staßfurt salt wall and the related Schöningen rim syncline are an ideal natural laboratory to study the evolution of salt-withdrawal basins in detail. An excellent data set of 358 wells allows a detailed assessment of the basin-fill architecture. The aim was to expand on the classical cross-section based rim syncline analysis by the use of 3D models and basin simulations. The Helmstedt-Staßfurt salt wall is 70 km long, 6-8 km wide and one of the most important diapiric structures in northern Germany, based on the economically significant lignite-bearing rim synclines. The analysed Schöningen rim syncline, located on the southwestern side of the Helmstedt-Staßfurt structure, is 8 km long and 3 km wide. The basin-fill is up to 366 m thick and contains 13 major lignite seams with thicknesses between 0.1 and 30 m. Cross-sections perpendicular to the basin axis indicate that the basin-fill has a pronounced lenticular shape. This shape varies from more symmetric in the NW to clearly asymmetric in the SE. It coincides to the broadening of the salt diapir from NW to SE. The geometry of the rim syncline therefore seems to be a function of the diapir morphology. Sediments close to a diapir margin tend to be sheared by the rising diapir and this effect is probably enhanced where the diapir becomes broader and as a result, the related rim syncline is more asymmetric. Isopach maps imply a two-fold depocentre evolution. The depocentre migrated over time towards the salt wall and also showed some distinct shifts parallel to the salt wall. The shifts parallel to salt wall were abrupt, in contrast to the more gradual migration of the depocentres perpendicular to the salt wall. The basin modelling part of the study was carried out with the software Petro

  1. Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-01-01

    Full Text Available Capacitive deionization (CDI method has drawn much attention for its low energy consumption, low pollution, and convenient manipulation. Activated carbon fibers (ACFs possess high adsorption ability and can be used as CDI electrode material. Herein, two kinds of PAN-based ACFs with different specific surface area (SSA were used for the CDI electrodes. The CDI performance was investigated; especially asymmetric electrodes’ effect was evaluated. The results demonstrated that PAN-based ACFs showed a high electrosorption rate (complete electrosorption in less than half an hour and moderate electrosorption capacity (up to 0.2 mmol/g. CDI experiments with asymmetric electrodes displayed a variation in electrosorption capacity between forward voltage and reverse voltage. It can be attributed to the electrical double layer (EDL overlap effect and inner pore potential; thus the ions with smaller hydrated ionic radius can be adsorbed more easily.

  2. Diffusion vs. concentration of chloride ions in concrete : [summary].

    Science.gov (United States)

    2014-06-01

    The Florida Department of Transportation : (FDOT) maintains hundreds of bridges, and also : builds new ones, in marine environments. These : structures are built with reinforced steel, and : over time, chloride ions from sea salt can migrate : throug...

  3. Asymmetric total synthesis of Apocynaceae hydrocarbazole alkaloids (+)-deethylibophyllidine and (+)-limaspermidine.

    Science.gov (United States)

    Du, Ji-Yuan; Zeng, Chao; Han, Xiao-Jie; Qu, Hu; Zhao, Xian-He; An, Xian-Tao; Fan, Chun-An

    2015-04-01

    An unprecedented asymmetric catalytic tandem aminolysis/aza-Michael addition reaction of spirocyclic para-dienoneimides has been designed and developed through organocatalytic enantioselective desymmetrization. A unified strategy based on this key tandem methodology has been divergently explored for the asymmetric total synthesis of two natural Apocynaceae alkaloids, (+)-deethylibophyllidine and (+)-limaspermidine. The present studies not only enrich the tandem reaction design concerning the asymmetric catalytic assembly of a chiral all-carbon quaternary stereocenter contained in the densely functionalized hydrocarbazole synthons but also manifest the potential for the application of the asymmetric catalysis based on the para-dienone chemistry in asymmetric synthesis of natural products.

  4. Brine migration in salt in a thermal gradient

    Science.gov (United States)

    Kang, M.; Lerche, M.; Lesher, C. E.

    2015-12-01

    Salt deposits have long been considered viable repositories for long-term storage of high-level nuclear waste. However, brine trapped in salt tends to migrate up thermal gradients, such as can develop around radioactive waste storage containers, potentially promoting corrosion of containment structures. Brine inclusions move up the temperature gradient through the three main steps: 1) the dissolution of salt at the hot side of the inclusion caused by increased salt solubility, 2) ordinary and thermal diffusion of dissolved salt ions within the inclusion, and 3) precipitation of salt at the cold side of the inclusion due to local supersaturation. This process of brine transport through salt under a thermal gradient is generally referred to as thermal migration. Here we investigated thermal migration of brine inclusion in salts for a wide range of mean temperatures (~ 50 °C to ~200 °C) and temperature gradients (~ 10 °C/cm to ~57 °C/cm). With time brine inclusions moving towards the heat source become elongated parallel to the thermal gradient. We quantified the rate of brine migration as a function of mean temperature and thermal gradient using time-lapse optical microscope. X -ray and neutron tomography were used to visualize and quantify 3D spatial distribution of brine inclusion in a salt crystal at different stages of thermal migration. Migration velocities are shown to increase with temperature, temperature gradient and size of inclusion. We find an abrupt increase in migration velocity at certain time steps of thermal migration. Migration velocities of brine inclusions ranged from 0.1 m/year to 30.7 m/year. Empirical equations at different velocity regions for brine inclusions were obtained by fitting exponential equations to the experimental data with high coefficient of determination values (R2> 0.94).The experimental results are in good agreement with the theoretical migration rates obtained using a previous analytical model.

  5. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.

    Science.gov (United States)

    Nfor, Beckley K; Hylkema, Nienke N; Wiedhaup, Koenraad R; Verhaert, Peter D E M; van der Wielen, Luuk A M; Ottens, Marcel

    2011-12-09

    Salt-induced protein precipitation and hydrophobic interaction chromatography (HIC) are two widely used methods for protein purification. In this study, salt effects in protein precipitation and HIC were investigated for a broad combination of proteins, salts and HIC resins. Interrelation between the critical thermodynamic salting out parameters in both techniques was equally investigated. Protein precipitation data were obtained by a high-throughput technique employing 96-well microtitre plates and robotic liquid handling technology. For the same protein-salt combinations, isocratic HIC experiments were performed using two or three different commercially available stationary phases-Phenyl Sepharose low sub, Butyl Sepharose and Resource Phenyl. In general, similar salt effects and deviations from the lyotropic series were observed in both separation methods, for example, the reverse Hofmeister effect reported for lysozyme below its isoelectric point and at low salt concentrations. The salting out constant could be expressed in terms of the preferential interaction parameter in protein precipitation, showing that the former is, in effect, the net result of preferential interaction of a protein with water molecules and salt ions in its vicinity. However, no general quantitative interrelation was found between salting out parameters or the number of released water molecules in protein precipitation and HIC. In other words, protein solubility and HIC retention factor could not be quantitatively interrelated, although for some proteins, regular trends were observed across the different resins and salt types. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Settling dynamics of asymmetric rigid fibers

    Science.gov (United States)

    Tozzi, E. J.; Scott, C. T.; Vahey, D.; Klingenberg, D. J.

    2011-03-01

    The three-dimensional motion of asymmetric rigid fibers settling under gravity in a quiescent fluid was experimentally measured using a pair of cameras located on a movable platform. The particle motion typically consisted of an initial transient after which the particle approached a steady rate of rotation about an axis parallel to the acceleration of gravity, with its center of mass following a helical trajectory. Numerical and analytical methods were used to predict translational and angular velocities as well as the evolution of the fiber orientation as a function of time. A comparison of calculated and measured values shows that it is possible to quantitatively predict complex motions of particles that have highly asymmetric shape. The relations between particle shape and settling trajectory have potential applications for hydrodynamic characterization of fiber shapes and fiber separation.

  7. Enhancing molecule fluorescence with asymmetrical plasmonic antennas.

    Science.gov (United States)

    Lu, Guowei; Liu, Jie; Zhang, Tianyue; Shen, Hongming; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gu, Ying; He, Yingbo; Wang, Yuwei; Gong, Qihuang

    2013-07-21

    We propose and justify by the finite-difference time-domain method an efficient strategy to enhance the spontaneous emission of a fluorophore with a multi-resonance plasmonic antenna. The custom-designed asymmetrical antenna consists of two plasmonic nanoparticles with different sizes and is able to couple efficiently to free space light through multiple localized surface plasmon resonances. This design simultaneously permits a large near-field excitation near the antenna as well as a high quantum efficiency, which results in an unusual and significant enhancement of the fluorescence of a single emitter. Such an asymmetrical antenna presents intrinsic advantages over single particle or dimer based antennas made using two identical nanostructures. This promising concept can be exploited in the large domain of light-matter interaction processes involving multiple frequencies.

  8. Defect induced asymmetric pit formation on hydroxyapatite.

    Science.gov (United States)

    Kwon, Ki-Young; Wang, Eddie; Chung, Alice; Chang, Neil; Saiz, Eduardo; Choe, Uh-Joo; Koobatian, Maxwell; Lee, Seung-Wuk

    2008-10-07

    Defect sites on bone minerals play a critical role in bone remodeling processes. We investigated single crystal hydroxyapatite (100) surfaces bearing crystal defects under acidic dissolution conditions using real-time in situ atomic force microscopy. At defect sites, surface structure-dependent asymmetric hexagonal etch pits were formed, which dominated the overall dissolution rate. Meanwhile, dissolution from the flat terraces proceeded by stochastic formation of flat bottom etch pits. The resulting pit shapes were intrinsically dictated by the HAP crystal structure. Computational modeling also predicted different step energies associated with different facets of the asymmetric etch pits. Our microscopic observations of HAP dissolution are significant for understanding the effects of local surface structure on the bone mineral remodeling process and provide useful insights for the design of novel therapies for treating osteoporosis and dental caries.

  9. Mixed salt crystallisation fouling

    CERN Document Server

    Helalizadeh, A

    2002-01-01

    The main purpose of this investigation was to study the mechanisms of mixed salt crystallisation fouling on heat transfer surfaces during convective heat transfer and sub-cooled flow boiling conditions. To-date no investigations on the effects of operating parameters on the deposition of mixtures of calcium sulphate and calcium carbonate, which are the most common constituents of scales formed on heat transfer surfaces, have been reported. As part of this research project, a substantial number of experiments were performed to determine the mechanisms controlling deposition. Fluid velocity, heat flux, surface and bulk temperatures, concentration of the solution, ionic strength, pressure and heat transfer surface material were varied systematically. After clarification of the effect of these parameters on the deposition process, the results of these experiments were used to develop a mechanistic model for prediction of fouling resistances, caused by crystallisation of mixed salts, under convective heat transfer...

  10. Americium separations from high salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Barr; Gordon D. Jarvinen; Louis D. Schulte; Peter C. Stark; Rebecca M. Chamberlin; Kent D. Abney; Thomas E. Ricketts; Yvette E. Valdez; Richard A. Bartsch

    2000-03-01

    Americium (III) exhibits an unexpectedly high affinity for anion-exchange material from the high-salt evaporator bottoms solutions--an effect which has not been duplicated using simple salt solutions. Similar behavior is observed for its lanthanide homologue, Nd(III), in complex evaporator bottoms surrogate solutions. There appears to be no single controlling factor--acid concentration, total nitrate concentration or solution ionic strength--which accounts for the approximately 2-fold increase in retention of the trivalent ions from complex solutions relative to simple solutions. Calculation of species activities (i.e., water, proton and nitrate) in such concentrated mixed salt solutions is difficult and of questionable accuracy, but it is likely that the answer to forcing formation of anionic nitrate complexes of americium lies in the relative activities of water and nitrate. From a practical viewpoint, the modest americium removal needs (ca. 50--75%) from nitric acid evaporator bottoms allow sufficient latitude for the use of non-optimized conditions such as running existing columns filled with older, well-used Reillex HPQ. Newer materials, such as HPQ-100 and the experimental bifunctional resins, which exhibit higher distribution coefficients, would allow for either increased Am removal or the use of smaller columns. It is also of interest that one of the experimental neutral-donor solid-support extractants, DHDECMP, exhibits a similarly high level of americium (total alpha) removal from EV bottoms and is much less sensitive to total acid content than commercially-available material.

  11. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2018-01-01

    Inorganic oxidizing energetic salts including nitrates, chlorates and perchlorates are widely used in the manufacture of not only licit pyrotechnic compositions, but also illicit homemade explosive mixtures. Their identification in forensic laboratories is usually accomplished by either capillary electrophoresis or ion chromatography, with the disadvantage of dissociating the salt into its ions. On the contrary, vibrational spectroscopy, including IR and Raman, enables the non-invasive identification of the salt, i.e. avoiding its dissociation. This study focuses on the discrimination of all nitrate, chlorate and perchlorate salts that are commercially available, using both Raman and IR spectroscopy, with the aim of testing whether every salt can be unequivocally identified. Besides the visual spectra comparison by assigning every band with the corresponding molecular vibrational mode, a statistical analysis based on Pearson correlation was performed to ensure an objective identification, either using Raman, IR or both. Positively, 25 salts (out of 72) were unequivocally identified using Raman, 30 salts when using IR and 44 when combining both techniques. Negatively, some salts were undistinguishable even using both techniques demonstrating there are some salts that provide very similar Raman and IR spectra.

  12. Comparison of the rift and post-rift architecture of conjugated salt and salt-free basins offshore Brazil and Angola/Namibia, South Atlantic

    Science.gov (United States)

    Strozyk, Frank; Back, Stefan; Kukla, Peter A.

    2017-10-01

    This study presents a regional comparison between selected 2D seismic transects from large, conjugated salt and salt-free basins offshore southern Brazil (Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Kwanza Basin, northern and southern Namibe Basin, Walvis Basin). Tectonic-stratigraphic interpretation of the main rift and post-rift units, free-air gravity data and flexural isostatic backstripping were used for a comprehensive basin-to-basin documentation of key mechanisms controlling the present-day differences in conjugated and neighbouring South Atlantic basins. A significant variation in the tectonic-sedimentary architecture along-strike at each margin and between the conjugated basins across the South Atlantic reflects major differences in (1) the structural configuration of each margin segment at transitional phase between rifting and breakup, as emphasized in the highly asymmetric settings of the large Santos salt basin and the conjugated, salt-free southern Namibe Basin, (2) the post-breakup subsidence and uplift history of the respective margin segment, which caused major differences for example between the Campos and Espirito Santo basins and the conjugated northern Namibe and Kwanza basins, (3) variations in the quantity and distribution of post-breakup margin sediments, which led to major differences in the subsidence history and the related present-day basin architecture, for example in the initially rather symmetric, siliciclastic Pelotas and Walvis basins, and (4) the deposition of Aptian evaporites in the large rift and sag basin provinces north of the Rio Grande Rise and Walvis Ridge, highly contrasting the siliciclastic basins along the margin segments south of the ridges. The resulting present-day architecture of the basins can be generally classified as (i) moderately symmetric, salt-free, and magma-rich in the northern part of the southern segment, (i) highly asymmetric, salt-bearing and magma-poor vs. salt-free and magma

  13. Two dialkylammonium salts of 2-amino-4-nitrobenzoic acid: crystal structures and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2016-12-01

    Full Text Available The crystal structures of two ammonium salts of 2-amino-4-nitrobenzoic acid are described, namely dimethylazanium 2-amino-4-nitrobenzoate, C2H8N+·C7H5N2O4−, (I, and dibutylazanium 2-amino-4-nitrobenzoate, C8H20N+·C7H5N2O4−, (II. The asymmetric unit of (I comprises a single cation and a single anion. In the anion, small twists are noted for the carboxylate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13 and 3.71 (15°, respectively; the dihedral angle between the substituents is 7.9 (2°. The asymmetric unit of (II comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+-antiperiplanar] conformation, while one has a distinctive kink resulting in a (+-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxylate and nitro groups and the ring being 12.73 (6 and 4.30 (10°, respectively, for the first anion and 8.1 (4 and 12.6 (3°, respectively, for the second. The difference between anions in (I and (II is that in the anions of (II, the terminal groups are conrotatory, forming dihedral angles of 17.02 (8 and 19.0 (5°, respectively. In each independent anion of (I and (II, an intramolecular amino-N—H...O(carboxylate hydrogen bond is formed. In the crystal of (I, anions are linked into a jagged supramolecular chain by charge-assisted amine-N—H...O(carboxylate hydrogen bonds and these are connected into layers via charge-assisted ammonium-N—H...O(carboxylate hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N—O...π(arene and methyl-C—H...O(nitro interactions. In the crystal of (II, the anions are connected into four-ion aggregates by charge-assisted amino-N—H...O(carboxylate hydrogen bonding. The formation of ammonium-N—H...O(carboxylate hydrogen bonds, involving

  14. Thermochemical Properties of Nicotine Salts

    Directory of Open Access Journals (Sweden)

    Riggs DM

    2014-12-01

    Full Text Available The thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC results presented in this report clearly show that the thermal stability and the endothermic peak nicotine release temperatures are different for different nicotine salts and these temperatures appear to be linked to the general microstructural details of the salt itself. In addition, the peak nicotine release temperatures are highly dependent upon the sample size used. The heat of vaporization for neat (non-protonated nicotine is also sample-size dependent. The TGA data showed that the least stable of the salts tested at elevated temperatures was the liquid salt nicotine triacetate followed by the crystalline materials (e.g., nicotine gallate and finally, the amorphous salts (e.g., nicotine alginate. The DSC results revealed that the liquid and crystalline salts exhibit nicotine release endotherms that are strongly related to the sample weight being tested. The amorphous salts show nicotine endotherm peak temperatures that are nearly independent of the sample weight. The range of peak nicotine release temperatures varied depending upon the specific salts and the sample size from 83 oC to well over 200 oC. Based on these results, the evolution of nicotine from the nicotine salt should be expected to vary based on the composition of the salt, the details of its microstructure, and the amount of nicotine salt tested.

  15. Asymmetric synthesis and sensory evaluation of sedanenolide.

    Science.gov (United States)

    Oguro, Daichi; Watanabe, Hidenori

    2011-01-01

    The synthesis and sensory evaluation of enantiomeric sets of sedanenolide (1) and 3-butylphthalide (3) are described. The asymmetric synthesis was achieved via the intramolecular Diels-Alder reaction of chiral propargylester (5) which was prepared from optically active propargyl alcohol (4) and 2,4-pentadienoic acid. The sensory evaluation of these enantiomers revealed that there were distinct differences between their aroma character and odor threshold.

  16. Catalytic Asymmetric Synthesis of Phosphine Boronates.

    Science.gov (United States)

    Hornillos, Valentín; Vila, Carlos; Otten, Edwin; Feringa, Ben L

    2015-06-26

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of α,β-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good yields and high enantiomeric excess. The synthetic utility of the products is demonstrated through stereospecific transformations into multifunctional optically active compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Asymmetric k-Center with Minimum Coverage

    DEFF Research Database (Denmark)

    Gørtz, Inge Li

    2008-01-01

    In this paper we give approximation algorithms and inapproximability results for various asymmetric k-center with minimum coverage problems. In the k-center with minimum coverage problem, each center is required to serve a minimum number of clients. These problems have been studied by Lim et al. [A....... Lim, B. Rodrigues, F. Wang, Z. Xu, k-center problems with minimum coverage, Theoret. Comput. Sci. 332 (1–3) (2005) 1–17] in the symmetric setting....

  18. Asymmetric monetary policy effects in EMU

    OpenAIRE

    Clausen, Volker; Hayo, Bernd

    2002-01-01

    This paper uses a semi-structural dynamic modelling approach to investigate asymmetric monetary transmission in Europe. A system of equations containing reaction functions for monetary policy, output and inflation equations is simultaneously estimated for France, Germany, and Italy. Extensive cross equation tests show that relatively large differences in simulated impulse responses are still consistent with the notion that the transmission mechanism is homogeneous across the three major EMU c...

  19. Microemulsion of Molten Salts

    Science.gov (United States)

    1991-02-01

    then to an oil-rich, upper phase as salinity increases in a system of brine/octane/ TRS surfactant/tertiary amyl alcohol . Borkovec et al. (1988) have...11 4. Partial Pseudotemary Phase Diagram .................................. 12 5. Micrograph of Molten Salts/SDS/Pentanol/Decane System...negligible interfacial tension between microdomains. Theoretical work in ternary and pseudotemary systems has shown that the middle phase is a

  20. Palladium-catalyzed asymmetric Heck arylation of 2,3-dihydrofuran--effect of prolinate salts.

    Science.gov (United States)

    Morel, Adam; Silarska, Ewelina; Trzeciak, Anna M; Pernak, Juliusz

    2013-01-28

    Chiral ionic liquids (CILs) containing L-prolinate and L-lactate anions and non-chiral quaternary ammonium cations were employed in the palladium catalyzed enantioselective Heck arylation of 2,3-dihydrofuran with aryl iodides (iodobenzene, 4-iodotoluene, 2-iodoanisole, 4-iodoanisole, 4-iodoacetophenone). In all the reactions 2-aryl-2,3-dihydrofuran (3) was obtained as the main product with the yield up to 52% at the total conversion reaching 83%. Product 3, 2-phenyl-2,3-dihydrofuran, was obtained with excellent enantioselectivity (>99% ee) in a 6 h reaction with tetrabutylammonium L-prolinate. In the proposed homogeneous reaction Pd(0) nanoparticles are considered as a resting state of the catalyst and a source of soluble palladium species catalyzing the Heck reaction. The yield and stereoselectivity of the Heck reaction are strongly influenced by the kind of non-chiral cations present in CILs.

  1. Predicting tensorial electrophoretic effects in asymmetric colloids

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  2. Asymmetric threat data mining and knowledge discovery

    Science.gov (United States)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  3. Salt disproportionation: A material science perspective.

    Science.gov (United States)

    Thakral, Naveen K; Kelly, Ron C

    2017-03-30

    While screening the counter-ions for salt selection for an active pharmaceutical substance, there is often an uncertainty about disproportionation of the salt and hence physical stability of the final product formulation to provide adequate shelf life. Several examples of disproportionation reactions are reviewed to explain the concepts of pHmax, microenvironmental pH, and buffering capacity of excipients and APIs to gain mechanistic understanding of disproportionation reaction. Miscellaneous factors responsible for disproportionation are examined. In addition to the dissolution failure due to the formation of less soluble unionized form, various implications of the disproportionation are evaluated with specific examples. During lead optimization and early stages of development, when only a limited amount of material is available, use of predictive tools like mathematical models and model free kinetics to rank order the various counter-ions are discussed in detail. Finally, analytical methods and mitigation strategies are discussed to prevent the disproportionation by detecting it during early stages of drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modeling internal deformation of salt structures targeted for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Chemia, Zurab

    2008-09-15

    This thesis uses results of systematic numerical models to argue that externally inactive salt structures, which are potential targets for radioactive waste disposal, might be internally active due to the presence of dense layers or blocks within a salt layer. The three papers that support this thesis use the Gorleben salt diapir (NW Germany), which was targeted as a future final repository for high-grade radioactive waste, as a general guideline. The first two papers present systematic studies of the parameters that control the development of a salt diapir and how it entrains a dense anhydrite layer. Results from these numerical models show that the entrainment of a dense anhydrite layer within a salt diapir depends on four parameters: sedimentation rate, viscosity of salt, perturbation width and the stratigraphic location of the dense layer. The combined effect of these four parameters, which has a direct impact on the rate of salt supply (volume/area of the salt that is supplied to the diapir with time), shape a diapir and the mode of entrainment. Salt diapirs down-built with sedimentary units of high viscosity can potentially grow with an embedded anhydrite layer and deplete their source layer (salt supply ceases). However, when salt supply decreases dramatically or ceases entirely, the entrained anhydrite layer/segments start to sink within the diapir. In inactive diapirs, sinking of the entrained anhydrite layer is inevitable and strongly depends on the rheology of the salt, which is in direct contact with the anhydrite layer. During the post-depositional stage, if the effective viscosity of salt falls below the threshold value of around 1018-1019 Pa s, the mobility of anhydrite blocks might influence any repository within the diapir. However, the internal deformation of the salt diapir by the descending blocks decreases with increase in effective viscosity of salt. The results presented in this thesis suggest that it is highly likely that salt structures

  5. Differential stability of DNA based on salt concentration.

    Science.gov (United States)

    Maity, Arghya; Singh, Amar; Singh, Navin

    2017-01-01

    Intracellular positive ions neutralize negative charges on the phosphates of a DNA strand, conferring greater strength on the hydrogen bonds that connect complementary strands into a double helix and so confer enhanced stability. Beyond a certain value of salt concentration, the DNA molecule displays an unstable nature in vivo as well as in vitro. We consider a wide range of salt concentrations and study the stability of the DNA double helix using a statistical model. Through numerical calculations, we attempt to explain the different behavior exhibited by DNA molecules in this range. We compare our results with experimental data and find a close agreement.

  6. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  8. Asymmetrical lumbosacral transitional vertebrae in dogs may promote asymmetrical hip joint development.

    Science.gov (United States)

    Flückiger, Mark A; Steffen, Frank; Hässig, Michael; Morgan, Joseph P

    2017-03-20

    This study examines the relationship between the morphology of the lumbosacral transitional vertebra (LTV) and asymmetrical development of the hip joints in dogs. A total of 4000 dogs which had been consecutively scored for canine hip dysplasia were checked for the presence of a LTV. A LTV was noted in 138 dogs and classified depending on the morphology of the transverse processes and the degree of contact with the ilium. In dogs with an asymmetrical LTV, the hip joint was significantly more predisposed to subluxation and malformation on the side of the intermediate or sacral-like transverse process (p hip joint conformation was less affected on the side featuring a free transverse process (p hip joint, and secondary osteoarthritis. Asymmetrical hip conformation may therefore be the sequela of a LTV and mask or aggravate genetically induced canine hip dysplasia.

  9. Temporal contrast of salt delivery in mouth increases salt perception

    OpenAIRE

    Tournier, Carole; Knoop, Janine E.; Kooyman, Gonnie; Smit, Gerrit

    2009-01-01

    The impact of salt delivery in mouth on salt perception was investigated. It was hypothesized that fast concentration changes in the delivery to the receptor can reduce sensory adaptation, leading to an increased taste perception. Saltiness ratings were scored by a panel over time during various stimulation conditions involving relative changes in NaCl concentration of 20% and 38%. Changes in salt delivery profile had similar effect on saltiness perception when delivered either by a sipwise m...

  10. Computational studies on 1,2,4-Triazolium-based salts as energetic ...

    Indian Academy of Sciences (India)

    method developed by Jenkins et al.27 as given by the following expression: HL = UPOT +[p (nM/2 − 2)+q (nX/2 − 2)]RT (6) where nM and nX depend on the nature of ions constitut- ing the salt MpXq. These are equal to 3 for monoatomic ions and 5 and 6 for linear and non-linear polyatomic ions, respectively. In the case of a ...

  11. Asymmetric breathing motions of nucleosomal DNA and the role of histone tails.

    Science.gov (United States)

    Chakraborty, Kaushik; Loverde, Sharon M

    2017-08-14

    The most important packing unit of DNA in the eukaryotic cell is the nucleosome. It undergoes large-scale structural re-arrangements during different cell cycles. For example, the disassembly of the nucleosome is one of the key steps for DNA replication, whereas reassembly occurs after replication. Thus, conformational dynamics of the nucleosome is crucial for different DNA metabolic processes. We perform three different sets of atomistic molecular dynamics simulations of the nucleosome core particle at varying degrees of salt conditions for a total of 0.7 μs simulation time. We find that the conformational dynamics of the nucleosomal DNA tails are oppositely correlated from each other during the initial breathing motions. Furthermore, the strength of the interaction of the nucleosomal DNA tail with the neighboring H2A histone tail modulates the conformational state of the nucleosomal DNA tail. With increasing salt concentration, the degree of asymmetry in the conformation of the nucleosomal DNA tails decreases as both tails tend to unwrap. This direct correlation between the asymmetric breathing motions of the DNA tails and the H2A histone tails, and its decrease at higher salt concentrations, may play a significant role in the molecular pathway of unwrapping.

  12. Asymmetric breathing motions of nucleosomal DNA and the role of histone tails

    Science.gov (United States)

    Chakraborty, Kaushik; Loverde, Sharon M.

    2017-08-01

    The most important packing unit of DNA in the eukaryotic cell is the nucleosome. It undergoes large-scale structural re-arrangements during different cell cycles. For example, the disassembly of the nucleosome is one of the key steps for DNA replication, whereas reassembly occurs after replication. Thus, conformational dynamics of the nucleosome is crucial for different DNA metabolic processes. We perform three different sets of atomistic molecular dynamics simulations of the nucleosome core particle at varying degrees of salt conditions for a total of 0.7 μs simulation time. We find that the conformational dynamics of the nucleosomal DNA tails are oppositely correlated from each other during the initial breathing motions. Furthermore, the strength of the interaction of the nucleosomal DNA tail with the neighboring H2A histone tail modulates the conformational state of the nucleosomal DNA tail. With increasing salt concentration, the degree of asymmetry in the conformation of the nucleosomal DNA tails decreases as both tails tend to unwrap. This direct correlation between the asymmetric breathing motions of the DNA tails and the H2A histone tails, and its decrease at higher salt concentrations, may play a significant role in the molecular pathway of unwrapping.

  13. Rheology of rock salt for salt tectonics modeling

    Directory of Open Access Journals (Sweden)

    Shi-Yuan Li

    2016-10-01

    Full Text Available Abstract Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the strain rate versus the differential stress through collecting the data from salt creep experiments at a range of temperatures (20–200 °C in laboratories. The aim is to collect data about salt deformation in nature, and the flow properties can be extracted from the data in laboratory experiments. Moreover, as an important preparation for salt tectonics modeling, a numerical model based on creep experiments of rock salt was developed in order to verify the specific model using the Abaqus package. Finally, under the condition of low differential stresses, the deformation mechanism would be extrapolated and discussed according to microstructure research. Since the studies of salt deformation in nature are the reliable extrapolation of laboratory data, we simplified the rock salt rheology to dislocation creep corresponding to power law creep (n = 5 with the appropriate material parameters in the salt tectonic modeling.

  14. Reactive halogen species above salt lakes and salt pans

    OpenAIRE

    Holla, Robert

    2013-01-01

    Salt lakes can be found on all continents and saline soils cover 2.5% of the land surface of the earth (FAO, 2012). This thesis investigates the presence of reactive halogen species (RHS) above salt lakes and saline soils to evaluate their relevance for tropospheric chemistry of the planetary boundary layer. Ground-based MAX-DOAS and LP-DOAS measurements were conducted at salt lakes and two other sites with high halogen content. Prior to this work, RHS were found at three salt ...

  15. Can elevated CO(2) improve salt tolerance in olive trees?

    Science.gov (United States)

    Melgar, Juan Carlos; Syvertsen, James P; García-Sánchez, Francisco

    2008-04-18

    We compared growth, leaf gas exchange characteristics, water relations, chlorophyll fluorescence, and Na(+) and Cl(-) concentration of two cultivars ('Koroneiki' and 'Picual') of olive (Olea europaea L.) trees in response to high salinity (NaCl 100mM) and elevated CO(2) (eCO(2)) concentration (700microLL(-1)). The cultivar 'Koroneiki' is considered to be more salt sensitive than the relatively salt-tolerant 'Picual'. After 3 months of treatment, the 9-month-old cuttings of 'Koroneiki' had significantly greater shoot growth, and net CO(2) assimilation (A(CO(2))) at eCO(2) than at ambient CO(2), but this difference disappeared under salt stress. Growth and A(CO(2)) of 'Picual' did not respond to eCO(2) regardless of salinity treatment. Stomatal conductance (g(s)) and leaf transpiration were decreased at eCO(2) such that leaf water use efficiency (WUE) increased in both cultivars regardless of saline treatment. Salt stress increased leaf Na(+) and Cl(-) concentration, reduced growth and leaf osmotic potential, but increased leaf turgor compared with non-salinized control plants of both cultivars. Salinity decreased A(CO(2)), g(s), and WUE, but internal CO(2) concentrations in the mesophyll were not affected. eCO(2) increased the sensitivity of PSII and chlorophyll concentration to salinity. eCO(2) did not affect leaf or root Na(+) or Cl(-) concentrations in salt-tolerant 'Picual', but eCO(2) decreased leaf and root Na(+) concentration and root Cl(-) concentration in the more salt-sensitive 'Koroneiki'. Na(+) and Cl(-) accumulation was associated with the lower water use in 'Koroneiki' but not in 'Picual'. Although eCO(2) increased WUE in salinized leaves and decreased salt ion uptake in the relatively salt-tolerant 'Koroneiki', growth of these young olive trees was not affected by eCO(2).

  16. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  17. Salt fluoridation and oral health

    Directory of Open Access Journals (Sweden)

    Thomas M. Marthaler

    2013-11-01

    Full Text Available The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the cariesprotective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich, and several other cantons followed suit. Studies initiated in the early seventies showed that fluoride, when added to salt, inhibits dental caries. The addition of fluoride to salt for human consumption was officially authorized in 1980-82. In Switzerland 85% of domestic salt consumed is fluoridated and 67% in Germany. Salt fluoridation schemes are reaching more than one hundred million in Mexico, Colombia, Peru and Cuba. The cost of salt fluoridation is very low, within 0.02 and 0.05 € per year and capita. Children and adults of the low socio-economic strata tend to have substantially more untreated caries than higher strata. Salt fluoridation is by far the cheapest method for improving oral health. Conclusions. Salt fluoridation has cariostatic potential like water fluoridation (caries reductions up to 50%. In Europe, meaningful percentages of users have been attained only in Germany (67% and Switzerland (85%. In Latin America, there are more than 100 million users, and several countries have arrived at coverage of 90 to 99%. Salt fluoridation is by far the cheapest method of caries prevention, and billions of people throughout the world could benefit from this method.

  18. Dietary Salt Intake and Hypertension

    Science.gov (United States)

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  19. Preview-based Asymmetric Load Reduction of Wind Turbines

    DEFF Research Database (Denmark)

    Madsen, Mathias; Filsø, Jakob; Soltani, Mohsen

    2012-01-01

    Fatigue loads on wind turbines caused by an asymmetric wind field become an increasing concern when the scale of wind turbines increases. This paper presents a model based predictive approach to reduce asymmetric loads by using Light Detection And Ranging (LIDAR) measurements. The Model Predictive...... to the same controller without LIDAR data. The results showed that the MPC with LIDAR was able to reduce the asymmetric loads compared to the MPC without LIDAR while still maintaining the power reference....

  20. Asymmetric joint multifractal analysis in Chinese stock markets

    Science.gov (United States)

    Chen, Yuwen; Zheng, Tingting

    2017-04-01

    In this paper, the asymmetric joint multifractal analysis method based on statistical physics is proposed to explore the asymmetric correlation between daily returns and trading volumes in Chinese stock markets. The result shows asymmetric multifractal correlations exist between return and trading volume in Chinese stock markets. Moreover, when the stock indexes are upward, the fluctuations of returns are always weaker than when they are downward, whether the trading volumes are more or less.

  1. Combined shear/compression structural testing of asymmetric sandwich structures

    OpenAIRE

    Castanié, Bruno; Barrau, Jean-Jacques; Jaouen, Jean-Pierre; Rivallant, Samuel

    2004-01-01

    Asymmetric sandwich technology can be applied in the design of lightweight, non-pressurized aeronautical structures such as those of helicopters. A test rig of asymmetric sandwich structures subjected to compression/shear loads was designed, validated, and set up. It conforms to the standard certification procedure for composite aeronautical structures set out in the “test pyramid”, a multiscale approach. The static tests until failure showed asymmetric sandwich structures to be extremely res...

  2. Asymmetric acoustic transmission in graded beam

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Li, E-mail: lj94172350@hotmail.com [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiu Hui, E-mail: ejhwu@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Guan, Dong; Lu, Kuan [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Gao, Nansha [School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Songhua, Cao [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-12-01

    We demonstrate the dynamic effective material parameters and vibration performance of a graded beam. The structure of the beam was composed of several unit cells with different fill factors. The dispersion relations and energy band structures of each unit cell were calculated using the finite element method (FEM). The dynamic effective material parameters in each unit cell of the graded beam were determined by the dispersion relations and energy band structures. Longitudinal wave propagation was investigated using a numerical method and FEM. The results show that the graded beam allows asymmetric acoustic transmission over a wide range of frequencies.

  3. On asymmetric causal relationships in Petropolitics

    Directory of Open Access Journals (Sweden)

    Balan Feyza

    2016-01-01

    Full Text Available The aim of this paper is to examine whether the First Law of Petropolitics denominated by Friedman in 2006 is valid for OPEC countries. To do this, this paper analyses the relationship between political risk and oil supply by applying the asymmetric panel causality test suggested by Hatemi-J (2011 to these countries for the period 1984-2014. The results show that the First Law of Petropolitics is valid for Angola, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, and the UAE, given that positive oil supply shocks significantly lead to negative political stability shocks, and negative oil supply shocks significantly lead to positive shocks in political stability.

  4. Chiral Diamine-catalyzed Asymmetric Aldol Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XU Da-zhen; WU Lu-lu; WANG Yong-mei

    2012-01-01

    A highly efficient catalytic system composed of a simple and commercially available chiral primary diamine (1R,2R)-cyclohexane-1,2-diamine(6) and trifluoroacetic acid(TFA) was employed for asymmetric Aldol reaction in i-PrOH at room temperature.A loading of 10%(molar fraction) catalyst 6 with TFA as a cocatalyst could catalyze the Aldol reactions of various ketones or aldehydes with a series of aromatic aldehydes,furnishing Aldol products in moderate to high yields(up to >99%) with enantioselectivities of up to >99% and diastereoselectivities of up to 99:1.

  5. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  6. Copper-catalyzed asymmetric oxidation of sulfides.

    Science.gov (United States)

    O'Mahony, Graham E; Ford, Alan; Maguire, Anita R

    2012-04-06

    Copper-catalyzed asymmetric sulfoxidation of aryl benzyl and aryl alkyl sulfides, using aqueous hydrogen peroxide as the oxidant, has been investigated. A relationship between the steric effects of the sulfide substituents and the enantioselectivity of the oxidation has been observed, with up to 93% ee for 2-naphthylmethyl phenyl sulfoxide, in modest yield in this instance (up to 30%). The influence of variation of solvent and ligand structure was examined, and the optimized conditions were then used to oxidize a number of aryl alkyl and aryl benzyl sulfides, producing sulfoxides in excellent yields in most cases (up to 92%), and good enantiopurities in certain cases (up to 84% ee).

  7. Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4 V operating voltage

    Science.gov (United States)

    Wu, Haoran; Lian, Keryn

    2018-02-01

    A novel asymmetrical-bipolar electrochemical capacitor system leveraging the contributions of a Zn-CNT asymmetrical electrode and a KOH-H2SO4 dual-pH electrolyte was developed. The positive and negative electrodes operated in electrolytes with different pH, exploiting the maximum potential of both electrodes, which led to a cell voltage of 2.4 V. The potential tracking of both electrodes revealed that the Zn negative electrode could maintain a potential at -1.2 V, while the CNT positive electrode can be charged to +1.2 V without significant irreversible reactions. A bipolar ion exchange membrane has effectively separated the acid and alkaline from neutralization, which resulted in stable performance of the device with capacitance retention of 94% and coulombic efficiency of 99% over 10,000 cycles. This asymmetrical-bipolar design overcomes the thermodynamic limit of water decomposition, opening a new avenue towards high energy and high power density aqueous-based ECs.

  8. Magnetochemistry of the tetrahaloferrate(III) ions. 2. Crystal structure and magnetic ordering in (4-Br(py)H) sub 3 Fe sub 2 Cl sub 1. 3 Br sub 7. 7 and (4-Cl(py)H) sub 3 Fe sub 2 Br sub 9. The superexchange paths in the A sub 3 Fe sub 2 X sub 9 salts

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, C.B.; Carlin, R.L.; Schultz, A.J.; Loong, C.K. (Univ. of Illinois, Chicago (USA) Argonne National Lab., IL (USA))

    1990-09-05

    A series of neutron diffraction investigations at 25 K are reported on single crystals of stoichiometry (4-chloropyridinium){sub 3}Fe{sub 2}Br{sub 9} and on (4-bromopyridinium){sub 3}Fe{sub 2}Cl{sub 1.3}Br{sub 7.7}. The compound of stoichiometry (4-bromopyridinium){sub 3}Fe{sub 2}Cl{sub 1.3}Br{sub 7.7} is found to belong to the space group P2{sub 1}/n with four formula units in the unit cell, and the related compound (4-chloropyridinium){sub 3}Fe{sub 2}Bn{sub 9} was found to belong to the same space groups. Structural analysis shows that the iron is present as the (FeX{sub 4}){sup {minus}} ion (X = Cl, Br). The results of the determination of the crystal structure of the compounds are reported. Both materials are isomorphous with the previously reported bis(4-chloropyridinium tetrachloroferrate(III))-4-chloropyridinium chloride. Magnetic measurements on single crystals show that the S = 5/2 material (4-bromopyridinium){sub 3}Fe{sub 2}Cl{sub 1.3}Br{sub 7.7} orders as a canted antiferromagnet at 5.67 K, while (4-chloropyridinium){sub 3}Fe{sub 2}Br{sub 9} orders in a similar fashion at 7.96 K. Magnetic susceptibility data are compared with the theoretical predictions for the simple cubic (sc) Heisenberg high-temperature series expansion model, and superexchange pathways for the isostructural series of monoclinic A{sub 3}Fe{sub 2}X{sub 9} salts are examined. 19 refs., 6 figs., 6 tabs.

  9. Ionic Osmoregulation during Salt Adaptation of the Cyanobacterium Synechococcus 6311.

    Science.gov (United States)

    Blumwald, E; Mehlhorn, R J; Packer, L

    1983-10-01

    The mechanisms of salt adaptation were studied in the cyanobacterium Synechococcus 6311. Intracellular volumes and ion concentrations were measured before and after abrupt increases of external NaCl concentrations up to 0.6 molar NaCl. Equilibrium volumes, measured with a rapid and accurate electron spin resonance spin probe method, showed that at low NaCl concentrations the cells did not shrink as expected for an impermeable solute. However, when the NaCl concentration exceeded a critical value, volume losses occurred. These losses were not fully reversed by hypoosmotic treatment, suggesting membrane damage. The critical value of irreversible volume loss paralleled the increase in salinity during cell growth. Rapid mixing experiments showed that exposure of Synechococcus 6311 to non-damaging NaCl concentrations caused water extrusion from the cells; the volume decreases were time resolved to about 200 milliseconds. Subsequently, volumes increased rapidly as NaCl moved into the cells. Controls recovered their volumes within 15 seconds, while salt-adapted cells grown at 0.6 molar NaCl required 1 minute for volume equilibration. This decrease in the rate of cell volume recovery indicates that salt adaptation is accompanied by changes in cell membrane properties. Subsequent to these initial rapid volume changes, a more gradual sequence of ion movement and sugar accumulation was observed. Under conditions for photoautotrophic growth, significant Na(+) extrusion was observed 30 min after salt shock. Sucrose accumulation reached a maximum value after 16 hours and K(+) accumulation reached equilibrium after 40 hours. The final concentrations of K(+) and Na(+) and sucrose and glucose inside the 0.6 molar NaCl-grown cells indicate that the inorganic ions and organic ;compatible' solutes are the major osmotic species which account for the adaptation of Synechococcus 6311 to salt.

  10. Relationship Between Salt Intake, Salt-Taste Threshold and Blood ...

    African Journals Online (AJOL)

    Background: Many studies have found an association between sodium intake and blood pressure. Salt taste threshold is thought to be another marker of sodium intake. Objective: This study sought to assess two markers of sodium intake, 24-hour-urinary sodium and salt-taste threshold. We also determined the relationship ...

  11. Temporal contrast of salt delivery in mouth increases salt perception

    NARCIS (Netherlands)

    Busch, J.L.H.C.; Tournier, C.; Knoop, J.E.; Kooyman, G.; Smit, G.

    2009-01-01

    The impact of salt delivery in mouth on salt perception was investigated. It was hypothesized that fast concentration changes in the delivery to the receptor can reduce sensory adaptation, leading to an increased taste perception. Saltiness ratings were scored by a panel over time during various

  12. Experiments in connection with Salt Domes

    NARCIS (Netherlands)

    Escher, B.G.; Kuenen, Ph.H.

    1928-01-01

    The different theories concerning the origin of Salt Domes in Roumania, Germany, Texas, Louisiana, Colorado and Utah are discussed. In Roumania the salt occurs in cores of “Diapir” anticlines. The existance of hills of salt indicates, that the salt is still pushing upwards. In Germany the salt

  13. Sodium: How to Tame Your Salt Habit

    Science.gov (United States)

    ... same amount of sodium as table salt. Use salt substitutes wisely. Some salt substitutes or light salts contain a mixture of table ... substitute — and get too much sodium. Also, many salt substitutes contain potassium chloride. Although potassium can lessen some ...

  14. Ion implantation of highly corrosive electrolyte battery components

    Science.gov (United States)

    Muller, Rolf H.; Zhang, Shengtao

    1997-01-01

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.

  15. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  16. At Low SNR Asymmetric Quantizers Are Better

    CERN Document Server

    Koch, Tobias

    2012-01-01

    We study the capacity of the discrete-time Gaussian channel when its output is quantized with a one-bit quantizer. We focus on the low signal-to-noise ratio (SNR) regime, where communication at very low spectral efficiencies takes place. In this regime a symmetric threshold quantizer is known to reduce channel capacity by 2/pi, i.e., to cause an asymptotic power loss of approximately two decibels. Here it is shown that this power loss can be entirely avoided by using asymmetric threshold quantizers and asymmetric signaling constellations. We prove that in order to avoid this power loss flash-signaling input-distributions are essential. Consequently, one-bit output quantization of the Gaussian channel reduces spectral efficiency. Threshold quantizers are not only asymptotically optimal: as we prove, at every fixed SNR, a threshold quantizer maximizes capacity among all one-bit output quantizers. The picture changes on the Rayleigh-fading channel. In the noncoherent case we show that a one-bit output quantizer ...

  17. Asymmetric DSL Technology of Signal Transmission

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2005-05-01

    Full Text Available Asymmetric flow of information is the key feature of theADSL (Asymmetric Digital Subscriber Loop technology, i.e.higher data transmission rate towards the user than from theuser towards the network. Characteristic is the short messagesending by the user with a certain request to the se!Ver. These!Ver responds to the request by a significantly longer messageof various electronic forms (data, digitized speech, pictures orvideo. Therefore, this technology is most often used by smalland medium users. ADSL is currently the only commerciallyavailable DSL technology which is still experiencing the breakthroughon the seiVice market. It enables faster access to theInternet, LAN (Local Area Network, videoconferencing, VoD(Video on Demand and interactive multimedia. In order tostandardize such se/Vices, the !TU (International TelecommunicationsUnion G. 992.1 (standardized DMT-discrete multi-tone line coding technology and ANSJ (American NationalStandards Institution Tl.413-95!98 are used for ADSL. DMT(Discrete Multi Tone, as the more popular one, uses the linecoding technique, which splits a certain frequency range intoseveral sub-channels. Most of these sub-channels are used forupstream and downstream transmission of speech and data,whereas some are used as pilot signals or kept in rese/Ve. Suchmodulation technique expands the frequency spectrum, allowingthe usage ofbroadband se/Vices per one pair of wires. In thisway the sharing of speech and data se/Vice transmission is realized.

  18. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    Science.gov (United States)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  19. Algebraic Davis Decomposition and Asymmetric Doob Inequalities

    Science.gov (United States)

    Hong, Guixiang; Junge, Marius; Parcet, Javier

    2016-09-01

    In this paper we investigate asymmetric forms of Doob maximal inequality. The asymmetry is imposed by noncommutativity. Let {({M}, τ)} be a noncommutative probability space equipped with a filtration of von Neumann subalgebras {({M}_n)_{n ≥ 1}}, whose union {bigcup_{n≥1}{M}_n} is weak-* dense in {{M}}. Let {{E}_n} denote the corresponding family of conditional expectations. As an illustration for an asymmetric result, we prove that for {1 Hardy spaces {{H}_p^r({M})} and {{H}_p^c({M})} respectively. In particular, this solves a problem posed by the Defant and Junge in 2004. In the case p = 1, our results establish a noncommutative form of the Davis celebrated theorem on the relation betwe en martingale maximal and square functions in L 1, whose noncommutative form has remained open for quite some time. Given {1 ≤ p ≤ 2}, we also provide new weak type maximal estimates, which imply in turn left/right almost uniform convergence of {{E}_n(x)} in row/column Hardy spaces. This improves the bilateral convergence known so far. Our approach is based on new forms of Davis martingale decomposition which are of independent interest, and an algebraic atomic description for the involved Hardy spaces. The latter results are new even for commutative von Neumann algebras.

  20. [Asymmetric hypertrophy of the masticatory muscles].

    Science.gov (United States)

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. An asymmetric B factory based on PEP

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.

  2. Asymmetric inheritance of cytoophidia in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-10-01

    Full Text Available A general view is that Schizosaccharomyces pombe undergoes symmetric cell division with two daughter cells inheriting equal shares of the content from the mother cell. Here we show that CTP synthase, a metabolic enzyme responsible for the de novo synthesis of the nucleotide CTP, can form filamentous cytoophidia in the cytoplasm and nucleus of S. pombe cells. Surprisingly, we observe that both cytoplasmic and nuclear cytoophidia are asymmetrically inherited during cell division. Our time-lapse studies suggest that cytoophidia are dynamic. Once the mother cell divides, the cytoplasmic and nuclear cytoophidia independently partition into one of the two daughter cells. Although the two daughter cells differ from one another morphologically, they possess similar chances of inheriting the cytoplasmic cytoophidium from the mother cell, suggesting that the partition of cytoophidium is a stochastic process. Our findings on asymmetric inheritance of cytoophidia in S. pombe offer an exciting opportunity to study the inheritance of metabolic enzymes in a well-studied model system.

  3. Asymmetric Cell Divisions in the Epidermis

    Science.gov (United States)

    Poulson, Nicholas D.; Lechler, Terry

    2012-01-01

    Generation of three-dimensional tissue with distinct cell types is required for the development of all organs. On its own, mitotic spindle orientation allows tissues to change in length or shape. In combination with intrinsic or extrinsic cues this can also be coupled to the generation of diverse cell fates - a process known as asymmetric cell division (ACD). Understanding ACD’s has been greatly aided by studies in invertebrate model systems, where genetics and live imaging have provided the basis for much of what we know. ACD’s also drive the development and differentiation of the epidermis in mammals. While similar to the invertebrate models, the epidermis is distinct in balancing symmetric and asymmetric divisions to yield a tissue of the correct surface area and thickness. Here we review the roles of spindle orientation in driving both morphogenesis and cell fate decisions. We highlight the epidermis as a unique model system to study not only basic mechanisms of ACD, but also to study their regulation during development. PMID:22449491

  4. Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress.

    Science.gov (United States)

    Zhang, Huan; Zhang, Qian; Zhai, Hong; Li, Yan; Wang, Xiangfeng; Liu, Qingchang; He, Shaozhen

    2017-01-13

    Sweet potato is an important food and bio-energy crop, and investigating the mechanisms underlying salt tolerance will provide information for salt-tolerant breeding of this crop. Here, the root transcriptomes of the salt-sensitive variety Lizixiang and the salt-tolerant line ND98 were compared to identify the genes and pathways involved in salt stress responses. In total, 8,744 and 10,413 differentially expressed genes (DEGs) in Lizixiang and ND98, respectively, were involved in salt responses. A lower DNA methylation level was detected in ND98 than in Lizixiang. In both genotypes, the DEGs, which function in phytohormone synthesis and signalling and ion homeostasis, may underlie the different degrees of salt tolerance. Significant up-regulations of the genes involved in the jasmonic acid (JA) biosynthesis and signalling pathways and ion transport, more accumulation of JA, a higher degree of stomatal closure and a lower level of Na + were found in ND98 compared to Lizixiang. This is the first report on transcriptome responses to salt tolerance in sweet potato. These results reveal that the JA signalling pathway plays important roles in the response of sweet potato to salt stress. This study provides insights into the mechanisms and genes involved in the salt tolerance of sweet potato.

  5. Estimating soil salt components and salinity using hyperspectral remote sensing data in an arid area of China

    Science.gov (United States)

    Jiang, Hongnan; Shu, Hong; Lei, Lei; Xu, Jianhui

    2017-01-01

    HJ-1A hyperspectral data were used to distinguish topsoil salt components and estimate soil salinity, and the relationship between soil salt chemical components and sensitive bands of soil reflectance spectra was analyzed. The correlation between the soil salt content and the soil spectra obtained from the hyperspectral data was analyzed, proving that topsoil salinity has a very significant correlation with soil reflectance spectra. The relationship between soil reflectance spectra and salt chemical ions was investigated. The soil spectral reflectance at wavelength 510.975 nm and a difference vegetation index were selected to estimate soil salinity and the dominant salt chemical ion concentrations at a depth of 0 to 10 cm using a partial least squares regression model. It was found that the bands sensitive to various levels of chemical components of soil salt were shown to differ, controlled by the dominant component of the soil salt. The sensitive bands in the soil salinity estimation will change with differences in salt components. Estimating the dominant salt in the soil using soil reflectance spectra will lead to greater prediction accuracy. This study provided a possible method for the estimation of salinity and chemical component levels in topsoil, using the hyperspectral data to estimate topsoil salt components.

  6. Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress

    Science.gov (United States)

    Zhang, Huan; Zhang, Qian; Zhai, Hong; Li, Yan; Wang, Xiangfeng; Liu, Qingchang; He, Shaozhen

    2017-01-01

    Sweet potato is an important food and bio-energy crop, and investigating the mechanisms underlying salt tolerance will provide information for salt-tolerant breeding of this crop. Here, the root transcriptomes of the salt-sensitive variety Lizixiang and the salt-tolerant line ND98 were compared to identify the genes and pathways involved in salt stress responses. In total, 8,744 and 10,413 differentially expressed genes (DEGs) in Lizixiang and ND98, respectively, were involved in salt responses. A lower DNA methylation level was detected in ND98 than in Lizixiang. In both genotypes, the DEGs, which function in phytohormone synthesis and signalling and ion homeostasis, may underlie the different degrees of salt tolerance. Significant up-regulations of the genes involved in the jasmonic acid (JA) biosynthesis and signalling pathways and ion transport, more accumulation of JA, a higher degree of stomatal closure and a lower level of Na+ were found in ND98 compared to Lizixiang. This is the first report on transcriptome responses to salt tolerance in sweet potato. These results reveal that the JA signalling pathway plays important roles in the response of sweet potato to salt stress. This study provides insights into the mechanisms and genes involved in the salt tolerance of sweet potato. PMID:28084460

  7. The Twentieth International Symposium on Molten Salts and Ionic Liquids

    Science.gov (United States)

    2016-11-29

    Heterocyclic Carbene Involved?" by Hyung Kim "Carbon Dioxide Absorption Behavior and Cabronate Ion Transport of Lithium Orthosilicate/Molten Carbonate...Electrodeposition of Metals" by Remana Reddy "In Situ TEM Observations of Lithium Electrodeposition/Stripping Process in Ionic Liquid" by Tetsuya Tsuda "Green... America . iii Preface The 20th International Symposium on Molten Salts and Ionic Liquids Symposium was held on October 2 - 7, 2016, in Honolulu, Hawaii as

  8. Iminium Salts by Meerwein Alkylation of Ehrlich’s Aldehyde

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2013-03-01

    Full Text Available 4-(Dimethylaminobenzaldehyde is alkylated at the N atom by dialkyl sulfates, MeI, or Me3O BF4. In contrast, ethylation by Et3O BF4 occurs selectively at the O atom yielding a quinoid iminium ion. 4-(Diethylaminobenzaldehyde is alkylated only at O by either Et or Me oxonium reagent. The iminium salts are prone to hydrolysis giving the corresponding hydrotetrafluoroborates. Five crystal structures were determined.

  9. COMPARISON OF GEO-MECHANICAL PROPERTIES OF WHITE ROCK SALT AND PINK ROCK SALT IN KŁODAWA SALT DIAPIR

    National Research Council Canada - National Science Library

    Malwina Kolano; Danuta Flisiak

    2013-01-01

    .... The present article introduces strength-strain properties of white rock salt, building the nucleus of northeastern edge anticline, and pink rock salt that belongs to the series of youngest rock salt...

  10. Caenorhabditis elegans response to salt

    NARCIS (Netherlands)

    O.O. Umuerri (Oluwatoroti Omowayewa)

    2012-01-01

    textabstractThis thesis describes my work, where I used genetic methods to identify new genes involved in salt taste in C. elegans. In addition, I used calcium imaging to characterize the cellular response of C. elegans to salt. The thesis is divided into five sections and each section is summarized

  11. Bile salts secretion in cirrhosis.

    Science.gov (United States)

    Correia, J P; Areias, E; Meneses, L; Tiago, E

    1977-02-01

    The bile salts secretion was studied in ten normal subjects and sixteen patients with alcoholic cirrhosis, in a basal period and during 60 minutes after Secretin injection. Total bile salts were measured by a modification of the enzymatic method of Iwata and Yamasaki and the individual bile salts were separated by silica gel thin-layer chromatography. During the 60 minutes after Secretin the mean concentration was 2.88 +/- 2.58 muM/ml in normals and 1.96 +/- 1.25 muM/ml in cirrhotics. The difference is not significant. During the first 20 minutes however the concentration was higher than 3 muM/ml in 8 out of 10 normals and lower than 2 muM/ml in 10 out 16 cirrhotics. The ratios of tri-to dihydroxy bile salts was similar in both groups. The ratios between bile salts conjugated with glycine and with taurine was higher in normals, and the ratio between free to conjugated bile salts was higher in cirrhotics. The lower concentration of total bile salts immediatly after Secretin, the higher proportion of taurin conjugates and of free bile salts could be important factors in the difficulties of fact digestion and absorption frequently found in patients with alcoholic cirrhosis.

  12. Compressibility of granulated rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Stinebaugh, R.E.

    1979-08-01

    Crushed rock salt will be used extensively at the Waste Isolation Pilot Plant as a material for backfilling underground openings. This document addresses one of the characteristics of crushed salt which must be known to assess the consequences of its usage, namely, compressibility.

  13. Validation data for the determination of perchlorate in water using ion chromatography with suppressed conductivity detection.

    Science.gov (United States)

    Seiler, Maike A; Jensen, Detlef; Neist, Udo; Deister, Ursula K; Schmitz, Franz

    2016-01-01

    Perchlorate salts are relatively stable, soluble in water, and migrate into groundwater sources. Groundwater is an essential source for drinking water suppliers. Perchlorate bears health risks as it is identified to impair normal thyroid function by interfering with iodine uptake by the thyroid gland. The development of a sensitive analytical method for the determination of perchlorate is therefore of the highest interest or public health. Ion chromatography is a sensitive method suitable for perchlorate determinations. This manuscript describes the validation of an ion chromatographic method. Perchlorate is determined by ion chromatography (IC) with conductivity detection after suppression (CD) applying isocratic elution. In this study, the suitability of IC-CD was tested for synthetic samples, selected environmental water, drinking water, and swimming pool water in order to evaluate potential matrix effects on the perchlorate signal even after sample preparation. A sample injection volume of 750 μL was applied to the selected 2-mm-IC column. In untreated samples, the perchlorate peak can be interfered by neighbouring signals from matrix ions like chloride, nitrate, carbonate, and sulphate. Depending on the concentration of the matrix ions, the perchlorate peak can show asymmetric shape in particular when the perchlorate concentration is low. Recovery is reduced with increasing matrix ion concentrations. Dedicated matrix elimination was applied to minimize such effects. A reporting limit of 1.5 μg/L perchlorate and an expanded measurement uncertainty of 13.2 % were achieved. The extended method validation proves the applicability of IC based on the EPA 314.0 method for the determination of trace amounts of perchlorate in water samples of different origin. The results support the development of a respective international standard pursued by ISO. The approach evidenced its working robustness and ease of use in terms of eluent preparation, chromatographic

  14. Proposal of a general scheme to obtain room-temperature spin polarization in asymmetric antiferromagnetic semiconductors

    Science.gov (United States)

    Li, Xingxing; Wu, Xiaojun; Li, Zhenyu; Yang, Jinlong

    2015-09-01

    Exploring magnetic semiconductors is one of the most important questions for spintronic applications. Although various solutions, such as dilute magnetic semiconductors, have been proposed, a practical spintronic device working at room temperature has not been realized. The key to address this issue is to find magnetic materials with both room-temperature magnetic ordering and large spin polarization around the Fermi energy level. Here, we predict a new concept of asymmetric antiferromagnetic (AFM) semiconductors (AAFMSs) with both features. The high temperature magnetic ordering originates from the AFM coupling between different transition metal ions with strong super-exchange interaction, whereas the large spin polarization around the Fermi energy level owes to d orbital mismatch among these ions. Through first-principles calculations, a family of double perovskites A2Cr M O6 (A =Ca ,Sr ,Ba , and M =Ru ,Os ) are predicted to be AAFMSs. This paper provides a way for developing spintronic devices working at room temperature.

  15. History Leaves Salts Behind

    Science.gov (United States)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which uses curium-244 to assess the elemental composition of rocks and soil. Only portions of the targets' full spectra are shown to highlight the significant differences in elemental concentrations between 'McKittrick' and 'Tarmac.' Intensities are plotted on a logarithmic scale.A nearby rock named Guadalupe similarly has extremely high concentrations of sulfur, but very little bromine. This 'element fractionation' typically occurs when a watery brine slowly evaporates and various salt compounds are precipitated in sequence.

  16. Preferential Solvation of an Asymmetric Redox Molecule

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kee Sung; Rajput, Nav Nidhi; Vijayakumar, M.; Wei, Xiaoliang; Wang, Wei; Hu, Jian Z.; Persson, Kristin A.; Mueller, Karl T.

    2016-12-15

    The fundamental correlations between inter-molecular interactions, solvation structure and functionality of electrolytes are in many cases unknown, particularly for multi-component liquid systems. In this work, we explore such correlations by investigating the complex interplay between solubility and solvation structure for the electrolyte system comprising N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethylsulfonimide (Fc1N112-TFSI) dissolved in a ternary carbonate solvent mixture using combined NMR relaxation and computational analyses. Probing the evolution of the solvent-solvent, ion-solvent and ion-ion interactions with an increase in solute concentration provides a molecular level understanding of the solubility limit of the Fc1N112-TFSI system. An increase in solute con-centration leads to pronounced Fc1N112-TFSI contact-ion pair formation by diminishing solvent-solvent and ion-solvent type interactions. At the solubility limit, the precipitation of solute is initiated through agglomeration of contact-ion pairs due to overlapping solvation shells.

  17. Differential Toxicities of Nickel Salts to the Nematode Caenorhabditis elegans.

    Science.gov (United States)

    Meyer, Dean; Birdsey, Jennifer M; Wendolowski, Mark A; Dobbin, Kevin K; Williams, Phillip L

    2016-08-01

    This study focused on assessing whether nickel (Ni) toxicity to the nematode Caenorhabditis elegans was affected by the molecular structure of the Ni salt used. Nematodes were exposed to seven Ni salts [Ni sulfate hexahydrate (NiSO4·6H2O), Ni chloride hexahydrate (NiCl2·6H2O), Ni acetate tetrahydrate (Ni(OCOCH3)2·4H2O), Ni nitrate hexahydrate (N2NiO6·6H2O), anhydrous Ni iodide (NiI2), Ni sulfamate hydrate (Ni(SO3NH2)2·H2O), and Ni fluoride tetrahydrate (NiF2·4H2O)] in an aquatic medium for 24 h, and lethality curves were generated and analyzed. Ni fluoride, Ni iodide, and Ni chloride were most toxic to C. elegans, followed by Ni nitrate, Ni sulfamate, Ni acetate, and Ni sulfate. The LC50 values of the halogen-containing salts were statistically different from the corresponding value of the least toxic salt, Ni sulfate. This finding is consistent with the expected high bioavailability of free Ni ions in halide solutions. We recommend that the halide salts be used in future Ni testing involving aquatic invertebrates.

  18. Novel compliant electrodes based on platinum salt reduction

    Science.gov (United States)

    Delille, Remi; Urdaneta, Mario; Hsieh, Kuangwen; Smela, Elisabeth

    2006-03-01

    A compliant electrode material is presented that was inspired by the electroding process used to manufacture ionic polymer-metal composites (IPMCs). However, instead of an ion-exchange membrane, a UV-curable acrylated urethane elastomer is employed. The electrode material consists of the UV-curable elastomer (Loctite 3108) loaded with tetraammineplatinum(II) chloride salt particles through physical mixing and homogenization. The composite material is made conductive by immersion in a reducing agent, sodium borohydride, which reduces the salt to platinum metal on the surface of the elastomer film. Because the noble metal is mixed into the elastomer precursor as a salt, the amount of UV light absorbed by the precursor is not significantly reduced, and the composite loses little photopatternability. As a result meso-scale electrodes of varying geometries can be formed by exposing the precursor/salt mixture through a mask. The materials are mechanically and electrically characterized. The percolation threshold of the composite is estimated to be 9 vol. % platinum salt, above which the compliant electrode material exhibits a maximum conductivity of 1 S/cm. The composite maintains its electrical conductivity under axial tensile strains of up to 40%.

  19. Genesis of Tuzla salt basin

    Science.gov (United States)

    Sušić, Amir; Baraković, Amir; Komatina, Snezana

    2017-04-01

    Salt is condition for the survival of the human race, and holds a special place in the exploitation of mineral resources. It is the only mineral raw material used in direct feeding, and therefore has its own specialty. Salt is a crystalline mineral that is found in seawater, as well as in underground areas where it is formed by deposition of salt sediments. Occurrences of salt water near Tuzla and Gornja Tuzla have been known since the time of the Romans as "ad salinas". The name itself connects Bosnia with its richness in salt, because the word barefoot, which is preserved in a north-Albanian dialect, means a place where boiling salted water are obtained. At the time of the Bosnian kings, these regions are named Soli, which is in connection with occurences of saline sources. Geological studies of rock salt in the area of Tuzla basin are practically began after the annexation of Bosnia and Herzegovina by the Austro-Hungarian Empire, in the period from 1878 to 1918. Geological field work was conducted K. Paul, H. Hefer, E. Tietze and F. Katzer. Monomineral deposit of rock salt Tetima is made of halite and anhydrite mixed with marl belt, while the bay of salt in Tuzla is polymineral and contains a considerable amount of thenardite (Na2SO4) and rare minerals: nortupit, nahkolit, bradleit, probertit, glauberite and others. Both salt deposits were created as a product of chemical sedimentation in the lower Miocene Badenian sediments. The main objective of this paper is to show the genesis of the deposits and the spatial and genetic connection. In addition, genesis of geological research in the areas of Tuzla basin will be presented.

  20. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  1. Anion bridges drive salting out of a simple amphiphile from aqueous solution

    OpenAIRE

    Bowron, D. T.; Finney, J. L.

    2002-01-01

    Neutron diffraction with isotope substitution has been used to determine the structural changes that occur on the addition of a simple salting-out agent to a dilute aqueous alcohol solution. The striking results obtained demonstrate a relatively simple process occurs in which interamphiphile anionic salt bridges are formed between the polar groups of the alcohol molecules. These ion bridges drive an increase in the exposure of the alcohol molecule nonpolar surface to the solvent water and hen...

  2. Aqueous salting-out effect of inorganic cations and anions on non-electrolytes.

    Science.gov (United States)

    Görgényi, Miklós; Dewulf, Jo; Van Langenhove, Herman; Héberger, Károly

    2006-10-01

    The salting-out effects of 27 lithium, sodium, potassium, ammonium and magnesium salts and HCl on chloroform, benzene, chlorobenzene and anisole were characterized in aqueous solutions at 303 K by measuring the Henry's law constants. The concentration of the salt solutions was 0.5 mol dm(-3), i.e., similar to the salinity of sea water. The solubility change was described in terms of the Setschenow constant, K(S)(salt,solute). The highest salting-out effects were observed for the solutions of salts involving doubly charged anions, and the smallest for NO(-)(3). The individual ionic Setschenow constants, K(S)(cation,solute) and K(S)(anion,solute), were determined by multilinear regression, using the assumption of additivity for the ions. Cl(-) was selected as the reference ion for calculation of the K(S)(ion,solute) values of the other ions. The estimations resulted systematically in significant positive K(S)(cation,solute) values, ranging from 0.13+/-0.026 (NH(+)(4)) to 0.28+/-0.032 (Mg(2+)), which were hardly affected by the accompanying anion in solution, and only slightly affected by the non-electrolytes present. NO(-)(3) resulted in a slight salting-in effect: K(S)(NO(-)(3),solute)=-0.083+/-0.019; the other anions displayed salting-out effect for all of the non-electrolytes studied, with K(S)(anion,solute) ranging between 0.090+/-0.008 (HCO(-)(3)) and 0.21+/-0.035 (CO(2-)(3)).

  3. Sulfate Salts in Gasoline and Ethanol Fuels -- Historical Perspective and Analysis of Available Data

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Alleman, Teresa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering, Inc., Sharonville, OH (United States)

    2017-09-21

    This report reviews the chemistry of sulfate salts dissolved in ethanol and gasoline, potential sources of sulfate salts in ethanol and gasoline, the history of consumer vehicle issues with sulfate salt deposits in the early 2000s, and the corresponding changes to the denatured fuel ethanol specification. Recommendations for future research are provided. During a period of rapid market expansion in 2004-05, issues were reported with vehicles running on E10 provided by certain suppliers in some markets. It was commonly believed that these vehicle problems were caused by sulfate salts precipitating from the fuel. Investigators identified sodium sulfate, and in one case also ammonium sulfate, as the predominate salts found in the engines. Several stakeholders believed the issue was excess sulfate ions in the ethanol portion of the E10, and in 2005 the ASTM specification for ethanol (D4806) was modified to include a 4-part per million (ppm) limit on sulfate ions. While there have been no further reports of consumer vehicle issues, the recently approved increase of ethanol in gasoline from 10 to 15 volume percent has resulted in renewed interest in the sulfate ion concentration in fuel ethanol. This report reviews published data on the solubility of sulfate salts in ethanol. The possible sources of sulfate anions and charge balancing cations (such as sodium) in fuel ethanol and petroleum derived blendstocks are discussed. Examination of historical information on the consumer vehicle issues that occurred in 2004-2005 reveals that a source of sodium or ammonium ions, required for the formation of the observed insoluble salts, was never identified. Recommendations for research to better understand sulfate salt solubility issues in ethanol, hydrocarbon blendstocks, and ethanol-gasoline blends are presented.

  4. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.

    Science.gov (United States)

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-04-30

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂(-) in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.

  5. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  6. Decrease in back strength in asymmetric trunk postures

    NARCIS (Netherlands)

    Vink, P.; Daanen, H. A M; Meijst, W. J.; Ligteringen, J.

    1992-01-01

    The extension force against resistance was recorded in 23 postures for 12 subjects to find explanations for the decrease in back strength in asymmetric postures. A reduction in muscle force in asymmetric postures was found up to 40%, but was strongly dependent on the plane in which asymmetry

  7. Hofmeister effect of salt mixtures on thermo-responsive poly(propylene oxide)

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2015-01-01

    The Hofmeister series is a classification of ions regarding their ability to stabilize or destabilize aqueous solutions of proteins, polymers and other molecules which are partly miscible with water. In this study, we employ differential scanning calorimetry to investigate how the stability...... of aqueous solutions of poly(propylene oxide) is affected by mixtures of ions with different location in the Hofmeister series. Our results show that the Hofmeister effects of pure salt species are not always linearly additive and that the relative effect of some ions can be reversed depending...... on the composition of the salt mixture as well as by the absolute and relative concentration of the different species. We suggest that these results can lead to a better understanding of the potential role of the Hofmeister effect in regulation of biological processes, which does always take place in salt mixtures...

  8. Contact Freezing of Water by Salts.

    Science.gov (United States)

    Niehaus, Joseph; Cantrell, Will

    2015-09-03

    Water is unlikely to crystallize homogeneously at temperatures greater than -34 °C. Freezing at higher temperatures is heterogeneous-catalyzed by the presence of a second substance. If that substance is at an air-water interface, then the mode is called contact freezing, and it typically will trigger nucleation at a higher temperature than if the substance were wholly immersed within the liquid. We find that the impact of salt particles initiates freezing in experiments using water droplets at supercoolings of 9 to 16 °C. These results show that contact freezing nuclei need not be effective as immersion mode nuclei. We discuss our results in the context of proposed mechanisms of contact freezing. Finally, we use the time scales for diffusion of heat and of ions and the propagation of a sound wave through the droplet to estimate that contact freezing occurs within 10 ns of impact.

  9. Carbon Mineralization Using Phosphate and Silicate Ions

    Science.gov (United States)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  10. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    Science.gov (United States)

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  11. Stable colloids in molten inorganic salts

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  12. Stable colloids in molten inorganic salts.

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  13. Degenerate nucleophilic substitution in phosphonium salts.

    Science.gov (United States)

    Jennings, Elizabeth V; Nikitin, Kirill; Ortin, Yannick; Gilheany, Declan G

    2014-11-19

    Rates and energy barriers of degenerate halide substitution on tetracoordinate halophosphonium cations have been measured by NMR techniques (VT and EXSY) using a novel experimental design whereby a chiral substituent ((s)Bu) lifts the degeneracy of the resultant salts. Concomitantly, a viable computational approach to the system was developed to gain mechanistic insights into the structure and relative stabilities of the species involved. Both approaches strongly suggest a two-step mechanism of formation of a pentacoordinate dihalophosphorane via backside attack followed by dissociation, resulting in inversion of configuration at phosphorus. The experimentally determined barriers range from salts. Calculations determined that this was due to the easier accessibility in solution of pentacoordinate dichlorophosphoranes when compared to analogous dibromophosphoranes. In line with the proposed associative mechanism, bulky substituents slow the reaction in the order Me < Et < (i)Pr < (t)Bu. Bulky substituents affect the shape of the reaction energy profile so that the pentacoordinate intermediate is destabilized eventually becoming a transition state. The magnitude of the steric effects is comparable to that of the same substituents on substitution at primary alkyl halides, which can be rationalized by the relatively longer P-C bonds. The reaction displays first-order kinetics due to the prevalence of tight- or solvent-separated ion pairs in solution. Three-dimensional reaction potential energy profiles (More O'Ferrall-Jencks plots) indicated a relatively shallow potential well corresponding to the trigonal bipyramid intermediate flanked by two transition states.

  14. Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization.

    Science.gov (United States)

    El-Deen, Ahmed G; Boom, Remko M; Kim, Hak Yong; Duan, Hongwei; Chan-Park, Mary B; Choi, Jae-Hwan

    2016-09-28

    Nanoporous graphene based materials are a promising nanostructured carbon for energy storage and electrosorption applications. We present a novel and facile strategy for fabrication of asymmetrically functionalized microporous activated graphene electrodes for high performance capacitive desalination and disinfection of brackish water. Briefly, thiocarbohydrazide coated silica nanoparticles intercalated graphene sheets are used as a sacrificial material for creating mesoporous graphene followed by alkaline activation process. This fabrication procedure meets the ideal desalination pore diameter with ultrahigh specific surface area ∼ 2680 m(2) g(-1) of activated 3D graphene based micropores. The obtained activated graphene electrode is modified by carboxymethyl cellulose as negative charge (COO(-2)) and disinfectant quaternary ammonium cellulose with positively charged polyatomic ions of the structure (NR4(+)). Our novel asymmetric coated microporous activated 3D graphene employs nontoxic water-soluble binder which increases the surface wettability and decreases the interfacial resistance and moreover improves the electrode flexibility compared with organic binders. The desalination performance of the fabricated electrodes was evaluated by carrying out single pass mode experiment under various cell potentials with symmetric and asymmetric cells. The asymmetric charge coated microporous activated graphene exhibits exceptional electrosorption capacity of 18.43 mg g(-1) at a flow rate of 20 mL min(-1) upon applied cell potential of 1.4 V with initial NaCl concentration of 300 mg L(-1), high charge efficiency, excellent recyclability, and, moreover, good antibacterial behavior. The present strategy provides a new avenue for producing ultrapure water via green capacitive deionization technology.

  15. Chromatographic resolution of a salt into its parent acid and base constituents.

    Science.gov (United States)

    Davankov, Vadim; Tsyurupa, Maria

    2006-12-08

    Based on the results of the earlier proposed process of separation of mixtures of mineral electrolytes by size-exclusion chromatography (SEC), it has been suggested that a mineral salt must spontaneously resolve, at least partially, into its parent acid and base constituents, provided that the separating media discriminates the anion and cation of the salt according to their size. Indeed, migration of a zone of an aqueous salt solution through a bed of neutral nanoporous hypercrosslinked polystyrene-type packing was shown to result in the generation of acidic and alkaline effluent fractions. The principle of spontaneous salt resolution has been extended to other types of discriminating interactions between the stationary phase and the two ions of the salt. The idea was exemplified by the resolution of ammonium acetate, due to hydrophobic retention of the acetate, into fractions enriched in ammoniac and then acetic acid.

  16. Deracemization of Axially Chiral Nicotinamides by Dynamic Salt Formation with Enantiopure Dibenzoyltartaric Acid (DBTA

    Directory of Open Access Journals (Sweden)

    Fumitoshi Yagishita

    2013-11-01

    Full Text Available Dynamic atroposelective resolution of chiral salts derived from oily racemic nicotinamides and enantiopure dibenzoyltartaric acid (DBTA was achieved by crystallization. The absolute structures of the axial chiral nicotinamides were determined by X-ray structural analysis. The chirality could be controlled by the selection of enantiopure DBTA as a chiral auxiliary. The axial chirality generated by dynamic salt formation was retained for a long period after dissolving the chiral salt in solution even after removal of the chiral acid. The rate of racemization of nicotinamides could be controlled based on the temperature and solvent properties, and that of the salts was prolonged compared to free nicotinamides, as the molecular structure of the pyridinium ion in the salts was different from that of acid-free nicotinamides.

  17. Iodized Salt Sales in the United States

    Directory of Open Access Journals (Sweden)

    Joyce Maalouf

    2015-03-01

    Full Text Available Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt.

  18. Asymmetric pair distribution functions in catalysts

    DEFF Research Database (Denmark)

    Clausen, B. S.; Nørskov, Jens Kehlet

    2000-01-01

    of asymmetric pair distribution functions for nano-sized particles and how they influence the structural parameters obtained from the standard data analysis. An alternative method, which takes into account deviations from the Gaussian pair distribution function typically used in the analysis of EXAFS spectra......, will be described. The method is based on an analysis of the pair distribution functions derived from molecular dynamics simulations of small metal particles and its reliability is demonstrated by comparing structural parameters obtained from independent X-ray diffraction experiments.......The structural parameters, i.e., coordination numbers, bond distances and disorder obtained from the analysis of EXAFS spectra may sometimes be significantly influenced by errors introduced due to the inadequacy of the analysis method applied. Especially in the case of heterogeneous catalysts...

  19. Polyimides Derived from Novel Asymmetric Benzophenone Dianhydrides

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2015-01-01

    This invention relates to the composition and processes for preparing thermoset polyimides derived from an asymmetric dianhydride, namely 2,3,3',4'-benzophenone dianhydride (a-BTDA) with at least one diamine, and a monofunctional terminal endcaps. The monofunctional terminating groups include 4-phenylethynylphthalic anhydride ester-acid derivatives, phenylethyl trimellitic anhydride (PETA) and its ester derivatives as well as 3-phenylethynylaniline. The process of polyimide composite comprises impregnating monomer reactants of dianhydride or its ester-acid derivatives, diamine and with monofunctional reactive endcaps into glass, carbon, quartz or synthetic fibers and fabrics, and then stack up into laminates and subsequently heated to between 150-375.degree. C. either at atmosphere or under pressure to promote the curing and crosslinking of the reactive endcaps to form a network of thermoset polyimides.

  20. Optical Nonreciprocity in Asymmetric Optomechanical Couplers

    Science.gov (United States)

    Wang, Zheqi; Shi, Lei; Liu, Yi; Xu, Xinbiao; Zhang, Xinliang

    2015-03-01

    We propose an all-optical integrated nonreciprocal device on the optomechanical platform with a large nonreciprocal bandwidth and low operating power. The device is based on an asymmetric silicon coupler consisting of two branches. One of them is a conventional strip waveguide fixed on the substrate, and the other is a freestanding nanostring suspended above a groove in the substrate. When light is launched into the coupler, the optical gradient force between the freestanding nanostring and the underlying substrate leads to the deflection of the nanostring, and finally results in destruction of the initial phase-matching condition between the two branches. The suspended branch would achieve distinct deflections when light is incident from different ports. The simulation results show a nonreciprocal bandwidth of 13.1 nm with operating power of 390 μW. With the advantages of simple structure, low power consumption and large operating bandwidth, our work provides a promising solution for on-chip passive nonreciprocal device.