WorldWideScience

Sample records for asymmetric mach-zehnder fiber

  1. Mach-Zehnder atom interferometer inside an optical fiber

    Science.gov (United States)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  2. Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors

    Directory of Open Access Journals (Sweden)

    Lanying Zhou

    2011-05-01

    Full Text Available A fiber inline Mach-Zehnder interferometer (MZI consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10 made by stretching. The proposed fabrication method is very low cost, 1/20–1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30–350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3–5 fold by fabricating an inline micro–trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N2 is tested by the MZI sensor coated with MFI–type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.

  3. Optical Coupling Structures of Fiber-Optic Mach-Zehnder Interferometers Using CO2 Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chen

    2014-01-01

    Full Text Available The Mach-Zehnder interferometer (MZI can be used to test changes in the refractive index of sucrose solutions at different concentrations. However, the popularity of this measurement tool is limited by its substantial size and portability. Therefore, the MZI was integrated with a small fiber-optic waveguide component to develop an interferometer with fiber-optic characteristics, specifically a fiber-optic Mach-Zehnder interferometer (FO-MZI. Optical fiber must be processed to fabricate two optical coupling structures. The two optical coupling structures are a duplicate of the beam splitter, an optical component of the interferometer. Therefore, when the sensor length and the two optical coupling structures vary, the time or path for optical transmission in the sensor changes, thereby influencing the back-end interference signals. The researchers successfully developed an asymmetrical FO-MZI with sensing abilities. The spacing value between the troughs of the sensor length and interference signal exhibited an inverse relationship. In addition, image analysis was employed to examine the size-matching relationship between various sensor lengths and the coupling and decoupling structure. Furthermore, the spectral wavelength shift results measured using a refractive index sensor indicate that FO-MZIs with a sensor length of 38 mm exhibited excellent sensitivity, measuring 59.7 nm/RIU.

  4. Asymmetric Mach-Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection.

    Science.gov (United States)

    Chalyan, Tatevik; Guider, Romain; Pasquardini, Laura; Zanetti, Manuela; Falke, Floris; Schreuder, Erik; Heideman, Rene G; Pederzolli, Cecilia; Pavesi, Lorenzo

    2016-01-06

    In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si₃N₄ Asymmetric Mach-Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab'). We measured a best volumetric sensitivity of 10⁴ rad/RIU, leading to a Limit of Detection below 5 × 10(-7) RIU. On sensors functionalized with Fab', we performed specific and non-specific sensing measurements at various toxin concentrations. Reproducibility of the measurements and re-usability of the sensor were also investigated.

  5. Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber

    DEFF Research Database (Denmark)

    Ho, Bo-Yan; Su, Hsien-Pin; Tseng, Yu-Pei

    2015-01-01

    We demonstrated a simple and cost-effective method to fabricate all fiber Mach-Zehnder interferometer (MZI) based on cascading a short section of liquid crystal (LC)-filled hollow-optic fiber (HOF) between two single mode fibers by using automatically splicing technique. The transmission spectra...... of the proposed MZI with different LC-infiltrated length were measured and the temperature-induced wavelength shifts of the interference fringes were recorded. Both blue shift and red shift were observed, depending the temperature range. Based on our experimental results, interference fringe was observed...

  6. Fiber optic sensor based on Mach-Zehnder interferometer for securing entrance areas of buildings

    Science.gov (United States)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Mec, Pavel; Novak, Martin; Bednarek, Lukas; Vasinek, Vladimir

    2017-10-01

    Authors of this article focused on the utilization of fiber optic sensors based on interferometric measurements for securing entrance areas of buildings such as windows and doors. We described the implementation of the fiber-optic interferometer (type Mach-Zehnder) into the window frame or door, sensor sensitivity, analysis of the background noise and methods of signal evaluation. The advantage of presented solution is the use of standard telecommunication fiber standard G.652.D, high sensitivity, immunity of sensor to electromagnetic interference (EMI) and passivity of the sensor regarding power supply. Authors implemented the Graphical User Interface (GUI) which offers the possibility of remote monitoring presented sensing solution.

  7. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    Science.gov (United States)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  8. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  9. A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography.

    Science.gov (United States)

    Xiong, Qiao; Tong, Xinglin; Deng, Chengwei; Zhang, Cui; Wang, Pengfei; Zheng, Zhiyuan; Liu, Fang

    2018-05-13

    A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision. The birefringence of ECF is calculated and experimentally measured, which demonstrates the polarization sensitivity of the ECF proposed in the paper is similar to that of SMF. Such a structure can replace the reference optical delay line to form an all-fiber passive device. A mirror is used as a sample for analyzing the ECF bending responses of the system. Besides, four pieces of overlapping glass slides as sample are experimentally measured as well.

  10. Mach-Zehnder Fiber-Optic Links for Reaction History Measurements at the National Ignition Facility

    International Nuclear Information System (INIS)

    Miller, E. Kirk; Herrmann, H.W.; Stoeffl, W.; Horsfield, C.J.

    2009-01-01

    We present the details of the analog fiber-optic data link that will be used in the chamber-mounted Gamma Reaction History (GRH) diagnostic at the National Ignition Facility (NIF) located at the Lawrence Livermore Laboratory in Livermore, California. The system is based on Mach-Zehnder (MZ) modulators integrated into the diagnostic, with the source lasers and bias control electronics located remotely to protect the active electronics. A complete recording system for a single GRH channel comprises two MZ modulators, with the fiber signals split onto four channels on a single digitizer. By carefully selecting the attenuation, the photoreceiver, and the digitizer settings, the dynamic range achievable is greater than 1000:1 at the full system bandwidth of greater than 10 GHz. The system is designed to minimize electrical reflections and mitigate the effects of transient radiation darkening on the fibers.

  11. Double-pass Mach-Zehnder fiber interferometer pH sensor.

    Science.gov (United States)

    Tou, Zhi Qiang; Chan, Chi Chiu; Hong, Jesmond; Png, Shermaine; Eddie, Khay Ming Tan; Tan, Terence Aik Huang

    2014-04-01

    A biocompatible fiber-optic pH sensor based on a unique double-pass Mach-Zehnder interferometer is proposed. pH responsive poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate) hydrogel coating on the fiber swells/deswells in response to local pH, leading to refractive index changes that manifest as shifting of interference dips in the optical spectrum. The pH sensor is tested in spiked phosphate buffer saline and demonstrates high sensitivity of 1.71  nm/pH, pH 0.004 limit of detection with good responsiveness, repeatability, and stability. The proposed sensor has been successfully applied in monitoring the media pH in cell culture experiments to investigate the relationship between pH and cancer cell growth.

  12. Optical fiber temperature sensor based on dumbbell-shaped Mach-Zehnder interferometer

    Science.gov (United States)

    Tan, Jianchang; Feng, Guoying; Liang, Jingchuan; Zhang, Shulin

    2018-01-01

    A dumbbell-shaped and core-disconnected microstructure all-fiber temperature sensor based on the Mach-Zehnder interferometer (MZI) is designed and implemented. To the best of our knowledge, the MZI with this configuration was produced and applied to sense temperature for the first time. It demonstrated that this all-fiber interferometer incorporates intermodal interference between the LP01 mode and a high-order cladding mode of LP07. Theoretical and experimental results indicate that the linearity of the spectral shift due to the temperature change is ˜0.999 and the sensitivity at 25°C to 400°C is ˜26.03 pm/°C and at -25°C to 20°C is ˜23.87 pm/°C. The reproducibility error of this all-fiber temperature sensor at 25°C to 400°C is innovative micro-nano all-fiber sensors.

  13. In-fiber torsion sensor based on dual polarized Mach-Zehnder interference.

    Science.gov (United States)

    Chen, Lei; Zhang, Wei-Gang; Wang, Li; Zhang, Hao; Sieg, Jonathan; Zhou, Quan; Zhang, Li-Yu; Wang, Biao; Yan, Tie-Yi

    2014-12-29

    This paper presents a novel optical fiber torsion sensor based on dual polarized Mach-Zehnder interference (DPMZI). Unlike the conventional fiber sensor, the proposed sensor is composed of a sensor part and a demodulator. The demodulator is made by a bared single mode fiber (SMF) loop, and the sensor part is a segment of a coated SMF placed before the loop. A mathematical model is proposed based on DPMZI mechanism and from the model when the sensor part is twisted, the E-field rotational angle will bring a quasi-linear impact on the resonance dip wavelength in their matched detecting range. A proof-of-concept experiment was performed to verify the theoretical prediction. From the experimental data, a sensitivity of -0.3703, -1.00962, and -0.59881 nm•m/rad is achieved with the determining range of 12.0936, 7.6959, and 10.4444 rad/m respectively. The sensor which is composed only of the SMF has the advantages of low insertion loss (~-2dB), healthy structure, low manufacture cost, and easy assembly and application.

  14. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching

    Science.gov (United States)

    Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An

    2016-03-01

    A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.

  15. Integrated Mach-Zehnder interferometer on the end facet of multicore fiber for refractive index sensing application

    Science.gov (United States)

    Qi, Yanwen; Zhang, Siyao; Feng, Shengfei; Wang, Xinke; Sun, Wenfeng; Ye, Jiasheng; Han, Peng; Zhang, Yan

    2018-01-01

    A sensitive, real-time seven core optical fiber based Mach-Zehnder interferometer (MZI) sensor for liquid refractive index detection is proposed, fabricated and characterized. A trapezoid body with an inverted wedge shape groove in the center is used to design the MZI. The two ends of the trapezoid body play the roles of micro-prisms, and the middle parts of the trapezoid body and the groove play the roles of reference and sensing arms. A series of performance tests were carried out by immersing the sensor in different kinds of solutions to verify the universal applicability of the sensor. The MZI sensor is as small as only 43 μm × 8 μm, and at the same time with sensitivity of 1616 nm/RIU. Nominally, we realized a completely integrated optical sensing system. And, this system actually could be the building block of more powerful integrated chemical sensing chip for health, security and industry application.

  16. Improved vibration sensor based on a biconical tapered singlemode fiber, using in-fiber Mach-Zehnder interferometer

    Science.gov (United States)

    Wonko, R.; Moś, J. E.; Stasiewicz, K. A.; Jaroszewicz, L. R.

    2017-05-01

    Optical fiber vibration sensors are an appropriate alternative for piezoelectric devices, which are electromagnetic sensitive to the external conditions. Most of the vibration sensors demonstrated in previous publications resist to different interferometers or Bragg's gratings. Such sensors require a long time of stabilization of an optical signal, because they are vulnerable to undesirable disturbance. In majority, time response of an optical sensor should be instantaneous, therefore we have proposed an in- line vibration sensing passive element based on a tapered fiber. Micrometer sized optical fiber tapers are attractive for many optical areas due to changes process of boundary conditions. Such phenomena allow for a sensitive detection of the modulation phase. Our experiment shows that a singlemode, adiabatic tapered fiber enables detecting an acoustic vibration. In this study, we report on Mach- Zehnder (MZ) interferometer as a vibration sensor which was composed of two 50/50 couplers at 1550 nm. In the reference arm we used a 4 meter singlemode optical fiber (SMF28), while in the arm under test we placed tapered optical fibers attached to a metal plate, put directly on speaker. Researches carried out on different tapered fibers which diameter of a taper waist was in the range from 5 μm to 25 μm, and each taper was characterized by optical losses less than 0,5 dB. The measured phase changes were over a frequency from 100 Hz to 1 kHz and an amplitude in the range from 100 mVpp to 1 Vpp. Although on account of a limited space we have showed only the results for 100 Hz. Nevertheless, experimental results show that this sensing system has a wide frequency response range from a few hertz to one of kilohertz, however for some conditions, a standard optical fiber showed better result.

  17. Refractometric sensor based on all-fiber coaxial Michelson and Mach-Zehnder interferometers for ethanol detection in fuel

    International Nuclear Information System (INIS)

    Mosquera, L; Osorio, Jonas H; Hayashi, Juliano G; Cordeiro, Cristiano M B

    2011-01-01

    A refractometric sensor based on mechanically induced interferometers formed with long period gratings is reported. It is also shown two different setups based on a Michelson and Mach-Zehnder interferometer and its application to measure ethanol concentration in gasoline.

  18. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer.

    Science.gov (United States)

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-20

    This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0  μϵ to 12,000  μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12  pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.

  19. Fiber optic refractive index and magnetic field sensors based on microhole-induced inline Mach-Zehnder interferometers

    Science.gov (United States)

    Chen, Feifei; Jiang, Yi; Zhang, Liuchao; Jiang, Lan; Wang, Sumei

    2018-04-01

    A compact microhole-induced fiber optic inline Mach-Zehnder interferometer (MZI) is demonstrated for measurements of refractive index (RI) and magnetic field. Inline MZIs with different etched diameters, different interaction lengths and different sizes of microholes are fabricated and assessed. The optical transmission spectra of the inline MZIs immersed into a series of liquids are characterized and analysed. Experimental results show that liquid RI sensitivity as high as 539.8436 nm RIU-1 in the RI range of 1.3352-1.4113 RIU is achieved and also exhibits good linearity with a correlation coefficient  >93%. An inline MZI is also fabricated to be a magnetic field sensor by using magnetic fluid material. The experimental results show that this magnetic field sensor has a high sensitivity of  -275.6 pm Oe-1. The inline MZI-based fiber optic sensors possess many advantages, such as small size, simple fabrication, high sensitivity and good linearity, which has a wide application potential in chemical, biological and environmental sensing fields.

  20. Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer

    Science.gov (United States)

    Ahmad, H.; Jasim, A. A.

    2017-07-01

    A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.

  1. Silicon opto-electronic wavelength tracker based on an asymmetric 2x3 Mach-Zehnder Interferometer

    OpenAIRE

    Doménech Gómez, José David; Sanchez Fandiño, Javier Antonio; Gargallo Jaquotot, Bernardo Andrés; Baños Lopez, Rocio; Muñoz Muñoz, Pascual

    2014-01-01

    In this paper we report on the experimental demonstration of a Silicon-on-Insulator opto-electronic wavelength tracker for the optical telecommunication C-band. The device consist of a 2x3 Mach-Zehnder Interferometer (MZI) with 10 pm resolution and photo-detectors integrated on the same chip. The MZI is built interconnecting two Multimode Interference (MMI) couplers with two waveguides whose length difference is 56 mm. The first MMI has a coupling ratio of 95:05 to com...

  2. Twin-Core Fiber-Based Mach Zehnder Interferometer for Simultaneous Measurement of Strain and Temperature

    Science.gov (United States)

    Kowal, Dominik; Urbanczyk, Waclaw; Mergo, Pawel

    2018-01-01

    In this paper we present an all-fiber interferometric sensor for the simultaneous measurement of strain and temperature. It is composed of a specially fabricated twin-core fiber spliced between two pieces of a single-mode fiber. Due to the refractive index difference between the two cores in a twin-core fiber, a differential interference pattern is produced at the sensor output. The phase response of the interferometer to strain and temperature is measured in the 850–1250 nm spectral range, showing zero sensitivity to strain at 1000 nm. Due to the significant difference in sensitivities to both parameters, our interferometer is suitable for two-parameter sensing. The simultaneous response of the interferometer to strain and temperature was studied using the two-wavelength interrogation method and a novel approach based on the spectral fitting of the differential phase response. As the latter technique uses all the gathered spectral information, it is more reliable and yields the results with better accuracy. PMID:29558386

  3. A Core-Offset Mach Zehnder Interferometer Based on A Non-Zero Dispersion-Shifted Fiber and Its Torsion Sensing Application

    Directory of Open Access Journals (Sweden)

    Eduardo Huerta-Mascotte

    2016-06-01

    Full Text Available In this paper, an all-fiber Mach-Zehnder interferometer (MZI based on a non-zero dispersion-shifted fiber (NZ-DSF is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs. Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers. Thus, a MZI interference spectrum with a fringe contrast (FC of about 20 dB was observed. Moreover, its response spectrum was experimentally characterized to the torsion parameter and a sensitivity of 0.070 nm/° was achieved. Finally, these MZIs can be implemented in a compact size and low cost.

  4. Tunable and switchable all-fiber comb filter using a PBS-based two-stage cascaded Mach-Zehnder interferometer

    Science.gov (United States)

    Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2011-08-01

    We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.

  5. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    Science.gov (United States)

    Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung

    2013-01-01

    We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744

  6. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    Science.gov (United States)

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  7. Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator.

    Science.gov (United States)

    Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R

    2011-04-11

    A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America

  8. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach-Zehnder Interferometer.

    Science.gov (United States)

    Lan, Chengming; Zhou, Wensong; Xie, Yawen

    2018-04-16

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.

  9. Ultrasensitive Mach-Zehnder Interferometric Temperature Sensor Based on Liquid-Filled D-Shaped Fiber Cavity

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2018-04-01

    Full Text Available A liquid-filled D-shaped fiber (DF cavity serving as an in-fiber Mach–Zehnder interferometer (MZI has been proposed and experimentally demonstrated for temperature sensing with ultrahigh sensitivity. The miniature MZI is constructed by splicing a segment of DF between two single-mode fibers (SMFs to form a microcavity (MC for filling and replacement of various refractive index (RI liquids. By adjusting the effective RI difference between the DF and MC (the two interference arms, experimental and calculated results indicate that the interference spectra show different degrees of temperature dependence. As the effective RI of the liquid-filled MC approaches that of the DF, temperature sensitivity up to −84.72 nm/°C with a linear correlation coefficient of 0.9953 has been experimentally achieved for a device with the MC length of 456 μm, filled with liquid RI of 1.482. Apart from ultrahigh sensitivity, the proposed MCMZI device possesses additional advantages of its miniature size and simple configuration; these features make it promising and competitive in various temperature sensing applications, such as consumer electronics, biological treatments, and medical diagnosis.

  10. Ultrasensitive Mach-Zehnder Interferometric Temperature Sensor Based on Liquid-Filled D-Shaped Fiber Cavity.

    Science.gov (United States)

    Zhang, Hui; Gao, Shecheng; Luo, Yunhan; Chen, Zhenshi; Xiong, Songsong; Wan, Lei; Huang, Xincheng; Huang, Bingsen; Feng, Yuanhua; He, Miao; Liu, Weiping; Chen, Zhe; Li, Zhaohui

    2018-04-17

    A liquid-filled D-shaped fiber (DF) cavity serving as an in-fiber Mach–Zehnder interferometer (MZI) has been proposed and experimentally demonstrated for temperature sensing with ultrahigh sensitivity. The miniature MZI is constructed by splicing a segment of DF between two single-mode fibers (SMFs) to form a microcavity (MC) for filling and replacement of various refractive index (RI) liquids. By adjusting the effective RI difference between the DF and MC (the two interference arms), experimental and calculated results indicate that the interference spectra show different degrees of temperature dependence. As the effective RI of the liquid-filled MC approaches that of the DF, temperature sensitivity up to −84.72 nm/°C with a linear correlation coefficient of 0.9953 has been experimentally achieved for a device with the MC length of 456 μm, filled with liquid RI of 1.482. Apart from ultrahigh sensitivity, the proposed MCMZI device possesses additional advantages of its miniature size and simple configuration; these features make it promising and competitive in various temperature sensing applications, such as consumer electronics, biological treatments, and medical diagnosis.

  11. Analisis Perbandingan Kinerja Mach-Zehnder berdasarkan Ragam Format Modulasi pada Jaringan FTTH

    Directory of Open Access Journals (Sweden)

    ZULIA NURUL KARIMAH

    2018-03-01

    Full Text Available ABSTRAK Pada jurnal ini dibuat pemodelan link FTTH pada software Optisystem 7.0 untuk mengetahui pengaruh dari Kerr effect dengan membandingkan performansi serat optik kaca dan serat optik plastik berdasarkan format modulasi berupa NRZ, RZ, RZ-DPSK, RZ-DQPSK dan CSRZ. Terdapat dua skenario, dengan skenario pertama, variabel input yang diubah adalah format modulasi pada Mach-zehnder, sedangkan pada skenario kedua, variabel yang diubah adalah pemakaian serat optik yang dipakai, yaitu serat optik bahan kaca, plastik dan hybrid kaca plastik. Hasil simulasi menunjukkan dengan efek linier dan non-linier pada kabel kaca yang menghasilkan performansi jaringan dari yang terbaik, dengan Q factor di atas 6 dan BER di bawah 10-9 adalah NRZ, RZ, RZ-DPSK, CSRZ dan RZ-DQPSK. Sedangkan dengan penggunaan kabel PMMA, yang menunjukkan performansi jaringan yang baik adalah dengan konfigurasi G652D-G652D-PMMA pada format modulasi NRZ, RZ, RZ-DPSK dan RZ-DQPSK. Efek non-linier yang terjadi pada jaringan ini hanya SPM dan XPM. Kata kunci: FTTH, mach-zehnder, format modulasi, efek non-linier, GOF, POF. ABSTRACT In this journal is creating a FTTH link on Optisystem software 7.0 to determine the effect of Kerr effect by comparing the performance of fiber optic glass and plastic optical fiber based on modulation formats such as NRZ, RZ, RZ-DPSK, RZ-DQPSK and CSRZ. There are two scenarios, first, input variables are changed based on format in Mach-zehnder modulator, while in the second scenario, the changed variable is the material of optical fiber, the materials are optical fiber glass, plastic and hybrid plastic and glass. The simulation results based on comparison with linear and nonlinear effects on glass optical fiber, which produce Q factor above 6 and BER below 10-9 are NRZ, RZ, RZ-DPSK, CSRZ and RZ-DQPSK. While the use of PMMA cable, which indicates good network performance is the configuration G652D-G652D-PMMA on the modulation format NRZ, RZ, RZ-DPSK and RZ

  12. Analisis Perbandingan Kinerja Mach-Zehnder berdasarkan Ragam Format Modulasi pada Jaringan FTTH

    Directory of Open Access Journals (Sweden)

    ZULIA NURUL KARIMAH

    2017-06-01

    Full Text Available ABSTRAKPada jurnal ini dibuat pemodelan link FTTH pada software Optisystem 7.0 untuk mengetahui pengaruh dari Kerr effect dengan membandingkan performansi serat optik kaca dan serat optik plastik berdasarkan format modulasi berupa NRZ, RZ, RZ-DPSK, RZ-DQPSK dan CSRZ. Terdapat dua skenario, dengan skenario pertama, variabel input yang diubah adalah format modulasi pada Mach-zehnder, sedangkan pada skenario kedua, variabel yang diubah adalah pemakaian serat optik yang dipakai, yaitu serat optik bahan kaca, plastik dan hybrid kaca plastik. Hasil simulasi menunjukkan dengan efek linier dan non-linier pada kabel kaca yang menghasilkan performansi jaringan dari yang terbaik, dengan Q factor di atas 6 dan BER di bawah 10-9 adalah NRZ, RZ, RZ-DPSK, CSRZ dan RZ-DQPSK. Sedangkan dengan penggunaan kabel PMMA, yang menunjukkan performansi jaringan yang baik adalah dengan konfigurasi G652D-G652D-PMMA pada format modulasi NRZ, RZ, RZ-DPSK dan RZ-DQPSK. Efek non-linier yang terjadi pada jaringan ini hanya SPM dan XPM.Kata kunci: FTTH, mach-zehnder, format modulasi, efek non-linier, GOF, POF.ABSTRACTIn this journal is creating a FTTH link on Optisystem software 7.0 to determine the effect of Kerr effect by comparing the performance of fiber optic glass and plastic optical fiber based on modulation formats such as NRZ, RZ, RZ-DPSK, RZ-DQPSK and CSRZ. There are two scenarios, first, input variables are changed based on format in Mach-zehnder modulator, while in the second scenario, the changed variable is the material of optical fiber, the materials are optical fiber glass, plastic and hybrid plastic and glass. The simulation results based on comparison with linear and nonlinear effects on glass optical fiber, which produce Q factor above 6 and BER below 10-9 are NRZ, RZ, RZ-DPSK, CSRZ and RZ-DQPSK. While the use of PMMA cable, which indicates good network performance is the configuration G652D-G652D-PMMA on the modulation format NRZ, RZ, RZ-DPSK and RZ

  13. Laser produced plasma density measurement by Mach-Zehnder interferometry

    International Nuclear Information System (INIS)

    Vaziri, A.; Kohanzadeh, Y.; Mosavi, R.K.

    1976-06-01

    This report describes an optical interferometric method of measuring the refractive index of the laser-produced plasma, giving estimates of its electron density. The plasma is produced by the interaction of a high power pulsed CO 2 laser beam with a solid target in the vacuum. The time varying plasma has a transient electron density. This transient electron density gives rise to a changing plasma refractive index. A Mach-Zehnder ruby laser interferometer is used to measure this refractive index change

  14. Improving the Sensitivity of Humidity Sensor Based on Mach-Zehnder Interferometer Coated with a Methylcellulose

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2018-01-01

    Full Text Available A novel humidity sensor based on Mach-Zehnder interferometer (MZI with the single-mode fiber (SMF coated with methylcellulose (MC is proposed and experimentally demonstrated. The MZI consists of two waist enlarged structures. Such an all-fiber MZI incorporates an intermodal interference between the core mode and cladding modes. The MC is coated on the surface of the SMF. External humidity changes the refractive index of MC, causing the intensity changes of the interference pattern. The proposed sensor is linearly responsive to refractive humidity (RH within the range from 45% to 85% RH, with sensitivity of 0.094 dB/%RH. Moreover the insensitivity of the fiber to the temperature makes this structure more suitable for practical measurement.

  15. Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement.

    Science.gov (United States)

    Kang, Zexin; Wen, Xiaodong; Li, Chao; Sun, Jiang; Wang, Jing; Jian, Shuisheng

    2014-04-20

    A novel all-fiber sensing configuration for simultaneous measurements of temperature and strain based on the up-taper Mach-Zehnder interferometer (MZI) with an in-line embedded fiber Bragg grating (FBG) is proposed and experimentally demonstrated. This configuration consists of two up-tapers fabricated by an excessive fusion splicing method and a short segment of inscribed FBG. Due to the different responses of the up-taper MZI and the FBG to the uniform variation of temperature and strain, the simultaneous measurement for these two variables could be achieved by real-time monitoring the transmission spectrum. For 0.01 nm wavelength resolution, a resolution of 0.311°C in temperature can be achieved, and the average strain resolution is 10.07 με.

  16. Germanium on silicon mid-infrared waveguides and Mach-Zehnder interferometers

    NARCIS (Netherlands)

    Malik, A.; Muneeb, M.; Shimura, Y.; Campenhout, van J.; Loo, van de R.; Roelkens, G.C.

    2013-01-01

    In this paper we describe Ge-on-Si waveguides and Mach-Zehnder interferometers operating in the 5.2 - 5.4 µm wavelength range. 3dB/cm waveguide losses and Mach-Zehnder interferometers with 20dB extinction ratio are presented.

  17. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    Science.gov (United States)

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  18. All-optical negabinary adders using Mach-Zehnder interferometer

    Science.gov (United States)

    Cherri, A. K.

    2011-02-01

    In contrast to optoelectronics, all-optical adders are proposed where all-optical signals are used to represent the input numbers and the control signals. In addition, the all-optical adders use the negabinary modified signed-digit number representation (an extension of the negabinary number system) to represent the input digits. Further, the ultra-speed of the designed circuits is achieved due to the use of ultra-fast all-optical switching property of the semiconductor optical amplifier and Mach-Zehnder interferometer (SOA-MZI). Furthermore, two-bit per digit binary encoding scheme is employed to represent the trinary values of the negabinary modified signed-digits.

  19. On-chip Mach-Zehnder interferometer for OCT systems

    Science.gov (United States)

    van Leeuwen, Ton G.; Akca, Imran B.; Angelou, Nikolaos; Weiss, Nicolas; Hoekman, Marcel; Leinse, Arne; Heideman, Rene G.

    2018-04-01

    By using integrated optics, it is possible to reduce the size and cost of a bulky optical coherence tomography (OCT) system. One of the OCT components that can be implemented on-chip is the interferometer. In this work, we present the design and characterization of a Mach-Zehnder interferometer consisting of the wavelength-independent splitters and an on-chip reference arm. The Si3N4 was chosen as the material platform as it can provide low losses while keeping the device size small. The device was characterized by using a home-built swept source OCT system. A sensitivity value of 83 dB, an axial resolution of 15.2 μm (in air) and a depth range of 2.5 mm (in air) were all obtained.

  20. Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2015-01-01

    We show that the majority of electrical crosstalk between integrated Mach-Zehnder modulators can be caused by a shared ground path and demonstrate that in its absence crosstalk and related transmission penalty is greatly reduced.

  1. Highly stable polarization independent Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-08-15

    We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.

  2. W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding.

    Science.gov (United States)

    Xiao, Jiangnan; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long; Yu, Jianjun

    2015-09-07

    We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture.

  3. On the Use of a Virtual Mach-Zehnder Interferometer in the Teaching of Quantum Mechanics

    Science.gov (United States)

    Pereira, Alexsandro; Ostermann, Fernanda; Cavalcanti, Claudio

    2009-01-01

    For many students, the conceptual learning of quantum mechanics can be rather painful owing to the counter-intuitive nature of quantum phenomena. In order to enhance students' understanding of the odd behaviour of photons and electrons, we introduce a computational simulation of the Mach-Zehnder interferometer, developed by our research group. An…

  4. All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Frandsen, Lars Hagedorn

    2016-01-01

    A novel all-silicon thermal independent Mach-Zehnder interferometer consisting of two multimode waveguide arms having equal lengths and widths but transmitting different modes is proposed and experimentally demonstrated. The interferometer has a temperature sensitivity smaller than 8pm/°C in a wa...

  5. A versatile all-optical modulator based on nonlinear Mach-Zehnder interferometers

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Villeneuve, A.; Stegeman, G.I.; Lambeck, Paul; Hoekstra, Hugo

    1994-01-01

    A device based on a Nonlinear Mach-Zehnder interferometer (NMI) which exploits cross-phase modulation of two co-propagating modes in bimodal branches has been described in this paper. The advantage of this device is that it becomes polarisation independent while keeping phase insensitive by using

  6. The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology

    NARCIS (Netherlands)

    Schipper, E.F.; Schipper, E.F.; Brugman, A.M.; Lechuga, L.M.; Lechuga, L.M.; Kooyman, R.P.H.; Greve, Jan; Dominguez, C.

    1997-01-01

    We describe the realization of a symmetric integrated channel waveguide Mach-Zehnder sensor which uses the evanescent field to detect small refractive-index changes (¿nmin ¿ 1 × 10¿4) near the guiding-layer surface. This guiding layer consists of ridge structures with a height of 3 nm and a width of

  7. Design of an Optical OR Gate using Mach-Zehnder Interferometers

    Science.gov (United States)

    Choudhary, Kuldeep; Kumar, Santosh

    2018-04-01

    The optical switching phenomenon enhances the speed of optical communication systems. It is widely used in the wavelength division multiplexing (WDM). In this work, an optical OR gate is proposed using the Mach-Zehnder interferometer (MZI) structure. The detailed derivation of mathematical expression have been shown. The analysis is carried out by simulating the proposed device with MATLAB and Beam propagation method.

  8. Fiber-optics implementation of an asymmetric phase-covariant quantum cloner

    Czech Academy of Sciences Publication Activity Database

    Bartůšková, L.; Dušek, M.; Černoch, Antonín; Soubusta, Jan; Fiurášek, J.

    2007-01-01

    Roč. 99, č. 12 (2007), 120505/1-120505/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : asymmetric phase-covariant cloner * Mach-Zehnder interferometer * quantum information processing Subject RIV: BH - Optics , Masers, Lasers Impact factor: 6.944, year: 2007

  9. Mach-Zehnder interferometer implementation for thermo-optical and Kerr effect study

    Science.gov (United States)

    Bundulis, Arturs; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins

    2018-04-01

    In this paper, we propose the Mach-Zehnder interferometric method for third-order nonlinear optical and thermo-optical studies. Both effects manifest themselves as refractive index dependence on the incident light intensity and are widely employed for multiple opto-optical and thermo-optical applications. With the implemented method, we have measured the Kerr and thermo-optical coefficients of chloroform under CW, ns and ps laser irradiance. The application of lasers with different light wavelengths, pulse duration and energy allowed us to distinguish the processes responsible for refractive index changes in the investigated solution. Presented setup was also used for demonstration of opto-optical switching. Results from Mach-Zehnder experiment were compared to Z-scan data obtained in our previous studies. Based on this, a quality comparison of both methods was assessed and advantages and disadvantages of each method were analyzed.

  10. The three-grating Mach-Zehnder optical interferometer: a tutorial approach using particle optics

    International Nuclear Information System (INIS)

    Miffre, A; Delhuille, R; Viaris Lesegno, B de; Buechner, M; Rizzo, C; Vigue, J

    2002-01-01

    In this paper, we present a tutorial set-up based on an optical three-grating Mach-Zehnder interferometer. As this apparatus is very similar in its principle to the Mach-Zehnder interferometers used with matter waves (neutrons, atoms and molecules), it can be used to familiarize students with particle optics, and in our explanations, we use the complementary points of view of wave optics and particle optics. Finally, we have used this interferometer to measure the index of refraction of BK7 glass for red light at 633 nm, with a technique equivalent to the one used to measure the index of refraction of solid matter for thermal neutrons. The dimensions of this interferometer and its cost make it very interesting for laboratory courses and the experiment described here can be reproduced by students

  11. Integrated Optical Mach-Zehnder Interferometer Based on Organic-Inorganic Hybrids for Photonics-on-a-Chip Biosensing Applications.

    Science.gov (United States)

    Bastos, Ana R; Vicente, Carlos M S; Oliveira-Silva, Rui; Silva, Nuno J O; Tacão, Marta; Costa, João P da; Lima, Mário; André, Paulo S; Ferreira, Rute A S

    2018-03-12

    The development of portable low-cost integrated optics-based biosensors for photonics-on-a-chip devices for real-time diagnosis are of great interest, offering significant advantages over current analytical methods. We report the fabrication and characterization of an optical sensor based on a Mach-Zehnder interferometer to monitor the growing concentration of bacteria in a liquid medium. The device pattern was imprinted on transparent self-patternable organic-inorganic di-ureasil hybrid films by direct UV-laser, reducing the complexity and cost production compared with lithographic techniques or three-dimensional (3D) patterning using femtosecond lasers. The sensor performance was evaluated using, as an illustrative example, E. coli cell growth in an aqueous medium. The measured sensitivity (2 × 10 -4 RIU) and limit of detection (LOD = 2 × 10 -4 ) are among the best values known for low-refractive index contrast sensors. Furthermore, the di-ureasil hybrid used to produce this biosensor has additional advantages, such as mechanical flexibility, thermal stability, and low insertion losses due to fiber-device refractive index mismatch (~1.49). Therefore, the proposed sensor constitutes a direct, compact, fast, and cost-effective solution for monitoring the concentration of lived-cells.

  12. A highly stable and switchable dual-wavelength laser using coupled microfiber Mach-Zehnder interferometer as an optical filter

    Science.gov (United States)

    Jasim, A. A.; Ahmad, H.

    2017-12-01

    The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.

  13. A Concept of Multi-Mode High Spectral Resolution Lidar Using Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Jin Yoshitaka

    2016-01-01

    Full Text Available In this paper, we present the design of a High Spectral Resolution Lidar (HSRL using a laser that oscillates in a multi-longitudinal mode. Rayleigh and Mie scattering components are separated using a Mach-Zehnder Interferometer (MZI with the same free spectral range (FSR as the transmitted laser. The transmitted laser light is measured as a reference signal with the same MZI. By scanning the MZI periodically with a scanning range equal to the mode spacing, we can identify the maximum Mie and the maximum Rayleigh signals using the reference signal. The cross talk due to the spectral width of each laser mode can also be estimated.

  14. Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers.

    Science.gov (United States)

    Ng, Jason C; Li, Chengbo; Herman, Peter R; Qian, Li

    2012-07-30

    A flat-top interleaver consisting of cascaded Mach-Zehnder interferometers (MZIs) was fabricated in bulk glass by femtosecond laser direct writing. Spectral contrast ratios of greater than 15 dB were demonstrated over a 30 nm bandwidth for 3 nm channel spacing. The observed spectral response agreed well with a standard transfer matrix model generated from responses of individual optical components, demonstrating the possibility for multi-component optical design as well as sufficient process accuracy and fabrication consistency for femtosecond laser writing of advanced optical circuits in three dimensions.

  15. Software-aided discussion about classical picture of Mach-Zehnder interferometer

    Science.gov (United States)

    Cavalcanti, C. J. H.; Ostermann, F.; Lima, N. W.; Netto, J. S.

    2017-11-01

    The Mach-Zehnder interferometer has played an important role both in quantum and classical physics research over the years. In physics education, it has been used as a didactic tool for quantum physics teaching, allowing fundamental concepts, such as particle-wave duality, to be addressed from the very beginning. For a student to understand the novelties of the quantum scenario, it is first worth introducing the classical picture. In this paper, we introduce a new version of the software developed by our research group to deepen the discussion on the classical picture of the Mach-Zehnder interferometer. We present its equivalence with the double slit experiment and we derive the mathematical expressions relating to the interference pattern. We also explore the concept of visibility (which is very important for understanding wave-particle complementarity in quantum physics) to help students become familiar with this experiment and to enhance their knowledge of its counterintuitive aspects. We use the software articulated by the mathematical formalism and phenomenological features. We also present excerpts of the discursive interactions of students using the software in didactic situations.

  16. Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application

    Science.gov (United States)

    Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy

    2011-10-01

    This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.

  17. Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer

    Science.gov (United States)

    Prescod, Andru

    Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by

  18. High spectral resolution lidar based on quad mach zehnder interferometer for aerosols and wind measurements on board space missions

    Science.gov (United States)

    Mariscal, Jean-François; Bruneau, Didier; Pelon, Jacques; Van Haecke, Mathilde; Blouzon, Frédéric; Montmessin, Franck; Chepfer, Hélène

    2018-04-01

    We present the measurement principle and the optical design of a Quad Mach Zehnder (QMZ) interferometer as HSRL technique, allowing simultaneous measurements of particle backscattering and wind velocity. Key features of this concept is to operate with a multimodal laser and do not require any frequency stabilization. These features are relevant especially for space applications for which high technical readiness level is required.

  19. Modeling and design of a spiral-shaped Mach-Zehnder interferometric sensor for refractive index sensing of watery solutions

    NARCIS (Netherlands)

    Hoekman, M.; Dijkstra, Marcel; Dijkstra, Mindert; Hoekstra, Hugo

    2006-01-01

    The modeling and design of a spiral-shaped Mach-Zehnder Interferometric sensor (sMZI sensor) for refractive index sensing of watery solutions is presented. The goal of the running project is to realise a multi-sensing array by placing multiple sMZIs in series to form a sensing branch, and to place

  20. One-state vector formalism for the evolution of a quantum state through nested Mach-Zehnder interferometers

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, A.; Javůrek, D.; Lemr, K.; Soubusta, Jan; Svozilík, J.

    2015-01-01

    Roč. 91, č. 1 (2015), "012103-1"-"012103-4" ISSN 1050-2947 Institutional support: RVO:68378271 Keywords : one-state vector * quantum state * Mach-Zehnder interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  1. Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-09-05

    We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).

  2. Investigation of Mach-Zehnder interferometer properties based on PLC technology

    Science.gov (United States)

    Ren, Mei-zhen; Zhang, Jia-shun; An, Jun-ming; Wang, Yue; Wang, Liang-liang; Li, Jian-guang; Wu, Yuan-da; Yin, Xiao-jie; Hu, Xiong-wei

    2018-05-01

    We report investigations of three types of silica-based thermo-optic modulating Mach-Zehnder interferometers (MZIs). They are widely used in optical communication and quantum photonics. Three types of MZIs are fabricated. The waveguide structure and fabrication process are paid special attention. The power consumption is less than 250 mW for all MZIs. The polarization dependent loss (PDL) at the same attenuation using the upper heater is less than that using the lower heater for the three types of MZIs. In addition, it is found that the PDL at the same attenuation increases gradually for π, 2π and 0 phase differences. The measured response time of the three types of MZIs is less than 1.8 ms.

  3. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed

    2014-12-01

    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the 1.4V.cm to 1.9V.cm range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  4. Simulation of acousto-optical interaction in a Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard

    of half the SAW wavelength the light at the output waveguide will interfere constructively and destructively in a periodic way and the MZI can hence be used as an optical switch. To understand and improve the interaction of the elastic field from the SAW with the optical field in the waveguides......The acousto-optical modulation of light in a Mach-Zehnder interferometer affected by a surface acoustic wave, is simulated by the finite element method. It is discussed how the modulation can be improved based on a parameter study of the geometry. Summary A new way to control and modulate light...... introduced by the SAW the changes in refractive indices are obtained from Pockels constants. This model is then coupled to an optical model where the time independent wave equation is solved as an eigenvalue problem giving the effective refractive index of the lowest modes in the waveguide arms. Numerical...

  5. Speckle-free and halo-free low coherent Mach-Zehnder quantitative-phase-imaging module as a replacement of objective lens in conventional inverted microscopes

    Science.gov (United States)

    Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.

  6. Sub-shot-noise phase sensitivity with a Bose-Einstein condensate Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Pezze, L.; Smerzi, A.; Collins, L.A.; Berman, G.P.; Bishop, A.R.

    2005-01-01

    Bose-Einstein condensates (BEC), with their coherence properties, have attracted wide interest for their possible application to ultraprecise interferometry and ultraweak force sensors. Since condensates, unlike photons, are interacting, they may permit the realization of specific quantum states needed as input of an interferometer to approach the Heisenberg limit, the supposed lower bound to precision phase measurements. To this end, we study the sensitivity to external weak perturbations of a representative matter-wave Mach-Zehnder interferometer whose input are two Bose-Einstein condensates created by splitting a single condensate in two parts. The interferometric phase sensitivity depends on the specific quantum state created with the two condensates, and, therefore, on the time scale of the splitting process. We identify three different regimes, characterized by a phase sensitivity Δθ scaling with the total number of condensate particles N as (i) the standard quantum limit Δθ∼1/N 1/2 (ii) the sub shot-noise Δθ∼1/N 3/4 , and the (iii) the Heisenberg limit Δθ∼1/N. However, in a realistic dynamical BEC splitting, the 1/N limit requires a long adiabaticity time scale, which is hardly reachable experimentally. On the other hand, the sub-shot-noise sensitivity Δθ∼1/N 3/4 can be reached in a realistic experimental setting. We also show that the 1/N 3/4 scaling is a rigorous upper bound in the limit N→∞, while keeping constant all different parameters of the bosonic Mach-Zehnder interferometer

  7. Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a double-well potential

    International Nuclear Information System (INIS)

    Berrada, T.

    2014-01-01

    Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a double-well potential Particle-wave duality has enabled the construction of interferometers for massive particles such as electrons, neutrons, atoms or molecules. Implementing atom interferometry has required the development of analogues to the optical beam-splitters, phase shifters or recombiners to enable the coherent, i.e. phase-preserving manipulation of quantum superpositions. While initially demonstrating the wave nature of particles, atom interferometers have evolved into some of the most advanced devices for precision measurement, both for technological applications and tests of the fundamental laws of nature. Bose- Einstein condensates (BEC) of ultracold atoms are particular matter waves: they exhibit a collective many-body wave function and macroscopic coherence properties. As such, they have often been considered as an analogue to optical laser elds and it is natural to wonder whether BECs can provide to atom interferometry a similar boost as the laser brought to optical interferometry. One fundamental dierence between atomic BECs and lasers elds is the presence of atomic interactions, yielding an intrinsic non-linearity. On one hand, interactions can lead to eects destroying the phase coherence and limiting the interrogation time of trapped BEC interferometers. On the other hand, they can be used to generate nonclassical (e.g. squeezed) states to improve the sensitivity of interferometric measurements beyond the standard quantum limit (SQL). In this thesis, we present the realization of a full Mach-Zehnder interferometric sequence with trapped, interacting BECs con ned on an atom chip. Our interferometer relies on the coherent manipulation of a BEC in a magnetic double-well potential. For this purpose, we developed a novel type of matter-wave recombiner, an element which so far was missing in BEC atom optics. We have been able to exploit interactions to generate a squeezed

  8. High spectral resolution lidar based on quad mach zehnder interferometer for aerosols and wind measurements on board space missions

    Directory of Open Access Journals (Sweden)

    Mariscal Jean-François

    2018-01-01

    Full Text Available We present the measurement principle and the optical design of a Quad Mach Zehnder (QMZ interferometer as HSRL technique, allowing simultaneous measurements of particle backscattering and wind velocity. Key features of this concept is to operate with a multimodal laser and do not require any frequency stabilization. These features are relevant especially for space applications for which high technical readiness level is required.

  9. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  10. Radiation Hard Silicon Photonics Mach-Zehnder Modulator for HEP applications: all-Synopsys Sentaurus™ Pre-Irradiation Simulation

    CERN Document Server

    Cammarata, Simone

    2017-01-01

    Silicon Photonics may well provide the opportunity for new levels of integration between detectors and their readout electronics. This technology is thus being evaluated at CERN in order to assess its suitability for use in particle physics experiments. In order to check the agreement with measurements and the validity of previous device simulations, a pure Synopsys Sentaurus™ simulation of an un-irradiated Mach-Zehnder silicon modulator has been carried out during the Summer Student project.

  11. Multi-band microwave photonic satellite repeater scheme employing intensity Mach-Zehnder modulators

    Institute of Scientific and Technical Information of China (English)

    Yin Jie; Dong Tao; Zhang Bin; Hao Yan; Cao Guixing; Cheng Zijing; Xu Kun; Zhou Yue; Dai Jian

    2017-01-01

    To solve the satellite repeater's flexible and wideband frequency conversion problem,we propose a novel microwave photonic repeater system,which can convert the upload signal's carrier to six different frequencies.The scheme employs one 20 GHz bandwidth dual-drive Mach-Zehnder modulator (MZM) and two 10 GHz bandwidth MZMs.The basic principle of this scheme is filtering out two optical sidebands after the optical carrier suppression (OCS) modulation and combining two sidebands modulated by the input radio frequency (RF) signal.This structure can realize simultaneous multi-band frequency conversion with only one frequency-fixed microwave source and prevent generating harmful interference sidebands by using two corresponding optical filters after optical modulation.In the simulation,one C-band signal of 6 GHz carrier can be successfully converted to 12 GHz (Ku-band),28 GHz,34 GHz,40 GHz,46 GHz (Ka-band) and 52 GHz (V-band),which can be an attractive method to realize multi-band microwave photonic satellite repeater.Alternatively,the scheme can be configured to generate multi-band local oscillators (LOs) for widely satellite onboard clock distribution when the input RF signal is replaced by the internal clock source.

  12. Comment on "Particle path through a nested Mach-Zehnder interferometer"

    Science.gov (United States)

    Salih, Hatim

    2018-02-01

    In a recent paper [Phys. Rev. A 94, 032115 (2016), 10.1103/PhysRevA.94.032115], Griffiths questioned—based on an interesting consistent-histories (CH) argument—the counterfactuality, for one of the bit choices, of the protocol of Salih et al. for communicating without sending physical particles [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502]. Here, we first show that for the Mach-Zehnder version used to explain our protocol, contrary to Griffiths's claim, no family of consistent histories exists where any history has the photon traveling through the communication channel, thus rendering the question of whether the photon was in the communication channel meaningless from a CH viewpoint. We then show that for the actual Michelson-type protocol, there is a consistent-histories family for each cycle that includes histories where the photon travels through the communication channel. We show that the probability of finding the photon in the communication channel at any time is zero—proving complete counterfactuality.

  13. Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio; Wang Bin; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Hatai, Keigo; Fukui, Akihiro; Arakawa, Yoshihiro

    2011-01-01

    Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n e and the electron temperature T e profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO 2 laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n e and T e were, respectively, about 2 x 10 24 m -3 and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measured properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n e at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.

  14. Near-Field Antenna Measurements Using Photonic Sensor of Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Masanobu Hirose

    2012-01-01

    Full Text Available We have been developing a photonic sensor system to measure the electric near-field distribution at a distance shorter than one wavelength from the aperture of an antenna. The photonic sensor is a type of Mach-Zehnder interferometer and consists of an array antenna of 2.4 mm height and 2 mm width on a LiNbO3 substrate (0.5 mm thickness, 8 mm length, and 3 mm width supported by a glass pipe. The photonic sensor can be considered to be a receiving infinitesimal dipole antenna that is a tiny metallic part printed on a small dielectric plate at microwave frequency. Those physical and electrical features make the photonic sensor attractive when used as a probe for near-field antenna measurements. We have demonstrated that the system can be applied to planar, spherical, and cylindrical near-field antenna measurements without any probe compensation approximately below 10 GHz. We show the theories and the measurements using the photonic sensor in the three near-field antenna measurement methods.

  15. Experimental study on thermal characteristics of positive leader discharges using Mach-Zehnder interferometry

    International Nuclear Information System (INIS)

    Zhou, X.; Zeng, R.; Zhuang, C.; Chen, S.

    2015-01-01

    Leader discharge is one of the main phases in long air gap breakdown, which is characterized by high temperature and high conductivity. It is of great importance to determine thermal characteristics of leader discharges. In this paper, a long-optical-path Mach-Zehnder interferometer was set up to measure the thermal parameters (thermal diameter, gas density, and gas temperature) of positive leader discharges in atmospheric air. IEC standard positive switching impulse voltages were applied to a near-one-meter point-plane air gap. Filamentary channels with high gas temperature and low density corresponding to leader discharges were observed as significant distortions in the interference fringe images. Typical diameters of the entire heated channel range from 1.5 mm to 3.5 mm with an average expansion velocity of 6.7 m/s. In contrast, typical diameters of the intensely heated region with a sharp gas density reduction range from 0.4 mm to 1.1 mm, about one third of the entire heated channel. The radial distribution of the gas density is calculated from the fringe displacements by performing an Abel inverse transform. The typical calculated gas density reduction in the center of a propagating leader channel is 80% to 90%, corresponding to a gas temperature of 1500 K to 3000 K based on the ideal gas law. Leaders tend to terminate if the central temperature is below 1500 K

  16. Experimental study on thermal characteristics of positive leader discharges using Mach-Zehnder interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X., E-mail: zhouxuan12@mails.thu.edu.cn; Zeng, R.; Zhuang, C.; Chen, S. [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    Leader discharge is one of the main phases in long air gap breakdown, which is characterized by high temperature and high conductivity. It is of great importance to determine thermal characteristics of leader discharges. In this paper, a long-optical-path Mach-Zehnder interferometer was set up to measure the thermal parameters (thermal diameter, gas density, and gas temperature) of positive leader discharges in atmospheric air. IEC standard positive switching impulse voltages were applied to a near-one-meter point-plane air gap. Filamentary channels with high gas temperature and low density corresponding to leader discharges were observed as significant distortions in the interference fringe images. Typical diameters of the entire heated channel range from 1.5 mm to 3.5 mm with an average expansion velocity of 6.7 m/s. In contrast, typical diameters of the intensely heated region with a sharp gas density reduction range from 0.4 mm to 1.1 mm, about one third of the entire heated channel. The radial distribution of the gas density is calculated from the fringe displacements by performing an Abel inverse transform. The typical calculated gas density reduction in the center of a propagating leader channel is 80% to 90%, corresponding to a gas temperature of 1500 K to 3000 K based on the ideal gas law. Leaders tend to terminate if the central temperature is below 1500 K.

  17. A Study of Mach-Zehnder Interferometer Type Optical Modulator Applicable to an Accelerometer

    Science.gov (United States)

    Suzuki, Masato; Takahashi, Tomokazu; Aoyagi, Seiji; Amemiya, Yoshiteru; Fukuyama, Masataka; Yokoyama, Shin

    2011-04-01

    A novel Mach-Zehnder interferometer (MZI)-type optical modulator based on micro electro mechanical systems (MEMS) technology is developed in this study. In this optical modulator, one of two branched waveguides in the MZI has a floating beam structure (air-bridge type). Additionally, a cantilever supporting a proof mass intersects with the floating optical waveguide. When an inertial force due to acceleration is applied to the proof mass, the floating waveguide is expanded and the output of the MZI is modulated. Therefore, this optical modulator will be applicable to an accelerometer in the future. To decrease optical loss at the intersectional point between the floating waveguide and the cantilever in the MZI, the multi-mode interference (MMI) waveguide is serially connected with the floating waveguide and the cantilever crosses to the MMI waveguide. An optimization of the MMI waveguide and an estimation of deflection of the floating waveguide due to applying force are carried out by using optical and mechanical simulation, respectively. The proposed optical modulator is fabricated by inductively coupled plasma (ICP) etching of the top layer of a silicon-on-insulator (SOI) wafer, which is made of crystal Si. The floating waveguide in the modulator is formed by removal of its underlying buried oxide (BOX) layer of SOI. As a result of evaluation, we have succeeded in changing the output of the MZI by applying a force to the cantilever. However, the modulation is smaller than the expected value. Improvement of the modulation and detection of the inertial force due to the applied acceleration are future tasks.

  18. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  19. Quantum Anatomy of the Classical Interference of n-Photon States in a Mach-Zehnder Interferometer

    International Nuclear Information System (INIS)

    Ramírez-Cruz, N; Velázquez, V; Bastarrachea-Magnani, M A

    2016-01-01

    In this work we present the theory for the quantum interference of states with an arbitrary number of photons in a Mach-Zehnder interferometer. We express the mathematical description of the interference in an algebraic way. We show the interference pattern of an average of a n photons input state corresponds to the classical interference pattern, which tells us the last comes from a quantum interference statistical average. Then, we propose to use this scheme to study the statistical transition from quantum to classical interference. (paper)

  20. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    We report on a novel design of an on-chip optical temperature sensor based on a Mach-Zehnder interferometer configuration where the two arms consist of hybrid waveguides providing opposite temperature-dependent phase changes to enhance the temperature sensitivity of the sensor. The sensitivity...... of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  1. Radiation Hard Silicon Photonics Mach-Zehnder Modulator for HEP applications: all-Synopsys SentaurusTM Pre-Irradiation Simulation

    CERN Document Server

    Cammarata, Simone

    2017-01-01

    Silicon Photonics may well provide the opportunity for new levels of integration between detectors and their readout electronics. This technology is thus being evaluated at CERN in order to assess its suitability for use in particle physics experiments. In order to check the agreement with measurements and the validity of previous device simulations, a pure Synopsys SentaurusTM simulation of an un-irradiated Mach-Zehnder silicon modulator has been carried out during the Summer Student project. Index Terms—Silicon Photonics, Mach-Zehnder modulator, electro-optic simulation, Synopsys SentaurusTM, electro-optic measurement, HEP.

  2. Self-referencing Mach-Zehnder interferometer as a laser system diagnostic: Active and adaptive optical systems

    International Nuclear Information System (INIS)

    Feldman, M.; Mockler, D.J.; English, R.E. Jr.; Byrd, J.L.; Salmon, J.T.

    1991-01-01

    We are incorporating a novel self-referencing Mach-Zehnder interferometer into a large scale laser system as a real time, interactive diagnostic tool for wavefront measurement. The instrument is capable of absolute wavefront measurements accurate to better than λ/10 pv over a wavelength range > 300 nm without readjustment of the optical components. This performance is achieved through the design of both refractive optics and catadioptric collimator to achromatize the Mach-Zehnder reference arm. Other features include polarization insensitivity through the use of low angles of incidence on all beamsplitters as well as an equal path length configuration that allows measurement of either broad-band or closely spaced laser-line sources. Instrument accuracy is periodically monitored in place by means of a thermally and mechanically stable wavefront reference source that is calibrated off-line with a phase conjugate interferometer. Video interferograms are analyzed using Fourier transform techniques on a computer that includes dedicated array processor. Computer and video networks maintain distributed interferometers under the control of a single analysis computer with multiple user access. 7 refs., 11 figs

  3. Simultaneous all-optical add and drop multiplexing of 40-Gbit/s OTDM signals using monolithically integrated Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Jepsen, Kim Stokholm; Mikkelsen, Benny; Vaa, Michael

    1998-01-01

    Simultaneous all-optical add and drop multiplexing of a 40-Gbit/s OTDM signal using a monolithically integrated semiconductor optical amplifier/Mach Zehnder interferometer (SOA-MZI) is demonstrated. While maintaining a penalty of 1.3 dB for the add operation the sensitivity for the demultiplexed ...... signal is -34.4 dBm...

  4. All-optical signal regeneration at 40 Gbit/s using a Mach-Zehnder Interferometer based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Bischoff, Svend; Mørk, Jesper

    2000-01-01

    Summary form only given. All-optical signal regeneration and processing are interesting for high bit-rate transmission systems. The Mach-Zehnder interferometer (MZI) is a promising device for functionalities like all-optical add/drop and signal regeneration. Wavelength conversion up-to 20 Gbit...... and optimization issues....

  5. All-Optical Regenerative OTDM Add-Drop Multiplexing at 40 Gb/s using Monolithic InP Mach-Zehnder Interferometer

    DEFF Research Database (Denmark)

    Fischer, St.; Dülk, M.; Gamper, E.

    2000-01-01

    We present a novel method for all-optical add-drop multiplexing having regenerative capability for 40-Gb/s optical time-division multiplexed (OTDM) data using a semiconductor optical amplifier (SOA) based, monolithic Mach-Zehnder interferometer (MZI). Simultaneous dropping of one 10-Gb/s channel ...

  6. Reply to "Comment on 'One-state vector formalism for the evolution of a quantum state through nested Mach-Zehnder interferometers'"

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, A.; Javůrek, D.; Lemr, K.; Soubusta, Jan; Svozilík, J.

    2016-01-01

    Roč. 93, č. 3 (2016), 1-2, č. článku 036104. ISSN 2469-9926 Institutional support: RVO:68378271 Keywords : one-state vector * quantum state * Mach-Zehnder interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  7. Dual-drive Mach-Zehnder modulator-based reconfigurable and transparent spectral conversion for dense wavelength division multiplexing transmissions

    Science.gov (United States)

    Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min

    2017-09-01

    A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.

  8. Small sensitivity to temperature variations of Si-photonic Mach-Zehnder interferometer using Si and SiN waveguides

    Science.gov (United States)

    Hiraki, Tatsurou; Fukuda, Hiroshi; Yamada, Koji; Yamamoto, Tsuyoshi

    2015-03-01

    We demonstrated a small sensitivity to temperature variations of delay-line Mach-Zehnder interferometer (DL MZI) on a Si photonics platform. The key technique is to balance a thermo-optic effect in the two arms by using waveguide made of different materials. With silicon and silicon nitride waveguides, the fabricated DL MZI with a free-spectrum range of ~40 GHz showed a wavelength shift of -2.8 pm/K with temperature variations, which is 24 times smaller than that of the conventional Si-waveguide DL MZI. We also demonstrated the decoding of the 40-Gbit/s differential phase-shift keying signals to on-off keying signals with various temperatures. The tolerable temperature variation for the acceptable power penalty was significantly improved due to the small wavelength shifts.

  9. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.

    Science.gov (United States)

    Canagasabey, Albert; Michie, Andrew; Canning, John; Holdsworth, John; Fleming, Simon; Wang, Hsiao-Chuan; Aslund, Mattias L

    2011-01-01

    Linewidth measurements of a distributed feedback (DFB) fibre laser are made using delayed self heterodyne interferometry (DHSI) with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are w(L) (MZI) = (1.6 ± 0.2) kHz and w(L) (MI) = (1.4 ± 0.1) kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  10. A Comparison of Delayed Self-Heterodyne Interference Measurement of Laser Linewidth Using Mach-Zehnder and Michelson Interferometers

    Directory of Open Access Journals (Sweden)

    Simon Fleming

    2011-09-01

    Full Text Available Linewidth measurements of a distributed feedback (DFB fibre laser are made using delayed self heterodyne interferometry (DHSI with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are wL (MZI = (1.6 ± 0.2 kHz and wL (MI = (1.4 ± 0.1 kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  11. Effect of Radiation on a Mach-Zehnder Interferometer Silicon Modulator for HL-LHC data Transmission Applications

    CERN Document Server

    El Nasr-Storey, Sarah Seif; Baudot, Charles; Detraz, Stephane; Fedeli, Jean Marc; Marris-Morini, Delphine; Olantera, Lauri; Pezzullo, Giuseppe; Sigaud, Christophe; Soos, Csaba; Troska, Jan; Vasey, Francois; Vivien, Laurent; Zeiler, Marcel; Ziebell, Melissa

    2015-01-01

    High-speed Mach-Zehnder interferometer silicon modulators were irradiated with neutrons and X-rays in two separate radiation tests. The devices were exposed to a total fluence of 1.2 x 10$^{15}$ neutrons/cm$^2$ and a total ionizing dose of 1.3 MGy; levels comparable to the worst radiation levels for a tracking detector after 10 years of operation at the High- Luminosity LHC. Our measurements indicate that the devices performance does not significantly degrade after exposure to nonionizing radiation and begins to be affected by ionizing radiation after a dose of a few hundred kGy; the phase-shift for an applied reverse bias of 1 V is 10% of its pre-irradiated value after 600 kGy of received ionizing dose.

  12. Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors

    International Nuclear Information System (INIS)

    Gajos, Katarzyna; Angelopoulou, Michailia; Petrou, Panagiota; Awsiuk, Kamil; Kakabakos, Sotirios; Haasnoot, Willem; Bernasik, Andrzej; Rysz, Jakub; Marzec, Mateusz M.; Misiakos, Konstantinos; Raptis, Ioannis; Budkowski, Andrzej

    2016-01-01

    Highlights: • Optimization of probe immobilization with robotic spotter printing overlapping spots. • In-situ inspection of microstructured surfaces of biosensors integrated on silicon. • Imaging and chemical analysis of immobilization, surface blocking and immunoreaction. • Insight with molecular discrimination into step-by-step sensor surface modifications. • Optimized biofunctionalization improves sensor sensitivity and response repeatability. - Abstract: Time-of-flight secondary ion mass spectrometry (imaging, micro-analysis) has been employed to evaluate biofunctionalization of the sensing arm areas of Mach-Zehnder interferometers monolithically integrated on silicon chips for the immunochemical (competitive) detection of bovine κ-casein in goat milk. Biosensor surfaces are examined after: modification with (3-aminopropyl)triethoxysilane, application of multiple overlapping spots of κ-casein solutions, blocking with 100-times diluted goat milk, and reaction with monoclonal mouse anti-κ-casein antibodies in blocking solution. The areas spotted with κ-casein solutions of different concentrations are examined and optimum concentration providing homogeneous coverage is determined. Coverage of biosensor surfaces with biomolecules after each of the sequential steps employed in immunodetection is also evaluated with TOF-SIMS, supplemented by Atomic force microscopy and X-ray photoelectron spectroscopy. Uniform molecular distributions are observed on the sensing arm areas after spotting with optimum κ-casein concentration, blocking and immunoreaction. The corresponding biomolecular compositions are determined with a Principal Component Analysis that distinguished between protein amino acids and milk glycerides, as well as between amino acids characteristic for Mabs and κ-casein, respectively. Use of the optimum conditions (κ-casein concentration) for functionalization of chips with arrays of ten Mach-Zehnder interferometers provided on-chips assays

  13. Experimental study of a laminar premixed LFG/air flame in a slot burner using Mach-Zehnder interferometry

    Directory of Open Access Journals (Sweden)

    Najafian Ashrafi Zabihollah

    2016-01-01

    Full Text Available An experimental study was conducted to investigate the influence of Reynolds number and equivalence ratio on flame temperature field and thermal flame height of laminar premixed LFG fuel. Mach-Zehnder interferometry technique is used to obtain an insight to the overall temperature field. The slot burner with large aspect ratio (L/W, length of L=60 mm and width of W=6 mm was used to eliminate the three- dimensional effect of temperature field. Two kinds of mixed fuels, LFG70 (70%CH4- 30%CO2 on volume basis and LFG50 (50%CH4- 50%CO2 were used to investigate flame characteristics under the test conditions of 100 ≤ Re ≤ 600 and 0.7 ≤ φ ≤ 1.3. The present measurement reveals that the variation of maximum flame temperature with increment of Reynolds number is mainly due to heat transfer effects and is negligible. On the other hand, the equivalence ratio and fuel composition have a noticeable effect on flame temperature. In addition, the results show that the LFG flames compared to the CH4 ones have a lower flame temperature. With increment of CO2 volume fraction at lean combustion, thermal flame height is augmented while at stoichiometric and rich combustion, its value reduced. Thermal flame height augments linearly by Reynolds number increase, while its increment at rich mixture is higher and the effect of Reynolds number at lean mixtures is insignificant. For validation of experimental results from Mach-Zehnder Interferometry, K-type thermocouples are used at peripherally low and moderate isotherm lines.

  14. Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Gajos, Katarzyna, E-mail: kasia.fornal@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Angelopoulou, Michailia; Petrou, Panagiota [Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos St, Aghia Paraksevi 15310, Athens (Greece); Awsiuk, Kamil [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Kakabakos, Sotirios [Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos St, Aghia Paraksevi 15310, Athens (Greece); Haasnoot, Willem [RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Rysz, Jakub [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Marzec, Mateusz M. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Misiakos, Konstantinos; Raptis, Ioannis [Department of Microelectronics, Institute of Nanoscience and Nanotechnology, NCSR Demokritos, P. Grigoriou & Neapoleos St, Aghia Paraksevi 15310, Athens (Greece); Budkowski, Andrzej [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland)

    2016-11-01

    Highlights: • Optimization of probe immobilization with robotic spotter printing overlapping spots. • In-situ inspection of microstructured surfaces of biosensors integrated on silicon. • Imaging and chemical analysis of immobilization, surface blocking and immunoreaction. • Insight with molecular discrimination into step-by-step sensor surface modifications. • Optimized biofunctionalization improves sensor sensitivity and response repeatability. - Abstract: Time-of-flight secondary ion mass spectrometry (imaging, micro-analysis) has been employed to evaluate biofunctionalization of the sensing arm areas of Mach-Zehnder interferometers monolithically integrated on silicon chips for the immunochemical (competitive) detection of bovine κ-casein in goat milk. Biosensor surfaces are examined after: modification with (3-aminopropyl)triethoxysilane, application of multiple overlapping spots of κ-casein solutions, blocking with 100-times diluted goat milk, and reaction with monoclonal mouse anti-κ-casein antibodies in blocking solution. The areas spotted with κ-casein solutions of different concentrations are examined and optimum concentration providing homogeneous coverage is determined. Coverage of biosensor surfaces with biomolecules after each of the sequential steps employed in immunodetection is also evaluated with TOF-SIMS, supplemented by Atomic force microscopy and X-ray photoelectron spectroscopy. Uniform molecular distributions are observed on the sensing arm areas after spotting with optimum κ-casein concentration, blocking and immunoreaction. The corresponding biomolecular compositions are determined with a Principal Component Analysis that distinguished between protein amino acids and milk glycerides, as well as between amino acids characteristic for Mabs and κ-casein, respectively. Use of the optimum conditions (κ-casein concentration) for functionalization of chips with arrays of ten Mach-Zehnder interferometers provided on-chips assays

  15. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor.

    Science.gov (United States)

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-11-30

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  16. Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch.

    Science.gov (United States)

    Cong, G W; Matsukawa, T; Chiba, T; Tadokoro, H; Yanagihara, M; Ohno, M; Kawashima, H; Kuwatsuka, H; Igarashi, Y; Masahara, M; Ishikawa, H

    2013-03-25

    n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach-Zehnder interferometer optical switch having thermo-optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.

  17. A photothermal Mach-Zehnder interferometer for measuring caffeine and proteins in aqueous solutions using external cavity quantum cascade lasers

    Science.gov (United States)

    Kristament, Christian; Schwaighofer, Andreas; Montemurro, Milagros; Lendl, Bernhard

    2018-02-01

    One of the advantages of mid-IR spectroscopy in biomedical research lies in its capability to provide direct information on the secondary structure of proteins in their natural, often aqueous, environment. One impediment of direct absorption measurements in the correspondent spectral region is the strong absorbance of the native solvent (H2O). In this regard, the advent of broadly-tunable external cavity quantum cascade lasers (EC-QCL) allowed to significantly increasing the optical path length employed in transmission measurements due to their high spectral power densities. Low measured S/N ratios were improved by elaborated data analysis protocols that corrected mechanical flaws in the tuning mechanism of ECQCLs and allow for S/N ratios comparable to research grade FTIR spectrometers. Recent development of new optical set-ups outpacing direct absorption measurements led to further advancements. We present a dedicated Mach-Zehnder interferometer for photothermal measurements in balanced detection mode. In this highly sensitive design, the interferometer is illuminated by a HeNe laser to detect the refractive index change induced by the heat insertion of the EC-QCL. Here, we present photothermal phase shift interferometry measurements of caffeine in ethanol as well as casein in water. Further, the dependency of the signal amplitude on varying modulation frequencies was investigated for different liquids.

  18. Synchronization of femtosecond laser pulses and RF signal by using a Sagnac loop Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Dai Hui; Hajima, Ryoichi

    2008-11-01

    For future advanced energy recovery linac to generate femtosecond X-ray pulses, precise synchronization between sub-systems is highly desired. Typical synchronization methods based on direct photo detection are limited by detector nonlinearities, which lead to amplitude-to-phase conversion and introduce excess timing jitter. In this paper, we experimentally demonstrate an optical-electronic mixed phase lock loop to synchronize the RF signal and laser pulses. In this synchronism setup, a Sagnac-loop Mach-Zehnder interferometer has been used to suppress the excess noise of direct photo detection. This scheme transfers the timing information into a intensity imbalance between the two output beams of the interferometer. As experimental demonstration, the single side-band phase noise of RF signal from the VCO is locked to the mode-locked Ti:Sapphire laser in the spectrum covering the range of 10 kHz to 1 MHz. This synchronization scheme greatly reduces the phase noise and timing jitter of the RF signal. (author)

  19. Ultraflat and broadband optical frequency comb generator based on cascaded two dual-electrode Mach-Zehnder modulators

    Science.gov (United States)

    Qu, Kun; Zhao, Shanghong; Li, Xuan; Tan, Qinggui; Zhu, Zihang

    2018-04-01

    A novel scheme for the generation of ultraflat and broadband optical frequency comb (OFC) is proposed based on cascaded two dual-electrode Mach-Zehnder modulators (DE-MZM). The first DE-MZM can generate a four-comb-line OFC, then the OFC is injected into the second DE-MZM as a carrier, which can increase the number of comb lines. Our modified scheme finally can generate a broadband OFC with high flatness by simply modifying the electrical power and the bias voltage of the DE-MZM. Theoretical analysis and simulation results reveal that a 16-comb-line OFC with a frequency spacing that two times the frequency of the RF signal can be obtained. The power fluctuation of the OFC lines is 0.48 dB and the unwanted-mode suppression ratio (UMSR) can reach 16.5 dB. Additionally, whether the bias drift of the DE-MZMs has little influence on the power fluctuation is also analyzed. These results demonstrate the robustness of our scheme and verify its good accuracy and high stability with perfect flatness.

  20. A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Alexander; Medina, Ernesto [Centro de Fisica, Instituto Venezolano de Investigaciones CientIficas, Apartado 21874, Caracas 1020-A (Venezuela, Bolivarian Republic of); BolIvar, Nelson [Departamento de Fisica, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Berche, Bertrand [Statistical Physics Group, P2M, Institut Jean Lamour, Nancy Universite, BP70239, F-54506 Vandoeuvre les Nancy (France)

    2010-03-24

    A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.

  1. A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas

    International Nuclear Information System (INIS)

    Lopez, Alexander; Medina, Ernesto; BolIvar, Nelson; Berche, Bertrand

    2010-01-01

    A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.

  2. A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas

    Science.gov (United States)

    López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand

    2010-03-01

    A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.

  3. Multilayer beam splitter used in a soft X-ray Mach-Zehnder interferometer at working wavelength of 13.9 nm

    International Nuclear Information System (INIS)

    Zhang Zhong; Wang Zhanshan; Wang Hongchang; Wang Fengli; Wu Wenjuan; Zhang Shumin; Qin Shuji; Chen Lingyan

    2006-01-01

    The soft X-ray Mach-Zehnder interferometer is an important tool in measuring the electron densities of laser-produced plasma near the critical surface. The design, fabrication and characterization of multilayer beam splitters at 13.9 nm for soft X-ray Mach-Zehnder interferometer are presented in the paper. The design of beam splitter is completed based on the standard of maximizing product of reflectivity and transmission of the beam splitter at 13.9 nm. The beam splitters, which are Mo/Si multi-layer deposited on 10 mm x 10 mm area, 100 nm thickness Si 3 N 4 membranes, are fabricated using the magnetron sputtering. A method based on extended He-Ne laser beam is developed to analyze the figure error of the beam splitters. The data measured by an optical profiler prove that the method based on visible light is effective to analyze the figure of the beam splitters. The rms figure error of a beam splitter reaches 1.757 nm in the center area 3.82 mm x 3.46 mm and satisfies the need of soft X-ray interference experiment. The product of reflectivity and transmission measured by synchrotron radiation is near to 4%. The Mach-Zehnder interferometer at 13.9 nm based on the multilayer beam splitters is used in 13.9 nm soft X-ray laser interference experiment, in which a clear interferograms of C 8 H 8 laser-produced plasma is got. (authors)

  4. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing.

    Science.gov (United States)

    Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan

    2013-05-20

    We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.

  5. Electro-optical time gating based on Mach-Zehnder modulator for multiple access interference elimination in optical code-division multiple access networks

    Science.gov (United States)

    Chen, Yinfang; Wang, Rong; Fang, Tao; Pu, Tao; Xiang, Peng; Zheng, Jilin; Zhu, Huatao

    2014-05-01

    An electro-optical time gating technique, which is based on an electrical return-to-zero (RZ) pulse driven Mach-Zehnder modulator (MZM) for eliminating multiple access interference (MAI) in optical code-division multiple access (OCDMA) networks is proposed. This technique is successfully simulated in an eight-user two-dimensional wavelength-hopping time-spreading system, as well as in a three-user temporal phase encoding system. Results show that in both systems the MAI noise is efficiently removed and the average received power penalty improved. Both achieve error-free transmissions at a bit rate of 2.5 Gb/s. In addition, we also individually discuss effects of parameters in two systems, such as the extinction ratio of the MZM, the duty cycle of the driven RZ pulse, and the time misalignment between the driven pulse and the decoded autocorrelation peak, on the output bit error rate performance. Our work shows that employing a common MZM as a thresholder provides another probability and an interesting cost-effective choice for a smart size, low energy, and less complex thresholding technique for integrated detection in OCDMA networks.

  6. InGaAsP Mach-Zehnder interferometer optical modulator monolithically integrated with InGaAs driver MOSFET on a III-V CMOS photonics platform.

    Science.gov (United States)

    Park, Jin-Kown; Takagi, Shinichi; Takenaka, Mitsuru

    2018-02-19

    We demonstrated the monolithic integration of a carrier-injection InGaAsP Mach-Zehnder interferometer (MZI) optical modulator and InGaAs metal-oxide-semiconductor field-effect transistor (MOSFET) on a III-V-on-insulator (III-V-OI) wafer. A low-resistivity lateral PIN junction was formed along an InGaAsP rib waveguide by Zn diffusion and Ni-InGaAsP alloy, enabling direct driving of the InGaAsP optical modulator by the InGaAs MOSFET. A π phase shift of the InGaAsP optical modulator was obtained through the injection of a drain current from the InGaAs MOSFET with a gate voltage of approximately 1 V. This proof-of-concept demonstration of the monolithic integration of the InGaAsP optical modulator and InGaAs driver MOSFET will enable us to develop high-performance and low-power electronic-photonic integrated circuits on a III-V CMOS photonics platform.

  7. Vibro-Perception of Optical Bio-Inspired Fiber-Skin.

    Science.gov (United States)

    Li, Tao; Zhang, Sheng; Lu, Guo-Wei; Sunami, Yuta

    2018-05-12

    In this research, based on the principle of optical interferometry, the Mach-Zehnder and Optical Phase-locked Loop (OPLL) vibro-perception systems of bio-inspired fiber-skin are designed to mimic the tactile perception of human skin. The fiber-skin is made of the optical fiber embedded in the silicone elastomer. The optical fiber is an instinctive and alternative sensor for tactile perception with high sensitivity and reliability, also low cost and susceptibility to the magnetic interference. The silicone elastomer serves as a substrate with high flexibility and biocompatibility, and the optical fiber core serves as the vibro-perception sensor to detect physical motions like tapping and sliding. According to the experimental results, the designed optical fiber-skin demonstrates the ability to detect the physical motions like tapping and sliding in both the Mach-Zehnder and OPLL vibro-perception systems. For direct contact condition, the OPLL vibro-perception system shows better performance compared with the Mach-Zehnder vibro-perception system. However, the Mach-Zehnder vibro-perception system is preferable to the OPLL system in the indirect contact experiment. In summary, the fiber-skin is validated to have light touch character and excellent repeatability, which is highly-suitable for skin-mimic sensing.

  8. Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shecheng [Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071 (China); Institute of Micro and Nano Optics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhang, Weigang, E-mail: zhangwg@nankai.edu.cn, E-mail: haozhang@nankai.edu.cn; Zhang, Hao, E-mail: zhangwg@nankai.edu.cn, E-mail: haozhang@nankai.edu.cn [Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071 (China); Zhang, Chonglei [Institute of Micro and Nano Optics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2015-02-23

    A reconfigurable Mach-Zenhnder interferometer (MZI) based on a microfluidic cavity (MFC) constructed by embedding a microfiber between two segments of single-mode fibers with pre-designed lateral offset has been proposed and experimentally demonstrated. The MFC serves as an interference arm with an eccentric annular cross section and allows convenient sample (gas or liquids) replacement procedure. The microfiber works as the other interference arm that provides the proposed device with ease of reconstruction and also enhances the force sensitivity. The re-configurability and the ultra-wide tuning sensitivity range are demonstrated by immersing the MZI constructed with a 484 μm-long-MFC and a microfiber 44 μm in diameter in different droplets. Ultrahigh sensitivities of 34.65 nm/°C (∼88 380 nm/RIU) and −493.7 nm/N (∼−590 pm/με) are experimentally achieved using a droplet with a refractive index of ∼1.44.

  9. Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid

    International Nuclear Information System (INIS)

    Gao, Shecheng; Zhang, Weigang; Zhang, Hao; Zhang, Chonglei

    2015-01-01

    A reconfigurable Mach-Zenhnder interferometer (MZI) based on a microfluidic cavity (MFC) constructed by embedding a microfiber between two segments of single-mode fibers with pre-designed lateral offset has been proposed and experimentally demonstrated. The MFC serves as an interference arm with an eccentric annular cross section and allows convenient sample (gas or liquids) replacement procedure. The microfiber works as the other interference arm that provides the proposed device with ease of reconstruction and also enhances the force sensitivity. The re-configurability and the ultra-wide tuning sensitivity range are demonstrated by immersing the MZI constructed with a 484 μm-long-MFC and a microfiber 44 μm in diameter in different droplets. Ultrahigh sensitivities of 34.65 nm/°C (∼88 380 nm/RIU) and −493.7 nm/N (∼−590 pm/με) are experimentally achieved using a droplet with a refractive index of ∼1.44

  10. Design and Analysis of an all-fiber MZI Interleaver Based on Fiber Ring Resonator

    Directory of Open Access Journals (Sweden)

    Pu Huilan

    2015-01-01

    Full Text Available An all-fiber Mach-Zehnder interferometer (MZI interleaver using one planar 3×3 fiber coupler, one 2×2 fiber coupler and one 8-shaped fiber ring resonator is developed by the new configuration. Based on its structure, the output spectrum expression is established and described by using the principle of fiber transmission and the matrix transfer function. The results of numerical simulation indicate that when the length difference of interference arms and the coupling coefficients of the couplers are some certain values, it obtains a uniform flat-top passband and similar to rectangular output spectrum. Compared with the traditional MZI interleaver, the isolation in stopband and the rolloff in transition band are strengthen, the 25dB stopband bandwidth and 0.5dB passband bandwidth are simultaneously remarkably improved. Compared with the asymmetrical ring resonator MZI interleaver, the influence of transmission loss on extinction ratio can be effectively reduced. The device has a certain ability to resist the deviation, which reduces the difficulties in fabricating it. The experiment results agree with the theoretical analysis well. The interleaver designed by the proposed approach has favorable performance, which has the potential application value in optical fiber communication system.

  11. Si-nanowire-based multistage delayed Mach-Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer.

    Science.gov (United States)

    Jeong, Seok-Hwan; Shimura, Daisuke; Simoyama, Takasi; Horikawa, Tsuyoshi; Tanaka, Yu; Morito, Ken

    2014-07-01

    We report good phase controllability and high production yield in Si-nanowire-based multistage delayed Mach-Zehnder interferometer-type optical multiplexers/demultiplexers (MUX/DeMUX) fabricated by an ArF-immersion lithography process on a 300 mm silicon-on-insulator (SOI) wafer. Three kinds of devices fabricated in this work exhibit clear 1×4 Ch wavelength filtering operations for various optical frequency spacing. These results are promising for their applications in high-density wavelength division multiplexing-based optical interconnects.

  12. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Eva [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria); Bruck, Roman [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Hainberger, Rainer, E-mail: rainer.hainberger@ait.ac.at [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Laemmerhofer, Michael, E-mail: michael.laemmerhofer@univie.ac.at [Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria)

    2011-08-12

    Highlights: {yields} We realize a biosensing platform for polyimide evanescent photonic wave sensors. {yields} We show that the surface functionalization via silanisation and biotinylation followed by streptavidin immobilization do not destroy or damage the thin polyimide film. {yields} A highly dense streptavidin layer enables the immobilisation of biotinylated ligands such as biotinylated ssDNA for the selective measurement of DNA hybridization. - Abstract: The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG{sub 2}-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm{sup -2} streptavidin with good reproducibility (13.9% RSD, n = 10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer

  13. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  14. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  15. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.

    Science.gov (United States)

    Fandiño, Javier S; Muñoz, Pascual

    2013-11-01

    A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

  16. Optical-fiber strain sensors with asymmetric etched structures.

    Science.gov (United States)

    Vaziri, M; Chen, C L

    1993-11-01

    Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.

  17. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  18. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  19. Design of Optical I/Q Modulator Using Dual-drive Mach-Zehnder Modulators in Coherent Optical-OFDM System

    Science.gov (United States)

    Nehra, Monika; Kedia, Deepak

    2018-04-01

    A CO-OFDM system combines the advantages of both coherent detection and OFDM modulation for future high speed fiber transmission. In this paper, we propose an I/Q modulation technique using dual-drive MZMs for high rate 10 Gb/s CO-OFDM system. The proposed modulator provides 10.63 dBm improved optical spectra compared to a single dual-drive MZM. The simulation results in terms of BER and Q factor are quite satisfactory upto a transmission reach of 3,000 km and that to without making use of any dispersion compensation. A BER of about 8.03×10-10 and 15.06 dB Q factor have been achieved at -10.43 dBm received optical power.

  20. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  1. Dual-wavelength erbium-doped fiber laser with asymmetric fiber Bragg grating Fabry-Perot cavity

    Science.gov (United States)

    Chen, Cong; Xu, Zhi-wei; Wang, Meng; Chen, Hai-yan

    2014-11-01

    A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating (FBG) Fabry-Perot (FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.

  2. Index profile measurement of asymmetrical elliptical preforms or fibers

    NARCIS (Netherlands)

    Blitterswijk, van W.; Smit, M.K.

    1987-01-01

    An extension of the beam-deflection method to the case of elliptical preforms with eccentric core (asymmetrical elliptical preforms) is presented, which can be easily implemented on automatic measurement equipment

  3. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    DEFF Research Database (Denmark)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld

    2017-01-01

    is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...

  4. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  5. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren

    2014-06-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family with attractive dense film properties for several potential applications. The work reported here for the 6FDA-DAM polyimide provides insight for the challenging fabrication of defect-free asymmetric hollow fiber membranes for this class of 6FDA-polyimides, which behave rather different from lower free volume polymers. Specifically, the 6FDA based materials show relatively slow phase separation rate in water quench baths, which presents a challenge for fiber spinning. For convenience, we refer to the behavior as more "non-solvent resistant" in comparison to other lower free volume polymers, since the binodal phase boundary is displaced further from the conventional position near the pure polymer-solvent axis on a ternary phase diagram in conventional polymers like Matrimid® and Ultem®. The addition of lithium nitrate to promote phase separation has a useful impact on 6FDA-DAM asymmetric hollow fiber formation. 6FDA-DAM phase diagrams using ethanol and water as non-solvent are reported, and it was found that water is less desirable as a non-solvent dope additive for defect-free fiber spinning. Phase diagrams are also reported for 6FDA-DAM dope formulation with and without the addition of lithium nitrate, and defect-free asymmetric hollow fiber membranes are reported for both cases. The effect of polymer molecular weight on defect-free fiber spinning was also investigated. Gas transport properties and morphology of hollow fibers were characterized. With several thorough case studies, this work provides a systematic guideline for defect-free fiber formation from 6FDA-polymers. © 2014 Elsevier B.V.

  6. Fiber tests on a radiotelescope.

    Science.gov (United States)

    Connes, P.; Reynaud, F.

    In order to demonstrate use of fibers in a future radio-dish-mounted interferometric array or optical telescopes, two 100-m SM fibers were installed on the Nançay radiotelescope, used in a serendipitous mode. They formed the two arms of a Mach-Zehnder interferometer, illuminated by a 6328 Å laser. Thermal and interferometric servo-control were simultaneously applied. Even under severe conditions, path difference was maintained stable to within a few Å.This is considerably better than needed for any ground-based application, and still more than adequate for a roughly-similar proposed space-borne device. Some more fiber problems remain to be solved.

  7. Temperature Sensor Based on an Asymmetric Two-Hole Fiber Using a Sagnac Interferometer

    Directory of Open Access Journals (Sweden)

    René Domínguez-Cruz

    2018-01-01

    Full Text Available We report in this paper a temperature sensor based on an asymmetric two-hole fiber (ATHF using a Sagnac interferometer (SI configuration. The operation principle is based on the birefringence change induced by the temperature difference between the air holes and the silica fiber. As a result, the transmitted spectrum of the SI exhibits a sinusoidal profile which is shifted when the temperature is increased. A linear wavelength shift as a function of temperature is observed, and a sensitivity of 2.22 nm/°C was achieved using a 2 m long asymmetric THF, which is in the same order as those previously reported using similar microstructured fibers. The advantage of this system is a linear response, the use of a microstructured fiber with a simpler transverse geometry, and the use of bigger holes which can facilitate the insertion of several materials and improve the sensitivity of the sensor for different applications.

  8. Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers

    Directory of Open Access Journals (Sweden)

    Arjunan Govindarajan

    2017-06-01

    Full Text Available We investigate modulational instability (MI in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD. In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.

  9. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren; Zhang, Chen; Rungta, Meha; Qiu, Wulin; Liu, Junqiang; Koros, William J.

    2014-01-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family

  10. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion inf...... characteristics of the amplifier and shows local maxima for specific dispersion values....

  11. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    Science.gov (United States)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  12. A Fiber Interferometer for the Magnetized Shock Experiment

    International Nuclear Information System (INIS)

    Yoo, Christian

    2012-01-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  13. Fiber-optics implementation of an asymmetric phase-covariant quantum cloner.

    Science.gov (United States)

    Bartůsková, Lucie; Dusek, Miloslav; Cernoch, Antonín; Soubusta, Jan; Fiurásek, Jaromír

    2007-09-21

    We present the experimental realization of optimal symmetric and asymmetric phase-covariant 1-->2 cloning of qubit states using fiber optics. The state of each qubit is encoded into a single photon which can propagate through two optical fibers. The operation of our device is based on one- and two-photon interference. We have demonstrated the creation of two copies for a wide range of qubit states from the equator of the Bloch sphere. The measured fidelities of both copies are close to the theoretical values and they surpass the theoretical maximum obtainable with the universal cloner.

  14. Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, `Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators', Journal of Modern Optics, 58(8), 2011, pp. 665-673

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J.

    2015-04-01

    Yin et al. have described an innovative filter-less optical millimeter-wave generation scheme for octotupling of a 10 GHz RF oscillator, or sedecimtupling of a 5 GHz RF oscillator using two parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). The great merit of their design is the suppression of all harmonics except those of order ? (octotupling) or all harmonics except those of order ? (sedecimtupling), where ? is an integer. A demerit of their scheme is the requirement to set a precise RF signal modulation index in order to suppress the zeroth order optical carrier. The purpose of this comment is to show that, in the case of the octotupling function, all harmonics may be suppressed except those of order ?, where ? is an odd integer, by the simple addition of an optical ? phase shift between the two DP-MZMs and an adjustment of the RF drive phases. Since the carrier is suppressed in the modified architecture, the octotupling circuit is thereby released of the strict requirement to set the drive level to a precise value without any significant increase in circuit complexity.

  15. Research on dual-parameter optical fiber sensor based on thin-core fiber and spherical structure

    Science.gov (United States)

    Tong, Zhengrong; Wang, Xue; Zhang, Weihua; Xue, Lifang

    2018-04-01

    A novel dual-parameter optical fiber sensor is proposed and experimentally demonstrated. The proposed sensor is based on a fiber in-line Mach-Zehnder interferometer, which is fabricated by sandwiching a section of thin-core fiber between two spherical structures made of single-mode fibers. The transmission spectrum exhibits the response of the interference between the core and the different cladding modes. Due to the different wavelength shifts of the two selected dips, the simultaneous measurement of temperature and the surrounding refractive index can be achieved. The measured temperature sensitivities are 0.067 nm/°C and 0.050 nm/°C, and the refractive index sensitivities are  -119.9 nm/RIU and  -69.71 nm/RIU, respectively. In addition, the compact size, simple fabrication and cost-effectiveness of the fiber sensor are also advantages.

  16. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.

    Science.gov (United States)

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo

    2011-08-15

    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America

  17. A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber

    International Nuclear Information System (INIS)

    Frazão, O; Silva, S F; Viegas, J; Baptista, J M; Santos, J L; Roy, P

    2010-01-01

    A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber is demonstrated. The hybrid interferometer presents three waves. Two parallel Fabry–Perot cavities with low finesse are formed between the splice region and the end of a dual-core microstructured fiber. A Michelson configuration is obtained by the two small cores of the microstructured fiber. The spectral response of the hybrid interferometer presents two pattern fringes with different frequencies due to the respective optical path interferometers. The hybrid interferometer was characterized in strain and temperature presenting different sensitivity coefficients for each topology. Due to these characteristics, this novel sensing head is able to measure strain and temperature, simultaneously

  18. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan; Alhebshi, Nuha; Anjum, Dalaver H.; Alshareef, Husam N.

    2014-01-01

    Porous cobalt sulfide (Co9S8) nanostructures with tunable morphology, but identical crystal phase and composition, have been directly nucleated over carbon fiber and evaluated as electrodes for asymmetric hybrid supercapacitors. As the morphology is changed from two-dimensional (2D) nanoflakes to 3D octahedra, dramatic changes in supercapacitor performance are observed. In three-electrode configuration, the binder-free Co9S82D nanoflake electrodes show a high specific capacitance of 1056 F g-1at 5 mV s-1vs. 88 F g-1for the 3D electrodes. As sulfides are known to have low operating potential, for the first time, asymmetric hybrid supercapacitors are constructed from Co9S8nanostructures and activated carbon (AC), providing an operation potential from 0 to 1.6 V. At a constant current density of 1 A g-1, the 2D Co9S8, nanoflake//AC asymmetric hybrid supercapacitor exhibits a gravimetric cell capacitance of 82.9 F g-1, which is much higher than that of an AC//AC symmetric capacitor (44.8 F g-1). Moreover, the asymmetric hybrid supercapacitor shows an excellent energy density of 31.4 W h kg-1at a power density of 200 W Kg-1and an excellent cycling stability with a capacitance retention of ∼90% after 5000 cycles. This journal is

  19. Route-asymmetrical light transmission of a fiber-chip-fiber optomechanical system

    DEFF Research Database (Denmark)

    Liu, Li; Ding, Yunhong; Cai, Xinlun

    2016-01-01

    In this paper, we proposed and experimentally demonstrated a route-asymmetrical light transmission scheme based on the thermal radiative effect, which means that forward and backward propagations of an optical device have different transmittances provided they are not present simultaneously. Empl...

  20. Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-01-01

    Full Text Available Capacitive deionization (CDI method has drawn much attention for its low energy consumption, low pollution, and convenient manipulation. Activated carbon fibers (ACFs possess high adsorption ability and can be used as CDI electrode material. Herein, two kinds of PAN-based ACFs with different specific surface area (SSA were used for the CDI electrodes. The CDI performance was investigated; especially asymmetric electrodes’ effect was evaluated. The results demonstrated that PAN-based ACFs showed a high electrosorption rate (complete electrosorption in less than half an hour and moderate electrosorption capacity (up to 0.2 mmol/g. CDI experiments with asymmetric electrodes displayed a variation in electrosorption capacity between forward voltage and reverse voltage. It can be attributed to the electrical double layer (EDL overlap effect and inner pore potential; thus the ions with smaller hydrated ionic radius can be adsorbed more easily.

  1. Measurement of chromatic dispersion of microstructured polymer fibers by white-light spectral interferometry

    DEFF Research Database (Denmark)

    Hlubina, Petr; Ciprian, Dalibor; Frosz, Michael Henoch

    2009-01-01

    We present a white-light spectral interferometric method for measuring the chromatic dispersion of microstructured fibers made of polymethyl methacrylate (PMMA). The method uses an unbalanced Mach-Zehnder interferometer with the fiber of known length placed in one of the interferometer arms...... of the method by measuring the wavelength dependence of the differential group refractive index of a pure silica fiber. We apply a five-term power series fit to the measured data and confirm by its differentiation that the chromatic dispersion of pure silica glass agrees well with theory. Second, we measure...... the chromatic dispersion for the fundamental mode supported by two different PMMA microstructured fibers, the multimode fiber and the large-mode area one....

  2. Developments in photonic and mm-wave component technology for fiber radio

    Science.gov (United States)

    Iezekiel, Stavros

    2013-01-01

    A review of photonic component technology for fiber radio applications at 60 GHz will be given. We will focus on two architectures: (i) baseband-over-fiber and (ii) RF-over-fiber. In the first approach, up-conversion to 60 GHz is performed at the picocell base stations, with data being transported over fiber, while in the second both the data and rum­ wave carrier are transported over fiber. For the baseband-over-fiber scheme, we examine techniques to improve the modulation efficiency of directly­ modulated fiber links. These are based on traveling-wave structures applied to series cascades of lasers. This approach combines the improvement in differential quantum efficiency with the ability to tailor impedance matching as required. In addition, we report on various base station transceiver architectures based on optically-controlled :tvfMIC self­ oscillating mixers, and their application to 60 GHz fiber radio. This approach allows low cost optoelectronic transceivers to be used for the baseband fiber link, whilst minimizing the impact of dispersion. For the RF-over-fiber scheme, we report on schemes for optical generation of 100 GHz. These use modulation of a Mach-Zehnder modulator at Vπ bias in cascade with a Mach-Zehnder driven by 1.25 Gb/s data. One of the issues in RF-over-fiber is dispersion, while reduced modulation efficiency due to the presence of the optical carrier is also problematic. We examine the use of silicon nitride micro-ring resonators for the production of optical single sideband modulation in order to combat dispersion, and for the reduction of optical carrier power in order to improve link modulation efficiency.

  3. Simultaneous generation of 40, 80 and 120 GHz optical millimeter-wave from one Mach-Zehnder modulator and demonstration of millimeter-wave transmission and down-conversion

    Science.gov (United States)

    Zhou, Wen; Qin, Chaoyi

    2017-09-01

    We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.

  4. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

    Science.gov (United States)

    Lv, Riqing; Qiu, Liqiang; Hu, Haifeng; Meng, Lu; Zhang, Yong

    2018-02-01

    The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach-Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

  5. Analytic models of spectral responses of fiber-grating-based interferometers on FMC theory.

    Science.gov (United States)

    Zeng, Xiangkai; Wei, Lai; Pan, Yingjun; Liu, Shengping; Shi, Xiaohui

    2012-02-13

    In this paper the analytic models (AMs) of the spectral responses of fiber-grating-based interferometers are derived from the Fourier mode coupling (FMC) theory proposed recently. The interferometers include Fabry-Perot cavity, Mach-Zehnder and Michelson interferometers, which are constructed by uniform fiber Bragg gratings and long-period fiber gratings, and also by Gaussian-apodized ones. The calculated spectra based on the analytic models are achieved, and compared with the measured cases and those on the transfer matrix (TM) method. The calculations and comparisons have confirmed that the AM-based spectrum is in excellent agreement with the TM-based one and the measured case, of which the efficiency is improved up to ~2990 times that of the TM method for non-uniform-grating-based in-fiber interferometers.

  6. Experimental arrangement to measure dispersion in optical fiber devices

    Energy Technology Data Exchange (ETDEWEB)

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  7. Experimental arrangement to measure dispersion in optical fiber devices

    International Nuclear Information System (INIS)

    Armas Rivera, Ivan; Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino; Zaca Moran, Placido

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n(λ) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n(λ) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  8. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes. Part B. Modeling

    KAUST Repository

    Lee, Jong Suk; Madden, William; Koros, William J.

    2010-01-01

    A previous paper characterized effects of exposure of Matrimid® asymmetric fibers to either toluene or n-heptane or a combination of both contaminants during permeation. In all cases, reductions in the carbon dioxide permeance and the carbon dioxide/methane selectivity were observed for both annealed and non-annealed samples. In this paper, the respective potential impacts of competitive sorption, fiber compaction, and antiplasticization/plasticization on membrane performance during contaminant exposure are quantified and analyzed. The combined impact of competitive sorption and antiplasticization/plasticization are shown to account for the loss in membrane performance observed during exposure to highly sorbing feed stream contaminants. The dual mode transport model for penetrant mixtures was used to explain reduction in CO2 permeance due to competitive sorption effects, while free volume-based modeling explained decrease in CO2 permeance due to antiplasticization. Finally, the impact on CO2 permeance during exposure of the annealed Matrimid® fibers to contaminants is analyzed. The analysis is based on reduction in segmental mobility expected due to reduction of residual unrelaxed volume as compared to unanealed sample. © 2010.

  9. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes. Part B. Modeling

    KAUST Repository

    Lee, Jong Suk

    2010-03-15

    A previous paper characterized effects of exposure of Matrimid® asymmetric fibers to either toluene or n-heptane or a combination of both contaminants during permeation. In all cases, reductions in the carbon dioxide permeance and the carbon dioxide/methane selectivity were observed for both annealed and non-annealed samples. In this paper, the respective potential impacts of competitive sorption, fiber compaction, and antiplasticization/plasticization on membrane performance during contaminant exposure are quantified and analyzed. The combined impact of competitive sorption and antiplasticization/plasticization are shown to account for the loss in membrane performance observed during exposure to highly sorbing feed stream contaminants. The dual mode transport model for penetrant mixtures was used to explain reduction in CO2 permeance due to competitive sorption effects, while free volume-based modeling explained decrease in CO2 permeance due to antiplasticization. Finally, the impact on CO2 permeance during exposure of the annealed Matrimid® fibers to contaminants is analyzed. The analysis is based on reduction in segmental mobility expected due to reduction of residual unrelaxed volume as compared to unanealed sample. © 2010.

  10. On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes

    NARCIS (Netherlands)

    Visser, Tymen; Koops, G.H.; Wessling, Matthias

    2005-01-01

    The paper describes the influence of a varying feed composition of CO2/CH4 and CO2/N2 mixtures on the gas separation performance of integrally skinned asymmetric PES/PI hollow fibers with an effective skin thickness of 0.27 ¿m. Normally, thin membrane structures (<3 ¿m) show accelerated

  11. U-shaped micro-groove fiber based on femtosecond laser processing for humidity sensing

    Science.gov (United States)

    Fu, Gui; Ma, Li-li; Su, Fu-fang; Shi, Meng

    2018-05-01

    A novel optical fiber sensor with a U-shaped micro-groove structure ablated by femtosecond laser on single-mode fiber for measuring air relative humidity (RH) is reported in this paper. In order to improve the accuracy of sensor, a graphene oxide (GO)/polyvinyl alcohol (PVA) composite film is coated on the surface of micro-groove structure. In the U-shaped micro-groove structure, the remaining core and micro-cavity in the micro-groove make up two major optical propagation paths, forming a Mach-Zehnder interferometer (MZI). The sensor has a good linear response within the RH range of 30%—85%, and the maximum sensitivity can reach 0.638 1 nm/%RH. The effect of temperature on the overall performance of the humidity sensor is also investigated. As a new type of all-fiber device, the sensor shows excellent sensitivity and stability.

  12. An analysis on mode selection by V-I transmission matrix in DBR laser with asymmetric fiber gratings

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Li, Qi; Ning, Tigang; Liu, Chao; Gao, Song

    2013-02-01

    The V-I Transmission Matrix Method (VITMM) which is well known in the microwave engineering field was firstly applied to analyze the output spectra of the Distributed Bragg Reflector (DBR) laser, formed by asymmetric fiber gratings as resonator mirrors. One mirror is the uniform Bragg grating and the other is chirped grating. A theoretical model of grating was established, and then a numerical simulation of the mode selection in DBR laser with asymmetric fiber gratings was presented. Simulation results show that VITMM, with calculation error less than 0.1%, could save the calculation time compared to the Rouard method. In the experiment, the setup design of the single-longitudinal-mode laser output at 1544.7 nm was carried out, and the result, which lasted about 10 min, observed on an optical spectrum analyzer, demonstrates the feasibility of VITMM to address the mode output issues of DBR fiber laser.

  13. Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper

    Science.gov (United States)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, JingJing; Gao, Xuekai; Pei, Li

    2018-06-01

    A compact in-fiber Mach-Zehnder interferometer (MZI) based on twin-core fiber (TCF) with a novel T-shaped taper is proposed and demonstrated. The taper was firstly fabricated by a short section of TCF, and then spliced with a section of cleaved single mode fiber (SMF). When the light transmit into the TCF, multiple modes will be excited and will propagate within the TCF. In experiment, the proposed device had a maximum interferometric extinction ratio about 17 dB. And the refractive index (RI), strain, and temperature response properties of the sensor have been investigated, which show a relatively high RI, strain sensitivity and low temperature cross sensitivity. Hence, the sensor can be a suitable candidate in the biochemical and physical sensing applications. And due to its easy and controllable fabrication, the novel drawing technology can be applied to more multicore optical fibers.

  14. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes—Part A. Experimental

    KAUST Repository

    Lee, Jong Suk

    2010-03-15

    The complex effects of highly sorbing feed gas contaminants such as toluene and n-heptane on performance of both annealed and non-annealed Matrimid® asymmetric fibers relevant to CO2/CH4 separation are reported. Membrane performance was quantified both during contaminant exposure and after removal of the contaminant from the feed stream. Exposure to either toluene or n-heptane during permeation reduces carbon dioxide permeance and the carbon dioxide/methane selectivity in non-annealed fibers. After exchange with a contaminant-free feed containing only CO2 and CH4 mixed gas, the carbon dioxide permeance and carbon dioxide/methane selectivity were affected, indicating a glassy state conditioning effect due to the prior contaminant exposure. Interestingly, the conditioning effect after simultaneous exposure to toluene and n-heptane (284 ppm toluene and 504 ppm n-heptane) was less than the conditioning observed for either toluene (293 ppm) or n-heptane (505 ppm) individually. Sub-Tg annealing reduced carbon dioxide permeance during actual contaminant exposure more severely than in non-annealed fibers. On the other hand, except for exposure to the highest n-heptane contaminant feed (2003 ppm), annealing significantly reduced the post-exposure conditioning observed in carbon dioxide permeance and carbon dioxide/methane selectivity. It appears that annealing allows the consolidation of segmental packing which stabilized the glassy matrix against swelling. At sufficiently high activities of even a relatively non-interacting penetrant like n-heptane, the annealing-induced stabilization can be reversed. © 2010 Elsevier B.V. All rights reserved.

  15. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes—Part A. Experimental

    KAUST Repository

    Lee, Jong Suk; Madden, William; Koros, William J.

    2010-01-01

    The complex effects of highly sorbing feed gas contaminants such as toluene and n-heptane on performance of both annealed and non-annealed Matrimid® asymmetric fibers relevant to CO2/CH4 separation are reported. Membrane performance was quantified both during contaminant exposure and after removal of the contaminant from the feed stream. Exposure to either toluene or n-heptane during permeation reduces carbon dioxide permeance and the carbon dioxide/methane selectivity in non-annealed fibers. After exchange with a contaminant-free feed containing only CO2 and CH4 mixed gas, the carbon dioxide permeance and carbon dioxide/methane selectivity were affected, indicating a glassy state conditioning effect due to the prior contaminant exposure. Interestingly, the conditioning effect after simultaneous exposure to toluene and n-heptane (284 ppm toluene and 504 ppm n-heptane) was less than the conditioning observed for either toluene (293 ppm) or n-heptane (505 ppm) individually. Sub-Tg annealing reduced carbon dioxide permeance during actual contaminant exposure more severely than in non-annealed fibers. On the other hand, except for exposure to the highest n-heptane contaminant feed (2003 ppm), annealing significantly reduced the post-exposure conditioning observed in carbon dioxide permeance and carbon dioxide/methane selectivity. It appears that annealing allows the consolidation of segmental packing which stabilized the glassy matrix against swelling. At sufficiently high activities of even a relatively non-interacting penetrant like n-heptane, the annealing-induced stabilization can be reversed. © 2010 Elsevier B.V. All rights reserved.

  16. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    Science.gov (United States)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  17. Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer

    Science.gov (United States)

    Wang, Weiying; Dong, Xinran; Chu, Dongkai; Hu, Youwang; Sun, Xiaoyan; Duan, Ji-An

    2018-05-01

    A high refractive index (RI) sensor based on an in-line Mach-Zehnder mode interferometer (MZI) is proposed. The sensor was realized by splicing a 2-cm length of cladding-etched thin core fiber (TCF) between two single mode fibers (SMFs). The TCF-structured MZI exhibited good fringe visibility as high as 15 dB in air and the high RI sensitivity attained a value of 1143.89 nm/RIU at a RI of 1.447. The experimental data revealed that the MZI has high RI sensitivity after HF etching realizing 2599.66 nm/RIU. Studies were performed on the temperature characteristics of the device. It is anticipated that this high RI sensor will be deployed in new and diverse applications in the chemical and biological fields.

  18. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers.

    Science.gov (United States)

    Sancho, J; Primerov, N; Chin, S; Antman, Y; Zadok, A; Sales, S; Thévenaz, L

    2012-03-12

    We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS).

  19. Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.

    Science.gov (United States)

    Das, Bhargab; Chandra, Vikash

    2016-10-10

    We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.

  20. Interferometric characterization of few-mode fibers (FMF) for mode-division multiplexing (MDM)

    DEFF Research Database (Denmark)

    Muliar, Olena; Usuga Castaneda, Mario A.; Rottwitt, Karsten

    2015-01-01

    ), commonly used in a MDM scenario. This experimental technique requires the use of a Mach-Zehnder interferometer, where the reference's path length is controlled by an optical delay line. The interference between the output beams of reference and fiber under test (FUT) is recorded on a CCD camera......The rapid growth of global data traffic demands the continuous search for new technologies and systems that could increase transmission capacity in optical links and recent experiments show that to do so, it is advantageous to explore new degrees of freedom such as polarization, wavelength...... or optical modes. Mode division multiplexing (MDM) appears in this context as a promising and viable solution for such capacity increase, since it utilizes multiple spatial modes of an optical fiber as individual communication channels for data transmission. In order to evaluate its performance, a MDM system...

  1. Measuring opto-thermal parameters of basalt fibers using digital holographic microscopy.

    Science.gov (United States)

    Yassien, Khaled M; Agour, Mostafa

    2017-02-01

    A method for studying the effect of temperature on the optical properties of basalt fiber is presented. It is based on recording a set of phase-shifted digital holograms for the sample under the test. The holograms are obtained utilizing a system based on Mach-Zehnder interferometer, where the fiber sample inserted in an immersion liquid is placed within a temperature controlled chamber. From the recorded digital holograms the optical path differences which are used to calculate the refractive indices are determined. The accuracy in the measurement of refractive indices is in the range of 4 × 10 -4 . The influence of temperature on the dispersion parameters, polarizability per unit volume and dielectric susceptibility are also obtained. Moreover, the values of dispersion and oscillation energies and Cauchy's constants are provided at different temperatures. © 2016 Wiley Periodicals, Inc.

  2. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.

    Science.gov (United States)

    Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan

    2014-10-22

    A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Measurement of the thickness of the lens with the use of all fiber low-coherence interferometer

    Science.gov (United States)

    Józwik, Michalina; Stepień, Karol; Lipiński, Stanisław; Budnicki, Dawid; Napierała, Marek; Nasiłowski, Tomasz

    2015-12-01

    In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.

  5. An optical liquid level sensor based on core-offset fusion splicing method using polarization-maintaining fiber

    Science.gov (United States)

    Lou, Weimin; Chen, Debao; Shen, Changyu; Lu, Yanfang; Liu, Huanan; Wei, Jian

    2016-01-01

    A simple liquid level sensor using a small piece of hydrofluoric acid (HF) etched polarization maintaining fiber (PMF), with SMF-PMF-SMF fiber structure based on Mach- Zehnder interference (MZI) mechanism is proposed. The core-offset fusion splicing method induced cladding modes interfere with the core mode. Moreover, the changing liquid level would influence the optical path difference of the MZI since the effective refractive indices of the air and the liquid is different. Both the variations of the wavelength shifts and power intensity attenuation corresponding to the liquid level can be obtained with a sensitivity of 0.4956nm/mm and 0.2204dB/mm, respectively.

  6. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  7. Research on fully distributed optical fiber sensing security system localization algorithm

    Science.gov (United States)

    Wu, Xu; Hou, Jiacheng; Liu, Kun; Liu, Tiegen

    2013-12-01

    A new fully distributed optical fiber sensing and location technology based on the Mach-Zehnder interferometers is studied. In this security system, a new climbing point locating algorithm based on short-time average zero-crossing rate is presented. By calculating the zero-crossing rates of the multiple grouped data separately, it not only utilizes the advantages of the frequency analysis method to determine the most effective data group more accurately, but also meets the requirement of the real-time monitoring system. Supplemented with short-term energy calculation group signal, the most effective data group can be quickly picked out. Finally, the accurate location of the climbing point can be effectively achieved through the cross-correlation localization algorithm. The experimental results show that the proposed algorithm can realize the accurate location of the climbing point and meanwhile the outside interference noise of the non-climbing behavior can be effectively filtered out.

  8. Experimental investigation of backreflection at air-core photonic bandgap fiber terminations

    Science.gov (United States)

    Xu, Xiaobin; Yan, Ming; Wu, Chunxiao; Song, Ningfang; Zhang, Chunxi

    2017-07-01

    Backreflection from the termination of air-core photonic bandgap fibers (PBFs) is experimentally investigated based on a range-extended Mach-Zehnder and Michelson hybrid (M2) interferometer. For primary waves generated by the fundamental modes, the reflectivity is about -90 dB; for secondary waves caused by other modes, the reflectivity is less than -80 dB when compared to the intensity of the primary wave and -20 to -50 dB when compared to their own incident intensity. To suppress the reflection, 3-centimeter PBF at the end is filled with alcohol through the capillary effect, and this proposed method is shown to be much more convenient and effective than the conventional angle cleaving method.

  9. Refractive index retrieving of polarization maintaining optical fibers

    Science.gov (United States)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.

    2018-01-01

    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  10. All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure

    Science.gov (United States)

    Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz

    2017-10-01

    Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.

  11. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    Science.gov (United States)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  12. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    International Nuclear Information System (INIS)

    E K Miller; G S Macrum; I J McKenna

    2007-01-01

    Interferometric fiber-optic links used in pulsed-power experiments are evaluated for accuracy in the presence of radiation fields which alter fiber transmission. Amplitude-modulated format (e.g., Mach-Zehnder) and phase-modulated formats are compared. Historically, studies of radiation effects on optical fibers have focused on degradation and recovery of the fibers transmission properties; such work is either in the context of survivability of fibers in catastrophic conditions or suitability of fibers installed for command and control systems within an experimental facility [1], [2]. In this work, we consider links used to transmit realtime diagnostic data, and we analyze the error introduced by radiation effects during the drive pulse. The result is increased uncertainties in key parameters required to unfold the sinusoidal transfer function. Two types of modulation are considered: amplitude modulation typical of a Mach-Zehnder (M-Z) modulator [3], and phase modulation, which offers more flexible demodulation options but relies on the spatiotemporal coherence of the light in the fiber. The M-Z link is shown schematically in Fig. 1, and the phase-modulated link is shown in Fig. 2. We present data from two experimental environments: one with intense, controlled radiation fields to simulate conditions expected at the next generation of pulsed-power facilities, and the second with radiation effects below the noise level of the recording system. In the first case, we intentionally expose three types of single-mode fiber (SMF) to ionizing radiation and study the response by simultaneously monitoring phase and amplitude of the transmitted light. The phase and amplitude effects are evidently dominated by different physical phenomena, as their recovery dynamics are markedly different; both effects, though, show similar short-term behavior during exposure, integrating the dose at the dose levels studied, from 1 to 300 kRad, over the exposure times of 50 ps and 30 ns. In the

  13. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  14. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm-3), highly conductive (39 S cm-1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm-3 at 2 mV s-1 in a three-electrode cell and 300 F cm-3 at 175.7 mA cm-3 (568 mF cm-2 at 0.5 mA cm-2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm-3 with a maximum power density of 1600 mW cm-3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  16. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for O2/N2 separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The objective of this study was to investigate the influence of dope extrusion rates on morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes. Asymmetric polysulfone hollow fiber membranes for gas separation were prepared from a solution consisting of 26.0 wt. % of polysulfone, 30.4 wt. % of N, N-dimethylacetamide, 30.4 wt. % of tetrahydrofuran and 13.2 wt. % ethanol. The dry/wet phase separation process was applied to a dry/wet spinning process. Fibers were spun at various dope extrusion rates (DER ranging from 1.5 - 3.0 cm3/min and hence at different levels of shear. The results suggest that as the dope extrusion rate is increased, the selectivity will increase until a critical level of shear is reached, beyond which the membrane performance deteriorates. Pressure-normalized-fluxes and selectivities were evaluated by using pure oxygen and nitrogen as test gases.

  17. Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor

    Directory of Open Access Journals (Sweden)

    Yongzhao Du

    2016-11-01

    Full Text Available For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor M x 2 and M y 2 in the x-direction and y-direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.

  18. Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2015-01-01

    We present a thorough numerical analysis of a highly birefringent slotted porous-core circular photonic crystal fiber (PCF) for terahertz (THz) wave guidance. The slot shaped air-holes break the symmetry of the porous-core which offers a very high birefringence whereas the compact geometry of the...

  19. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode......UV-written Bragg gratings find wide spread use as wavelength selective components. In reflection high extinction ratios are routinely obtained. However, coupling to cladding modes gives excess loss on the short wavelength side of the main reflection. Different fiber-designs have been proposed......-solver based on the staircase-approximation method. The Bragg grating causes coupling between the fundamental LP01 mode and higher order LP1p modes that satisfy phase-matching. The coupling strength is determined by the overlap integral of the LP01, the LP1p mode, and the UV-induced index perturbation. For LP0...

  20. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  1. Modulational instability and generation of pulse trains in asymmetric dual-core nonlinear optical fibers

    International Nuclear Information System (INIS)

    Ganapathy, R.; Malomed, Boris A.; Porsezian, K.

    2006-01-01

    Instability of continuous-wave (CW) states is investigated in a system of two parallel-coupled fibers, with a pumped (active) nonlinear dispersive core and a lossy (passive) linear one. Modulational instability (MI) conditions are found from linearized equations for small perturbations, the results being drastically different for the normal and anomalous group-velocity dispersion (GVD) in the active core. Simulations of the full system demonstrate that the development of the MI in the former regime leads to establishment of a regular or chaotic array of pulses, if the MI saturates, or a chain of well-separated peaks with continuously growing amplitudes if the instability does not saturate. In the anomalous-GVD regime, a chain of return-to-zero (RZ) peaks, or a single RZ peak emerge, also with growing amplitudes. The latter can be used as a source of RZ pulses for optical telecommunications

  2. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  3. Real-time distributed fiber optic sensor for security systems: Performance, event classification and nuisance mitigation

    Science.gov (United States)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-09-01

    The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.

  4. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.

    Science.gov (United States)

    Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng

    2015-04-07

    One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors.

    Science.gov (United States)

    Zhou, Jiaao; Xia, Li; Cheng, Rui; Wen, Yongqiang; Rohollahnejad, Jalal

    2016-01-15

    The optical unbalanced Mach-Zehnder interferometer (UMZI) has attracted significant interests for interrogation of FBG sensors owing to its excellent advantages in sensitivity, resolution, and demodulation speed. But this method is still limited to dynamic measurements due to its poor stability and reliability when used for quasi-static detections. Here, we propose for the first time, to the best of our knowledge, a radio-frequency unbalanced M-Z interferometer (RF-UMZI) for interrogation of FBG sensors, which, owing to its operation in an incoherent rather than a coherent regime, provides an ideal solution for the existing stability problem of the conventional UMZI, with remarkable features of adjustable resolution and potentially extremely high sensitivity. A dispersion compensation fiber (DCF) and single-mode fiber (SMF) with a small length difference are served as the two unbalanced arms of the RF interferometer. The induced differential chromatic dispersion transfers the wavelength shift of the FBG to the change of the RF phase difference between the two interferometric carriers, which ultimately leads to the variation of the RF signal intensity. An interrogation of a strain-turned FBG was accomplished and a maximum sensitivity of 0.00835  a.u./με was obtained, which can easily be further improved by more than two orders of magnitude through various fiber dispersion components. Finally, the stability of the interrogation was tested.

  6. Interferometric sensor based on the polarization-maintaining fibers

    Science.gov (United States)

    Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Vašinek, Vladimir; Liner, Andrej; Papes, Martin

    2012-01-01

    The interferometers composed of optical fibers are due to its high sensitivity capable of to measure various influences affecting the fiber. These influences may be bending or different sorts of fiber deformations, vibration, temperature, etc. In this case the vibration is the measured quantity, which is evaluated by analyzing the interference fringes representing changes in the fiber. Was used a Mach-Zehnder interferometer composed of the polarization maintaining elements. The polarization maintaining elements were used because of high sensitivity to polarization state inside the interferometer. The light was splitted into the two optical paths, where the first one is the reference fiber and it is separated from the actual phenomenon, and the second one is measuring fiber, which is directly exposed to vibration transmission from the underlying surface. The light source was narrowband DFB laser serating at a wavelength of 1550nm and as a detector an InGaAs PIN photodiode were used in this measurement. The electrical signal from the photodiode was amplified and fed into the measuring card. On the incoming signal the FFT was applied, which performs the transformation into the frequency domain and the results were further evaluated by software. We were evaluating the characteristic frequencies and their amplitude ratios. The frequency responses are unique for a given phenomenon, thus it is possible to identify recurring events by the characteristic frequencies and their amplitude ratios. The frequency range was limited by the properties of the used speaker, by the frequency characteristics of the filter in the amplifier and used resonant element. For the experiment evaluation the repeated impact of the various spherical objects on the surface board was performed and measured. The stability of amplitude and frequency and also the frequency range was verified in this measurement.

  7. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber.

    Science.gov (United States)

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping

    2017-07-24

    All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.

  8. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    Science.gov (United States)

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  9. Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "

    Science.gov (United States)

    Griffiths, Robert B.

    2018-02-01

    While much of the technical analysis in the preceding Comment is correct, in the end it confirms the conclusion reached in my previous work [Phys. Rev. A 94, 032115 (2016), 10.1103/PhysRevA.94.032115]: A consistent histories analysis provides no support for the claim of counterfactual quantum communication put forward by Salih et al. [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502].

  10. Nearly optimal measurement schemes in a noisy Mach-Zehnder interferometer with coherent and squeezed vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Gard, Bryan T.; You, Chenglong; Singh, Robinjeet; Lee, Hwang; Corbitt, Thomas R.; Dowling, Jonathan P. [Louisiana State University, Baton Rouge, LA (United States); Mishra, Devendra K. [Louisiana State University, Baton Rouge, LA (United States); V.S. Mehta College of Science, Physics Department, Bharwari, UP (India)

    2017-12-15

    The use of an interferometer to perform an ultra-precise parameter estimation under noisy conditions is a challenging task. Here we discuss nearly optimal measurement schemes for a well known, sensitive input state, squeezed vacuum and coherent light. We find that a single mode intensity measurement, while the simplest and able to beat the shot-noise limit, is outperformed by other measurement schemes in the low-power regime. However, at high powers, intensity measurement is only outperformed by a small factor. Specifically, we confirm, that an optimal measurement choice under lossless conditions is the parity measurement. In addition, we also discuss the performance of several other common measurement schemes when considering photon loss, detector efficiency, phase drift, and thermal photon noise. We conclude that, with noise considerations, homodyne remains near optimal in both the low and high power regimes. Surprisingly, some of the remaining investigated measurement schemes, including the previous optimal parity measurement, do not remain even near optimal when noise is introduced. (orig.)

  11. Improving the acousto-optical interaction in a Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole

    2009-01-01

    of a piezoelectric, inhomogeneous material, and reflections from the boundaries are avoided by applying perfectly matched layers. The optical modes in the waveguides are modeled by time-harmonic wave equations for the magnetic field. The two models are coupled using stress-optical relations and the change...

  12. Photonic Mach-Zehnder modulators driven by surface acoustic waves in AlGaAs technology

    Science.gov (United States)

    Crespo-Poveda, A.; Gargallo, B.; Artundo, I.; Doménech, J. D.; Muñoz, P.; Hey, R.; Biermann, K.; Tahraoui, A.; Santos, P. V.; Cantarero, A.; de Lima, M. M.

    2014-03-01

    In this paper, photonic devices driven by surface acoustic waves and operating in the GHz frequency range are presented. The devices were designed and fabricated in (Al,Ga)As technology. In contrast to previously realized modulators, where part of the light transmission is lost due to destructive interference, in the present devices light only switches paths, avoiding losses. One of the devices presents two output channels with 180°-dephasing synchronization. Odd multiples of the fundamental driving frequency are enabled by adjusting the applied acoustic power. A second and more complex photonic integrated device, based on the acoustic modulation of tunable Arrayed Waveguide Gratings, is also proposed.

  13. Quantum nonlocality of photon pairs in interference in a Mach-Zehnder interferometer

    Czech Academy of Sciences Publication Activity Database

    Trojek, P.; Peřina ml., Jan

    2003-01-01

    Roč. 53, č. 4 (2003), s. 335-349 ISSN 0011-4626 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : entangled photon pairs * nonlocal interference * Mach-Zehender interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.263, year: 2003

  14. Full-duplex radio-over-fiber system with tunable millimeter-wave signal generation and wavelength reuse for upstream signal.

    Science.gov (United States)

    Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin

    2017-06-10

    A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.

  15. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    Science.gov (United States)

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  16. Fiber optic system design for vehicle detection and analysis

    Science.gov (United States)

    Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Zavodny, Petr; Kepak, Stanislav; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir

    2016-04-01

    Fiber optic interferometers belong to a group of highly sensitive and precise devices enabling to measure small changes in the deformation shapes, changes in pressure, temperature, vibration and so on. The basis of their activity is to evaluate the number of fringes over time, not changes in the intensity of the optical signal. The methodology described in the article is based on using the interferometer to monitor traffic density. The base of the solution is a Mach-Zehnder interferometer operating with single-mode G.652 optical fiber at the wavelength of 1550 nm excited by a DFB laser. The power distribution of the laser light into the individual arms of the interferometer is in the ratio 1:1. Realized measuring scheme was terminated by an optical receiver including InGaAs PIN photodiode. Registered signal from the photodetector was through 8 Hz high pass filter fed to the measuring card that captures the analog input voltage using an application written in LabView development environment. The interferometer was stored in a waterproof box and placed at the side of the road. Here panned individual transit of cars in his environs. Vertically across the road was placed in contact removable belt simulating a retarder, which was used when passing cars to create sufficient vibration response detecting interferometer. The results demonstrated that the individual vehicles passing around boxing showed characteristic amplitude spectra, which was unique for each object, and had sufficient value signal to noise ratio (SNR). The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by repeated transit of the different types of cars.

  17. Constructing Ultrahigh-Capacity Zinc-Nickel-Cobalt Oxide@Ni(OH)2 Core-Shell Nanowire Arrays for High-Performance Coaxial Fiber-Shaped Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhang, Qichong; Xu, Weiwei; Sun, Juan; Pan, Zhenghui; Zhao, Jingxin; Wang, Xiaona; Zhang, Jun; Man, Ping; Guo, Jiabin; Zhou, Zhenyu; He, Bing; Zhang, Zengxing; Li, Qingwen; Zhang, Yuegang; Xu, Lai; Yao, Yagang

    2017-12-13

    Increased efforts have recently been devoted to developing high-energy-density flexible supercapacitors for their practical applications in portable and wearable electronics. Although high operating voltages have been achieved in fiber-shaped asymmetric supercapacitors (FASCs), low specific capacitance still restricts the further enhancement of their energy density. This article specifies a facile and cost-effective method to directly grow three-dimensionally well-aligned zinc-nickel-cobalt oxide (ZNCO)@Ni(OH) 2 nanowire arrays (NWAs) on a carbon nanotube fiber (CNTF) with an ultrahigh specific capacitance of 2847.5 F/cm 3 (10.678 F/cm 2 ) at a current density of 1 mA/cm 2 , These levels are approximately five times higher than those of ZNCO NWAs/CNTF electrodes (2.10 F/cm 2 ) and four times higher than Ni(OH) 2 /CNTF electrodes (2.55 F/cm 2 ). Benefiting from their unique features, we successfully fabricated a prototype coaxial FASC (CFASC) with a maximum operating voltage of 1.6 V, which was assembled by adopting ZNCO@Ni(OH) 2 NWAs/CNTF as the core electrode and a thin layer of carbon coated vanadium nitride (VN@C) NWAs on a carbon nanotube strip (CNTS) as the outer electrode with KOH poly(vinyl alcohol) (PVA) as the gel electrolyte. A high specific capacitance of 94.67 F/cm 3 (573.75 mF/cm 2 ) and an exceptional energy density of 33.66 mWh/cm 3 (204.02 μWh/cm 2 ) were achieved for our CFASC device, which represent the highest levels of fiber-shaped supercapacitors to date. More importantly, the fiber-shaped ZnO-based photodetector is powered by the integrated CFASC, and it demonstrates excellent sensitivity in detecting UV light. Thus, this work paves the way to the construction of ultrahigh-capacity electrode materials for next-generation wearable energy-storage devices.

  18. Computing modal dispersion characteristics of radially Asymmetric ...

    African Journals Online (AJOL)

    We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...

  19. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  20. Extracting and focusing of surface plasmon polaritons inside finite asymmetric metal/insulator/metal structure at apex of optical fiber by subwavelength holes

    Science.gov (United States)

    Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro

    2013-09-01

    We have been studied a finite asymmetric metal-insulator-metal (MIM) structure on glass plate for near-future visible light communication (VLC) system with white LED illuminations in the living space (DOI: 10.1117/12.929201). The metal layers are vacuum-evaporated thin silver (Ag) films (around 50 nm and 200 nm, respectively), and the insulator layer (around 150 nm) is composed of magnesium fluoride (MgF2). A characteristic narrow band filtering of the MIM structure at visible region might cause a confinement of intense surface plasmon polaritons (SPPs) at specific monochromatic frequency inside a subwavelength insulator layer of the MIM structure. Central wavelength and depth of such absorption dip in flat spectral reflectance curve is controlled by changing thicknesses of both insulator and thinner metal layers. On the other hand, we have proposed a twin-hole pass-through wave guide for SPPs in thick Ag film (DOI: 10.1117/12.863587). At that time, the twin-hole converted a incoming plane light wave into a pair of channel plasmon polaritons (CPPs), and united them at rear surface of the Ag film. This research is having an eye to extract, guide, and focus the SPPs through a thicker metal layer of the MIM with FIBed subwavelength pass-through holes. The expected outcome is a creation of noble, monochromatic, and tunable fiber probe for scanning near-field optical microscopes (SNOMs) with intense white light sources. Basic experimental and FEM simulation results will be presented.

  1. A new-generation asymmetric multi-bore hollow fiber membrane for sustainable water production via vacuum membrane distillation.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2013-06-18

    Due to the growing demand for potable water, the capacities for wastewater reclamation and saline water desalination have been increasing. More concerns are raised on the poor efficiency of removing certain contaminants by the current water purification technologies. Recent studies demonstrated superior separation performance of the vacuum membrane distillation (VMD) technology for the rejection of trace contaminants such as boron, dye, endocrine-disruptive chemical, and chloro-compound. However, the absence of suitable membranes with excellent wetting resistance and high permeation flux has severely hindered the VMD application as an effective water production process. This work presents a new generation multibore hollow fiber (MBF) membrane with excellent mechanical durability developed for VMD. Its micromorphology was uniquely designed with a tight surface and a fully porous matrix to maximize both high wetting resistance and permeation flux. Credit to the multibore configuration, a 65% improvement was obtained on the antiwetting property. Using a synthetic seawater feed, the new membrane with optimized fabrication condition exhibits a high flux and the salt rejection is consistently greater than 99.99%. In addition, a comparison of 7-bore and 6-bore MBF membranes was performed to investigate the optimum geometry design. The newly designed MBF membrane not only demonstrates its suitability for VMD but also makes VMD come true as an efficient process for water production.

  2. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  3. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.; Koros, William J.

    2009-01-01

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  4. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  5. Analysis of second order harmonic distortion due to transmitter non-linearity and chromatic and modal dispersion of optical OFDM SSB modulated signals in SMF-MMF fiber links

    Science.gov (United States)

    Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.

    2017-01-01

    Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.

  6. Analysis of Plasmonics Based Fiber Optic Sensing Structures

    Science.gov (United States)

    Moayyed, Hamed

    etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  7. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography

    Science.gov (United States)

    Yurtsever, Günay; Považay, Boris; Alex, Aneesh; Zabihian, Behrooz; Drexler, Wolfgang; Baets, Roel

    2014-01-01

    Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT. PMID:24761288

  8. Construct hierarchical electrode with NixCo3-xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Cao, Liujun; Tang, Gang; Mei, Jun; Liu, Hao

    2017-08-01

    In order to boost the energy density of supercapacitors, the strategy of using advanced pseudo-capacitive electrode and asymmetric device architecture is feasible and effective. Herein, we report a significant advance in the design and synthesis of a new hierarchically nanostructures with a series of controllable Ni/Co molar ratios of NixCo3-xS4 (i.e., NiCo2S4 and Ni2CoS4) nanosheets coatings have in situ grown on NiCo2O4 nanowires arrays on a flexible carbon fiber paper (CFP). Remarkably, the hybrid Ni2CoS4@NiCo2O4 composite electrode delivers the highest discharge gravimetric capacitance of 1501 F g-1, and areal capacitance of 1.86 F cm-2 at 1 mA cm-2. Furthermore, coupled with nitrogen-doped carbon xerogels anode, we have fabricated a 1.6 V asymmetric supercapacitor (Ni2CoS4@NiCo2O4//nitrogen-doped carbon xerogels), such device delivers a maximum energy and power densities of 32.2 Wh kg-1 and 2.5 kW kg-1 in 1.0 M KOH electrolyte, respectively, and an excellent cycling stability (∼87.6% retention after 10,000 cycles).

  9. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    Science.gov (United States)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  10. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  11. Fiber sensing based on new structures and post-processing enhancement

    Science.gov (United States)

    Ferreira, Marta Sofia dos Anjos

    etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  12. Optical fiber sensors technology for supervision, control and protection of high power systems

    Science.gov (United States)

    Nascimento, Ivo Maciel

    etching. In this case, an excimer laser was used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The other technique employed to fabricate the fiber Bragg gratings was the point-by-point femtosecond laser inscription. In this case, the sensing elements are very stable at high temperatures and can be used to measure strain in harsh conditions. The employment of optical fiber lasers as sensing elements was also considered in this Thesis. Two laser cavities were studied, one based on the ring configuration and the other based on a figure-of-eight configuration. From these works, the quality of the laser emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and the stability should be highlighted. These characteristics allowed the measurement of different physical parameters, such as strain, temperature and torsion. Lastly, the possibility to use microspheres as sensing elements was considered. Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of an optical fiber. Furthermore, with this technique it is chains of microspheres can be obtained, constituting Mach-Zehnder-type interferometers which are sensitive to physical parameters like strain and temperature. The preliminary results obtained by introducing silica microspheres in a support structure are also presented. In this case, the sensors were subjected to temperature variations. All the experimental work was combined with the respective theoretical considerations. Many questions have been raised with the course of this PhD, and there are still some without a definite answer. Thus, new research paths can be followed, having their basis grounded in the configurations here presented.

  13. Ultrahigh temperature-sensitive silicon MZI with titania cladding

    Directory of Open Access Journals (Sweden)

    Jong-Moo eLee

    2015-05-01

    Full Text Available We present a possibility of intensifying temperature sensitivity of a silicon Mach-Zehnder interferometer (MZI by using a highly negative thermo-optic property of titania (TiO2. Temperature sensitivity of an asymmetric silicon MZI with a titania cladding is experimentally measured from +18pm/C to -340 pm/C depending on design parameters of MZI.

  14. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy

  15. Frequency-modulated laser ranging sensor with closed-loop control

    Science.gov (United States)

    Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin

    2018-02-01

    Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.

  16. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    In optical Doppler measurements, the path length of the light is unknown. To facilitate quantitative measurements, we develop a phase-modulated Mach-Zehnder interferometer with separate fibers for illumination and detection. With this setup, path-length-resolved dynamic light scattering measurements

  17. Principles of asymmetric synthesis

    CERN Document Server

    Gawley, Robert E; Aube, Jeffrey

    2012-01-01

    The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...

  18. Transient Response in Monolithic Mach-Zehnder Optical Modulator Using (Ba,Sr)TiO3 Film Sputtered at Low Temperature on Silicon

    Science.gov (United States)

    Suzuki, Masato; Nagata, Kazuma; Tanushi, Yuichiro; Yokoyama, Shin

    2007-04-01

    We have fabricated Mach-Zhender interferometers (MZIs) using the (Ba,Sr)TiO3 (BST) film sputter-deposited at 450 °C, which is a critical temperature for the process after metallization. An optical modulation of about 10% is achieved when 200 V is applied (electric field in BST is 1.2× 104 V/cm). However, the response time of optical modulation to step function voltage is slow (1.0-6.3 s). We propose a model for the slow transient behavior based on movable ions and a long dielectric relaxation time for the BST film, and good qualitative agreement is obtained with experimental results.

  19. Characterization and Performance Comparison of Low-Voltage, High-Speed, Push-Pull and Traveling-Wave Silicon Mach-Zehnder Modulators

    Science.gov (United States)

    2014-03-27

    unloaded transmission line is simply the coplanar strip waveguide (CPS), and is designed to have an impedance higher than 50Ω, as the capacitive load...microwave loss operation, with a junction capacitance of 0.41 fF at 0 V bias. From a macroscopic point of view, the push-pull design uses two electrodes...by ±5°. The chip mount is designed to hold a thermoelectric cooler (TEC) between two copper plates, and a temperature sensor in the top plate, above

  20. A Novel Dynamic Wavelength Cross-connect Based on Mach-Zehnder Interferometer Optical ad/drop Multiplexer and Optical Space Switch

    DEFF Research Database (Denmark)

    Xueyan, Zheng; Liu, Fenghai

    1999-01-01

    We have proposed a novel dynamic WXC based on MZI-OADM. The advantages of this dynamic WXC are very low differential insertion loss, using less exchanging units than reported structures, and the ability to be integrated. In experiment, the three channels from the path with maximum OADMs in a 2×2 ......×2 dynamic WXC capable of exchanging five wavelengths show negligible power penalty at BER of 10-9. The above advantages make this kind of dynamic WXC very promising for future WDM networks...

  1. All-Optical Regenerative OTDM Add/Drop Multiplexing at 40 Gbit/s using Monolithic InP Mach-Zehnder Interferometer

    DEFF Research Database (Denmark)

    Buxens, Alvaro A.; Clausen, Anders; Poulsen, Henrik Nørskov

    2000-01-01

    We report a novel method for simultaneous add-drop multiplexing in OTDM systems which includes regenerative capabilities and perfect clearing of the drop channel time slot. The principle has been demonstrated at 40 Gb/s showing an excellent performance.......We report a novel method for simultaneous add-drop multiplexing in OTDM systems which includes regenerative capabilities and perfect clearing of the drop channel time slot. The principle has been demonstrated at 40 Gb/s showing an excellent performance....

  2. Quantifying social asymmetric structures.

    Science.gov (United States)

    Solanas, Antonio; Salafranca, Lluís; Riba, Carles; Sierra, Vicenta; Leiva, David

    2006-08-01

    Many social phenomena involve a set of dyadic relations among agents whose actions may be dependent. Although individualistic approaches have frequently been applied to analyze social processes, these are not generally concerned with dyadic relations, nor do they deal with dependency. This article describes a mathematical procedure for analyzing dyadic interactions in a social system. The proposed method consists mainly of decomposing asymmetric data into their symmetric and skew-symmetric parts. A quantification of skew symmetry for a social system can be obtained by dividing the norm of the skew-symmetric matrix by the norm of the asymmetric matrix. This calculation makes available to researchers a quantity related to the amount of dyadic reciprocity. With regard to agents, the procedure enables researchers to identify those whose behavior is asymmetric with respect to all agents. It is also possible to derive symmetric measurements among agents and to use multivariate statistical techniques.

  3. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  4. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  5. How Is Nature Asymmetric?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. How Is Nature Asymmetric? - Discrete Symmetries in Particle Physics and their Violation ... Indian Institute of Technology, Chennai. Aligarh Muslim University. University of Rajasthan, Jaipur. Indian Institute of Science, Bangalore 560012, India.

  6. Exploring asymmetric catalytic transformations

    NARCIS (Netherlands)

    Guduguntla, Sureshbabu

    2017-01-01

    In Chapter 2, we report a highly enantioselective synthesis of β-alkyl-substituted alcohols through a one-pot Cu- catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of γ-alkyl-substituted alcohols was also achieved through Cu-catalyzed

  7. Multipartite asymmetric quantum cloning

    International Nuclear Information System (INIS)

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-01-01

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized

  8. Asymmetric information and economics

    Science.gov (United States)

    Frieden, B. Roy; Hawkins, Raymond J.

    2010-01-01

    We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.

  9. Asymmetric Evolutionary Games

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  10. Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers

    Science.gov (United States)

    2016-04-21

    emulated by a cascade of fiber beam splitters . Fig. 4(a) depicts the transmitter, which consisted of two cascaded Mach- Zehnder modulators (MZMs) that...Sons, Inc., Hoboken, New Jersey, 2006). 5. D. O. Caplan, "Laser communication transmitter and receiver design ," J. Opt. Fiber. Commun. 4(4-5), 225...and A. E. Willner, eds. (Elsevier, 2013). 7. S. B. Alexander, Optical Communication Receiver Design (SPIE, 1997). 8. D. M. Boroson, "A survey of

  11. Integrated polarization beam splitter with relaxed fabrication tolerances

    OpenAIRE

    Perez-Galacho, D.; Halir, R.; Ortega-Monux, A.; Alonso-Ramos, C.; Zhang, R.; Runge, P.; Janiak, K.; Bach, H-G; Steffan, A. G.; Molina-Fernandez, I.

    2013-01-01

    Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO2 Periodic Layer Structure (PLS) on top of one of its arms. ...

  12. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  13. Asymmetric Draw-Tower Tapers for Supercontinuum Generation and Verification of the Novel Concept of Group-Acceleration Matching

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe; Moselund, P. M.

    2012-01-01

    We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum.......We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum....

  14. Refractive index and temperature sensors based on no-core fiber cascaded with long period fiber grating

    Science.gov (United States)

    Zhang, Jianming; Pu, Shengli; Rao, Jie; Yao, Tianjun

    2018-05-01

    A kind of compact fibre-optic sensor based on no-core fibre (NCF) cascaded with a strong coupling long-period fibre grating (LPFG) is proposed and experimentally demonstrated. The sensing mechanism is based on the Mach-Zehnder-like interference between the core fundamental mode and cladding mode of the fibre structure. The NCF and LPFG are used as the mode exciter and combiner, respectively. Due to the particular properties of the strong coupling LPFG, the measurements of refractive index (RI) and temperature with high sensitivity are realized by monitoring the transmission spectrum with intensity and wavelength interrogation techniques, respectively. The achieved RI sensitivity reaches -580.269 dB/RIU in the range of 1.436-1.454 and the temperature sensitivity reaches 27.2 pm/°C.

  15. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    Cerf, N.J.

    1998-01-01

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  16. Cinchona alkaloids in asymmetric organocatalysis

    NARCIS (Netherlands)

    Marcelli, T.; Hiemstra, H.

    2010-01-01

    This article reviews the applications of cinchona alkaloids as asymmetric catalysts. In the last few years, characterized by the resurgence of interest in asymmetric organocatalysis, cinchona derivatives have been shown to catalyze an outstanding array of chemical reactions, often with remarkable

  17. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  18. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  19. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  20. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  1. Asymmetric Organocatalytic Cycloadditions

    DEFF Research Database (Denmark)

    Mose, Rasmus

    2016-01-01

    has gained broad recognition as it has found several applications in academia and industry. The [4+2] cycloaddition has also been performed in an enantioselective aminocatalytic fashion which allows the generation of optically active products. In this thesis it is demonstrated how trienamines can......Since the onset of the new millennium the field of organocatalysis has undergone a great expansion led by investigations in the field of aminocatalysis. This thesis will address some recent developments in aminocatalyzed cycloadditions and provide a theoretical background hereto. Cycloadditions...... undergo cascade reactions with different electron deficient dienophiles in Diels Alder – nucleophilic ring closing reactions. This methodology opens up for the direct asymmetric formation of hydroisochromenes and hydroisoquinolines which may possess interesting biological activities. It is also...

  2. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  3. Force on an Asymmetric Capacitor

    National Research Council Canada - National Science Library

    Bahder, Thomas

    2003-01-01

    .... At present, the physical basis for the Biefeld-Brown effect is not understood. The order of magnitude of the net force on the asymmetric capacitor is estimated assuming two different mechanisms of charge conduction between its electrodes...

  4. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  5. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  6. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  7. Suppression of dynamic laser speckle signals in multimode fibers of various lengths

    NARCIS (Netherlands)

    Petoukhova, Anna; Cleven, Ester; de Mul, F.F.M.; Steenbergen, Wiendelt

    2004-01-01

    The effects of fiber coupling and fiber length on photocurrent fluctuations are studied when the light of a laser diode transmitted to and from a dynamic turbid medium by a step-index multimode fiber is studied. When the laser light is coupled asymmetrically, filling only the higher-order modes, the

  8. Asymmetric Gepner models (revisited)

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)] [IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-12-11

    We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as the number of families, singlets and mirrors have an interesting tendency towards smaller values as the gauge groups approaches the Standard Model. We compare our results with an analogous class of free fermionic models. This displays similar features, but with less resolution. Finally we present a complete scan of the three family models based on the triply-exceptional combination (1,16{sup *},16{sup *},16{sup *}) identified originally by Gepner. We find 1220 distinct three family spectra in this case, forming 610 mirror pairs. About half of them have the gauge group SU(3)xSU(2){sub L}xSU(2){sub R}xU(1){sup 5}, the theoretical minimum, and many others are trinification models.

  9. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  10. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  11. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  12. Asymmetric Penning trap coherent states

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez, David J.

    2010-01-01

    By using a matrix technique, which allows to identify directly the ladder operators, the coherent states of the asymmetric Penning trap are derived as eigenstates of the appropriate annihilation operators. They are compared with those obtained through the displacement operator method.

  13. JET and COMPASS asymmetrical disruptions

    Czech Academy of Sciences Publication Activity Database

    Gerasimov, S.N.; Abreu, P.; Baruzzo, M.; Drozdov, V.; Dvornova, A.; Havlíček, Josef; Hender, T.C.; Hronová-Bilyková, Olena; Kruezi, U.; Li, X.; Markovič, Tomáš; Pánek, Radomír; Rubinacci, G.; Tsalas, M.; Ventre, S.; Villone, F.; Zakharov, L.E.

    2015-01-01

    Roč. 55, č. 11 (2015), s. 113006-113006 ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * asymmetrical disruption * JET * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015

  14. A simple system for 160GHz optical terahertz wave generation and data modulation

    Science.gov (United States)

    Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin

    2018-01-01

    A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.

  15. Asymmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    2017-04-01

    Full Text Available Polyploidy plays a major role in genome evolution, which corresponds to environmental changes over millions of years. The mechanisms of genome evolution, particularly during the process of domestication, are of broad interest in the fields of plant science and crop breeding. Upland cotton is derived from the hybridization and polyploidization of its ancient A and D diploid ancestors. As a result, cotton is a model for polyploid genome evolution and crop domestication. To explore the genomic mysteries of allopolyploid cotton, we investigated asymmetric evolution and domestication in the A and D subgenomes. Interestingly, more structural rearrangements have been characterized in the A subgenome than in the D subgenome. Correspondingly, more transposable elements, a greater number of lost and disrupted genes, and faster evolution have been identified in the A subgenome. In contrast, the centromeric retroelement (RT-domain related sequence of tetraploid cotton derived from the D subgenome progenitor was found to have invaded the A subgenome centromeres after allotetrapolyploid formation. Although there is no genome-wide expression bias between the subgenomes, as with expression-level alterations, gene expression bias of homoeologous gene pairs is widespread and varies from tissue to tissue. Further, there are more positively selected genes for fiber yield and quality in the A subgenome and more for stress tolerance in the D subgenome, indicating asymmetric domestication. This review highlights the asymmetric subgenomic evolution and domestication of allotetraploid cotton, providing valuable genomic resources for cotton research and enhancing our understanding of the basis of many other allopolyploids.

  16. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  17. Electron Jet of Asymmetric Reconnection

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  18. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  19. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  20. Asymmetric information and bank runs

    OpenAIRE

    Gu, Chao

    2007-01-01

    It is known that sunspots can trigger panic-based bank runs and that the optimal banking contract can tolerate panic-based runs. The existing literature assumes that these sunspots are based on a publicly observed extrinsic randomizing device. In this paper, I extend the analysis of panic-based runs to include an asymmetric-information, extrinsic randomizing device. Depositors observe different, but correlated, signals on the stability of the bank. I find that if the signals that depositors o...

  1. Asymmetric information and macroeconomic dynamics

    Science.gov (United States)

    Hawkins, Raymond J.; Aoki, Masanao; Roy Frieden, B.

    2010-09-01

    We show how macroeconomic dynamics can be derived from asymmetric information. As an illustration of the utility of this approach we derive the equilibrium density, non-equilibrium densities and the equation of motion for the response to a demand shock for productivity in a simple economy. Novel consequences of this approach include a natural incorporation of time dependence into macroeconomics and a common information-theoretic basis for economics and other fields seeking to link micro-dynamics and macro-observables.

  2. Asymmetric Synthesis of Apratoxin E.

    Science.gov (United States)

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  3. Comprehensive asymmetric dark matter model

    OpenAIRE

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-01-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical...

  4. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  5. Interlaminar/interfiber failure of unidirectional glass fiber reinforced composites used for wind turbine blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Overgaard, Lars C. T.; M. Daniel,, Isaac

    2013-01-01

    A unidirectional glass fiber/epoxy composite was characterized under multi-axial loading by testing off-axis specimens under uniaxial tension and compression at various angles relative to the fiber direction. Iosipescu shear tests were performed with both symmetric and asymmetric specimens. Tests...

  6. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  7. LG tools for asymmetric wargaming

    Science.gov (United States)

    Stilman, Boris; Yakhnis, Alex; Yakhnis, Vladimir

    2002-07-01

    Asymmetric operations represent conflict where one of the sides would apply military power to influence the political and civil environment, to facilitate diplomacy, and to interrupt specified illegal activities. This is a special type of conflict where the participants do not initiate full-scale war. Instead, the sides may be engaged in a limited open conflict or one or several sides may covertly engage another side using unconventional or less conventional methods of engagement. They may include peace operations, combating terrorism, counterdrug operations, arms control, support of insurgencies or counterinsurgencies, show of force. An asymmetric conflict can be represented as several concurrent interlinked games of various kinds: military, transportation, economic, political, etc. Thus, various actions of peace violators, terrorists, drug traffickers, etc., can be expressed via moves in different interlinked games. LG tools allow us to fully capture the specificity of asymmetric conflicts employing the major LG concept of hypergame. Hypergame allows modeling concurrent interlinked processes taking place in geographically remote locations at different levels of resolution and time scale. For example, it allows us to model an antiterrorist operation taking place simultaneously in a number of countries around the globe and involving wide range of entities from individuals to combat units to governments. Additionally, LG allows us to model all sides of the conflict at their level of sophistication. Intelligent stakeholders are represented by means of LG generated intelligent strategies. TO generate those strategies, in addition to its own mathematical intelligence, the LG algorithm may incorporate the intelligence of the top-level experts in the respective problem domains. LG models the individual differences between intelligent stakeholders. The LG tools make it possible to incorporate most of the known traits of a stakeholder, i.e., real personalities involved in

  8. Incompressibility of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Chen, Liewen; Cai, Baojun; Shen, Chun; Ko, Cheming; Xu, Jun; Li, Baoan

    2010-01-01

    Using an isospin- and momentum-dependent modified Gogny (MDI) interaction, the Skyrme-Hartree-Fock (SHF) approach, and a phenomenological modified Skyrme-like (MSL) model, we have studied the incompressibility K sat (δ) of isospin asymmetric nuclear matter at its saturation density. Our results show that in the expansion of K sat (δ) in powers of isospin asymmetry δ, i.e., K sat (δ) = K 0 + K sat,2 δ 2 + K sat,4 δ 4 + O(δ 6 ), the magnitude of the 4th-order K sat,4 parameter is generally small. The 2nd-order K sat,2 parameter thus essentially characterizes the isospin dependence of the incompressibility of asymmetric nuclear matter at saturation density. Furthermore, the K sat,2 can be expressed as K sat,2 = K sym – 6L – J 0 /K 0 L in terms of the slope parameter L and the curvature parameter K sym of the symmetry energy and the third-order derivative parameter J 0 of the energy of symmetric nuclear matter at saturation density, and we find the higher order J 0 contribution to K sat,2 generally cannot be neglected. Also, we have found a linear correlation between K sym and L as well as between J 0 /K 0 and K 0 . Using these correlations together with the empirical constraints on K 0 and L, the nuclear symmetry energy E sym (ρ0) at normal nuclear density, and the nucleon effective mass, we have obtained an estimated value of K sat,2 = -370 ± 120 MeV for the 2nd-order parameter in the isospin asymmetry expansion of the incompressibility of asymmetric nuclear matter at its saturation density. (author)

  9. Asymmetric effects in customer satisfaction

    DEFF Research Database (Denmark)

    Füller, Johann; Matzler, Kurt; Faullant, Rita

    2006-01-01

    The results of this study on customer satisfaction in snowboard areas show that the relationship between an attribute and overall satisfaction can indeed be asymmetric. A 30-item self-administered survey was completed by snowboarders (n=2526) in 51 areas in Austria, Germany, Switzerland and Italy....... Results show that waiting time is a dissatisfier; it has a significant impact on overall customer satisfaction in the low satisfaction condition and becomes insignificant in the high satisfaction situation. Restaurants and bars are hybrids, i.e. importance does not depend on performance. Slopes, fun...

  10. Asymmetric Formal Synthesis of Azadirachtin.

    Science.gov (United States)

    Mori, Naoki; Kitahara, Takeshi; Mori, Kenji; Watanabe, Hidenori

    2015-12-01

    An asymmetric formal synthesis of azadirachtin, a potent insect antifeedant, was accomplished in 30 steps to Ley's synthetic intermediate (longest linear sequence). The synthesis features: 1) rapid access to the optically active right-hand segment starting from the known 5-hydroxymethyl-2-cyclopentenone scaffold; 2) construction of the B and E rings by a key intramolecular tandem radical cyclization; 3) formation of the hemiacetal moiety in the C ring through the α-oxidation of the six-membered lactone followed by methanolysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spontaneous baryogenesis from asymmetric inflaton

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu

    2015-10-01

    We propose a variant scenario of spontaneous baryogenesis from asymmetric inflaton based on current-current interactions between the inflaton and matter fields with a non-zero B-L charge. When the inflaton starts to oscillate around the minimum after inflation, it may lead to excitation of a CP-odd component, which induces an effective chemical potential for the B-L number through the current-current interactions. We study concrete inflation models and show that the spontaneous baryogenesis scenario can be naturally implemented in the chaotic inflation in supergravity.

  12. Photonic crystal fiber sensing characteristics research based on alcohol asymmetry filling

    Science.gov (United States)

    Shi, Fu-quan; Luo, Yan; Li, Hai-tao; Peng, Bao-jin

    2018-02-01

    A new type of Sagnac fiber temperature sensor based on alcohol asymmetric filling photonic crystal fiber is proposed. First, the corrosion of photonic crystal fiber and the treatment of air hole collapse are carried out. Then, the asymmetric structure of photonic crystal fiber is filled with alcohol, and then the structure is connected to the Sagnac interference ring. When the temperature changes, the thermal expansion effect of filling alcohol will lead to the change of birefringence of photonic crystal fiber, so that the interference spectrum of the sensor will drift along with the change of temperature. The experimental results show that the interference red shift will occur with the increase of temperature, and the temperature sensitivity is 0.1864nm/ °C. The sensor has high sensitivity to temperature. At the same time, the structure has the advantages of high stability, anti electromagnetic interference and easy to build. It provides a new method for obtaining birefringence in ordinary photonic crystal fibers.

  13. Field factors for asymmetric collimators

    International Nuclear Information System (INIS)

    Turner, J.R.; Butler, A.P.H.

    1996-01-01

    In recent years manufacturers have been supplying linear accelerators with either a single pair or a dual pair of collimators. The use of a model to relate off-axis field factors to on-axis field factors obviates the need for repeat measurements whenever the asymmetric collimators are employed. We have investigated the variation of collimator scatter Sc, with distance of the central ray x from the central axis for a variety of non square field sizes. Collimator scatter was measured by in-air measurements with a build-up cap. The Primaty-Off-Centre-Ratio (POCR) was measured in-air by scanning orthogonally across the beam with an ionization chamber. The result of the investigation is the useful prediction of off-axis field factors for a range of rectangular asymmetric fields using the simple product of the on-axis field factor and the POCR in air. The effect of asymmetry on the quality of the beam and hence the percent depth dose will be discussed. (author)

  14. Asymmetric Frontal Brain Activity and Parental Rejection

    NARCIS (Netherlands)

    Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.

    2013-01-01

    Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts

  15. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  16. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Directory of Open Access Journals (Sweden)

    Pankaj Chauhan

    2012-12-01

    Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  17. Designing asymmetric multiferroics with strong magnetoelectric coupling

    Science.gov (United States)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  18. A case of asymmetrical arthrogryposis

    International Nuclear Information System (INIS)

    Hageman, G.; Vette, J.K.; Willemse, J.

    1983-01-01

    Following the introduction of the conception that arthrogryposis is a symptom and not a clinical entity, a case of the very rare asymmetric form of neurogenic arthrogryposis is presented. The asymmetry of congenital contractures and weakness is associated with hemihypotrophy. The value of muscular CT-scanning prior to muscle biopsy is demonstrated. Muscular CT-scanning shows the extension of adipose tissue, which has replaced damaged muscles and therby indicates the exact site for muscle biopsy. Since orthopaedic treatment in arthrogryposis can be unrewarding due to severe muscular degeneration, preoperative scanning may provide additional important information on muscular function and thus be of benefit for surgery. The advantage of muscular CT-scanning in other forms of arthrogryposis requires further determination. The differential diagnosis with Werdnig-Hoffmann disease is discussed. (author)

  19. Comprehensive asymmetric dark matter model

    Science.gov (United States)

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-05-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.

  20. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  1. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  2. Chaos of several typical asymmetric systems

    International Nuclear Information System (INIS)

    Feng Jingjing; Zhang Qichang; Wang Wei

    2012-01-01

    The threshold for the onset of chaos in asymmetric nonlinear dynamic systems can be determined using an extended Padé method. In this paper, a double-well asymmetric potential system with damping under external periodic excitation is investigated, as well as an asymmetric triple-well potential system under external and parametric excitation. The integrals of Melnikov functions are established to demonstrate that the motion is chaotic. Threshold values are acquired when homoclinic and heteroclinic bifurcations occur. The results of analytical and numerical integration are compared to verify the effectiveness and feasibility of the analytical method.

  3. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  4. Replacement of asymmetric synaptic profiles in the molecular layer of dentate gyrus following cycloheximide in the pilocarpine model in rats.

    Directory of Open Access Journals (Sweden)

    Simone eBittencourt

    2015-11-01

    Full Text Available Mossy fiber sprouting is among the best-studied forms of post-lesional synaptic plasticity and is regarded by many as contributory to seizures in both humans and animal models of epilepsy. It is not known whether mossy fiber sprouting increases the number of synapses in the molecular layer or merely replaces lost contacts. Using the pilocarpine model of status epilepticus to induce mossy fiber sprouting, and cycloheximide to block this sprouting, we evaluated at the ultrastructural level the number and type of asymmetric synaptic contacts in the molecular layer of the dentate gyrus. As expected, whereas pilocarpine-treated rats had dense silver grain deposits in the inner molecular layer (reflecting mossy fiber sprouting, pilocarpine+cycloheximide-treated animals did not differ from controls. Both groups of treated rats (Pilo group and CHX+Pilo group had reduced density of asymmetric synaptic profiles (putative excitatory synaptic contacts, which was greater for cycloheximide-treated animals. For both treated groups the loss of excitatory synaptic contacts was even greater in the outer molecular layer than in the best studied inner molecular layer (in which mossy fiber sprouting occurs. These results indicate that mossy fiber sprouting tends to replace lost synaptic contacts rather than increase the absolute number of contacts. We speculate that the overall result is more consistent with restored rather than with increased excitability.

  5. Modeling of asymmetrical boost converters

    Directory of Open Access Journals (Sweden)

    Eliana Isabel Arango Zuluaga

    2014-01-01

    Full Text Available The asymmetrical interleaved dual boost (AIDB is a fifth-order DC/DC converter designed to interface photovoltaic (PV panels. The AIDB produces small current harmonics to the PV panels, reducing the power losses caused by the converter operation. Moreover, the AIDB provides a large voltage conversion ratio, which is required to step-up the PV voltage to the large dc-link voltage used in grid-connected inverters. To reject irradiance and load disturbances, the AIDB must be operated in a closed-loop and a dynamic model is required. Given that the AIDB converter operates in Discontinuous Conduction Mode (DCM, classical modeling approaches based on Continuous Conduction Mode (CCM are not valid. Moreover, classical DCM modeling techniques are not suitable for the AIDB converter. Therefore, this paper develops a novel mathematical model for the AIDB converter, which is suitable for control-pur-poses. The proposed model is based on the calculation of a diode current that is typically disregarded. Moreover, because the traditional correction to the second duty cycle reported in literature is not effective, a new equation is designed. The model accuracy is contrasted with circuital simulations in time and frequency domains, obtaining satisfactory results. Finally, the usefulness of the model in control applications is illustrated with an application example.

  6. Asymmetric Supercapacitor Electrodes and Devices.

    Science.gov (United States)

    Choudhary, Nitin; Li, Chao; Moore, Julian; Nagaiah, Narasimha; Zhai, Lei; Jung, Yeonwoong; Thomas, Jayan

    2017-06-01

    The world is recently witnessing an explosive development of novel electronic and optoelectronic devices that demand more-reliable power sources that combine higher energy density and longer-term durability. Supercapacitors have become one of the most promising energy-storage systems, as they present multifold advantages of high power density, fast charging-discharging, and long cyclic stability. However, the intrinsically low energy density inherent to traditional supercapacitors severely limits their widespread applications, triggering researchers to explore new types of supercapacitors with improved performance. Asymmetric supercapacitors (ASCs) assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density. Recent progress made in the field of ASCs is critically reviewed, with the main focus on an extensive survey of the materials developed for ASC electrodes, as well as covering the progress made in the fabrication of ASC devices over the last few decades. Current challenges and a future outlook of the field of ASCs are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bioinspired smart asymmetric nanochannel membranes.

    Science.gov (United States)

    Zhang, Zhen; Wen, Liping; Jiang, Lei

    2018-01-22

    Bioinspired smart asymmetric nanochannel membranes (BSANM) have been explored extensively to achieve the delicate ionic transport functions comparable to those of living organisms. The abiotic system exhibits superior stability and robustness, allowing for promising applications in many fields. In view of the abundance of research concerning BSANM in the past decade, herein, we present a systematic overview of the development of the state-of-the-art BSANM system. The discussion is focused on the construction methodologies based on raw materials with diverse dimensions (i.e. 0D, 1D, 2D, and bulk). A generic strategy for the design and construction of the BSANM system is proposed first and put into context with recent developments from homogeneous to heterogeneous nanochannel membranes. Then, the basic properties of the BSANM are introduced including selectivity, gating, and rectification, which are associated with the particular chemical and physical structures. Moreover, we summarized the practical applications of BSANM in energy conversion, biochemical sensing and other areas. In the end, some personal opinions on the future development of the BSANM are briefly illustrated. This review covers most of the related literature reported since 2010 and is intended to build up a broad and deep knowledge base that can provide a solid information source for the scientific community.

  8. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  9. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  10. Lift production through asymmetric flapping

    Science.gov (United States)

    Jalikop, Shreyas; Sreenivas, K. R.

    2009-11-01

    At present, there is a strong interest in developing Micro Air Vehicles (MAV) for applications like disaster management and aerial surveys. At these small length scales, the flight of insects and small birds suggests that unsteady aerodynamics of flapping wings can offer many advantages over fixed wing flight, such as hovering-flight, high maneuverability and high lift at large angles of attack. Various lift generating mechanims such as delayed stall, wake capture and wing rotation contribute towards our understanding of insect flight. We address the effect of asymmetric flapping of wings on lift production. By visualising the flow around a pair of rectangular wings flapping in a water tank and numerically computing the flow using a discrete vortex method, we demonstrate that net lift can be produced by introducing an asymmetry in the upstroke-to-downstroke velocity profile of the flapping wings. The competition between generation of upstroke and downstroke tip vortices appears to hold the key to understanding this lift generation mechanism.

  11. An efficient catalyst for asymmetric Reformatsky reaction

    Indian Academy of Sciences (India)

    rate enantioselectivity using N,N-dialkylnorephedrines as chiral ligands. ..... temperatures also, there was no product conversion. ... Optimization of reaction conditions for asymmetric Reformatsky reaction between benzaldehyde and α-.

  12. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  13. Asymmetrical Representation of Gender in Amharic1

    African Journals Online (AJOL)

    Administrator

    in its grammar. Gender representation in this language is asymmetrical heavily ..... In dictionaries where. Amharic appears either as the target or the source language, verbs are entered ...... The Dialects of Amharic Revisited. Semitica et.

  14. Beam-beam issues in asymmetric colliders

    International Nuclear Information System (INIS)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e + - e - colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II)

  15. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  16. Asymmetric total synthesis of cladosporin and isocladosporin.

    Science.gov (United States)

    Zheng, Huaiji; Zhao, Changgui; Fang, Bowen; Jing, Peng; Yang, Juan; Xie, Xingang; She, Xuegong

    2012-07-06

    The first asymmetric total syntheses of cladosporin and isocladosporin were accomplished in 8 steps with 8% overall yield and 10 steps with 26% overall yield, respectively. The relative configuration of isocladosporin was determined via this total synthesis.

  17. Magnetically Modified Asymmetric Supercapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....

  18. Impact of Secondary Interactions in Asymmetric Catalysis

    OpenAIRE

    Frölander, Anders

    2007-01-01

    This thesis deals with secondary interactions in asymmetric catalysis and their impact on the outcome of catalytic reactions. The first part revolves around the metal-catalyzed asymmetric allylic alkylation reaction and how interactions within the catalyst affect the stereochemistry. An OH–Pd hydrogen bond in Pd(0)–π-olefin complexes of hydroxy-containing oxazoline ligands was identified by density functional theory computations and helped to rationalize the contrasting results obtained emplo...

  19. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  1. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide

    KAUST Repository

    Chen, Chien-Chiang

    2011-10-01

    Decarboxylation-induced thermal crosslinking has been demonstrated to be effective for stabilizing membranes against plasticization in dense films. This study extends this promising crosslinking approach from dense films to industrially relevant asymmetric hollow fiber membranes. Crosslinkable asymmetric hollow fiber membranes were spun from a carboxylic acid containing polyimide, 6FDA-DAM:DABA. Dope and spinning conditions were optimized to obtain fibers with a defect-free selective skin layer. It is found that slightly defective fibers suffered severe selectivity loss after thermal crosslinking, suggesting that defect-free property is essential to the performance of the resulting crosslinked hollow fiber membranes. The crosslinked fibers were tested for CO 2/CH 4 separation. The excellent plasticization resistance under high pressure feeds (with highest CO 2 partial pressure of 400psia) suggests that these robust membranes are promising for aggressive natural gas purification. © 2011 Elsevier B.V.

  2. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide

    KAUST Repository

    Chen, Chien-Chiang; Qiu, Wulin; Miller, Stephen J.; Koros, William J.

    2011-01-01

    Decarboxylation-induced thermal crosslinking has been demonstrated to be effective for stabilizing membranes against plasticization in dense films. This study extends this promising crosslinking approach from dense films to industrially relevant asymmetric hollow fiber membranes. Crosslinkable asymmetric hollow fiber membranes were spun from a carboxylic acid containing polyimide, 6FDA-DAM:DABA. Dope and spinning conditions were optimized to obtain fibers with a defect-free selective skin layer. It is found that slightly defective fibers suffered severe selectivity loss after thermal crosslinking, suggesting that defect-free property is essential to the performance of the resulting crosslinked hollow fiber membranes. The crosslinked fibers were tested for CO 2/CH 4 separation. The excellent plasticization resistance under high pressure feeds (with highest CO 2 partial pressure of 400psia) suggests that these robust membranes are promising for aggressive natural gas purification. © 2011 Elsevier B.V.

  3. Recovering a hidden polarization by ghost polarimetry.

    Science.gov (United States)

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-15

    By exploiting polarization correlations of light from a broadband fiber-based amplified spontaneous emission source we succeed in reconstructing a hidden polarization in a ghost polarimetry experiment in close analogy to ghost imaging and ghost spectroscopy. Thereby, an original linear polarization state in the object arm of a Mach-Zehnder interferometer configuration which has been camouflaged by a subsequent depolarizer is recovered by correlating it with light from a reference beam. The variation of a linear polarizer placed inside the reference beam results in a Malus law type second-order intensity correlation with high contrast, thus measuring a ghost polarigram.

  4. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  5. Reversal modes in asymmetric Ni nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, B.; Pereira, A. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    We have investigated the evolution of the magnetization reversal mechanism in asymmetric Ni nanowires as a function of their geometry. Circular nanowires are found to reverse their magnetization by the propagation of a vortex domain wall, while in very asymmetric nanowires the reversal is driven by the propagation of a transverse domain wall. The effect of shape asymmetry of the wire on coercivity and remanence is also studied. Angular dependence of the remanence and coercivity is also addressed. Tailoring the magnetization reversal mechanism in asymmetric nanowires can be useful for magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls. Finally, an alternative method to detect the presence of magnetic drops is proposed. - Highlights: Black-Right-Pointing-Pointer Asymmetry strongly modifies the magnetic behavior of a wire. Black-Right-Pointing-Pointer Very asymmetric nanowires reverse their magnetization by a transverse domain wall. Black-Right-Pointing-Pointer An alternative method to detect the presence of magnetic drops is proposed. Black-Right-Pointing-Pointer Tailoring the reversal mode in asymmetric nanowires can be useful for potential applications.

  6. Renewable resource management under asymmetric information

    DEFF Research Database (Denmark)

    Jensen, Frank; Andersen, Peder; Nielsen, Max

    2013-01-01

    Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis....... In this paper, we study asymmetric information about productivity within a principal-agent framework and a tax on fishing effort is considered. It is shown that a second best optimum can be achieved if the effort tax is designed such that low-productivity agents rent is exhausted, while high-productivity agents...... receive an information rent. The information rent is equivalent to the total incentive cost. The incentive costs arise as we want to reveal the agent's type....

  7. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  8. Asymmetric acoustic transmission in multiple frequency bands

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong-xiang, E-mail: jsdxshx@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Shu-yi [Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  9. Asymmetric acoustic transmission in multiple frequency bands

    International Nuclear Information System (INIS)

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-01-01

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices

  10. Standards vs. labels with imperfect competition and asymmetric information

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    2012-01-01

    I demonstrate that providing information about product quality is not necessarily the best way to address asymmetric information problems when markets are imperfectly competitive. In a vertical differentiation model I show that a Minimum Quality Standard, which retains asymmetric information...

  11. Standards vs. labels with imperfect competition and asymmetric information

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    I demonstrate that providing information about product quality is not necessarily the best way to address asymmetric information problems when markets are imperfectly competitive. In a vertical dierentiation model I show that a Minimum Quality Standard, which retains asymmetric information...

  12. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  13. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  14. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  15. Vortex Dynamics of Asymmetric Heave Plates

    Science.gov (United States)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  16. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  17. Mixed gas plasticization phenomena in asymmetric membranes

    NARCIS (Netherlands)

    Visser, Tymen

    2006-01-01

    This thesis describes the thorough investigation of mixed gas transport behavior of asymmetric membranes in the separation of feed streams containing plasticizing gases in order to gain more insights into the complicated behavior of plasticization. To successfully employ gas separation membranes in

  18. Asymmetric conditional volatility in international stock markets

    Science.gov (United States)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  19. MHD stability of vertically asymmetric tokamak equilibria

    International Nuclear Information System (INIS)

    Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.

    1981-03-01

    The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation

  20. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  1. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope of the...

  2. Volume inequalities for asymmetric Wulff shapes

    OpenAIRE

    Schuster, Franz E.; Weberndorfer, Manuel

    2012-01-01

    Sharp reverse affine isoperimetric inequalities for asymmetric Wulff shapes and their polars are established, along with the characterization of all extremals. These new inequalities have as special cases previously obtained simplex inequalities by Ball, Barthe and Lutwak, Yang, and Zhang. In particular, they provide the solution to a problem by Zhang.

  3. Quantum optics of lossy asymmetric beam splitters

    NARCIS (Netherlands)

    Uppu, Ravitej; Wolterink, Tom; Tentrup, Tristan Bernhard Horst; Pinkse, Pepijn Willemszoon Harry

    2016-01-01

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering

  4. Motion in an Asymmetric Double Well

    OpenAIRE

    Brizard, Alain J.; Westland, Melissa C.

    2016-01-01

    The problem of the motion of a particle in an asymmetric double well is solved explicitly in terms of the Weierstrass and Jacobi elliptic functions. While the solution of the orbital motion is expressed simply in terms of the Weierstrass elliptic function, the period of oscillation is more directly expressed in terms of periods of the Jacobi elliptic functions.

  5. Asymmetric output profile of Xe Laser

    NARCIS (Netherlands)

    Blok, F.J.; Rubin, P.L.; Verschuur, Jeroen W.J.; Witteman, W.J.

    2001-01-01

    A new set of asymmetric modes was recently revealed in a Xe slab laser with pronounced lens effects originating from gas heating in the discharge. The appearance of these modes is a threshold effect. Their domain of existence in the Xe laser is discussed. It is shown that mode competition can result

  6. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  7. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  8. Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    DEFF Research Database (Denmark)

    Masina, Isabella; Sannino, Francesco

    2011-01-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....

  9. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.

  10. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery

    NARCIS (Netherlands)

    Khulbe, K.C.; Feng, C.; Matsuura, T.; Kapantaidakis, G.; Wessling, Matthias; Koops, G.H.

    2003-01-01

    Asymmetric blend polyethersulfone-polyimide (PES-PI) hollow fiber membranes prepared at different air gap and used for gas separation are characterized by atomic force microscopy (inside and out side surfaces) and by measuring the contact angle of out side surface. The outer surface was entirely

  11. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.; Adams, Ryan T.; Miller, Stephen J.; Koros, William J.

    2010-01-01

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2

  12. The evolution of texture in aluminum alloy sheet during asymmetric rolling

    International Nuclear Information System (INIS)

    Kim, K-H.; Lee, D.N.

    2000-01-01

    Asymmetric rolling, in which the upper and lower roll radii are different, imposes shear deformation on sheets through the thickness, which in turn gives rise to shear deformation textures in the sheets through the thickness. A component of ND// in the shear deformation textures can improve the plastic strain ratios of aluminum sheets. In order to understand the evolution of ND// , the strain histories and distributions in the sheets during the asymmetric rolling are calculated by the finite element method. The strain history and distribution are used to calculate crystallographic orientations and stable orientations based on the Taylor-Bishop-Hill theory and the Renouward-Wintenberger theory. The shear deformation texture can vary with the ratio of shear to normal strain increments. As the ratio increases from zero to infinity, the texture moves from the plane strain compression texture (β fiber) to the ideal shear deformation texture consisting of {001} , {111} , and {111} . The ratio increases with rolling reduction per pass in asymmetric rolling. However, it is practically difficult to the rolling reduction per pass high enough to obtain the ideal shear deformation texture. Imposing the positive and negative shear deformations on the sheet by reversing the shearing direction can give rise to the ideal shear deformation texture. This has been discussed. (author)

  13. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  14. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  15. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems.

    Science.gov (United States)

    Lowery, Arthur James

    2016-02-22

    Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is a technique that sacrifices spectral efficiency in order to transmit an orthogonally frequency-division multiplexed signal over a unipolar channel, such as a directly modulated direct-detection fiber or free-space channel. Several methods have been proposed to regain this spectral efficiency, including: asymmetrically clipped DC-biased optical OFDM (ADO-OFDM), enhanced U-OFDM (EU-OFDM), spectral and energy efficient OFDM (SEE-OFDM), Hybrid-ACO-OFDM and Layered-ACO-OFDM. This paper presents simulations up to high-order constellation sizes to show that Layered-ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficiencies above 3 bit/s/Hz. For comparison purposes, white Gaussian noise is added at the receiver, component nonlinearities are not considered, and the fiber is considered to be linear and dispersion-less. The simulations show that LACO-OFDM has a 7-dB sensitivity advantage over DC-biased OFDM (DCO-OFDM) for 1024-QAM at 87.5% of DCO-OFDM's spectral efficiency, at the same bit rate and optical power. This is approximately equivalent to a 4.4-dB advantage at the same spectral efficiency of 87.7% if 896-QAM were to be used for DCO-OFDM.

  16. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  17. Direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  18. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    Science.gov (United States)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  19. Dynamics of asymmetric kinetic Ising systems revisited

    International Nuclear Information System (INIS)

    Huang, Haiping; Kabashima, Yoshiyuki

    2014-01-01

    The dynamics of an asymmetric kinetic Ising model is studied. Two schemes for improving the existing mean-field description are proposed. In the first scheme, we derive the formulas for instantaneous magnetization, equal-time correlation, and time-delayed correlation, considering the correlation between different local fields. To derive the time-delayed correlation, we emphasize that the small-correlation assumption adopted in previous work (Mézard and Sakellariou, 2011 J. Stat. Mech. L07001) is in fact not required. To confirm the prediction efficiency of our method, we perform extensive simulations on single instances with either temporally constant external driving fields or sinusoidal external fields. In the second scheme, we develop an improved mean-field theory for instantaneous magnetization prediction utilizing the notion of the cavity system in conjunction with a perturbative expansion approach. Its efficiency is numerically confirmed by comparison with the existing mean-field theory when partially asymmetric couplings are present. (paper)

  20. Bianisotropic metamaterials based on twisted asymmetric crosses

    International Nuclear Information System (INIS)

    Reyes-Avendaño, J A; Sampedro, M P; Juárez-Ruiz, E; Pérez-Rodríguez, F

    2014-01-01

    The effective bianisotropic response of 3D periodic metal-dielectric structures, composed of crosses with asymmetrically-cut wires, is investigated within a general homogenization theory using the Fourier formalism and the form-factor division approach. It is found that the frequency dependence of the effective permittivity for a system of periodically-repeated layers of metal crosses exhibits two strong resonances, whose separation is due to the cross asymmetry. Besides, bianisotropic metamaterials, having a base of four twisted asymmetric crosses, are proposed. The designed metamaterials possess negative refractive index at frequencies determined by the cross asymmetry, the gap between the arms of adjacent crosses lying on the same plane, and the type of Bravais lattice. (papers)

  1. Improved DFIG Capability during Asymmetrical Grid Faults

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    In the wind power application, different asymmetrical types of the grid fault can be categorized after the Y/d transformer, and the positive and negative components of a single-phase fault, phase-to-phase fault, and two-phase fault can be summarized. Due to the newly introduced negative and even...... the natural component of the Doubly-Fed Induction Generator (DFIG) stator flux during the fault period, their effects on the rotor voltage can be investigated. It is concluded that the phase-to-phase fault has the worst scenario due to its highest introduction of the negative stator flux. Afterwards......, the capability of a 2 MW DFIG to ride through asymmetrical grid faults can be estimated at the existing design of the power electronics converter. Finally, a control scheme aimed to improve the DFIG capability is proposed and the simulation results validate its feasibility....

  2. Pump absorption in coiled and twisted double-clad hexagonal fiber: effect of launching conditions and core location

    Science.gov (United States)

    Dalidet, Romain; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Koška, Pavel

    2018-02-01

    Ever extending applications of fiber lasers require energy efficient, high-power, small footprint and reliable fiber lasers and laser wavelength versatility. To meet these demands, next generation of active fibers for high-power fiber lasers is coming out that will eventually offer tailored spectroscopic properties, high robustness and reduced cooling requirements and improved efficiency through tailored pump absorption. We report on numerical modelling of the efficiency of the pump absorption in double clad active fibers with hexagonal shape of the inner cladding cross section and rare-earth-doped core. We analyze both the effect of different radii of the spool on which the fiber is coiled and different fiber twisting rates. Two different launching conditions were investigated: the Gaussian input pump beam and a speckle pattern that mimics the output of the pump laser diode pigtail. We have found that by asymmetric position of the rare-earth-doped core we can significantly improve the pump absorption.

  3. Asymmetric volatility connectedness on the forex market

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Kočenda, Evžen; Vácha, Lukáš

    2017-01-01

    Roč. 77, č. 1 (2017), s. 39-56 ISSN 0261-5606 R&D Projects: GA ČR(CZ) GA16-14179S Institutional support: RVO:67985556 Keywords : volatility * connectedness * asymmetric effects Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 1.853, year: 2016 http://library.utia.cas.cz/separaty/2017/E/barunik-0478477.pdf

  4. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  5. Isospin dependent properties of asymmetric nuclear matter

    OpenAIRE

    Chowdhury, P. Roy; Basu, D. N.; Samanta, C.

    2009-01-01

    The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and the isovector components of density dependent M3Y interaction. The incompressibility $K_\\infty$ for the symmetric nuclear matter, the isospin dependent part $K_{asy}$ of the isobaric incompressibility and the slope $L$ are all in excellent agreement with the constraints recently extracted from measured isotopic de...

  6. Asymmetric flow events in a VEER 1000

    International Nuclear Information System (INIS)

    Horak, W.C.; Kennett, R.J.; Shier, W.; Guppy, J.G.

    1992-07-01

    This paper describes the simulation of asymmetric loss of flow events in Russian designed VVER-1000 reactors using the RETRAN-02 Mod4 computer code. VVER-1000 reactors have significant differences from United States pressurized water reactors including multi-level emergency response systems and plant operation at reduced power levels with one or more main circulation pumps inoperable. The results of these simulations are compared to similar analyses done by the designers for the Rovno plant

  7. Two particle states in an asymmetric box

    OpenAIRE

    Li, Xin; Liu, Chuan

    2004-01-01

    The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all three directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are obtained. These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by L\\"uscher before. In particular, the s-wave scattering length is related to the energy shift in the finite box. Possible applications of these f...

  8. Symmetric vs. asymmetric punishment regimes for bribery

    OpenAIRE

    Engel, Christoph; Goerg, Sebastian J.; Yu, Gaoneng

    2012-01-01

    In major legal orders such as UK, the U.S., Germany, and France, bribers and recipients face equally severe criminal sanctions. In contrast, countries like China, Russia, and Japan treat the briber more mildly. Given these differences between symmetric and asymmetric punishment regimes for bribery, one may wonder which punishment strategy is more effective in curbing corruption. For this purpose, we designed and ran a lab experiment in Bonn (Germany) and Shanghai (China) with exactly the same...

  9. Tomographic measurement of femtosecond-laser induced stress changes in optical fibers

    International Nuclear Information System (INIS)

    Duerr, F.; Limberger, H.G.; Salathe, R.P.; Hindle, F.; Douay, M.; Fertein, E.; Przygodzki, C.

    2004-01-01

    The tomographic measurement of the residual stress profile in femtosecond-laser irradiated standard SMF-28 germanium-doped telecommunication fiber is demonstrated. The fiber is irradiated with weakly focused pulses to realize long-period fiber gratings. In the irradiated grating regions, an asymmetrical increase in axial core stress up to 6.2 kg/mm2 is found. The increase in stress is attributed to a densification of the irradiated glass matrix. The stress-induced anisotropic index distribution is calculated and related to the absolute index change in the irradiated regions

  10. Ultrastructural relationships between the receptor nerve fiber and surrounding lamellae in Krause end-bulbs.

    Science.gov (United States)

    Spassova, I

    1981-01-01

    The ultrastructural relationship between the receptor nerve fiber and the surrounding lamellae in Krause end-bulbs was discussed. Many sites of specialized junctions of symmetrical or asymmetrical type along the receptor nerve fiber and the surrounding lamellae were found. In addition, in close vicinity to them, spine-like digitations of the receptor nerve fiber, filled mainly with small clear vesicles, were observed. Mitochondrion-like cholinesterase-positive structures bulging in some cytoplasmic lamellae were also found. It is suggested that a functional link might exist between the specialized junctions, digitations and mitochrondrion-like structures in the transformation of external mechanical stimuli into nerve impulses.

  11. Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics.

    Science.gov (United States)

    Fini, John M; Nicholson, Jeffrey W

    2013-08-12

    Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.

  12. Predicting tensorial electrophoretic effects in asymmetric colloids

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  13. Asymmetric threat data mining and knowledge discovery

    Science.gov (United States)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  14. Diagnostic implications of asymmetrical mammographic patterns

    International Nuclear Information System (INIS)

    Asenjo, M.; Ania, B.J.

    1997-01-01

    To analyze the effect of asymmetrical mammographic patterns of the diagnosis of breast cancer. In a series of 6, 476 patients referred to a Breast Imaging Diagnosis Unit, we excluded males, women with previous breast surgery, and cases in which mammography was not performed, which left 5,203 women included. Each breast was classified according to one of four patterns of mammographic parenchymal density. Asymmetry was considered to exist when a patient's breasts had different patterns. Breast cancer was confirmed histologically in 282 (5.4%) women. The mammographic pattern was asymmetrical in 8% of the women with cancer and in 2% of the women without cancer (p<0.001). Fine-needle aspiration biopsy was performed in 78% and 96% (p=0.04), respectively, of the women with and without mammographic asymmetry who had neoplasms, and in 33% and 22% (p=0.02), respectively, of the women with and without mammographic asymmetry who did not have neoplasms. Asymmetrical mammographic pattern was four times more frequent in the women with breast cancer. This asymmetry decreased the frequency of needle biopsy in women with cancer, but increased the frequency of needle biopsy in women without cancer. (Author) 11 refs

  15. Hadron scattering in an asymmetric box

    International Nuclear Information System (INIS)

    Li Xin; Chen Ying; Meng Guozhan; Feng Xu; Gong Ming; He Song; Li Gang; Liu Chuan; Liu Yubin; Ma Jianping; Meng Xiangfei; Shen Yan; Zhang Jianbo

    2007-01-01

    We propose to study hadron-hadron scattering using lattice QCD in an asymmetric box which allows one to access more non-degenerate low-momentum modes for a given volume. The conventional Luescher's formula applicable in a symmetric box is modified accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering phase shifts in the I = 2, J = 0 channel are calculated within quenched approximation using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric box. After the chiral and continuum extrapolation, we find that our quenched results for the scattering phase shifts in this channel are consistent with the experimental data when the three-momentum of the pion is below 300MeV. Agreement is also found when compared with previous theoretical results from lattice and other means. Moreover, with the usage of asymmetric volume, we are able to compute the scattering phases in the low-momentum range (pion three momentum less than about 350MeV in the center of mass frame) for over a dozen values of the pion three-momenta, much more than using the conventional symmetric box with comparable volume

  16. Simulation of Phenix EOL Asymmetric Test

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwi Seok; Lee, Kwi Lim; Choi, Chi Woong; Kang, Seok Hun; Chang, Won Pyo; Jeong, Hae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The asymmetric test of End-Of-Life (EOL) tests on the Phenix plant was used for the evaluation of the MARS-LMR in the Generation IV frame as a part of the code validation. The purpose of the test is to evaluate the ability of the system code to describe asymmetric situations and to identify important phenomena during asymmetrical transient such as a three dimensional effect, buoyancy influence, and thermal stratification in the hot and cold pools. 3-dimensional sodium coolant mixing in the pools has different characteristics from the one dimensional full instantaneous mixing. The velocities and temperatures at the core outlet level differ at each sub-assembly and the temperature in the center of the hot pool may be high because the driver fuels are located at the center region. The temperatures in the hot pool are not the same in the radial and axial locations due to the buoyancy effect. The temperatures in the cold pool also differ along with the elevations and azimuthal directions due to the outlet location of IHX and the thermal stratification

  17. Flatfish: an asymmetric perspective on metamorphosis.

    Science.gov (United States)

    Schreiber, Alexander M

    2013-01-01

    The most asymmetrically shaped and behaviorally lateralized of all the vertebrates, the flatfishes are an endless source of fascination to all fortunate enough to study them. Although all vertebrates undergo left-right asymmetric internal organ placement during embryogenesis, flatfish are unusual in that they experience an additional period of postembryonic asymmetric remodeling during metamorphosis, and thus deviate from a bilaterally symmetrical body plan more than other vertebrates. As with amphibian metamorphosis, all the developmental programs of flatfish metamorphosis are ultimately under the control of thyroid hormone. At least one gene pathway involved in embryonic organ lateralization (nodal-lefty-pitx2) is re-expressed in the larval stage during flatfish metamorphosis. Aspects of modern flatfish ontogeny, such as the gradual translocation of one eye to the opposite side of the head and the appearance of key neurocranial elements during metamorphosis, seem to elegantly recapitulate flatfish phylogeny. This chapter highlights the current state of knowledge of the developmental biology of flatfish metamorphosis with emphases on the genetic, morphological, behavioral, and evolutionary origins of flatfish asymmetry. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  19. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  20. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  1. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  2. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  3. Shaped fiber composites

    Science.gov (United States)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  4. Advances in Fiber Lasers

    National Research Council Canada - National Science Library

    Morse, T

    1999-01-01

    Most of the time of this contract has been devoted toward improvements in optical fiber lasers and toward gathering experience to improve our program in high power, cladding pumped optical fiber lasers...

  5. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  6. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  7. High-fiber foods

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000193.htm High-fiber foods To use the sharing features on this page, ... Read food labels carefully to see how much fiber they have. Choose foods that have higher amounts of fiber, such as ...

  8. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  9. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  10. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  11. Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals

    International Nuclear Information System (INIS)

    Hoennicke, M. G.; Cusatis, C.

    2007-01-01

    An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected. However, the long exposure times and the possibility to achieve high contrast microscopies by using extremely low attenuation-contrast samples motivated us to assemble the ABM setup using a synchrotron source. This setup was found to be useful for low contrast attenuation samples due to the low exposure time, high contrast, and spatial resolution found. Moreover, thanks to the combination with the nondispersive ABI setup, the diffraction-enhanced x-ray imaging algorithm could be applied

  12. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  13. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2013-01-01

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  14. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  15. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  16. Observation of asymmetric electromagnetic field profiles in chiral metamaterials

    Science.gov (United States)

    Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi

    2018-02-01

    We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.

  17. Asymmetric forecasting and commitment policy in a robust control problem

    OpenAIRE

    Taro Ikeda

    2013-01-01

    This paper provides a piece of results regarding asymmetric forecasting and commitment monetary policy with a robust control algorithm. Previous studies provide no clarification of the connection between asymmetric preference and robust commitment policy. Three results emerge from general equilibrium modeling with asymmetric preference: (i) the condition for system stability implies an average inflation bias with respect to asymmetry (ii) the effect of asymmetry can be mitigated if policy mak...

  18. Asymmetric acoustic transmission in graded beam

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Li, E-mail: lj94172350@hotmail.com [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiu Hui, E-mail: ejhwu@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Guan, Dong; Lu, Kuan [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Gao, Nansha [School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Songhua, Cao [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-12-01

    We demonstrate the dynamic effective material parameters and vibration performance of a graded beam. The structure of the beam was composed of several unit cells with different fill factors. The dispersion relations and energy band structures of each unit cell were calculated using the finite element method (FEM). The dynamic effective material parameters in each unit cell of the graded beam were determined by the dispersion relations and energy band structures. Longitudinal wave propagation was investigated using a numerical method and FEM. The results show that the graded beam allows asymmetric acoustic transmission over a wide range of frequencies.

  19. OFFICER AND COMMANDER IN ASYMMETRIC WARFARE OPERATIONS

    Directory of Open Access Journals (Sweden)

    Giuseppe CAFORIO

    2013-01-01

    Full Text Available Starting from the data of a field research conducted among soldiers with asymmetric warfare experiences from nine different countries, the author seeks to identify and shed light on the various problems that officers with command responsibilities had to face during their missions. A picture emerges of feelings and experiences relating to their first impression upon arriving in the theatre, relations with local armed forces, relations with the local population and local authorities, relations with NGOs, relations with other armies, the impact of the rules of engagement (ROEs, training and education, and operational experiences. The paper ends with a discussion of the lessons learned.

  20. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  1. Asymmetric Total Synthesis of Ieodomycin B

    Directory of Open Access Journals (Sweden)

    Shuangjie Lin

    2017-01-01

    Full Text Available Ieodomycin B, which shows in vitro antimicrobial activity, was isolated from a marine Bacillus species. A novel asymmetric total synthetic approach to ieodomycin B using commercially available geraniol was achieved. The approach involves the generation of 1,3-trans-dihydroxyl at C-3 and C-5 positions via a Crimmins-modified Evans aldol reaction and a chelation-controlled Mukaiyama aldol reaction of a p-methoxybenzyl-protected aldehyde, as well as the generation of a lactone ring in a deprotection–lactonization one-pot reaction.

  2. The Asymmetric Effects of Investor Sentiment

    DEFF Research Database (Denmark)

    Lutz, Chandler

    2016-01-01

    We use the returns on lottery-like stocks and a dynamic factor model to construct a novel index of investor sentiment. This new measure is highly correlated with other behavioral indicators, but more closely tracks speculative episodes. Our main new finding is that the effects of sentiment...... are asymmetric: During peak-to-trough periods of investor sentiment (sentiment contractions), high sentiment predicts low future returns for the cross section of speculative stocks and for the market overall, whereas the relationship between sentiment and future returns is positive but relatively weak during...... trough-to-peak episodes (sentiment expansions). Overall, these results match theories and anecdotal accounts of investor sentiment....

  3. On asymmetric causal relationships in Petropolitics

    Directory of Open Access Journals (Sweden)

    Balan Feyza

    2016-01-01

    Full Text Available The aim of this paper is to examine whether the First Law of Petropolitics denominated by Friedman in 2006 is valid for OPEC countries. To do this, this paper analyses the relationship between political risk and oil supply by applying the asymmetric panel causality test suggested by Hatemi-J (2011 to these countries for the period 1984-2014. The results show that the First Law of Petropolitics is valid for Angola, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, and the UAE, given that positive oil supply shocks significantly lead to negative political stability shocks, and negative oil supply shocks significantly lead to positive shocks in political stability.

  4. Asymmetric nuclear matter and neutron star properties

    International Nuclear Information System (INIS)

    Engvik, L.; Hjorth-Jensen, M.; Osnes, E.; Bao, G.; Oestgaard, E.

    1994-06-01

    Properties of neutron stars such as mass and radius, using a relativistic Dirac-Brueckner-Hartree-Fock approach, are calculated. Modern meson-exchange potential models are used to evaluate the G-matrix for asymmetric nuclear matter. For pure neutron matter the maximum mass is found to be M max ∼ 2.4M for a radius R ∼ 12 km. With a proton fraction of 30% the result is M max ∼ 2.1M for a radius R ∼ 10.5 km, close to the experimental values. The implications are discussed. 20 refs., 3 figs

  5. Two particle states in an asymmetric box

    International Nuclear Information System (INIS)

    Li Xin; Liu Chuan

    2004-01-01

    The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all three directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are obtained. These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by Luescher before. In particular, the s-wave scattering length is related to the energy shift in the finite box. Possible applications of these formulae are also discussed

  6. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    Science.gov (United States)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  7. Chiral ferrocenes in asymmetric catalysis: synthesis and applications

    National Research Council Canada - National Science Library

    Dai, Li-Xin; Hou, Xue-Long

    2010-01-01

    .... It provides a thorough overview of the synthesis and characterization of different types of chiral ferrocene ligands, their application to various catalytic asymmetric reactions, and versatile chiral...

  8. [Asymmetric hypertrophy of the masticatory muscles].

    Science.gov (United States)

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    Science.gov (United States)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  10. D mesons in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mishra, Amruta; Mazumdar, Arindam

    2009-01-01

    We calculate the in-medium D and D meson masses in isospin-asymmetric nuclear matter in an effective chiral model. The D and D mass modifications arising from their interactions with the nucleons and the scalar mesons in the effective hadronic model are seen to be appreciable at high densities and have a strong isospin dependence. These mass modifications can open the channels of the decay of the charmonium states (Ψ ' ,χ c ,J/Ψ) to DD pairs in dense hadronic matter. The isospin asymmetry in the doublet D=(D 0 ,D + ) is seen to be particularly appreciable at high densities and should show in observables such as their production and flow in asymmetric heavy-ion collisions in the compressed baryonic matter experiments in the future facility of FAIR, GSI. The results of the present work are compared to calculations of the D(D) in-medium masses in the literature using the QCD sum rule approach, quark meson coupling model, and coupled channel approach as well as to those from studies of quarkonium dissociation using heavy-quark potentials from lattice QCD at finite temperatures

  11. On the Collisionless Asymmetric Magnetic Reconnection Rate

    Science.gov (United States)

    Liu, Yi-Hsin; Hesse, M.; Cassak, P. A.; Shay, M. A.; Wang, S.; Chen, L.-J.

    2018-04-01

    A prediction of the steady state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of 2 of the widely examined asymmetric reconnection model (Cassak & Shay, 2007, https://doi.org/10.1063/1.2795630) in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case (Liu et al., 2017, https://doi.org/10.1103/PhysRevLett.118.085101), this work further suggests that this nearly universal number 0.1, essentially the normalized fast-reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic-scale constraints.

  12. Evolutionary stability in the asymmetric volunteer's dilemma.

    Directory of Open Access Journals (Sweden)

    Jun-Zhou He

    Full Text Available It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer's dilemma game as an evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial condition (i.e., phenotype or initial strategy of individuals. These different evolutionarily stable strategies (ESS associated with different initial conditions, can be interpreted as the production modes of public goods of different cooperation systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size or decreasing cost-benefit ratio. Our model shows that the defection probability of a "strong" player is greater than the "weak" players in the model of Diekmann (1993. This contradicts Selten's (1980 model that public goods can only be produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time. Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by strong players in an asymmetric game.

  13. An asymmetric B factory based on PEP

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.

  14. An asymmetric B factory based on PEP

    International Nuclear Information System (INIS)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e + e - collider capable of achieving a luminosity of L = 3 x 10 33 cm -2 s -1 . The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings

  15. Particle identification at an asymmetric B Factory

    International Nuclear Information System (INIS)

    Coyle, P.; Eigen, G.; Hitlin, D.; Oddone, P.; Ratcliff, B.; Roe, N.; Va'vra, J.; Ypsilantis, T.

    1991-09-01

    Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B 0 decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R ampersand D conclude the chapter. 56 refs., 64 figs., 13 tabs

  16. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  17. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-06-01

    Full Text Available A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM. When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution, when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  18. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    KAUST Repository

    Francis, Lijo

    2014-12-01

    Poly(vinylidine fluoride) (PVDF) asymmetric hydrophobic hollow fibers were fabricated successfully using dryjet wet spinning. Hydrophobic silver nanoparticles were synthesized and impregnated into the PVDF polymer matrix and functionally graded PVDF-silver nanocomposite hollow fibers are fabricated and tested in the direct contact membrane distillation (DCMD) process. The as-synthesized silver nanoparticles were characterized for Transmission Electron Microscopy (TEM), particle size distribution (PSD) and Ultra Violet (UV) visible spectroscopy. Both the PVDF and PVDF-silver nanocomposite asymmetric hollow fibers were characterized for their morphology, water contact angle and mechanical strength. Addition of hydrophobic silver nanoparticles was found to enhance the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules fabricated using PVDF hollow fibers; the water vapor flux was found to be increased by about 8% and to reach 34.6kg m-2 h-1 for the hollow fiber membrane modules fabricated from the PVDF-silver nanocomposite hollow fibers at the same operating conditions with 99.99% salt rejection.

  19. Digital signal processing for velocity measurements in dynamical material's behaviour studies

    International Nuclear Information System (INIS)

    Devlaminck, Julien; Luc, Jerome; Chanal, Pierre-Yves

    2014-01-01

    In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach- Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine. (authors)

  20. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    Science.gov (United States)

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  1. Asymmetric rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota–Maxwell–Bloch system

    International Nuclear Information System (INIS)

    Wang Lei; Zhu Yujie; Wang Ziqi; Xu Tao; Qi Fenghua; Xue Yushan

    2016-01-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota–Maxwell–Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons. (author)

  2. Asymmetric Rogue Waves, Breather-to-Soliton Conversion, and Nonlinear Wave Interactions in the Hirota-Maxwell-Bloch System

    Science.gov (United States)

    Wang, Lei; Zhu, Yu-Jie; Wang, Zi-Qi; Xu, Tao; Qi, Feng-Hua; Xue, Yu-Shan

    2016-02-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota-Maxwell-Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons.

  3. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying

    2012-05-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  4. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying; Johnson, J.R.; Karvan, Oğuz; Sholl, David S.; Koros, W.J.

    2012-01-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  5. Fiber optics in SHIVA

    International Nuclear Information System (INIS)

    Severyn, J.; Parker, J.

    1978-01-01

    SHIVA is a twenty arm laser which is controlled with a network of fifty computers, interconnected with digital fiber optic links. Three different fiber optic systems employed on the Shiva laser will be described. Two of the systems are for digital communications, one at 9600 baud and the other at 1 megabaud. The third system uses fiber optics to distribute diagnostic triggers with subnanosecond jitter

  6. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  7. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.

    1989-01-01

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  8. A new convenient asymmetric approach to herbarumin Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Xue Song Chen; Shi Jun Da; Li Hong Yang; Bo Yan Xu; Zhi Xiang Xie; Ying Li

    2007-01-01

    The asymmetric total synthesis of herbarumin Ⅲ 3, a naturally occurred phytotoxin, along with 8-epi-herbarumin Ⅲ 22, was succeeded in 12 steps from n-butyraldehyde based on Brown's asymmetric allylation, taking modified Julia olefination and Yamaguchi's macro-lactonization as key steps.

  9. Appropriate quantization of asymmetric games with continuous strategies

    International Nuclear Information System (INIS)

    Qin Gan; Chen Xi; Sun Min; Zhou Xianyi; Du Jiangfeng

    2005-01-01

    We establish a new quantization scheme to study the asymmetric Bertrand duopoly with differentiated products. This scheme is more efficient than the previous symmetric one because it can exactly make the optimal cooperative payoffs at quantum Nash equilibrium. It is also a necessary condition for general asymmetric games with continuous strategies to reach such payoffs

  10. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    Science.gov (United States)

    2016-06-01

    ASYMMETRIC GAME FOR MODELING INTERDICTOR-SMUGGLER PROBLEMS by Richard J. Allain June 2016 Thesis Advisor: David L. Alderson Second Reader: W...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE AN EVOLVING ASYMMETRIC GAME FOR MODELING INTERDICTOR- SMUGGLER PROBLEMS 5. FUNDING NUMBERS 6...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited AN EVOLVING

  11. Decrease in back strength in asymmetric trunk postures

    NARCIS (Netherlands)

    Vink, P.; Daanen, H. A M; Meijst, W. J.; Ligteringen, J.

    1992-01-01

    The extension force against resistance was recorded in 23 postures for 12 subjects to find explanations for the decrease in back strength in asymmetric postures. A reduction in muscle force in asymmetric postures was found up to 40%, but was strongly dependent on the plane in which asymmetry

  12. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  13. Subcopula-based measure of asymmetric association for contingency tables.

    Science.gov (United States)

    Wei, Zheng; Kim, Daeyoung

    2017-10-30

    For the analysis of a two-way contingency table, a new asymmetric association measure is developed. The proposed method uses the subcopula-based regression between the discrete variables to measure the asymmetric predictive powers of the variables of interest. Unlike the existing measures of asymmetric association, the subcopula-based measure is insensitive to the number of categories in a variable, and thus, the magnitude of the proposed measure can be interpreted as the degree of asymmetric association in the contingency table. The theoretical properties of the proposed subcopula-based asymmetric association measure are investigated. We illustrate the performance and advantages of the proposed measure using simulation studies and real data examples. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Asymmetric double Langmuir probe: Small signal application

    International Nuclear Information System (INIS)

    Uckan, T.

    1987-11-01

    We discuss the asymmetric double Langmuir probe (ADLP) and demonstrate the possibility of using it to measure plasma temperature T/sub e/ and density n when it is operated in the region of small signal response. The area of one of the ADLP collectors is considerably larger than the other. This probe can be operated at a relatively low applied voltage, eV/sub a/T/sub e/ < 1, and still provides sufficient information to determine the plasma T/sub e/ and n. There is no need for a direct measurement of the ion saturation current, which can be on the order of a few amperes in large fusion devices. This reduces the requirements on the probe power supply. 6 refs., 6 figs

  15. Do Daily Retail Gasoline Prices adjust Asymmetrically?

    Energy Technology Data Exchange (ETDEWEB)

    Bettendorf, L. [Tinbergen Instituut, Amsterdam/Rotterdam (Netherlands); Van der Geest, S. [Erasmus Universiteit, Rotterdam (Netherlands); Kuper, G. [University of Groningen, Groningen (Netherlands)

    2005-04-15

    This paper analyzes adjustments in the Dutch retail gasoline prices. We estimate an error correction model on changes in the daily retail price for gasoline (taxes excluded) for the period 1996-2004 taking care of volatility clustering by estimating an EGARCH model. It turns out the volatility process is asymmetrical: an unexpected increase in the producer price has a larger effect on the variance of the producer price than an unexpected decrease. We do not find strong evidence for amount asymmetry. However, there is a faster reaction to upward changes in spot prices than to downward changes in spot prices. This implies timing or pattern asymmetry. This asymmetry starts three days after the change in the spot price and lasts for four days.

  16. Isospin dependent properties of asymmetric nuclear matter

    Science.gov (United States)

    Chowdhury, P. Roy; Basu, D. N.; Samanta, C.

    2009-07-01

    The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and isovector components of the density dependent M3Y interaction. The incompressibility K∞ for the symmetric nuclear matter, the isospin dependent part Kasy of the isobaric incompressibility, and the slope L are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei, and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions and validates the important empirical constraints obtained from recent experimental data.

  17. Asymmetric Spatial Processing Under Cognitive Load.

    Science.gov (United States)

    Naert, Lien; Bonato, Mario; Fias, Wim

    2018-01-01

    Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.

  18. Baryon destruction by asymmetric dark matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-01-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10 29 -10 32 yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  19. Asymmetric Dark Matter and Dark Radiation

    CERN Document Server

    Blennow, Mattias; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, pre...

  20. PEP-II: An asymmetric B factory

    International Nuclear Information System (INIS)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e + e - collider capable of achieving a luminosity of L = 3 x 10 33 cm -2 s -1 . All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings

  1. The asymmetric total synthesis of (+)- and (-)-trypargine via Noyori asymmetric transfer hydrogenation

    International Nuclear Information System (INIS)

    Pilli, Ronaldo A.; Rodrigues Junior, Manoel Trindade

    2009-01-01

    A concise and efficient total synthesis of (+)- and (-)-trypargine (6 steps and 38% overall yield), a 1-substituted β-carboline guanidine alkaloid isolated from the skin of the African frog K. senegalensis, was developed based on the construction of the b-carboline moiety via Bischler-Napieralski reaction and the enantioselective reduction of the dihydro-β-carboline intermediate via an asymmetric transfer hydrogenation reaction using Noyori's protocol. (author)

  2. USDA Flax fiber utilization research

    Science.gov (United States)

    The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...

  3. Ultrafine PBI fibers and yarns

    Science.gov (United States)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  4. Asymmetric septal hypertrophy of sporadic form with abnormal thallium perfusion and myocardial enzymes

    International Nuclear Information System (INIS)

    Nagata, Seiki; Minamikawa, Tetsuhiro; Park, Yung-Dae; Nishimura, Tsunehiko; Yutani, Chikao; Ohmori, Fumio; Sakakibara, Hiroshi; Nimura, Yasuharu

    1986-01-01

    Asymmetric septal hypertrophy with abnormal thallium scintigram and elevated cardiac enzymes were observed in five patients and were studied with special reference to the clinical significance of their clinicopathological features. They were not familial cardiomyopathy patients. Two of the five patients (Cases 1 and 2) exhibited the clinical features characteristic of hypertrophic cardiomyopathy without abnormal thallium perfusion and serum cardiac enzyme levels. A right endomyocardial biopsy for Case 1 disclosed myocardial fibrosis in addition to hypertrophy and disarray of myocardial fibers. The left ventricular cavities of two other patients (Cases 4 and 5) tended to be dilated with signs of impaired systolic function and asymmetric septal hypertrophy. A regional area of reduced thickness was observed in the medial portion of the left ventricular posterior wall of Case 4. The remaining case (Case 3) exhibited left ventricular dilatation and reduced left ventricular systolic function, disproportionate hypertrophy, and had clinical signs of congestive heart failure. Necropsy disclosed massive fibrosis and diffuse disarray of myocardial fibers. Some patients with familial hypertrophic cardiomyopathy progress to exhibit clinical features of dilated cardiomyopathy in the termimal stages, and have massive fibrosis of the myocardium histologically. Thallium scintigraphic abnormalities and elevated serum levels of cardiac enzymes, especially the LDH 1 isoenzyme, in patients with hypertrophic cardiomyopathy may be a meaningful indicator of such progression in its early stages. The five patients in the present study exhibited a variety of clinical and histological features which may comprise a spectrum of clinical conditions during the progression from hypertrophic cardiomyopathy to a condition like dilated cardiomyopathy, similar to that in familial patients. This progression and the factors promoting it should be studied further in the near future. (author)

  5. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    Science.gov (United States)

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  6. Asymmetric dominance and asymmetric mate choice oppose premating isolation after allopatric divergence.

    Science.gov (United States)

    Sefc, Kristina M; Hermann, Caroline M; Steinwender, Bernd; Brindl, Hanna; Zimmermann, Holger; Mattersdorfer, Karin; Postl, Lisbeth; Makasa, Lawrence; Sturmbauer, Christian; Koblmüller, Stephan

    2015-04-01

    Assortative mating promotes reproductive isolation and allows allopatric speciation processes to continue in secondary contact. As mating patterns are determined by mate preferences and intrasexual competition, we investigated male-male competition and behavioral isolation in simulated secondary contact among allopatric populations. Three allopatric color morphs of the cichlid fish Tropheus were tested against each other. Dyadic male-male contests revealed dominance of red males over bluish and yellow-blotch males. Reproductive isolation in the presence of male-male competition was assessed from genetic parentage in experimental ponds and was highly asymmetric among pairs of color morphs. Red females mated only with red males, whereas the other females performed variable degrees of heteromorphic mating. Discrepancies between mating patterns in ponds and female preferences in a competition-free, two-way choice paradigm suggested that the dominance of red males interfered with positive assortative mating of females of the subordinate morphs and provoked asymmetric hybridization. Between the nonred morphs, a significant excess of negative assortative mating by yellow-blotch females with bluish males did not coincide with asymmetric dominance among males. Hence, both negative assortative mating preferences and interference of male-male competition with positive assortative preferences forestall premating isolation, the latter especially in environments unsupportive of competition-driven spatial segregation.

  7. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  8. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  9. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  10. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  11. Ways to Boost Fiber

    Science.gov (United States)

    ... can help to lower cholesterol. Third, it helps prevent constipation and diverticulosis. And fourth, adequate fiber from food ... is similar to a new sponge; it needs water to plump up pass smoothly. If you ... or constipation. Before you reach for the fiber supplements, consider ...

  12. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  13. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  14. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  15. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  16. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  17. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  18. Survey of beta-particle interaction experiments with asymmetric matter

    Science.gov (United States)

    Van Horn, J. David; Wu, Fei

    2018-05-01

    Asymmetry is a basic property found at multiple scales in the universe. Asymmetric molecular interactions are fundamental to the operation of biological systems in both signaling and structural roles. Other aspects of asymmetry are observed and useful in many areas of science and engineering, and have been studied since the discovery of chirality in tartrate salts. The observation of parity violation in beta decay provided some impetus for later experiments using asymmetric particles. Here we survey historical work and experiments related to electron (e-) or positron (e+) polarimetry and their interactions with asymmetric materials in gas, liquid and solid forms. Asymmetric interactions may be classified as: 1) stereorecognition, 2) stereoselection and 3) stereoinduction. These three facets of physical stereochemistry are unique but interrelated; and examples from chemistry and materials science illustrate these aspects. Experimental positron and electron interactions with asymmetric materials may be classified in like manner. Thus, a qualitative assessment of helical and polarized positron experiments with different forms of asymmetric matter from the past 40 years is presented, as well as recent experiments with left-hand and right-hand single crystal quartz and organic compounds. The purpose of this classification and review is to evaluate the field for potential new experiments and directions for positron (or electron) studies with asymmetric materials.

  19. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    International Nuclear Information System (INIS)

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-01-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter

  20. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  1. Measurements of Inertial Torques on Sedimenting Fibers

    Science.gov (United States)

    Hamati, Rami; Roy, Anubhab; Koch, Don; Voth, Greg

    2017-11-01

    Stokes flow solutions predict that ellipsoids sedimenting in quiescent fluid keep their initial orientation. However, preferential alignment in low Reynolds number sedimentation is easily observed. For example, sun dogs form from alignment of sedimenting ice crystals. The cause of this preferential alignment is a torque due to non-zero fluid inertia that aligns particles with a long axis in the horizontal direction. These torques are predicted analytically for slender fibers with low Reynolds number based on the fiber diameter (ReD) by Khayat and Cox (JFM 209:435, 1989). Despite increasingly widespread use of these expressions, we did not find experimental measurements of these inertial torques at parameters where the theory was valid, so we performed a set of sedimentation experiments using fore-aft symmetric cylinders and asymmetric cylinders with their center of mass offset from their center of drag. Measured rotation rates as a function of orientation using carefully prepared glass capillaries in silicon oil show good agreement with the theory. We quantify the effect of finite tank size and compare with other experiments in water where the low ReD condition is not met. Supported by Army Research Office Grant W911NF1510205.

  2. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.

    2010-05-19

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2 partial pressures. The cross-linked membrane material shows high intrinsic separation performance for CO2 and CH4 (selectivity ∼49, CO2 permeability ∼161 barrer, with a feed at 65 psia, 35 °C, and 10% CO2). Cross-linked asymmetric hollow-fiber membranes made from the material show good resistance to CO2-induced plasticization. Carbon dioxide partial pressures as high as ∼400 psia were employed, and the membrane was shown to be promisingly stable under these aggressive conditions. The performance of the membrane was also analyzed using the dual-mode sorption/transport model. © 2010 American Chemical Society.

  3. SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2012-10-01

    The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these {eta}-parameterized asymmetric dark matter ({eta}ADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry {eta} close to the baryon asymmetry {eta}{sub B}. Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain {eta}ADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an {eta}-asymmetry with a value in the interval 10{sup -12}-10{sup -10}, would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological {eta}ADM scenarios that we discuss have a relic dark matter density {Omega}h {sup 2} and baryon asymmetry {eta}{sub B} in agreement with

  4. SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER

    International Nuclear Information System (INIS)

    Lopes, Ilídio; Silk, Joseph

    2012-01-01

    The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these η-parameterized asymmetric dark matter (ηADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry η close to the baryon asymmetry η B . Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain ηADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an η-asymmetry with a value in the interval 10 –12 -10 –10 , would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological ηADM scenarios that we discuss have a relic dark matter density Ωh 2 and baryon asymmetry η B in agreement with the current WMAP measured values, Ω DM h 2 = 0

  5. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more

  6. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  7. Asymmetric quantum well broadband thyristor laser

    Science.gov (United States)

    Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing

    2017-11-01

    A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.

  8. Asymmetric Cherenkov acoustic reverse in topological insulators

    Science.gov (United States)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  9. Asymmetric Spatial Processing Under Cognitive Load

    Directory of Open Access Journals (Sweden)

    Lien Naert

    2018-04-01

    Full Text Available Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right hemispace under high verbal working memory (WM load are discussed.

  10. Collaborative hierarchy maintains cooperation in asymmetric games.

    Science.gov (United States)

    Antonioni, Alberto; Pereda, María; Cronin, Katherine A; Tomassini, Marco; Sánchez, Angel

    2018-03-29

    The interplay of social structure and cooperative behavior is under much scrutiny lately as behavior in social contexts becomes increasingly relevant for everyday life. Earlier experimental work showed that the existence of a social hierarchy, earned through competition, was detrimental for the evolution of cooperative behaviors. Here, we study the case in which individuals are ranked in a hierarchical structure based on their performance in a collective effort by having them play a Public Goods Game. In the first treatment, participants are ranked according to group earnings while, in the second treatment, their rankings are based on individual earnings. Subsequently, participants play asymmetric Prisoner's Dilemma games where higher-ranked players gain more than lower ones. Our experiments show that there are no detrimental effects of the hierarchy formed based on group performance, yet when ranking is assigned individually we observe a decrease in cooperation. Our results show that different levels of cooperation arise from the fact that subjects are interpreting rankings as a reputation which carries information about which subjects were cooperators in the previous phase. Our results demonstrate that noting the manner in which a hierarchy is established is essential for understanding its effects on cooperation.

  11. Climate policy, asymmetric information and firm survival

    International Nuclear Information System (INIS)

    Hagem, C.

    2001-02-01

    The purpose of this paper is to compare the effect of different domestic climate policy instruments under asymmetric information when the regulator wants to secure the survival of a specific firm. It is a well-known result from economic theory that emission taxes lead to a cost-effective distribution of abatement across polluters. However, if the regulator wants to ensure the survival of a specific firm, it may need to design policy instruments that reduce the firm's cost of complying with an emission tax regime. The climate policy instruments considered in this paper are tradable emission permits with distribution of free permits, emission taxes in combination with a fixed subsidy, and two types of voluntary agreements. It demonstrates first that if distributing free tradable permits shall have a preventing effect, the allocation of permits has to be made contingent on production. It further shows that a voluntary agreement where a specific abatement target is set by the regulator can prevent a shutdown but leads to lower welfare than the use of emission taxes in combination with a fixed subsidy. And finally it illustrates that a voluntary agreement designed as a menu of abatement contracts increases social welfare compared to an emission tax regime

  12. Performance of an AGATA asymmetric detector

    Energy Technology Data Exchange (ETDEWEB)

    Boston, A.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)], E-mail: ajboston@liv.ac.uk; Dimmock, M.R.; Unsworth, C.; Boston, H.C.; Cooper, R.J.; Grint, A.N.; Harkness, L.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Jones, M.; Nolan, P.J.; Oxley, D.C. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Slee, M. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2009-06-01

    High-resolution gamma-ray detectors based on high-purity germanium crystals (HPGe) are one of the key workhorses of experimental nuclear science. The technical development of such detector technology has been dramatic in recent years. Large volume, high-granularity, electrically segmented HPGe detectors have been realised and a methodology to improve position sensitivity using pulse-shape analysis coupled with the novel technique of gamma-ray tracking has been developed. Collaborations have been established in Europe (Advanced GAmma Tracking Array (AGATA)) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383] and the USA (GRETA/GRETINA) [C.W. Beausang, Nucl. Instr. and Meth. B 204 (2003)] to build gamma-ray tracking spectrometers. This paper discusses the performance of the first AGATA asymmetric detector that has been tested at the University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well-defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector.

  13. Asymmetric Dark Matter and Dark Radiation

    International Nuclear Information System (INIS)

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum

  14. Asymmetric adaptations to energy price changes

    International Nuclear Information System (INIS)

    Kuper, G.H.; Van Soest, D.P.

    1999-01-01

    The effectiveness of policies to reduce the use of energy depend on the elasticity of substitution between the various inputs and on the rate of technological progress. This paper presents a theoretical model emphasising energy investment characteristics of uncertainty and irreversibility that result in testable hypotheses concerning the relative values of substitution parameters and rates of technological change in periods of high and increasing energy prices and in periods of low prices. Estimation results for a panel of sectors of the Dutch economy show that the elasticity of substitution between energy and other inputs is low in periods of low energy prices, whereas it is significantly higher in the preceding period of high and increasing energy prices. Furthermore, energy-saving technological progress in periods of high and increasing energy prices is also significantly higher than if energy prices are low and falling. The regression results suggest that, due this asymmetric response of firms to changes in energy prices, taxing energy in the current period of low energy prices will not yield substantial reductions in energy use of Dutch industry. 21 refs

  15. Trade Credit Insurance and Asymmetric Information Problem

    Directory of Open Access Journals (Sweden)

    Sokolovska Olena

    2017-03-01

    Full Text Available The presence of different risk factors in international trade gives evidence of the necessity of support in gaps that may affect exporters’ activity. To maximize the trade volumes and in the same time to minimize the exporters’ risks the stakeholders use trade credit insurance. The paper provides analysis of conceptual background of the trade credit insurance in the world. We analyzed briefly the problems, arising in insurance markets due to asymmetric information, such as adverse selection and moral hazard. Also we discuss the main stages of development of trade credit insurance in countries worldwide. Using comparative and graphical analysis we provide a brief evaluation of the dynamics of claims and recoveries for different forms of trade credit insurance. We found that the claims related to the commercial risk for medium and long trade credits in recent years exceed the recoveries, while with the political risk the reverse trend holds. And we originally consider these findings in terms of information asymmetry in the trade credit insurance differentiated by type of risk.

  16. Asymmetric sensory reweighting in human upright stance.

    Directory of Open Access Journals (Sweden)

    David Logan

    Full Text Available To investigate sensory reweighting as a fundamental property of sensor fusion during standing, we probed postural control with simultaneous rotations of the visual scene and surface of support. Nineteen subjects were presented with pseudo-random pitch rotations of visual scene and platform at the ankle to test for amplitude dependencies in the following conditions: low amplitude vision: high amplitude platform, low amplitude vision: low amplitude platform, and high amplitude vision: low amplitude platform. Gain and phase of frequency response functions (FRFs to each stimulus were computed for two body sway angles and a single weighted EMG signal recorded from seven muscles. When platform stimulus amplitude was increased while visual stimulus amplitude remained constant, gain to vision increased, providing strong evidence for inter-modal reweighting between vision and somatosensation during standing. Intra-modal reweighting of vision was also observed as gains to vision decreased as visual stimulus amplitude increased. Such intra-modal and inter-modal amplitude dependent changes in gain were also observed in muscular activity. Gains of leg segment angle and muscular activity relative to the platform, on the other hand, showed only intra-modal reweighting. That is, changing platform motion amplitude altered the responses to both visual and support surface motion whereas changing visual scene motion amplitude did not significantly affect responses to support surface motion, indicating that the sensory integration scheme between somatosensation (at the support surface and vision is asymmetric.

  17. Micromagnetic simulation of Fe asymmetric nanorings

    International Nuclear Information System (INIS)

    Palma, J.L.; Morales-Concha, C.; Leighton, B.; Altbir, D.; Escrig, J.

    2012-01-01

    During the last decade several methods to control the vortex chirality in nanodots have been proposed. One of them, the introduction of asymmetry in the geometry of the dots, originates interesting effects on the magnetic behavior of the particle. However, asymmetry in core-free structures is also interesting to investigate because of the reproducibility of their magnetic properties. In this work we report systematic changes in the coercivity and remanence in asymmetric nanorings. The angular dependence is also addressed. For specific geometries and magnetic field direction newly reversal modes appear associated with important changes in the coercivity and remanence of the rings. - Highlights: → We report that the existence of asymmetry strongly influences the coercivity and the remanence. → Magnetization reversal is driven by the nucleation of a C state and propagation of a vortex state. → We also conclude that the lack of a core contributes to the stability of the vortex state. → Asymmetry can be useful for tailoring specific magnetic characteristics of these systems.

  18. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang

    1998-12-01

    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  19. Chemistry Research of Optical Fibers.

    Science.gov (United States)

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  20. Optimal multicopy asymmetric Gaussian cloning of coherent states

    Science.gov (United States)

    Fiurášek, Jaromír; Cerf, Nicolas J.

    2007-05-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.

  1. Asymmetrical Polymer Vesicles for Drug delivery and Other Applications

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-06-01

    Full Text Available Scientists have been attracted by polymersomes as versatile drug delivery systems since the last two decades. Polymersomes have the potential to be versatile drug delivery systems because of their tunable membrane formulations, stabilities in vivo, various physicochemical properties, controlled release mechanisms, targeting abilities, and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical polymersomes are nano- to micro-sized polymeric capsules with asymmetrical membranes, which means, they have different outer and inner coronas so that they can exhibit better endocytosis rate and endosomal escape ability than other polymeric systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly promising as self-assembled nano-delivery systems in the future for in vivo therapeutics delivery and diagnostic imaging applications. In this review, we prepared a summary about recent research progresses of asymmetrical polymersomes in the following aspects: synthesis, preparation, applications in drug delivery and others.

  2. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra; Wang, Ruiqi; Alshareef, Husam N.

    2015-01-01

    electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid

  3. Outage Analysis of Asymmetric RF-FSO Systems

    KAUST Repository

    Ansari, Imran Shafique; Abdallah, Mohamed M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2017-01-01

    In this work, the outage performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) channels cascaded with free-space optical (FSO) links is presented. The RF links are modeled by the Rayleigh fading

  4. Asymmetric H-D exchange reactions of fluorinated aromatic ketones

    KAUST Repository

    Zhao, Yujun; Lim, XiaoZhi; Pan, Yuanhang; Zong, Lili; Feng, Wei; Tan, Choonhong; Huang, Kuo-Wei

    2012-01-01

    Chiral bicyclic guanidine catalyzes the asymmetric H-D exchange reactions. Up to 30% ee was achieved. DFT calculations were employed to elucidate and explain the origin of the reaction's stereoselectivity. © 2012 The Royal Society of Chemistry.

  5. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  6. Optimal multicopy asymmetric Gaussian cloning of coherent states

    International Nuclear Information System (INIS)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    2007-01-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward

  7. Asymmetric continuum extreme processes in solids and fluids

    CERN Document Server

    Teisseyre, Roman

    2014-01-01

    This book deals with a class of basic deformations in asymmetric continuum theory. It describes molecular deformations and transport velocities in fluids, strain deformations in solids as well as the molecular transport, important in fracture processes.

  8. Asymmetric H-D exchange reactions of fluorinated aromatic ketones

    KAUST Repository

    Zhao, Yujun

    2012-01-01

    Chiral bicyclic guanidine catalyzes the asymmetric H-D exchange reactions. Up to 30% ee was achieved. DFT calculations were employed to elucidate and explain the origin of the reaction\\'s stereoselectivity. © 2012 The Royal Society of Chemistry.

  9. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Cohen, T.D.; Broniowski, W.

    1995-01-01

    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter

  10. Subglottic cysts and asymmetrical subglottic narrowing on neck radiograph

    International Nuclear Information System (INIS)

    Holinger, L.D.; Torium, D.M.; Anandappa, E.C.

    1988-01-01

    The congenital subglottic hemangioma typically appears as an asymmetric subglottic narrowing or mass on frontal neck radiograph. Therefore, soft tissue neck radiography has been advocated as a definitive non-operative approach for diagnosing these lesions. However, we have noted similar asymmetric subglottic narrowing in patients with acquired subglottic cysts. These retention cysts occur following long-term intubation in the neonate. The mechanism probably involves subglottic fibrosis which obstructs glands with subsequent cyst formation. Acquired subglottic cysts typically appear as an asymmetric narrowing on frontal or lateral soft tissue neck radiographs. These lesions may produce airway compromise but are effectively treated by forceps or laser removal. Acquired subglottic cysts must be included in the differential diagnosis of asymmetric subglottic narrowing. The definitive diagnosis is made by direct laryngoscopy, not soft tissue neck radiograph. (orig.)

  11. Asymmetric periflexural exanthema: A report in an adult patient

    Directory of Open Access Journals (Sweden)

    Zawar V

    2003-11-01

    Full Text Available Asymmetric periflexural exanthem (APE is a distinctive exanthem, probably viral in origin. It is largely a disease of childhood and is uncommon in adults. We report an adult man presenting with the typical clinical findings of APE.

  12. Fourier synthesis of asymmetrical optical potentials for atoms

    International Nuclear Information System (INIS)

    Ritt, G.

    2007-01-01

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  13. Kinematics and Dynamics of an Asymmetrical Parallel Robotic Wrist

    DEFF Research Database (Denmark)

    Wu, Guanglei

    2014-01-01

    This paper introduces an asymmetrical parallel robotic wrist, which can generate a decoupled unlimited-torsion motion and achieve high positioning accuracy. The kinematics, dexterity, and singularities of the manipulator are investigated to visualize the performance contours of the manipulator...

  14. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  15. Vertical Control and Parallel Trade under Asymmetric Information

    Directory of Open Access Journals (Sweden)

    Alessandro Avenali

    2015-05-01

    profits from the manufacturer to the wholesaler. Therefore, in R&D-intensive industries, such as pharmaceuticals, policy makers should anticipate the likely consequences of PT under asymmetric information on the long-run incentives to innovate.

  16. Robust fiber clustering of cerebral fiber bundles in white matter

    Science.gov (United States)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  17. A method of the asymmetric Abel's inversion in plasma diagnosis

    International Nuclear Information System (INIS)

    Matoba, Tohru; Funahashi, Akimasa

    1975-09-01

    In the case of a noncylindrical plasma, axis symmetric components are drawn from observed projected intensities of physical quantities, assuming an asymmetric form. And the radial intensity distribution is determined by Abel's inversion method. The best fitting curve is obtained analytically from measured values by the least-square estimation of nonlinear parameters. The cylindrical symmetric Abel's inversion code ( ABELIC ) and the asymmetric Abel's inversion code ( ABELILSENP 2 ) are described. (auth.)

  18. Fluorescent nanohybrids based on asymmetrical cyanine dyes decorated carbon nanotubes

    OpenAIRE

    Çavuşlar, Özge; Cavuslar, Ozge

    2015-01-01

    In this thesis, we focused on imparting new optical properties to carbon nanotubes (CNTs) to allow their optical detection and visualization in biomedical applications. We investigated the interactions of CNTs and DNA wrapped CNTs with asymmetrical cyanine dye molecules to study the applicability of resulting hybrid materials to fluorescent based systems. When CNTs interacted with asymmetrical cyanine dyes, they constructed a light absorbing nanoarray. However, the fluorescence emission of th...

  19. Asymmetric Effects on Escape Rates of Bistable System

    International Nuclear Information System (INIS)

    Wang Canjun; Mei Dongcheng; Dai Zucheng

    2011-01-01

    The asymmetric effects on the escape rates from the stable states x ± in the bistable system are analyzed. The results indicate that the multiplicative noise and the additive noise always enhance the particle escape from stable states x ± of bistable. However, the asymmetric parameter r enhances the particle escape from stable state x + , and holds back the particle escape from stable state x - . (general)

  20. Method development of damage detection in asymmetric buildings

    Science.gov (United States)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results

  1. Asymmetric Price Transmission in Indonesia's Wheat Flour Market

    OpenAIRE

    Varela, Gonzalo J.; Taniguchi, Kiyoshi

    2014-01-01

    Data indicate that its domestic price in Indonesia has been increasing regardless of movements in the international price of wheat. A test for asymmetric price transmission from international wheat to domestic wheat flour markets is conducted using an error correction model and find the presence of asymmetric price transmission. The upward adjustment in the domestic price of wheat flour is much faster than its adjustment downward when it deviates from long-run equilibrium. Our results are rob...

  2. Project financing versus corporate financing under asymmetric information

    OpenAIRE

    Anton Miglo

    2008-01-01

    In recent years financing through the creation of an independent project company or financing by non-recourse debt has become an important part of corporate decisions. Shah and Thakor (JET, 1987) argue that project financing can be optimal when asymmetric information exists between firm's insiders and market participants. In contrast to that paper, we provide an asymmetric information argument for project financing without relying on corporate taxes, costly information production or an assump...

  3. Asymmetric Shaped-Pattern Synthesis for Planar Antenna Arrays

    Directory of Open Access Journals (Sweden)

    T. M. Bruintjes

    2016-01-01

    Full Text Available A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog beamformer.

  4. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  5. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  6. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  7. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  8. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  9. Robust Fiber Coatings

    National Research Council Canada - National Science Library

    Goettler, Richard

    2002-01-01

    The highly desired ceramic matrix composite is the one in which the high strength and strain-to-failure is achieved through judicious selection of a fiber coating that can survive the high-temperature...

  10. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  11. Cerenkov fiber sampling calorimeters

    International Nuclear Information System (INIS)

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R.; Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W.; Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E.

    1994-01-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1 degree--7 degree). The 7 λ deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented

  12. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  13. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  14. Orientation- and position-controlled alignment of asymmetric silicon microrod on a substrate with asymmetric electrodes

    Science.gov (United States)

    Shibata, Akihide; Watanabe, Keiji; Sato, Takuya; Kotaki, Hiroshi; Schuele, Paul J.; Crowder, Mark A.; Zhan, Changqing; Hartzell, John W.; Nakatani, Ryoichi

    2014-03-01

    In this paper, we demonstrate the orientation-controlled alignment of asymmetric Si microrods on a glass substrate with an asymmetric pair of electrodes. The Si microrods have the shape of a paddle with a blade and a shaft part, and the pair of electrodes consists of a narrow electrode and a wide electrode. By applying AC bias to the electrodes, the Si microrods suspended in a fluid align in such a way to settle across the electrode pair, and over 80% of the aligned Si microrods have an orientation with the blade and the shaft of the paddle on the wide and the narrow electrodes, respectively. When Si microrods have a shell of dielectric film and its thickness on the top face is thicker than that on the bottom face, 97.8% of the Si microrods are aligned with the top face facing upwards. This technique is useful for orientation-controlled alignment of nano- and microsized devices that have polarity or a distinction between the top and bottom faces.

  15. Asymmetric Facial Bone Fragmentation Mirrors Asymmetric Distribution of Cranial Neuromasts in Blind Mexican Cavefish

    Directory of Open Access Journals (Sweden)

    Joshua B. Gross

    2016-10-01

    Full Text Available Craniofacial asymmetry is a convergent trait widely distributed across animals that colonize the extreme cave environment. Although craniofacial asymmetry can be discerned easily, other complex phenotypes (such as sensory organ position and numerical variation are challenging to score and compare. Certain bones of the craniofacial complex demonstrate substantial asymmetry, and co-localize to regions harboring dramatically expanded numbers of mechanosensory neuromasts. To determine if a relationship exists between this expansion and bone fragmentation in cavefish, we developed a quantitative measure of positional symmetry across the left-right axis. We found that three different cave-dwelling populations were significantly more asymmetric compared to surface-dwelling fish. Moreover, cave populations did not differ in the degree of neuromast asymmetry. This work establishes a method for quantifying symmetry of a complex phenotype, and demonstrates that facial bone fragmentation mirrors the asymmetric distribution of neuromasts in different cavefish populations. Further developmental studies will provide a clearer picture of the developmental and cellular changes that accompany this extreme phenotype, and help illuminate the genetic basis for facial asymmetry in vertebrates.

  16. FIBER OPTIC LIGHTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  17. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  18. Chilly dark sectors and asymmetric reheating

    International Nuclear Information System (INIS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-01-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  19. Chilly dark sectors and asymmetric reheating

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Cui, Yanou [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Shelton, Jessie [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States)

    2016-06-06

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N{sub eff}, we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  20. Asymmetric inhibitory treatment effects in multilingual aphasia.

    Science.gov (United States)

    Goral, Mira; Naghibolhosseini, Maryam; Conner, Peggy S

    2013-01-01

    Findings from recent psycholinguistic studies of bilingual processing support the hypothesis that both languages of a bilingual are always active and that bilinguals continually engage in processes of language selection. This view aligns with the convergence hypothesis of bilingual language representation. Furthermore, it is hypothesized that when bilinguals perform a task in one language they need to inhibit their other, nontarget language(s) and that stronger inhibition is required when the task is performed in the weaker language than in the stronger one. The study of multilingual individuals who acquire aphasia resulting from a focal brain lesion offers a unique opportunity to test the convergence hypothesis and the inhibition asymmetry. We report on a trilingual person with chronic nonfluent aphasia who at the time of testing demonstrated greater impairment in her first acquired language (Persian) than in her third, later learned language (English). She received treatment in English followed by treatment in Persian. An examination of her connected language production revealed improvement in her grammatical skills in each language following intervention in that language, but decreased grammatical accuracy in English following treatment in Persian. The increased error rate was evident in structures that are used differently in the two languages (e.g., auxiliary verbs). The results support the prediction that greater inhibition is applied to the stronger language than to the weaker language, regardless of their age of acquisition. We interpret the findings as consistent with convergence theories that posit overlapping neuronal representation and simultaneous activation of multiple languages and with proficiency-dependent asymmetric inhibition in multilinguals.